1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/callnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/idealGraphPrinter.hpp"
  31 #include "opto/matcher.hpp"
  32 #include "opto/memnode.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/regmask.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "opto/type.hpp"
  38 #include "opto/vectornode.hpp"
  39 #include "runtime/atomic.hpp"
  40 #include "runtime/os.hpp"
  41 #ifdef TARGET_ARCH_MODEL_x86_32
  42 # include "adfiles/ad_x86_32.hpp"
  43 #endif
  44 #ifdef TARGET_ARCH_MODEL_x86_64
  45 # include "adfiles/ad_x86_64.hpp"
  46 #endif
  47 #ifdef TARGET_ARCH_MODEL_sparc
  48 # include "adfiles/ad_sparc.hpp"
  49 #endif
  50 #ifdef TARGET_ARCH_MODEL_zero
  51 # include "adfiles/ad_zero.hpp"
  52 #endif
  53 #ifdef TARGET_ARCH_MODEL_arm
  54 # include "adfiles/ad_arm.hpp"
  55 #endif
  56 #ifdef TARGET_ARCH_MODEL_ppc_32
  57 # include "adfiles/ad_ppc_32.hpp"
  58 #endif
  59 #ifdef TARGET_ARCH_MODEL_ppc_64
  60 # include "adfiles/ad_ppc_64.hpp"
  61 #endif
  62 
  63 OptoReg::Name OptoReg::c_frame_pointer;
  64 
  65 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  66 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  67 RegMask Matcher::STACK_ONLY_mask;
  68 RegMask Matcher::c_frame_ptr_mask;
  69 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  70 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  71 
  72 //---------------------------Matcher-------------------------------------------
  73 Matcher::Matcher()
  74 : PhaseTransform( Phase::Ins_Select ),
  75 #ifdef ASSERT
  76   _old2new_map(C->comp_arena()),
  77   _new2old_map(C->comp_arena()),
  78 #endif
  79   _shared_nodes(C->comp_arena()),
  80   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  81   _swallowed(swallowed),
  82   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  83   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  84   _must_clone(must_clone),
  85   _register_save_policy(register_save_policy),
  86   _c_reg_save_policy(c_reg_save_policy),
  87   _register_save_type(register_save_type),
  88   _ruleName(ruleName),
  89   _allocation_started(false),
  90   _states_arena(Chunk::medium_size),
  91   _visited(&_states_arena),
  92   _shared(&_states_arena),
  93   _dontcare(&_states_arena) {
  94   C->set_matcher(this);
  95 
  96   idealreg2spillmask  [Op_RegI] = NULL;
  97   idealreg2spillmask  [Op_RegN] = NULL;
  98   idealreg2spillmask  [Op_RegL] = NULL;
  99   idealreg2spillmask  [Op_RegF] = NULL;
 100   idealreg2spillmask  [Op_RegD] = NULL;
 101   idealreg2spillmask  [Op_RegP] = NULL;
 102   idealreg2spillmask  [Op_VecS] = NULL;
 103   idealreg2spillmask  [Op_VecD] = NULL;
 104   idealreg2spillmask  [Op_VecX] = NULL;
 105   idealreg2spillmask  [Op_VecY] = NULL;
 106 
 107   idealreg2debugmask  [Op_RegI] = NULL;
 108   idealreg2debugmask  [Op_RegN] = NULL;
 109   idealreg2debugmask  [Op_RegL] = NULL;
 110   idealreg2debugmask  [Op_RegF] = NULL;
 111   idealreg2debugmask  [Op_RegD] = NULL;
 112   idealreg2debugmask  [Op_RegP] = NULL;
 113   idealreg2debugmask  [Op_VecS] = NULL;
 114   idealreg2debugmask  [Op_VecD] = NULL;
 115   idealreg2debugmask  [Op_VecX] = NULL;
 116   idealreg2debugmask  [Op_VecY] = NULL;
 117 
 118   idealreg2mhdebugmask[Op_RegI] = NULL;
 119   idealreg2mhdebugmask[Op_RegN] = NULL;
 120   idealreg2mhdebugmask[Op_RegL] = NULL;
 121   idealreg2mhdebugmask[Op_RegF] = NULL;
 122   idealreg2mhdebugmask[Op_RegD] = NULL;
 123   idealreg2mhdebugmask[Op_RegP] = NULL;
 124   idealreg2mhdebugmask[Op_VecS] = NULL;
 125   idealreg2mhdebugmask[Op_VecD] = NULL;
 126   idealreg2mhdebugmask[Op_VecX] = NULL;
 127   idealreg2mhdebugmask[Op_VecY] = NULL;
 128 
 129   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
 130 }
 131 
 132 //------------------------------warp_incoming_stk_arg------------------------
 133 // This warps a VMReg into an OptoReg::Name
 134 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 135   OptoReg::Name warped;
 136   if( reg->is_stack() ) {  // Stack slot argument?
 137     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 138     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 139     if( warped >= _in_arg_limit )
 140       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 141     if (!RegMask::can_represent_arg(warped)) {
 142       // the compiler cannot represent this method's calling sequence
 143       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
 144       return OptoReg::Bad;
 145     }
 146     return warped;
 147   }
 148   return OptoReg::as_OptoReg(reg);
 149 }
 150 
 151 //---------------------------compute_old_SP------------------------------------
 152 OptoReg::Name Compile::compute_old_SP() {
 153   int fixed    = fixed_slots();
 154   int preserve = in_preserve_stack_slots();
 155   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
 156 }
 157 
 158 
 159 
 160 #ifdef ASSERT
 161 void Matcher::verify_new_nodes_only(Node* xroot) {
 162   // Make sure that the new graph only references new nodes
 163   ResourceMark rm;
 164   Unique_Node_List worklist;
 165   VectorSet visited(Thread::current()->resource_area());
 166   worklist.push(xroot);
 167   while (worklist.size() > 0) {
 168     Node* n = worklist.pop();
 169     visited <<= n->_idx;
 170     assert(C->node_arena()->contains(n), "dead node");
 171     for (uint j = 0; j < n->req(); j++) {
 172       Node* in = n->in(j);
 173       if (in != NULL) {
 174         assert(C->node_arena()->contains(in), "dead node");
 175         if (!visited.test(in->_idx)) {
 176           worklist.push(in);
 177         }
 178       }
 179     }
 180   }
 181 }
 182 #endif
 183 
 184 
 185 //---------------------------match---------------------------------------------
 186 void Matcher::match( ) {
 187   if( MaxLabelRootDepth < 100 ) { // Too small?
 188     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 189     MaxLabelRootDepth = 100;
 190   }
 191   // One-time initialization of some register masks.
 192   init_spill_mask( C->root()->in(1) );
 193   _return_addr_mask = return_addr();
 194 #ifdef _LP64
 195   // Pointers take 2 slots in 64-bit land
 196   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 197 #endif
 198 
 199   // Map a Java-signature return type into return register-value
 200   // machine registers for 0, 1 and 2 returned values.
 201   const TypeTuple *range = C->tf()->range();
 202   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 203     // Get ideal-register return type
 204     int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
 205     // Get machine return register
 206     uint sop = C->start()->Opcode();
 207     OptoRegPair regs = return_value(ireg, false);
 208 
 209     // And mask for same
 210     _return_value_mask = RegMask(regs.first());
 211     if( OptoReg::is_valid(regs.second()) )
 212       _return_value_mask.Insert(regs.second());
 213   }
 214 
 215   // ---------------
 216   // Frame Layout
 217 
 218   // Need the method signature to determine the incoming argument types,
 219   // because the types determine which registers the incoming arguments are
 220   // in, and this affects the matched code.
 221   const TypeTuple *domain = C->tf()->domain();
 222   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 223   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 224   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 225   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 226   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 227   uint i;
 228   for( i = 0; i<argcnt; i++ ) {
 229     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 230   }
 231 
 232   // Pass array of ideal registers and length to USER code (from the AD file)
 233   // that will convert this to an array of register numbers.
 234   const StartNode *start = C->start();
 235   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 236 #ifdef ASSERT
 237   // Sanity check users' calling convention.  Real handy while trying to
 238   // get the initial port correct.
 239   { for (uint i = 0; i<argcnt; i++) {
 240       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 241         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 242         _parm_regs[i].set_bad();
 243         continue;
 244       }
 245       VMReg parm_reg = vm_parm_regs[i].first();
 246       assert(parm_reg->is_valid(), "invalid arg?");
 247       if (parm_reg->is_reg()) {
 248         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 249         assert(can_be_java_arg(opto_parm_reg) ||
 250                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 251                opto_parm_reg == inline_cache_reg(),
 252                "parameters in register must be preserved by runtime stubs");
 253       }
 254       for (uint j = 0; j < i; j++) {
 255         assert(parm_reg != vm_parm_regs[j].first(),
 256                "calling conv. must produce distinct regs");
 257       }
 258     }
 259   }
 260 #endif
 261 
 262   // Do some initial frame layout.
 263 
 264   // Compute the old incoming SP (may be called FP) as
 265   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 266   _old_SP = C->compute_old_SP();
 267   assert( is_even(_old_SP), "must be even" );
 268 
 269   // Compute highest incoming stack argument as
 270   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 271   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 272   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 273   for( i = 0; i < argcnt; i++ ) {
 274     // Permit args to have no register
 275     _calling_convention_mask[i].Clear();
 276     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 277       continue;
 278     }
 279     // calling_convention returns stack arguments as a count of
 280     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 281     // the allocators point of view, taking into account all the
 282     // preserve area, locks & pad2.
 283 
 284     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 285     if( OptoReg::is_valid(reg1))
 286       _calling_convention_mask[i].Insert(reg1);
 287 
 288     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 289     if( OptoReg::is_valid(reg2))
 290       _calling_convention_mask[i].Insert(reg2);
 291 
 292     // Saved biased stack-slot register number
 293     _parm_regs[i].set_pair(reg2, reg1);
 294   }
 295 
 296   // Finally, make sure the incoming arguments take up an even number of
 297   // words, in case the arguments or locals need to contain doubleword stack
 298   // slots.  The rest of the system assumes that stack slot pairs (in
 299   // particular, in the spill area) which look aligned will in fact be
 300   // aligned relative to the stack pointer in the target machine.  Double
 301   // stack slots will always be allocated aligned.
