1 /*
   2  * Copyright (c) 2002, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc_interface/collectedHeap.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/bytecodeInterpreter.hpp"
  30 #include "interpreter/bytecodeInterpreter.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/methodCounters.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "prims/jvmtiThreadState.hpp"
  39 #include "runtime/biasedLocking.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "runtime/interfaceSupport.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/threadCritical.hpp"
  45 #include "utilities/exceptions.hpp"
  46 #ifdef TARGET_OS_ARCH_linux_x86
  47 # include "orderAccess_linux_x86.inline.hpp"
  48 #endif
  49 #ifdef TARGET_OS_ARCH_linux_sparc
  50 # include "orderAccess_linux_sparc.inline.hpp"
  51 #endif
  52 #ifdef TARGET_OS_ARCH_linux_zero
  53 # include "orderAccess_linux_zero.inline.hpp"
  54 #endif
  55 #ifdef TARGET_OS_ARCH_solaris_x86
  56 # include "orderAccess_solaris_x86.inline.hpp"
  57 #endif
  58 #ifdef TARGET_OS_ARCH_solaris_sparc
  59 # include "orderAccess_solaris_sparc.inline.hpp"
  60 #endif
  61 #ifdef TARGET_OS_ARCH_windows_x86
  62 # include "orderAccess_windows_x86.inline.hpp"
  63 #endif
  64 #ifdef TARGET_OS_ARCH_linux_arm
  65 # include "orderAccess_linux_arm.inline.hpp"
  66 #endif
  67 #ifdef TARGET_OS_ARCH_linux_ppc
  68 # include "orderAccess_linux_ppc.inline.hpp"
  69 #endif
  70 #ifdef TARGET_OS_ARCH_aix_ppc
  71 # include "orderAccess_aix_ppc.inline.hpp"
  72 #endif
  73 #ifdef TARGET_OS_ARCH_bsd_x86
  74 # include "orderAccess_bsd_x86.inline.hpp"
  75 #endif
  76 #ifdef TARGET_OS_ARCH_bsd_zero
  77 # include "orderAccess_bsd_zero.inline.hpp"
  78 #endif
  79 
  80 
  81 // no precompiled headers
  82 #ifdef CC_INTERP
  83 
  84 /*
  85  * USELABELS - If using GCC, then use labels for the opcode dispatching
  86  * rather -then a switch statement. This improves performance because it
  87  * gives us the oportunity to have the instructions that calculate the
  88  * next opcode to jump to be intermixed with the rest of the instructions
  89  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  90  */
  91 #undef USELABELS
  92 #ifdef __GNUC__
  93 /*
  94    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  95    don't use the computed goto approach.
  96 */
  97 #ifndef ASSERT
  98 #define USELABELS
  99 #endif
 100 #endif
 101 
 102 #undef CASE
 103 #ifdef USELABELS
 104 #define CASE(opcode) opc ## opcode
 105 #define DEFAULT opc_default
 106 #else
 107 #define CASE(opcode) case Bytecodes:: opcode
 108 #define DEFAULT default
 109 #endif
 110 
 111 /*
 112  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
 113  * opcode before going back to the top of the while loop, rather then having
 114  * the top of the while loop handle it. This provides a better opportunity
 115  * for instruction scheduling. Some compilers just do this prefetch
 116  * automatically. Some actually end up with worse performance if you
 117  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
 118  */
 119 #undef PREFETCH_OPCCODE
 120 #define PREFETCH_OPCCODE
 121 
 122 /*
 123   Interpreter safepoint: it is expected that the interpreter will have no live
 124   handles of its own creation live at an interpreter safepoint. Therefore we
 125   run a HandleMarkCleaner and trash all handles allocated in the call chain
 126   since the JavaCalls::call_helper invocation that initiated the chain.
 127   There really shouldn't be any handles remaining to trash but this is cheap
 128   in relation to a safepoint.
 129 */
 130 #define SAFEPOINT                                                                 \
 131     if ( SafepointSynchronize::is_synchronizing()) {                              \
 132         {                                                                         \
 133           /* zap freed handles rather than GC'ing them */                         \
 134           HandleMarkCleaner __hmc(THREAD);                                        \
 135         }                                                                         \
 136         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
 137     }
 138 
 139 /*
 140  * VM_JAVA_ERROR - Macro for throwing a java exception from
 141  * the interpreter loop. Should really be a CALL_VM but there
 142  * is no entry point to do the transition to vm so we just
 143  * do it by hand here.
 144  */
 145 #define VM_JAVA_ERROR_NO_JUMP(name, msg)                                          \
 146     DECACHE_STATE();                                                              \
 147     SET_LAST_JAVA_FRAME();                                                        \
 148     {                                                                             \
 149        ThreadInVMfromJava trans(THREAD);                                          \
 150        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
 151     }                                                                             \
 152     RESET_LAST_JAVA_FRAME();                                                      \
 153     CACHE_STATE();
 154 
 155 // Normal throw of a java error
 156 #define VM_JAVA_ERROR(name, msg)                                                  \
 157     VM_JAVA_ERROR_NO_JUMP(name, msg)                                              \
 158     goto handle_exception;
 159 
 160 #ifdef PRODUCT
 161 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 162 #else
 163 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
 164 {                                                                                                    \
 165     BytecodeCounter::_counter_value++;                                                               \
 166     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
 167     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
 168     if (TraceBytecodes) {                                                                            \
 169       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
 170                                    topOfStack[Interpreter::expr_index_at(1)],   \
 171                                    topOfStack[Interpreter::expr_index_at(2)]),  \
 172                                    handle_exception);                      \
 173     }                                                                      \
 174 }
 175 #endif
 176 
 177 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 178 #ifdef VM_JVMTI
 179 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 180    incremented. JvmtiExport::at_single_stepping_point() may cause a
 181    breakpoint opcode to get inserted at the current PC to allow the
 182    debugger to coalesce single-step events.
 183 
 184    As a result if we call at_single_stepping_point() we refetch opcode
 185    to get the current opcode. This will override any other prefetching
 186    that might have occurred.
 187 */
 188 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
 189 {                                                                                \
 190       if (_jvmti_interp_events) {                                                \
 191         if (JvmtiExport::should_post_single_step()) {                            \
 192           DECACHE_STATE();                                                       \
 193           SET_LAST_JAVA_FRAME();                                                 \
 194           ThreadInVMfromJava trans(THREAD);                                      \
 195           JvmtiExport::at_single_stepping_point(THREAD,                          \
 196                                           istate->method(),                      \
 197                                           pc);                                   \
 198           RESET_LAST_JAVA_FRAME();                                               \
 199           CACHE_STATE();                                                         \
 200           if (THREAD->pop_frame_pending() &&                                     \
 201               !THREAD->pop_frame_in_process()) {                                 \
 202             goto handle_Pop_Frame;                                               \
 203           }                                                                      \
 204           if (THREAD->jvmti_thread_state() &&                                    \
 205               THREAD->jvmti_thread_state()->is_earlyret_pending()) {             \
 206             goto handle_Early_Return;                                            \
 207           }                                                                      \
 208           opcode = *pc;                                                          \
 209         }                                                                        \
 210       }                                                                          \
 211 }
 212 #else
 213 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 214 #endif
 215 
 216 /*
 217  * CONTINUE - Macro for executing the next opcode.
 218  */
 219 #undef CONTINUE
 220 #ifdef USELABELS
 221 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 222 // initialization (which is is the initialization of the table pointer...)
 223 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
 224 #define CONTINUE {                              \
 225         opcode = *pc;                           \
 226         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 227         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 228         DISPATCH(opcode);                       \
 229     }
 230 #else
 231 #ifdef PREFETCH_OPCCODE
 232 #define CONTINUE {                              \
 233         opcode = *pc;                           \
 234         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 235         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 236         continue;                               \
 237     }
 238 #else
 239 #define CONTINUE {                              \
 240         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 241         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 242         continue;                               \
 243     }
 244 #endif
 245 #endif
 246 
 247 
 248 #define UPDATE_PC(opsize) {pc += opsize; }
 249 /*
 250  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 251  */
 252 #undef UPDATE_PC_AND_TOS
 253 #define UPDATE_PC_AND_TOS(opsize, stack) \
 254     {pc += opsize; MORE_STACK(stack); }
 255 
 256 /*
 257  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 258  * and executing the next opcode. It's somewhat similar to the combination
 259  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 260  */
 261 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 262 #ifdef USELABELS
 263 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 264         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 265         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 266         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 267         DISPATCH(opcode);                                       \
 268     }
 269 
 270 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 271         pc += opsize; opcode = *pc;                             \
 272         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 273         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 274         DISPATCH(opcode);                                       \
 275     }
 276 #else
 277 #ifdef PREFETCH_OPCCODE
 278 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 279         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 280         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 281         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 282         goto do_continue;                                       \
 283     }
 284 
 285 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 286         pc += opsize; opcode = *pc;                             \
 287         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 288         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 289         goto do_continue;                                       \
 290     }
 291 #else
 292 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 293         pc += opsize; MORE_STACK(stack);                \
 294         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 295         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 296         goto do_continue;                               \
 297     }
 298 
 299 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 300         pc += opsize;                                   \
 301         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 302         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 303         goto do_continue;                               \
 304     }
 305 #endif /* PREFETCH_OPCCODE */
 306 #endif /* USELABELS */
 307 
 308 // About to call a new method, update the save the adjusted pc and return to frame manager
 309 #define UPDATE_PC_AND_RETURN(opsize)  \
 310    DECACHE_TOS();                     \
 311    istate->set_bcp(pc+opsize);        \
 312    return;
 313 
 314 
 315 #define METHOD istate->method()
 316 #define GET_METHOD_COUNTERS(res)    \
 317   res = METHOD->method_counters();  \
 318   if (res == NULL) {                \
 319     CALL_VM(res = InterpreterRuntime::build_method_counters(THREAD, METHOD), handle_exception); \
 320   }
 321 
 322 #define OSR_REQUEST(res, branch_pc) \
 323             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
 324 /*
 325  * For those opcodes that need to have a GC point on a backwards branch
 326  */
 327 
 328 // Backedge counting is kind of strange. The asm interpreter will increment
 329 // the backedge counter as a separate counter but it does it's comparisons
 330 // to the sum (scaled) of invocation counter and backedge count to make
 331 // a decision. Seems kind of odd to sum them together like that
 332 
 333 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
 334 
 335 
 336 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
 337     if ((skip) <= 0) {                                                                              \
 338       MethodCounters* mcs;                                                                          \
 339       GET_METHOD_COUNTERS(mcs);                                                                     \
 340       if (UseLoopCounter) {                                                                         \
 341         bool do_OSR = UseOnStackReplacement;                                                        \
 342         mcs->backedge_counter()->increment();                                                       \
 343         if (do_OSR) do_OSR = mcs->backedge_counter()->reached_InvocationLimit();                    \
 344         if (do_OSR) {                                                                               \
 345           nmethod*  osr_nmethod;                                                                    \
 346           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
 347           if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
 348             intptr_t* buf;                                                                          \
 349             /* Call OSR migration with last java frame only, no checks. */                          \
 350             CALL_VM_NAKED_LJF(buf=SharedRuntime::OSR_migration_begin(THREAD));                      \
 351             istate->set_msg(do_osr);                                                                \
 352             istate->set_osr_buf((address)buf);                                                      \
 353             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
 354             return;                                                                                 \
 355           }                                                                                         \
 356         }                                                                                           \
 357       }  /* UseCompiler ... */                                                                      \
 358       mcs->invocation_counter()->increment();                                                       \
 359       SAFEPOINT;                                                                                    \
 360     }
 361 
 362 /*
 363  * For those opcodes that need to have a GC point on a backwards branch
 364  */
 365 
 366 /*
 367  * Macros for caching and flushing the interpreter state. Some local
 368  * variables need to be flushed out to the frame before we do certain
 369  * things (like pushing frames or becomming gc safe) and some need to
 370  * be recached later (like after popping a frame). We could use one
 371  * macro to cache or decache everything, but this would be less then
 372  * optimal because we don't always need to cache or decache everything
 373  * because some things we know are already cached or decached.
 374  */
 375 #undef DECACHE_TOS
 376 #undef CACHE_TOS
 377 #undef CACHE_PREV_TOS
 378 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 379 
 380 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 381 
 382 #undef DECACHE_PC
 383 #undef CACHE_PC
 384 #define DECACHE_PC()    istate->set_bcp(pc);
 385 #define CACHE_PC()      pc = istate->bcp();
 386 #define CACHE_CP()      cp = istate->constants();
 387 #define CACHE_LOCALS()  locals = istate->locals();
 388 #undef CACHE_FRAME
 389 #define CACHE_FRAME()
 390 
 391 /*
 392  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 393  * passed is a null ref.
