1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  28 #include "gc_implementation/g1/heapRegion.hpp"
  29 #include "gc_interface/collectedHeap.hpp"
  30 #include "memory/barrierSet.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/graphKit.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/locknode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 
  43 //----------------------------GraphKit-----------------------------------------
  44 // Main utility constructor.
  45 GraphKit::GraphKit(JVMState* jvms)
  46   : Phase(Phase::Parser),
  47     _env(C->env()),
  48     _gvn(*C->initial_gvn())
  49 {
  50   _exceptions = jvms->map()->next_exception();
  51   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  52   set_jvms(jvms);
  53 }
  54 
  55 // Private constructor for parser.
  56 GraphKit::GraphKit()
  57   : Phase(Phase::Parser),
  58     _env(C->env()),
  59     _gvn(*C->initial_gvn())
  60 {
  61   _exceptions = NULL;
  62   set_map(NULL);
  63   debug_only(_sp = -99);
  64   debug_only(set_bci(-99));
  65 }
  66 
  67 
  68 
  69 //---------------------------clean_stack---------------------------------------
  70 // Clear away rubbish from the stack area of the JVM state.
  71 // This destroys any arguments that may be waiting on the stack.
  72 void GraphKit::clean_stack(int from_sp) {
  73   SafePointNode* map      = this->map();
  74   JVMState*      jvms     = this->jvms();
  75   int            stk_size = jvms->stk_size();
  76   int            stkoff   = jvms->stkoff();
  77   Node*          top      = this->top();
  78   for (int i = from_sp; i < stk_size; i++) {
  79     if (map->in(stkoff + i) != top) {
  80       map->set_req(stkoff + i, top);
  81     }
  82   }
  83 }
  84 
  85 
  86 //--------------------------------sync_jvms-----------------------------------
  87 // Make sure our current jvms agrees with our parse state.
  88 JVMState* GraphKit::sync_jvms() const {
  89   JVMState* jvms = this->jvms();
  90   jvms->set_bci(bci());       // Record the new bci in the JVMState
  91   jvms->set_sp(sp());         // Record the new sp in the JVMState
  92   assert(jvms_in_sync(), "jvms is now in sync");
  93   return jvms;
  94 }
  95 
  96 //--------------------------------sync_jvms_for_reexecute---------------------
  97 // Make sure our current jvms agrees with our parse state.  This version
  98 // uses the reexecute_sp for reexecuting bytecodes.
  99 JVMState* GraphKit::sync_jvms_for_reexecute() {
 100   JVMState* jvms = this->jvms();
 101   jvms->set_bci(bci());          // Record the new bci in the JVMState
 102   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 103   return jvms;
 104 }
 105 
 106 #ifdef ASSERT
 107 bool GraphKit::jvms_in_sync() const {
 108   Parse* parse = is_Parse();
 109   if (parse == NULL) {
 110     if (bci() !=      jvms()->bci())          return false;
 111     if (sp()  != (int)jvms()->sp())           return false;
 112     return true;
 113   }
 114   if (jvms()->method() != parse->method())    return false;
 115   if (jvms()->bci()    != parse->bci())       return false;
 116   int jvms_sp = jvms()->sp();
 117   if (jvms_sp          != parse->sp())        return false;
 118   int jvms_depth = jvms()->depth();
 119   if (jvms_depth       != parse->depth())     return false;
 120   return true;
 121 }
 122 
 123 // Local helper checks for special internal merge points
 124 // used to accumulate and merge exception states.
 125 // They are marked by the region's in(0) edge being the map itself.
 126 // Such merge points must never "escape" into the parser at large,
 127 // until they have been handed to gvn.transform.
 128 static bool is_hidden_merge(Node* reg) {
 129   if (reg == NULL)  return false;
 130   if (reg->is_Phi()) {
 131     reg = reg->in(0);
 132     if (reg == NULL)  return false;
 133   }
 134   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 135 }
 136 
 137 void GraphKit::verify_map() const {
 138   if (map() == NULL)  return;  // null map is OK
 139   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 140   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 141   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 142 }
 143 
 144 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 145   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 146   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 147 }
 148 #endif
 149 
 150 //---------------------------stop_and_kill_map---------------------------------
 151 // Set _map to NULL, signalling a stop to further bytecode execution.
 152 // First smash the current map's control to a constant, to mark it dead.
 153 void GraphKit::stop_and_kill_map() {
 154   SafePointNode* dead_map = stop();
 155   if (dead_map != NULL) {
 156     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
 157     assert(dead_map->is_killed(), "must be so marked");
 158   }
 159 }
 160 
 161 
 162 //--------------------------------stopped--------------------------------------
 163 // Tell if _map is NULL, or control is top.
 164 bool GraphKit::stopped() {
 165   if (map() == NULL)           return true;
 166   else if (control() == top()) return true;
 167   else                         return false;
 168 }
 169 
 170 
 171 //-----------------------------has_ex_handler----------------------------------
 172 // Tell if this method or any caller method has exception handlers.
 173 bool GraphKit::has_ex_handler() {
 174   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 175     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 176       return true;
 177     }
 178   }
 179   return false;
 180 }
 181 
 182 //------------------------------save_ex_oop------------------------------------
 183 // Save an exception without blowing stack contents or other JVM state.
 184 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 185   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 186   ex_map->add_req(ex_oop);
 187   debug_only(verify_exception_state(ex_map));
 188 }
 189 
 190 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 191   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 192   Node* ex_oop = ex_map->in(ex_map->req()-1);
 193   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 194   return ex_oop;
 195 }
 196 
 197 //-----------------------------saved_ex_oop------------------------------------
 198 // Recover a saved exception from its map.
 199 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 200   return common_saved_ex_oop(ex_map, false);
 201 }
 202 
 203 //--------------------------clear_saved_ex_oop---------------------------------
 204 // Erase a previously saved exception from its map.
 205 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 206   return common_saved_ex_oop(ex_map, true);
 207 }
 208 
 209 #ifdef ASSERT
 210 //---------------------------has_saved_ex_oop----------------------------------
 211 // Erase a previously saved exception from its map.
 212 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 213   return ex_map->req() == ex_map->jvms()->endoff()+1;
 214 }
 215 #endif
 216 
 217 //-------------------------make_exception_state--------------------------------
 218 // Turn the current JVM state into an exception state, appending the ex_oop.
 219 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 220   sync_jvms();
 221   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 222   set_saved_ex_oop(ex_map, ex_oop);
 223   return ex_map;
 224 }
 225 
 226 
 227 //--------------------------add_exception_state--------------------------------
 228 // Add an exception to my list of exceptions.
 229 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 230   if (ex_map == NULL || ex_map->control() == top()) {
 231     return;
 232   }
 233 #ifdef ASSERT
 234   verify_exception_state(ex_map);
 235   if (has_exceptions()) {
 236     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 237   }
 238 #endif
 239 
 240   // If there is already an exception of exactly this type, merge with it.
 241   // In particular, null-checks and other low-level exceptions common up here.
 242   Node*       ex_oop  = saved_ex_oop(ex_map);
 243   const Type* ex_type = _gvn.type(ex_oop);
 244   if (ex_oop == top()) {
 245     // No action needed.
 246     return;
 247   }
 248   assert(ex_type->isa_instptr(), "exception must be an instance");
 249   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 250     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 251     // We check sp also because call bytecodes can generate exceptions
 252     // both before and after arguments are popped!
 253     if (ex_type2 == ex_type
 254         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 255       combine_exception_states(ex_map, e2);
 256       return;
 257     }
 258   }
 259 
 260   // No pre-existing exception of the same type.  Chain it on the list.
 261   push_exception_state(ex_map);
 262 }
 263 
 264 //-----------------------add_exception_states_from-----------------------------
 265 void GraphKit::add_exception_states_from(JVMState* jvms) {
 266   SafePointNode* ex_map = jvms->map()->next_exception();
 267   if (ex_map != NULL) {
 268     jvms->map()->set_next_exception(NULL);
 269     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 270       next_map = ex_map->next_exception();
 271       ex_map->set_next_exception(NULL);
 272       add_exception_state(ex_map);
 273     }
 274   }
 275 }
 276 
 277 //-----------------------transfer_exceptions_into_jvms-------------------------
 278 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 279   if (map() == NULL) {
 280     // We need a JVMS to carry the exceptions, but the map has gone away.
 281     // Create a scratch JVMS, cloned from any of the exception states...
 282     if (has_exceptions()) {
 283       _map = _exceptions;
 284       _map = clone_map();
 285       _map->set_next_exception(NULL);
 286       clear_saved_ex_oop(_map);
 287       debug_only(verify_map());
 288     } else {
 289       // ...or created from scratch
 290       JVMState* jvms = new (C) JVMState(_method, NULL);
 291       jvms->set_bci(_bci);
 292       jvms->set_sp(_sp);
 293       jvms->set_map(new (C) SafePointNode(TypeFunc::Parms, jvms));
 294       set_jvms(jvms);
 295       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 296       set_all_memory(top());
 297       while (map()->req() < jvms->endoff())  map()->add_req(top());
 298     }
 299     // (This is a kludge, in case you didn't notice.)
 300     set_control(top());
 301   }
 302   JVMState* jvms = sync_jvms();
 303   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 304   jvms->map()->set_next_exception(_exceptions);
 305   _exceptions = NULL;   // done with this set of exceptions
 306   return jvms;
 307 }
 308 
 309 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 310   assert(is_hidden_merge(dstphi), "must be a special merge node");
 311   assert(is_hidden_merge(srcphi), "must be a special merge node");
 312   uint limit = srcphi->req();
 313   for (uint i = PhiNode::Input; i < limit; i++) {
 314     dstphi->add_req(srcphi->in(i));
 315   }
 316 }
 317 static inline void add_one_req(Node* dstphi, Node* src) {
 318   assert(is_hidden_merge(dstphi), "must be a special merge node");
 319   assert(!is_hidden_merge(src), "must not be a special merge node");
 320   dstphi->add_req(src);
 321 }
 322 
 323 //-----------------------combine_exception_states------------------------------
 324 // This helper function combines exception states by building phis on a
 325 // specially marked state-merging region.  These regions and phis are
 326 // untransformed, and can build up gradually.  The region is marked by
 327 // having a control input of its exception map, rather than NULL.  Such
 328 // regions do not appear except in this function, and in use_exception_state.
 329 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 330   if (failing())  return;  // dying anyway...
 331   JVMState* ex_jvms = ex_map->_jvms;
 332   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 333   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 334   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 335   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 336   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 337   assert(ex_map->req() == phi_map->req(), "matching maps");
 338   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 339   Node*         hidden_merge_mark = root();
 340   Node*         region  = phi_map->control();
 341   MergeMemNode* phi_mem = phi_map->merged_memory();
 342   MergeMemNode* ex_mem  = ex_map->merged_memory();
 343   if (region->in(0) != hidden_merge_mark) {
 344     // The control input is not (yet) a specially-marked region in phi_map.
 345     // Make it so, and build some phis.
 346     region = new (C) RegionNode(2);
 347     _gvn.set_type(region, Type::CONTROL);
 348     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 349     region->init_req(1, phi_map->control());
 350     phi_map->set_control(region);
 351     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 352     record_for_igvn(io_phi);
 353     _gvn.set_type(io_phi, Type::ABIO);
 354     phi_map->set_i_o(io_phi);
 355     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 356       Node* m = mms.memory();
 357       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 358       record_for_igvn(m_phi);
 359       _gvn.set_type(m_phi, Type::MEMORY);
 360       mms.set_memory(m_phi);
 361     }
 362   }
 363 
 364   // Either or both of phi_map and ex_map might already be converted into phis.
 365   Node* ex_control = ex_map->control();
 366   // if there is special marking on ex_map also, we add multiple edges from src
 367   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 368   // how wide was the destination phi_map, originally?
 369   uint orig_width = region->req();
 370 
 371   if (add_multiple) {
 372     add_n_reqs(region, ex_control);
 373     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 374   } else {
 375     // ex_map has no merges, so we just add single edges everywhere
 376     add_one_req(region, ex_control);
 377     add_one_req(phi_map->i_o(), ex_map->i_o());
 378   }
 379   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 380     if (mms.is_empty()) {
 381       // get a copy of the base memory, and patch some inputs into it
 382       const TypePtr* adr_type = mms.adr_type(C);
 383       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 384       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 385       mms.set_memory(phi);
 386       // Prepare to append interesting stuff onto the newly sliced phi:
 387       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 388     }
 389     // Append stuff from ex_map:
 390     if (add_multiple) {
 391       add_n_reqs(mms.memory(), mms.memory2());
 392     } else {
 393       add_one_req(mms.memory(), mms.memory2());
 394     }
 395   }
 396   uint limit = ex_map->req();
 397   for (uint i = TypeFunc::Parms; i < limit; i++) {
 398     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 399     if (i == tos)  i = ex_jvms->monoff();
 400     Node* src = ex_map->in(i);
 401     Node* dst = phi_map->in(i);
 402     if (src != dst) {
 403       PhiNode* phi;
 404       if (dst->in(0) != region) {
 405         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 406         record_for_igvn(phi);
 407         _gvn.set_type(phi, phi->type());
 408         phi_map->set_req(i, dst);
 409         // Prepare to append interesting stuff onto the new phi:
 410         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 411       } else {
 412         assert(dst->is_Phi(), "nobody else uses a hidden region");
 413         phi = dst->as_Phi();
 414       }
 415       if (add_multiple && src->in(0) == ex_control) {
 416         // Both are phis.
 417         add_n_reqs(dst, src);
 418       } else {
 419         while (dst->req() < region->req())  add_one_req(dst, src);
 420       }
 421       const Type* srctype = _gvn.type(src);
 422       if (phi->type() != srctype) {
 423         const Type* dsttype = phi->type()->meet(srctype);
 424         if (phi->type() != dsttype) {
 425           phi->set_type(dsttype);
 426           _gvn.set_type(phi, dsttype);
 427         }
 428       }
 429     }
 430   }
 431 }
 432 
 433 //--------------------------use_exception_state--------------------------------
 434 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 435   if (failing()) { stop(); return top(); }
 436   Node* region = phi_map->control();
 437   Node* hidden_merge_mark = root();
 438   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 439   Node* ex_oop = clear_saved_ex_oop(phi_map);
 440   if (region->in(0) == hidden_merge_mark) {
 441     // Special marking for internal ex-states.  Process the phis now.
 442     region->set_req(0, region);  // now it's an ordinary region
 443     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 444     // Note: Setting the jvms also sets the bci and sp.
 445     set_control(_gvn.transform(region));
 446     uint tos = jvms()->stkoff() + sp();
 447     for (uint i = 1; i < tos; i++) {
 448       Node* x = phi_map->in(i);
 449       if (x->in(0) == region) {
 450         assert(x->is_Phi(), "expected a special phi");
 451         phi_map->set_req(i, _gvn.transform(x));
 452       }
 453     }
 454     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 455       Node* x = mms.memory();
 456       if (x->in(0) == region) {
 457         assert(x->is_Phi(), "nobody else uses a hidden region");
 458         mms.set_memory(_gvn.transform(x));
 459       }
 460     }
 461     if (ex_oop->in(0) == region) {
 462       assert(ex_oop->is_Phi(), "expected a special phi");
 463       ex_oop = _gvn.transform(ex_oop);
 464     }
 465   } else {
 466     set_jvms(phi_map->jvms());
 467   }
 468 
 469   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 470   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 471   return ex_oop;
 472 }
 473 
 474 //---------------------------------java_bc-------------------------------------
 475 Bytecodes::Code GraphKit::java_bc() const {
 476   ciMethod* method = this->method();
 477   int       bci    = this->bci();
 478   if (method != NULL && bci != InvocationEntryBci)
 479     return method->java_code_at_bci(bci);
 480   else
 481     return Bytecodes::_illegal;
 482 }
 483 
 484 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 485                                                           bool must_throw) {
 486     // if the exception capability is set, then we will generate code
 487     // to check the JavaThread.should_post_on_exceptions flag to see
 488     // if we actually need to report exception events (for this
 489     // thread).  If we don't need to report exception events, we will
 490     // take the normal fast path provided by add_exception_events.  If
 491     // exception event reporting is enabled for this thread, we will
 492     // take the uncommon_trap in the BuildCutout below.
 493 
 494     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 495     Node* jthread = _gvn.transform(new (C) ThreadLocalNode());
 496     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 497     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, false);
 498 
 499     // Test the should_post_on_exceptions_flag vs. 0
 500     Node* chk = _gvn.transform( new (C) CmpINode(should_post_flag, intcon(0)) );
 501     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
 502 
 503     // Branch to slow_path if should_post_on_exceptions_flag was true
 504     { BuildCutout unless(this, tst, PROB_MAX);
 505       // Do not try anything fancy if we're notifying the VM on every throw.
 506       // Cf. case Bytecodes::_athrow in parse2.cpp.
 507       uncommon_trap(reason, Deoptimization::Action_none,
 508                     (ciKlass*)NULL, (char*)NULL, must_throw);
 509     }
 510 
 511 }
 512 
 513 //------------------------------builtin_throw----------------------------------
 514 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 515   bool must_throw = true;
 516 
 517   if (env()->jvmti_can_post_on_exceptions()) {
 518     // check if we must post exception events, take uncommon trap if so
 519     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 520     // here if should_post_on_exceptions is false
 521     // continue on with the normal codegen
 522   }
 523 
 524   // If this particular condition has not yet happened at this
 525   // bytecode, then use the uncommon trap mechanism, and allow for
 526   // a future recompilation if several traps occur here.
 527   // If the throw is hot, try to use a more complicated inline mechanism
 528   // which keeps execution inside the compiled code.
 529   bool treat_throw_as_hot = false;
 530   ciMethodData* md = method()->method_data();
 531 
 532   if (ProfileTraps) {
 533     if (too_many_traps(reason)) {
 534       treat_throw_as_hot = true;
 535     }
 536     // (If there is no MDO at all, assume it is early in
 537     // execution, and that any deopts are part of the
 538     // startup transient, and don't need to be remembered.)
 539 
 540     // Also, if there is a local exception handler, treat all throws
 541     // as hot if there has been at least one in this method.
 542     if (C->trap_count(reason) != 0
 543         && method()->method_data()->trap_count(reason) != 0
 544         && has_ex_handler()) {
 545         treat_throw_as_hot = true;
 546     }
 547   }
 548 
 549   // If this throw happens frequently, an uncommon trap might cause
 550   // a performance pothole.  If there is a local exception handler,
 551   // and if this particular bytecode appears to be deoptimizing often,
 552   // let us handle the throw inline, with a preconstructed instance.
