1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/interpreterRuntime.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/forte.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiRedefineClassesTrace.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "prims/nativeLookup.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/hashtable.inline.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/xmlstream.hpp"
  61 #ifdef TARGET_ARCH_x86
  62 # include "nativeInst_x86.hpp"
  63 # include "vmreg_x86.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_sparc
  66 # include "nativeInst_sparc.hpp"
  67 # include "vmreg_sparc.inline.hpp"
  68 #endif
  69 #ifdef TARGET_ARCH_zero
  70 # include "nativeInst_zero.hpp"
  71 # include "vmreg_zero.inline.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_arm
  74 # include "nativeInst_arm.hpp"
  75 # include "vmreg_arm.inline.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_ppc
  78 # include "nativeInst_ppc.hpp"
  79 # include "vmreg_ppc.inline.hpp"
  80 #endif
  81 #ifdef COMPILER1
  82 #include "c1/c1_Runtime1.hpp"
  83 #endif
  84 
  85 // Shared stub locations
  86 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  87 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  88 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  89 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  90 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  91 
  92 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  93 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  95 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  96 
  97 #ifdef COMPILER2
  98 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  99 #endif // COMPILER2
 100 
 101 
 102 //----------------------------generate_stubs-----------------------------------
 103 void SharedRuntime::generate_stubs() {
 104   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
 105   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
 106   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
 107   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
 108   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
 109 
 110 #ifdef COMPILER2
 111   // Vectors are generated only by C2.
 112   if (is_wide_vector(MaxVectorSize)) {
 113     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 114   }
 115 #endif // COMPILER2
 116   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 117   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 118 
 119   generate_deopt_blob();
 120 
 121 #ifdef COMPILER2
 122   generate_uncommon_trap_blob();
 123 #endif // COMPILER2
 124 }
 125 
 126 #include <math.h>
 127 
 128 #ifndef USDT2
 129 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
 130 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
 131                       char*, int, char*, int, char*, int);
 132 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
 133                       char*, int, char*, int, char*, int);
 134 #endif /* !USDT2 */
 135 
 136 // Implementation of SharedRuntime
 137 
 138 #ifndef PRODUCT
 139 // For statistics
 140 int SharedRuntime::_ic_miss_ctr = 0;
 141 int SharedRuntime::_wrong_method_ctr = 0;
 142 int SharedRuntime::_resolve_static_ctr = 0;
 143 int SharedRuntime::_resolve_virtual_ctr = 0;
 144 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 145 int SharedRuntime::_implicit_null_throws = 0;
 146 int SharedRuntime::_implicit_div0_throws = 0;
 147 int SharedRuntime::_throw_null_ctr = 0;
 148 
 149 int SharedRuntime::_nof_normal_calls = 0;
 150 int SharedRuntime::_nof_optimized_calls = 0;
 151 int SharedRuntime::_nof_inlined_calls = 0;
 152 int SharedRuntime::_nof_megamorphic_calls = 0;
 153 int SharedRuntime::_nof_static_calls = 0;
 154 int SharedRuntime::_nof_inlined_static_calls = 0;
 155 int SharedRuntime::_nof_interface_calls = 0;
 156 int SharedRuntime::_nof_optimized_interface_calls = 0;
 157 int SharedRuntime::_nof_inlined_interface_calls = 0;
 158 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 159 int SharedRuntime::_nof_removable_exceptions = 0;
 160 
 161 int SharedRuntime::_new_instance_ctr=0;
 162 int SharedRuntime::_new_array_ctr=0;
 163 int SharedRuntime::_multi1_ctr=0;
 164 int SharedRuntime::_multi2_ctr=0;
 165 int SharedRuntime::_multi3_ctr=0;
 166 int SharedRuntime::_multi4_ctr=0;
 167 int SharedRuntime::_multi5_ctr=0;
 168 int SharedRuntime::_mon_enter_stub_ctr=0;
 169 int SharedRuntime::_mon_exit_stub_ctr=0;
 170 int SharedRuntime::_mon_enter_ctr=0;
 171 int SharedRuntime::_mon_exit_ctr=0;
 172 int SharedRuntime::_partial_subtype_ctr=0;
 173 int SharedRuntime::_jbyte_array_copy_ctr=0;
 174 int SharedRuntime::_jshort_array_copy_ctr=0;
 175 int SharedRuntime::_jint_array_copy_ctr=0;
 176 int SharedRuntime::_jlong_array_copy_ctr=0;
 177 int SharedRuntime::_oop_array_copy_ctr=0;
 178 int SharedRuntime::_checkcast_array_copy_ctr=0;
 179 int SharedRuntime::_unsafe_array_copy_ctr=0;
 180 int SharedRuntime::_generic_array_copy_ctr=0;
 181 int SharedRuntime::_slow_array_copy_ctr=0;
 182 int SharedRuntime::_find_handler_ctr=0;
 183 int SharedRuntime::_rethrow_ctr=0;
 184 
 185 int     SharedRuntime::_ICmiss_index                    = 0;
 186 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 187 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 188 
 189 
 190 void SharedRuntime::trace_ic_miss(address at) {
 191   for (int i = 0; i < _ICmiss_index; i++) {
 192     if (_ICmiss_at[i] == at) {
 193       _ICmiss_count[i]++;
 194       return;
 195     }
 196   }
 197   int index = _ICmiss_index++;
 198   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 199   _ICmiss_at[index] = at;
 200   _ICmiss_count[index] = 1;
 201 }
 202 
 203 void SharedRuntime::print_ic_miss_histogram() {
 204   if (ICMissHistogram) {
 205     tty->print_cr ("IC Miss Histogram:");
 206     int tot_misses = 0;
 207     for (int i = 0; i < _ICmiss_index; i++) {
 208       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 209       tot_misses += _ICmiss_count[i];
 210     }
 211     tty->print_cr ("Total IC misses: %7d", tot_misses);
 212   }
 213 }
 214 #endif // PRODUCT
 215 
 216 #if INCLUDE_ALL_GCS
 217 
 218 // G1 write-barrier pre: executed before a pointer store.
 219 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 220   if (orig == NULL) {
 221     assert(false, "should be optimized out");
 222     return;
 223   }
 224   assert(orig->is_oop(true /* ignore mark word */), "Error");
 225   // store the original value that was in the field reference
 226   thread->satb_mark_queue().enqueue(orig);
 227 JRT_END
 228 
 229 // G1 write-barrier post: executed after a pointer store.
 230 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 231   thread->dirty_card_queue().enqueue(card_addr);
 232 JRT_END
 233 
 234 #endif // INCLUDE_ALL_GCS
 235 
 236 
 237 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 238   return x * y;
 239 JRT_END
 240 
 241 
 242 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 243   if (x == min_jlong && y == CONST64(-1)) {
 244     return x;
 245   } else {
 246     return x / y;
 247   }
 248 JRT_END
 249 
 250 
 251 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 252   if (x == min_jlong && y == CONST64(-1)) {
 253     return 0;
 254   } else {
 255     return x % y;
 256   }
 257 JRT_END
 258 
 259 
 260 const juint  float_sign_mask  = 0x7FFFFFFF;
 261 const juint  float_infinity   = 0x7F800000;
 262 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 263 const julong double_infinity  = CONST64(0x7FF0000000000000);
 264 
 265 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 266 #ifdef _WIN64
 267   // 64-bit Windows on amd64 returns the wrong values for
 268   // infinity operands.
 269   union { jfloat f; juint i; } xbits, ybits;
 270   xbits.f = x;
 271   ybits.f = y;
 272   // x Mod Infinity == x unless x is infinity
 273   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 274        ((ybits.i & float_sign_mask) == float_infinity) ) {
 275     return x;
 276   }
 277 #endif
 278   return ((jfloat)fmod((double)x,(double)y));
 279 JRT_END
 280 
 281 
 282 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 283 #ifdef _WIN64
 284   union { jdouble d; julong l; } xbits, ybits;
 285   xbits.d = x;
 286   ybits.d = y;
 287   // x Mod Infinity == x unless x is infinity
 288   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 289        ((ybits.l & double_sign_mask) == double_infinity) ) {
 290     return x;
 291   }
 292 #endif
 293   return ((jdouble)fmod((double)x,(double)y));
 294 JRT_END
 295 
 296 #ifdef __SOFTFP__
 297 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 298   return x + y;
 299 JRT_END
 300 
 301 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 302   return x - y;
 303 JRT_END
 304 
 305 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 306   return x * y;
 307 JRT_END
 308 
 309 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 310   return x / y;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 314   return x + y;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 318   return x - y;
 319 JRT_END
 320 
 321 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 322   return x * y;
 323 JRT_END
 324 
 325 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 326   return x / y;
 327 JRT_END
 328 
 329 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 330   return (jfloat)x;
 331 JRT_END
 332 
 333 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 334   return (jdouble)x;
 335 JRT_END
 336 
 337 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 338   return (jdouble)x;
 339 JRT_END
 340 
 341 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 342   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 343 JRT_END
 344 
 345 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 346   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 347 JRT_END
 348 
 349 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 350   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 351 JRT_END
 352 
 353 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 354   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 355 JRT_END
 356 
 357 // Functions to return the opposite of the aeabi functions for nan.
 358 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 359   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 363   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 367   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 371   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 375   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 379   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 380 JRT_END
 381 
 382 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 383   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 384 JRT_END
 385 
 386 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 387   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 388 JRT_END
 389 
 390 // Intrinsics make gcc generate code for these.
 391 float  SharedRuntime::fneg(float f)   {
 392   return -f;
 393 }
 394 
 395 double SharedRuntime::dneg(double f)  {
 396   return -f;
 397 }
 398 
 399 #endif // __SOFTFP__
 400 
 401 #if defined(__SOFTFP__) || defined(E500V2)
 402 // Intrinsics make gcc generate code for these.
 403 double SharedRuntime::dabs(double f)  {
 404   return (f <= (double)0.0) ? (double)0.0 - f : f;
 405 }
 406 
 407 #endif
 408 
 409 #if defined(__SOFTFP__) || defined(PPC32)
 410 double SharedRuntime::dsqrt(double f) {
 411   return sqrt(f);
 412 }
 413 #endif
 414 
 415 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 416   if (g_isnan(x))
 417     return 0;
 418   if (x >= (jfloat) max_jint)
 419     return max_jint;
 420   if (x <= (jfloat) min_jint)
 421     return min_jint;
 422   return (jint) x;
 423 JRT_END
 424 
 425 
 426 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 427   if (g_isnan(x))
 428     return 0;
 429   if (x >= (jfloat) max_jlong)
 430     return max_jlong;
 431   if (x <= (jfloat) min_jlong)
 432     return min_jlong;
 433   return (jlong) x;
 434 JRT_END
 435 
 436 
 437 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 438   if (g_isnan(x))
 439     return 0;
 440   if (x >= (jdouble) max_jint)
 441     return max_jint;
 442   if (x <= (jdouble) min_jint)
 443     return min_jint;
 444   return (jint) x;
 445 JRT_END
 446 
 447 
 448 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 449   if (g_isnan(x))
 450     return 0;
 451   if (x >= (jdouble) max_jlong)
 452     return max_jlong;
 453   if (x <= (jdouble) min_jlong)
 454     return min_jlong;
 455   return (jlong) x;
 456 JRT_END
 457 
 458 
 459 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 460   return (jfloat)x;
 461 JRT_END
 462 
 463 
 464 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 465   return (jfloat)x;
 466 JRT_END
 467 
 468 
 469 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 470   return (jdouble)x;
 471 JRT_END
 472 
 473 // Exception handling accross interpreter/compiler boundaries
 474 //
 475 // exception_handler_for_return_address(...) returns the continuation address.