 302   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
 303 
 304   // Compute highest outgoing stack argument as
 305   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 306   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 307   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 308 
 309   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
 310     // the compiler cannot represent this method's calling sequence
 311     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 312   }
 313 
 314   if (C->failing())  return;  // bailed out on incoming arg failure
 315 
 316   // ---------------
 317   // Collect roots of matcher trees.  Every node for which
 318   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 319   // can be a valid interior of some tree.
 320   find_shared( C->root() );
 321   find_shared( C->top() );
 322 
 323   C->print_method(PHASE_BEFORE_MATCHING);
 324 
 325   // Create new ideal node ConP #NULL even if it does exist in old space
 326   // to avoid false sharing if the corresponding mach node is not used.
 327   // The corresponding mach node is only used in rare cases for derived
 328   // pointers.
 329   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
 330 
 331   // Swap out to old-space; emptying new-space
 332   Arena *old = C->node_arena()->move_contents(C->old_arena());
 333 
 334   // Save debug and profile information for nodes in old space:
 335   _old_node_note_array = C->node_note_array();
 336   if (_old_node_note_array != NULL) {
 337     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 338                            (C->comp_arena(), _old_node_note_array->length(),
 339                             0, NULL));
 340   }
 341 
 342   // Pre-size the new_node table to avoid the need for range checks.
 343   grow_new_node_array(C->unique());
 344 
 345   // Reset node counter so MachNodes start with _idx at 0
 346   int nodes = C->unique(); // save value
 347   C->set_unique(0);
 348   C->reset_dead_node_list();
 349 
 350   // Recursively match trees from old space into new space.
 351   // Correct leaves of new-space Nodes; they point to old-space.
 352   _visited.Clear();             // Clear visit bits for xform call
 353   C->set_cached_top_node(xform( C->top(), nodes ));
 354   if (!C->failing()) {
 355     Node* xroot =        xform( C->root(), 1 );
 356     if (xroot == NULL) {
 357       Matcher::soft_match_failure();  // recursive matching process failed
 358       C->record_method_not_compilable("instruction match failed");
 359     } else {
 360       // During matching shared constants were attached to C->root()
 361       // because xroot wasn't available yet, so transfer the uses to
 362       // the xroot.
 363       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 364         Node* n = C->root()->fast_out(j);
 365         if (C->node_arena()->contains(n)) {
 366           assert(n->in(0) == C->root(), "should be control user");
 367           n->set_req(0, xroot);
 368           --j;
 369           --jmax;
 370         }
 371       }
 372 
 373       // Generate new mach node for ConP #NULL
 374       assert(new_ideal_null != NULL, "sanity");
 375       _mach_null = match_tree(new_ideal_null);
 376       // Don't set control, it will confuse GCM since there are no uses.
 377       // The control will be set when this node is used first time
 378       // in find_base_for_derived().
 379       assert(_mach_null != NULL, "");
 380 
 381       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 382 
 383 #ifdef ASSERT
 384       verify_new_nodes_only(xroot);
 385 #endif
 386     }
 387   }
 388   if (C->top() == NULL || C->root() == NULL) {
 389     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 390   }
 391   if (C->failing()) {
 392     // delete old;
 393     old->destruct_contents();
 394     return;
 395   }
 396   assert( C->top(), "" );
 397   assert( C->root(), "" );
 398   validate_null_checks();
 399 
 400   // Now smoke old-space
 401   NOT_DEBUG( old->destruct_contents() );
 402 
 403   // ------------------------
 404   // Set up save-on-entry registers
 405   Fixup_Save_On_Entry( );
 406 }
 407 
 408 
 409 //------------------------------Fixup_Save_On_Entry----------------------------
 410 // The stated purpose of this routine is to take care of save-on-entry
 411 // registers.  However, the overall goal of the Match phase is to convert into
 412 // machine-specific instructions which have RegMasks to guide allocation.
 413 // So what this procedure really does is put a valid RegMask on each input
 414 // to the machine-specific variations of all Return, TailCall and Halt
 415 // instructions.  It also adds edgs to define the save-on-entry values (and of
 416 // course gives them a mask).
 417 
 418 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 419   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 420   // Do all the pre-defined register masks
 421   rms[TypeFunc::Control  ] = RegMask::Empty;
 422   rms[TypeFunc::I_O      ] = RegMask::Empty;
 423   rms[TypeFunc::Memory   ] = RegMask::Empty;
 424   rms[TypeFunc::ReturnAdr] = ret_adr;
 425   rms[TypeFunc::FramePtr ] = fp;
 426   return rms;
 427 }
 428 
 429 //---------------------------init_first_stack_mask-----------------------------
 430 // Create the initial stack mask used by values spilling to the stack.
 431 // Disallow any debug info in outgoing argument areas by setting the
 432 // initial mask accordingly.
 433 void Matcher::init_first_stack_mask() {
 434 
 435   // Allocate storage for spill masks as masks for the appropriate load type.
 436   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
 437 
 438   idealreg2spillmask  [Op_RegN] = &rms[0];
 439   idealreg2spillmask  [Op_RegI] = &rms[1];
 440   idealreg2spillmask  [Op_RegL] = &rms[2];
 441   idealreg2spillmask  [Op_RegF] = &rms[3];
 442   idealreg2spillmask  [Op_RegD] = &rms[4];
 443   idealreg2spillmask  [Op_RegP] = &rms[5];
 444 
 445   idealreg2debugmask  [Op_RegN] = &rms[6];
 446   idealreg2debugmask  [Op_RegI] = &rms[7];
 447   idealreg2debugmask  [Op_RegL] = &rms[8];
 448   idealreg2debugmask  [Op_RegF] = &rms[9];
 449   idealreg2debugmask  [Op_RegD] = &rms[10];
 450   idealreg2debugmask  [Op_RegP] = &rms[11];
 451 
 452   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 453   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 454   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 455   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 456   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 457   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 458 
 459   idealreg2spillmask  [Op_VecS] = &rms[18];
 460   idealreg2spillmask  [Op_VecD] = &rms[19];
 461   idealreg2spillmask  [Op_VecX] = &rms[20];
 462   idealreg2spillmask  [Op_VecY] = &rms[21];
 463 
 464   OptoReg::Name i;
 465 
 466   // At first, start with the empty mask
 467   C->FIRST_STACK_mask().Clear();
 468 
 469   // Add in the incoming argument area
 470   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 471   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
 472     C->FIRST_STACK_mask().Insert(i);
 473 
 474   // Add in all bits past the outgoing argument area
 475   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
 476             "must be able to represent all call arguments in reg mask");
 477   init = _out_arg_limit;
 478   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 479     C->FIRST_STACK_mask().Insert(i);
 480 
 481   // Finally, set the "infinite stack" bit.
 482   C->FIRST_STACK_mask().set_AllStack();
 483 
 484   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 485   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
 486   // Keep spill masks aligned.
 487   aligned_stack_mask.clear_to_pairs();
 488   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 489 
 490   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 491 #ifdef _LP64
 492   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 493    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 494    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
 495 #else
 496    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 497 #endif
 498   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 499    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 500   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 501    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
 502   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 503    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 504   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 505    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
 506 
 507   if (Matcher::vector_size_supported(T_BYTE,4)) {
 508     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
 509      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
 510   }
 511   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 512     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
 513      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
 514   }
 515   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 516      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
 517      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 518     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
 519      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
 520   }
 521   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 522      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
 523      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 524     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
 525      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
 526   }
 527    if (UseFPUForSpilling) {
 528      // This mask logic assumes that the spill operations are
 529      // symmetric and that the registers involved are the same size.
 530      // On sparc for instance we may have to use 64 bit moves will
 531      // kill 2 registers when used with F0-F31.
 532      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 533      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 534 #ifdef _LP64
 535      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 536      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 537      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 538      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 539 #else
 540      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 541 #ifdef ARM
 542      // ARM has support for moving 64bit values between a pair of
 543      // integer registers and a double register
 544      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 545      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 546 #endif
 547 #endif
 548    }
 549 
 550   // Make up debug masks.  Any spill slot plus callee-save registers.
 551   // Caller-save registers are assumed to be trashable by the various
 552   // inline-cache fixup routines.
 553   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
 554   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
 555   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
 556   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
 557   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
 558   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
 559 
 560   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 561   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 562   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 563   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 564   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 565   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 566 
 567   // Prevent stub compilations from attempting to reference
 568   // callee-saved registers from debug info
 569   bool exclude_soe = !Compile::current()->is_method_compilation();
 570 
 571   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 572     // registers the caller has to save do not work
 573     if( _register_save_policy[i] == 'C' ||
 574         _register_save_policy[i] == 'A' ||
 575         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 576       idealreg2debugmask  [Op_RegN]->Remove(i);
 577       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
 578       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
 579       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
 580       idealreg2debugmask  [Op_RegD]->Remove(i);
 581       idealreg2debugmask  [Op_RegP]->Remove(i);
 582 
 583       idealreg2mhdebugmask[Op_RegN]->Remove(i);
 584       idealreg2mhdebugmask[Op_RegI]->Remove(i);
 585       idealreg2mhdebugmask[Op_RegL]->Remove(i);
 586       idealreg2mhdebugmask[Op_RegF]->Remove(i);
 587       idealreg2mhdebugmask[Op_RegD]->Remove(i);
 588       idealreg2mhdebugmask[Op_RegP]->Remove(i);
 589     }
 590   }
 591 
 592   // Subtract the register we use to save the SP for MethodHandle
 593   // invokes to from the debug mask.