 553   // Note:   If the deopt count has blown up, the uncommon trap
 554   // runtime is going to flush this nmethod, not matter what.
 555   if (treat_throw_as_hot
 556       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 557     // If the throw is local, we use a pre-existing instance and
 558     // punt on the backtrace.  This would lead to a missing backtrace
 559     // (a repeat of 4292742) if the backtrace object is ever asked
 560     // for its backtrace.
 561     // Fixing this remaining case of 4292742 requires some flavor of
 562     // escape analysis.  Leave that for the future.
 563     ciInstance* ex_obj = NULL;
 564     switch (reason) {
 565     case Deoptimization::Reason_null_check:
 566       ex_obj = env()->NullPointerException_instance();
 567       break;
 568     case Deoptimization::Reason_div0_check:
 569       ex_obj = env()->ArithmeticException_instance();
 570       break;
 571     case Deoptimization::Reason_range_check:
 572       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 573       break;
 574     case Deoptimization::Reason_class_check:
 575       if (java_bc() == Bytecodes::_aastore) {
 576         ex_obj = env()->ArrayStoreException_instance();
 577       } else {
 578         ex_obj = env()->ClassCastException_instance();
 579       }
 580       break;
 581     }
 582     if (failing()) { stop(); return; }  // exception allocation might fail
 583     if (ex_obj != NULL) {
 584       // Cheat with a preallocated exception object.
 585       if (C->log() != NULL)
 586         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 587                        Deoptimization::trap_reason_name(reason));
 588       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 589       Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
 590 
 591       // Clear the detail message of the preallocated exception object.
 592       // Weblogic sometimes mutates the detail message of exceptions
 593       // using reflection.
 594       int offset = java_lang_Throwable::get_detailMessage_offset();
 595       const TypePtr* adr_typ = ex_con->add_offset(offset);
 596 
 597       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 598       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 599       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT);
 600 
 601       add_exception_state(make_exception_state(ex_node));
 602       return;
 603     }
 604   }
 605 
 606   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 607   // It won't be much cheaper than bailing to the interp., since we'll
 608   // have to pass up all the debug-info, and the runtime will have to
 609   // create the stack trace.
 610 
 611   // Usual case:  Bail to interpreter.
 612   // Reserve the right to recompile if we haven't seen anything yet.
 613 
 614   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 615   if (treat_throw_as_hot
 616       && (method()->method_data()->trap_recompiled_at(bci())
 617           || C->too_many_traps(reason))) {
 618     // We cannot afford to take more traps here.  Suffer in the interpreter.
 619     if (C->log() != NULL)
 620       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 621                      Deoptimization::trap_reason_name(reason),
 622                      C->trap_count(reason));
 623     action = Deoptimization::Action_none;
 624   }
 625 
 626   // "must_throw" prunes the JVM state to include only the stack, if there
 627   // are no local exception handlers.  This should cut down on register
 628   // allocation time and code size, by drastically reducing the number
 629   // of in-edges on the call to the uncommon trap.
 630 
 631   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 632 }
 633 
 634 
 635 //----------------------------PreserveJVMState---------------------------------
 636 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 637   debug_only(kit->verify_map());
 638   _kit    = kit;
 639   _map    = kit->map();   // preserve the map
 640   _sp     = kit->sp();
 641   kit->set_map(clone_map ? kit->clone_map() : NULL);
 642   Compile::current()->inc_preserve_jvm_state();
 643 #ifdef ASSERT
 644   _bci    = kit->bci();
 645   Parse* parser = kit->is_Parse();
 646   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 647   _block  = block;
 648 #endif
 649 }
 650 PreserveJVMState::~PreserveJVMState() {
 651   GraphKit* kit = _kit;
 652 #ifdef ASSERT
 653   assert(kit->bci() == _bci, "bci must not shift");
 654   Parse* parser = kit->is_Parse();
 655   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 656   assert(block == _block,    "block must not shift");
 657 #endif
 658   kit->set_map(_map);
 659   kit->set_sp(_sp);
 660   Compile::current()->dec_preserve_jvm_state();
 661 }
 662 
 663 
 664 //-----------------------------BuildCutout-------------------------------------
 665 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 666   : PreserveJVMState(kit)
 667 {
 668   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 669   SafePointNode* outer_map = _map;   // preserved map is caller's
 670   SafePointNode* inner_map = kit->map();
 671   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 672   outer_map->set_control(kit->gvn().transform( new (kit->C) IfTrueNode(iff) ));
 673   inner_map->set_control(kit->gvn().transform( new (kit->C) IfFalseNode(iff) ));
 674 }
 675 BuildCutout::~BuildCutout() {
 676   GraphKit* kit = _kit;
 677   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 678 }
 679 
 680 //---------------------------PreserveReexecuteState----------------------------
 681 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 682   assert(!kit->stopped(), "must call stopped() before");
 683   _kit    =    kit;
 684   _sp     =    kit->sp();
 685   _reexecute = kit->jvms()->_reexecute;
 686 }
 687 PreserveReexecuteState::~PreserveReexecuteState() {
 688   if (_kit->stopped()) return;
 689   _kit->jvms()->_reexecute = _reexecute;
 690   _kit->set_sp(_sp);
 691 }
 692 
 693 //------------------------------clone_map--------------------------------------
 694 // Implementation of PreserveJVMState
 695 //
 696 // Only clone_map(...) here. If this function is only used in the
 697 // PreserveJVMState class we may want to get rid of this extra
 698 // function eventually and do it all there.
 699 
 700 SafePointNode* GraphKit::clone_map() {
 701   if (map() == NULL)  return NULL;
 702 
 703   // Clone the memory edge first
 704   Node* mem = MergeMemNode::make(C, map()->memory());
 705   gvn().set_type_bottom(mem);
 706 
 707   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 708   JVMState* jvms = this->jvms();
 709   JVMState* clonejvms = jvms->clone_shallow(C);
 710   clonemap->set_memory(mem);
 711   clonemap->set_jvms(clonejvms);
 712   clonejvms->set_map(clonemap);
 713   record_for_igvn(clonemap);
 714   gvn().set_type_bottom(clonemap);
 715   return clonemap;
 716 }
 717 
 718 
 719 //-----------------------------set_map_clone-----------------------------------
 720 void GraphKit::set_map_clone(SafePointNode* m) {
 721   _map = m;
 722   _map = clone_map();
 723   _map->set_next_exception(NULL);
 724   debug_only(verify_map());
 725 }
 726 
 727 
 728 //----------------------------kill_dead_locals---------------------------------
 729 // Detect any locals which are known to be dead, and force them to top.
 730 void GraphKit::kill_dead_locals() {
 731   // Consult the liveness information for the locals.  If any
 732   // of them are unused, then they can be replaced by top().  This
 733   // should help register allocation time and cut down on the size
 734   // of the deoptimization information.
 735 
 736   // This call is made from many of the bytecode handling
 737   // subroutines called from the Big Switch in do_one_bytecode.
 738   // Every bytecode which might include a slow path is responsible
 739   // for killing its dead locals.  The more consistent we
 740   // are about killing deads, the fewer useless phis will be
 741   // constructed for them at various merge points.
 742 
 743   // bci can be -1 (InvocationEntryBci).  We return the entry
 744   // liveness for the method.
 745 
 746   if (method() == NULL || method()->code_size() == 0) {
 747     // We are building a graph for a call to a native method.
 748     // All locals are live.
 749     return;
 750   }
 751 
 752   ResourceMark rm;
 753 
 754   // Consult the liveness information for the locals.  If any
 755   // of them are unused, then they can be replaced by top().  This
 756   // should help register allocation time and cut down on the size
 757   // of the deoptimization information.
 758   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 759 
 760   int len = (int)live_locals.size();
 761   assert(len <= jvms()->loc_size(), "too many live locals");
 762   for (int local = 0; local < len; local++) {
 763     if (!live_locals.at(local)) {
 764       set_local(local, top());
 765     }
 766   }
 767 }
 768 
 769 #ifdef ASSERT
 770 //-------------------------dead_locals_are_killed------------------------------
 771 // Return true if all dead locals are set to top in the map.
 772 // Used to assert "clean" debug info at various points.
 773 bool GraphKit::dead_locals_are_killed() {
 774   if (method() == NULL || method()->code_size() == 0) {
 775     // No locals need to be dead, so all is as it should be.
 776     return true;
 777   }
 778 
 779   // Make sure somebody called kill_dead_locals upstream.
 780   ResourceMark rm;
 781   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 782     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 783     SafePointNode* map = jvms->map();
 784     ciMethod* method = jvms->method();
 785     int       bci    = jvms->bci();
 786     if (jvms == this->jvms()) {
 787       bci = this->bci();  // it might not yet be synched
 788     }
 789     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 790     int len = (int)live_locals.size();
 791     if (!live_locals.is_valid() || len == 0)
 792       // This method is trivial, or is poisoned by a breakpoint.
 793       return true;
 794     assert(len == jvms->loc_size(), "live map consistent with locals map");
 795     for (int local = 0; local < len; local++) {
 796       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 797         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 798           tty->print_cr("Zombie local %d: ", local);
 799           jvms->dump();
 800         }
 801         return false;
 802       }
 803     }
 804   }
 805   return true;
 806 }
 807 
 808 #endif //ASSERT
 809 
 810 // Helper function for enforcing certain bytecodes to reexecute if
 811 // deoptimization happens
 812 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 813   ciMethod* cur_method = jvms->method();
 814   int       cur_bci   = jvms->bci();
 815   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 816     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 817     return Interpreter::bytecode_should_reexecute(code) ||
 818            is_anewarray && code == Bytecodes::_multianewarray;
 819     // Reexecute _multianewarray bytecode which was replaced with
 820     // sequence of [a]newarray. See Parse::do_multianewarray().
 821     //
 822     // Note: interpreter should not have it set since this optimization
 823     // is limited by dimensions and guarded by flag so in some cases
 824     // multianewarray() runtime calls will be generated and
 825     // the bytecode should not be reexecutes (stack will not be reset).
 826   } else
 827     return false;
 828 }
 829 
 830 // Helper function for adding JVMState and debug information to node
 831 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 832   // Add the safepoint edges to the call (or other safepoint).
 833 
 834   // Make sure dead locals are set to top.  This
 835   // should help register allocation time and cut down on the size
 836   // of the deoptimization information.
 837   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 838 
 839   // Walk the inline list to fill in the correct set of JVMState's
 840   // Also fill in the associated edges for each JVMState.
 841 
 842   // If the bytecode needs to be reexecuted we need to put
 843   // the arguments back on the stack.
 844   const bool should_reexecute = jvms()->should_reexecute();
 845   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 846 
 847   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 848   // undefined if the bci is different.  This is normal for Parse but it
 849   // should not happen for LibraryCallKit because only one bci is processed.
 850   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 851          "in LibraryCallKit the reexecute bit should not change");
 852 
 853   // If we are guaranteed to throw, we can prune everything but the
 854   // input to the current bytecode.
 855   bool can_prune_locals = false;
 856   uint stack_slots_not_pruned = 0;
 857   int inputs = 0, depth = 0;
 858   if (must_throw) {
 859     assert(method() == youngest_jvms->method(), "sanity");
 860     if (compute_stack_effects(inputs, depth)) {
 861       can_prune_locals = true;
 862       stack_slots_not_pruned = inputs;
 863     }
 864   }
 865 
 866   if (env()->jvmti_can_access_local_variables()) {
 867     // At any safepoint, this method can get breakpointed, which would
 868     // then require an immediate deoptimization.
 869     can_prune_locals = false;  // do not prune locals
 870     stack_slots_not_pruned = 0;
 871   }
 872 
 873   // do not scribble on the input jvms
 874   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 875   call->set_jvms(out_jvms); // Start jvms list for call node
 876 
 877   // For a known set of bytecodes, the interpreter should reexecute them if
 878   // deoptimization happens. We set the reexecute state for them here
 879   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 880       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 881     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 882   }
 883 
 884   // Presize the call:
 885   DEBUG_ONLY(uint non_debug_edges = call->req());
 886   call->add_req_batch(top(), youngest_jvms->debug_depth());
 887   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 888 
 889   // Set up edges so that the call looks like this:
 890   //  Call [state:] ctl io mem fptr retadr
 891   //       [parms:] parm0 ... parmN
 892   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 893   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 894   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 895   // Note that caller debug info precedes callee debug info.
 896 
 897   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 898   uint debug_ptr = call->req();
 899 
 900   // Loop over the map input edges associated with jvms, add them
 901   // to the call node, & reset all offsets to match call node array.
 902   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 903     uint debug_end   = debug_ptr;
 904     uint debug_start = debug_ptr - in_jvms->debug_size();
 905     debug_ptr = debug_start;  // back up the ptr
 906 
 907     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 908     uint j, k, l;
 909     SafePointNode* in_map = in_jvms->map();
 910     out_jvms->set_map(call);
 911 
 912     if (can_prune_locals) {
 913       assert(in_jvms->method() == out_jvms->method(), "sanity");
 914       // If the current throw can reach an exception handler in this JVMS,
 915       // then we must keep everything live that can reach that handler.
 916       // As a quick and dirty approximation, we look for any handlers at all.
 917       if (in_jvms->method()->has_exception_handlers()) {
 918         can_prune_locals = false;
 919       }
 920     }
 921 
 922     // Add the Locals
 923     k = in_jvms->locoff();
 924     l = in_jvms->loc_size();
 925     out_jvms->set_locoff(p);
 926     if (!can_prune_locals) {
 927       for (j = 0; j < l; j++)
 928         call->set_req(p++, in_map->in(k+j));
 929     } else {
 930       p += l;  // already set to top above by add_req_batch
 931     }
 932 
 933     // Add the Expression Stack
 934     k = in_jvms->stkoff();
 935     l = in_jvms->sp();
 936     out_jvms->set_stkoff(p);
 937     if (!can_prune_locals) {
 938       for (j = 0; j < l; j++)
 939         call->set_req(p++, in_map->in(k+j));
 940     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 941       // Divide stack into {S0,...,S1}, where S0 is set to top.
 942       uint s1 = stack_slots_not_pruned;
 943       stack_slots_not_pruned = 0;  // for next iteration
 944       if (s1 > l)  s1 = l;
 945       uint s0 = l - s1;
 946       p += s0;  // skip the tops preinstalled by add_req_batch
 947       for (j = s0; j < l; j++)
 948         call->set_req(p++, in_map->in(k+j));
 949     } else {
 950       p += l;  // already set to top above by add_req_batch
 951     }
 952 
 953     // Add the Monitors
 954     k = in_jvms->monoff();
 955     l = in_jvms->mon_size();
 956     out_jvms->set_monoff(p);
 957     for (j = 0; j < l; j++)
 958       call->set_req(p++, in_map->in(k+j));
 959 
 960     // Copy any scalar object fields.
 961     k = in_jvms->scloff();
 962     l = in_jvms->scl_size();
 963     out_jvms->set_scloff(p);
 964     for (j = 0; j < l; j++)
 965       call->set_req(p++, in_map->in(k+j));
 966 
 967     // Finish the new jvms.
 968     out_jvms->set_endoff(p);
 969 
 970     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 971     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 972     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 973     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 974     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 975     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 976 
 977     // Update the two tail pointers in parallel.
 978     out_jvms = out_jvms->caller();
 979     in_jvms  = in_jvms->caller();
 980   }
 981 
 982   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 983 
 984   // Test the correctness of JVMState::debug_xxx accessors:
 985   assert(call->jvms()->debug_start() == non_debug_edges, "");
 986   assert(call->jvms()->debug_end()   == call->req(), "");
 987   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
 988 }
 989 
 990 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
 991   Bytecodes::Code code = java_bc();
 992   if (code == Bytecodes::_wide) {
 993     code = method()->java_code_at_bci(bci() + 1);
 994   }
 995 
 996   BasicType rtype = T_ILLEGAL;
 997   int       rsize = 0;
 998 
 999   if (code != Bytecodes::_illegal) {
1000     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1001     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1002     if (rtype < T_CONFLICT)
1003       rsize = type2size[rtype];
1004   }
1005 
1006   switch (code) {
1007   case Bytecodes::_illegal:
1008     return false;
1009 
1010   case Bytecodes::_ldc:
1011   case Bytecodes::_ldc_w:
1012   case Bytecodes::_ldc2_w:
1013     inputs = 0;
1014     break;
1015 
1016   case Bytecodes::_dup:         inputs = 1;  break;
1017   case Bytecodes::_dup_x1:      inputs = 2;  break;
1018   case Bytecodes::_dup_x2:      inputs = 3;  break;
1019   case Bytecodes::_dup2:        inputs = 2;  break;
1020   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1021   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1022   case Bytecodes::_swap:        inputs = 2;  break;
1023   case Bytecodes::_arraylength: inputs = 1;  break;
1024 
1025   case Bytecodes::_getstatic:
1026   case Bytecodes::_putstatic:
1027   case Bytecodes::_getfield:
1028   case Bytecodes::_putfield:
1029     {
1030       bool ignored_will_link;
1031       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1032       int      size  = field->type()->size();
1033       bool is_get = (depth >= 0), is_static = (depth & 1);
1034       inputs = (is_static ? 0 : 1);
1035       if (is_get) {
1036         depth = size - inputs;
1037       } else {
1038         inputs += size;        // putxxx pops the value from the stack
1039         depth = - inputs;
1040       }
1041     }
1042     break;
1043 
1044   case Bytecodes::_invokevirtual:
1045   case Bytecodes::_invokespecial:
1046   case Bytecodes::_invokestatic:
1047   case Bytecodes::_invokedynamic:
1048   case Bytecodes::_invokeinterface:
1049     {
1050       bool ignored_will_link;
1051       ciSignature* declared_signature = NULL;
1052       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1053       assert(declared_signature != NULL, "cannot be null");
1054       inputs   = declared_signature->arg_size_for_bc(code);
1055       int size = declared_signature->return_type()->size();
1056       depth = size - inputs;
1057     }
1058     break;
1059 
1060   case Bytecodes::_multianewarray:
1061     {
1062       ciBytecodeStream iter(method());
1063       iter.reset_to_bci(bci());
1064       iter.next();
1065       inputs = iter.get_dimensions();
1066       assert(rsize == 1, "");
1067       depth = rsize - inputs;
1068     }
1069     break;
1070 
1071   case Bytecodes::_ireturn:
1072   case Bytecodes::_lreturn:
1073   case Bytecodes::_freturn:
1074   case Bytecodes::_dreturn:
1075   case Bytecodes::_areturn:
1076     assert(rsize = -depth, "");
1077     inputs = rsize;
1078     break;
1079 
1080   case Bytecodes::_jsr:
1081   case Bytecodes::_jsr_w:
1082     inputs = 0;
1083     depth  = 1;                  // S.B. depth=1, not zero
1084     break;
1085 
1086   default:
1087     // bytecode produces a typed result
1088     inputs = rsize - depth;
1089     assert(inputs >= 0, "");
1090     break;
1091   }
1092 
1093 #ifdef ASSERT
1094   // spot check
1095   int outputs = depth + inputs;
1096   assert(outputs >= 0, "sanity");
1097   switch (code) {
1098   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1099   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1100   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1101   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1102   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1103   }
1104 #endif //ASSERT
1105 
1106   return true;
1107 }
1108 
1109 
1110 
1111 //------------------------------basic_plus_adr---------------------------------
1112 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1113   // short-circuit a common case
1114   if (offset == intcon(0))  return ptr;
1115   return _gvn.transform( new (C) AddPNode(base, ptr, offset) );
1116 }
1117 
1118 Node* GraphKit::ConvI2L(Node* offset) {
1119   // short-circuit a common case
1120   jint offset_con = find_int_con(offset, Type::OffsetBot);
1121   if (offset_con != Type::OffsetBot) {
1122     return longcon((jlong) offset_con);
1123   }
1124   return _gvn.transform( new (C) ConvI2LNode(offset));
1125 }
1126 Node* GraphKit::ConvL2I(Node* offset) {
1127   // short-circuit a common case
1128   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1129   if (offset_con != (jlong)Type::OffsetBot) {
1130     return intcon((int) offset_con);
1131   }
1132   return _gvn.transform( new (C) ConvL2INode(offset));
1133 }
1134 
1135 //-------------------------load_object_klass-----------------------------------
1136 Node* GraphKit::load_object_klass(Node* obj) {
1137   // Special-case a fresh allocation to avoid building nodes:
1138   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1139   if (akls != NULL)  return akls;
1140   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1141   return _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS) );
1142 }
1143 
1144 //-------------------------load_array_length-----------------------------------
1145 Node* GraphKit::load_array_length(Node* array) {
1146   // Special-case a fresh allocation to avoid building nodes:
1147   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1148   Node *alen;
1149   if (alloc == NULL) {
1150     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1151     alen = _gvn.transform( new (C) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1152   } else {
1153     alen = alloc->Ideal_length();
1154     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1155     if (ccast != alen) {
1156       alen = _gvn.transform(ccast);
1157     }
1158   }
1159   return alen;
1160 }
1161 
1162 //------------------------------do_null_check----------------------------------
1163 // Helper function to do a NULL pointer check.  Returned value is
1164 // the incoming address with NULL casted away.  You are allowed to use the
1165 // not-null value only if you are control dependent on the test.