 476 // The continuation address is the entry point of the exception handler of the
 477 // previous frame depending on the return address.
 478 
 479 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 480   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 481 
 482   // Reset method handle flag.
 483   thread->set_is_method_handle_return(false);
 484 
 485   // The fastest case first
 486   CodeBlob* blob = CodeCache::find_blob(return_address);
 487   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 488   if (nm != NULL) {
 489     // Set flag if return address is a method handle call site.
 490     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 491     // native nmethods don't have exception handlers
 492     assert(!nm->is_native_method(), "no exception handler");
 493     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 494     if (nm->is_deopt_pc(return_address)) {
 495       return SharedRuntime::deopt_blob()->unpack_with_exception();
 496     } else {
 497       return nm->exception_begin();
 498     }
 499   }
 500 
 501   // Entry code
 502   if (StubRoutines::returns_to_call_stub(return_address)) {
 503     return StubRoutines::catch_exception_entry();
 504   }
 505   // Interpreted code
 506   if (Interpreter::contains(return_address)) {
 507     return Interpreter::rethrow_exception_entry();
 508   }
 509 
 510   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 511   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 512 
 513 #ifndef PRODUCT
 514   { ResourceMark rm;
 515     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 516     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 517     tty->print_cr("b) other problem");
 518   }
 519 #endif // PRODUCT
 520 
 521   ShouldNotReachHere();
 522   return NULL;
 523 }
 524 
 525 
 526 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 527   return raw_exception_handler_for_return_address(thread, return_address);
 528 JRT_END
 529 
 530 
 531 address SharedRuntime::get_poll_stub(address pc) {
 532   address stub;
 533   // Look up the code blob
 534   CodeBlob *cb = CodeCache::find_blob(pc);
 535 
 536   // Should be an nmethod
 537   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 538 
 539   // Look up the relocation information
 540   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 541     "safepoint polling: type must be poll" );
 542 
 543   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 544     "Only polling locations are used for safepoint");
 545 
 546   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 547   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 548   if (at_poll_return) {
 549     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 550            "polling page return stub not created yet");
 551     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 552   } else if (has_wide_vectors) {
 553     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 554            "polling page vectors safepoint stub not created yet");
 555     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 556   } else {
 557     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 558            "polling page safepoint stub not created yet");
 559     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 560   }
 561 #ifndef PRODUCT
 562   if( TraceSafepoint ) {
 563     char buf[256];
 564     jio_snprintf(buf, sizeof(buf),
 565                  "... found polling page %s exception at pc = "
 566                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 567                  at_poll_return ? "return" : "loop",
 568                  (intptr_t)pc, (intptr_t)stub);
 569     tty->print_raw_cr(buf);
 570   }
 571 #endif // PRODUCT
 572   return stub;
 573 }
 574 
 575 
 576 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 577   assert(caller.is_interpreted_frame(), "");
 578   int args_size = ArgumentSizeComputer(sig).size() + 1;
 579   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 580   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
 581   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 582   return result;
 583 }
 584 
 585 
 586 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 587   if (JvmtiExport::can_post_on_exceptions()) {
 588     vframeStream vfst(thread, true);
 589     methodHandle method = methodHandle(thread, vfst.method());
 590     address bcp = method()->bcp_from(vfst.bci());
 591     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 592   }
 593   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 594 }
 595 
 596 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 597   Handle h_exception = Exceptions::new_exception(thread, name, message);
 598   throw_and_post_jvmti_exception(thread, h_exception);
 599 }
 600 
 601 // The interpreter code to call this tracing function is only
 602 // called/generated when TraceRedefineClasses has the right bits
 603 // set. Since obsolete methods are never compiled, we don't have
 604 // to modify the compilers to generate calls to this function.
 605 //
 606 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 607     JavaThread* thread, Method* method))
 608   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 609 
 610   if (method->is_obsolete()) {
 611     // We are calling an obsolete method, but this is not necessarily
 612     // an error. Our method could have been redefined just after we
 613     // fetched the Method* from the constant pool.
 614 
 615     // RC_TRACE macro has an embedded ResourceMark
 616     RC_TRACE_WITH_THREAD(0x00001000, thread,
 617                          ("calling obsolete method '%s'",
 618                           method->name_and_sig_as_C_string()));
 619     if (RC_TRACE_ENABLED(0x00002000)) {
 620       // this option is provided to debug calls to obsolete methods
 621       guarantee(false, "faulting at call to an obsolete method.");
 622     }
 623   }
 624   return 0;
 625 JRT_END
 626 
 627 // ret_pc points into caller; we are returning caller's exception handler
 628 // for given exception
 629 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 630                                                     bool force_unwind, bool top_frame_only) {
 631   assert(nm != NULL, "must exist");
 632   ResourceMark rm;
 633 
 634   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 635   // determine handler bci, if any
 636   EXCEPTION_MARK;
 637 
 638   int handler_bci = -1;
 639   int scope_depth = 0;
 640   if (!force_unwind) {
 641     int bci = sd->bci();
 642     bool recursive_exception = false;
 643     do {
 644       bool skip_scope_increment = false;
 645       // exception handler lookup
 646       KlassHandle ek (THREAD, exception->klass());
 647       methodHandle mh(THREAD, sd->method());
 648       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 649       if (HAS_PENDING_EXCEPTION) {
 650         recursive_exception = true;
 651         // We threw an exception while trying to find the exception handler.
 652         // Transfer the new exception to the exception handle which will
 653         // be set into thread local storage, and do another lookup for an
 654         // exception handler for this exception, this time starting at the
 655         // BCI of the exception handler which caused the exception to be
 656         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 657         // argument to ensure that the correct exception is thrown (4870175).
 658         exception = Handle(THREAD, PENDING_EXCEPTION);
 659         CLEAR_PENDING_EXCEPTION;
 660         if (handler_bci >= 0) {
 661           bci = handler_bci;
 662           handler_bci = -1;
 663           skip_scope_increment = true;
 664         }
 665       }
 666       else {
 667         recursive_exception = false;
 668       }
 669       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 670         sd = sd->sender();
 671         if (sd != NULL) {
 672           bci = sd->bci();
 673         }
 674         ++scope_depth;
 675       }
 676     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 677   }
 678 
 679   // found handling method => lookup exception handler
 680   int catch_pco = ret_pc - nm->code_begin();
 681 
 682   ExceptionHandlerTable table(nm);
 683   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 684   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 685     // Allow abbreviated catch tables.  The idea is to allow a method
 686     // to materialize its exceptions without committing to the exact
 687     // routing of exceptions.  In particular this is needed for adding
 688     // a synthethic handler to unlock monitors when inlining
 689     // synchonized methods since the unlock path isn't represented in
 690     // the bytecodes.
 691     t = table.entry_for(catch_pco, -1, 0);
 692   }
 693 
 694 #ifdef COMPILER1
 695   if (t == NULL && nm->is_compiled_by_c1()) {
 696     assert(nm->unwind_handler_begin() != NULL, "");
 697     return nm->unwind_handler_begin();
 698   }
 699 #endif
 700 
 701   if (t == NULL) {
 702     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 703     tty->print_cr("   Exception:");
 704     exception->print();
 705     tty->cr();
 706     tty->print_cr(" Compiled exception table :");
 707     table.print();
 708     nm->print_code();
 709     guarantee(false, "missing exception handler");
 710     return NULL;
 711   }
 712 
 713   return nm->code_begin() + t->pco();
 714 }
 715 
 716 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 717   // These errors occur only at call sites
 718   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 719 JRT_END
 720 
 721 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 722   // These errors occur only at call sites
 723   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 724 JRT_END
 725 
 726 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 727   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 728 JRT_END
 729 
 730 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 731   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 732 JRT_END
 733 
 734 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 735   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 736   // cache sites (when the callee activation is not yet set up) so we are at a call site
 737   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 738 JRT_END
 739 
 740 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 741   // We avoid using the normal exception construction in this case because
 742   // it performs an upcall to Java, and we're already out of stack space.
 743   Klass* k = SystemDictionary::StackOverflowError_klass();
 744   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 745   Handle exception (thread, exception_oop);
 746   if (StackTraceInThrowable) {
 747     java_lang_Throwable::fill_in_stack_trace(exception);
 748   }
 749   throw_and_post_jvmti_exception(thread, exception);
 750 JRT_END
 751 
 752 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 753                                                            address pc,
 754                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 755 {
 756   address target_pc = NULL;
 757 
 758   if (Interpreter::contains(pc)) {
 759 #ifdef CC_INTERP
 760     // C++ interpreter doesn't throw implicit exceptions
 761     ShouldNotReachHere();
 762 #else
 763     switch (exception_kind) {
 764       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 765       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 766       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 767       default:                      ShouldNotReachHere();
 768     }
 769 #endif // !CC_INTERP
 770   } else {
 771     switch (exception_kind) {
 772       case STACK_OVERFLOW: {
 773         // Stack overflow only occurs upon frame setup; the callee is
 774         // going to be unwound. Dispatch to a shared runtime stub
 775         // which will cause the StackOverflowError to be fabricated
 776         // and processed.
 777         // For stack overflow in deoptimization blob, cleanup thread.
 778         if (thread->deopt_mark() != NULL) {
 779           Deoptimization::cleanup_deopt_info(thread, NULL);
 780         }
 781         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 782         return StubRoutines::throw_StackOverflowError_entry();
 783       }
 784 
 785       case IMPLICIT_NULL: {
 786         if (VtableStubs::contains(pc)) {
 787           // We haven't yet entered the callee frame. Fabricate an
 788           // exception and begin dispatching it in the caller. Since
 789           // the caller was at a call site, it's safe to destroy all
 790           // caller-saved registers, as these entry points do.
 791           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 792 
 793           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 794           if (vt_stub == NULL) return NULL;
 795 
 796           if (vt_stub->is_abstract_method_error(pc)) {
 797             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 798             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 799             return StubRoutines::throw_AbstractMethodError_entry();
 800           } else {
 801             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 802             return StubRoutines::throw_NullPointerException_at_call_entry();
 803           }
 804         } else {
 805           CodeBlob* cb = CodeCache::find_blob(pc);
 806 
 807           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 808           if (cb == NULL) return NULL;
 809 
 810           // Exception happened in CodeCache. Must be either:
 811           // 1. Inline-cache check in C2I handler blob,
 812           // 2. Inline-cache check in nmethod, or
 813           // 3. Implict null exception in nmethod
 814 
 815           if (!cb->is_nmethod()) {
 816             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 817             if (!is_in_blob) {
 818               cb->print();
 819               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
 820             }
 821             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 822             // There is no handler here, so we will simply unwind.