 594   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 595   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
 596   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
 597   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
 598   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
 599   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
 600   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
 601 }
 602 
 603 //---------------------------is_save_on_entry----------------------------------
 604 bool Matcher::is_save_on_entry( int reg ) {
 605   return
 606     _register_save_policy[reg] == 'E' ||
 607     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 608     // Also save argument registers in the trampolining stubs
 609     (C->save_argument_registers() && is_spillable_arg(reg));
 610 }
 611 
 612 //---------------------------Fixup_Save_On_Entry-------------------------------
 613 void Matcher::Fixup_Save_On_Entry( ) {
 614   init_first_stack_mask();
 615 
 616   Node *root = C->root();       // Short name for root
 617   // Count number of save-on-entry registers.
 618   uint soe_cnt = number_of_saved_registers();
 619   uint i;
 620 
 621   // Find the procedure Start Node
 622   StartNode *start = C->start();
 623   assert( start, "Expect a start node" );
 624 
 625   // Save argument registers in the trampolining stubs
 626   if( C->save_argument_registers() )
 627     for( i = 0; i < _last_Mach_Reg; i++ )
 628       if( is_spillable_arg(i) )
 629         soe_cnt++;
 630 
 631   // Input RegMask array shared by all Returns.
 632   // The type for doubles and longs has a count of 2, but
 633   // there is only 1 returned value
 634   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 635   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 636   // Returns have 0 or 1 returned values depending on call signature.
 637   // Return register is specified by return_value in the AD file.
 638   if (ret_edge_cnt > TypeFunc::Parms)
 639     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 640 
 641   // Input RegMask array shared by all Rethrows.
 642   uint reth_edge_cnt = TypeFunc::Parms+1;
 643   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 644   // Rethrow takes exception oop only, but in the argument 0 slot.
 645   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
 646 #ifdef _LP64
 647   // Need two slots for ptrs in 64-bit land
 648   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
 649 #endif
 650 
 651   // Input RegMask array shared by all TailCalls
 652   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 653   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 654 
 655   // Input RegMask array shared by all TailJumps
 656   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 657   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 658 
 659   // TailCalls have 2 returned values (target & moop), whose masks come
 660   // from the usual MachNode/MachOper mechanism.  Find a sample
 661   // TailCall to extract these masks and put the correct masks into
 662   // the tail_call_rms array.
 663   for( i=1; i < root->req(); i++ ) {
 664     MachReturnNode *m = root->in(i)->as_MachReturn();
 665     if( m->ideal_Opcode() == Op_TailCall ) {
 666       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 667       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 668       break;
 669     }
 670   }
 671 
 672   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 673   // from the usual MachNode/MachOper mechanism.  Find a sample
 674   // TailJump to extract these masks and put the correct masks into
 675   // the tail_jump_rms array.
 676   for( i=1; i < root->req(); i++ ) {
 677     MachReturnNode *m = root->in(i)->as_MachReturn();
 678     if( m->ideal_Opcode() == Op_TailJump ) {
 679       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 680       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 681       break;
 682     }
 683   }
 684 
 685   // Input RegMask array shared by all Halts
 686   uint halt_edge_cnt = TypeFunc::Parms;
 687   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 688 
 689   // Capture the return input masks into each exit flavor
 690   for( i=1; i < root->req(); i++ ) {
 691     MachReturnNode *exit = root->in(i)->as_MachReturn();
 692     switch( exit->ideal_Opcode() ) {
 693       case Op_Return   : exit->_in_rms = ret_rms;  break;
 694       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 695       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 696       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 697       case Op_Halt     : exit->_in_rms = halt_rms; break;
 698       default          : ShouldNotReachHere();
 699     }
 700   }
 701 
 702   // Next unused projection number from Start.
 703   int proj_cnt = C->tf()->domain()->cnt();
 704 
 705   // Do all the save-on-entry registers.  Make projections from Start for
 706   // them, and give them a use at the exit points.  To the allocator, they
 707   // look like incoming register arguments.
 708   for( i = 0; i < _last_Mach_Reg; i++ ) {
 709     if( is_save_on_entry(i) ) {
 710 
 711       // Add the save-on-entry to the mask array
 712       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 713       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 714       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 715       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 716       // Halts need the SOE registers, but only in the stack as debug info.
 717       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 718       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 719 
 720       Node *mproj;
 721 
 722       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 723       // into a single RegD.
 724       if( (i&1) == 0 &&
 725           _register_save_type[i  ] == Op_RegF &&
 726           _register_save_type[i+1] == Op_RegF &&
 727           is_save_on_entry(i+1) ) {
 728         // Add other bit for double
 729         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 730         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 731         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 732         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 733         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 734         mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 735         proj_cnt += 2;          // Skip 2 for doubles
 736       }
 737       else if( (i&1) == 1 &&    // Else check for high half of double
 738                _register_save_type[i-1] == Op_RegF &&
 739                _register_save_type[i  ] == Op_RegF &&
 740                is_save_on_entry(i-1) ) {
 741         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 742         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 743         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 744         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 745         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 746         mproj = C->top();
 747       }
 748       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 749       // into a single RegL.
 750       else if( (i&1) == 0 &&
 751           _register_save_type[i  ] == Op_RegI &&
 752           _register_save_type[i+1] == Op_RegI &&
 753         is_save_on_entry(i+1) ) {
 754         // Add other bit for long
 755         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 756         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 757         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 758         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 759         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 760         mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 761         proj_cnt += 2;          // Skip 2 for longs
 762       }
 763       else if( (i&1) == 1 &&    // Else check for high half of long
 764                _register_save_type[i-1] == Op_RegI &&
 765                _register_save_type[i  ] == Op_RegI &&
 766                is_save_on_entry(i-1) ) {
 767         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 768         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 769         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 770         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 771         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 772         mproj = C->top();
 773       } else {
 774         // Make a projection for it off the Start
 775         mproj = new (C) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 776       }
 777 
 778       ret_edge_cnt ++;
 779       reth_edge_cnt ++;
 780       tail_call_edge_cnt ++;
 781       tail_jump_edge_cnt ++;
 782       halt_edge_cnt ++;
 783 
 784       // Add a use of the SOE register to all exit paths
 785       for( uint j=1; j < root->req(); j++ )
 786         root->in(j)->add_req(mproj);
 787     } // End of if a save-on-entry register
 788   } // End of for all machine registers
 789 }
 790 
 791 //------------------------------init_spill_mask--------------------------------
 792 void Matcher::init_spill_mask( Node *ret ) {
 793   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 794 
 795   OptoReg::c_frame_pointer = c_frame_pointer();
 796   c_frame_ptr_mask = c_frame_pointer();
 797 #ifdef _LP64
 798   // pointers are twice as big
 799   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 800 #endif
 801 
 802   // Start at OptoReg::stack0()
 803   STACK_ONLY_mask.Clear();
 804   OptoReg::Name init = OptoReg::stack2reg(0);
 805   // STACK_ONLY_mask is all stack bits
 806   OptoReg::Name i;
 807   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 808     STACK_ONLY_mask.Insert(i);
 809   // Also set the "infinite stack" bit.
 810   STACK_ONLY_mask.set_AllStack();
 811 
 812   // Copy the register names over into the shared world
 813   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 814     // SharedInfo::regName[i] = regName[i];
 815     // Handy RegMasks per machine register
 816     mreg2regmask[i].Insert(i);
 817   }
 818 
 819   // Grab the Frame Pointer
 820   Node *fp  = ret->in(TypeFunc::FramePtr);
 821   Node *mem = ret->in(TypeFunc::Memory);
 822   const TypePtr* atp = TypePtr::BOTTOM;
 823   // Share frame pointer while making spill ops
 824   set_shared(fp);
 825 
 826   // Compute generic short-offset Loads
 827 #ifdef _LP64
 828   MachNode *spillCP = match_tree(new (C) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 829 #endif
 830   MachNode *spillI  = match_tree(new (C) LoadINode(NULL,mem,fp,atp));
 831   MachNode *spillL  = match_tree(new (C) LoadLNode(NULL,mem,fp,atp));
 832   MachNode *spillF  = match_tree(new (C) LoadFNode(NULL,mem,fp,atp));
 833   MachNode *spillD  = match_tree(new (C) LoadDNode(NULL,mem,fp,atp));
 834   MachNode *spillP  = match_tree(new (C) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 835   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 836          spillD != NULL && spillP != NULL, "");
 837 
 838   // Get the ADLC notion of the right regmask, for each basic type.
 839 #ifdef _LP64
 840   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 841 #endif
 842   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 843   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 844   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 845   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 846   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 847 
 848   // Vector regmasks.
 849   if (Matcher::vector_size_supported(T_BYTE,4)) {
 850     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 851     MachNode *spillVectS = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
 852     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
 853   }
 854   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 855     MachNode *spillVectD = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
 856     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
 857   }
 858   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 859     MachNode *spillVectX = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
 860     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
 861   }
 862   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 863     MachNode *spillVectY = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
 864     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
 865   }
 866 }
 867 
 868 #ifdef ASSERT
 869 static void match_alias_type(Compile* C, Node* n, Node* m) {
 870   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 871   const TypePtr* nat = n->adr_type();
 872   const TypePtr* mat = m->adr_type();
 873   int nidx = C->get_alias_index(nat);
 874   int midx = C->get_alias_index(mat);
 875   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 876   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 877     for (uint i = 1; i < n->req(); i++) {
 878       Node* n1 = n->in(i);
 879       const TypePtr* n1at = n1->adr_type();
 880       if (n1at != NULL) {
 881         nat = n1at;
 882         nidx = C->get_alias_index(n1at);
 883       }
 884     }
 885   }
 886   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 887   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 888     switch (n->Opcode()) {
 889     case Op_PrefetchRead:
 890     case Op_PrefetchWrite:
 891     case Op_PrefetchAllocation:
 892       nidx = Compile::AliasIdxRaw;
 893       nat = TypeRawPtr::BOTTOM;
 894       break;
 895     }
 896   }
 897   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 898     switch (n->Opcode()) {
 899     case Op_ClearArray:
 900       midx = Compile::AliasIdxRaw;
 901       mat = TypeRawPtr::BOTTOM;
 902       break;
 903     }
 904   }
 905   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 906     switch (n->Opcode()) {
 907     case Op_Return:
 908     case Op_Rethrow:
 909     case Op_Halt:
 910     case Op_TailCall:
 911     case Op_TailJump:
 912       nidx = Compile::AliasIdxBot;
 913       nat = TypePtr::BOTTOM;
 914       break;
 915     }
 916   }
 917   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 918     switch (n->Opcode()) {
 919     case Op_StrComp:
 920     case Op_StrEquals:
 921     case Op_StrIndexOf:
 922     case Op_AryEq:
 923     case Op_MemBarVolatile:
 924     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 925     case Op_EncodeISOArray:
 926       nidx = Compile::AliasIdxTop;
 927       nat = NULL;
 928       break;
 929     }
 930   }
 931   if (nidx != midx) {
 932     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 933       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 934       n->dump();
 935       m->dump();
 936     }
 937     assert(C->subsume_loads() && C->must_alias(nat, midx),
 938            "must not lose alias info when matching");
 939   }
 940 }
 941 #endif
 942 
 943 
 944 //------------------------------MStack-----------------------------------------
 945 // State and MStack class used in xform() and find_shared() iterative methods.