 394  * On some architectures/platforms it should be possible to do this implicitly
 395  */
 396 #undef CHECK_NULL
 397 #define CHECK_NULL(obj_)                                                 \
 398     if ((obj_) == NULL) {                                                \
 399         VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), "");  \
 400     }                                                                    \
 401     VERIFY_OOP(obj_)
 402 
 403 #define VMdoubleConstZero() 0.0
 404 #define VMdoubleConstOne() 1.0
 405 #define VMlongConstZero() (max_jlong-max_jlong)
 406 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 407 
 408 /*
 409  * Alignment
 410  */
 411 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 412 
 413 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 414 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 415 
 416 // Reload interpreter state after calling the VM or a possible GC
 417 #define CACHE_STATE()   \
 418         CACHE_TOS();    \
 419         CACHE_PC();     \
 420         CACHE_CP();     \
 421         CACHE_LOCALS();
 422 
 423 // Call the VM with last java frame only.
 424 #define CALL_VM_NAKED_LJF(func)                                    \
 425         DECACHE_STATE();                                           \
 426         SET_LAST_JAVA_FRAME();                                     \
 427         func;                                                      \
 428         RESET_LAST_JAVA_FRAME();                                   \
 429         CACHE_STATE();
 430 
 431 // Call the VM. Don't check for pending exceptions.
 432 #define CALL_VM_NOCHECK(func)                                      \
 433         CALL_VM_NAKED_LJF(func)                                    \
 434         if (THREAD->pop_frame_pending() &&                         \
 435             !THREAD->pop_frame_in_process()) {                     \
 436           goto handle_Pop_Frame;                                   \
 437         }                                                          \
 438         if (THREAD->jvmti_thread_state() &&                        \
 439             THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
 440           goto handle_Early_Return;                                \
 441         }
 442 
 443 // Call the VM and check for pending exceptions
 444 #define CALL_VM(func, label) {                                     \
 445           CALL_VM_NOCHECK(func);                                   \
 446           if (THREAD->has_pending_exception()) goto label;         \
 447         }
 448 
 449 /*
 450  * BytecodeInterpreter::run(interpreterState istate)
 451  * BytecodeInterpreter::runWithChecks(interpreterState istate)
 452  *
 453  * The real deal. This is where byte codes actually get interpreted.
 454  * Basically it's a big while loop that iterates until we return from
 455  * the method passed in.
 456  *
 457  * The runWithChecks is used if JVMTI is enabled.
 458  *
 459  */
 460 #if defined(VM_JVMTI)
 461 void
 462 BytecodeInterpreter::runWithChecks(interpreterState istate) {
 463 #else
 464 void
 465 BytecodeInterpreter::run(interpreterState istate) {
 466 #endif
 467 
 468   // In order to simplify some tests based on switches set at runtime
 469   // we invoke the interpreter a single time after switches are enabled
 470   // and set simpler to to test variables rather than method calls or complex
 471   // boolean expressions.
 472 
 473   static int initialized = 0;
 474   static int checkit = 0;
 475   static intptr_t* c_addr = NULL;
 476   static intptr_t  c_value;
 477 
 478   if (checkit && *c_addr != c_value) {
 479     os::breakpoint();
 480   }
 481 #ifdef VM_JVMTI
 482   static bool _jvmti_interp_events = 0;
 483 #endif
 484 
 485   static int _compiling;  // (UseCompiler || CountCompiledCalls)
 486 
 487 #ifdef ASSERT
 488   if (istate->_msg != initialize) {
 489     // We have a problem here if we are running with a pre-hsx24 JDK (for example during bootstrap)
 490     // because in that case, EnableInvokeDynamic is true by default but will be later switched off
 491     // if java_lang_invoke_MethodHandle::compute_offsets() detects that the JDK only has the classes
 492     // for the old JSR292 implementation.
 493     // This leads to a situation where 'istate->_stack_limit' always accounts for
 494     // methodOopDesc::extra_stack_entries() because it is computed in
 495     // CppInterpreterGenerator::generate_compute_interpreter_state() which was generated while
 496     // EnableInvokeDynamic was still true. On the other hand, istate->_method->max_stack() doesn't
 497     // account for extra_stack_entries() anymore because at the time when it is called
 498     // EnableInvokeDynamic was already set to false.
 499     // So we have a second version of the assertion which handles the case where EnableInvokeDynamic was
 500     // switched off because of the wrong classes.
 501     if (EnableInvokeDynamic || FLAG_IS_CMDLINE(EnableInvokeDynamic)) {
 502       assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
 503     } else {
 504       const int extra_stack_entries = Method::extra_stack_entries_for_jsr292;
 505       assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + extra_stack_entries
 506                                                                                                + 1), "bad stack limit");
 507     }
 508 #ifndef SHARK
 509     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
 510 #endif // !SHARK
 511   }
 512   // Verify linkages.
 513   interpreterState l = istate;
 514   do {
 515     assert(l == l->_self_link, "bad link");
 516     l = l->_prev_link;
 517   } while (l != NULL);
 518   // Screwups with stack management usually cause us to overwrite istate
 519   // save a copy so we can verify it.
 520   interpreterState orig = istate;
 521 #endif
 522 
 523   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 524   register address          pc = istate->bcp();
 525   register jubyte opcode;
 526   register intptr_t*        locals = istate->locals();
 527   register ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
 528 #ifdef LOTS_OF_REGS
 529   register JavaThread*      THREAD = istate->thread();
 530 #else
 531 #undef THREAD
 532 #define THREAD istate->thread()
 533 #endif
 534 
 535 #ifdef USELABELS
 536   const static void* const opclabels_data[256] = {
 537 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
 538 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
 539 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
 540 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
 541 
 542 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
 543 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
 544 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
 545 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
 546 
 547 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
 548 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
 549 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
 550 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
 551 
 552 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
 553 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
 554 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
 555 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
 556 
 557 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
 558 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
 559 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
 560 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
 561 
 562 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
 563 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
 564 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
 565 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
 566 
 567 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
 568 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
 569 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
 570 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
 571 
 572 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
 573 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
 574 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
 575 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
 576 
 577 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
 578 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
 579 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
 580 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
 581 
 582 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
 583 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
 584 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
 585 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
 586 
 587 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
 588 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
 589 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
 590 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
 591 
 592 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
 593 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
 594 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
 595 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
 596 
 597 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
 598 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
 599 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
 600 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 601 
 602 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 603 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 604 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 605 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 606 
 607 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 608 /* 0xE4 */ &&opc_default,     &&opc_fast_aldc,      &&opc_fast_aldc_w,  &&opc_return_register_finalizer,
 609 /* 0xE8 */ &&opc_invokehandle,&&opc_default,        &&opc_default,      &&opc_default,
 610 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 611 
 612 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 613 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 614 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 615 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
 616   };
 617   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 618 #endif /* USELABELS */
 619 
 620 #ifdef ASSERT
 621   // this will trigger a VERIFY_OOP on entry
 622   if (istate->msg() != initialize && ! METHOD->is_static()) {
 623     oop rcvr = LOCALS_OBJECT(0);
 624     VERIFY_OOP(rcvr);
 625   }
 626 #endif
 627 // #define HACK
 628 #ifdef HACK
 629   bool interesting = false;
 630 #endif // HACK
 631 
 632   /* QQQ this should be a stack method so we don't know actual direction */
 633   guarantee(istate->msg() == initialize ||
 634          topOfStack >= istate->stack_limit() &&
 635          topOfStack < istate->stack_base(),
 636          "Stack top out of range");
 637 
 638   switch (istate->msg()) {
 639     case initialize: {
 640       if (initialized++) ShouldNotReachHere(); // Only one initialize call
 641       _compiling = (UseCompiler || CountCompiledCalls);
 642 #ifdef VM_JVMTI
 643       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
 644 #endif
 645       return;
 646     }
 647     break;
 648     case method_entry: {
 649       THREAD->set_do_not_unlock();
 650       // count invocations
 651       assert(initialized, "Interpreter not initialized");
 652       if (_compiling) {
 653         MethodCounters* mcs;
 654         GET_METHOD_COUNTERS(mcs);
 655         if (ProfileInterpreter) {
 656           METHOD->increment_interpreter_invocation_count(THREAD);
 657         }
 658         mcs->invocation_counter()->increment();
 659         if (mcs->invocation_counter()->reached_InvocationLimit()) {
 660             CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
 661 
 662             // We no longer retry on a counter overflow
 663 
 664             // istate->set_msg(retry_method);
 665             // THREAD->clr_do_not_unlock();
 666             // return;
 667         }
 668         SAFEPOINT;
 669       }
 670 
 671       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 672         // initialize
 673         os::breakpoint();
 674       }
 675 
 676 #ifdef HACK
 677       {
 678         ResourceMark rm;
 679         char *method_name = istate->method()->name_and_sig_as_C_string();
 680         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 681           tty->print_cr("entering: depth %d bci: %d",
 682                          (istate->_stack_base - istate->_stack),
 683                          istate->_bcp - istate->_method->code_base());
 684           interesting = true;
 685         }
 686       }
 687 #endif // HACK
 688 
 689 
 690       // lock method if synchronized
 691       if (METHOD->is_synchronized()) {
 692         // oop rcvr = locals[0].j.r;
 693         oop rcvr;
 694         if (METHOD->is_static()) {
 695           rcvr = METHOD->constants()->pool_holder()->java_mirror();
 696         } else {
 697           rcvr = LOCALS_OBJECT(0);
 698           VERIFY_OOP(rcvr);
 699         }
 700         // The initial monitor is ours for the taking
 701         // Monitor not filled in frame manager any longer as this caused race condition with biased locking.
 702         BasicObjectLock* mon = &istate->monitor_base()[-1];
 703         mon->set_obj(rcvr);
 704         bool success = false;
 705         uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 706         markOop mark = rcvr->mark();
 707         intptr_t hash = (intptr_t) markOopDesc::no_hash;
 708         // Implies UseBiasedLocking.
 709         if (mark->has_bias_pattern()) {
 710           uintptr_t thread_ident;
 711           uintptr_t anticipated_bias_locking_value;
 712           thread_ident = (uintptr_t)istate->thread();
 713           anticipated_bias_locking_value =
 714             (((uintptr_t)rcvr->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 715             ~((uintptr_t) markOopDesc::age_mask_in_place);
 716 
 717           if (anticipated_bias_locking_value == 0) {
 718             // Already biased towards this thread, nothing to do.
 719             if (PrintBiasedLockingStatistics) {
 720               (* BiasedLocking::biased_lock_entry_count_addr())++;
 721             }
 722             success = true;
 723           } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 724             // Try to revoke bias.
 725             markOop header = rcvr->klass()->prototype_header();
 726             if (hash != markOopDesc::no_hash) {
 727               header = header->copy_set_hash(hash);
 728             }
 729             if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), mark) == mark) {
 730               if (PrintBiasedLockingStatistics)
 731                 (*BiasedLocking::revoked_lock_entry_count_addr())++;
 732             }
 733           } else if ((anticipated_bias_locking_value & epoch_mask_in_place) != 0) {
 734             // Try to rebias.
 735             markOop new_header = (markOop) ( (intptr_t) rcvr->klass()->prototype_header() | thread_ident);
 736             if (hash != markOopDesc::no_hash) {
 737               new_header = new_header->copy_set_hash(hash);
 738             }
 739             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), mark) == mark) {
 740               if (PrintBiasedLockingStatistics) {
 741                 (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 742               }
 743             } else {
 744               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 745             }
 746             success = true;
 747           } else {
 748             // Try to bias towards thread in case object is anonymously biased.
 749             markOop header = (markOop) ((uintptr_t) mark &
 750                                         ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 751                                          (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 752             if (hash != markOopDesc::no_hash) {
 753               header = header->copy_set_hash(hash);
 754             }
 755             markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 756             // Debugging hint.
 757             DEBUG_ONLY(mon->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 758             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), header) == header) {
 759               if (PrintBiasedLockingStatistics) {
 760                 (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 761               }
 762             } else {
 763               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 764             }
 765             success = true;
 766           }
 767         }
 768 
 769         // Traditional lightweight locking.
 770         if (!success) {
 771           markOop displaced = rcvr->mark()->set_unlocked();
 772           mon->lock()->set_displaced_header(displaced);
 773           bool call_vm = UseHeavyMonitors;
 774           if (call_vm || Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
 775             // Is it simple recursive case?
 776             if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 777               mon->lock()->set_displaced_header(NULL);
 778             } else {
 779               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 780             }
 781           }
 782         }
 783       }
 784       THREAD->clr_do_not_unlock();
 785 
 786       // Notify jvmti
 787 #ifdef VM_JVMTI
 788       if (_jvmti_interp_events) {
 789         // Whenever JVMTI puts a thread in interp_only_mode, method
 790         // entry/exit events are sent for that thread to track stack depth.
 791         if (THREAD->is_interp_only_mode()) {
 792           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 793                   handle_exception);
 794         }
 795       }
 796 #endif /* VM_JVMTI */
 797 
 798       goto run;
 799     }
 800 
 801     case popping_frame: {
 802       // returned from a java call to pop the frame, restart the call
 803       // clear the message so we don't confuse ourselves later
 804       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 805       istate->set_msg(no_request);
 806       THREAD->clr_pop_frame_in_process();
 807       goto run;
 808     }
 809 
 810     case method_resume: {
 811       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 812         // resume
 813         os::breakpoint();
 814       }
 815 #ifdef HACK
 816       {
 817         ResourceMark rm;
 818         char *method_name = istate->method()->name_and_sig_as_C_string();
 819         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 820           tty->print_cr("resume: depth %d bci: %d",
 821                          (istate->_stack_base - istate->_stack) ,
 822                          istate->_bcp - istate->_method->code_base());
 823           interesting = true;
 824         }
 825       }
 826 #endif // HACK
 827       // returned from a java call, continue executing.