1166 extern int explicit_null_checks_inserted,
1167            explicit_null_checks_elided;
1168 Node* GraphKit::null_check_common(Node* value, BasicType type,
1169                                   // optional arguments for variations:
1170                                   bool assert_null,
1171                                   Node* *null_control) {
1172   assert(!assert_null || null_control == NULL, "not both at once");
1173   if (stopped())  return top();
1174   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
1175     // For some performance testing, we may wish to suppress null checking.
1176     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
1177     return value;
1178   }
1179   explicit_null_checks_inserted++;
1180 
1181   // Construct NULL check
1182   Node *chk = NULL;
1183   switch(type) {
1184     case T_LONG   : chk = new (C) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1185     case T_INT    : chk = new (C) CmpINode(value, _gvn.intcon(0)); break;
1186     case T_ARRAY  : // fall through
1187       type = T_OBJECT;  // simplify further tests
1188     case T_OBJECT : {
1189       const Type *t = _gvn.type( value );
1190 
1191       const TypeOopPtr* tp = t->isa_oopptr();
1192       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1193           // Only for do_null_check, not any of its siblings:
1194           && !assert_null && null_control == NULL) {
1195         // Usually, any field access or invocation on an unloaded oop type
1196         // will simply fail to link, since the statically linked class is
1197         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1198         // the static class is loaded but the sharper oop type is not.
1199         // Rather than checking for this obscure case in lots of places,
1200         // we simply observe that a null check on an unloaded class
1201         // will always be followed by a nonsense operation, so we
1202         // can just issue the uncommon trap here.
1203         // Our access to the unloaded class will only be correct
1204         // after it has been loaded and initialized, which requires
1205         // a trip through the interpreter.
1206 #ifndef PRODUCT
1207         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1208 #endif
1209         uncommon_trap(Deoptimization::Reason_unloaded,
1210                       Deoptimization::Action_reinterpret,
1211                       tp->klass(), "!loaded");
1212         return top();
1213       }
1214 
1215       if (assert_null) {
1216         // See if the type is contained in NULL_PTR.
1217         // If so, then the value is already null.
1218         if (t->higher_equal(TypePtr::NULL_PTR)) {
1219           explicit_null_checks_elided++;
1220           return value;           // Elided null assert quickly!
1221         }
1222       } else {
1223         // See if mixing in the NULL pointer changes type.
1224         // If so, then the NULL pointer was not allowed in the original
1225         // type.  In other words, "value" was not-null.
1226         if (t->meet(TypePtr::NULL_PTR) != t) {
1227           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1228           explicit_null_checks_elided++;
1229           return value;           // Elided null check quickly!
1230         }
1231       }
1232       chk = new (C) CmpPNode( value, null() );
1233       break;
1234     }
1235 
1236     default:
1237       fatal(err_msg_res("unexpected type: %s", type2name(type)));
1238   }
1239   assert(chk != NULL, "sanity check");
1240   chk = _gvn.transform(chk);
1241 
1242   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1243   BoolNode *btst = new (C) BoolNode( chk, btest);
1244   Node   *tst = _gvn.transform( btst );
1245 
1246   //-----------
1247   // if peephole optimizations occurred, a prior test existed.
1248   // If a prior test existed, maybe it dominates as we can avoid this test.
1249   if (tst != btst && type == T_OBJECT) {
1250     // At this point we want to scan up the CFG to see if we can
1251     // find an identical test (and so avoid this test altogether).
1252     Node *cfg = control();
1253     int depth = 0;
1254     while( depth < 16 ) {       // Limit search depth for speed
1255       if( cfg->Opcode() == Op_IfTrue &&
1256           cfg->in(0)->in(1) == tst ) {
1257         // Found prior test.  Use "cast_not_null" to construct an identical
1258         // CastPP (and hence hash to) as already exists for the prior test.
1259         // Return that casted value.
1260         if (assert_null) {
1261           replace_in_map(value, null());
1262           return null();  // do not issue the redundant test
1263         }
1264         Node *oldcontrol = control();
1265         set_control(cfg);
1266         Node *res = cast_not_null(value);
1267         set_control(oldcontrol);
1268         explicit_null_checks_elided++;
1269         return res;
1270       }
1271       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1272       if (cfg == NULL)  break;  // Quit at region nodes
1273       depth++;
1274     }
1275   }
1276 
1277   //-----------
1278   // Branch to failure if null
1279   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1280   Deoptimization::DeoptReason reason;
1281   if (assert_null)
1282     reason = Deoptimization::Reason_null_assert;
1283   else if (type == T_OBJECT)
1284     reason = Deoptimization::Reason_null_check;
1285   else
1286     reason = Deoptimization::Reason_div0_check;
1287 
1288   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1289   // ciMethodData::has_trap_at will return a conservative -1 if any
1290   // must-be-null assertion has failed.  This could cause performance
1291   // problems for a method after its first do_null_assert failure.
1292   // Consider using 'Reason_class_check' instead?
1293 
1294   // To cause an implicit null check, we set the not-null probability
1295   // to the maximum (PROB_MAX).  For an explicit check the probability
1296   // is set to a smaller value.
1297   if (null_control != NULL || too_many_traps(reason)) {
1298     // probability is less likely
1299     ok_prob =  PROB_LIKELY_MAG(3);
1300   } else if (!assert_null &&
1301              (ImplicitNullCheckThreshold > 0) &&
1302              method() != NULL &&
1303              (method()->method_data()->trap_count(reason)
1304               >= (uint)ImplicitNullCheckThreshold)) {
1305     ok_prob =  PROB_LIKELY_MAG(3);
1306   }
1307 
1308   if (null_control != NULL) {
1309     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1310     Node* null_true = _gvn.transform( new (C) IfFalseNode(iff));
1311     set_control(      _gvn.transform( new (C) IfTrueNode(iff)));
1312     if (null_true == top())
1313       explicit_null_checks_elided++;
1314     (*null_control) = null_true;
1315   } else {
1316     BuildCutout unless(this, tst, ok_prob);
1317     // Check for optimizer eliding test at parse time
1318     if (stopped()) {
1319       // Failure not possible; do not bother making uncommon trap.
1320       explicit_null_checks_elided++;
1321     } else if (assert_null) {
1322       uncommon_trap(reason,
1323                     Deoptimization::Action_make_not_entrant,
1324                     NULL, "assert_null");
1325     } else {
1326       replace_in_map(value, zerocon(type));
1327       builtin_throw(reason);
1328     }
1329   }
1330 
1331   // Must throw exception, fall-thru not possible?
1332   if (stopped()) {
1333     return top();               // No result
1334   }
1335 
1336   if (assert_null) {
1337     // Cast obj to null on this path.
1338     replace_in_map(value, zerocon(type));
1339     return zerocon(type);
1340   }
1341 
1342   // Cast obj to not-null on this path, if there is no null_control.
1343   // (If there is a null_control, a non-null value may come back to haunt us.)
1344   if (type == T_OBJECT) {
1345     Node* cast = cast_not_null(value, false);
1346     if (null_control == NULL || (*null_control) == top())
1347       replace_in_map(value, cast);
1348     value = cast;
1349   }
1350 
1351   return value;
1352 }
1353 
1354 
1355 //------------------------------cast_not_null----------------------------------
1356 // Cast obj to not-null on this path
1357 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1358   const Type *t = _gvn.type(obj);
1359   const Type *t_not_null = t->join(TypePtr::NOTNULL);
1360   // Object is already not-null?
1361   if( t == t_not_null ) return obj;
1362 
1363   Node *cast = new (C) CastPPNode(obj,t_not_null);
1364   cast->init_req(0, control());
1365   cast = _gvn.transform( cast );
1366 
1367   // Scan for instances of 'obj' in the current JVM mapping.
1368   // These instances are known to be not-null after the test.
1369   if (do_replace_in_map)
1370     replace_in_map(obj, cast);
1371 
1372   return cast;                  // Return casted value
1373 }
1374 
1375 
1376 //--------------------------replace_in_map-------------------------------------
1377 void GraphKit::replace_in_map(Node* old, Node* neww) {
1378   if (old == neww) {
1379     return;
1380   }
1381 
1382   map()->replace_edge(old, neww);
1383 
1384   // Note: This operation potentially replaces any edge
1385   // on the map.  This includes locals, stack, and monitors
1386   // of the current (innermost) JVM state.
1387 
1388   if (!ReplaceInParentMaps) {
1389     return;
1390   }
1391 
1392   // PreserveJVMState doesn't do a deep copy so we can't modify
1393   // parents
1394   if (Compile::current()->has_preserve_jvm_state()) {
1395     return;
1396   }
1397 
1398   Parse* parser = is_Parse();
1399   bool progress = true;
1400   Node* ctrl = map()->in(0);
1401   // Follow the chain of parsers and see whether the update can be
1402   // done in the map of callers. We can do the replace for a caller if
1403   // the current control post dominates the control of a caller.
1404   while (parser != NULL && parser->caller() != NULL && progress) {
1405     progress = false;
1406     Node* parent_map = parser->caller()->map();
1407     assert(parser->exits().map()->jvms()->depth() == parser->caller()->depth(), "map mismatch");
1408 
1409     Node* parent_ctrl = parent_map->in(0);
1410 
1411     while (parent_ctrl->is_Region()) {
1412       Node* n = parent_ctrl->as_Region()->is_copy();
1413       if (n == NULL) {
1414         break;
1415       }
1416       parent_ctrl = n;
1417     }
1418 
1419     for (;;) {
1420       if (ctrl == parent_ctrl) {
1421         // update the map of the exits which is the one that will be
1422         // used when compilation resume after inlining
1423         parser->exits().map()->replace_edge(old, neww);
1424         progress = true;
1425         break;
1426       }
1427       if (ctrl->is_Proj() && ctrl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
1428         ctrl = ctrl->in(0)->in(0);
1429       } else if (ctrl->is_Region()) {
1430         Node* n = ctrl->as_Region()->is_copy();
1431         if (n == NULL) {
1432           break;
1433         }
1434         ctrl = n;
1435       } else {
1436         break;
1437       }
1438     }
1439 
1440     parser = parser->parent_parser();
1441   }
1442 }
1443 
1444 
1445 //=============================================================================
1446 //--------------------------------memory---------------------------------------
1447 Node* GraphKit::memory(uint alias_idx) {
1448   MergeMemNode* mem = merged_memory();
1449   Node* p = mem->memory_at(alias_idx);
1450   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1451   return p;
1452 }
1453 
1454 //-----------------------------reset_memory------------------------------------
1455 Node* GraphKit::reset_memory() {
1456   Node* mem = map()->memory();
1457   // do not use this node for any more parsing!
1458   debug_only( map()->set_memory((Node*)NULL) );
1459   return _gvn.transform( mem );
1460 }
1461 
1462 //------------------------------set_all_memory---------------------------------
1463 void GraphKit::set_all_memory(Node* newmem) {
1464   Node* mergemem = MergeMemNode::make(C, newmem);
1465   gvn().set_type_bottom(mergemem);
1466   map()->set_memory(mergemem);
1467 }
1468 
1469 //------------------------------set_all_memory_call----------------------------
1470 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1471   Node* newmem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1472   set_all_memory(newmem);
1473 }
1474 
1475 //=============================================================================
1476 //
1477 // parser factory methods for MemNodes
1478 //
1479 // These are layered on top of the factory methods in LoadNode and StoreNode,
1480 // and integrate with the parser's memory state and _gvn engine.
1481 //
1482 
1483 // factory methods in "int adr_idx"
1484 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1485                           int adr_idx,
1486                           bool require_atomic_access) {
1487   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1488   const TypePtr* adr_type = NULL; // debug-mode-only argument
1489   debug_only(adr_type = C->get_adr_type(adr_idx));
1490   Node* mem = memory(adr_idx);
1491   Node* ld;
1492   if (require_atomic_access && bt == T_LONG) {
1493     ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t);
1494   } else {
1495     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt);
1496   }
1497   ld = _gvn.transform(ld);
1498   if ((bt == T_OBJECT) && C->do_escape_analysis() || C->eliminate_boxing()) {
1499     // Improve graph before escape analysis and boxing elimination.
1500     record_for_igvn(ld);
1501   }
1502   return ld;
1503 }
1504 
1505 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1506                                 int adr_idx,
1507                                 bool require_atomic_access) {
1508   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1509   const TypePtr* adr_type = NULL;
1510   debug_only(adr_type = C->get_adr_type(adr_idx));
1511   Node *mem = memory(adr_idx);
1512   Node* st;
1513   if (require_atomic_access && bt == T_LONG) {
1514     st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val);
1515   } else {
1516     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt);
1517   }
1518   st = _gvn.transform(st);
1519   set_memory(st, adr_idx);
1520   // Back-to-back stores can only remove intermediate store with DU info
1521   // so push on worklist for optimizer.
1522   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1523     record_for_igvn(st);
1524 
1525   return st;
1526 }
1527 
1528 
1529 void GraphKit::pre_barrier(bool do_load,
1530                            Node* ctl,
1531                            Node* obj,
1532                            Node* adr,
1533                            uint  adr_idx,
1534                            Node* val,
1535                            const TypeOopPtr* val_type,
1536                            Node* pre_val,
1537                            BasicType bt) {
1538 
1539   BarrierSet* bs = Universe::heap()->barrier_set();
1540   set_control(ctl);
1541   switch (bs->kind()) {
1542     case BarrierSet::G1SATBCT:
1543     case BarrierSet::G1SATBCTLogging:
1544       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1545       break;
1546 
1547     case BarrierSet::CardTableModRef:
1548     case BarrierSet::CardTableExtension:
1549     case BarrierSet::ModRef:
1550       break;
1551 
1552     case BarrierSet::Other:
1553     default      :
1554       ShouldNotReachHere();
1555 
1556   }
1557 }
1558 
1559 bool GraphKit::can_move_pre_barrier() const {
1560   BarrierSet* bs = Universe::heap()->barrier_set();
1561   switch (bs->kind()) {
1562     case BarrierSet::G1SATBCT:
1563     case BarrierSet::G1SATBCTLogging:
1564       return true; // Can move it if no safepoint
1565 
1566     case BarrierSet::CardTableModRef:
1567     case BarrierSet::CardTableExtension:
1568     case BarrierSet::ModRef:
1569       return true; // There is no pre-barrier
1570 
1571     case BarrierSet::Other:
1572     default      :
1573       ShouldNotReachHere();
1574   }
1575   return false;
1576 }
1577 
1578 void GraphKit::post_barrier(Node* ctl,
1579                             Node* store,
1580                             Node* obj,
1581                             Node* adr,
1582                             uint  adr_idx,
1583                             Node* val,
1584                             BasicType bt,
1585                             bool use_precise) {
1586   BarrierSet* bs = Universe::heap()->barrier_set();
1587   set_control(ctl);
1588   switch (bs->kind()) {
1589     case BarrierSet::G1SATBCT:
1590     case BarrierSet::G1SATBCTLogging:
1591       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1592       break;
1593 
1594     case BarrierSet::CardTableModRef:
1595     case BarrierSet::CardTableExtension:
1596       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1597       break;
1598 
1599     case BarrierSet::ModRef:
1600       break;
1601 
1602     case BarrierSet::Other:
1603     default      :
1604       ShouldNotReachHere();
1605 
1606   }
1607 }
1608 
1609 Node* GraphKit::store_oop(Node* ctl,
1610                           Node* obj,
1611                           Node* adr,
1612                           const TypePtr* adr_type,
1613                           Node* val,
1614                           const TypeOopPtr* val_type,
1615                           BasicType bt,
1616                           bool use_precise) {
1617   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1618   // could be delayed during Parse (for example, in adjust_map_after_if()).
1619   // Execute transformation here to avoid barrier generation in such case.
1620   if (_gvn.type(val) == TypePtr::NULL_PTR)
1621     val = _gvn.makecon(TypePtr::NULL_PTR);
1622 
1623   set_control(ctl);
1624   if (stopped()) return top(); // Dead path ?