 946 enum Node_State { Pre_Visit,  // node has to be pre-visited
 947                       Visit,  // visit node
 948                  Post_Visit,  // post-visit node
 949              Alt_Post_Visit   // alternative post-visit path
 950                 };
 951 
 952 class MStack: public Node_Stack {
 953   public:
 954     MStack(int size) : Node_Stack(size) { }
 955 
 956     void push(Node *n, Node_State ns) {
 957       Node_Stack::push(n, (uint)ns);
 958     }
 959     void push(Node *n, Node_State ns, Node *parent, int indx) {
 960       ++_inode_top;
 961       if ((_inode_top + 1) >= _inode_max) grow();
 962       _inode_top->node = parent;
 963       _inode_top->indx = (uint)indx;
 964       ++_inode_top;
 965       _inode_top->node = n;
 966       _inode_top->indx = (uint)ns;
 967     }
 968     Node *parent() {
 969       pop();
 970       return node();
 971     }
 972     Node_State state() const {
 973       return (Node_State)index();
 974     }
 975     void set_state(Node_State ns) {
 976       set_index((uint)ns);
 977     }
 978 };
 979 
 980 
 981 //------------------------------xform------------------------------------------
 982 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
 983 // Node in new-space.  Given a new-space Node, recursively walk his children.
 984 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
 985 Node *Matcher::xform( Node *n, int max_stack ) {
 986   // Use one stack to keep both: child's node/state and parent's node/index
 987   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
 988   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
 989 
 990   while (mstack.is_nonempty()) {
 991     C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
 992     if (C->failing()) return NULL;
 993     n = mstack.node();          // Leave node on stack
 994     Node_State nstate = mstack.state();
 995     if (nstate == Visit) {
 996       mstack.set_state(Post_Visit);
 997       Node *oldn = n;
 998       // Old-space or new-space check
 999       if (!C->node_arena()->contains(n)) {
1000         // Old space!
1001         Node* m;
1002         if (has_new_node(n)) {  // Not yet Label/Reduced
1003           m = new_node(n);
1004         } else {
1005           if (!is_dontcare(n)) { // Matcher can match this guy
1006             // Calls match special.  They match alone with no children.
1007             // Their children, the incoming arguments, match normally.
1008             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1009             if (C->failing())  return NULL;
1010             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
1011           } else {                  // Nothing the matcher cares about
1012             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
1013               // Convert to machine-dependent projection
1014               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
1015 #ifdef ASSERT
1016               _new2old_map.map(m->_idx, n);
1017 #endif
1018               if (m->in(0) != NULL) // m might be top
1019                 collect_null_checks(m, n);
1020             } else {                // Else just a regular 'ol guy
1021               m = n->clone();       // So just clone into new-space
1022 #ifdef ASSERT
1023               _new2old_map.map(m->_idx, n);
1024 #endif
1025               // Def-Use edges will be added incrementally as Uses
1026               // of this node are matched.
1027               assert(m->outcnt() == 0, "no Uses of this clone yet");
1028             }
1029           }
1030 
1031           set_new_node(n, m);       // Map old to new
1032           if (_old_node_note_array != NULL) {
1033             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1034                                                   n->_idx);
1035             C->set_node_notes_at(m->_idx, nn);
1036           }
1037           debug_only(match_alias_type(C, n, m));
1038         }
1039         n = m;    // n is now a new-space node
1040         mstack.set_node(n);
1041       }
1042 
1043       // New space!
1044       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1045 
1046       int i;
1047       // Put precedence edges on stack first (match them last).
1048       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1049         Node *m = oldn->in(i);
1050         if (m == NULL) break;
1051         // set -1 to call add_prec() instead of set_req() during Step1
1052         mstack.push(m, Visit, n, -1);
1053       }
1054 
1055       // For constant debug info, I'd rather have unmatched constants.
1056       int cnt = n->req();
1057       JVMState* jvms = n->jvms();
1058       int debug_cnt = jvms ? jvms->debug_start() : cnt;
1059 
1060       // Now do only debug info.  Clone constants rather than matching.
1061       // Constants are represented directly in the debug info without
1062       // the need for executable machine instructions.
1063       // Monitor boxes are also represented directly.
1064       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1065         Node *m = n->in(i);          // Get input
1066         int op = m->Opcode();
1067         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1068         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1069             op == Op_ConF || op == Op_ConD || op == Op_ConL
1070             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1071             ) {
1072           m = m->clone();
1073 #ifdef ASSERT
1074           _new2old_map.map(m->_idx, n);
1075 #endif
1076           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1077           mstack.push(m->in(0), Visit, m, 0);
1078         } else {
1079           mstack.push(m, Visit, n, i);
1080         }
1081       }
1082 
1083       // And now walk his children, and convert his inputs to new-space.
1084       for( ; i >= 0; --i ) { // For all normal inputs do
1085         Node *m = n->in(i);  // Get input
1086         if(m != NULL)
1087           mstack.push(m, Visit, n, i);
1088       }
1089 
1090     }
1091     else if (nstate == Post_Visit) {
1092       // Set xformed input
1093       Node *p = mstack.parent();
1094       if (p != NULL) { // root doesn't have parent
1095         int i = (int)mstack.index();
1096         if (i >= 0)
1097           p->set_req(i, n); // required input
1098         else if (i == -1)
1099           p->add_prec(n);   // precedence input
1100         else
1101           ShouldNotReachHere();
1102       }
1103       mstack.pop(); // remove processed node from stack
1104     }
1105     else {
1106       ShouldNotReachHere();
1107     }
1108   } // while (mstack.is_nonempty())
1109   return n; // Return new-space Node
1110 }
1111 
1112 //------------------------------warp_outgoing_stk_arg------------------------
1113 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1114   // Convert outgoing argument location to a pre-biased stack offset
1115   if (reg->is_stack()) {
1116     OptoReg::Name warped = reg->reg2stack();
1117     // Adjust the stack slot offset to be the register number used
1118     // by the allocator.
1119     warped = OptoReg::add(begin_out_arg_area, warped);
1120     // Keep track of the largest numbered stack slot used for an arg.
1121     // Largest used slot per call-site indicates the amount of stack
1122     // that is killed by the call.
1123     if( warped >= out_arg_limit_per_call )
1124       out_arg_limit_per_call = OptoReg::add(warped,1);
1125     if (!RegMask::can_represent_arg(warped)) {
1126       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
1127       return OptoReg::Bad;
1128     }
1129     return warped;
1130   }
1131   return OptoReg::as_OptoReg(reg);
1132 }
1133 
1134 
1135 //------------------------------match_sfpt-------------------------------------
1136 // Helper function to match call instructions.  Calls match special.
1137 // They match alone with no children.  Their children, the incoming
1138 // arguments, match normally.
1139 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1140   MachSafePointNode *msfpt = NULL;
1141   MachCallNode      *mcall = NULL;
1142   uint               cnt;
1143   // Split out case for SafePoint vs Call
1144   CallNode *call;
1145   const TypeTuple *domain;
1146   ciMethod*        method = NULL;
1147   bool             is_method_handle_invoke = false;  // for special kill effects
1148   if( sfpt->is_Call() ) {
1149     call = sfpt->as_Call();
1150     domain = call->tf()->domain();
1151     cnt = domain->cnt();
1152 
1153     // Match just the call, nothing else
1154     MachNode *m = match_tree(call);
1155     if (C->failing())  return NULL;
1156     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1157 
1158     // Copy data from the Ideal SafePoint to the machine version
1159     mcall = m->as_MachCall();
1160 
1161     mcall->set_tf(         call->tf());
1162     mcall->set_entry_point(call->entry_point());
1163     mcall->set_cnt(        call->cnt());
1164 
1165     if( mcall->is_MachCallJava() ) {
1166       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1167       const CallJavaNode *call_java =  call->as_CallJava();
1168       method = call_java->method();
1169       mcall_java->_method = method;
1170       mcall_java->_bci = call_java->_bci;
1171       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1172       is_method_handle_invoke = call_java->is_method_handle_invoke();
1173       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1174       if (is_method_handle_invoke) {
1175         C->set_has_method_handle_invokes(true);
1176       }
1177       if( mcall_java->is_MachCallStaticJava() )
1178         mcall_java->as_MachCallStaticJava()->_name =
1179          call_java->as_CallStaticJava()->_name;
1180       if( mcall_java->is_MachCallDynamicJava() )
1181         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1182          call_java->as_CallDynamicJava()->_vtable_index;
1183     }
1184     else if( mcall->is_MachCallRuntime() ) {
1185       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1186     }
1187     msfpt = mcall;
1188   }
1189   // This is a non-call safepoint
1190   else {
1191     call = NULL;
1192     domain = NULL;
1193     MachNode *mn = match_tree(sfpt);
1194     if (C->failing())  return NULL;
1195     msfpt = mn->as_MachSafePoint();
1196     cnt = TypeFunc::Parms;
1197   }
1198 
1199   // Advertise the correct memory effects (for anti-dependence computation).