 828       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
 829         goto handle_Pop_Frame;
 830       }
 831       if (THREAD->jvmti_thread_state() &&
 832           THREAD->jvmti_thread_state()->is_earlyret_pending()) {
 833         goto handle_Early_Return;
 834       }
 835 
 836       if (THREAD->has_pending_exception()) goto handle_exception;
 837       // Update the pc by the saved amount of the invoke bytecode size
 838       UPDATE_PC(istate->bcp_advance());
 839       goto run;
 840     }
 841 
 842     case deopt_resume2: {
 843       // Returned from an opcode that will reexecute. Deopt was
 844       // a result of a PopFrame request.
 845       //
 846       goto run;
 847     }
 848 
 849     case deopt_resume: {
 850       // Returned from an opcode that has completed. The stack has
 851       // the result all we need to do is skip across the bytecode
 852       // and continue (assuming there is no exception pending)
 853       //
 854       // compute continuation length
 855       //
 856       // Note: it is possible to deopt at a return_register_finalizer opcode
 857       // because this requires entering the vm to do the registering. While the
 858       // opcode is complete we can't advance because there are no more opcodes
 859       // much like trying to deopt at a poll return. In that has we simply
 860       // get out of here
 861       //
 862       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
 863         // this will do the right thing even if an exception is pending.
 864         goto handle_return;
 865       }
 866       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
 867       if (THREAD->has_pending_exception()) goto handle_exception;
 868       goto run;
 869     }
 870     case got_monitors: {
 871       // continue locking now that we have a monitor to use
 872       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 873       oop lockee = STACK_OBJECT(-1);
 874       VERIFY_OOP(lockee);
 875       // derefing's lockee ought to provoke implicit null check
 876       // find a free monitor
 877       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 878       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
 879       entry->set_obj(lockee);
 880       bool success = false;
 881       uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 882 
 883       markOop mark = lockee->mark();
 884       intptr_t hash = (intptr_t) markOopDesc::no_hash;
 885       // implies UseBiasedLocking
 886       if (mark->has_bias_pattern()) {
 887         uintptr_t thread_ident;
 888         uintptr_t anticipated_bias_locking_value;
 889         thread_ident = (uintptr_t)istate->thread();
 890         anticipated_bias_locking_value =
 891           (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 892           ~((uintptr_t) markOopDesc::age_mask_in_place);
 893 
 894         if  (anticipated_bias_locking_value == 0) {
 895           // already biased towards this thread, nothing to do
 896           if (PrintBiasedLockingStatistics) {
 897             (* BiasedLocking::biased_lock_entry_count_addr())++;
 898           }
 899           success = true;
 900         } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 901           // try revoke bias
 902           markOop header = lockee->klass()->prototype_header();
 903           if (hash != markOopDesc::no_hash) {
 904             header = header->copy_set_hash(hash);
 905           }
 906           if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
 907             if (PrintBiasedLockingStatistics) {
 908               (*BiasedLocking::revoked_lock_entry_count_addr())++;
 909             }
 910           }
 911         } else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
 912           // try rebias
 913           markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
 914           if (hash != markOopDesc::no_hash) {
 915                 new_header = new_header->copy_set_hash(hash);
 916           }
 917           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
 918             if (PrintBiasedLockingStatistics) {
 919               (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 920             }
 921           } else {
 922             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 923           }
 924           success = true;
 925         } else {
 926           // try to bias towards thread in case object is anonymously biased
 927           markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 928                                                           (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 929           if (hash != markOopDesc::no_hash) {
 930             header = header->copy_set_hash(hash);
 931           }
 932           markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 933           // debugging hint
 934           DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 935           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
 936             if (PrintBiasedLockingStatistics) {
 937               (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 938             }
 939           } else {
 940             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 941           }
 942           success = true;
 943         }
 944       }
 945 
 946       // traditional lightweight locking
 947       if (!success) {
 948         markOop displaced = lockee->mark()->set_unlocked();
 949         entry->lock()->set_displaced_header(displaced);
 950         bool call_vm = UseHeavyMonitors;
 951         if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
 952           // Is it simple recursive case?
 953           if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 954             entry->lock()->set_displaced_header(NULL);
 955           } else {
 956             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 957           }
 958         }
 959       }
 960       UPDATE_PC_AND_TOS(1, -1);
 961       goto run;
 962     }
 963     default: {
 964       fatal("Unexpected message from frame manager");
 965     }
 966   }
 967 
 968 run:
 969 
 970   DO_UPDATE_INSTRUCTION_COUNT(*pc)
 971   DEBUGGER_SINGLE_STEP_NOTIFY();
 972 #ifdef PREFETCH_OPCCODE
 973   opcode = *pc;  /* prefetch first opcode */
 974 #endif
 975 
 976 #ifndef USELABELS
 977   while (1)
 978 #endif
 979   {
 980 #ifndef PREFETCH_OPCCODE
 981       opcode = *pc;
 982 #endif
 983       // Seems like this happens twice per opcode. At worst this is only
 984       // need at entry to the loop.
 985       // DEBUGGER_SINGLE_STEP_NOTIFY();
 986       /* Using this labels avoids double breakpoints when quickening and
 987        * when returing from transition frames.
 988        */
 989   opcode_switch:
 990       assert(istate == orig, "Corrupted istate");
 991       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
 992       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
 993       assert(topOfStack < istate->stack_base(), "Stack underrun");
 994 
 995 #ifdef USELABELS
 996       DISPATCH(opcode);
 997 #else
 998       switch (opcode)
 999 #endif
1000       {
1001       CASE(_nop):
1002           UPDATE_PC_AND_CONTINUE(1);
1003 
1004           /* Push miscellaneous constants onto the stack. */
1005 
1006       CASE(_aconst_null):
1007           SET_STACK_OBJECT(NULL, 0);
1008           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1009 
1010 #undef  OPC_CONST_n
1011 #define OPC_CONST_n(opcode, const_type, value)                          \
1012       CASE(opcode):                                                     \
1013           SET_STACK_ ## const_type(value, 0);                           \
1014           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1015 
1016           OPC_CONST_n(_iconst_m1,   INT,       -1);
1017           OPC_CONST_n(_iconst_0,    INT,        0);
1018           OPC_CONST_n(_iconst_1,    INT,        1);
1019           OPC_CONST_n(_iconst_2,    INT,        2);
1020           OPC_CONST_n(_iconst_3,    INT,        3);
1021           OPC_CONST_n(_iconst_4,    INT,        4);
1022           OPC_CONST_n(_iconst_5,    INT,        5);
1023           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
1024           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
1025           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
1026 
1027 #undef  OPC_CONST2_n
1028 #define OPC_CONST2_n(opcname, value, key, kind)                         \
1029       CASE(_##opcname):                                                 \
1030       {                                                                 \
1031           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
1032           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1033       }
1034          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
1035          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
1036          OPC_CONST2_n(lconst_0, Zero, long, LONG);
1037          OPC_CONST2_n(lconst_1, One,  long, LONG);
1038 
1039          /* Load constant from constant pool: */
1040 
1041           /* Push a 1-byte signed integer value onto the stack. */
1042       CASE(_bipush):
1043           SET_STACK_INT((jbyte)(pc[1]), 0);
1044           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1045 
1046           /* Push a 2-byte signed integer constant onto the stack. */
1047       CASE(_sipush):
1048           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
1049           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1050 
1051           /* load from local variable */
1052 
1053       CASE(_aload):
1054           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
1055           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
1056           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1057 
1058       CASE(_iload):
1059       CASE(_fload):
1060           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1061           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1062 
1063       CASE(_lload):
1064           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
1065           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1066 
1067       CASE(_dload):
1068           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
1069           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1070 
1071 #undef  OPC_LOAD_n
1072 #define OPC_LOAD_n(num)                                                 \
1073       CASE(_aload_##num):                                               \
1074           VERIFY_OOP(LOCALS_OBJECT(num));                               \
1075           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
1076           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1077                                                                         \
1078       CASE(_iload_##num):                                               \
1079       CASE(_fload_##num):                                               \
1080           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
1081           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1082                                                                         \
1083       CASE(_lload_##num):                                               \
1084           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
1085           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1086       CASE(_dload_##num):                                               \
1087           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
1088           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1089 
1090           OPC_LOAD_n(0);
1091           OPC_LOAD_n(1);
1092           OPC_LOAD_n(2);
1093           OPC_LOAD_n(3);
1094 
1095           /* store to a local variable */
1096 
1097       CASE(_astore):
1098           astore(topOfStack, -1, locals, pc[1]);
1099           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1100 
1101       CASE(_istore):
1102       CASE(_fstore):
1103           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1104           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1105 
1106       CASE(_lstore):
1107           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1108           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1109 
1110       CASE(_dstore):
1111           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1112           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1113 
1114       CASE(_wide): {
1115           uint16_t reg = Bytes::get_Java_u2(pc + 2);
1116 
1117           opcode = pc[1];
1118           switch(opcode) {
1119               case Bytecodes::_aload:
1120                   VERIFY_OOP(LOCALS_OBJECT(reg));
1121                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1122                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1123 
1124               case Bytecodes::_iload:
1125               case Bytecodes::_fload:
1126                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1127                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1128 
1129               case Bytecodes::_lload:
1130                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1131                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1132 
1133               case Bytecodes::_dload:
1134                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1135                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1136 
1137               case Bytecodes::_astore:
1138                   astore(topOfStack, -1, locals, reg);
1139                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1140 
1141               case Bytecodes::_istore:
1142               case Bytecodes::_fstore:
1143                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1144                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1145 
1146               case Bytecodes::_lstore:
1147                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1148                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1149 
1150               case Bytecodes::_dstore:
1151                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1152                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1153 
1154               case Bytecodes::_iinc: {
1155                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1156                   // Be nice to see what this generates.... QQQ
1157                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1158                   UPDATE_PC_AND_CONTINUE(6);
1159               }
1160               case Bytecodes::_ret:
1161                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1162                   UPDATE_PC_AND_CONTINUE(0);
1163               default:
1164                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
1165           }
1166       }
1167 
1168 
1169 #undef  OPC_STORE_n
1170 #define OPC_STORE_n(num)                                                \
1171       CASE(_astore_##num):                                              \
1172           astore(topOfStack, -1, locals, num);                          \
1173           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1174       CASE(_istore_##num):                                              \
1175       CASE(_fstore_##num):                                              \
1176           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1177           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1178 
1179           OPC_STORE_n(0);
1180           OPC_STORE_n(1);
1181           OPC_STORE_n(2);
1182           OPC_STORE_n(3);
1183 
1184 #undef  OPC_DSTORE_n
1185 #define OPC_DSTORE_n(num)                                               \
1186       CASE(_dstore_##num):                                              \
1187           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1188           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1189       CASE(_lstore_##num):                                              \
1190           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1191           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1192 
1193           OPC_DSTORE_n(0);
1194           OPC_DSTORE_n(1);
1195           OPC_DSTORE_n(2);
1196           OPC_DSTORE_n(3);
1197 
1198           /* stack pop, dup, and insert opcodes */
1199 
1200 
1201       CASE(_pop):                /* Discard the top item on the stack */
1202           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1203 
1204 
1205       CASE(_pop2):               /* Discard the top 2 items on the stack */
1206           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1207 
1208 
1209       CASE(_dup):               /* Duplicate the top item on the stack */
1210           dup(topOfStack);
1211           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1212 
1213       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1214           dup2(topOfStack);
1215           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1216 
1217       CASE(_dup_x1):    /* insert top word two down */
1218           dup_x1(topOfStack);
1219           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1220 
1221       CASE(_dup_x2):    /* insert top word three down  */
1222           dup_x2(topOfStack);
1223           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1224 
1225       CASE(_dup2_x1):   /* insert top 2 slots three down */
1226           dup2_x1(topOfStack);
1227           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1228 
1229       CASE(_dup2_x2):   /* insert top 2 slots four down */
1230           dup2_x2(topOfStack);
1231           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1232 
1233       CASE(_swap): {        /* swap top two elements on the stack */
1234           swap(topOfStack);
1235           UPDATE_PC_AND_CONTINUE(1);
1236       }
1237 
1238           /* Perform various binary integer operations */
1239 
1240 #undef  OPC_INT_BINARY
1241 #define OPC_INT_BINARY(opcname, opname, test)                           \
1242       CASE(_i##opcname):                                                \
1243           if (test && (STACK_INT(-1) == 0)) {                           \
1244               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1245                             "/ by zero");                               \
1246           }                                                             \
1247           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1248                                       STACK_INT(-1)),                   \
1249                                       -2);                              \
1250           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1251       CASE(_l##opcname):                                                \
1252       {                                                                 \
1253           if (test) {                                                   \
1254             jlong l1 = STACK_LONG(-1);                                  \
1255             if (VMlongEqz(l1)) {                                        \
1256               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1257                             "/ by long zero");                          \
1258             }                                                           \
1259           }                                                             \
1260           /* First long at (-1,-2) next long at (-3,-4) */              \
1261           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1262                                         STACK_LONG(-1)),                \
1263                                         -3);                            \
1264           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1265       }
1266 
1267       OPC_INT_BINARY(add, Add, 0);
1268       OPC_INT_BINARY(sub, Sub, 0);
1269       OPC_INT_BINARY(mul, Mul, 0);
1270       OPC_INT_BINARY(and, And, 0);