1625 
1626   assert(bt == T_OBJECT, "sanity");
1627   assert(val != NULL, "not dead path");
1628   uint adr_idx = C->get_alias_index(adr_type);
1629   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1630 
1631   pre_barrier(true /* do_load */,
1632               control(), obj, adr, adr_idx, val, val_type,
1633               NULL /* pre_val */,
1634               bt);
1635 
1636   Node* store = store_to_memory(control(), adr, val, bt, adr_idx);
1637   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1638   return store;
1639 }
1640 
1641 // Could be an array or object we don't know at compile time (unsafe ref.)
1642 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1643                              Node* obj,   // containing obj
1644                              Node* adr,  // actual adress to store val at
1645                              const TypePtr* adr_type,
1646                              Node* val,
1647                              BasicType bt) {
1648   Compile::AliasType* at = C->alias_type(adr_type);
1649   const TypeOopPtr* val_type = NULL;
1650   if (adr_type->isa_instptr()) {
1651     if (at->field() != NULL) {
1652       // known field.  This code is a copy of the do_put_xxx logic.
1653       ciField* field = at->field();
1654       if (!field->type()->is_loaded()) {
1655         val_type = TypeInstPtr::BOTTOM;
1656       } else {
1657         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1658       }
1659     }
1660   } else if (adr_type->isa_aryptr()) {
1661     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1662   }
1663   if (val_type == NULL) {
1664     val_type = TypeInstPtr::BOTTOM;
1665   }
1666   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true);
1667 }
1668 
1669 
1670 //-------------------------array_element_address-------------------------
1671 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1672                                       const TypeInt* sizetype) {
1673   uint shift  = exact_log2(type2aelembytes(elembt));
1674   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1675 
1676   // short-circuit a common case (saves lots of confusing waste motion)
1677   jint idx_con = find_int_con(idx, -1);
1678   if (idx_con >= 0) {
1679     intptr_t offset = header + ((intptr_t)idx_con << shift);
1680     return basic_plus_adr(ary, offset);
1681   }
1682 
1683   // must be correct type for alignment purposes
1684   Node* base  = basic_plus_adr(ary, header);
1685 #ifdef _LP64
1686   // The scaled index operand to AddP must be a clean 64-bit value.
1687   // Java allows a 32-bit int to be incremented to a negative
1688   // value, which appears in a 64-bit register as a large
1689   // positive number.  Using that large positive number as an
1690   // operand in pointer arithmetic has bad consequences.
1691   // On the other hand, 32-bit overflow is rare, and the possibility
1692   // can often be excluded, if we annotate the ConvI2L node with
1693   // a type assertion that its value is known to be a small positive
1694   // number.  (The prior range check has ensured this.)
1695   // This assertion is used by ConvI2LNode::Ideal.
1696   int index_max = max_jint - 1;  // array size is max_jint, index is one less
1697   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
1698   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
1699   idx = _gvn.transform( new (C) ConvI2LNode(idx, lidxtype) );
1700 #endif
1701   Node* scale = _gvn.transform( new (C) LShiftXNode(idx, intcon(shift)) );
1702   return basic_plus_adr(ary, base, scale);
1703 }
1704 
1705 //-------------------------load_array_element-------------------------
1706 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1707   const Type* elemtype = arytype->elem();
1708   BasicType elembt = elemtype->array_element_basic_type();
1709   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1710   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype);
1711   return ld;
1712 }
1713 
1714 //-------------------------set_arguments_for_java_call-------------------------
1715 // Arguments (pre-popped from the stack) are taken from the JVMS.
1716 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1717   // Add the call arguments:
1718   uint nargs = call->method()->arg_size();
1719   for (uint i = 0; i < nargs; i++) {
1720     Node* arg = argument(i);
1721     call->init_req(i + TypeFunc::Parms, arg);
1722   }
1723 }
1724 
1725 //---------------------------set_edges_for_java_call---------------------------
1726 // Connect a newly created call into the current JVMS.
1727 // A return value node (if any) is returned from set_edges_for_java_call.
1728 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1729 
1730   // Add the predefined inputs:
1731   call->init_req( TypeFunc::Control, control() );
1732   call->init_req( TypeFunc::I_O    , i_o() );
1733   call->init_req( TypeFunc::Memory , reset_memory() );
1734   call->init_req( TypeFunc::FramePtr, frameptr() );
1735   call->init_req( TypeFunc::ReturnAdr, top() );
1736 
1737   add_safepoint_edges(call, must_throw);
1738 
1739   Node* xcall = _gvn.transform(call);
1740 
1741   if (xcall == top()) {
1742     set_control(top());
1743     return;
1744   }
1745   assert(xcall == call, "call identity is stable");
1746 
1747   // Re-use the current map to produce the result.
1748 
1749   set_control(_gvn.transform(new (C) ProjNode(call, TypeFunc::Control)));
1750   set_i_o(    _gvn.transform(new (C) ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1751   set_all_memory_call(xcall, separate_io_proj);
1752 
1753   //return xcall;   // no need, caller already has it
1754 }
1755 
1756 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1757   if (stopped())  return top();  // maybe the call folded up?
1758 
1759   // Capture the return value, if any.
1760   Node* ret;
1761   if (call->method() == NULL ||
1762       call->method()->return_type()->basic_type() == T_VOID)
1763         ret = top();
1764   else  ret = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1765 
1766   // Note:  Since any out-of-line call can produce an exception,
1767   // we always insert an I_O projection from the call into the result.
1768 
1769   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1770 
1771   if (separate_io_proj) {
1772     // The caller requested separate projections be used by the fall
1773     // through and exceptional paths, so replace the projections for
1774     // the fall through path.
1775     set_i_o(_gvn.transform( new (C) ProjNode(call, TypeFunc::I_O) ));
1776     set_all_memory(_gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) ));
1777   }
1778   return ret;
1779 }
1780 
1781 //--------------------set_predefined_input_for_runtime_call--------------------
1782 // Reading and setting the memory state is way conservative here.
1783 // The real problem is that I am not doing real Type analysis on memory,
1784 // so I cannot distinguish card mark stores from other stores.  Across a GC
1785 // point the Store Barrier and the card mark memory has to agree.  I cannot
1786 // have a card mark store and its barrier split across the GC point from
1787 // either above or below.  Here I get that to happen by reading ALL of memory.
1788 // A better answer would be to separate out card marks from other memory.
1789 // For now, return the input memory state, so that it can be reused
1790 // after the call, if this call has restricted memory effects.
1791 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1792   // Set fixed predefined input arguments
1793   Node* memory = reset_memory();
1794   call->init_req( TypeFunc::Control,   control()  );
1795   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1796   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1797   call->init_req( TypeFunc::FramePtr,  frameptr() );
1798   call->init_req( TypeFunc::ReturnAdr, top()      );
1799   return memory;
1800 }
1801 
1802 //-------------------set_predefined_output_for_runtime_call--------------------
1803 // Set control and memory (not i_o) from the call.
1804 // If keep_mem is not NULL, use it for the output state,
1805 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1806 // If hook_mem is NULL, this call produces no memory effects at all.
1807 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1808 // then only that memory slice is taken from the call.
1809 // In the last case, we must put an appropriate memory barrier before
1810 // the call, so as to create the correct anti-dependencies on loads
1811 // preceding the call.
1812 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1813                                                       Node* keep_mem,
1814                                                       const TypePtr* hook_mem) {
1815   // no i/o
1816   set_control(_gvn.transform( new (C) ProjNode(call,TypeFunc::Control) ));
1817   if (keep_mem) {
1818     // First clone the existing memory state
1819     set_all_memory(keep_mem);
1820     if (hook_mem != NULL) {
1821       // Make memory for the call
1822       Node* mem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) );
1823       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1824       // We also use hook_mem to extract specific effects from arraycopy stubs.
1825       set_memory(mem, hook_mem);
1826     }
1827     // ...else the call has NO memory effects.
1828 
1829     // Make sure the call advertises its memory effects precisely.
1830     // This lets us build accurate anti-dependences in gcm.cpp.
1831     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1832            "call node must be constructed correctly");
1833   } else {
1834     assert(hook_mem == NULL, "");
1835     // This is not a "slow path" call; all memory comes from the call.
1836     set_all_memory_call(call);
1837   }
1838 }
1839 
1840 
1841 // Replace the call with the current state of the kit.
1842 void GraphKit::replace_call(CallNode* call, Node* result) {
1843   JVMState* ejvms = NULL;
1844   if (has_exceptions()) {
1845     ejvms = transfer_exceptions_into_jvms();
1846   }
1847 
1848   SafePointNode* final_state = stop();
1849 
1850   // Find all the needed outputs of this call
1851   CallProjections callprojs;
1852   call->extract_projections(&callprojs, true);
1853 
1854   Node* init_mem = call->in(TypeFunc::Memory);
1855   Node* final_mem = final_state->in(TypeFunc::Memory);
1856   Node* final_ctl = final_state->in(TypeFunc::Control);
1857   Node* final_io = final_state->in(TypeFunc::I_O);
1858 
1859   // Replace all the old call edges with the edges from the inlining result
1860   if (callprojs.fallthrough_catchproj != NULL) {
1861     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1862   }
1863   if (callprojs.fallthrough_memproj != NULL) {
1864     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1865   }
1866   if (callprojs.fallthrough_ioproj != NULL) {
1867     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1868   }
1869 
1870   // Replace the result with the new result if it exists and is used
1871   if (callprojs.resproj != NULL && result != NULL) {
1872     C->gvn_replace_by(callprojs.resproj, result);
1873   }
1874 
1875   if (ejvms == NULL) {
1876     // No exception edges to simply kill off those paths
1877     if (callprojs.catchall_catchproj != NULL) {
1878       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1879     }
1880     if (callprojs.catchall_memproj != NULL) {
1881       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1882     }
1883     if (callprojs.catchall_ioproj != NULL) {
1884       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1885     }
1886     // Replace the old exception object with top
1887     if (callprojs.exobj != NULL) {
1888       C->gvn_replace_by(callprojs.exobj, C->top());
1889     }
1890   } else {
1891     GraphKit ekit(ejvms);
1892 
1893     // Load my combined exception state into the kit, with all phis transformed:
1894     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1895 
1896     Node* ex_oop = ekit.use_exception_state(ex_map);
1897     if (callprojs.catchall_catchproj != NULL) {
1898       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1899     }
1900     if (callprojs.catchall_memproj != NULL) {
1901       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1902     }
1903     if (callprojs.catchall_ioproj != NULL) {
1904       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1905     }
1906 
1907     // Replace the old exception object with the newly created one
1908     if (callprojs.exobj != NULL) {
1909       C->gvn_replace_by(callprojs.exobj, ex_oop);
1910     }
1911   }
1912 
1913   // Disconnect the call from the graph
1914   call->disconnect_inputs(NULL, C);
1915   C->gvn_replace_by(call, C->top());
1916 
1917   // Clean up any MergeMems that feed other MergeMems since the
1918   // optimizer doesn't like that.
1919   if (final_mem->is_MergeMem()) {
1920     Node_List wl;
1921     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1922       Node* m = i.get();
1923       if (m->is_MergeMem() && !wl.contains(m)) {
1924         wl.push(m);
1925       }
1926     }
1927     while (wl.size()  > 0) {
1928       _gvn.transform(wl.pop());
1929     }
1930   }
1931 }
1932 
1933 
1934 //------------------------------increment_counter------------------------------
1935 // for statistics: increment a VM counter by 1
1936 
1937 void GraphKit::increment_counter(address counter_addr) {
1938   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1939   increment_counter(adr1);
1940 }
1941 
1942 void GraphKit::increment_counter(Node* counter_addr) {
1943   int adr_type = Compile::AliasIdxRaw;
1944   Node* ctrl = control();
1945   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type);
1946   Node* incr = _gvn.transform(new (C) AddINode(cnt, _gvn.intcon(1)));
1947   store_to_memory( ctrl, counter_addr, incr, T_INT, adr_type );
1948 }
1949 
1950 
1951 //------------------------------uncommon_trap----------------------------------
1952 // Bail out to the interpreter in mid-method.  Implemented by calling the
1953 // uncommon_trap blob.  This helper function inserts a runtime call with the
1954 // right debug info.
1955 void GraphKit::uncommon_trap(int trap_request,
1956                              ciKlass* klass, const char* comment,
1957                              bool must_throw,
1958                              bool keep_exact_action) {
1959   if (failing())  stop();
1960   if (stopped())  return; // trap reachable?
1961 
1962   // Note:  If ProfileTraps is true, and if a deopt. actually
1963   // occurs here, the runtime will make sure an MDO exists.  There is
1964   // no need to call method()->ensure_method_data() at this point.
1965 
1966   // Set the stack pointer to the right value for reexecution:
1967   set_sp(reexecute_sp());
1968 
1969 #ifdef ASSERT
1970   if (!must_throw) {
1971     // Make sure the stack has at least enough depth to execute
1972     // the current bytecode.
1973     int inputs, ignored_depth;
1974     if (compute_stack_effects(inputs, ignored_depth)) {
1975       assert(sp() >= inputs, err_msg_res("must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
1976              Bytecodes::name(java_bc()), sp(), inputs));
1977     }
1978   }
1979 #endif
1980 
1981   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
1982   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
1983 
1984   switch (action) {
1985   case Deoptimization::Action_maybe_recompile:
1986   case Deoptimization::Action_reinterpret:
1987     // Temporary fix for 6529811 to allow virtual calls to be sure they
1988     // get the chance to go from mono->bi->mega
1989     if (!keep_exact_action &&
1990         Deoptimization::trap_request_index(trap_request) < 0 &&
1991         too_many_recompiles(reason)) {
1992       // This BCI is causing too many recompilations.
1993       action = Deoptimization::Action_none;
1994       trap_request = Deoptimization::make_trap_request(reason, action);
1995     } else {
1996       C->set_trap_can_recompile(true);
1997     }
1998     break;
1999   case Deoptimization::Action_make_not_entrant:
2000     C->set_trap_can_recompile(true);
2001     break;
2002 #ifdef ASSERT
2003   case Deoptimization::Action_none:
2004   case Deoptimization::Action_make_not_compilable:
2005     break;
2006   default:
2007     fatal(err_msg_res("unknown action %d: %s", action, Deoptimization::trap_action_name(action)));
2008     break;
2009 #endif
2010   }
2011 
2012   if (TraceOptoParse) {
2013     char buf[100];
2014     tty->print_cr("Uncommon trap %s at bci:%d",
2015                   Deoptimization::format_trap_request(buf, sizeof(buf),
2016                                                       trap_request), bci());
2017   }
2018 
2019   CompileLog* log = C->log();
2020   if (log != NULL) {
2021     int kid = (klass == NULL)? -1: log->identify(klass);
2022     log->begin_elem("uncommon_trap bci='%d'", bci());
2023     char buf[100];
2024     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2025                                                           trap_request));
2026     if (kid >= 0)         log->print(" klass='%d'", kid);
2027     if (comment != NULL)  log->print(" comment='%s'", comment);
2028     log->end_elem();
2029   }
2030 
2031   // Make sure any guarding test views this path as very unlikely
2032   Node *i0 = control()->in(0);
2033   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2034     IfNode *iff = i0->as_If();
2035     float f = iff->_prob;   // Get prob
2036     if (control()->Opcode() == Op_IfTrue) {
2037       if (f > PROB_UNLIKELY_MAG(4))
2038         iff->_prob = PROB_MIN;
2039     } else {
2040       if (f < PROB_LIKELY_MAG(4))
2041         iff->_prob = PROB_MAX;
2042     }
2043   }
2044 
2045   // Clear out dead values from the debug info.
2046   kill_dead_locals();
2047 
2048   // Now insert the uncommon trap subroutine call
2049   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2050   const TypePtr* no_memory_effects = NULL;
2051   // Pass the index of the class to be loaded
2052   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2053                                  (must_throw ? RC_MUST_THROW : 0),
2054                                  OptoRuntime::uncommon_trap_Type(),
2055                                  call_addr, "uncommon_trap", no_memory_effects,
2056                                  intcon(trap_request));
2057   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2058          "must extract request correctly from the graph");
2059   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2060 
2061   call->set_req(TypeFunc::ReturnAdr, returnadr());
2062   // The debug info is the only real input to this call.
2063 
2064   // Halt-and-catch fire here.  The above call should never return!
2065   HaltNode* halt = new(C) HaltNode(control(), frameptr());
2066   _gvn.set_type_bottom(halt);
2067   root()->add_req(halt);
2068 
2069   stop_and_kill_map();
2070 }
2071 
2072 
2073 //--------------------------just_allocated_object------------------------------
2074 // Report the object that was just allocated.
2075 // It must be the case that there are no intervening safepoints.
2076 // We use this to determine if an object is so "fresh" that
2077 // it does not require card marks.
2078 Node* GraphKit::just_allocated_object(Node* current_control) {
2079   if (C->recent_alloc_ctl() == current_control)
2080     return C->recent_alloc_obj();
2081   return NULL;
2082 }
2083 
2084 
2085 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2086   // (Note:  TypeFunc::make has a cache that makes this fast.)
2087   const TypeFunc* tf    = TypeFunc::make(dest_method);
2088   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
2089   for (int j = 0; j < nargs; j++) {
2090     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
2091     if( targ->basic_type() == T_DOUBLE ) {
2092       // If any parameters are doubles, they must be rounded before
2093       // the call, dstore_rounding does gvn.transform
2094       Node *arg = argument(j);
2095       arg = dstore_rounding(arg);
2096       set_argument(j, arg);
2097     }
2098   }
2099 }
2100 
2101 /**
2102  * Record profiling data exact_kls for Node n with the type system so
2103  * that it can propagate it (speculation)
2104  *
2105  * @param n          node that the type applies to
2106  * @param exact_kls  type from profiling
2107  *
2108  * @return           node with improved type
2109  */
2110 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls) {
2111   const TypeOopPtr* current_type = _gvn.type(n)->isa_oopptr();
2112   assert(UseTypeSpeculation, "type speculation must be on");
2113   if (exact_kls != NULL &&
2114       // nothing to improve if type is already exact
2115       (current_type == NULL ||
2116        (!current_type->klass_is_exact() &&
2117         (current_type->speculative() == NULL ||
2118          !current_type->speculative()->klass_is_exact())))) {
2119     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2120     const TypeOopPtr* xtype = tklass->as_instance_type();
2121     assert(xtype->klass_is_exact(), "Should be exact");
2122 
2123     // Build a type with a speculative type (what we think we know
2124     // about the type but will need a guard when we use it)
2125     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, xtype);
2126     // We're changing the type, we need a new cast node to carry the
2127     // new type. The new type depends on the control: what profiling
2128     // tells us is only valid from here as far as we can tell.