 823             return StubRoutines::throw_NullPointerException_at_call_entry();
 824           }
 825 
 826           // Otherwise, it's an nmethod.  Consult its exception handlers.
 827           nmethod* nm = (nmethod*)cb;
 828           if (nm->inlinecache_check_contains(pc)) {
 829             // exception happened inside inline-cache check code
 830             // => the nmethod is not yet active (i.e., the frame
 831             // is not set up yet) => use return address pushed by
 832             // caller => don't push another return address
 833             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 834             return StubRoutines::throw_NullPointerException_at_call_entry();
 835           }
 836 
 837           if (nm->method()->is_method_handle_intrinsic()) {
 838             // exception happened inside MH dispatch code, similar to a vtable stub
 839             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 840             return StubRoutines::throw_NullPointerException_at_call_entry();
 841           }
 842 
 843 #ifndef PRODUCT
 844           _implicit_null_throws++;
 845 #endif
 846           target_pc = nm->continuation_for_implicit_exception(pc);
 847           // If there's an unexpected fault, target_pc might be NULL,
 848           // in which case we want to fall through into the normal
 849           // error handling code.
 850         }
 851 
 852         break; // fall through
 853       }
 854 
 855 
 856       case IMPLICIT_DIVIDE_BY_ZERO: {
 857         nmethod* nm = CodeCache::find_nmethod(pc);
 858         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 859 #ifndef PRODUCT
 860         _implicit_div0_throws++;
 861 #endif
 862         target_pc = nm->continuation_for_implicit_exception(pc);
 863         // If there's an unexpected fault, target_pc might be NULL,
 864         // in which case we want to fall through into the normal
 865         // error handling code.
 866         break; // fall through
 867       }
 868 
 869       default: ShouldNotReachHere();
 870     }
 871 
 872     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 873 
 874     // for AbortVMOnException flag
 875     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 876     if (exception_kind == IMPLICIT_NULL) {
 877       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 878     } else {
 879       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 880     }
 881     return target_pc;
 882   }
 883 
 884   ShouldNotReachHere();
 885   return NULL;
 886 }
 887 
 888 
 889 /**
 890  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 891  * installed in the native function entry of all native Java methods before
 892  * they get linked to their actual native methods.
 893  *
 894  * \note
 895  * This method actually never gets called!  The reason is because
 896  * the interpreter's native entries call NativeLookup::lookup() which
 897  * throws the exception when the lookup fails.  The exception is then
 898  * caught and forwarded on the return from NativeLookup::lookup() call
 899  * before the call to the native function.  This might change in the future.
 900  */
 901 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 902 {
 903   // We return a bad value here to make sure that the exception is
 904   // forwarded before we look at the return value.
 905   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 906 }
 907 JNI_END
 908 
 909 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 910   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 911 }
 912 
 913 
 914 #ifndef PRODUCT
 915 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 916   const frame f = thread->last_frame();
 917   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 918 #ifndef PRODUCT
 919   methodHandle mh(THREAD, f.interpreter_frame_method());
 920   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 921 #endif // !PRODUCT
 922   return preserve_this_value;
 923 JRT_END
 924 #endif // !PRODUCT
 925 
 926 
 927 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 928   os::yield_all(attempts);
 929 JRT_END
 930 
 931 
 932 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 933   assert(obj->is_oop(), "must be a valid oop");
 934   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 935   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 936 JRT_END
 937 
 938 
 939 jlong SharedRuntime::get_java_tid(Thread* thread) {
 940   if (thread != NULL) {
 941     if (thread->is_Java_thread()) {
 942       oop obj = ((JavaThread*)thread)->threadObj();
 943       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 944     }
 945   }
 946   return 0;
 947 }
 948 
 949 /**
 950  * This function ought to be a void function, but cannot be because
 951  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 952  * 6254741.  Once that is fixed we can remove the dummy return value.
 953  */
 954 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 955   return dtrace_object_alloc_base(Thread::current(), o);
 956 }
 957 
 958 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 959   assert(DTraceAllocProbes, "wrong call");
 960   Klass* klass = o->klass();
 961   int size = o->size();
 962   Symbol* name = klass->name();
 963 #ifndef USDT2
 964   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 965                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 966 #else /* USDT2 */
 967   HOTSPOT_OBJECT_ALLOC(
 968                    get_java_tid(thread),
 969                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 970 #endif /* USDT2 */
 971   return 0;
 972 }
 973 
 974 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 975     JavaThread* thread, Method* method))
 976   assert(DTraceMethodProbes, "wrong call");
 977   Symbol* kname = method->klass_name();
 978   Symbol* name = method->name();
 979   Symbol* sig = method->signature();
 980 #ifndef USDT2
 981   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 982       kname->bytes(), kname->utf8_length(),
 983       name->bytes(), name->utf8_length(),
 984       sig->bytes(), sig->utf8_length());
 985 #else /* USDT2 */
 986   HOTSPOT_METHOD_ENTRY(
 987       get_java_tid(thread),
 988       (char *) kname->bytes(), kname->utf8_length(),
 989       (char *) name->bytes(), name->utf8_length(),
 990       (char *) sig->bytes(), sig->utf8_length());
 991 #endif /* USDT2 */
 992   return 0;
 993 JRT_END
 994 
 995 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 996     JavaThread* thread, Method* method))
 997   assert(DTraceMethodProbes, "wrong call");
 998   Symbol* kname = method->klass_name();
 999   Symbol* name = method->name();
1000   Symbol* sig = method->signature();
1001 #ifndef USDT2
1002   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
1003       kname->bytes(), kname->utf8_length(),
1004       name->bytes(), name->utf8_length(),
1005       sig->bytes(), sig->utf8_length());
1006 #else /* USDT2 */
1007   HOTSPOT_METHOD_RETURN(
1008       get_java_tid(thread),
1009       (char *) kname->bytes(), kname->utf8_length(),
1010       (char *) name->bytes(), name->utf8_length(),
1011       (char *) sig->bytes(), sig->utf8_length());
1012 #endif /* USDT2 */
1013   return 0;
1014 JRT_END
1015 
1016 
1017 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1018 // for a call current in progress, i.e., arguments has been pushed on stack
1019 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1020 // vtable updates, etc.  Caller frame must be compiled.
1021 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1022   ResourceMark rm(THREAD);
1023 
1024   // last java frame on stack (which includes native call frames)
1025   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1026 
1027   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1028 }
1029 
1030 
1031 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1032 // for a call current in progress, i.e., arguments has been pushed on stack
1033 // but callee has not been invoked yet.  Caller frame must be compiled.
1034 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1035                                               vframeStream& vfst,
1036                                               Bytecodes::Code& bc,
1037                                               CallInfo& callinfo, TRAPS) {
1038   Handle receiver;
1039   Handle nullHandle;  //create a handy null handle for exception returns
1040 
1041   assert(!vfst.at_end(), "Java frame must exist");
1042 
1043   // Find caller and bci from vframe
1044   methodHandle caller(THREAD, vfst.method());
1045   int          bci   = vfst.bci();
1046 
1047   // Find bytecode
1048   Bytecode_invoke bytecode(caller, bci);
1049   bc = bytecode.invoke_code();
1050   int bytecode_index = bytecode.index();
1051 
1052   // Find receiver for non-static call
1053   if (bc != Bytecodes::_invokestatic &&
1054       bc != Bytecodes::_invokedynamic) {
1055     // This register map must be update since we need to find the receiver for
1056     // compiled frames. The receiver might be in a register.
1057     RegisterMap reg_map2(thread);
1058     frame stubFrame   = thread->last_frame();
1059     // Caller-frame is a compiled frame
1060     frame callerFrame = stubFrame.sender(&reg_map2);
1061 
1062     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1063     if (callee.is_null()) {
1064       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1065     }
1066     // Retrieve from a compiled argument list
1067     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1068 
1069     if (receiver.is_null()) {
1070       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1071     }
1072   }
1073 
1074   // Resolve method. This is parameterized by bytecode.
1075   constantPoolHandle constants(THREAD, caller->constants());
1076   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1077   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1078 
1079 #ifdef ASSERT
1080   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1081   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
1082     assert(receiver.not_null(), "should have thrown exception");
1083     KlassHandle receiver_klass(THREAD, receiver->klass());
1084     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1085                             // klass is already loaded
1086     KlassHandle static_receiver_klass(THREAD, rk);
1087     // Method handle invokes might have been optimized to a direct call
1088     // so don't check for the receiver class.
1089     // FIXME this weakens the assert too much
1090     methodHandle callee = callinfo.selected_method();
1091     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1092            callee->is_method_handle_intrinsic() ||
1093            callee->is_compiled_lambda_form(),
1094            "actual receiver must be subclass of static receiver klass");
1095     if (receiver_klass->oop_is_instance()) {
1096       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1097         tty->print_cr("ERROR: Klass not yet initialized!!");
1098         receiver_klass()->print();
1099       }
1100       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1101     }
1102   }
1103 #endif
1104 
1105   return receiver;
1106 }
1107 
1108 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1109   ResourceMark rm(THREAD);
1110   // We need first to check if any Java activations (compiled, interpreted)
1111   // exist on the stack since last JavaCall.  If not, we need
1112   // to get the target method from the JavaCall wrapper.
1113   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1114   methodHandle callee_method;
1115   if (vfst.at_end()) {
1116     // No Java frames were found on stack since we did the JavaCall.
1117     // Hence the stack can only contain an entry_frame.  We need to
1118     // find the target method from the stub frame.
1119     RegisterMap reg_map(thread, false);
1120     frame fr = thread->last_frame();
1121     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1122     fr = fr.sender(&reg_map);
1123     assert(fr.is_entry_frame(), "must be");
1124     // fr is now pointing to the entry frame.
1125     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1126     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1127   } else {
1128     Bytecodes::Code bc;
1129     CallInfo callinfo;
1130     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1131     callee_method = callinfo.selected_method();
1132   }
1133   assert(callee_method()->is_method(), "must be");
1134   return callee_method;
1135 }
1136 
1137 // Resolves a call.
1138 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1139                                            bool is_virtual,
1140                                            bool is_optimized, TRAPS) {
1141   methodHandle callee_method;
1142   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1143   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1144     int retry_count = 0;
1145     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1146            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1147       // If has a pending exception then there is no need to re-try to
1148       // resolve this method.
1149       // If the method has been redefined, we need to try again.
1150       // Hack: we have no way to update the vtables of arrays, so don't
1151       // require that java.lang.Object has been updated.
1152 
1153       // It is very unlikely that method is redefined more than 100 times
1154       // in the middle of resolve. If it is looping here more than 100 times
1155       // means then there could be a bug here.
1156       guarantee((retry_count++ < 100),
1157                 "Could not resolve to latest version of redefined method");
1158       // method is redefined in the middle of resolve so re-try.
1159       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1160     }
1161   }
1162   return callee_method;
1163 }
1164 
1165 // Resolves a call.  The compilers generate code for calls that go here
1166 // and are patched with the real destination of the call.