1200   msfpt->set_adr_type(sfpt->adr_type());
1201 
1202   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1203   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1204   // Empty them all.
1205   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1206 
1207   // Do all the pre-defined non-Empty register masks
1208   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1209   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1210 
1211   // Place first outgoing argument can possibly be put.
1212   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1213   assert( is_even(begin_out_arg_area), "" );
1214   // Compute max outgoing register number per call site.
1215   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1216   // Calls to C may hammer extra stack slots above and beyond any arguments.
1217   // These are usually backing store for register arguments for varargs.
1218   if( call != NULL && call->is_CallRuntime() )
1219     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1220 
1221 
1222   // Do the normal argument list (parameters) register masks
1223   int argcnt = cnt - TypeFunc::Parms;
1224   if( argcnt > 0 ) {          // Skip it all if we have no args
1225     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1226     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1227     int i;
1228     for( i = 0; i < argcnt; i++ ) {
1229       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1230     }
1231     // V-call to pick proper calling convention
1232     call->calling_convention( sig_bt, parm_regs, argcnt );
1233 
1234 #ifdef ASSERT
1235     // Sanity check users' calling convention.  Really handy during
1236     // the initial porting effort.  Fairly expensive otherwise.
1237     { for (int i = 0; i<argcnt; i++) {
1238       if( !parm_regs[i].first()->is_valid() &&
1239           !parm_regs[i].second()->is_valid() ) continue;
1240       VMReg reg1 = parm_regs[i].first();
1241       VMReg reg2 = parm_regs[i].second();
1242       for (int j = 0; j < i; j++) {
1243         if( !parm_regs[j].first()->is_valid() &&
1244             !parm_regs[j].second()->is_valid() ) continue;
1245         VMReg reg3 = parm_regs[j].first();
1246         VMReg reg4 = parm_regs[j].second();
1247         if( !reg1->is_valid() ) {
1248           assert( !reg2->is_valid(), "valid halvsies" );
1249         } else if( !reg3->is_valid() ) {
1250           assert( !reg4->is_valid(), "valid halvsies" );
1251         } else {
1252           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1253           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1254           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1255           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1256           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1257           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1258         }
1259       }
1260     }
1261     }
1262 #endif
1263 
1264     // Visit each argument.  Compute its outgoing register mask.
1265     // Return results now can have 2 bits returned.
1266     // Compute max over all outgoing arguments both per call-site
1267     // and over the entire method.
1268     for( i = 0; i < argcnt; i++ ) {
1269       // Address of incoming argument mask to fill in
1270       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1271       if( !parm_regs[i].first()->is_valid() &&
1272           !parm_regs[i].second()->is_valid() ) {
1273         continue;               // Avoid Halves
1274       }
1275       // Grab first register, adjust stack slots and insert in mask.
1276       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1277       if (OptoReg::is_valid(reg1))
1278         rm->Insert( reg1 );
1279       // Grab second register (if any), adjust stack slots and insert in mask.
1280       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1281       if (OptoReg::is_valid(reg2))
1282         rm->Insert( reg2 );
1283     } // End of for all arguments
1284 
1285     // Compute number of stack slots needed to restore stack in case of
1286     // Pascal-style argument popping.
1287     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1288   }
1289 
1290   // Compute the max stack slot killed by any call.  These will not be
1291   // available for debug info, and will be used to adjust FIRST_STACK_mask
1292   // after all call sites have been visited.
1293   if( _out_arg_limit < out_arg_limit_per_call)
1294     _out_arg_limit = out_arg_limit_per_call;
1295 
1296   if (mcall) {
1297     // Kill the outgoing argument area, including any non-argument holes and
1298     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1299     // Since the max-per-method covers the max-per-call-site and debug info
1300     // is excluded on the max-per-method basis, debug info cannot land in
1301     // this killed area.
1302     uint r_cnt = mcall->tf()->range()->cnt();
1303     MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1304     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1305       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1306     } else {
1307       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1308         proj->_rout.Insert(OptoReg::Name(i));
1309     }
1310     if (proj->_rout.is_NotEmpty()) {
1311       push_projection(proj);
1312     }
1313   }
1314   // Transfer the safepoint information from the call to the mcall
1315   // Move the JVMState list
1316   msfpt->set_jvms(sfpt->jvms());
1317   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1318     jvms->set_map(sfpt);
1319   }
1320 
1321   // Debug inputs begin just after the last incoming parameter
1322   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
1323           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
1324 
1325   // Move the OopMap
1326   msfpt->_oop_map = sfpt->_oop_map;
1327 
1328   // Registers killed by the call are set in the local scheduling pass
1329   // of Global Code Motion.
1330   return msfpt;
1331 }
1332 
1333 //---------------------------match_tree----------------------------------------
1334 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1335 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1336 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1337 // a Load's result RegMask for memoization in idealreg2regmask[]
1338 MachNode *Matcher::match_tree( const Node *n ) {
1339   assert( n->Opcode() != Op_Phi, "cannot match" );
1340   assert( !n->is_block_start(), "cannot match" );
1341   // Set the mark for all locally allocated State objects.
1342   // When this call returns, the _states_arena arena will be reset
1343   // freeing all State objects.
1344   ResourceMark rm( &_states_arena );
1345 
1346   LabelRootDepth = 0;
1347 
1348   // StoreNodes require their Memory input to match any LoadNodes
1349   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1350 #ifdef ASSERT
1351   Node* save_mem_node = _mem_node;
1352   _mem_node = n->is_Store() ? (Node*)n : NULL;
1353 #endif
1354   // State object for root node of match tree
1355   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1356   State *s = new (&_states_arena) State;
1357   s->_kids[0] = NULL;
1358   s->_kids[1] = NULL;
1359   s->_leaf = (Node*)n;
1360   // Label the input tree, allocating labels from top-level arena
1361   Label_Root( n, s, n->in(0), mem );
1362   if (C->failing())  return NULL;
1363 
1364   // The minimum cost match for the whole tree is found at the root State
1365   uint mincost = max_juint;
1366   uint cost = max_juint;
1367   uint i;
1368   for( i = 0; i < NUM_OPERANDS; i++ ) {
1369     if( s->valid(i) &&                // valid entry and
1370         s->_cost[i] < cost &&         // low cost and
1371         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1372       cost = s->_cost[mincost=i];
1373   }
1374   if (mincost == max_juint) {
1375 #ifndef PRODUCT
1376     tty->print("No matching rule for:");
1377     s->dump();
1378 #endif
1379     Matcher::soft_match_failure();
1380     return NULL;
1381   }
1382   // Reduce input tree based upon the state labels to machine Nodes
1383   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1384 #ifdef ASSERT
1385   _old2new_map.map(n->_idx, m);
1386   _new2old_map.map(m->_idx, (Node*)n);
1387 #endif
1388 
1389   // Add any Matcher-ignored edges
1390   uint cnt = n->req();
1391   uint start = 1;
1392   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1393   if( n->is_AddP() ) {
1394     assert( mem == (Node*)1, "" );
1395     start = AddPNode::Base+1;
1396   }
1397   for( i = start; i < cnt; i++ ) {
1398     if( !n->match_edge(i) ) {
1399       if( i < m->req() )
1400         m->ins_req( i, n->in(i) );
1401       else
1402         m->add_req( n->in(i) );
1403     }
1404   }
1405 
1406   debug_only( _mem_node = save_mem_node; )
1407   return m;
1408 }
1409 
1410 
1411 //------------------------------match_into_reg---------------------------------
1412 // Choose to either match this Node in a register or part of the current
1413 // match tree.  Return true for requiring a register and false for matching
1414 // as part of the current match tree.
1415 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1416 
1417   const Type *t = m->bottom_type();
1418 
1419   if (t->singleton()) {
1420     // Never force constants into registers.  Allow them to match as
1421     // constants or registers.  Copies of the same value will share
1422     // the same register.  See find_shared_node.
1423     return false;
1424   } else {                      // Not a constant
1425     // Stop recursion if they have different Controls.
1426     Node* m_control = m->in(0);
1427     // Control of load's memory can post-dominates load's control.
1428     // So use it since load can't float above its memory.
1429     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
1430     if (control && m_control && control != m_control && control != mem_control) {
1431 
1432       // Actually, we can live with the most conservative control we
1433       // find, if it post-dominates the others.  This allows us to
1434       // pick up load/op/store trees where the load can float a little
1435       // above the store.
1436       Node *x = control;
1437       const uint max_scan = 6;  // Arbitrary scan cutoff
1438       uint j;
1439       for (j=0; j<max_scan; j++) {
1440         if (x->is_Region())     // Bail out at merge points
1441           return true;
1442         x = x->in(0);
1443         if (x == m_control)     // Does 'control' post-dominate
1444           break;                // m->in(0)?  If so, we can use it
1445         if (x == mem_control)   // Does 'control' post-dominate
1446           break;                // mem_control?  If so, we can use it
1447       }
1448       if (j == max_scan)        // No post-domination before scan end?
1449         return true;            // Then break the match tree up
1450     }
1451     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1452         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1453       // These are commonly used in address expressions and can
1454       // efficiently fold into them on X64 in some cases.
1455       return false;
1456     }
1457   }
1458 
1459   // Not forceable cloning.  If shared, put it into a register.
1460   return shared;
1461 }
1462 
1463 
1464 //------------------------------Instruction Selection--------------------------
1465 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1466 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1467 // things the Matcher does not match (e.g., Memory), and things with different
1468 // Controls (hence forced into different blocks).  We pass in the Control
1469 // selected for this entire State tree.