1271       OPC_INT_BINARY(or,  Or,  0);
1272       OPC_INT_BINARY(xor, Xor, 0);
1273       OPC_INT_BINARY(div, Div, 1);
1274       OPC_INT_BINARY(rem, Rem, 1);
1275 
1276 
1277       /* Perform various binary floating number operations */
1278       /* On some machine/platforms/compilers div zero check can be implicit */
1279 
1280 #undef  OPC_FLOAT_BINARY
1281 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1282       CASE(_d##opcname): {                                                 \
1283           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1284                                             STACK_DOUBLE(-1)),             \
1285                                             -3);                           \
1286           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1287       }                                                                    \
1288       CASE(_f##opcname):                                                   \
1289           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1290                                           STACK_FLOAT(-1)),                \
1291                                           -2);                             \
1292           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1293 
1294 
1295      OPC_FLOAT_BINARY(add, Add);
1296      OPC_FLOAT_BINARY(sub, Sub);
1297      OPC_FLOAT_BINARY(mul, Mul);
1298      OPC_FLOAT_BINARY(div, Div);
1299      OPC_FLOAT_BINARY(rem, Rem);
1300 
1301       /* Shift operations
1302        * Shift left int and long: ishl, lshl
1303        * Logical shift right int and long w/zero extension: iushr, lushr
1304        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1305        */
1306 
1307 #undef  OPC_SHIFT_BINARY
1308 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1309       CASE(_i##opcname):                                                \
1310          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1311                                      STACK_INT(-1)),                    \
1312                                      -2);                               \
1313          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1314       CASE(_l##opcname):                                                \
1315       {                                                                 \
1316          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1317                                        STACK_INT(-1)),                  \
1318                                        -2);                             \
1319          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1320       }
1321 
1322       OPC_SHIFT_BINARY(shl, Shl);
1323       OPC_SHIFT_BINARY(shr, Shr);
1324       OPC_SHIFT_BINARY(ushr, Ushr);
1325 
1326      /* Increment local variable by constant */
1327       CASE(_iinc):
1328       {
1329           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1330           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1331           UPDATE_PC_AND_CONTINUE(3);
1332       }
1333 
1334      /* negate the value on the top of the stack */
1335 
1336       CASE(_ineg):
1337          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1338          UPDATE_PC_AND_CONTINUE(1);
1339 
1340       CASE(_fneg):
1341          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1342          UPDATE_PC_AND_CONTINUE(1);
1343 
1344       CASE(_lneg):
1345       {
1346          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1347          UPDATE_PC_AND_CONTINUE(1);
1348       }
1349 
1350       CASE(_dneg):
1351       {
1352          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1353          UPDATE_PC_AND_CONTINUE(1);
1354       }
1355 
1356       /* Conversion operations */
1357 
1358       CASE(_i2f):       /* convert top of stack int to float */
1359          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1360          UPDATE_PC_AND_CONTINUE(1);
1361 
1362       CASE(_i2l):       /* convert top of stack int to long */
1363       {
1364           // this is ugly QQQ
1365           jlong r = VMint2Long(STACK_INT(-1));
1366           MORE_STACK(-1); // Pop
1367           SET_STACK_LONG(r, 1);
1368 
1369           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1370       }
1371 
1372       CASE(_i2d):       /* convert top of stack int to double */
1373       {
1374           // this is ugly QQQ (why cast to jlong?? )
1375           jdouble r = (jlong)STACK_INT(-1);
1376           MORE_STACK(-1); // Pop
1377           SET_STACK_DOUBLE(r, 1);
1378 
1379           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1380       }
1381 
1382       CASE(_l2i):       /* convert top of stack long to int */
1383       {
1384           jint r = VMlong2Int(STACK_LONG(-1));
1385           MORE_STACK(-2); // Pop
1386           SET_STACK_INT(r, 0);
1387           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1388       }
1389 
1390       CASE(_l2f):   /* convert top of stack long to float */
1391       {
1392           jlong r = STACK_LONG(-1);
1393           MORE_STACK(-2); // Pop
1394           SET_STACK_FLOAT(VMlong2Float(r), 0);
1395           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1396       }
1397 
1398       CASE(_l2d):       /* convert top of stack long to double */
1399       {
1400           jlong r = STACK_LONG(-1);
1401           MORE_STACK(-2); // Pop
1402           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1403           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1404       }
1405 
1406       CASE(_f2i):  /* Convert top of stack float to int */
1407           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1408           UPDATE_PC_AND_CONTINUE(1);
1409 
1410       CASE(_f2l):  /* convert top of stack float to long */
1411       {
1412           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1413           MORE_STACK(-1); // POP
1414           SET_STACK_LONG(r, 1);
1415           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1416       }
1417 
1418       CASE(_f2d):  /* convert top of stack float to double */
1419       {
1420           jfloat f;
1421           jdouble r;
1422           f = STACK_FLOAT(-1);
1423           r = (jdouble) f;
1424           MORE_STACK(-1); // POP
1425           SET_STACK_DOUBLE(r, 1);
1426           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1427       }
1428 
1429       CASE(_d2i): /* convert top of stack double to int */
1430       {
1431           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1432           MORE_STACK(-2);
1433           SET_STACK_INT(r1, 0);
1434           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1435       }
1436 
1437       CASE(_d2f): /* convert top of stack double to float */
1438       {
1439           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1440           MORE_STACK(-2);
1441           SET_STACK_FLOAT(r1, 0);
1442           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1443       }
1444 
1445       CASE(_d2l): /* convert top of stack double to long */
1446       {
1447           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1448           MORE_STACK(-2);
1449           SET_STACK_LONG(r1, 1);
1450           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1451       }
1452 
1453       CASE(_i2b):
1454           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1455           UPDATE_PC_AND_CONTINUE(1);
1456 
1457       CASE(_i2c):
1458           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1459           UPDATE_PC_AND_CONTINUE(1);
1460 
1461       CASE(_i2s):
1462           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1463           UPDATE_PC_AND_CONTINUE(1);
1464 
1465       /* comparison operators */
1466 
1467 
1468 #define COMPARISON_OP(name, comparison)                                      \
1469       CASE(_if_icmp##name): {                                                \
1470           int skip = (STACK_INT(-2) comparison STACK_INT(-1))                \
1471                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1472           address branch_pc = pc;                                            \
1473           UPDATE_PC_AND_TOS(skip, -2);                                       \
1474           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1475           CONTINUE;                                                          \
1476       }                                                                      \
1477       CASE(_if##name): {                                                     \
1478           int skip = (STACK_INT(-1) comparison 0)                            \
1479                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1480           address branch_pc = pc;                                            \
1481           UPDATE_PC_AND_TOS(skip, -1);                                       \
1482           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1483           CONTINUE;                                                          \
1484       }
1485 
1486 #define COMPARISON_OP2(name, comparison)                                     \
1487       COMPARISON_OP(name, comparison)                                        \
1488       CASE(_if_acmp##name): {                                                \
1489           int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))          \
1490                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1491           address branch_pc = pc;                                            \
1492           UPDATE_PC_AND_TOS(skip, -2);                                       \
1493           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1494           CONTINUE;                                                          \
1495       }
1496 
1497 #define NULL_COMPARISON_NOT_OP(name)                                         \
1498       CASE(_if##name): {                                                     \
1499           int skip = (!(STACK_OBJECT(-1) == NULL))                           \
1500                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1501           address branch_pc = pc;                                            \
1502           UPDATE_PC_AND_TOS(skip, -1);                                       \
1503           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1504           CONTINUE;                                                          \
1505       }
1506 
1507 #define NULL_COMPARISON_OP(name)                                             \
1508       CASE(_if##name): {                                                     \
1509           int skip = ((STACK_OBJECT(-1) == NULL))                            \
1510                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1511           address branch_pc = pc;                                            \
1512           UPDATE_PC_AND_TOS(skip, -1);                                       \
1513           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1514           CONTINUE;                                                          \
1515       }
1516       COMPARISON_OP(lt, <);
1517       COMPARISON_OP(gt, >);
1518       COMPARISON_OP(le, <=);
1519       COMPARISON_OP(ge, >=);
1520       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1521       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1522       NULL_COMPARISON_OP(null);
1523       NULL_COMPARISON_NOT_OP(nonnull);
1524 
1525       /* Goto pc at specified offset in switch table. */
1526 
1527       CASE(_tableswitch): {
1528           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1529           int32_t  key  = STACK_INT(-1);
1530           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1531           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1532           int32_t  skip;
1533           key -= low;
1534           skip = ((uint32_t) key > (uint32_t)(high - low))
1535                       ? Bytes::get_Java_u4((address)&lpc[0])
1536                       : Bytes::get_Java_u4((address)&lpc[key + 3]);
1537           // Does this really need a full backedge check (osr?)
1538           address branch_pc = pc;
1539           UPDATE_PC_AND_TOS(skip, -1);
1540           DO_BACKEDGE_CHECKS(skip, branch_pc);
1541           CONTINUE;
1542       }
1543 
1544       /* Goto pc whose table entry matches specified key */
1545 
1546       CASE(_lookupswitch): {
1547           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1548           int32_t  key  = STACK_INT(-1);
1549           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1550           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1551           while (--npairs >= 0) {
1552               lpc += 2;
1553               if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1554                   skip = Bytes::get_Java_u4((address)&lpc[1]);
1555                   break;
1556               }
1557           }
1558           address branch_pc = pc;
1559           UPDATE_PC_AND_TOS(skip, -1);
1560           DO_BACKEDGE_CHECKS(skip, branch_pc);
1561           CONTINUE;
1562       }
1563 
1564       CASE(_fcmpl):
1565       CASE(_fcmpg):
1566       {
1567           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1568                                         STACK_FLOAT(-1),
1569                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1570                         -2);
1571           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1572       }
1573 
1574       CASE(_dcmpl):
1575       CASE(_dcmpg):
1576       {
1577           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1578                                   STACK_DOUBLE(-1),
1579                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1580           MORE_STACK(-4); // Pop
1581           SET_STACK_INT(r, 0);
1582           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1583       }
1584 
1585       CASE(_lcmp):
1586       {
1587           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1588           MORE_STACK(-4);
1589           SET_STACK_INT(r, 0);
1590           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1591       }
1592 
1593 
1594       /* Return from a method */
1595 
1596       CASE(_areturn):
1597       CASE(_ireturn):
1598       CASE(_freturn):
1599       {
1600           // Allow a safepoint before returning to frame manager.
1601           SAFEPOINT;
1602 
1603           goto handle_return;
1604       }
1605 
1606       CASE(_lreturn):
1607       CASE(_dreturn):
1608       {
1609           // Allow a safepoint before returning to frame manager.
1610           SAFEPOINT;
1611           goto handle_return;
1612       }
1613 
1614       CASE(_return_register_finalizer): {
1615 
1616           oop rcvr = LOCALS_OBJECT(0);
1617           VERIFY_OOP(rcvr);
1618           if (rcvr->klass()->has_finalizer()) {
1619             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1620           }
1621           goto handle_return;
1622       }
1623       CASE(_return): {
1624 
1625           // Allow a safepoint before returning to frame manager.
1626           SAFEPOINT;
1627           goto handle_return;
1628       }
1629 
1630       /* Array access byte-codes */
1631 
1632       /* Every array access byte-code starts out like this */
1633 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1634 #define ARRAY_INTRO(arrayOff)                                                  \
1635       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1636       jint     index  = STACK_INT(arrayOff + 1);                               \
1637       char message[jintAsStringSize];                                          \
1638       CHECK_NULL(arrObj);                                                      \
1639       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1640           sprintf(message, "%d", index);                                       \
1641           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1642                         message);                                              \
1643       }
1644 
1645       /* 32-bit loads. These handle conversion from < 32-bit types */
1646 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1647       {                                                                               \
1648           ARRAY_INTRO(-2);                                                            \
1649           (void)extra;                                                                \
1650           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1651                            -2);                                                       \
1652           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1653       }
1654 
1655       /* 64-bit loads */
1656 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1657       {                                                                                    \
1658           ARRAY_INTRO(-2);                                                                 \
1659           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1660           (void)extra;                                                                     \
1661           UPDATE_PC_AND_CONTINUE(1);                                                       \
1662       }
1663 
1664       CASE(_iaload):
1665           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1666       CASE(_faload):
1667           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1668       CASE(_aaload): {
1669           ARRAY_INTRO(-2);
1670           SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1671           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1672       }
1673       CASE(_baload):
1674           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1675       CASE(_caload):
1676           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1677       CASE(_saload):
1678           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1679       CASE(_laload):
1680           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1681       CASE(_daload):
1682           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1683 
1684       /* 32-bit stores. These handle conversion to < 32-bit types */
1685 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1686       {                                                                              \
1687           ARRAY_INTRO(-3);                                                           \
1688           (void)extra;                                                               \
1689           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1690           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1691       }
1692 
1693       /* 64-bit stores */
1694 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1695       {                                                                              \
1696           ARRAY_INTRO(-4);                                                           \
1697           (void)extra;                                                               \
1698           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1699           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1700       }
1701 
1702       CASE(_iastore):
1703           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1704       CASE(_fastore):
1705           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1706       /*
1707        * This one looks different because of the assignability check
1708        */
1709       CASE(_aastore): {
1710           oop rhsObject = STACK_OBJECT(-1);
1711           VERIFY_OOP(rhsObject);
1712           ARRAY_INTRO( -3);
1713           // arrObj, index are set
1714           if (rhsObject != NULL) {
1715             /* Check assignability of rhsObject into arrObj */
1716             Klass* rhsKlassOop = rhsObject->klass(); // EBX (subclass)
1717             Klass* elemKlassOop = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1718             //
1719             // Check for compatibilty. This check must not GC!!