1167 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1168                                            bool is_virtual,
1169                                            bool is_optimized, TRAPS) {
1170 
1171   ResourceMark rm(thread);
1172   RegisterMap cbl_map(thread, false);
1173   frame caller_frame = thread->last_frame().sender(&cbl_map);
1174 
1175   CodeBlob* caller_cb = caller_frame.cb();
1176   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1177   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1178   // make sure caller is not getting deoptimized
1179   // and removed before we are done with it.
1180   // CLEANUP - with lazy deopt shouldn't need this lock
1181   nmethodLocker caller_lock(caller_nm);
1182 
1183 
1184   // determine call info & receiver
1185   // note: a) receiver is NULL for static calls
1186   //       b) an exception is thrown if receiver is NULL for non-static calls
1187   CallInfo call_info;
1188   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1189   Handle receiver = find_callee_info(thread, invoke_code,
1190                                      call_info, CHECK_(methodHandle()));
1191   methodHandle callee_method = call_info.selected_method();
1192 
1193   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1194          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1195          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1196          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1197 
1198 #ifndef PRODUCT
1199   // tracing/debugging/statistics
1200   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1201                 (is_virtual) ? (&_resolve_virtual_ctr) :
1202                                (&_resolve_static_ctr);
1203   Atomic::inc(addr);
1204 
1205   if (TraceCallFixup) {
1206     ResourceMark rm(thread);
1207     tty->print("resolving %s%s (%s) call to",
1208       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1209       Bytecodes::name(invoke_code));
1210     callee_method->print_short_name(tty);
1211     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1212   }
1213 #endif
1214 
1215   // JSR 292 key invariant:
1216   // If the resolved method is a MethodHandle invoke target the call
1217   // site must be a MethodHandle call site, because the lambda form might tail-call
1218   // leaving the stack in a state unknown to either caller or callee
1219   // TODO detune for now but we might need it again
1220 //  assert(!callee_method->is_compiled_lambda_form() ||
1221 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1222 
1223   // Compute entry points. This might require generation of C2I converter
1224   // frames, so we cannot be holding any locks here. Furthermore, the
1225   // computation of the entry points is independent of patching the call.  We
1226   // always return the entry-point, but we only patch the stub if the call has
1227   // not been deoptimized.  Return values: For a virtual call this is an
1228   // (cached_oop, destination address) pair. For a static call/optimized
1229   // virtual this is just a destination address.
1230 
1231   StaticCallInfo static_call_info;
1232   CompiledICInfo virtual_call_info;
1233 
1234   // Make sure the callee nmethod does not get deoptimized and removed before
1235   // we are done patching the code.
1236   nmethod* callee_nm = callee_method->code();
1237   nmethodLocker nl_callee(callee_nm);
1238 #ifdef ASSERT
1239   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1240 #endif
1241 
1242   if (is_virtual) {
1243     assert(receiver.not_null(), "sanity check");
1244     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1245     KlassHandle h_klass(THREAD, receiver->klass());
1246     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1247                      is_optimized, static_bound, virtual_call_info,
1248                      CHECK_(methodHandle()));
1249   } else {
1250     // static call
1251     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1252   }
1253 
1254   // grab lock, check for deoptimization and potentially patch caller
1255   {
1256     MutexLocker ml_patch(CompiledIC_lock);
1257 
1258     // Now that we are ready to patch if the Method* was redefined then
1259     // don't update call site and let the caller retry.
1260 
1261     if (!callee_method->is_old()) {
1262 #ifdef ASSERT
1263       // We must not try to patch to jump to an already unloaded method.
1264       if (dest_entry_point != 0) {
1265         assert(CodeCache::find_blob(dest_entry_point) != NULL,
1266                "should not unload nmethod while locked");
1267       }
1268 #endif
1269       if (is_virtual) {
1270         nmethod* nm = callee_nm;
1271         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
1272         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1273         if (inline_cache->is_clean()) {
1274           inline_cache->set_to_monomorphic(virtual_call_info);
1275         }
1276       } else {
1277         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1278         if (ssc->is_clean()) ssc->set(static_call_info);
1279       }
1280     }
1281 
1282   } // unlock CompiledIC_lock
1283 
1284   return callee_method;
1285 }
1286 
1287 
1288 // Inline caches exist only in compiled code
1289 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1290 #ifdef ASSERT
1291   RegisterMap reg_map(thread, false);
1292   frame stub_frame = thread->last_frame();
1293   assert(stub_frame.is_runtime_frame(), "sanity check");
1294   frame caller_frame = stub_frame.sender(&reg_map);
1295   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1296 #endif /* ASSERT */
1297 
1298   methodHandle callee_method;
1299   JRT_BLOCK
1300     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1301     // Return Method* through TLS
1302     thread->set_vm_result_2(callee_method());
1303   JRT_BLOCK_END
1304   // return compiled code entry point after potential safepoints
1305   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1306   return callee_method->verified_code_entry();
1307 JRT_END
1308 
1309 
1310 // Handle call site that has been made non-entrant
1311 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1312   // 6243940 We might end up in here if the callee is deoptimized
1313   // as we race to call it.  We don't want to take a safepoint if
1314   // the caller was interpreted because the caller frame will look
1315   // interpreted to the stack walkers and arguments are now
1316   // "compiled" so it is much better to make this transition
1317   // invisible to the stack walking code. The i2c path will
1318   // place the callee method in the callee_target. It is stashed
1319   // there because if we try and find the callee by normal means a
1320   // safepoint is possible and have trouble gc'ing the compiled args.
1321   RegisterMap reg_map(thread, false);
1322   frame stub_frame = thread->last_frame();
1323   assert(stub_frame.is_runtime_frame(), "sanity check");
1324   frame caller_frame = stub_frame.sender(&reg_map);
1325 
1326   if (caller_frame.is_interpreted_frame() ||
1327       caller_frame.is_entry_frame()) {
1328     Method* callee = thread->callee_target();
1329     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1330     thread->set_vm_result_2(callee);
1331     thread->set_callee_target(NULL);
1332     return callee->get_c2i_entry();
1333   }
1334 
1335   // Must be compiled to compiled path which is safe to stackwalk
1336   methodHandle callee_method;
1337   JRT_BLOCK
1338     // Force resolving of caller (if we called from compiled frame)
1339     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1340     thread->set_vm_result_2(callee_method());
1341   JRT_BLOCK_END
1342   // return compiled code entry point after potential safepoints
1343   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1344   return callee_method->verified_code_entry();
1345 JRT_END
1346 
1347 
1348 // resolve a static call and patch code
1349 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1350   methodHandle callee_method;
1351   JRT_BLOCK
1352     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1353     thread->set_vm_result_2(callee_method());
1354   JRT_BLOCK_END
1355   // return compiled code entry point after potential safepoints
1356   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1357   return callee_method->verified_code_entry();
1358 JRT_END
1359 
1360 
1361 // resolve virtual call and update inline cache to monomorphic
1362 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1363   methodHandle callee_method;
1364   JRT_BLOCK
1365     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1366     thread->set_vm_result_2(callee_method());
1367   JRT_BLOCK_END
1368   // return compiled code entry point after potential safepoints
1369   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1370   return callee_method->verified_code_entry();
1371 JRT_END
1372 
1373 
1374 // Resolve a virtual call that can be statically bound (e.g., always
1375 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1376 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1377   methodHandle callee_method;
1378   JRT_BLOCK
1379     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1380     thread->set_vm_result_2(callee_method());
1381   JRT_BLOCK_END
1382   // return compiled code entry point after potential safepoints
1383   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1384   return callee_method->verified_code_entry();
1385 JRT_END
1386 
1387 
1388 
1389 
1390 
1391 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1392   ResourceMark rm(thread);
1393   CallInfo call_info;
1394   Bytecodes::Code bc;
1395 
1396   // receiver is NULL for static calls. An exception is thrown for NULL
1397   // receivers for non-static calls
1398   Handle receiver = find_callee_info(thread, bc, call_info,
1399                                      CHECK_(methodHandle()));
1400   // Compiler1 can produce virtual call sites that can actually be statically bound
1401   // If we fell thru to below we would think that the site was going megamorphic
1402   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1403   // we'd try and do a vtable dispatch however methods that can be statically bound
1404   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1405   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1406   // plain ic_miss) and the site will be converted to an optimized virtual call site
1407   // never to miss again. I don't believe C2 will produce code like this but if it
1408   // did this would still be the correct thing to do for it too, hence no ifdef.
1409   //
1410   if (call_info.resolved_method()->can_be_statically_bound()) {
1411     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1412     if (TraceCallFixup) {
1413       RegisterMap reg_map(thread, false);
1414       frame caller_frame = thread->last_frame().sender(&reg_map);
1415       ResourceMark rm(thread);
1416       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1417       callee_method->print_short_name(tty);
1418       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1419       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1420     }
1421     return callee_method;
1422   }
1423 
1424   methodHandle callee_method = call_info.selected_method();
1425 
1426   bool should_be_mono = false;
1427 
1428 #ifndef PRODUCT
1429   Atomic::inc(&_ic_miss_ctr);
1430 
1431   // Statistics & Tracing
1432   if (TraceCallFixup) {
1433     ResourceMark rm(thread);
1434     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1435     callee_method->print_short_name(tty);
1436     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1437   }
1438 
1439   if (ICMissHistogram) {
1440     MutexLocker m(VMStatistic_lock);
1441     RegisterMap reg_map(thread, false);
1442     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1443     // produce statistics under the lock
1444     trace_ic_miss(f.pc());
1445   }
1446 #endif
1447 
1448   // install an event collector so that when a vtable stub is created the
1449   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1450   // event can't be posted when the stub is created as locks are held
1451   // - instead the event will be deferred until the event collector goes
1452   // out of scope.
1453   JvmtiDynamicCodeEventCollector event_collector;
1454 
1455   // Update inline cache to megamorphic. Skip update if caller has been
1456   // made non-entrant or we are called from interpreted.
1457   { MutexLocker ml_patch (CompiledIC_lock);
1458     RegisterMap reg_map(thread, false);
1459     frame caller_frame = thread->last_frame().sender(&reg_map);
1460     CodeBlob* cb = caller_frame.cb();
1461     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1462       // Not a non-entrant nmethod, so find inline_cache
1463       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1464       bool should_be_mono = false;
1465       if (inline_cache->is_optimized()) {
1466         if (TraceCallFixup) {
1467           ResourceMark rm(thread);
1468           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1469           callee_method->print_short_name(tty);
1470           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1471         }
1472         should_be_mono = true;
1473       } else if (inline_cache->is_icholder_call()) {
1474         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1475         if ( ic_oop != NULL) {
1476 
1477           if (receiver()->klass() == ic_oop->holder_klass()) {
1478             // This isn't a real miss. We must have seen that compiled code
1479             // is now available and we want the call site converted to a
1480             // monomorphic compiled call site.