1470 
1471 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1472 // Store and the Load must have identical Memories (as well as identical
1473 // pointers).  Since the Matcher does not have anything for Memory (and
1474 // does not handle DAGs), I have to match the Memory input myself.  If the
1475 // Tree root is a Store, I require all Loads to have the identical memory.
1476 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1477   // Since Label_Root is a recursive function, its possible that we might run
1478   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1479   LabelRootDepth++;
1480   if (LabelRootDepth > MaxLabelRootDepth) {
1481     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1482     return NULL;
1483   }
1484   uint care = 0;                // Edges matcher cares about
1485   uint cnt = n->req();
1486   uint i = 0;
1487 
1488   // Examine children for memory state
1489   // Can only subsume a child into your match-tree if that child's memory state
1490   // is not modified along the path to another input.
1491   // It is unsafe even if the other inputs are separate roots.
1492   Node *input_mem = NULL;
1493   for( i = 1; i < cnt; i++ ) {
1494     if( !n->match_edge(i) ) continue;
1495     Node *m = n->in(i);         // Get ith input
1496     assert( m, "expect non-null children" );
1497     if( m->is_Load() ) {
1498       if( input_mem == NULL ) {
1499         input_mem = m->in(MemNode::Memory);
1500       } else if( input_mem != m->in(MemNode::Memory) ) {
1501         input_mem = NodeSentinel;
1502       }
1503     }
1504   }
1505 
1506   for( i = 1; i < cnt; i++ ){// For my children
1507     if( !n->match_edge(i) ) continue;
1508     Node *m = n->in(i);         // Get ith input
1509     // Allocate states out of a private arena
1510     State *s = new (&_states_arena) State;
1511     svec->_kids[care++] = s;
1512     assert( care <= 2, "binary only for now" );
1513 
1514     // Recursively label the State tree.
1515     s->_kids[0] = NULL;
1516     s->_kids[1] = NULL;
1517     s->_leaf = m;
1518 
1519     // Check for leaves of the State Tree; things that cannot be a part of
1520     // the current tree.  If it finds any, that value is matched as a
1521     // register operand.  If not, then the normal matching is used.
1522     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1523         //
1524         // Stop recursion if this is LoadNode and the root of this tree is a
1525         // StoreNode and the load & store have different memories.
1526         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1527         // Can NOT include the match of a subtree when its memory state
1528         // is used by any of the other subtrees
1529         (input_mem == NodeSentinel) ) {
1530 #ifndef PRODUCT
1531       // Print when we exclude matching due to different memory states at input-loads
1532       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1533         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1534         tty->print_cr("invalid input_mem");
1535       }
1536 #endif
1537       // Switch to a register-only opcode; this value must be in a register
1538       // and cannot be subsumed as part of a larger instruction.
1539       s->DFA( m->ideal_reg(), m );
1540 
1541     } else {
1542       // If match tree has no control and we do, adopt it for entire tree
1543       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1544         control = m->in(0);         // Pick up control
1545       // Else match as a normal part of the match tree.
1546       control = Label_Root(m,s,control,mem);
1547       if (C->failing()) return NULL;
1548     }
1549   }
1550 
1551 
1552   // Call DFA to match this node, and return
1553   svec->DFA( n->Opcode(), n );
1554 
1555 #ifdef ASSERT
1556   uint x;
1557   for( x = 0; x < _LAST_MACH_OPER; x++ )
1558     if( svec->valid(x) )
1559       break;
1560 
1561   if (x >= _LAST_MACH_OPER) {
1562     n->dump();
1563     svec->dump();
1564     assert( false, "bad AD file" );
1565   }
1566 #endif
1567   return control;
1568 }
1569 
1570 
1571 // Con nodes reduced using the same rule can share their MachNode
1572 // which reduces the number of copies of a constant in the final
1573 // program.  The register allocator is free to split uses later to
1574 // split live ranges.
1575 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1576   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
1577 
1578   // See if this Con has already been reduced using this rule.
1579   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1580   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1581   if (last != NULL && rule == last->rule()) {
1582     // Don't expect control change for DecodeN
1583     if (leaf->is_DecodeNarrowPtr())
1584       return last;
1585     // Get the new space root.
1586     Node* xroot = new_node(C->root());
1587     if (xroot == NULL) {
1588       // This shouldn't happen give the order of matching.
1589       return NULL;
1590     }
1591 
1592     // Shared constants need to have their control be root so they
1593     // can be scheduled properly.
1594     Node* control = last->in(0);
1595     if (control != xroot) {
1596       if (control == NULL || control == C->root()) {
1597         last->set_req(0, xroot);
1598       } else {
1599         assert(false, "unexpected control");
1600         return NULL;
1601       }
1602     }
1603     return last;
1604   }
1605   return NULL;
1606 }
1607 
1608 
1609 //------------------------------ReduceInst-------------------------------------
1610 // Reduce a State tree (with given Control) into a tree of MachNodes.
1611 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1612 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1613 // Each MachNode has a number of complicated MachOper operands; each
1614 // MachOper also covers a further tree of Ideal Nodes.
1615 
1616 // The root of the Ideal match tree is always an instruction, so we enter
1617 // the recursion here.  After building the MachNode, we need to recurse
1618 // the tree checking for these cases:
1619 // (1) Child is an instruction -
1620 //     Build the instruction (recursively), add it as an edge.
1621 //     Build a simple operand (register) to hold the result of the instruction.
1622 // (2) Child is an interior part of an instruction -
1623 //     Skip over it (do nothing)
1624 // (3) Child is the start of a operand -
1625 //     Build the operand, place it inside the instruction
1626 //     Call ReduceOper.
1627 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1628   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1629 
1630   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1631   if (shared_node != NULL) {
1632     return shared_node;
1633   }
1634 
1635   // Build the object to represent this state & prepare for recursive calls
1636   MachNode *mach = s->MachNodeGenerator( rule, C );
1637   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1638   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1639   Node *leaf = s->_leaf;
1640   // Check for instruction or instruction chain rule
1641   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1642     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1643            "duplicating node that's already been matched");
1644     // Instruction
1645     mach->add_req( leaf->in(0) ); // Set initial control
1646     // Reduce interior of complex instruction
1647     ReduceInst_Interior( s, rule, mem, mach, 1 );
1648   } else {
1649     // Instruction chain rules are data-dependent on their inputs
1650     mach->add_req(0);             // Set initial control to none
1651     ReduceInst_Chain_Rule( s, rule, mem, mach );
1652   }
1653 
1654   // If a Memory was used, insert a Memory edge
1655   if( mem != (Node*)1 ) {
1656     mach->ins_req(MemNode::Memory,mem);
1657 #ifdef ASSERT
1658     // Verify adr type after matching memory operation
1659     const MachOper* oper = mach->memory_operand();
1660     if (oper != NULL && oper != (MachOper*)-1) {
1661       // It has a unique memory operand.  Find corresponding ideal mem node.
1662       Node* m = NULL;
1663       if (leaf->is_Mem()) {
1664         m = leaf;
1665       } else {
1666         m = _mem_node;
1667         assert(m != NULL && m->is_Mem(), "expecting memory node");
1668       }
1669       const Type* mach_at = mach->adr_type();
1670       // DecodeN node consumed by an address may have different type
1671       // then its input. Don't compare types for such case.
1672       if (m->adr_type() != mach_at &&
1673           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1674            m->in(MemNode::Address)->is_AddP() &&
1675            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
1676            m->in(MemNode::Address)->is_AddP() &&
1677            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1678            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
1679         mach_at = m->adr_type();
1680       }
1681       if (m->adr_type() != mach_at) {
1682         m->dump();
1683         tty->print_cr("mach:");
1684         mach->dump(1);
1685       }
1686       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1687     }
1688 #endif
1689   }
1690 
1691   // If the _leaf is an AddP, insert the base edge
1692   if (leaf->is_AddP()) {
1693     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1694   }
1695 
1696   uint number_of_projections_prior = number_of_projections();
1697 
1698   // Perform any 1-to-many expansions required
1699   MachNode *ex = mach->Expand(s, _projection_list, mem);
1700   if (ex != mach) {
1701     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1702     if( ex->in(1)->is_Con() )
1703       ex->in(1)->set_req(0, C->root());
1704     // Remove old node from the graph
1705     for( uint i=0; i<mach->req(); i++ ) {
1706       mach->set_req(i,NULL);
1707     }
1708 #ifdef ASSERT
1709     _new2old_map.map(ex->_idx, s->_leaf);
1710 #endif
1711   }
1712 
1713   // PhaseChaitin::fixup_spills will sometimes generate spill code
1714   // via the matcher.  By the time, nodes have been wired into the CFG,
1715   // and any further nodes generated by expand rules will be left hanging
1716   // in space, and will not get emitted as output code.  Catch this.
1717   // Also, catch any new register allocation constraints ("projections")
1718   // generated belatedly during spill code generation.
1719   if (_allocation_started) {
1720     guarantee(ex == mach, "no expand rules during spill generation");
1721     guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
1722   }
1723 
1724   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1725     // Record the con for sharing
1726     _shared_nodes.map(leaf->_idx, ex);
1727   }
1728 
1729   return ex;
1730 }
1731 
1732 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1733   // 'op' is what I am expecting to receive
1734   int op = _leftOp[rule];
1735   // Operand type to catch childs result
1736   // This is what my child will give me.
1737   int opnd_class_instance = s->_rule[op];
1738   // Choose between operand class or not.
1739   // This is what I will receive.
1740   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1741   // New rule for child.  Chase operand classes to get the actual rule.