2129     Node* cast = new(C) CastPPNode(n, spec_type);
2130     cast->init_req(0, control());
2131     cast = _gvn.transform(cast);
2132     replace_in_map(n, cast);
2133     n = cast;
2134   }
2135   return n;
2136 }
2137 
2138 /**
2139  * Record profiling data from receiver profiling at an invoke with the
2140  * type system so that it can propagate it (speculation)
2141  *
2142  * @param n  receiver node
2143  *
2144  * @return           node with improved type
2145  */
2146 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2147   if (!UseTypeSpeculation) {
2148     return n;
2149   }
2150   ciKlass* exact_kls = profile_has_unique_klass();
2151   return record_profile_for_speculation(n, exact_kls);
2152 }
2153 
2154 /**
2155  * Record profiling data from argument profiling at an invoke with the
2156  * type system so that it can propagate it (speculation)
2157  *
2158  * @param dest_method  target method for the call
2159  * @param bc           what invoke bytecode is this?
2160  */
2161 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2162   if (!UseTypeSpeculation) {
2163     return;
2164   }
2165   const TypeFunc* tf    = TypeFunc::make(dest_method);
2166   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
2167   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2168   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2169     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
2170     if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2171       ciKlass* better_type = method()->argument_profiled_type(bci(), i);
2172       if (better_type != NULL) {
2173         record_profile_for_speculation(argument(j), better_type);
2174       }
2175       i++;
2176     }
2177   }
2178 }
2179 
2180 /**
2181  * Record profiling data from parameter profiling at an invoke with
2182  * the type system so that it can propagate it (speculation)
2183  */
2184 void GraphKit::record_profiled_parameters_for_speculation() {
2185   if (!UseTypeSpeculation) {
2186     return;
2187   }
2188   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2189     if (_gvn.type(local(i))->isa_oopptr()) {
2190       ciKlass* better_type = method()->parameter_profiled_type(j);
2191       if (better_type != NULL) {
2192         record_profile_for_speculation(local(i), better_type);
2193       }
2194       j++;
2195     }
2196   }
2197 }
2198 
2199 void GraphKit::round_double_result(ciMethod* dest_method) {
2200   // A non-strict method may return a double value which has an extended
2201   // exponent, but this must not be visible in a caller which is 'strict'
2202   // If a strict caller invokes a non-strict callee, round a double result
2203 
2204   BasicType result_type = dest_method->return_type()->basic_type();
2205   assert( method() != NULL, "must have caller context");
2206   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2207     // Destination method's return value is on top of stack
2208     // dstore_rounding() does gvn.transform
2209     Node *result = pop_pair();
2210     result = dstore_rounding(result);
2211     push_pair(result);
2212   }
2213 }
2214 
2215 // rounding for strict float precision conformance
2216 Node* GraphKit::precision_rounding(Node* n) {
2217   return UseStrictFP && _method->flags().is_strict()
2218     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2219     ? _gvn.transform( new (C) RoundFloatNode(0, n) )
2220     : n;
2221 }
2222 
2223 // rounding for strict double precision conformance
2224 Node* GraphKit::dprecision_rounding(Node *n) {
2225   return UseStrictFP && _method->flags().is_strict()
2226     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2227     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2228     : n;
2229 }
2230 
2231 // rounding for non-strict double stores
2232 Node* GraphKit::dstore_rounding(Node* n) {
2233   return Matcher::strict_fp_requires_explicit_rounding
2234     && UseSSE <= 1
2235     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2236     : n;
2237 }
2238 
2239 //=============================================================================
2240 // Generate a fast path/slow path idiom.  Graph looks like:
2241 // [foo] indicates that 'foo' is a parameter
2242 //
2243 //              [in]     NULL
2244 //                 \    /
2245 //                  CmpP
2246 //                  Bool ne
2247 //                   If
2248 //                  /  \
2249 //              True    False-<2>
2250 //              / |
2251 //             /  cast_not_null
2252 //           Load  |    |   ^
2253 //        [fast_test]   |   |
2254 // gvn to   opt_test    |   |
2255 //          /    \      |  <1>
2256 //      True     False  |
2257 //        |         \\  |
2258 //   [slow_call]     \[fast_result]
2259 //    Ctl   Val       \      \
2260 //     |               \      \
2261 //    Catch       <1>   \      \
2262 //   /    \        ^     \      \
2263 //  Ex    No_Ex    |      \      \
2264 //  |       \   \  |       \ <2>  \
2265 //  ...      \  [slow_res] |  |    \   [null_result]
2266 //            \         \--+--+---  |  |
2267 //             \           | /    \ | /
2268 //              --------Region     Phi
2269 //
2270 //=============================================================================
2271 // Code is structured as a series of driver functions all called 'do_XXX' that
2272 // call a set of helper functions.  Helper functions first, then drivers.
2273 
2274 //------------------------------null_check_oop---------------------------------
2275 // Null check oop.  Set null-path control into Region in slot 3.
2276 // Make a cast-not-nullness use the other not-null control.  Return cast.
2277 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2278                                bool never_see_null, bool safe_for_replace) {
2279   // Initial NULL check taken path
2280   (*null_control) = top();
2281   Node* cast = null_check_common(value, T_OBJECT, false, null_control);
2282 
2283   // Generate uncommon_trap:
2284   if (never_see_null && (*null_control) != top()) {
2285     // If we see an unexpected null at a check-cast we record it and force a
2286     // recompile; the offending check-cast will be compiled to handle NULLs.
2287     // If we see more than one offending BCI, then all checkcasts in the
2288     // method will be compiled to handle NULLs.
2289     PreserveJVMState pjvms(this);
2290     set_control(*null_control);
2291     replace_in_map(value, null());
2292     uncommon_trap(Deoptimization::Reason_null_check,
2293                   Deoptimization::Action_make_not_entrant);
2294     (*null_control) = top();    // NULL path is dead
2295   }
2296   if ((*null_control) == top() && safe_for_replace) {
2297     replace_in_map(value, cast);
2298   }
2299 
2300   // Cast away null-ness on the result
2301   return cast;
2302 }
2303 
2304 //------------------------------opt_iff----------------------------------------
2305 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2306 // Return slow-path control.
2307 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2308   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2309 
2310   // Fast path taken; set region slot 2
2311   Node *fast_taken = _gvn.transform( new (C) IfFalseNode(opt_iff) );
2312   region->init_req(2,fast_taken); // Capture fast-control
2313 
2314   // Fast path not-taken, i.e. slow path
2315   Node *slow_taken = _gvn.transform( new (C) IfTrueNode(opt_iff) );
2316   return slow_taken;
2317 }
2318 
2319 //-----------------------------make_runtime_call-------------------------------
2320 Node* GraphKit::make_runtime_call(int flags,
2321                                   const TypeFunc* call_type, address call_addr,
2322                                   const char* call_name,
2323                                   const TypePtr* adr_type,
2324                                   // The following parms are all optional.
2325                                   // The first NULL ends the list.
2326                                   Node* parm0, Node* parm1,
2327                                   Node* parm2, Node* parm3,
2328                                   Node* parm4, Node* parm5,
2329                                   Node* parm6, Node* parm7) {
2330   // Slow-path call
2331   bool is_leaf = !(flags & RC_NO_LEAF);
2332   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2333   if (call_name == NULL) {
2334     assert(!is_leaf, "must supply name for leaf");
2335     call_name = OptoRuntime::stub_name(call_addr);
2336   }
2337   CallNode* call;
2338   if (!is_leaf) {
2339     call = new(C) CallStaticJavaNode(call_type, call_addr, call_name,
2340                                            bci(), adr_type);
2341   } else if (flags & RC_NO_FP) {
2342     call = new(C) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2343   } else {
2344     call = new(C) CallLeafNode(call_type, call_addr, call_name, adr_type);
2345   }
2346 
2347   // The following is similar to set_edges_for_java_call,
2348   // except that the memory effects of the call are restricted to AliasIdxRaw.
2349 
2350   // Slow path call has no side-effects, uses few values
2351   bool wide_in  = !(flags & RC_NARROW_MEM);
2352   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2353 
2354   Node* prev_mem = NULL;
2355   if (wide_in) {
2356     prev_mem = set_predefined_input_for_runtime_call(call);
2357   } else {
2358     assert(!wide_out, "narrow in => narrow out");
2359     Node* narrow_mem = memory(adr_type);
2360     prev_mem = reset_memory();
2361     map()->set_memory(narrow_mem);
2362     set_predefined_input_for_runtime_call(call);
2363   }
2364 
2365   // Hook each parm in order.  Stop looking at the first NULL.
2366   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2367   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2368   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2369   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2370   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2371   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2372   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2373   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2374     /* close each nested if ===> */  } } } } } } } }
2375   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2376 
2377   if (!is_leaf) {
2378     // Non-leaves can block and take safepoints:
2379     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2380   }
2381   // Non-leaves can throw exceptions:
2382   if (has_io) {
2383     call->set_req(TypeFunc::I_O, i_o());
2384   }
2385 
2386   if (flags & RC_UNCOMMON) {
2387     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2388     // (An "if" probability corresponds roughly to an unconditional count.
2389     // Sort of.)
2390     call->set_cnt(PROB_UNLIKELY_MAG(4));
2391   }
2392 
2393   Node* c = _gvn.transform(call);
2394   assert(c == call, "cannot disappear");
2395 
2396   if (wide_out) {
2397     // Slow path call has full side-effects.
2398     set_predefined_output_for_runtime_call(call);
2399   } else {
2400     // Slow path call has few side-effects, and/or sets few values.
2401     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2402   }
2403 
2404   if (has_io) {
2405     set_i_o(_gvn.transform(new (C) ProjNode(call, TypeFunc::I_O)));
2406   }
2407   return call;
2408 
2409 }
2410 
2411 //------------------------------merge_memory-----------------------------------
2412 // Merge memory from one path into the current memory state.
2413 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2414   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2415     Node* old_slice = mms.force_memory();
2416     Node* new_slice = mms.memory2();
2417     if (old_slice != new_slice) {
2418       PhiNode* phi;
2419       if (new_slice->is_Phi() && new_slice->as_Phi()->region() == region) {
2420         phi = new_slice->as_Phi();
2421         #ifdef ASSERT
2422         if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region)
2423           old_slice = old_slice->in(new_path);
2424         // Caller is responsible for ensuring that any pre-existing
2425         // phis are already aware of old memory.
2426         int old_path = (new_path > 1) ? 1 : 2;  // choose old_path != new_path
2427         assert(phi->in(old_path) == old_slice, "pre-existing phis OK");
2428         #endif
2429         mms.set_memory(phi);
2430       } else {
2431         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2432         _gvn.set_type(phi, Type::MEMORY);
2433         phi->set_req(new_path, new_slice);
2434         mms.set_memory(_gvn.transform(phi));  // assume it is complete
2435       }
2436     }
2437   }
2438 }
2439 
2440 //------------------------------make_slow_call_ex------------------------------
2441 // Make the exception handler hookups for the slow call
2442 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj) {
2443   if (stopped())  return;
2444 
2445   // Make a catch node with just two handlers:  fall-through and catch-all
2446   Node* i_o  = _gvn.transform( new (C) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2447   Node* catc = _gvn.transform( new (C) CatchNode(control(), i_o, 2) );
2448   Node* norm = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2449   Node* excp = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2450 
2451   { PreserveJVMState pjvms(this);
2452     set_control(excp);
2453     set_i_o(i_o);
2454 
2455     if (excp != top()) {
2456       // Create an exception state also.
2457       // Use an exact type if the caller has specified a specific exception.
2458       const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2459       Node*       ex_oop  = new (C) CreateExNode(ex_type, control(), i_o);
2460       add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2461     }
2462   }
2463 
2464   // Get the no-exception control from the CatchNode.
2465   set_control(norm);
2466 }
2467 
2468 
2469 //-------------------------------gen_subtype_check-----------------------------
2470 // Generate a subtyping check.  Takes as input the subtype and supertype.
2471 // Returns 2 values: sets the default control() to the true path and returns
2472 // the false path.  Only reads invariant memory; sets no (visible) memory.
2473 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2474 // but that's not exposed to the optimizer.  This call also doesn't take in an
2475 // Object; if you wish to check an Object you need to load the Object's class
2476 // prior to coming here.
2477 Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
2478   // Fast check for identical types, perhaps identical constants.
2479   // The types can even be identical non-constants, in cases
2480   // involving Array.newInstance, Object.clone, etc.
2481   if (subklass == superklass)
2482     return top();             // false path is dead; no test needed.
2483 
2484   if (_gvn.type(superklass)->singleton()) {
2485     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2486     ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
2487 
2488     // In the common case of an exact superklass, try to fold up the
2489     // test before generating code.  You may ask, why not just generate
2490     // the code and then let it fold up?  The answer is that the generated
2491     // code will necessarily include null checks, which do not always
2492     // completely fold away.  If they are also needless, then they turn
2493     // into a performance loss.  Example:
2494     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2495     // Here, the type of 'fa' is often exact, so the store check
2496     // of fa[1]=x will fold up, without testing the nullness of x.
2497     switch (static_subtype_check(superk, subk)) {
2498     case SSC_always_false:
2499       {
2500         Node* always_fail = control();
2501         set_control(top());
2502         return always_fail;
2503       }
2504     case SSC_always_true:
2505       return top();
2506     case SSC_easy_test:
2507       {
2508         // Just do a direct pointer compare and be done.
2509         Node* cmp = _gvn.transform( new(C) CmpPNode(subklass, superklass) );
2510         Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2511         IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2512         set_control( _gvn.transform( new(C) IfTrueNode (iff) ) );
2513         return       _gvn.transform( new(C) IfFalseNode(iff) );
2514       }
2515     case SSC_full_test:
2516       break;
2517     default:
2518       ShouldNotReachHere();
2519     }
2520   }
2521 
2522   // %%% Possible further optimization:  Even if the superklass is not exact,
2523   // if the subklass is the unique subtype of the superklass, the check
2524   // will always succeed.  We could leave a dependency behind to ensure this.
2525 
2526   // First load the super-klass's check-offset
2527   Node *p1 = basic_plus_adr( superklass, superklass, in_bytes(Klass::super_check_offset_offset()) );
2528   Node *chk_off = _gvn.transform( new (C) LoadINode( NULL, memory(p1), p1, _gvn.type(p1)->is_ptr() ) );
2529   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2530   bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2531 
2532   // Load from the sub-klass's super-class display list, or a 1-word cache of
2533   // the secondary superclass list, or a failing value with a sentinel offset
2534   // if the super-klass is an interface or exceptionally deep in the Java
2535   // hierarchy and we have to scan the secondary superclass list the hard way.
2536   // Worst-case type is a little odd: NULL is allowed as a result (usually
2537   // klass loads can never produce a NULL).
2538   Node *chk_off_X = ConvI2X(chk_off);
2539   Node *p2 = _gvn.transform( new (C) AddPNode(subklass,subklass,chk_off_X) );
2540   // For some types like interfaces the following loadKlass is from a 1-word
2541   // cache which is mutable so can't use immutable memory.  Other
2542   // types load from the super-class display table which is immutable.
2543   Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
2544   Node *nkls = _gvn.transform( LoadKlassNode::make( _gvn, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL ) );
2545 
2546   // Compile speed common case: ARE a subtype and we canNOT fail
2547   if( superklass == nkls )
2548     return top();             // false path is dead; no test needed.
2549 
2550   // See if we get an immediate positive hit.  Happens roughly 83% of the
2551   // time.  Test to see if the value loaded just previously from the subklass
2552   // is exactly the superklass.
2553   Node *cmp1 = _gvn.transform( new (C) CmpPNode( superklass, nkls ) );
2554   Node *bol1 = _gvn.transform( new (C) BoolNode( cmp1, BoolTest::eq ) );
2555   IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
2556   Node *iftrue1 = _gvn.transform( new (C) IfTrueNode ( iff1 ) );
2557   set_control(    _gvn.transform( new (C) IfFalseNode( iff1 ) ) );
2558 
2559   // Compile speed common case: Check for being deterministic right now.  If
2560   // chk_off is a constant and not equal to cacheoff then we are NOT a
2561   // subklass.  In this case we need exactly the 1 test above and we can
2562   // return those results immediately.
2563   if (!might_be_cache) {
2564     Node* not_subtype_ctrl = control();
2565     set_control(iftrue1); // We need exactly the 1 test above
2566     return not_subtype_ctrl;
2567   }
2568 
2569   // Gather the various success & failures here
2570   RegionNode *r_ok_subtype = new (C) RegionNode(4);
2571   record_for_igvn(r_ok_subtype);
2572   RegionNode *r_not_subtype = new (C) RegionNode(3);
2573   record_for_igvn(r_not_subtype);
2574 
2575   r_ok_subtype->init_req(1, iftrue1);
2576 
2577   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2578   // is roughly 63% of the remaining cases).  Test to see if the loaded
2579   // check-offset points into the subklass display list or the 1-element
2580   // cache.  If it points to the display (and NOT the cache) and the display
2581   // missed then it's not a subtype.
2582   Node *cacheoff = _gvn.intcon(cacheoff_con);
2583   Node *cmp2 = _gvn.transform( new (C) CmpINode( chk_off, cacheoff ) );
2584   Node *bol2 = _gvn.transform( new (C) BoolNode( cmp2, BoolTest::ne ) );
2585   IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
2586   r_not_subtype->init_req(1, _gvn.transform( new (C) IfTrueNode (iff2) ) );
2587   set_control(                _gvn.transform( new (C) IfFalseNode(iff2) ) );
2588 
2589   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2590   // No performance impact (too rare) but allows sharing of secondary arrays
2591   // which has some footprint reduction.
2592   Node *cmp3 = _gvn.transform( new (C) CmpPNode( subklass, superklass ) );
2593   Node *bol3 = _gvn.transform( new (C) BoolNode( cmp3, BoolTest::eq ) );
2594   IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
2595   r_ok_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode ( iff3 ) ) );
2596   set_control(               _gvn.transform( new (C) IfFalseNode( iff3 ) ) );
2597 
2598   // -- Roads not taken here: --
2599   // We could also have chosen to perform the self-check at the beginning
2600   // of this code sequence, as the assembler does.  This would not pay off
2601   // the same way, since the optimizer, unlike the assembler, can perform
2602   // static type analysis to fold away many successful self-checks.
2603   // Non-foldable self checks work better here in second position, because
2604   // the initial primary superclass check subsumes a self-check for most
2605   // types.  An exception would be a secondary type like array-of-interface,
2606   // which does not appear in its own primary supertype display.