1481             // We can't assert for callee_method->code() != NULL because it
1482             // could have been deoptimized in the meantime
1483             if (TraceCallFixup) {
1484               ResourceMark rm(thread);
1485               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1486               callee_method->print_short_name(tty);
1487               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1488             }
1489             should_be_mono = true;
1490           }
1491         }
1492       }
1493 
1494       if (should_be_mono) {
1495 
1496         // We have a path that was monomorphic but was going interpreted
1497         // and now we have (or had) a compiled entry. We correct the IC
1498         // by using a new icBuffer.
1499         CompiledICInfo info;
1500         KlassHandle receiver_klass(THREAD, receiver()->klass());
1501         inline_cache->compute_monomorphic_entry(callee_method,
1502                                                 receiver_klass,
1503                                                 inline_cache->is_optimized(),
1504                                                 false,
1505                                                 info, CHECK_(methodHandle()));
1506         inline_cache->set_to_monomorphic(info);
1507       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1508         // Change to megamorphic
1509         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1510       } else {
1511         // Either clean or megamorphic
1512       }
1513     }
1514   } // Release CompiledIC_lock
1515 
1516   return callee_method;
1517 }
1518 
1519 //
1520 // Resets a call-site in compiled code so it will get resolved again.
1521 // This routines handles both virtual call sites, optimized virtual call
1522 // sites, and static call sites. Typically used to change a call sites
1523 // destination from compiled to interpreted.
1524 //
1525 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1526   ResourceMark rm(thread);
1527   RegisterMap reg_map(thread, false);
1528   frame stub_frame = thread->last_frame();
1529   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1530   frame caller = stub_frame.sender(&reg_map);
1531 
1532   // Do nothing if the frame isn't a live compiled frame.
1533   // nmethod could be deoptimized by the time we get here
1534   // so no update to the caller is needed.
1535 
1536   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1537 
1538     address pc = caller.pc();
1539 
1540     // Default call_addr is the location of the "basic" call.
1541     // Determine the address of the call we a reresolving. With
1542     // Inline Caches we will always find a recognizable call.
1543     // With Inline Caches disabled we may or may not find a
1544     // recognizable call. We will always find a call for static
1545     // calls and for optimized virtual calls. For vanilla virtual
1546     // calls it depends on the state of the UseInlineCaches switch.
1547     //
1548     // With Inline Caches disabled we can get here for a virtual call
1549     // for two reasons:
1550     //   1 - calling an abstract method. The vtable for abstract methods
1551     //       will run us thru handle_wrong_method and we will eventually
1552     //       end up in the interpreter to throw the ame.
1553     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1554     //       call and between the time we fetch the entry address and
1555     //       we jump to it the target gets deoptimized. Similar to 1
1556     //       we will wind up in the interprter (thru a c2i with c2).
1557     //
1558     address call_addr = NULL;
1559     {
1560       // Get call instruction under lock because another thread may be
1561       // busy patching it.
1562       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1563       // Location of call instruction
1564       if (NativeCall::is_call_before(pc)) {
1565         NativeCall *ncall = nativeCall_before(pc);
1566         call_addr = ncall->instruction_address();
1567       }
1568     }
1569 
1570     // Check for static or virtual call
1571     bool is_static_call = false;
1572     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1573     // Make sure nmethod doesn't get deoptimized and removed until
1574     // this is done with it.
1575     // CLEANUP - with lazy deopt shouldn't need this lock
1576     nmethodLocker nmlock(caller_nm);
1577 
1578     if (call_addr != NULL) {
1579       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1580       int ret = iter.next(); // Get item
1581       if (ret) {
1582         assert(iter.addr() == call_addr, "must find call");
1583         if (iter.type() == relocInfo::static_call_type) {
1584           is_static_call = true;
1585         } else {
1586           assert(iter.type() == relocInfo::virtual_call_type ||
1587                  iter.type() == relocInfo::opt_virtual_call_type
1588                 , "unexpected relocInfo. type");
1589         }
1590       } else {
1591         assert(!UseInlineCaches, "relocation info. must exist for this address");
1592       }
1593 
1594       // Cleaning the inline cache will force a new resolve. This is more robust
1595       // than directly setting it to the new destination, since resolving of calls
1596       // is always done through the same code path. (experience shows that it
1597       // leads to very hard to track down bugs, if an inline cache gets updated
1598       // to a wrong method). It should not be performance critical, since the
1599       // resolve is only done once.
1600 
1601       MutexLocker ml(CompiledIC_lock);
1602       //
1603       // We do not patch the call site if the nmethod has been made non-entrant
1604       // as it is a waste of time
1605       //
1606       if (caller_nm->is_in_use()) {
1607         if (is_static_call) {
1608           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1609           ssc->set_to_clean();
1610         } else {
1611           // compiled, dispatched call (which used to call an interpreted method)
1612           CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1613           inline_cache->set_to_clean();
1614         }
1615       }
1616     }
1617 
1618   }
1619 
1620   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1621 
1622 
1623 #ifndef PRODUCT
1624   Atomic::inc(&_wrong_method_ctr);
1625 
1626   if (TraceCallFixup) {
1627     ResourceMark rm(thread);
1628     tty->print("handle_wrong_method reresolving call to");
1629     callee_method->print_short_name(tty);
1630     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1631   }
1632 #endif
1633 
1634   return callee_method;
1635 }
1636 
1637 #ifdef ASSERT
1638 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1639                                                                 const BasicType* sig_bt,
1640                                                                 const VMRegPair* regs) {
1641   ResourceMark rm;
1642   const int total_args_passed = method->size_of_parameters();
1643   const VMRegPair*    regs_with_member_name = regs;
1644         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1645 
1646   const int member_arg_pos = total_args_passed - 1;
1647   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1648   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1649 
1650   const bool is_outgoing = method->is_method_handle_intrinsic();
1651   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1652 
1653   for (int i = 0; i < member_arg_pos; i++) {
1654     VMReg a =    regs_with_member_name[i].first();
1655     VMReg b = regs_without_member_name[i].first();
1656     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1657   }
1658   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1659 }
1660 #endif
1661 
1662 // ---------------------------------------------------------------------------
1663 // We are calling the interpreter via a c2i. Normally this would mean that
1664 // we were called by a compiled method. However we could have lost a race
1665 // where we went int -> i2c -> c2i and so the caller could in fact be
1666 // interpreted. If the caller is compiled we attempt to patch the caller
1667 // so he no longer calls into the interpreter.
1668 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1669   Method* moop(method);
1670 
1671   address entry_point = moop->from_compiled_entry();
1672 
1673   // It's possible that deoptimization can occur at a call site which hasn't
1674   // been resolved yet, in which case this function will be called from
1675   // an nmethod that has been patched for deopt and we can ignore the
1676   // request for a fixup.
1677   // Also it is possible that we lost a race in that from_compiled_entry
1678   // is now back to the i2c in that case we don't need to patch and if
1679   // we did we'd leap into space because the callsite needs to use
1680   // "to interpreter" stub in order to load up the Method*. Don't
1681   // ask me how I know this...
1682 
1683   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1684   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1685     return;
1686   }
1687 
1688   // The check above makes sure this is a nmethod.
1689   nmethod* nm = cb->as_nmethod_or_null();
1690   assert(nm, "must be");
1691 
1692   // Get the return PC for the passed caller PC.
1693   address return_pc = caller_pc + frame::pc_return_offset;
1694 
1695   // There is a benign race here. We could be attempting to patch to a compiled
1696   // entry point at the same time the callee is being deoptimized. If that is
1697   // the case then entry_point may in fact point to a c2i and we'd patch the
1698   // call site with the same old data. clear_code will set code() to NULL
1699   // at the end of it. If we happen to see that NULL then we can skip trying
1700   // to patch. If we hit the window where the callee has a c2i in the
1701   // from_compiled_entry and the NULL isn't present yet then we lose the race
1702   // and patch the code with the same old data. Asi es la vida.
1703 
1704   if (moop->code() == NULL) return;
1705 
1706   if (nm->is_in_use()) {
1707 
1708     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1709     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1710     if (NativeCall::is_call_before(return_pc)) {
1711       NativeCall *call = nativeCall_before(return_pc);
1712       //
1713       // bug 6281185. We might get here after resolving a call site to a vanilla
1714       // virtual call. Because the resolvee uses the verified entry it may then
1715       // see compiled code and attempt to patch the site by calling us. This would
1716       // then incorrectly convert the call site to optimized and its downhill from
1717       // there. If you're lucky you'll get the assert in the bugid, if not you've
1718       // just made a call site that could be megamorphic into a monomorphic site
1719       // for the rest of its life! Just another racing bug in the life of
1720       // fixup_callers_callsite ...
1721       //
1722       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1723       iter.next();
1724       assert(iter.has_current(), "must have a reloc at java call site");
1725       relocInfo::relocType typ = iter.reloc()->type();
1726       if ( typ != relocInfo::static_call_type &&
1727            typ != relocInfo::opt_virtual_call_type &&
1728            typ != relocInfo::static_stub_type) {
1729         return;
1730       }
1731       address destination = call->destination();
1732       if (destination != entry_point) {
1733         CodeBlob* callee = CodeCache::find_blob(destination);
1734         // callee == cb seems weird. It means calling interpreter thru stub.
1735         if (callee == cb || callee->is_adapter_blob()) {
1736           // static call or optimized virtual
1737           if (TraceCallFixup) {
1738             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1739             moop->print_short_name(tty);
1740             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1741           }
1742           call->set_destination_mt_safe(entry_point);
1743         } else {
1744           if (TraceCallFixup) {
1745             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1746             moop->print_short_name(tty);
1747             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1748           }
1749           // assert is too strong could also be resolve destinations.
1750           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1751         }
1752       } else {
1753           if (TraceCallFixup) {
1754             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1755             moop->print_short_name(tty);
1756             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1757           }
1758       }
1759     }
1760   }
1761 IRT_END
1762 
1763 
1764 // same as JVM_Arraycopy, but called directly from compiled code
1765 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1766                                                 oopDesc* dest, jint dest_pos,
1767                                                 jint length,
1768                                                 JavaThread* thread)) {
1769 #ifndef PRODUCT
1770   _slow_array_copy_ctr++;
1771 #endif
1772   // Check if we have null pointers
1773   if (src == NULL || dest == NULL) {
1774     THROW(vmSymbols::java_lang_NullPointerException());
1775   }
1776   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1777   // even though the copy_array API also performs dynamic checks to ensure
1778   // that src and dest are truly arrays (and are conformable).
1779   // The copy_array mechanism is awkward and could be removed, but
1780   // the compilers don't call this function except as a last resort,
1781   // so it probably doesn't matter.