1742   int newrule = s->_rule[catch_op];
1743 
1744   if( newrule < NUM_OPERANDS ) {
1745     // Chain from operand or operand class, may be output of shared node
1746     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1747             "Bad AD file: Instruction chain rule must chain from operand");
1748     // Insert operand into array of operands for this instruction
1749     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1750 
1751     ReduceOper( s, newrule, mem, mach );
1752   } else {
1753     // Chain from the result of an instruction
1754     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1755     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1756     Node *mem1 = (Node*)1;
1757     debug_only(Node *save_mem_node = _mem_node;)
1758     mach->add_req( ReduceInst(s, newrule, mem1) );
1759     debug_only(_mem_node = save_mem_node;)
1760   }
1761   return;
1762 }
1763 
1764 
1765 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1766   if( s->_leaf->is_Load() ) {
1767     Node *mem2 = s->_leaf->in(MemNode::Memory);
1768     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1769     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1770     mem = mem2;
1771   }
1772   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1773     if( mach->in(0) == NULL )
1774       mach->set_req(0, s->_leaf->in(0));
1775   }
1776 
1777   // Now recursively walk the state tree & add operand list.
1778   for( uint i=0; i<2; i++ ) {   // binary tree
1779     State *newstate = s->_kids[i];
1780     if( newstate == NULL ) break;      // Might only have 1 child
1781     // 'op' is what I am expecting to receive
1782     int op;
1783     if( i == 0 ) {
1784       op = _leftOp[rule];
1785     } else {
1786       op = _rightOp[rule];
1787     }
1788     // Operand type to catch childs result
1789     // This is what my child will give me.
1790     int opnd_class_instance = newstate->_rule[op];
1791     // Choose between operand class or not.
1792     // This is what I will receive.
1793     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1794     // New rule for child.  Chase operand classes to get the actual rule.
1795     int newrule = newstate->_rule[catch_op];
1796 
1797     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1798       // Operand/operandClass
1799       // Insert operand into array of operands for this instruction
1800       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1801       ReduceOper( newstate, newrule, mem, mach );
1802 
1803     } else {                    // Child is internal operand or new instruction
1804       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1805         // internal operand --> call ReduceInst_Interior
1806         // Interior of complex instruction.  Do nothing but recurse.
1807         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1808       } else {
1809         // instruction --> call build operand(  ) to catch result
1810         //             --> ReduceInst( newrule )
1811         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1812         Node *mem1 = (Node*)1;
1813         debug_only(Node *save_mem_node = _mem_node;)
1814         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1815         debug_only(_mem_node = save_mem_node;)
1816       }
1817     }
1818     assert( mach->_opnds[num_opnds-1], "" );
1819   }
1820   return num_opnds;
1821 }
1822 
1823 // This routine walks the interior of possible complex operands.
1824 // At each point we check our children in the match tree:
1825 // (1) No children -
1826 //     We are a leaf; add _leaf field as an input to the MachNode
1827 // (2) Child is an internal operand -
1828 //     Skip over it ( do nothing )
1829 // (3) Child is an instruction -
1830 //     Call ReduceInst recursively and
1831 //     and instruction as an input to the MachNode
1832 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1833   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1834   State *kid = s->_kids[0];
1835   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1836 
1837   // Leaf?  And not subsumed?
1838   if( kid == NULL && !_swallowed[rule] ) {
1839     mach->add_req( s->_leaf );  // Add leaf pointer
1840     return;                     // Bail out
1841   }
1842 
1843   if( s->_leaf->is_Load() ) {
1844     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1845     mem = s->_leaf->in(MemNode::Memory);
1846     debug_only(_mem_node = s->_leaf;)
1847   }
1848   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1849     if( !mach->in(0) )
1850       mach->set_req(0,s->_leaf->in(0));
1851     else {
1852       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1853     }
1854   }
1855 
1856   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1857     int newrule;
1858     if( i == 0)
1859       newrule = kid->_rule[_leftOp[rule]];
1860     else
1861       newrule = kid->_rule[_rightOp[rule]];
1862 
1863     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1864       // Internal operand; recurse but do nothing else
1865       ReduceOper( kid, newrule, mem, mach );
1866 
1867     } else {                    // Child is a new instruction
1868       // Reduce the instruction, and add a direct pointer from this
1869       // machine instruction to the newly reduced one.
1870       Node *mem1 = (Node*)1;
1871       debug_only(Node *save_mem_node = _mem_node;)
1872       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1873       debug_only(_mem_node = save_mem_node;)
1874     }
1875   }
1876 }
1877 
1878 
1879 // -------------------------------------------------------------------------
1880 // Java-Java calling convention
1881 // (what you use when Java calls Java)
1882 
1883 //------------------------------find_receiver----------------------------------
1884 // For a given signature, return the OptoReg for parameter 0.
1885 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1886   VMRegPair regs;
1887   BasicType sig_bt = T_OBJECT;
1888   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1889   // Return argument 0 register.  In the LP64 build pointers
1890   // take 2 registers, but the VM wants only the 'main' name.
1891   return OptoReg::as_OptoReg(regs.first());
1892 }
1893 
1894 // A method-klass-holder may be passed in the inline_cache_reg
1895 // and then expanded into the inline_cache_reg and a method_oop register
1896 //   defined in ad_<arch>.cpp
1897 
1898 
1899 //------------------------------find_shared------------------------------------
1900 // Set bits if Node is shared or otherwise a root
1901 void Matcher::find_shared( Node *n ) {
1902   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
1903   MStack mstack(C->unique() * 2);
1904   // Mark nodes as address_visited if they are inputs to an address expression
1905   VectorSet address_visited(Thread::current()->resource_area());
1906   mstack.push(n, Visit);     // Don't need to pre-visit root node
1907   while (mstack.is_nonempty()) {
1908     n = mstack.node();       // Leave node on stack
1909     Node_State nstate = mstack.state();
1910     uint nop = n->Opcode();
1911     if (nstate == Pre_Visit) {
1912       if (address_visited.test(n->_idx)) { // Visited in address already?
1913         // Flag as visited and shared now.
1914         set_visited(n);
1915       }
1916       if (is_visited(n)) {   // Visited already?
1917         // Node is shared and has no reason to clone.  Flag it as shared.
1918         // This causes it to match into a register for the sharing.
1919         set_shared(n);       // Flag as shared and
1920         mstack.pop();        // remove node from stack
1921         continue;
1922       }
1923       nstate = Visit; // Not already visited; so visit now
1924     }
1925     if (nstate == Visit) {
1926       mstack.set_state(Post_Visit);
1927       set_visited(n);   // Flag as visited now
1928       bool mem_op = false;
1929 
1930       switch( nop ) {  // Handle some opcodes special
1931       case Op_Phi:             // Treat Phis as shared roots
1932       case Op_Parm:
1933       case Op_Proj:            // All handled specially during matching
1934       case Op_SafePointScalarObject:
1935         set_shared(n);
1936         set_dontcare(n);
1937         break;
1938       case Op_If:
1939       case Op_CountedLoopEnd:
1940         mstack.set_state(Alt_Post_Visit); // Alternative way
1941         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
1942         // with matching cmp/branch in 1 instruction.  The Matcher needs the
1943         // Bool and CmpX side-by-side, because it can only get at constants
1944         // that are at the leaves of Match trees, and the Bool's condition acts
1945         // as a constant here.
1946         mstack.push(n->in(1), Visit);         // Clone the Bool
1947         mstack.push(n->in(0), Pre_Visit);     // Visit control input
1948         continue; // while (mstack.is_nonempty())
1949       case Op_ConvI2D:         // These forms efficiently match with a prior
1950       case Op_ConvI2F:         //   Load but not a following Store
1951         if( n->in(1)->is_Load() &&        // Prior load
1952             n->outcnt() == 1 &&           // Not already shared
1953             n->unique_out()->is_Store() ) // Following store
1954           set_shared(n);       // Force it to be a root
1955         break;
1956       case Op_ReverseBytesI:
1957       case Op_ReverseBytesL:
1958         if( n->in(1)->is_Load() &&        // Prior load
1959             n->outcnt() == 1 )            // Not already shared
1960           set_shared(n);                  // Force it to be a root
1961         break;
1962       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
1963       case Op_IfFalse:
1964       case Op_IfTrue:
1965       case Op_MachProj:
1966       case Op_MergeMem:
1967       case Op_Catch:
1968       case Op_CatchProj:
1969       case Op_CProj:
1970       case Op_FlagsProj:
1971       case Op_JumpProj:
1972       case Op_JProj:
1973       case Op_NeverBranch:
1974         set_dontcare(n);
1975         break;
1976       case Op_Jump:
1977         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
1978         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
1979         continue;                             // while (mstack.is_nonempty())
1980       case Op_StrComp:
1981       case Op_StrEquals:
1982       case Op_StrIndexOf:
1983       case Op_AryEq:
1984       case Op_EncodeISOArray:
1985         set_shared(n); // Force result into register (it will be anyways)
1986         break;
1987       case Op_ConP: {  // Convert pointers above the centerline to NUL
1988         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1989         const TypePtr* tp = tn->type()->is_ptr();
1990         if (tp->_ptr == TypePtr::AnyNull) {
1991           tn->set_type(TypePtr::NULL_PTR);
1992         }
1993         break;
1994       }
1995       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
1996         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1997         const TypePtr* tp = tn->type()->make_ptr();
1998         if (tp && tp->_ptr == TypePtr::AnyNull) {
1999           tn->set_type(TypeNarrowOop::NULL_PTR);
2000         }
2001         break;
2002       }
2003       case Op_Binary:         // These are introduced in the Post_Visit state.
2004         ShouldNotReachHere();
2005         break;
2006       case Op_ClearArray:
2007       case Op_SafePoint:
2008         mem_op = true;
2009         break;
2010       default:
2011         if( n->is_Store() ) {
2012           // Do match stores, despite no ideal reg
2013           mem_op = true;
2014           break;
2015         }
2016         if( n->is_Mem() ) { // Loads and LoadStores
2017           mem_op = true;
2018           // Loads must be root of match tree due to prior load conflict
2019           if( C->subsume_loads() == false )
2020             set_shared(n);
2021         }
2022         // Fall into default case
2023         if( !n->ideal_reg() )
2024           set_dontcare(n);  // Unmatchable Nodes
2025       } // end_switch
2026 
2027       for(int i = n->req() - 1; i >= 0; --i) { // For my children
2028         Node *m = n->in(i); // Get ith input
2029         if (m == NULL) continue;  // Ignore NULLs
2030         uint mop = m->Opcode();
2031 
2032         // Must clone all producers of flags, or we will not match correctly.