1720             // Seems way more expensive now that we must dispatch
1721             //
1722             if (rhsKlassOop != elemKlassOop && !rhsKlassOop->is_subtype_of(elemKlassOop)) { // ebx->is...
1723               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
1724             }
1725           }
1726           ((objArrayOopDesc *) arrObj)->obj_at_put(index, rhsObject);
1727           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1728       }
1729       CASE(_bastore):
1730           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1731       CASE(_castore):
1732           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1733       CASE(_sastore):
1734           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1735       CASE(_lastore):
1736           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1737       CASE(_dastore):
1738           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1739 
1740       CASE(_arraylength):
1741       {
1742           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1743           CHECK_NULL(ary);
1744           SET_STACK_INT(ary->length(), -1);
1745           UPDATE_PC_AND_CONTINUE(1);
1746       }
1747 
1748       /* monitorenter and monitorexit for locking/unlocking an object */
1749 
1750       CASE(_monitorenter): {
1751         oop lockee = STACK_OBJECT(-1);
1752         // derefing's lockee ought to provoke implicit null check
1753         CHECK_NULL(lockee);
1754         // find a free monitor or one already allocated for this object
1755         // if we find a matching object then we need a new monitor
1756         // since this is recursive enter
1757         BasicObjectLock* limit = istate->monitor_base();
1758         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1759         BasicObjectLock* entry = NULL;
1760         while (most_recent != limit ) {
1761           if (most_recent->obj() == NULL) entry = most_recent;
1762           else if (most_recent->obj() == lockee) break;
1763           most_recent++;
1764         }
1765         if (entry != NULL) {
1766           entry->set_obj(lockee);
1767           int success = false;
1768           uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
1769 
1770           markOop mark = lockee->mark();
1771           intptr_t hash = (intptr_t) markOopDesc::no_hash;
1772           // implies UseBiasedLocking
1773           if (mark->has_bias_pattern()) {
1774             uintptr_t thread_ident;
1775             uintptr_t anticipated_bias_locking_value;
1776             thread_ident = (uintptr_t)istate->thread();
1777             anticipated_bias_locking_value =
1778               (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
1779               ~((uintptr_t) markOopDesc::age_mask_in_place);
1780 
1781             if  (anticipated_bias_locking_value == 0) {
1782               // already biased towards this thread, nothing to do
1783               if (PrintBiasedLockingStatistics) {
1784                 (* BiasedLocking::biased_lock_entry_count_addr())++;
1785               }
1786               success = true;
1787             }
1788             else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
1789               // try revoke bias
1790               markOop header = lockee->klass()->prototype_header();
1791               if (hash != markOopDesc::no_hash) {
1792                 header = header->copy_set_hash(hash);
1793               }
1794               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
1795                 if (PrintBiasedLockingStatistics)
1796                   (*BiasedLocking::revoked_lock_entry_count_addr())++;
1797               }
1798             }
1799             else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
1800               // try rebias
1801               markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
1802               if (hash != markOopDesc::no_hash) {
1803                 new_header = new_header->copy_set_hash(hash);
1804               }
1805               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
1806                 if (PrintBiasedLockingStatistics)
1807                   (* BiasedLocking::rebiased_lock_entry_count_addr())++;
1808               }
1809               else {
1810                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1811               }
1812               success = true;
1813             }
1814             else {
1815               // try to bias towards thread in case object is anonymously biased
1816               markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
1817                                                               (uintptr_t)markOopDesc::age_mask_in_place |
1818                                                               epoch_mask_in_place));
1819               if (hash != markOopDesc::no_hash) {
1820                 header = header->copy_set_hash(hash);
1821               }
1822               markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
1823               // debugging hint
1824               DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
1825               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
1826                 if (PrintBiasedLockingStatistics)
1827                   (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
1828               }
1829               else {
1830                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1831               }
1832               success = true;
1833             }
1834           }
1835 
1836           // traditional lightweight locking
1837           if (!success) {
1838             markOop displaced = lockee->mark()->set_unlocked();
1839             entry->lock()->set_displaced_header(displaced);
1840             bool call_vm = UseHeavyMonitors;
1841             if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1842               // Is it simple recursive case?
1843               if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1844                 entry->lock()->set_displaced_header(NULL);
1845               } else {
1846                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1847               }
1848             }
1849           }
1850           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1851         } else {
1852           istate->set_msg(more_monitors);
1853           UPDATE_PC_AND_RETURN(0); // Re-execute
1854         }
1855       }
1856 
1857       CASE(_monitorexit): {
1858         oop lockee = STACK_OBJECT(-1);
1859         CHECK_NULL(lockee);
1860         // derefing's lockee ought to provoke implicit null check
1861         // find our monitor slot
1862         BasicObjectLock* limit = istate->monitor_base();
1863         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1864         while (most_recent != limit ) {
1865           if ((most_recent)->obj() == lockee) {
1866             BasicLock* lock = most_recent->lock();
1867             markOop header = lock->displaced_header();
1868             most_recent->set_obj(NULL);
1869             if (!lockee->mark()->has_bias_pattern()) {
1870               bool call_vm = UseHeavyMonitors;
1871               // If it isn't recursive we either must swap old header or call the runtime
1872               if (header != NULL || call_vm) {
1873                 if (call_vm || Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1874                   // restore object for the slow case
1875                   most_recent->set_obj(lockee);
1876                   CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1877                 }
1878               }
1879             }
1880             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1881           }
1882           most_recent++;
1883         }
1884         // Need to throw illegal monitor state exception
1885         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1886         ShouldNotReachHere();
1887       }
1888 
1889       /* All of the non-quick opcodes. */
1890 
1891       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1892        *  constant pool index in the instruction.
1893        */
1894       CASE(_getfield):
1895       CASE(_getstatic):
1896         {
1897           u2 index;
1898           ConstantPoolCacheEntry* cache;
1899           index = Bytes::get_native_u2(pc+1);
1900 
1901           // QQQ Need to make this as inlined as possible. Probably need to
1902           // split all the bytecode cases out so c++ compiler has a chance
1903           // for constant prop to fold everything possible away.
1904 
1905           cache = cp->entry_at(index);
1906           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1907             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1908                     handle_exception);
1909             cache = cp->entry_at(index);
1910           }
1911 
1912 #ifdef VM_JVMTI
1913           if (_jvmti_interp_events) {
1914             int *count_addr;
1915             oop obj;
1916             // Check to see if a field modification watch has been set
1917             // before we take the time to call into the VM.
1918             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1919             if ( *count_addr > 0 ) {
1920               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1921                 obj = (oop)NULL;
1922               } else {
1923                 obj = (oop) STACK_OBJECT(-1);
1924                 VERIFY_OOP(obj);
1925               }
1926               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1927                                           obj,
1928                                           cache),
1929                                           handle_exception);
1930             }
1931           }
1932 #endif /* VM_JVMTI */
1933 
1934           oop obj;
1935           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1936             Klass* k = cache->f1_as_klass();
1937             obj = k->java_mirror();
1938             MORE_STACK(1);  // Assume single slot push
1939           } else {
1940             obj = (oop) STACK_OBJECT(-1);
1941             CHECK_NULL(obj);
1942           }
1943 
1944           //
1945           // Now store the result on the stack
1946           //
1947           TosState tos_type = cache->flag_state();
1948           int field_offset = cache->f2_as_index();
1949           if (cache->is_volatile()) {
1950             if (tos_type == atos) {
1951               VERIFY_OOP(obj->obj_field_acquire(field_offset));
1952               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
1953             } else if (tos_type == itos) {
1954               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1955             } else if (tos_type == ltos) {
1956               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1957               MORE_STACK(1);
1958             } else if (tos_type == btos) {
1959               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
1960             } else if (tos_type == ctos) {
1961               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
1962             } else if (tos_type == stos) {
1963               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
1964             } else if (tos_type == ftos) {
1965               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
1966             } else {
1967               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
1968               MORE_STACK(1);
1969             }
1970           } else {
1971             if (tos_type == atos) {
1972               VERIFY_OOP(obj->obj_field(field_offset));
1973               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
1974             } else if (tos_type == itos) {
1975               SET_STACK_INT(obj->int_field(field_offset), -1);
1976             } else if (tos_type == ltos) {
1977               SET_STACK_LONG(obj->long_field(field_offset), 0);
1978               MORE_STACK(1);
1979             } else if (tos_type == btos) {
1980               SET_STACK_INT(obj->byte_field(field_offset), -1);
1981             } else if (tos_type == ctos) {
1982               SET_STACK_INT(obj->char_field(field_offset), -1);
1983             } else if (tos_type == stos) {
1984               SET_STACK_INT(obj->short_field(field_offset), -1);
1985             } else if (tos_type == ftos) {
1986               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
1987             } else {
1988               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
1989               MORE_STACK(1);
1990             }
1991           }
1992 
1993           UPDATE_PC_AND_CONTINUE(3);
1994          }
1995 
1996       CASE(_putfield):
1997       CASE(_putstatic):
1998         {
1999           u2 index = Bytes::get_native_u2(pc+1);
2000           ConstantPoolCacheEntry* cache = cp->entry_at(index);
2001           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2002             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
2003                     handle_exception);
2004             cache = cp->entry_at(index);
2005           }
2006 
2007 #ifdef VM_JVMTI
2008           if (_jvmti_interp_events) {
2009             int *count_addr;
2010             oop obj;
2011             // Check to see if a field modification watch has been set
2012             // before we take the time to call into the VM.
2013             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
2014             if ( *count_addr > 0 ) {
2015               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2016                 obj = (oop)NULL;
2017               }
2018               else {
2019                 if (cache->is_long() || cache->is_double()) {
2020                   obj = (oop) STACK_OBJECT(-3);
2021                 } else {
2022                   obj = (oop) STACK_OBJECT(-2);
2023                 }
2024                 VERIFY_OOP(obj);
2025               }
2026 
2027               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
2028                                           obj,
2029                                           cache,
2030                                           (jvalue *)STACK_SLOT(-1)),
2031                                           handle_exception);
2032             }
2033           }
2034 #endif /* VM_JVMTI */
2035 
2036           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2037           // out so c++ compiler has a chance for constant prop to fold everything possible away.