1782   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
1783                                         (arrayOopDesc*)dest, dest_pos,
1784                                         length, thread);
1785 }
1786 JRT_END
1787 
1788 char* SharedRuntime::generate_class_cast_message(
1789     JavaThread* thread, const char* objName) {
1790 
1791   // Get target class name from the checkcast instruction
1792   vframeStream vfst(thread, true);
1793   assert(!vfst.at_end(), "Java frame must exist");
1794   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1795   Klass* targetKlass = vfst.method()->constants()->klass_at(
1796     cc.index(), thread);
1797   return generate_class_cast_message(objName, targetKlass->external_name());
1798 }
1799 
1800 char* SharedRuntime::generate_class_cast_message(
1801     const char* objName, const char* targetKlassName, const char* desc) {
1802   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1803 
1804   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1805   if (NULL == message) {
1806     // Shouldn't happen, but don't cause even more problems if it does
1807     message = const_cast<char*>(objName);
1808   } else {
1809     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1810   }
1811   return message;
1812 }
1813 
1814 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1815   (void) JavaThread::current()->reguard_stack();
1816 JRT_END
1817 
1818 
1819 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1820 #ifndef PRODUCT
1821 int SharedRuntime::_monitor_enter_ctr=0;
1822 #endif
1823 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1824   oop obj(_obj);
1825 #ifndef PRODUCT
1826   _monitor_enter_ctr++;             // monitor enter slow
1827 #endif
1828   if (PrintBiasedLockingStatistics) {
1829     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1830   }
1831   Handle h_obj(THREAD, obj);
1832   if (UseBiasedLocking) {
1833     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1834     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1835   } else {
1836     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1837   }
1838   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1839 JRT_END
1840 
1841 #ifndef PRODUCT
1842 int SharedRuntime::_monitor_exit_ctr=0;
1843 #endif
1844 // Handles the uncommon cases of monitor unlocking in compiled code
1845 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1846    oop obj(_obj);
1847 #ifndef PRODUCT
1848   _monitor_exit_ctr++;              // monitor exit slow
1849 #endif
1850   Thread* THREAD = JavaThread::current();
1851   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1852   // testing was unable to ever fire the assert that guarded it so I have removed it.
1853   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1854 #undef MIGHT_HAVE_PENDING
1855 #ifdef MIGHT_HAVE_PENDING
1856   // Save and restore any pending_exception around the exception mark.
1857   // While the slow_exit must not throw an exception, we could come into
1858   // this routine with one set.
1859   oop pending_excep = NULL;
1860   const char* pending_file;
1861   int pending_line;
1862   if (HAS_PENDING_EXCEPTION) {
1863     pending_excep = PENDING_EXCEPTION;
1864     pending_file  = THREAD->exception_file();
1865     pending_line  = THREAD->exception_line();
1866     CLEAR_PENDING_EXCEPTION;
1867   }
1868 #endif /* MIGHT_HAVE_PENDING */
1869 
1870   {
1871     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1872     EXCEPTION_MARK;
1873     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1874   }
1875 
1876 #ifdef MIGHT_HAVE_PENDING
1877   if (pending_excep != NULL) {
1878     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1879   }
1880 #endif /* MIGHT_HAVE_PENDING */
1881 JRT_END
1882 
1883 #ifndef PRODUCT
1884 
1885 void SharedRuntime::print_statistics() {
1886   ttyLocker ttyl;
1887   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1888 
1889   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1890   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1891   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1892 
1893   SharedRuntime::print_ic_miss_histogram();
1894 
1895   if (CountRemovableExceptions) {
1896     if (_nof_removable_exceptions > 0) {
1897       Unimplemented(); // this counter is not yet incremented
1898       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1899     }
1900   }
1901 
1902   // Dump the JRT_ENTRY counters
1903   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1904   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1905   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1906   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1907   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1908   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1909   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1910 
1911   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1912   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1913   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1914   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1915   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1916 
1917   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1918   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1919   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1920   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1921   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1922   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1923   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1924   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1925   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1926   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1927   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1928   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1929   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1930   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1931   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1932   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1933 
1934   AdapterHandlerLibrary::print_statistics();
1935 
1936   if (xtty != NULL)  xtty->tail("statistics");
1937 }
1938 
1939 inline double percent(int x, int y) {
1940   return 100.0 * x / MAX2(y, 1);
1941 }
1942 
1943 class MethodArityHistogram {
1944  public:
1945   enum { MAX_ARITY = 256 };
1946  private:
1947   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1948   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1949   static int _max_arity;                      // max. arity seen
1950   static int _max_size;                       // max. arg size seen
1951 
1952   static void add_method_to_histogram(nmethod* nm) {
1953     Method* m = nm->method();
1954     ArgumentCount args(m->signature());
1955     int arity   = args.size() + (m->is_static() ? 0 : 1);
1956     int argsize = m->size_of_parameters();
1957     arity   = MIN2(arity, MAX_ARITY-1);
1958     argsize = MIN2(argsize, MAX_ARITY-1);
1959     int count = nm->method()->compiled_invocation_count();
1960     _arity_histogram[arity]  += count;
1961     _size_histogram[argsize] += count;
1962     _max_arity = MAX2(_max_arity, arity);
1963     _max_size  = MAX2(_max_size, argsize);
1964   }
1965 
1966   void print_histogram_helper(int n, int* histo, const char* name) {
1967     const int N = MIN2(5, n);
1968     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1969     double sum = 0;
1970     double weighted_sum = 0;
1971     int i;
1972     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1973     double rest = sum;
1974     double percent = sum / 100;
1975     for (i = 0; i <= N; i++) {
1976       rest -= histo[i];
1977       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1978     }
1979     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1980     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1981   }
1982 
1983   void print_histogram() {
1984     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1985     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1986     tty->print_cr("\nSame for parameter size (in words):");
1987     print_histogram_helper(_max_size, _size_histogram, "size");
1988     tty->cr();
1989   }
1990 
1991  public:
1992   MethodArityHistogram() {
1993     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1994     _max_arity = _max_size = 0;
1995     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
1996     CodeCache::nmethods_do(add_method_to_histogram);
1997     print_histogram();
1998   }
1999 };
2000 
2001 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2002 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2003 int MethodArityHistogram::_max_arity;
2004 int MethodArityHistogram::_max_size;
2005 
2006 void SharedRuntime::print_call_statistics(int comp_total) {
2007   tty->print_cr("Calls from compiled code:");
2008   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2009   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2010   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2011   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2012   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2013   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2014   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2015   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2016   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2017   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2018   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2019   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2020   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2021   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2022   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2023   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2024   tty->cr();
2025   tty->print_cr("Note 1: counter updates are not MT-safe.");
2026   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2027   tty->print_cr("        %% in nested categories are relative to their category");
2028   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2029   tty->cr();
2030 
2031   MethodArityHistogram h;
2032 }
2033 #endif
2034 
2035 
2036 // A simple wrapper class around the calling convention information
2037 // that allows sharing of adapters for the same calling convention.
2038 class AdapterFingerPrint : public CHeapObj<mtCode> {
2039  private:
2040   enum {
2041     _basic_type_bits = 4,
2042     _basic_type_mask = right_n_bits(_basic_type_bits),
2043     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2044     _compact_int_count = 3
2045   };
2046   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2047   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2048 
2049   union {
2050     int  _compact[_compact_int_count];
2051     int* _fingerprint;
2052   } _value;
2053   int _length; // A negative length indicates the fingerprint is in the compact form,
2054                // Otherwise _value._fingerprint is the array.
2055 
2056   // Remap BasicTypes that are handled equivalently by the adapters.
2057   // These are correct for the current system but someday it might be
2058   // necessary to make this mapping platform dependent.
2059   static int adapter_encoding(BasicType in) {
2060     switch(in) {
2061       case T_BOOLEAN:
2062       case T_BYTE:
2063       case T_SHORT:
2064       case T_CHAR:
2065         // There are all promoted to T_INT in the calling convention
2066         return T_INT;
2067 
2068       case T_OBJECT:
2069       case T_ARRAY:
2070         // In other words, we assume that any register good enough for
2071         // an int or long is good enough for a managed pointer.
2072 #ifdef _LP64
2073         return T_LONG;
2074 #else
2075         return T_INT;
2076 #endif
2077 
2078       case T_INT:
2079       case T_LONG:
2080       case T_FLOAT:
2081       case T_DOUBLE:
2082       case T_VOID:
2083         return in;
2084 
2085       default:
2086         ShouldNotReachHere();
2087         return T_CONFLICT;
2088     }
2089   }
2090 
2091  public:
2092   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2093     // The fingerprint is based on the BasicType signature encoded
2094     // into an array of ints with eight entries per int.
2095     int* ptr;
2096     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2097     if (len <= _compact_int_count) {
2098       assert(_compact_int_count == 3, "else change next line");
2099       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2100       // Storing the signature encoded as signed chars hits about 98%
2101       // of the time.