2607   // Finally, we could have chosen to move the self-check into the
2608   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2609   // dependent manner.  But it is worthwhile to have the check here,
2610   // where it can be perhaps be optimized.  The cost in code space is
2611   // small (register compare, branch).
2612 
2613   // Now do a linear scan of the secondary super-klass array.  Again, no real
2614   // performance impact (too rare) but it's gotta be done.
2615   // Since the code is rarely used, there is no penalty for moving it
2616   // out of line, and it can only improve I-cache density.
2617   // The decision to inline or out-of-line this final check is platform
2618   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2619   Node* psc = _gvn.transform(
2620     new (C) PartialSubtypeCheckNode(control(), subklass, superklass) );
2621 
2622   Node *cmp4 = _gvn.transform( new (C) CmpPNode( psc, null() ) );
2623   Node *bol4 = _gvn.transform( new (C) BoolNode( cmp4, BoolTest::ne ) );
2624   IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
2625   r_not_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode (iff4) ) );
2626   r_ok_subtype ->init_req(3, _gvn.transform( new (C) IfFalseNode(iff4) ) );
2627 
2628   // Return false path; set default control to true path.
2629   set_control( _gvn.transform(r_ok_subtype) );
2630   return _gvn.transform(r_not_subtype);
2631 }
2632 
2633 //----------------------------static_subtype_check-----------------------------
2634 // Shortcut important common cases when superklass is exact:
2635 // (0) superklass is java.lang.Object (can occur in reflective code)
2636 // (1) subklass is already limited to a subtype of superklass => always ok
2637 // (2) subklass does not overlap with superklass => always fail
2638 // (3) superklass has NO subtypes and we can check with a simple compare.
2639 int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
2640   if (StressReflectiveCode) {
2641     return SSC_full_test;       // Let caller generate the general case.
2642   }
2643 
2644   if (superk == env()->Object_klass()) {
2645     return SSC_always_true;     // (0) this test cannot fail
2646   }
2647 
2648   ciType* superelem = superk;
2649   if (superelem->is_array_klass())
2650     superelem = superelem->as_array_klass()->base_element_type();
2651 
2652   if (!subk->is_interface()) {  // cannot trust static interface types yet
2653     if (subk->is_subtype_of(superk)) {
2654       return SSC_always_true;   // (1) false path dead; no dynamic test needed
2655     }
2656     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
2657         !superk->is_subtype_of(subk)) {
2658       return SSC_always_false;
2659     }
2660   }
2661 
2662   // If casting to an instance klass, it must have no subtypes
2663   if (superk->is_interface()) {
2664     // Cannot trust interfaces yet.
2665     // %%% S.B. superk->nof_implementors() == 1
2666   } else if (superelem->is_instance_klass()) {
2667     ciInstanceKlass* ik = superelem->as_instance_klass();
2668     if (!ik->has_subklass() && !ik->is_interface()) {
2669       if (!ik->is_final()) {
2670         // Add a dependency if there is a chance of a later subclass.
2671         C->dependencies()->assert_leaf_type(ik);
2672       }
2673       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
2674     }
2675   } else {
2676     // A primitive array type has no subtypes.
2677     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
2678   }
2679 
2680   return SSC_full_test;
2681 }
2682 
2683 // Profile-driven exact type check:
2684 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2685                                     float prob,
2686                                     Node* *casted_receiver) {
2687   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2688   Node* recv_klass = load_object_klass(receiver);
2689   Node* want_klass = makecon(tklass);
2690   Node* cmp = _gvn.transform( new(C) CmpPNode(recv_klass, want_klass) );
2691   Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2692   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2693   set_control( _gvn.transform( new(C) IfTrueNode (iff) ));
2694   Node* fail = _gvn.transform( new(C) IfFalseNode(iff) );
2695 
2696   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2697   assert(recv_xtype->klass_is_exact(), "");
2698 
2699   // Subsume downstream occurrences of receiver with a cast to
2700   // recv_xtype, since now we know what the type will be.
2701   Node* cast = new(C) CheckCastPPNode(control(), receiver, recv_xtype);
2702   (*casted_receiver) = _gvn.transform(cast);
2703   // (User must make the replace_in_map call.)
2704 
2705   return fail;
2706 }
2707 
2708 
2709 //------------------------------seems_never_null-------------------------------
2710 // Use null_seen information if it is available from the profile.
2711 // If we see an unexpected null at a type check we record it and force a
2712 // recompile; the offending check will be recompiled to handle NULLs.
2713 // If we see several offending BCIs, then all checks in the
2714 // method will be recompiled.
2715 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data) {
2716   if (UncommonNullCast               // Cutout for this technique
2717       && obj != null()               // And not the -Xcomp stupid case?
2718       && !too_many_traps(Deoptimization::Reason_null_check)
2719       ) {
2720     if (data == NULL)
2721       // Edge case:  no mature data.  Be optimistic here.
2722       return true;
2723     // If the profile has not seen a null, assume it won't happen.
2724     assert(java_bc() == Bytecodes::_checkcast ||
2725            java_bc() == Bytecodes::_instanceof ||
2726            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2727     return !data->as_BitData()->null_seen();
2728   }
2729   return false;
2730 }
2731 
2732 //------------------------maybe_cast_profiled_receiver-------------------------
2733 // If the profile has seen exactly one type, narrow to exactly that type.
2734 // Subsequent type checks will always fold up.
2735 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2736                                              ciKlass* require_klass,
2737                                             ciKlass* spec_klass,
2738                                              bool safe_for_replace) {
2739   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2740 
2741   // Make sure we haven't already deoptimized from this tactic.
2742   if (too_many_traps(Deoptimization::Reason_class_check))
2743     return NULL;
2744 
2745   // (No, this isn't a call, but it's enough like a virtual call
2746   // to use the same ciMethod accessor to get the profile info...)
2747   // If we have a speculative type use it instead of profiling (which
2748   // may not help us)
2749   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2750   if (exact_kls != NULL) {// no cast failures here
2751     if (require_klass == NULL ||
2752         static_subtype_check(require_klass, exact_kls) == SSC_always_true) {
2753       // If we narrow the type to match what the type profile sees or
2754       // the speculative type, we can then remove the rest of the
2755       // cast.
2756       // This is a win, even if the exact_kls is very specific,
2757       // because downstream operations, such as method calls,
2758       // will often benefit from the sharper type.
2759       Node* exact_obj = not_null_obj; // will get updated in place...
2760       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2761                                             &exact_obj);
2762       { PreserveJVMState pjvms(this);
2763         set_control(slow_ctl);
2764         uncommon_trap(Deoptimization::Reason_class_check,
2765                       Deoptimization::Action_maybe_recompile);
2766       }
2767       if (safe_for_replace) {
2768         replace_in_map(not_null_obj, exact_obj);
2769       }
2770       return exact_obj;
2771     }
2772     // assert(ssc == SSC_always_true)... except maybe the profile lied to us.
2773   }
2774 
2775   return NULL;
2776 }
2777 
2778 /**
2779  * Cast obj to type and emit guard unless we had too many traps here
2780  * already
2781  *
2782  * @param obj       node being casted
2783  * @param type      type to cast the node to
2784  * @param not_null  true if we know node cannot be null
2785  */
2786 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2787                                         ciKlass* type,
2788                                         bool not_null) {
2789   // type == NULL if profiling tells us this object is always null
2790   if (type != NULL) {
2791     if (!too_many_traps(Deoptimization::Reason_null_check) &&
2792         !too_many_traps(Deoptimization::Reason_class_check)) {
2793       Node* not_null_obj = NULL;
2794       // not_null is true if we know the object is not null and
2795       // there's no need for a null check
2796       if (!not_null) {
2797         Node* null_ctl = top();
2798         not_null_obj = null_check_oop(obj, &null_ctl, true, true);
2799         assert(null_ctl->is_top(), "no null control here");
2800       } else {
2801         not_null_obj = obj;
2802       }
2803 
2804       Node* exact_obj = not_null_obj;
2805       ciKlass* exact_kls = type;
2806       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2807                                             &exact_obj);
2808       {
2809         PreserveJVMState pjvms(this);
2810         set_control(slow_ctl);
2811         uncommon_trap(Deoptimization::Reason_class_check,
2812                       Deoptimization::Action_maybe_recompile);
2813       }
2814       replace_in_map(not_null_obj, exact_obj);
2815       obj = exact_obj;
2816     }
2817   } else {
2818     if (!too_many_traps(Deoptimization::Reason_null_assert)) {
2819       Node* exact_obj = null_assert(obj);
2820       replace_in_map(obj, exact_obj);
2821       obj = exact_obj;
2822     }
2823   }
2824   return obj;
2825 }
2826 
2827 //-------------------------------gen_instanceof--------------------------------
2828 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2829 // and the reflective instance-of call.
2830 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
2831   kill_dead_locals();           // Benefit all the uncommon traps
2832   assert( !stopped(), "dead parse path should be checked in callers" );
2833   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2834          "must check for not-null not-dead klass in callers");
2835 
2836   // Make the merge point
2837   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2838   RegionNode* region = new(C) RegionNode(PATH_LIMIT);
2839   Node*       phi    = new(C) PhiNode(region, TypeInt::BOOL);
2840   C->set_has_split_ifs(true); // Has chance for split-if optimization
2841 
2842   ciProfileData* data = NULL;
2843   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2844     data = method()->method_data()->bci_to_data(bci());
2845   }
2846   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2847                          && seems_never_null(obj, data));
2848 
2849   // Null check; get casted pointer; set region slot 3
2850   Node* null_ctl = top();
2851   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);
2852 
2853   // If not_null_obj is dead, only null-path is taken
2854   if (stopped()) {              // Doing instance-of on a NULL?
2855     set_control(null_ctl);
2856     return intcon(0);
2857   }
2858   region->init_req(_null_path, null_ctl);
2859   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2860   if (null_ctl == top()) {
2861     // Do this eagerly, so that pattern matches like is_diamond_phi
2862     // will work even during parsing.
2863     assert(_null_path == PATH_LIMIT-1, "delete last");
2864     region->del_req(_null_path);
2865     phi   ->del_req(_null_path);
2866   }
2867 
2868   // Do we know the type check always succeed?
2869   bool known_statically = false;
2870   if (_gvn.type(superklass)->singleton()) {
2871     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2872     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
2873     if (subk != NULL && subk->is_loaded()) {
2874       int static_res = static_subtype_check(superk, subk);
2875       known_statically = (static_res == SSC_always_true || static_res == SSC_always_false);
2876     }
2877   }
2878 
2879   if (known_statically && UseTypeSpeculation) {
2880     // If we know the type check always succeed then we don't use the
2881     // profiling data at this bytecode. Don't lose it, feed it to the
2882     // type system as a speculative type.
2883     not_null_obj = record_profiled_receiver_for_speculation(not_null_obj);
2884   } else {
2885     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2886     // We may not have profiling here or it may not help us. If we
2887     // have a speculative type use it to perform an exact cast.
2888     ciKlass* spec_obj_type = obj_type->speculative_type();
2889     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
2890       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
2891       if (stopped()) {            // Profile disagrees with this path.
2892         set_control(null_ctl);    // Null is the only remaining possibility.
2893         return intcon(0);
2894       }
2895       if (cast_obj != NULL) {
2896         not_null_obj = cast_obj;
2897       }
2898     }
2899   }
2900 
2901   // Load the object's klass
2902   Node* obj_klass = load_object_klass(not_null_obj);
2903 
2904   // Generate the subtype check
2905   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2906 
2907   // Plug in the success path to the general merge in slot 1.
2908   region->init_req(_obj_path, control());
2909   phi   ->init_req(_obj_path, intcon(1));
2910 
2911   // Plug in the failing path to the general merge in slot 2.
2912   region->init_req(_fail_path, not_subtype_ctrl);
2913   phi   ->init_req(_fail_path, intcon(0));
2914 
2915   // Return final merged results
2916   set_control( _gvn.transform(region) );
2917   record_for_igvn(region);
2918   return _gvn.transform(phi);
2919 }
2920 
2921 //-------------------------------gen_checkcast---------------------------------
2922 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
2923 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
2924 // uncommon-trap paths work.  Adjust stack after this call.
2925 // If failure_control is supplied and not null, it is filled in with
2926 // the control edge for the cast failure.  Otherwise, an appropriate
2927 // uncommon trap or exception is thrown.
2928 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
2929                               Node* *failure_control) {
2930   kill_dead_locals();           // Benefit all the uncommon traps
2931   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
2932   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
2933 
2934   // Fast cutout:  Check the case that the cast is vacuously true.
2935   // This detects the common cases where the test will short-circuit
2936   // away completely.  We do this before we perform the null check,
2937   // because if the test is going to turn into zero code, we don't
2938   // want a residual null check left around.  (Causes a slowdown,
2939   // for example, in some objArray manipulations, such as a[i]=a[j].)
2940   if (tk->singleton()) {
2941     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
2942     if (objtp != NULL && objtp->klass() != NULL) {
2943       switch (static_subtype_check(tk->klass(), objtp->klass())) {
2944       case SSC_always_true:
2945         // If we know the type check always succeed then we don't use
2946         // the profiling data at this bytecode. Don't lose it, feed it
2947         // to the type system as a speculative type.
2948         return record_profiled_receiver_for_speculation(obj);
2949       case SSC_always_false:
2950         // It needs a null check because a null will *pass* the cast check.
2951         // A non-null value will always produce an exception.
2952         return null_assert(obj);
2953       }
2954     }
2955   }
2956 
2957   ciProfileData* data = NULL;
2958   bool safe_for_replace = false;
2959   if (failure_control == NULL) {        // use MDO in regular case only
2960     assert(java_bc() == Bytecodes::_aastore ||
2961            java_bc() == Bytecodes::_checkcast,
2962            "interpreter profiles type checks only for these BCs");
2963     data = method()->method_data()->bci_to_data(bci());
2964     safe_for_replace = true;
2965   }
2966 
2967   // Make the merge point
2968   enum { _obj_path = 1, _null_path, PATH_LIMIT };
2969   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
2970   Node*       phi    = new (C) PhiNode(region, toop);
2971   C->set_has_split_ifs(true); // Has chance for split-if optimization
2972 
2973   // Use null-cast information if it is available
2974   bool never_see_null = ((failure_control == NULL)  // regular case only
2975                          && seems_never_null(obj, data));
2976 
2977   // Null check; get casted pointer; set region slot 3
2978   Node* null_ctl = top();
2979   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);
2980 
2981   // If not_null_obj is dead, only null-path is taken
2982   if (stopped()) {              // Doing instance-of on a NULL?
2983     set_control(null_ctl);
2984     return null();
2985   }
2986   region->init_req(_null_path, null_ctl);
2987   phi   ->init_req(_null_path, null());  // Set null path value
2988   if (null_ctl == top()) {
2989     // Do this eagerly, so that pattern matches like is_diamond_phi
2990     // will work even during parsing.
2991     assert(_null_path == PATH_LIMIT-1, "delete last");
2992     region->del_req(_null_path);
2993     phi   ->del_req(_null_path);
2994   }
2995 
2996   Node* cast_obj = NULL;
2997   const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2998   // We may not have profiling here or it may not help us. If we have
2999   // a speculative type use it to perform an exact cast.
3000   ciKlass* spec_obj_type = obj_type->speculative_type();
3001   if (spec_obj_type != NULL ||
3002       (data != NULL &&
3003        // Counter has never been decremented (due to cast failure).
3004        // ...This is a reasonable thing to expect.  It is true of
3005        // all casts inserted by javac to implement generic types.
3006        data->as_CounterData()->count() >= 0)) {
3007     cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3008     if (cast_obj != NULL) {
3009       if (failure_control != NULL) // failure is now impossible
3010         (*failure_control) = top();
3011       // adjust the type of the phi to the exact klass:
3012       phi->raise_bottom_type(_gvn.type(cast_obj)->meet(TypePtr::NULL_PTR));
3013     }
3014   }
3015 
3016   if (cast_obj == NULL) {
3017     // Load the object's klass
3018     Node* obj_klass = load_object_klass(not_null_obj);
3019 
3020     // Generate the subtype check
3021     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3022 
3023     // Plug in success path into the merge
3024     cast_obj = _gvn.transform(new (C) CheckCastPPNode(control(),
3025                                                          not_null_obj, toop));
3026     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3027     if (failure_control == NULL) {
3028       if (not_subtype_ctrl != top()) { // If failure is possible
3029         PreserveJVMState pjvms(this);
3030         set_control(not_subtype_ctrl);
3031         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3032       }
3033     } else {
3034       (*failure_control) = not_subtype_ctrl;
3035     }
3036   }
3037 
3038   region->init_req(_obj_path, control());
3039   phi   ->init_req(_obj_path, cast_obj);
3040 
3041   // A merge of NULL or Casted-NotNull obj
3042   Node* res = _gvn.transform(phi);
3043 
3044   // Note I do NOT always 'replace_in_map(obj,result)' here.
3045   //  if( tk->klass()->can_be_primary_super()  )
3046     // This means that if I successfully store an Object into an array-of-String
3047     // I 'forget' that the Object is really now known to be a String.  I have to
3048     // do this because we don't have true union types for interfaces - if I store
3049     // a Baz into an array-of-Interface and then tell the optimizer it's an
3050     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3051     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3052   //  replace_in_map( obj, res );
3053 
3054   // Return final merged results
3055   set_control( _gvn.transform(region) );
3056   record_for_igvn(region);
3057   return res;
3058 }
3059 
3060 //------------------------------next_monitor-----------------------------------
3061 // What number should be given to the next monitor?
3062 int GraphKit::next_monitor() {
3063   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3064   int next = current + C->sync_stack_slots();
3065   // Keep the toplevel high water mark current:
3066   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3067   return current;
3068 }
3069 
3070 //------------------------------insert_mem_bar---------------------------------
3071 // Memory barrier to avoid floating things around
3072 // The membar serves as a pinch point between both control and all memory slices.
3073 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3074   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3075   mb->init_req(TypeFunc::Control, control());
3076   mb->init_req(TypeFunc::Memory,  reset_memory());
3077   Node* membar = _gvn.transform(mb);
3078   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
3079   set_all_memory_call(membar);
3080   return membar;
3081 }
3082 
3083 //-------------------------insert_mem_bar_volatile----------------------------
3084 // Memory barrier to avoid floating things around
3085 // The membar serves as a pinch point between both control and memory(alias_idx).
3086 // If you want to make a pinch point on all memory slices, do not use this
3087 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3088 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3089   // When Parse::do_put_xxx updates a volatile field, it appends a series
3090   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3091   // The first membar is on the same memory slice as the field store opcode.