2038 
2039           oop obj;
2040           int count;
2041           TosState tos_type = cache->flag_state();
2042 
2043           count = -1;
2044           if (tos_type == ltos || tos_type == dtos) {
2045             --count;
2046           }
2047           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2048             Klass* k = cache->f1_as_klass();
2049             obj = k->java_mirror();
2050           } else {
2051             --count;
2052             obj = (oop) STACK_OBJECT(count);
2053             CHECK_NULL(obj);
2054           }
2055 
2056           //
2057           // Now store the result
2058           //
2059           int field_offset = cache->f2_as_index();
2060           if (cache->is_volatile()) {
2061             if (tos_type == itos) {
2062               obj->release_int_field_put(field_offset, STACK_INT(-1));
2063             } else if (tos_type == atos) {
2064               VERIFY_OOP(STACK_OBJECT(-1));
2065               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
2066             } else if (tos_type == btos) {
2067               obj->release_byte_field_put(field_offset, STACK_INT(-1));
2068             } else if (tos_type == ltos) {
2069               obj->release_long_field_put(field_offset, STACK_LONG(-1));
2070             } else if (tos_type == ctos) {
2071               obj->release_char_field_put(field_offset, STACK_INT(-1));
2072             } else if (tos_type == stos) {
2073               obj->release_short_field_put(field_offset, STACK_INT(-1));
2074             } else if (tos_type == ftos) {
2075               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
2076             } else {
2077               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
2078             }
2079             OrderAccess::storeload();
2080           } else {
2081             if (tos_type == itos) {
2082               obj->int_field_put(field_offset, STACK_INT(-1));
2083             } else if (tos_type == atos) {
2084               VERIFY_OOP(STACK_OBJECT(-1));
2085               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2086             } else if (tos_type == btos) {
2087               obj->byte_field_put(field_offset, STACK_INT(-1));
2088             } else if (tos_type == ltos) {
2089               obj->long_field_put(field_offset, STACK_LONG(-1));
2090             } else if (tos_type == ctos) {
2091               obj->char_field_put(field_offset, STACK_INT(-1));
2092             } else if (tos_type == stos) {
2093               obj->short_field_put(field_offset, STACK_INT(-1));
2094             } else if (tos_type == ftos) {
2095               obj->float_field_put(field_offset, STACK_FLOAT(-1));
2096             } else {
2097               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2098             }
2099           }
2100 
2101           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
2102         }
2103 
2104       CASE(_new): {
2105         u2 index = Bytes::get_Java_u2(pc+1);
2106         ConstantPool* constants = istate->method()->constants();
2107         if (!constants->tag_at(index).is_unresolved_klass()) {
2108           // Make sure klass is initialized and doesn't have a finalizer
2109           Klass* entry = constants->slot_at(index).get_klass();
2110           assert(entry->is_klass(), "Should be resolved klass");
2111           Klass* k_entry = (Klass*) entry;
2112           assert(k_entry->oop_is_instance(), "Should be InstanceKlass");
2113           InstanceKlass* ik = (InstanceKlass*) k_entry;
2114           if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
2115             size_t obj_size = ik->size_helper();
2116             oop result = NULL;
2117             // If the TLAB isn't pre-zeroed then we'll have to do it
2118             bool need_zero = !ZeroTLAB;
2119             if (UseTLAB) {
2120               result = (oop) THREAD->tlab().allocate(obj_size);
2121             }
2122             if (result == NULL) {
2123               need_zero = true;
2124               // Try allocate in shared eden
2125         retry:
2126               HeapWord* compare_to = *Universe::heap()->top_addr();
2127               HeapWord* new_top = compare_to + obj_size;
2128               if (new_top <= *Universe::heap()->end_addr()) {
2129                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
2130                   goto retry;
2131                 }
2132                 result = (oop) compare_to;
2133               }
2134             }
2135             if (result != NULL) {
2136               // Initialize object (if nonzero size and need) and then the header
2137               if (need_zero ) {
2138                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
2139                 obj_size -= sizeof(oopDesc) / oopSize;
2140                 if (obj_size > 0 ) {
2141                   memset(to_zero, 0, obj_size * HeapWordSize);
2142                 }
2143               }
2144               if (UseBiasedLocking) {
2145                 result->set_mark(ik->prototype_header());
2146               } else {
2147                 result->set_mark(markOopDesc::prototype());
2148               }
2149               result->set_klass_gap(0);
2150               result->set_klass(k_entry);
2151               SET_STACK_OBJECT(result, 0);
2152               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2153             }
2154           }
2155         }
2156         // Slow case allocation
2157         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2158                 handle_exception);
2159         SET_STACK_OBJECT(THREAD->vm_result(), 0);
2160         THREAD->set_vm_result(NULL);
2161         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2162       }
2163       CASE(_anewarray): {
2164         u2 index = Bytes::get_Java_u2(pc+1);
2165         jint size = STACK_INT(-1);
2166         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2167                 handle_exception);
2168         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2169         THREAD->set_vm_result(NULL);
2170         UPDATE_PC_AND_CONTINUE(3);
2171       }
2172       CASE(_multianewarray): {
2173         jint dims = *(pc+3);
2174         jint size = STACK_INT(-1);
2175         // stack grows down, dimensions are up!
2176         jint *dimarray =
2177                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2178                                       Interpreter::stackElementWords-1];
2179         //adjust pointer to start of stack element
2180         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2181                 handle_exception);
2182         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2183         THREAD->set_vm_result(NULL);
2184         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2185       }
2186       CASE(_checkcast):
2187           if (STACK_OBJECT(-1) != NULL) {
2188             VERIFY_OOP(STACK_OBJECT(-1));
2189             u2 index = Bytes::get_Java_u2(pc+1);
2190             if (ProfileInterpreter) {
2191               // needs Profile_checkcast QQQ
2192               ShouldNotReachHere();
2193             }
2194             // Constant pool may have actual klass or unresolved klass. If it is
2195             // unresolved we must resolve it
2196             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2197               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2198             }
2199             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2200             Klass* objKlassOop = STACK_OBJECT(-1)->klass(); //ebx
2201             //
2202             // Check for compatibilty. This check must not GC!!
2203             // Seems way more expensive now that we must dispatch
2204             //
2205             if (objKlassOop != klassOf &&
2206                 !objKlassOop->is_subtype_of(klassOf)) {
2207               ResourceMark rm(THREAD);
2208               const char* objName = objKlassOop->external_name();
2209               const char* klassName = klassOf->external_name();
2210               char* message = SharedRuntime::generate_class_cast_message(
2211                 objName, klassName);
2212               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
2213             }
2214           } else {
2215             if (UncommonNullCast) {
2216 //              istate->method()->set_null_cast_seen();
2217 // [RGV] Not sure what to do here!
2218 
2219             }
2220           }
2221           UPDATE_PC_AND_CONTINUE(3);
2222 
2223       CASE(_instanceof):
2224           if (STACK_OBJECT(-1) == NULL) {
2225             SET_STACK_INT(0, -1);
2226           } else {
2227             VERIFY_OOP(STACK_OBJECT(-1));
2228             u2 index = Bytes::get_Java_u2(pc+1);
2229             // Constant pool may have actual klass or unresolved klass. If it is
2230             // unresolved we must resolve it
2231             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2232               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2233             }
2234             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2235             Klass* objKlassOop = STACK_OBJECT(-1)->klass();
2236             //
2237             // Check for compatibilty. This check must not GC!!
2238             // Seems way more expensive now that we must dispatch
2239             //
2240             if ( objKlassOop == klassOf || objKlassOop->is_subtype_of(klassOf)) {
2241               SET_STACK_INT(1, -1);
2242             } else {
2243               SET_STACK_INT(0, -1);
2244             }
2245           }
2246           UPDATE_PC_AND_CONTINUE(3);
2247 
2248       CASE(_ldc_w):
2249       CASE(_ldc):
2250         {
2251           u2 index;
2252           bool wide = false;
2253           int incr = 2; // frequent case
2254           if (opcode == Bytecodes::_ldc) {
2255             index = pc[1];
2256           } else {
2257             index = Bytes::get_Java_u2(pc+1);
2258             incr = 3;
2259             wide = true;
2260           }
2261 
2262           ConstantPool* constants = METHOD->constants();
2263           switch (constants->tag_at(index).value()) {
2264           case JVM_CONSTANT_Integer:
2265             SET_STACK_INT(constants->int_at(index), 0);
2266             break;
2267 
2268           case JVM_CONSTANT_Float:
2269             SET_STACK_FLOAT(constants->float_at(index), 0);
2270             break;
2271 
2272           case JVM_CONSTANT_String:
2273             {
2274               oop result = constants->resolved_references()->obj_at(index);
2275               if (result == NULL) {
2276                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2277                 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2278                 THREAD->set_vm_result(NULL);
2279               } else {
2280                 VERIFY_OOP(result);
2281                 SET_STACK_OBJECT(result, 0);
2282               }
2283             break;
2284             }
2285 
2286           case JVM_CONSTANT_Class:
2287             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2288             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2289             break;
2290 
2291           case JVM_CONSTANT_UnresolvedClass:
2292           case JVM_CONSTANT_UnresolvedClassInError:
2293             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2294             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2295             THREAD->set_vm_result(NULL);
2296             break;
2297 
2298           default:  ShouldNotReachHere();
2299           }
2300           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2301         }
2302 
2303       CASE(_ldc2_w):
2304         {
2305           u2 index = Bytes::get_Java_u2(pc+1);
2306 
2307           ConstantPool* constants = METHOD->constants();
2308           switch (constants->tag_at(index).value()) {
2309 
2310           case JVM_CONSTANT_Long:
2311              SET_STACK_LONG(constants->long_at(index), 1);
2312             break;
2313 
2314           case JVM_CONSTANT_Double:
2315              SET_STACK_DOUBLE(constants->double_at(index), 1);
2316             break;
2317           default:  ShouldNotReachHere();
2318           }
2319           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2320         }
2321 
2322       CASE(_fast_aldc_w):
2323       CASE(_fast_aldc): {
2324         u2 index;
2325         int incr;
2326         if (opcode == Bytecodes::_fast_aldc) {
2327           index = pc[1];
2328           incr = 2;
2329         } else {
2330           index = Bytes::get_native_u2(pc+1);
2331           incr = 3;
2332         }
2333 
2334         // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2335         // This kind of CP cache entry does not need to match the flags byte, because
2336         // there is a 1-1 relation between bytecode type and CP entry type.
2337         ConstantPool* constants = METHOD->constants();
2338         oop result = constants->resolved_references()->obj_at(index);
2339         if (result == NULL) {
2340           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2341                   handle_exception);
2342           result = THREAD->vm_result();
2343         }
2344 
2345         VERIFY_OOP(result);
2346         SET_STACK_OBJECT(result, 0);
2347         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2348       }
2349 
2350       CASE(_invokedynamic): {
2351 
2352         if (!EnableInvokeDynamic) {
2353           // We should not encounter this bytecode if !EnableInvokeDynamic.
2354           // The verifier will stop it.  However, if we get past the verifier,
2355           // this will stop the thread in a reasonable way, without crashing the JVM.
2356           CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeError(THREAD),
2357                   handle_exception);
2358           ShouldNotReachHere();
2359         }
2360 
2361         u4 index = Bytes::get_native_u4(pc+1);
2362         ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2363 
2364         // We are resolved if the resolved_references field contains a non-null object (CallSite, etc.)
2365         // This kind of CP cache entry does not need to match the flags byte, because
2366         // there is a 1-1 relation between bytecode type and CP entry type.
2367         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2368           CALL_VM(InterpreterRuntime::resolve_invokedynamic(THREAD),
2369                   handle_exception);
2370           cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2371         }
2372 
2373         Method* method = cache->f1_as_method();
2374         if (VerifyOops) method->verify();
2375 
2376         if (cache->has_appendix()) {
2377           ConstantPool* constants = METHOD->constants();
2378           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2379           MORE_STACK(1);
2380         }
2381 
2382         istate->set_msg(call_method);
2383         istate->set_callee(method);
2384         istate->set_callee_entry_point(method->from_interpreted_entry());
2385         istate->set_bcp_advance(5);
2386 
2387         UPDATE_PC_AND_RETURN(0); // I'll be back...
2388       }
2389 
2390       CASE(_invokehandle): {
2391 
2392         if (!EnableInvokeDynamic) {
2393           ShouldNotReachHere();
2394         }
2395 
2396         u2 index = Bytes::get_native_u2(pc+1);
2397         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2398 
2399         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2400           CALL_VM(InterpreterRuntime::resolve_invokehandle(THREAD),
2401                   handle_exception);
2402           cache = cp->entry_at(index);
2403         }
2404 
2405         Method* method = cache->f1_as_method();
2406         if (VerifyOops) method->verify();
2407 
2408         if (cache->has_appendix()) {
2409           ConstantPool* constants = METHOD->constants();
2410           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2411           MORE_STACK(1);
2412         }
2413 
2414         istate->set_msg(call_method);
2415         istate->set_callee(method);
2416         istate->set_callee_entry_point(method->from_interpreted_entry());
2417         istate->set_bcp_advance(3);
2418 
2419         UPDATE_PC_AND_RETURN(0); // I'll be back...
2420       }
2421 
2422       CASE(_invokeinterface): {
2423         u2 index = Bytes::get_native_u2(pc+1);
2424 
2425         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2426         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2427 
2428         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2429         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2430           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2431                   handle_exception);
2432           cache = cp->entry_at(index);
2433         }
2434 
2435         istate->set_msg(call_method);
2436 
2437         // Special case of invokeinterface called for virtual method of
2438         // java.lang.Object.  See cpCacheOop.cpp for details.
2439         // This code isn't produced by javac, but could be produced by
2440         // another compliant java compiler.
2441         if (cache->is_forced_virtual()) {
2442           Method* callee;
2443           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2444           if (cache->is_vfinal()) {
2445             callee = cache->f2_as_vfinal_method();
2446           } else {
2447             // get receiver
2448             int parms = cache->parameter_size();
2449             // Same comments as invokevirtual apply here
2450             VERIFY_OOP(STACK_OBJECT(-parms));
2451             InstanceKlass* rcvrKlass = (InstanceKlass*)
2452                                  STACK_OBJECT(-parms)->klass();
2453             callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2454           }
2455           istate->set_callee(callee);
2456           istate->set_callee_entry_point(callee->from_interpreted_entry());
2457 #ifdef VM_JVMTI
2458           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2459             istate->set_callee_entry_point(callee->interpreter_entry());
2460           }
2461 #endif /* VM_JVMTI */
2462           istate->set_bcp_advance(5);
2463           UPDATE_PC_AND_RETURN(0); // I'll be back...
2464         }
2465 
2466         // this could definitely be cleaned up QQQ
2467         Method* callee;
2468         Klass* iclass = cache->f1_as_klass();
2469         // InstanceKlass* interface = (InstanceKlass*) iclass;
2470         // get receiver
2471         int parms = cache->parameter_size();
2472         oop rcvr = STACK_OBJECT(-parms);
2473         CHECK_NULL(rcvr);
2474         InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2475         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2476         int i;
2477         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2478           if (ki->interface_klass() == iclass) break;
2479         }
2480         // If the interface isn't found, this class doesn't implement this
2481         // interface.  The link resolver checks this but only for the first
2482         // time this interface is called.