2102       _length = -len;
2103       ptr = _value._compact;
2104     } else {
2105       _length = len;
2106       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2107       ptr = _value._fingerprint;
2108     }
2109 
2110     // Now pack the BasicTypes with 8 per int
2111     int sig_index = 0;
2112     for (int index = 0; index < len; index++) {
2113       int value = 0;
2114       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2115         int bt = ((sig_index < total_args_passed)
2116                   ? adapter_encoding(sig_bt[sig_index++])
2117                   : 0);
2118         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2119         value = (value << _basic_type_bits) | bt;
2120       }
2121       ptr[index] = value;
2122     }
2123   }
2124 
2125   ~AdapterFingerPrint() {
2126     if (_length > 0) {
2127       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2128     }
2129   }
2130 
2131   int value(int index) {
2132     if (_length < 0) {
2133       return _value._compact[index];
2134     }
2135     return _value._fingerprint[index];
2136   }
2137   int length() {
2138     if (_length < 0) return -_length;
2139     return _length;
2140   }
2141 
2142   bool is_compact() {
2143     return _length <= 0;
2144   }
2145 
2146   unsigned int compute_hash() {
2147     int hash = 0;
2148     for (int i = 0; i < length(); i++) {
2149       int v = value(i);
2150       hash = (hash << 8) ^ v ^ (hash >> 5);
2151     }
2152     return (unsigned int)hash;
2153   }
2154 
2155   const char* as_string() {
2156     stringStream st;
2157     st.print("0x");
2158     for (int i = 0; i < length(); i++) {
2159       st.print("%08x", value(i));
2160     }
2161     return st.as_string();
2162   }
2163 
2164   bool equals(AdapterFingerPrint* other) {
2165     if (other->_length != _length) {
2166       return false;
2167     }
2168     if (_length < 0) {
2169       assert(_compact_int_count == 3, "else change next line");
2170       return _value._compact[0] == other->_value._compact[0] &&
2171              _value._compact[1] == other->_value._compact[1] &&
2172              _value._compact[2] == other->_value._compact[2];
2173     } else {
2174       for (int i = 0; i < _length; i++) {
2175         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2176           return false;
2177         }
2178       }
2179     }
2180     return true;
2181   }
2182 };
2183 
2184 
2185 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2186 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2187   friend class AdapterHandlerTableIterator;
2188 
2189  private:
2190 
2191 #ifndef PRODUCT
2192   static int _lookups; // number of calls to lookup
2193   static int _buckets; // number of buckets checked
2194   static int _equals;  // number of buckets checked with matching hash
2195   static int _hits;    // number of successful lookups
2196   static int _compact; // number of equals calls with compact signature
2197 #endif
2198 
2199   AdapterHandlerEntry* bucket(int i) {
2200     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2201   }
2202 
2203  public:
2204   AdapterHandlerTable()
2205     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2206 
2207   // Create a new entry suitable for insertion in the table
2208   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2209     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2210     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2211     return entry;
2212   }
2213 
2214   // Insert an entry into the table
2215   void add(AdapterHandlerEntry* entry) {
2216     int index = hash_to_index(entry->hash());
2217     add_entry(index, entry);
2218   }
2219 
2220   void free_entry(AdapterHandlerEntry* entry) {
2221     entry->deallocate();
2222     BasicHashtable<mtCode>::free_entry(entry);
2223   }
2224 
2225   // Find a entry with the same fingerprint if it exists
2226   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2227     NOT_PRODUCT(_lookups++);
2228     AdapterFingerPrint fp(total_args_passed, sig_bt);
2229     unsigned int hash = fp.compute_hash();
2230     int index = hash_to_index(hash);
2231     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2232       NOT_PRODUCT(_buckets++);
2233       if (e->hash() == hash) {
2234         NOT_PRODUCT(_equals++);
2235         if (fp.equals(e->fingerprint())) {
2236 #ifndef PRODUCT
2237           if (fp.is_compact()) _compact++;
2238           _hits++;
2239 #endif
2240           return e;
2241         }
2242       }
2243     }
2244     return NULL;
2245   }
2246 
2247 #ifndef PRODUCT
2248   void print_statistics() {
2249     ResourceMark rm;
2250     int longest = 0;
2251     int empty = 0;
2252     int total = 0;
2253     int nonempty = 0;
2254     for (int index = 0; index < table_size(); index++) {
2255       int count = 0;
2256       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2257         count++;
2258       }
2259       if (count != 0) nonempty++;
2260       if (count == 0) empty++;
2261       if (count > longest) longest = count;
2262       total += count;
2263     }
2264     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2265                   empty, longest, total, total / (double)nonempty);
2266     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2267                   _lookups, _buckets, _equals, _hits, _compact);
2268   }
2269 #endif
2270 };
2271 
2272 
2273 #ifndef PRODUCT
2274 
2275 int AdapterHandlerTable::_lookups;
2276 int AdapterHandlerTable::_buckets;
2277 int AdapterHandlerTable::_equals;
2278 int AdapterHandlerTable::_hits;
2279 int AdapterHandlerTable::_compact;
2280 
2281 #endif
2282 
2283 class AdapterHandlerTableIterator : public StackObj {
2284  private:
2285   AdapterHandlerTable* _table;
2286   int _index;
2287   AdapterHandlerEntry* _current;
2288 
2289   void scan() {
2290     while (_index < _table->table_size()) {
2291       AdapterHandlerEntry* a = _table->bucket(_index);
2292       _index++;
2293       if (a != NULL) {
2294         _current = a;
2295         return;
2296       }
2297     }
2298   }
2299 
2300  public:
2301   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2302     scan();
2303   }
2304   bool has_next() {
2305     return _current != NULL;
2306   }
2307   AdapterHandlerEntry* next() {
2308     if (_current != NULL) {
2309       AdapterHandlerEntry* result = _current;
2310       _current = _current->next();
2311       if (_current == NULL) scan();
2312       return result;
2313     } else {
2314       return NULL;
2315     }
2316   }
2317 };
2318 
2319 
2320 // ---------------------------------------------------------------------------
2321 // Implementation of AdapterHandlerLibrary
2322 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2323 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2324 const int AdapterHandlerLibrary_size = 16*K;
2325 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2326 
2327 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2328   // Should be called only when AdapterHandlerLibrary_lock is active.
2329   if (_buffer == NULL) // Initialize lazily
2330       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2331   return _buffer;
2332 }
2333 
2334 void AdapterHandlerLibrary::initialize() {
2335   if (_adapters != NULL) return;
2336   _adapters = new AdapterHandlerTable();
2337 
2338   // Create a special handler for abstract methods.  Abstract methods
2339   // are never compiled so an i2c entry is somewhat meaningless, but
2340   // fill it in with something appropriate just in case.  Pass handle
2341   // wrong method for the c2i transitions.
2342   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2343   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2344                                                               StubRoutines::throw_AbstractMethodError_entry(),
2345                                                               wrong_method, wrong_method);
2346 }
2347 
2348 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2349                                                       address i2c_entry,
2350                                                       address c2i_entry,
2351                                                       address c2i_unverified_entry) {
2352   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2353 }
2354 
2355 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2356   // Use customized signature handler.  Need to lock around updates to
2357   // the AdapterHandlerTable (it is not safe for concurrent readers
2358   // and a single writer: this could be fixed if it becomes a
2359   // problem).
2360 
2361   // Get the address of the ic_miss handlers before we grab the
2362   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2363   // was caused by the initialization of the stubs happening
2364   // while we held the lock and then notifying jvmti while
2365   // holding it. This just forces the initialization to be a little
2366   // earlier.
2367   address ic_miss = SharedRuntime::get_ic_miss_stub();
2368   assert(ic_miss != NULL, "must have handler");
2369 
2370   ResourceMark rm;
2371 
2372   NOT_PRODUCT(int insts_size);
2373   AdapterBlob* B = NULL;
2374   AdapterHandlerEntry* entry = NULL;
2375   AdapterFingerPrint* fingerprint = NULL;
2376   {
2377     MutexLocker mu(AdapterHandlerLibrary_lock);
2378     // make sure data structure is initialized
2379     initialize();
2380 
2381     if (method->is_abstract()) {
2382       return _abstract_method_handler;
2383     }
2384 
2385     // Fill in the signature array, for the calling-convention call.
2386     int total_args_passed = method->size_of_parameters(); // All args on stack
2387 
2388     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2389     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2390     int i = 0;
2391     if (!method->is_static())  // Pass in receiver first
2392       sig_bt[i++] = T_OBJECT;
2393     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2394       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2395       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2396         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2397     }
2398     assert(i == total_args_passed, "");
2399 
2400     // Lookup method signature's fingerprint
2401     entry = _adapters->lookup(total_args_passed, sig_bt);
2402 
2403 #ifdef ASSERT
2404     AdapterHandlerEntry* shared_entry = NULL;
2405     if (VerifyAdapterSharing && entry != NULL) {
2406       shared_entry = entry;
2407       entry = NULL;
2408     }
2409 #endif
2410 
2411     if (entry != NULL) {
2412       return entry;
2413     }
2414 
2415     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2416     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2417 
2418     // Make a C heap allocated version of the fingerprint to store in the adapter
2419     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2420 
2421     // Create I2C & C2I handlers
2422 
2423     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2424     if (buf != NULL) {
2425       CodeBuffer buffer(buf);
2426       short buffer_locs[20];
2427       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2428                                              sizeof(buffer_locs)/sizeof(relocInfo));
2429       MacroAssembler _masm(&buffer);
2430 
2431       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2432                                                      total_args_passed,
2433                                                      comp_args_on_stack,
2434                                                      sig_bt,
2435                                                      regs,
2436                                                      fingerprint);
2437 
2438 #ifdef ASSERT
2439       if (VerifyAdapterSharing) {
2440         if (shared_entry != NULL) {
2441           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2442                  "code must match");
2443           // Release the one just created and return the original
2444           _adapters->free_entry(entry);
2445           return shared_entry;
2446         } else  {
2447           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2448         }
2449       }
2450 #endif
2451 
2452       B = AdapterBlob::create(&buffer);
2453       NOT_PRODUCT(insts_size = buffer.insts_size());
2454     }
2455     if (B == NULL) {
2456       // CodeCache is full, disable compilation
2457       // Ought to log this but compile log is only per compile thread
2458       // and we're some non descript Java thread.
2459       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2460       CompileBroker::handle_full_code_cache();
2461       return NULL; // Out of CodeCache space
2462     }
2463     entry->relocate(B->content_begin());
2464 #ifndef PRODUCT
2465     // debugging suppport
2466     if (PrintAdapterHandlers || PrintStubCode) {
2467       ttyLocker ttyl;
2468       entry->print_adapter_on(tty);
2469       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2470                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2471                     method->signature()->as_C_string(), insts_size);
2472       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2473       if (Verbose || PrintStubCode) {
2474         address first_pc = entry->base_address();
2475         if (first_pc != NULL) {
2476           Disassembler::decode(first_pc, first_pc + insts_size);
2477           tty->cr();
2478         }
2479       }
2480     }
2481 #endif
2482 
2483     _adapters->add(entry);
2484   }
2485   // Outside of the lock
2486   if (B != NULL) {
2487     char blob_id[256];
2488     jio_snprintf(blob_id,
2489                  sizeof(blob_id),
2490                  "%s(%s)@" PTR_FORMAT,
2491                  B->name(),
2492                  fingerprint->as_string(),
2493                  B->content_begin());
2494     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2495 
2496     if (JvmtiExport::should_post_dynamic_code_generated()) {
2497       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2498     }
2499   }
2500   return entry;
2501 }
2502 
2503 address AdapterHandlerEntry::base_address() {
2504   address base = _i2c_entry;
2505   if (base == NULL)  base = _c2i_entry;
2506   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2507   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2508   return base;
2509 }
2510 
2511 void AdapterHandlerEntry::relocate(address new_base) {
2512   address old_base = base_address();
2513   assert(old_base != NULL, "");
2514   ptrdiff_t delta = new_base - old_base;
2515   if (_i2c_entry != NULL)
2516     _i2c_entry += delta;
2517   if (_c2i_entry != NULL)
2518     _c2i_entry += delta;
2519   if (_c2i_unverified_entry != NULL)
2520     _c2i_unverified_entry += delta;
2521   assert(base_address() == new_base, "");
2522 }
2523 
2524 
2525 void AdapterHandlerEntry::deallocate() {
2526   delete _fingerprint;
2527 #ifdef ASSERT
2528   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2529   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig, mtCode);
2530 #endif
2531 }
2532 
2533 
2534 #ifdef ASSERT
2535 // Capture the code before relocation so that it can be compared
2536 // against other versions.  If the code is captured after relocation
2537 // then relative instructions won't be equivalent.
2538 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2539   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2540   _code_length = length;
2541   memcpy(_saved_code, buffer, length);
2542   _total_args_passed = total_args_passed;
2543   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed, mtCode);
2544   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2545 }
2546 
2547 
2548 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2549   if (length != _code_length) {
2550     return false;
2551   }
2552   for (int i = 0; i < length; i++) {
2553     if (buffer[i] != _saved_code[i]) {
2554       return false;
2555     }
2556   }
2557   return true;
2558 }
2559 #endif
2560 
2561 
2562 // Create a native wrapper for this native method.  The wrapper converts the
2563 // java compiled calling convention to the native convention, handlizes
2564 // arguments, and transitions to native.  On return from the native we transition
2565 // back to java blocking if a safepoint is in progress.