3092   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3093   // All the other membars (for other volatile slices, including AliasIdxBot,
3094   // which stands for all unknown volatile slices) are control-dependent
3095   // on the first membar.  This prevents later volatile loads or stores
3096   // from sliding up past the just-emitted store.
3097 
3098   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3099   mb->set_req(TypeFunc::Control,control());
3100   if (alias_idx == Compile::AliasIdxBot) {
3101     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3102   } else {
3103     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3104     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3105   }
3106   Node* membar = _gvn.transform(mb);
3107   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
3108   if (alias_idx == Compile::AliasIdxBot) {
3109     merged_memory()->set_base_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)));
3110   } else {
3111     set_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)),alias_idx);
3112   }
3113   return membar;
3114 }
3115 
3116 //------------------------------shared_lock------------------------------------
3117 // Emit locking code.
3118 FastLockNode* GraphKit::shared_lock(Node* obj) {
3119   // bci is either a monitorenter bc or InvocationEntryBci
3120   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3121   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3122 
3123   if( !GenerateSynchronizationCode )
3124     return NULL;                // Not locking things?
3125   if (stopped())                // Dead monitor?
3126     return NULL;
3127 
3128   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3129 
3130   // Box the stack location
3131   Node* box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
3132   Node* mem = reset_memory();
3133 
3134   FastLockNode * flock = _gvn.transform(new (C) FastLockNode(0, obj, box) )->as_FastLock();
3135   if (PrintPreciseBiasedLockingStatistics) {
3136     // Create the counters for this fast lock.
3137     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3138   }
3139   // Add monitor to debug info for the slow path.  If we block inside the
3140   // slow path and de-opt, we need the monitor hanging around
3141   map()->push_monitor( flock );
3142 
3143   const TypeFunc *tf = LockNode::lock_type();
3144   LockNode *lock = new (C) LockNode(C, tf);
3145 
3146   lock->init_req( TypeFunc::Control, control() );
3147   lock->init_req( TypeFunc::Memory , mem );
3148   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3149   lock->init_req( TypeFunc::FramePtr, frameptr() );
3150   lock->init_req( TypeFunc::ReturnAdr, top() );
3151 
3152   lock->init_req(TypeFunc::Parms + 0, obj);
3153   lock->init_req(TypeFunc::Parms + 1, box);
3154   lock->init_req(TypeFunc::Parms + 2, flock);
3155   add_safepoint_edges(lock);
3156 
3157   lock = _gvn.transform( lock )->as_Lock();
3158 
3159   // lock has no side-effects, sets few values
3160   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3161 
3162   insert_mem_bar(Op_MemBarAcquireLock);
3163 
3164   // Add this to the worklist so that the lock can be eliminated
3165   record_for_igvn(lock);
3166 
3167 #ifndef PRODUCT
3168   if (PrintLockStatistics) {
3169     // Update the counter for this lock.  Don't bother using an atomic
3170     // operation since we don't require absolute accuracy.
3171     lock->create_lock_counter(map()->jvms());
3172     increment_counter(lock->counter()->addr());
3173   }
3174 #endif
3175 
3176   return flock;
3177 }
3178 
3179 
3180 //------------------------------shared_unlock----------------------------------
3181 // Emit unlocking code.
3182 void GraphKit::shared_unlock(Node* box, Node* obj) {
3183   // bci is either a monitorenter bc or InvocationEntryBci
3184   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3185   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3186 
3187   if( !GenerateSynchronizationCode )
3188     return;
3189   if (stopped()) {               // Dead monitor?
3190     map()->pop_monitor();        // Kill monitor from debug info
3191     return;
3192   }
3193 
3194   // Memory barrier to avoid floating things down past the locked region
3195   insert_mem_bar(Op_MemBarReleaseLock);
3196 
3197   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3198   UnlockNode *unlock = new (C) UnlockNode(C, tf);
3199   uint raw_idx = Compile::AliasIdxRaw;
3200   unlock->init_req( TypeFunc::Control, control() );
3201   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3202   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3203   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3204   unlock->init_req( TypeFunc::ReturnAdr, top() );
3205 
3206   unlock->init_req(TypeFunc::Parms + 0, obj);
3207   unlock->init_req(TypeFunc::Parms + 1, box);
3208   unlock = _gvn.transform(unlock)->as_Unlock();
3209 
3210   Node* mem = reset_memory();
3211 
3212   // unlock has no side-effects, sets few values
3213   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3214 
3215   // Kill monitor from debug info
3216   map()->pop_monitor( );
3217 }
3218 
3219 //-------------------------------get_layout_helper-----------------------------
3220 // If the given klass is a constant or known to be an array,
3221 // fetch the constant layout helper value into constant_value
3222 // and return (Node*)NULL.  Otherwise, load the non-constant
3223 // layout helper value, and return the node which represents it.
3224 // This two-faced routine is useful because allocation sites
3225 // almost always feature constant types.
3226 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3227   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3228   if (!StressReflectiveCode && inst_klass != NULL) {
3229     ciKlass* klass = inst_klass->klass();
3230     bool    xklass = inst_klass->klass_is_exact();
3231     if (xklass || klass->is_array_klass()) {
3232       jint lhelper = klass->layout_helper();
3233       if (lhelper != Klass::_lh_neutral_value) {
3234         constant_value = lhelper;
3235         return (Node*) NULL;
3236       }
3237     }
3238   }
3239   constant_value = Klass::_lh_neutral_value;  // put in a known value
3240   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3241   return make_load(NULL, lhp, TypeInt::INT, T_INT);
3242 }
3243 
3244 // We just put in an allocate/initialize with a big raw-memory effect.
3245 // Hook selected additional alias categories on the initialization.
3246 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3247                                 MergeMemNode* init_in_merge,
3248                                 Node* init_out_raw) {
3249   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3250   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3251 
3252   Node* prevmem = kit.memory(alias_idx);
3253   init_in_merge->set_memory_at(alias_idx, prevmem);
3254   kit.set_memory(init_out_raw, alias_idx);
3255 }
3256 
3257 //---------------------------set_output_for_allocation-------------------------
3258 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3259                                           const TypeOopPtr* oop_type) {
3260   int rawidx = Compile::AliasIdxRaw;
3261   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3262   add_safepoint_edges(alloc);
3263   Node* allocx = _gvn.transform(alloc);
3264   set_control( _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Control) ) );
3265   // create memory projection for i_o
3266   set_memory ( _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3267   make_slow_call_ex(allocx, env()->Throwable_klass(), true);
3268 
3269   // create a memory projection as for the normal control path
3270   Node* malloc = _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Memory));
3271   set_memory(malloc, rawidx);
3272 
3273   // a normal slow-call doesn't change i_o, but an allocation does
3274   // we create a separate i_o projection for the normal control path
3275   set_i_o(_gvn.transform( new (C) ProjNode(allocx, TypeFunc::I_O, false) ) );
3276   Node* rawoop = _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Parms) );
3277 
3278   // put in an initialization barrier
3279   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3280                                                  rawoop)->as_Initialize();
3281   assert(alloc->initialization() == init,  "2-way macro link must work");
3282   assert(init ->allocation()     == alloc, "2-way macro link must work");
3283   {
3284     // Extract memory strands which may participate in the new object's
3285     // initialization, and source them from the new InitializeNode.
3286     // This will allow us to observe initializations when they occur,
3287     // and link them properly (as a group) to the InitializeNode.
3288     assert(init->in(InitializeNode::Memory) == malloc, "");
3289     MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
3290     init->set_req(InitializeNode::Memory, minit_in);
3291     record_for_igvn(minit_in); // fold it up later, if possible
3292     Node* minit_out = memory(rawidx);
3293     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3294     if (oop_type->isa_aryptr()) {
3295       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3296       int            elemidx  = C->get_alias_index(telemref);
3297       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3298     } else if (oop_type->isa_instptr()) {
3299       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3300       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3301         ciField* field = ik->nonstatic_field_at(i);
3302         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3303           continue;  // do not bother to track really large numbers of fields
3304         // Find (or create) the alias category for this field:
3305         int fieldidx = C->alias_type(field)->index();
3306         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3307       }
3308     }
3309   }
3310 
3311   // Cast raw oop to the real thing...
3312   Node* javaoop = new (C) CheckCastPPNode(control(), rawoop, oop_type);
3313   javaoop = _gvn.transform(javaoop);
3314   C->set_recent_alloc(control(), javaoop);
3315   assert(just_allocated_object(control()) == javaoop, "just allocated");
3316 
3317 #ifdef ASSERT
3318   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3319     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3320            "Ideal_allocation works");
3321     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3322            "Ideal_allocation works");
3323     if (alloc->is_AllocateArray()) {
3324       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3325              "Ideal_allocation works");
3326       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3327              "Ideal_allocation works");
3328     } else {
3329       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3330     }
3331   }
3332 #endif //ASSERT
3333 
3334   return javaoop;
3335 }
3336 
3337 //---------------------------new_instance--------------------------------------
3338 // This routine takes a klass_node which may be constant (for a static type)
3339 // or may be non-constant (for reflective code).  It will work equally well
3340 // for either, and the graph will fold nicely if the optimizer later reduces
3341 // the type to a constant.
3342 // The optional arguments are for specialized use by intrinsics:
3343 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3344 //  - If 'return_size_val', report the the total object size to the caller.
3345 Node* GraphKit::new_instance(Node* klass_node,
3346                              Node* extra_slow_test,
3347                              Node* *return_size_val) {
3348   // Compute size in doublewords
3349   // The size is always an integral number of doublewords, represented
3350   // as a positive bytewise size stored in the klass's layout_helper.
3351   // The layout_helper also encodes (in a low bit) the need for a slow path.
3352   jint  layout_con = Klass::_lh_neutral_value;
3353   Node* layout_val = get_layout_helper(klass_node, layout_con);
3354   int   layout_is_con = (layout_val == NULL);
3355 
3356   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3357   // Generate the initial go-slow test.  It's either ALWAYS (return a
3358   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3359   // case) a computed value derived from the layout_helper.
3360   Node* initial_slow_test = NULL;
3361   if (layout_is_con) {
3362     assert(!StressReflectiveCode, "stress mode does not use these paths");
3363     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3364     initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
3365 
3366   } else {   // reflective case
3367     // This reflective path is used by Unsafe.allocateInstance.
3368     // (It may be stress-tested by specifying StressReflectiveCode.)
3369     // Basically, we want to get into the VM is there's an illegal argument.
3370     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3371     initial_slow_test = _gvn.transform( new (C) AndINode(layout_val, bit) );
3372     if (extra_slow_test != intcon(0)) {
3373       initial_slow_test = _gvn.transform( new (C) OrINode(initial_slow_test, extra_slow_test) );
3374     }
3375     // (Macro-expander will further convert this to a Bool, if necessary.)
3376   }
3377 
3378   // Find the size in bytes.  This is easy; it's the layout_helper.
3379   // The size value must be valid even if the slow path is taken.
3380   Node* size = NULL;
3381   if (layout_is_con) {
3382     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3383   } else {   // reflective case
3384     // This reflective path is used by clone and Unsafe.allocateInstance.
3385     size = ConvI2X(layout_val);
3386 
3387     // Clear the low bits to extract layout_helper_size_in_bytes:
3388     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3389     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3390     size = _gvn.transform( new (C) AndXNode(size, mask) );
3391   }
3392   if (return_size_val != NULL) {
3393     (*return_size_val) = size;
3394   }
3395 
3396   // This is a precise notnull oop of the klass.
3397   // (Actually, it need not be precise if this is a reflective allocation.)
3398   // It's what we cast the result to.
3399   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3400   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3401   const TypeOopPtr* oop_type = tklass->as_instance_type();
3402 
3403   // Now generate allocation code
3404 
3405   // The entire memory state is needed for slow path of the allocation
3406   // since GC and deoptimization can happened.
3407   Node *mem = reset_memory();
3408   set_all_memory(mem); // Create new memory state
3409 
3410   AllocateNode* alloc
3411     = new (C) AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3412                            control(), mem, i_o(),
3413                            size, klass_node,
3414                            initial_slow_test);
3415 
3416   return set_output_for_allocation(alloc, oop_type);
3417 }
3418 
3419 //-------------------------------new_array-------------------------------------
3420 // helper for both newarray and anewarray
3421 // The 'length' parameter is (obviously) the length of the array.
3422 // See comments on new_instance for the meaning of the other arguments.
3423 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3424                           Node* length,         // number of array elements
3425                           int   nargs,          // number of arguments to push back for uncommon trap
3426                           Node* *return_size_val) {
3427   jint  layout_con = Klass::_lh_neutral_value;
3428   Node* layout_val = get_layout_helper(klass_node, layout_con);
3429   int   layout_is_con = (layout_val == NULL);
3430 
3431   if (!layout_is_con && !StressReflectiveCode &&
3432       !too_many_traps(Deoptimization::Reason_class_check)) {
3433     // This is a reflective array creation site.
3434     // Optimistically assume that it is a subtype of Object[],
3435     // so that we can fold up all the address arithmetic.
3436     layout_con = Klass::array_layout_helper(T_OBJECT);
3437     Node* cmp_lh = _gvn.transform( new(C) CmpINode(layout_val, intcon(layout_con)) );
3438     Node* bol_lh = _gvn.transform( new(C) BoolNode(cmp_lh, BoolTest::eq) );
3439     { BuildCutout unless(this, bol_lh, PROB_MAX);
3440       inc_sp(nargs);
3441       uncommon_trap(Deoptimization::Reason_class_check,
3442                     Deoptimization::Action_maybe_recompile);
3443     }
3444     layout_val = NULL;
3445     layout_is_con = true;
3446   }
3447 
3448   // Generate the initial go-slow test.  Make sure we do not overflow
3449   // if length is huge (near 2Gig) or negative!  We do not need
3450   // exact double-words here, just a close approximation of needed
3451   // double-words.  We can't add any offset or rounding bits, lest we
3452   // take a size -1 of bytes and make it positive.  Use an unsigned
3453   // compare, so negative sizes look hugely positive.
3454   int fast_size_limit = FastAllocateSizeLimit;
3455   if (layout_is_con) {
3456     assert(!StressReflectiveCode, "stress mode does not use these paths");
3457     // Increase the size limit if we have exact knowledge of array type.
3458     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3459     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3460   }
3461 
3462   Node* initial_slow_cmp  = _gvn.transform( new (C) CmpUNode( length, intcon( fast_size_limit ) ) );
3463   Node* initial_slow_test = _gvn.transform( new (C) BoolNode( initial_slow_cmp, BoolTest::gt ) );
3464   if (initial_slow_test->is_Bool()) {
3465     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3466     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3467   }
3468 
3469   // --- Size Computation ---
3470   // array_size = round_to_heap(array_header + (length << elem_shift));
3471   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
3472   // and round_to(x, y) == ((x + y-1) & ~(y-1))
3473   // The rounding mask is strength-reduced, if possible.
3474   int round_mask = MinObjAlignmentInBytes - 1;
3475   Node* header_size = NULL;
3476   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3477   // (T_BYTE has the weakest alignment and size restrictions...)
3478   if (layout_is_con) {
3479     int       hsize  = Klass::layout_helper_header_size(layout_con);
3480     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3481     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3482     if ((round_mask & ~right_n_bits(eshift)) == 0)
3483       round_mask = 0;  // strength-reduce it if it goes away completely
3484     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3485     assert(header_size_min <= hsize, "generic minimum is smallest");
3486     header_size_min = hsize;
3487     header_size = intcon(hsize + round_mask);
3488   } else {
3489     Node* hss   = intcon(Klass::_lh_header_size_shift);
3490     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3491     Node* hsize = _gvn.transform( new(C) URShiftINode(layout_val, hss) );
3492     hsize       = _gvn.transform( new(C) AndINode(hsize, hsm) );
3493     Node* mask  = intcon(round_mask);
3494     header_size = _gvn.transform( new(C) AddINode(hsize, mask) );
3495   }
3496 
3497   Node* elem_shift = NULL;
3498   if (layout_is_con) {
3499     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3500     if (eshift != 0)
3501       elem_shift = intcon(eshift);
3502   } else {
3503     // There is no need to mask or shift this value.
3504     // The semantics of LShiftINode include an implicit mask to 0x1F.
3505     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3506     elem_shift = layout_val;
3507   }
3508 
3509   // Transition to native address size for all offset calculations:
3510   Node* lengthx = ConvI2X(length);
3511   Node* headerx = ConvI2X(header_size);
3512 #ifdef _LP64
3513   { const TypeLong* tllen = _gvn.find_long_type(lengthx);
3514     if (tllen != NULL && tllen->_lo < 0) {
3515       // Add a manual constraint to a positive range.  Cf. array_element_address.
3516       jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
3517       if (size_max > tllen->_hi)  size_max = tllen->_hi;
3518       const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
3519       lengthx = _gvn.transform( new (C) ConvI2LNode(length, tlcon));
3520     }
3521   }
3522 #endif
3523 
3524   // Combine header size (plus rounding) and body size.  Then round down.
3525   // This computation cannot overflow, because it is used only in two
3526   // places, one where the length is sharply limited, and the other
3527   // after a successful allocation.
3528   Node* abody = lengthx;
3529   if (elem_shift != NULL)
3530     abody     = _gvn.transform( new(C) LShiftXNode(lengthx, elem_shift) );
3531   Node* size  = _gvn.transform( new(C) AddXNode(headerx, abody) );
3532   if (round_mask != 0) {
3533     Node* mask = MakeConX(~round_mask);
3534     size       = _gvn.transform( new(C) AndXNode(size, mask) );
3535   }
3536   // else if round_mask == 0, the size computation is self-rounding
3537 
3538   if (return_size_val != NULL) {
3539     // This is the size
3540     (*return_size_val) = size;
3541   }
3542 
3543   // Now generate allocation code
3544 
3545   // The entire memory state is needed for slow path of the allocation
3546   // since GC and deoptimization can happened.
3547   Node *mem = reset_memory();
3548   set_all_memory(mem); // Create new memory state
3549 
3550   // Create the AllocateArrayNode and its result projections
3551   AllocateArrayNode* alloc
3552     = new (C) AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3553                                 control(), mem, i_o(),
3554                                 size, klass_node,
3555                                 initial_slow_test,
3556                                 length);
3557 
3558   // Cast to correct type.  Note that the klass_node may be constant or not,
3559   // and in the latter case the actual array type will be inexact also.
3560   // (This happens via a non-constant argument to inline_native_newArray.)
3561   // In any case, the value of klass_node provides the desired array type.