2483         if (i == int2->itable_length()) {
2484           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
2485         }
2486         int mindex = cache->f2_as_index();
2487         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2488         callee = im[mindex].method();
2489         if (callee == NULL) {
2490           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "");
2491         }
2492 
2493         istate->set_callee(callee);
2494         istate->set_callee_entry_point(callee->from_interpreted_entry());
2495 #ifdef VM_JVMTI
2496         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2497           istate->set_callee_entry_point(callee->interpreter_entry());
2498         }
2499 #endif /* VM_JVMTI */
2500         istate->set_bcp_advance(5);
2501         UPDATE_PC_AND_RETURN(0); // I'll be back...
2502       }
2503 
2504       CASE(_invokevirtual):
2505       CASE(_invokespecial):
2506       CASE(_invokestatic): {
2507         u2 index = Bytes::get_native_u2(pc+1);
2508 
2509         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2510         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2511         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2512 
2513         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2514           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2515                   handle_exception);
2516           cache = cp->entry_at(index);
2517         }
2518 
2519         istate->set_msg(call_method);
2520         {
2521           Method* callee;
2522           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2523             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2524             if (cache->is_vfinal()) callee = cache->f2_as_vfinal_method();
2525             else {
2526               // get receiver
2527               int parms = cache->parameter_size();
2528               // this works but needs a resourcemark and seems to create a vtable on every call:
2529               // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2530               //
2531               // this fails with an assert
2532               // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2533               // but this works
2534               VERIFY_OOP(STACK_OBJECT(-parms));
2535               InstanceKlass* rcvrKlass = (InstanceKlass*) STACK_OBJECT(-parms)->klass();
2536               /*
2537                 Executing this code in java.lang.String:
2538                     public String(char value[]) {
2539                           this.count = value.length;
2540                           this.value = (char[])value.clone();
2541                      }
2542 
2543                  a find on rcvr->klass() reports:
2544                  {type array char}{type array class}
2545                   - klass: {other class}
2546 
2547                   but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2548                   because rcvr->klass()->oop_is_instance() == 0
2549                   However it seems to have a vtable in the right location. Huh?
2550 
2551               */
2552               callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2553             }
2554           } else {
2555             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2556               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2557             }
2558             callee = cache->f1_as_method();
2559           }
2560 
2561           istate->set_callee(callee);
2562           istate->set_callee_entry_point(callee->from_interpreted_entry());
2563 #ifdef VM_JVMTI
2564           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2565             istate->set_callee_entry_point(callee->interpreter_entry());
2566           }
2567 #endif /* VM_JVMTI */
2568           istate->set_bcp_advance(3);
2569           UPDATE_PC_AND_RETURN(0); // I'll be back...
2570         }
2571       }
2572 
2573       /* Allocate memory for a new java object. */
2574 
2575       CASE(_newarray): {
2576         BasicType atype = (BasicType) *(pc+1);
2577         jint size = STACK_INT(-1);
2578         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2579                 handle_exception);
2580         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2581         THREAD->set_vm_result(NULL);
2582 
2583         UPDATE_PC_AND_CONTINUE(2);
2584       }
2585 
2586       /* Throw an exception. */
2587 
2588       CASE(_athrow): {
2589           oop except_oop = STACK_OBJECT(-1);
2590           CHECK_NULL(except_oop);
2591           // set pending_exception so we use common code
2592           THREAD->set_pending_exception(except_oop, NULL, 0);
2593           goto handle_exception;
2594       }
2595 
2596       /* goto and jsr. They are exactly the same except jsr pushes
2597        * the address of the next instruction first.
2598        */
2599 
2600       CASE(_jsr): {
2601           /* push bytecode index on stack */
2602           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2603           MORE_STACK(1);
2604           /* FALL THROUGH */
2605       }
2606 
2607       CASE(_goto):
2608       {
2609           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2610           address branch_pc = pc;
2611           UPDATE_PC(offset);
2612           DO_BACKEDGE_CHECKS(offset, branch_pc);
2613           CONTINUE;
2614       }
2615 
2616       CASE(_jsr_w): {
2617           /* push return address on the stack */
2618           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2619           MORE_STACK(1);
2620           /* FALL THROUGH */
2621       }
2622 
2623       CASE(_goto_w):
2624       {
2625           int32_t offset = Bytes::get_Java_u4(pc + 1);
2626           address branch_pc = pc;
2627           UPDATE_PC(offset);
2628           DO_BACKEDGE_CHECKS(offset, branch_pc);
2629           CONTINUE;
2630       }
2631 
2632       /* return from a jsr or jsr_w */
2633 
2634       CASE(_ret): {
2635           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2636           UPDATE_PC_AND_CONTINUE(0);
2637       }
2638 
2639       /* debugger breakpoint */
2640 
2641       CASE(_breakpoint): {
2642           Bytecodes::Code original_bytecode;
2643           DECACHE_STATE();
2644           SET_LAST_JAVA_FRAME();
2645           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2646                               METHOD, pc);
2647           RESET_LAST_JAVA_FRAME();
2648           CACHE_STATE();
2649           if (THREAD->has_pending_exception()) goto handle_exception;
2650             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2651                                                     handle_exception);
2652 
2653           opcode = (jubyte)original_bytecode;
2654           goto opcode_switch;
2655       }
2656 
2657       DEFAULT:
2658           fatal(err_msg("Unimplemented opcode %d = %s", opcode,
2659                         Bytecodes::name((Bytecodes::Code)opcode)));
2660           goto finish;
2661 
2662       } /* switch(opc) */
2663 
2664 
2665 #ifdef USELABELS
2666     check_for_exception:
2667 #endif
2668     {
2669       if (!THREAD->has_pending_exception()) {
2670         CONTINUE;
2671       }
2672       /* We will be gcsafe soon, so flush our state. */
2673       DECACHE_PC();
2674       goto handle_exception;
2675     }
2676   do_continue: ;
2677 
2678   } /* while (1) interpreter loop */
2679 
2680 
2681   // An exception exists in the thread state see whether this activation can handle it
2682   handle_exception: {
2683 
2684     HandleMarkCleaner __hmc(THREAD);
2685     Handle except_oop(THREAD, THREAD->pending_exception());
2686     // Prevent any subsequent HandleMarkCleaner in the VM
2687     // from freeing the except_oop handle.
2688     HandleMark __hm(THREAD);
2689 
2690     THREAD->clear_pending_exception();
2691     assert(except_oop(), "No exception to process");
2692     intptr_t continuation_bci;
2693     // expression stack is emptied
2694     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2695     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2696             handle_exception);
2697 
2698     except_oop = THREAD->vm_result();
2699     THREAD->set_vm_result(NULL);
2700     if (continuation_bci >= 0) {
2701       // Place exception on top of stack
2702       SET_STACK_OBJECT(except_oop(), 0);
2703       MORE_STACK(1);
2704       pc = METHOD->code_base() + continuation_bci;
2705       if (TraceExceptions) {
2706         ttyLocker ttyl;
2707         ResourceMark rm;
2708         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2709         tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2710         tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2711                       istate->bcp() - (intptr_t)METHOD->code_base(),
2712                       continuation_bci, THREAD);
2713       }
2714       // for AbortVMOnException flag
2715       NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2716       goto run;
2717     }
2718     if (TraceExceptions) {
2719       ttyLocker ttyl;
2720       ResourceMark rm;
2721       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2722       tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2723       tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
2724                     istate->bcp() - (intptr_t)METHOD->code_base(),
2725                     THREAD);
2726     }
2727     // for AbortVMOnException flag
2728     NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2729     // No handler in this activation, unwind and try again
2730     THREAD->set_pending_exception(except_oop(), NULL, 0);
2731     goto handle_return;
2732   }  // handle_exception:
2733 
2734   // Return from an interpreter invocation with the result of the interpretation
2735   // on the top of the Java Stack (or a pending exception)
2736 
2737   handle_Pop_Frame: {
2738 
2739     // We don't really do anything special here except we must be aware
2740     // that we can get here without ever locking the method (if sync).
2741     // Also we skip the notification of the exit.
2742 
2743     istate->set_msg(popping_frame);
2744     // Clear pending so while the pop is in process
2745     // we don't start another one if a call_vm is done.
2746     THREAD->clr_pop_frame_pending();
2747     // Let interpreter (only) see the we're in the process of popping a frame
2748     THREAD->set_pop_frame_in_process();
2749 
2750     goto handle_return;
2751 
2752   } // handle_Pop_Frame
2753 
2754   // ForceEarlyReturn ends a method, and returns to the caller with a return value
2755   // given by the invoker of the early return.
2756   handle_Early_Return: {
2757 
2758     istate->set_msg(early_return);
2759 
2760     // Clear expression stack.
2761     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2762 
2763     JvmtiThreadState *ts = THREAD->jvmti_thread_state();
2764 
2765     // Push the value to be returned.
2766     switch (istate->method()->result_type()) {
2767       case T_BOOLEAN:
2768       case T_SHORT:
2769       case T_BYTE:
2770       case T_CHAR:
2771       case T_INT:
2772         SET_STACK_INT(ts->earlyret_value().i, 0);
2773         MORE_STACK(1);
2774         break;
2775       case T_LONG:
2776         SET_STACK_LONG(ts->earlyret_value().j, 1);
2777         MORE_STACK(2);
2778         break;
2779       case T_FLOAT:
2780         SET_STACK_FLOAT(ts->earlyret_value().f, 0);
2781         MORE_STACK(1);
2782         break;
2783       case T_DOUBLE:
2784         SET_STACK_DOUBLE(ts->earlyret_value().d, 1);
2785         MORE_STACK(2);
2786         break;
2787       case T_ARRAY:
2788       case T_OBJECT:
2789         SET_STACK_OBJECT(ts->earlyret_oop(), 0);
2790         MORE_STACK(1);
2791         break;
2792     }
2793 
2794     ts->clr_earlyret_value();
2795     ts->set_earlyret_oop(NULL);
2796     ts->clr_earlyret_pending();
2797 
2798     // Fall through to handle_return.
2799 
2800   } // handle_Early_Return
2801 
2802   handle_return: {
2803     DECACHE_STATE();
2804 
2805     bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return;
2806     bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame;
2807     Handle original_exception(THREAD, THREAD->pending_exception());
2808     Handle illegal_state_oop(THREAD, NULL);
2809 
2810     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2811     // in any following VM entries from freeing our live handles, but illegal_state_oop
2812     // isn't really allocated yet and so doesn't become live until later and
2813     // in unpredicatable places. Instead we must protect the places where we enter the
2814     // VM. It would be much simpler (and safer) if we could allocate a real handle with
2815     // a NULL oop in it and then overwrite the oop later as needed. This isn't
2816     // unfortunately isn't possible.
2817 
2818     THREAD->clear_pending_exception();
2819 
2820     //
2821     // As far as we are concerned we have returned. If we have a pending exception
2822     // that will be returned as this invocation's result. However if we get any
2823     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2824     // will be our final result (i.e. monitor exception trumps a pending exception).
2825     //
2826 
2827     // If we never locked the method (or really passed the point where we would have),
2828     // there is no need to unlock it (or look for other monitors), since that
2829     // could not have happened.
2830 
2831     if (THREAD->do_not_unlock()) {
2832 
2833       // Never locked, reset the flag now because obviously any caller must
2834       // have passed their point of locking for us to have gotten here.
2835 
2836       THREAD->clr_do_not_unlock();
2837     } else {
2838       // At this point we consider that we have returned. We now check that the
2839       // locks were properly block structured. If we find that they were not
2840       // used properly we will return with an illegal monitor exception.
2841       // The exception is checked by the caller not the callee since this
2842       // checking is considered to be part of the invocation and therefore
2843       // in the callers scope (JVM spec 8.13).
2844       //
2845       // Another weird thing to watch for is if the method was locked
2846       // recursively and then not exited properly. This means we must
2847       // examine all the entries in reverse time(and stack) order and
2848       // unlock as we find them. If we find the method monitor before
2849       // we are at the initial entry then we should throw an exception.
2850       // It is not clear the template based interpreter does this
2851       // correctly
2852 
2853       BasicObjectLock* base = istate->monitor_base();
2854       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2855       bool method_unlock_needed = METHOD->is_synchronized();
2856       // We know the initial monitor was used for the method don't check that
2857       // slot in the loop
2858       if (method_unlock_needed) base--;
2859 
2860       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2861       while (end < base) {
2862         oop lockee = end->obj();
2863         if (lockee != NULL) {
2864           BasicLock* lock = end->lock();
2865           markOop header = lock->displaced_header();
2866           end->set_obj(NULL);
2867 
2868           if (!lockee->mark()->has_bias_pattern()) {
2869             // If it isn't recursive we either must swap old header or call the runtime
2870             if (header != NULL) {
2871               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2872                 // restore object for the slow case
2873                 end->set_obj(lockee);
2874                 {
2875                   // Prevent any HandleMarkCleaner from freeing our live handles
2876                   HandleMark __hm(THREAD);
2877                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
2878                 }
2879               }
2880             }
2881           }
2882           // One error is plenty
2883           if (illegal_state_oop() == NULL && !suppress_error) {
2884             {
2885               // Prevent any HandleMarkCleaner from freeing our live handles
2886               HandleMark __hm(THREAD);
2887               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2888             }
2889             assert(THREAD->has_pending_exception(), "Lost our exception!");
2890             illegal_state_oop = THREAD->pending_exception();
2891             THREAD->clear_pending_exception();
2892           }
2893         }
2894         end++;
2895       }
2896       // Unlock the method if needed
2897       if (method_unlock_needed) {
2898         if (base->obj() == NULL) {
2899           // The method is already unlocked this is not good.