2566 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
2567   ResourceMark rm;
2568   nmethod* nm = NULL;
2569 
2570   assert(method->is_native(), "must be native");
2571   assert(method->is_method_handle_intrinsic() ||
2572          method->has_native_function(), "must have something valid to call!");
2573 
2574   {
2575     // perform the work while holding the lock, but perform any printing outside the lock
2576     MutexLocker mu(AdapterHandlerLibrary_lock);
2577     // See if somebody beat us to it
2578     nm = method->code();
2579     if (nm) {
2580       return nm;
2581     }
2582 
2583     ResourceMark rm;
2584 
2585     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2586     if (buf != NULL) {
2587       CodeBuffer buffer(buf);
2588       double locs_buf[20];
2589       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2590       MacroAssembler _masm(&buffer);
2591 
2592       // Fill in the signature array, for the calling-convention call.
2593       const int total_args_passed = method->size_of_parameters();
2594 
2595       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2596       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2597       int i=0;
2598       if( !method->is_static() )  // Pass in receiver first
2599         sig_bt[i++] = T_OBJECT;
2600       SignatureStream ss(method->signature());
2601       for( ; !ss.at_return_type(); ss.next()) {
2602         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2603         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2604           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2605       }
2606       assert(i == total_args_passed, "");
2607       BasicType ret_type = ss.type();
2608 
2609       // Now get the compiled-Java layout as input (or output) arguments.
2610       // NOTE: Stubs for compiled entry points of method handle intrinsics
2611       // are just trampolines so the argument registers must be outgoing ones.
2612       const bool is_outgoing = method->is_method_handle_intrinsic();
2613       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2614 
2615       // Generate the compiled-to-native wrapper code
2616       nm = SharedRuntime::generate_native_wrapper(&_masm,
2617                                                   method,
2618                                                   compile_id,
2619                                                   sig_bt,
2620                                                   regs,
2621                                                   ret_type);
2622     }
2623   }
2624 
2625   // Must unlock before calling set_code
2626 
2627   // Install the generated code.
2628   if (nm != NULL) {
2629     if (PrintCompilation) {
2630       ttyLocker ttyl;
2631       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2632     }
2633     method->set_code(method, nm);
2634     nm->post_compiled_method_load_event();
2635   } else {
2636     // CodeCache is full, disable compilation
2637     CompileBroker::handle_full_code_cache();
2638   }
2639   return nm;
2640 }
2641 
2642 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2643   assert(thread == JavaThread::current(), "must be");
2644   // The code is about to enter a JNI lazy critical native method and
2645   // _needs_gc is true, so if this thread is already in a critical
2646   // section then just return, otherwise this thread should block
2647   // until needs_gc has been cleared.
2648   if (thread->in_critical()) {
2649     return;
2650   }
2651   // Lock and unlock a critical section to give the system a chance to block
2652   GC_locker::lock_critical(thread);
2653   GC_locker::unlock_critical(thread);
2654 JRT_END
2655 
2656 #ifdef HAVE_DTRACE_H
2657 // Create a dtrace nmethod for this method.  The wrapper converts the
2658 // java compiled calling convention to the native convention, makes a dummy call
2659 // (actually nops for the size of the call instruction, which become a trap if
2660 // probe is enabled). The returns to the caller. Since this all looks like a
2661 // leaf no thread transition is needed.
2662 
2663 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2664   ResourceMark rm;
2665   nmethod* nm = NULL;
2666 
2667   if (PrintCompilation) {
2668     ttyLocker ttyl;
2669     tty->print("---   n%s  ");
2670     method->print_short_name(tty);
2671     if (method->is_static()) {
2672       tty->print(" (static)");
2673     }
2674     tty->cr();
2675   }
2676 
2677   {
2678     // perform the work while holding the lock, but perform any printing
2679     // outside the lock
2680     MutexLocker mu(AdapterHandlerLibrary_lock);
2681     // See if somebody beat us to it
2682     nm = method->code();
2683     if (nm) {
2684       return nm;
2685     }
2686 
2687     ResourceMark rm;
2688 
2689     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2690     if (buf != NULL) {
2691       CodeBuffer buffer(buf);
2692       // Need a few relocation entries
2693       double locs_buf[20];
2694       buffer.insts()->initialize_shared_locs(
2695         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2696       MacroAssembler _masm(&buffer);
2697 
2698       // Generate the compiled-to-native wrapper code
2699       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2700     }
2701   }
2702   return nm;
2703 }
2704 
2705 // the dtrace method needs to convert java lang string to utf8 string.
2706 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2707   typeArrayOop jlsValue  = java_lang_String::value(src);
2708   int          jlsOffset = java_lang_String::offset(src);
2709   int          jlsLen    = java_lang_String::length(src);
2710   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2711                                            jlsValue->char_at_addr(jlsOffset);
2712   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2713   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2714 }
2715 #endif // ndef HAVE_DTRACE_H
2716 
2717 // -------------------------------------------------------------------------
2718 // Java-Java calling convention
2719 // (what you use when Java calls Java)
2720 
2721 //------------------------------name_for_receiver----------------------------------
2722 // For a given signature, return the VMReg for parameter 0.
2723 VMReg SharedRuntime::name_for_receiver() {
2724   VMRegPair regs;
2725   BasicType sig_bt = T_OBJECT;
2726   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2727   // Return argument 0 register.  In the LP64 build pointers
2728   // take 2 registers, but the VM wants only the 'main' name.
2729   return regs.first();
2730 }
2731 
2732 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2733   // This method is returning a data structure allocating as a
2734   // ResourceObject, so do not put any ResourceMarks in here.
2735   char *s = sig->as_C_string();
2736   int len = (int)strlen(s);
2737   s++; len--;                   // Skip opening paren
2738   char *t = s+len;
2739   while( *(--t) != ')' ) ;      // Find close paren
2740 
2741   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2742   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2743   int cnt = 0;
2744   if (has_receiver) {
2745     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2746   }
2747 
2748   while( s < t ) {
2749     switch( *s++ ) {            // Switch on signature character
2750     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2751     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2752     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2753     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2754     case 'I': sig_bt[cnt++] = T_INT;     break;
2755     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2756     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2757     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2758     case 'V': sig_bt[cnt++] = T_VOID;    break;
2759     case 'L':                   // Oop
2760       while( *s++ != ';'  ) ;   // Skip signature
2761       sig_bt[cnt++] = T_OBJECT;
2762       break;
2763     case '[': {                 // Array
2764       do {                      // Skip optional size
2765         while( *s >= '0' && *s <= '9' ) s++;
2766       } while( *s++ == '[' );   // Nested arrays?
2767       // Skip element type
2768       if( s[-1] == 'L' )
2769         while( *s++ != ';'  ) ; // Skip signature
2770       sig_bt[cnt++] = T_ARRAY;
2771       break;
2772     }
2773     default : ShouldNotReachHere();
2774     }
2775   }
2776 
2777   if (has_appendix) {
2778     sig_bt[cnt++] = T_OBJECT;
2779   }
2780 
2781   assert( cnt < 256, "grow table size" );
2782 
2783   int comp_args_on_stack;
2784   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2785 
2786   // the calling convention doesn't count out_preserve_stack_slots so
2787   // we must add that in to get "true" stack offsets.
2788 
2789   if (comp_args_on_stack) {
2790     for (int i = 0; i < cnt; i++) {
2791       VMReg reg1 = regs[i].first();
2792       if( reg1->is_stack()) {
2793         // Yuck
2794         reg1 = reg1->bias(out_preserve_stack_slots());
2795       }
2796       VMReg reg2 = regs[i].second();
2797       if( reg2->is_stack()) {
2798         // Yuck
2799         reg2 = reg2->bias(out_preserve_stack_slots());
2800       }
2801       regs[i].set_pair(reg2, reg1);
2802     }
2803   }
2804 
2805   // results
2806   *arg_size = cnt;
2807   return regs;
2808 }
2809 
2810 // OSR Migration Code
2811 //
2812 // This code is used convert interpreter frames into compiled frames.  It is
2813 // called from very start of a compiled OSR nmethod.  A temp array is
2814 // allocated to hold the interesting bits of the interpreter frame.  All
2815 // active locks are inflated to allow them to move.  The displaced headers and
2816 // active interpeter locals are copied into the temp buffer.  Then we return
2817 // back to the compiled code.  The compiled code then pops the current
2818 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2819 // copies the interpreter locals and displaced headers where it wants.
2820 // Finally it calls back to free the temp buffer.
2821 //
2822 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2823 
2824 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2825 
2826   //
2827   // This code is dependent on the memory layout of the interpreter local
2828   // array and the monitors. On all of our platforms the layout is identical
2829   // so this code is shared. If some platform lays the their arrays out
2830   // differently then this code could move to platform specific code or
2831   // the code here could be modified to copy items one at a time using
2832   // frame accessor methods and be platform independent.
2833 
2834   frame fr = thread->last_frame();
2835   assert( fr.is_interpreted_frame(), "" );
2836   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2837 
2838   // Figure out how many monitors are active.
2839   int active_monitor_count = 0;
2840   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2841        kptr < fr.interpreter_frame_monitor_begin();
2842        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2843     if( kptr->obj() != NULL ) active_monitor_count++;
2844   }
2845 
2846   // QQQ we could place number of active monitors in the array so that compiled code
2847   // could double check it.
2848 
2849   Method* moop = fr.interpreter_frame_method();
2850   int max_locals = moop->max_locals();
2851   // Allocate temp buffer, 1 word per local & 2 per active monitor
2852   int buf_size_words = max_locals + active_monitor_count*2;
2853   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2854 
2855   // Copy the locals.  Order is preserved so that loading of longs works.
2856   // Since there's no GC I can copy the oops blindly.
2857   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2858   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2859                        (HeapWord*)&buf[0],
2860                        max_locals);
2861 
2862   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2863   int i = max_locals;
2864   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2865        kptr2 < fr.interpreter_frame_monitor_begin();
2866        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2867     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2868       BasicLock *lock = kptr2->lock();
2869       // Inflate so the displaced header becomes position-independent
2870       if (lock->displaced_header()->is_unlocked())
2871         ObjectSynchronizer::inflate_helper(kptr2->obj());
2872       // Now the displaced header is free to move
2873       buf[i++] = (intptr_t)lock->displaced_header();
2874       buf[i++] = (intptr_t)kptr2->obj();
2875     }
2876   }
2877   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2878 
2879   return buf;
2880 JRT_END
2881 
2882 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2883   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
2884 JRT_END
2885 
2886 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2887   AdapterHandlerTableIterator iter(_adapters);
2888   while (iter.has_next()) {
2889     AdapterHandlerEntry* a = iter.next();
2890     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2891   }
2892   return false;
2893 }
2894 
2895 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2896   AdapterHandlerTableIterator iter(_adapters);
2897   while (iter.has_next()) {
2898     AdapterHandlerEntry* a = iter.next();
2899     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2900       st->print("Adapter for signature: ");
2901       a->print_adapter_on(tty);
2902       return;
2903     }
2904   }
2905   assert(false, "Should have found handler");
2906 }
2907 
2908 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2909   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2910                (intptr_t) this, fingerprint()->as_string(),
2911                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2912 
2913 }
2914 
2915 #ifndef PRODUCT
2916 
2917 void AdapterHandlerLibrary::print_statistics() {
2918   _adapters->print_statistics();
2919 }
2920 
2921 #endif /* PRODUCT */