3562   const TypeInt* length_type = _gvn.find_int_type(length);
3563   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3564   if (ary_type->isa_aryptr() && length_type != NULL) {
3565     // Try to get a better type than POS for the size
3566     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3567   }
3568 
3569   Node* javaoop = set_output_for_allocation(alloc, ary_type);
3570 
3571   // Cast length on remaining path to be as narrow as possible
3572   if (map()->find_edge(length) >= 0) {
3573     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3574     if (ccast != length) {
3575       _gvn.set_type_bottom(ccast);
3576       record_for_igvn(ccast);
3577       replace_in_map(length, ccast);
3578     }
3579   }
3580 
3581   return javaoop;
3582 }
3583 
3584 // The following "Ideal_foo" functions are placed here because they recognize
3585 // the graph shapes created by the functions immediately above.
3586 
3587 //---------------------------Ideal_allocation----------------------------------
3588 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3589 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3590   if (ptr == NULL) {     // reduce dumb test in callers
3591     return NULL;
3592   }
3593   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3594     ptr = ptr->in(1);
3595     if (ptr == NULL) return NULL;
3596   }
3597   // Return NULL for allocations with several casts:
3598   //   j.l.reflect.Array.newInstance(jobject, jint)
3599   //   Object.clone()
3600   // to keep more precise type from last cast.
3601   if (ptr->is_Proj()) {
3602     Node* allo = ptr->in(0);
3603     if (allo != NULL && allo->is_Allocate()) {
3604       return allo->as_Allocate();
3605     }
3606   }
3607   // Report failure to match.
3608   return NULL;
3609 }
3610 
3611 // Fancy version which also strips off an offset (and reports it to caller).
3612 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3613                                              intptr_t& offset) {
3614   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3615   if (base == NULL)  return NULL;
3616   return Ideal_allocation(base, phase);
3617 }
3618 
3619 // Trace Initialize <- Proj[Parm] <- Allocate
3620 AllocateNode* InitializeNode::allocation() {
3621   Node* rawoop = in(InitializeNode::RawAddress);
3622   if (rawoop->is_Proj()) {
3623     Node* alloc = rawoop->in(0);
3624     if (alloc->is_Allocate()) {
3625       return alloc->as_Allocate();
3626     }
3627   }
3628   return NULL;
3629 }
3630 
3631 // Trace Allocate -> Proj[Parm] -> Initialize
3632 InitializeNode* AllocateNode::initialization() {
3633   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3634   if (rawoop == NULL)  return NULL;
3635   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3636     Node* init = rawoop->fast_out(i);
3637     if (init->is_Initialize()) {
3638       assert(init->as_Initialize()->allocation() == this, "2-way link");
3639       return init->as_Initialize();
3640     }
3641   }
3642   return NULL;
3643 }
3644 
3645 //----------------------------- loop predicates ---------------------------
3646 
3647 //------------------------------add_predicate_impl----------------------------
3648 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3649   // Too many traps seen?
3650   if (too_many_traps(reason)) {
3651 #ifdef ASSERT
3652     if (TraceLoopPredicate) {
3653       int tc = C->trap_count(reason);
3654       tty->print("too many traps=%s tcount=%d in ",
3655                     Deoptimization::trap_reason_name(reason), tc);
3656       method()->print(); // which method has too many predicate traps
3657       tty->cr();
3658     }
3659 #endif
3660     // We cannot afford to take more traps here,
3661     // do not generate predicate.
3662     return;
3663   }
3664 
3665   Node *cont    = _gvn.intcon(1);
3666   Node* opq     = _gvn.transform(new (C) Opaque1Node(C, cont));
3667   Node *bol     = _gvn.transform(new (C) Conv2BNode(opq));
3668   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3669   Node* iffalse = _gvn.transform(new (C) IfFalseNode(iff));
3670   C->add_predicate_opaq(opq);
3671   {
3672     PreserveJVMState pjvms(this);
3673     set_control(iffalse);
3674     inc_sp(nargs);
3675     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3676   }
3677   Node* iftrue = _gvn.transform(new (C) IfTrueNode(iff));
3678   set_control(iftrue);
3679 }
3680 
3681 //------------------------------add_predicate---------------------------------
3682 void GraphKit::add_predicate(int nargs) {
3683   if (UseLoopPredicate) {
3684     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3685   }
3686   // loop's limit check predicate should be near the loop.
3687   if (LoopLimitCheck) {
3688     add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3689   }
3690 }
3691 
3692 //----------------------------- store barriers ----------------------------
3693 #define __ ideal.
3694 
3695 void GraphKit::sync_kit(IdealKit& ideal) {
3696   set_all_memory(__ merged_memory());
3697   set_i_o(__ i_o());
3698   set_control(__ ctrl());
3699 }
3700 
3701 void GraphKit::final_sync(IdealKit& ideal) {
3702   // Final sync IdealKit and graphKit.
3703   sync_kit(ideal);
3704 }
3705 
3706 // vanilla/CMS post barrier
3707 // Insert a write-barrier store.  This is to let generational GC work; we have
3708 // to flag all oop-stores before the next GC point.
3709 void GraphKit::write_barrier_post(Node* oop_store,
3710                                   Node* obj,
3711                                   Node* adr,
3712                                   uint  adr_idx,
3713                                   Node* val,
3714                                   bool use_precise) {
3715   // No store check needed if we're storing a NULL or an old object
3716   // (latter case is probably a string constant). The concurrent
3717   // mark sweep garbage collector, however, needs to have all nonNull
3718   // oop updates flagged via card-marks.
3719   if (val != NULL && val->is_Con()) {
3720     // must be either an oop or NULL
3721     const Type* t = val->bottom_type();
3722     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3723       // stores of null never (?) need barriers
3724       return;
3725   }
3726 
3727   if (use_ReduceInitialCardMarks()
3728       && obj == just_allocated_object(control())) {
3729     // We can skip marks on a freshly-allocated object in Eden.
3730     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
3731     // That routine informs GC to take appropriate compensating steps,
3732     // upon a slow-path allocation, so as to make this card-mark
3733     // elision safe.
3734     return;
3735   }
3736 
3737   if (!use_precise) {
3738     // All card marks for a (non-array) instance are in one place:
3739     adr = obj;
3740   }
3741   // (Else it's an array (or unknown), and we want more precise card marks.)
3742   assert(adr != NULL, "");
3743 
3744   IdealKit ideal(this, true);
3745 
3746   // Convert the pointer to an int prior to doing math on it
3747   Node* cast = __ CastPX(__ ctrl(), adr);
3748 
3749   // Divide by card size
3750   assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
3751          "Only one we handle so far.");
3752   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3753 
3754   // Combine card table base and card offset
3755   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3756 
3757   // Get the alias_index for raw card-mark memory
3758   int adr_type = Compile::AliasIdxRaw;
3759   Node*   zero = __ ConI(0); // Dirty card value
3760   BasicType bt = T_BYTE;
3761 
3762   if (UseCondCardMark) {
3763     // The classic GC reference write barrier is typically implemented
3764     // as a store into the global card mark table.  Unfortunately
3765     // unconditional stores can result in false sharing and excessive
3766     // coherence traffic as well as false transactional aborts.
3767     // UseCondCardMark enables MP "polite" conditional card mark
3768     // stores.  In theory we could relax the load from ctrl() to
3769     // no_ctrl, but that doesn't buy much latitude.
3770     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
3771     __ if_then(card_val, BoolTest::ne, zero);
3772   }
3773 
3774   // Smash zero into card
3775   if( !UseConcMarkSweepGC ) {
3776     __ store(__ ctrl(), card_adr, zero, bt, adr_type);
3777   } else {
3778     // Specialized path for CM store barrier
3779     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3780   }
3781 
3782   if (UseCondCardMark) {
3783     __ end_if();
3784   }
3785 
3786   // Final sync IdealKit and GraphKit.
3787   final_sync(ideal);
3788 }
3789 
3790 // G1 pre/post barriers
3791 void GraphKit::g1_write_barrier_pre(bool do_load,
3792                                     Node* obj,
3793                                     Node* adr,
3794                                     uint alias_idx,
3795                                     Node* val,
3796                                     const TypeOopPtr* val_type,
3797                                     Node* pre_val,
3798                                     BasicType bt) {
3799 
3800   // Some sanity checks
3801   // Note: val is unused in this routine.
3802 
3803   if (do_load) {
3804     // We need to generate the load of the previous value
3805     assert(obj != NULL, "must have a base");
3806     assert(adr != NULL, "where are loading from?");
3807     assert(pre_val == NULL, "loaded already?");
3808     assert(val_type != NULL, "need a type");
3809   } else {
3810     // In this case both val_type and alias_idx are unused.
3811     assert(pre_val != NULL, "must be loaded already");
3812     // Nothing to be done if pre_val is null.
3813     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
3814     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
3815   }
3816   assert(bt == T_OBJECT, "or we shouldn't be here");
3817 
3818   IdealKit ideal(this, true);
3819 
3820   Node* tls = __ thread(); // ThreadLocalStorage
3821 
3822   Node* no_ctrl = NULL;
3823   Node* no_base = __ top();
3824   Node* zero  = __ ConI(0);
3825   Node* zeroX = __ ConX(0);
3826 
3827   float likely  = PROB_LIKELY(0.999);
3828   float unlikely  = PROB_UNLIKELY(0.999);
3829 
3830   BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
3831   assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
3832 
3833   // Offsets into the thread
3834   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
3835                                           PtrQueue::byte_offset_of_active());
3836   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
3837                                           PtrQueue::byte_offset_of_index());
3838   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
3839                                           PtrQueue::byte_offset_of_buf());
3840 
3841   // Now the actual pointers into the thread
3842   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
3843   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
3844   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
3845 
3846   // Now some of the values
3847   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
3848 
3849   // if (!marking)
3850   __ if_then(marking, BoolTest::ne, zero, unlikely); {
3851     BasicType index_bt = TypeX_X->basic_type();
3852     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 PtrQueue::_index with wrong size.");
3853     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
3854 
3855     if (do_load) {
3856       // load original value
3857       // alias_idx correct??
3858       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
3859     }
3860 
3861     // if (pre_val != NULL)
3862     __ if_then(pre_val, BoolTest::ne, null()); {
3863       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3864 
3865       // is the queue for this thread full?
3866       __ if_then(index, BoolTest::ne, zeroX, likely); {
3867 
3868         // decrement the index
3869         Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
3870 
3871         // Now get the buffer location we will log the previous value into and store it
3872         Node *log_addr = __ AddP(no_base, buffer, next_index);
3873         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw);
3874         // update the index
3875         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw);
3876 
3877       } __ else_(); {
3878 
3879         // logging buffer is full, call the runtime
3880         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
3881         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
3882       } __ end_if();  // (!index)
3883     } __ end_if();  // (pre_val != NULL)
3884   } __ end_if();  // (!marking)
3885 
3886   // Final sync IdealKit and GraphKit.
3887   final_sync(ideal);
3888 }
3889 
3890 //
3891 // Update the card table and add card address to the queue
3892 //
3893 void GraphKit::g1_mark_card(IdealKit& ideal,
3894                             Node* card_adr,
3895                             Node* oop_store,
3896                             uint oop_alias_idx,
3897                             Node* index,
3898                             Node* index_adr,
3899                             Node* buffer,
3900                             const TypeFunc* tf) {
3901 
3902   Node* zero  = __ ConI(0);
3903   Node* zeroX = __ ConX(0);
3904   Node* no_base = __ top();
3905   BasicType card_bt = T_BYTE;
3906   // Smash zero into card. MUST BE ORDERED WRT TO STORE
3907   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
3908 
3909   //  Now do the queue work
3910   __ if_then(index, BoolTest::ne, zeroX); {
3911 
3912     Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
3913     Node* log_addr = __ AddP(no_base, buffer, next_index);
3914 
3915     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw);
3916     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw);
3917 
3918   } __ else_(); {
3919     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
3920   } __ end_if();
3921 
3922 }
3923 
3924 void GraphKit::g1_write_barrier_post(Node* oop_store,
3925                                      Node* obj,
3926                                      Node* adr,
3927                                      uint alias_idx,
3928                                      Node* val,
3929                                      BasicType bt,
3930                                      bool use_precise) {
3931   // If we are writing a NULL then we need no post barrier
3932 
3933   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
3934     // Must be NULL
3935     const Type* t = val->bottom_type();
3936     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
3937     // No post barrier if writing NULLx
3938     return;
3939   }
3940 
3941   if (!use_precise) {
3942     // All card marks for a (non-array) instance are in one place:
3943     adr = obj;
3944   }
3945   // (Else it's an array (or unknown), and we want more precise card marks.)
3946   assert(adr != NULL, "");
3947 
3948   IdealKit ideal(this, true);
3949 
3950   Node* tls = __ thread(); // ThreadLocalStorage
3951 
3952   Node* no_base = __ top();
3953   float likely  = PROB_LIKELY(0.999);
3954   float unlikely  = PROB_UNLIKELY(0.999);
3955   Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val());
3956   Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val());
3957   Node* zeroX = __ ConX(0);
3958 
3959   // Get the alias_index for raw card-mark memory
3960   const TypePtr* card_type = TypeRawPtr::BOTTOM;
3961 
3962   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
3963 
3964   // Offsets into the thread
3965   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
3966                                      PtrQueue::byte_offset_of_index());
3967   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
3968                                      PtrQueue::byte_offset_of_buf());
3969 
3970   // Pointers into the thread
3971 
3972   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
3973   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
3974 
3975   // Now some values
3976   // Use ctrl to avoid hoisting these values past a safepoint, which could
3977   // potentially reset these fields in the JavaThread.
3978   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
3979   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3980 
3981   // Convert the store obj pointer to an int prior to doing math on it
3982   // Must use ctrl to prevent "integerized oop" existing across safepoint
3983   Node* cast =  __ CastPX(__ ctrl(), adr);
3984 
3985   // Divide pointer by card size
3986   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3987 
3988   // Combine card table base and card offset
3989   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
3990 
3991   // If we know the value being stored does it cross regions?
3992 
3993   if (val != NULL) {
3994     // Does the store cause us to cross regions?
3995 
3996     // Should be able to do an unsigned compare of region_size instead of
3997     // and extra shift. Do we have an unsigned compare??
3998     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
3999     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
4000 
4001     // if (xor_res == 0) same region so skip
4002     __ if_then(xor_res, BoolTest::ne, zeroX); {
4003 
4004       // No barrier if we are storing a NULL
4005       __ if_then(val, BoolTest::ne, null(), unlikely); {
4006 
4007         // Ok must mark the card if not already dirty
4008 
4009         // load the original value of the card
4010         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4011 
4012         __ if_then(card_val, BoolTest::ne, young_card); {
4013           sync_kit(ideal);
4014           // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
4015           insert_mem_bar(Op_MemBarVolatile, oop_store);
4016           __ sync_kit(this);
4017 
4018           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4019           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
4020             g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4021           } __ end_if();
4022         } __ end_if();
4023       } __ end_if();
4024     } __ end_if();
4025   } else {
4026     // Object.clone() instrinsic uses this path.
4027     g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4028   }
4029 
4030   // Final sync IdealKit and GraphKit.
4031   final_sync(ideal);
4032 }
4033 #undef __
4034 
4035 
4036 
4037 Node* GraphKit::load_String_offset(Node* ctrl, Node* str) {
4038   if (java_lang_String::has_offset_field()) {
4039     int offset_offset = java_lang_String::offset_offset_in_bytes();
4040     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4041                                                        false, NULL, 0);
4042     const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
4043     int offset_field_idx = C->get_alias_index(offset_field_type);
4044     return make_load(ctrl,
4045                      basic_plus_adr(str, str, offset_offset),
4046                      TypeInt::INT, T_INT, offset_field_idx);
4047   } else {
4048     return intcon(0);
4049   }
4050 }
4051 
4052 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
4053   if (java_lang_String::has_count_field()) {
4054     int count_offset = java_lang_String::count_offset_in_bytes();
4055     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4056                                                        false, NULL, 0);
4057     const TypePtr* count_field_type = string_type->add_offset(count_offset);
4058     int count_field_idx = C->get_alias_index(count_field_type);
4059     return make_load(ctrl,
4060                      basic_plus_adr(str, str, count_offset),
4061                      TypeInt::INT, T_INT, count_field_idx);
4062   } else {
4063     return load_array_length(load_String_value(ctrl, str));
4064   }
4065 }
4066 
4067 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
4068   int value_offset = java_lang_String::value_offset_in_bytes();
4069   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4070                                                      false, NULL, 0);
4071   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4072   const TypeAryPtr*  value_type = TypeAryPtr::make(TypePtr::NotNull,
4073                                                    TypeAry::make(TypeInt::CHAR,TypeInt::POS),
4074                                                    ciTypeArrayKlass::make(T_CHAR), true, 0);
4075   int value_field_idx = C->get_alias_index(value_field_type);
4076   Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset),
4077                          value_type, T_OBJECT, value_field_idx);
4078   // String.value field is known to be @Stable.
4079   if (UseImplicitStableValues) {
4080     load = cast_array_to_stable(load, value_type);
4081   }
4082   return load;
4083 }
4084 
4085 void GraphKit::store_String_offset(Node* ctrl, Node* str, Node* value) {
4086   int offset_offset = java_lang_String::offset_offset_in_bytes();
4087   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4088                                                      false, NULL, 0);
4089   const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
4090   int offset_field_idx = C->get_alias_index(offset_field_type);
4091   store_to_memory(ctrl, basic_plus_adr(str, offset_offset),
4092                   value, T_INT, offset_field_idx);
4093 }
4094 
4095 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
4096   int value_offset = java_lang_String::value_offset_in_bytes();
4097   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4098                                                      false, NULL, 0);
4099   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4100 
4101   store_oop_to_object(ctrl, str,  basic_plus_adr(str, value_offset), value_field_type,
4102       value, TypeAryPtr::CHARS, T_OBJECT);
4103 }
4104 
4105 void GraphKit::store_String_length(Node* ctrl, Node* str, Node* value) {
4106   int count_offset = java_lang_String::count_offset_in_bytes();
4107   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4108                                                      false, NULL, 0);
4109   const TypePtr* count_field_type = string_type->add_offset(count_offset);
4110   int count_field_idx = C->get_alias_index(count_field_type);
4111   store_to_memory(ctrl, basic_plus_adr(str, count_offset),
4112                   value, T_INT, count_field_idx);
4113 }
4114 
4115 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
4116   // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
4117   // assumption of CCP analysis.
4118   return _gvn.transform(new(C) CastPPNode(ary, ary_type->cast_to_stable(true)));
4119 }