2900           if (illegal_state_oop() == NULL && !suppress_error) {
2901             {
2902               // Prevent any HandleMarkCleaner from freeing our live handles
2903               HandleMark __hm(THREAD);
2904               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2905             }
2906             assert(THREAD->has_pending_exception(), "Lost our exception!");
2907             illegal_state_oop = THREAD->pending_exception();
2908             THREAD->clear_pending_exception();
2909           }
2910         } else {
2911           //
2912           // The initial monitor is always used for the method
2913           // However if that slot is no longer the oop for the method it was unlocked
2914           // and reused by something that wasn't unlocked!
2915           //
2916           // deopt can come in with rcvr dead because c2 knows
2917           // its value is preserved in the monitor. So we can't use locals[0] at all
2918           // and must use first monitor slot.
2919           //
2920           oop rcvr = base->obj();
2921           if (rcvr == NULL) {
2922             if (!suppress_error) {
2923               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
2924               illegal_state_oop = THREAD->pending_exception();
2925               THREAD->clear_pending_exception();
2926             }
2927           } else if (UseHeavyMonitors) {
2928             {
2929               // Prevent any HandleMarkCleaner from freeing our live handles.
2930               HandleMark __hm(THREAD);
2931               CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
2932             }
2933             if (THREAD->has_pending_exception()) {
2934               if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
2935               THREAD->clear_pending_exception();
2936             }
2937           } else {
2938             BasicLock* lock = base->lock();
2939             markOop header = lock->displaced_header();
2940             base->set_obj(NULL);
2941 
2942             if (!rcvr->mark()->has_bias_pattern()) {
2943               base->set_obj(NULL);
2944               // If it isn't recursive we either must swap old header or call the runtime
2945               if (header != NULL) {
2946                 if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
2947                   // restore object for the slow case
2948                   base->set_obj(rcvr);
2949                   {
2950                     // Prevent any HandleMarkCleaner from freeing our live handles
2951                     HandleMark __hm(THREAD);
2952                     CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
2953                   }
2954                   if (THREAD->has_pending_exception()) {
2955                     if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
2956                     THREAD->clear_pending_exception();
2957                   }
2958                 }
2959               }
2960             }
2961           }
2962         }
2963       }
2964     }
2965     // Clear the do_not_unlock flag now.
2966     THREAD->clr_do_not_unlock();
2967 
2968     //
2969     // Notify jvmti/jvmdi
2970     //
2971     // NOTE: we do not notify a method_exit if we have a pending exception,
2972     // including an exception we generate for unlocking checks.  In the former
2973     // case, JVMDI has already been notified by our call for the exception handler
2974     // and in both cases as far as JVMDI is concerned we have already returned.
2975     // If we notify it again JVMDI will be all confused about how many frames
2976     // are still on the stack (4340444).
2977     //
2978     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
2979     // method_exit events whenever we leave an activation unless it was done
2980     // for popframe. This is nothing like jvmdi. However we are passing the
2981     // tests at the moment (apparently because they are jvmdi based) so rather
2982     // than change this code and possibly fail tests we will leave it alone
2983     // (with this note) in anticipation of changing the vm and the tests
2984     // simultaneously.
2985 
2986 
2987     //
2988     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
2989 
2990 
2991 
2992 #ifdef VM_JVMTI
2993       if (_jvmti_interp_events) {
2994         // Whenever JVMTI puts a thread in interp_only_mode, method
2995         // entry/exit events are sent for that thread to track stack depth.
2996         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
2997           {
2998             // Prevent any HandleMarkCleaner from freeing our live handles
2999             HandleMark __hm(THREAD);
3000             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
3001           }
3002         }
3003       }
3004 #endif /* VM_JVMTI */
3005 
3006     //
3007     // See if we are returning any exception
3008     // A pending exception that was pending prior to a possible popping frame
3009     // overrides the popping frame.
3010     //
3011     assert(!suppress_error || suppress_error && illegal_state_oop() == NULL, "Error was not suppressed");
3012     if (illegal_state_oop() != NULL || original_exception() != NULL) {
3013       // inform the frame manager we have no result
3014       istate->set_msg(throwing_exception);
3015       if (illegal_state_oop() != NULL)
3016         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
3017       else
3018         THREAD->set_pending_exception(original_exception(), NULL, 0);
3019       UPDATE_PC_AND_RETURN(0);
3020     }
3021 
3022     if (istate->msg() == popping_frame) {
3023       // Make it simpler on the assembly code and set the message for the frame pop.
3024       // returns
3025       if (istate->prev() == NULL) {
3026         // We must be returning to a deoptimized frame (because popframe only happens between
3027         // two interpreted frames). We need to save the current arguments in C heap so that
3028         // the deoptimized frame when it restarts can copy the arguments to its expression
3029         // stack and re-execute the call. We also have to notify deoptimization that this
3030         // has occurred and to pick the preserved args copy them to the deoptimized frame's
3031         // java expression stack. Yuck.
3032         //
3033         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3034                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3035         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3036       }
3037     } else {
3038       istate->set_msg(return_from_method);
3039     }
3040 
3041     // Normal return
3042     // Advance the pc and return to frame manager
3043     UPDATE_PC_AND_RETURN(1);
3044   } /* handle_return: */
3045 
3046 // This is really a fatal error return
3047 
3048 finish:
3049   DECACHE_TOS();
3050   DECACHE_PC();
3051 
3052   return;
3053 }
3054 
3055 /*
3056  * All the code following this point is only produced once and is not present
3057  * in the JVMTI version of the interpreter
3058 */
3059 
3060 #ifndef VM_JVMTI
3061 
3062 // This constructor should only be used to contruct the object to signal
3063 // interpreter initialization. All other instances should be created by
3064 // the frame manager.
3065 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3066   if (msg != initialize) ShouldNotReachHere();
3067   _msg = msg;
3068   _self_link = this;
3069   _prev_link = NULL;
3070 }
3071 
3072 // Inline static functions for Java Stack and Local manipulation
3073 
3074 // The implementations are platform dependent. We have to worry about alignment
3075 // issues on some machines which can change on the same platform depending on
3076 // whether it is an LP64 machine also.
3077 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
3078   return (address) tos[Interpreter::expr_index_at(-offset)];
3079 }
3080 
3081 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
3082   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
3083 }
3084 
3085 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
3086   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
3087 }
3088 
3089 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
3090   return (oop)tos [Interpreter::expr_index_at(-offset)];
3091 }
3092 
3093 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
3094   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
3095 }
3096 
3097 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
3098   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
3099 }
3100 
3101 // only used for value types
3102 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
3103                                                         int offset) {
3104   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3105 }
3106 
3107 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
3108                                                        int offset) {
3109   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3110 }
3111 
3112 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
3113                                                          int offset) {
3114   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3115 }
3116 
3117 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
3118                                                           int offset) {
3119   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3120 }
3121 
3122 // needs to be platform dep for the 32 bit platforms.
3123 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
3124                                                           int offset) {
3125   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
3126 }
3127 
3128 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
3129                                               address addr, int offset) {
3130   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
3131                         ((VMJavaVal64*)addr)->d);
3132 }
3133 
3134 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
3135                                                         int offset) {
3136   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3137   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
3138 }
3139 
3140 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
3141                                             address addr, int offset) {
3142   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3143   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
3144                         ((VMJavaVal64*)addr)->l;
3145 }
3146 
3147 // Locals
3148 
3149 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
3150   return (address)locals[Interpreter::local_index_at(-offset)];
3151 }
3152 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
3153   return (jint)locals[Interpreter::local_index_at(-offset)];
3154 }
3155 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
3156   return (jfloat)locals[Interpreter::local_index_at(-offset)];
3157 }
3158 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
3159   return (oop)locals[Interpreter::local_index_at(-offset)];
3160 }
3161 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
3162   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
3163 }
3164 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
3165   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
3166 }
3167 
3168 // Returns the address of locals value.
3169 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
3170   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3171 }
3172 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
3173   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3174 }
3175 
3176 // Used for local value or returnAddress
3177 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
3178                                    address value, int offset) {
3179   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
3180 }
3181 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
3182                                    jint value, int offset) {
3183   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
3184 }
3185 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
3186                                    jfloat value, int offset) {
3187   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
3188 }
3189 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
3190                                    oop value, int offset) {
3191   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
3192 }
3193 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
3194                                    jdouble value, int offset) {
3195   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
3196 }
3197 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
3198                                    jlong value, int offset) {
3199   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
3200 }
3201 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
3202                                    address addr, int offset) {
3203   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
3204 }
3205 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
3206                                    address addr, int offset) {
3207   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
3208 }
3209 
3210 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
3211                           intptr_t* locals, int locals_offset) {
3212   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3213   locals[Interpreter::local_index_at(-locals_offset)] = value;
3214 }
3215 
3216 
3217 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3218                                    int to_offset) {
3219   tos[Interpreter::expr_index_at(-to_offset)] =
3220                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3221 }
3222 
3223 void BytecodeInterpreter::dup(intptr_t *tos) {
3224   copy_stack_slot(tos, -1, 0);
3225 }
3226 void BytecodeInterpreter::dup2(intptr_t *tos) {
3227   copy_stack_slot(tos, -2, 0);
3228   copy_stack_slot(tos, -1, 1);
3229 }
3230 
3231 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3232   /* insert top word two down */
3233   copy_stack_slot(tos, -1, 0);
3234   copy_stack_slot(tos, -2, -1);
3235   copy_stack_slot(tos, 0, -2);
3236 }
3237 
3238 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3239   /* insert top word three down  */
3240   copy_stack_slot(tos, -1, 0);
3241   copy_stack_slot(tos, -2, -1);
3242   copy_stack_slot(tos, -3, -2);
3243   copy_stack_slot(tos, 0, -3);
3244 }
3245 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3246   /* insert top 2 slots three down */
3247   copy_stack_slot(tos, -1, 1);
3248   copy_stack_slot(tos, -2, 0);
3249   copy_stack_slot(tos, -3, -1);
3250   copy_stack_slot(tos, 1, -2);
3251   copy_stack_slot(tos, 0, -3);
3252 }
3253 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3254   /* insert top 2 slots four down */
3255   copy_stack_slot(tos, -1, 1);
3256   copy_stack_slot(tos, -2, 0);
3257   copy_stack_slot(tos, -3, -1);
3258   copy_stack_slot(tos, -4, -2);
3259   copy_stack_slot(tos, 1, -3);
3260   copy_stack_slot(tos, 0, -4);
3261 }
3262 
3263 
3264 void BytecodeInterpreter::swap(intptr_t *tos) {
3265   // swap top two elements
3266   intptr_t val = tos[Interpreter::expr_index_at(1)];
3267   // Copy -2 entry to -1
3268   copy_stack_slot(tos, -2, -1);
3269   // Store saved -1 entry into -2
3270   tos[Interpreter::expr_index_at(2)] = val;
3271 }
3272 // --------------------------------------------------------------------------------
3273 // Non-product code
3274 #ifndef PRODUCT
3275 
3276 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3277   switch (msg) {
3278      case BytecodeInterpreter::no_request:  return("no_request");
3279      case BytecodeInterpreter::initialize:  return("initialize");
3280      // status message to C++ interpreter
3281      case BytecodeInterpreter::method_entry:  return("method_entry");
3282      case BytecodeInterpreter::method_resume:  return("method_resume");
3283      case BytecodeInterpreter::got_monitors:  return("got_monitors");
3284      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3285      // requests to frame manager from C++ interpreter
3286      case BytecodeInterpreter::call_method:  return("call_method");
3287      case BytecodeInterpreter::return_from_method:  return("return_from_method");
3288      case BytecodeInterpreter::more_monitors:  return("more_monitors");
3289      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3290      case BytecodeInterpreter::popping_frame:  return("popping_frame");
3291      case BytecodeInterpreter::do_osr:  return("do_osr");
3292      // deopt
3293      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3294      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3295      default: return("BAD MSG");
3296   }
3297 }
3298 void
3299 BytecodeInterpreter::print() {
3300   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3301   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3302   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3303   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3304   {
3305     ResourceMark rm;
3306     char *method_name = _method->name_and_sig_as_C_string();
3307     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3308   }
3309   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3310   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3311   tty->print_cr("msg: %s", C_msg(this->_msg));
3312   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3313   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3314   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3315   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3316   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3317   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3318   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) this->_oop_temp);
3319   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3320   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3321   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3322 #ifdef SPARC
3323   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3324   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3325   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3326   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3327 #endif
3328 #if !defined(ZERO)
3329   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3330 #endif // !ZERO
3331   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3332 }
3333 
3334 extern "C" {
3335   void PI(uintptr_t arg) {
3336     ((BytecodeInterpreter*)arg)->print();
3337   }
3338 }
3339 #endif // PRODUCT
3340 
3341 #endif // JVMTI
3342 #endif // CC_INTERP