2033         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2034         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2035         // are also there, so we may match a float-branch to int-flags and
2036         // expect the allocator to haul the flags from the int-side to the
2037         // fp-side.  No can do.
2038         if( _must_clone[mop] ) {
2039           mstack.push(m, Visit);
2040           continue; // for(int i = ...)
2041         }
2042 
2043         if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
2044           // Bases used in addresses must be shared but since
2045           // they are shared through a DecodeN they may appear
2046           // to have a single use so force sharing here.
2047           set_shared(m->in(AddPNode::Base)->in(1));
2048         }
2049 
2050         // Clone addressing expressions as they are "free" in memory access instructions
2051         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
2052           // Some inputs for address expression are not put on stack
2053           // to avoid marking them as shared and forcing them into register
2054           // if they are used only in address expressions.
2055           // But they should be marked as shared if there are other uses
2056           // besides address expressions.
2057 
2058           Node *off = m->in(AddPNode::Offset);
2059           if( off->is_Con() &&
2060               // When there are other uses besides address expressions
2061               // put it on stack and mark as shared.
2062               !is_visited(m) ) {
2063             address_visited.test_set(m->_idx); // Flag as address_visited
2064             Node *adr = m->in(AddPNode::Address);
2065 
2066             // Intel, ARM and friends can handle 2 adds in addressing mode
2067             if( clone_shift_expressions && adr->is_AddP() &&
2068                 // AtomicAdd is not an addressing expression.
2069                 // Cheap to find it by looking for screwy base.
2070                 !adr->in(AddPNode::Base)->is_top() &&
2071                 // Are there other uses besides address expressions?
2072                 !is_visited(adr) ) {
2073               address_visited.set(adr->_idx); // Flag as address_visited
2074               Node *shift = adr->in(AddPNode::Offset);
2075               // Check for shift by small constant as well
2076               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
2077                   shift->in(2)->get_int() <= 3 &&
2078                   // Are there other uses besides address expressions?
2079                   !is_visited(shift) ) {
2080                 address_visited.set(shift->_idx); // Flag as address_visited
2081                 mstack.push(shift->in(2), Visit);
2082                 Node *conv = shift->in(1);
2083 #ifdef _LP64
2084                 // Allow Matcher to match the rule which bypass
2085                 // ConvI2L operation for an array index on LP64
2086                 // if the index value is positive.
2087                 if( conv->Opcode() == Op_ConvI2L &&
2088                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
2089                     // Are there other uses besides address expressions?
2090                     !is_visited(conv) ) {
2091                   address_visited.set(conv->_idx); // Flag as address_visited
2092                   mstack.push(conv->in(1), Pre_Visit);
2093                 } else
2094 #endif
2095                 mstack.push(conv, Pre_Visit);
2096               } else {
2097                 mstack.push(shift, Pre_Visit);
2098               }
2099               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
2100               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
2101             } else {  // Sparc, Alpha, PPC and friends
2102               mstack.push(adr, Pre_Visit);
2103             }
2104 
2105             // Clone X+offset as it also folds into most addressing expressions
2106             mstack.push(off, Visit);
2107             mstack.push(m->in(AddPNode::Base), Pre_Visit);
2108             continue; // for(int i = ...)
2109           } // if( off->is_Con() )
2110         }   // if( mem_op &&
2111         mstack.push(m, Pre_Visit);
2112       }     // for(int i = ...)
2113     }
2114     else if (nstate == Alt_Post_Visit) {
2115       mstack.pop(); // Remove node from stack
2116       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2117       // shared and all users of the Bool need to move the Cmp in parallel.
2118       // This leaves both the Bool and the If pointing at the Cmp.  To
2119       // prevent the Matcher from trying to Match the Cmp along both paths
2120       // BoolNode::match_edge always returns a zero.
2121 
2122       // We reorder the Op_If in a pre-order manner, so we can visit without
2123       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2124       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2125     }
2126     else if (nstate == Post_Visit) {
2127       mstack.pop(); // Remove node from stack
2128 
2129       // Now hack a few special opcodes
2130       switch( n->Opcode() ) {       // Handle some opcodes special
2131       case Op_StorePConditional:
2132       case Op_StoreIConditional:
2133       case Op_StoreLConditional:
2134       case Op_CompareAndSwapI:
2135       case Op_CompareAndSwapL:
2136       case Op_CompareAndSwapP:
2137       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2138         Node *newval = n->in(MemNode::ValueIn );
2139         Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
2140         Node *pair = new (C) BinaryNode( oldval, newval );
2141         n->set_req(MemNode::ValueIn,pair);
2142         n->del_req(LoadStoreConditionalNode::ExpectedIn);
2143         break;
2144       }
2145       case Op_CMoveD:              // Convert trinary to binary-tree
2146       case Op_CMoveF:
2147       case Op_CMoveI:
2148       case Op_CMoveL:
2149       case Op_CMoveN:
2150       case Op_CMoveP: {
2151         // Restructure into a binary tree for Matching.  It's possible that
2152         // we could move this code up next to the graph reshaping for IfNodes
2153         // or vice-versa, but I do not want to debug this for Ladybird.
2154         // 10/2/2000 CNC.
2155         Node *pair1 = new (C) BinaryNode(n->in(1),n->in(1)->in(1));
2156         n->set_req(1,pair1);
2157         Node *pair2 = new (C) BinaryNode(n->in(2),n->in(3));
2158         n->set_req(2,pair2);
2159         n->del_req(3);
2160         break;
2161       }
2162       case Op_LoopLimit: {
2163         Node *pair1 = new (C) BinaryNode(n->in(1),n->in(2));
2164         n->set_req(1,pair1);
2165         n->set_req(2,n->in(3));
2166         n->del_req(3);
2167         break;
2168       }
2169       case Op_StrEquals: {
2170         Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
2171         n->set_req(2,pair1);
2172         n->set_req(3,n->in(4));
2173         n->del_req(4);
2174         break;
2175       }
2176       case Op_StrComp:
2177       case Op_StrIndexOf: {
2178         Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
2179         n->set_req(2,pair1);
2180         Node *pair2 = new (C) BinaryNode(n->in(4),n->in(5));
2181         n->set_req(3,pair2);
2182         n->del_req(5);
2183         n->del_req(4);
2184         break;
2185       }
2186       case Op_EncodeISOArray: {
2187         // Restructure into a binary tree for Matching.
2188         Node* pair = new (C) BinaryNode(n->in(3), n->in(4));
2189         n->set_req(3, pair);
2190         n->del_req(4);
2191         break;
2192       }
2193       default:
2194         break;
2195       }
2196     }
2197     else {
2198       ShouldNotReachHere();
2199     }
2200   } // end of while (mstack.is_nonempty())
2201 }
2202 
2203 #ifdef ASSERT
2204 // machine-independent root to machine-dependent root
2205 void Matcher::dump_old2new_map() {
2206   _old2new_map.dump();
2207 }
2208 #endif
2209 
2210 //---------------------------collect_null_checks-------------------------------
2211 // Find null checks in the ideal graph; write a machine-specific node for
2212 // it.  Used by later implicit-null-check handling.  Actually collects
2213 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2214 // value being tested.
2215 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2216   Node *iff = proj->in(0);
2217   if( iff->Opcode() == Op_If ) {
2218     // During matching If's have Bool & Cmp side-by-side
2219     BoolNode *b = iff->in(1)->as_Bool();
2220     Node *cmp = iff->in(2);
2221     int opc = cmp->Opcode();
2222     if (opc != Op_CmpP && opc != Op_CmpN) return;
2223 
2224     const Type* ct = cmp->in(2)->bottom_type();
2225     if (ct == TypePtr::NULL_PTR ||
2226         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2227 
2228       bool push_it = false;
2229       if( proj->Opcode() == Op_IfTrue ) {
2230         extern int all_null_checks_found;
2231         all_null_checks_found++;
2232         if( b->_test._test == BoolTest::ne ) {
2233           push_it = true;
2234         }
2235       } else {
2236         assert( proj->Opcode() == Op_IfFalse, "" );
2237         if( b->_test._test == BoolTest::eq ) {
2238           push_it = true;
2239         }
2240       }
2241       if( push_it ) {
2242         _null_check_tests.push(proj);
2243         Node* val = cmp->in(1);
2244 #ifdef _LP64
2245         if (val->bottom_type()->isa_narrowoop() &&
2246             !Matcher::narrow_oop_use_complex_address()) {
2247           //
2248           // Look for DecodeN node which should be pinned to orig_proj.
2249           // On platforms (Sparc) which can not handle 2 adds
2250           // in addressing mode we have to keep a DecodeN node and
2251           // use it to do implicit NULL check in address.
2252           //
2253           // DecodeN node was pinned to non-null path (orig_proj) during
2254           // CastPP transformation in final_graph_reshaping_impl().
2255           //
2256           uint cnt = orig_proj->outcnt();
2257           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2258             Node* d = orig_proj->raw_out(i);
2259             if (d->is_DecodeN() && d->in(1) == val) {
2260               val = d;
2261               val->set_req(0, NULL); // Unpin now.
2262               // Mark this as special case to distinguish from
2263               // a regular case: CmpP(DecodeN, NULL).
2264               val = (Node*)(((intptr_t)val) | 1);
2265               break;
2266             }
2267           }
2268         }
2269 #endif
2270         _null_check_tests.push(val);
2271       }
2272     }
2273   }
2274 }
2275 
2276 //---------------------------validate_null_checks------------------------------
2277 // Its possible that the value being NULL checked is not the root of a match
2278 // tree.  If so, I cannot use the value in an implicit null check.
2279 void Matcher::validate_null_checks( ) {
2280   uint cnt = _null_check_tests.size();
2281   for( uint i=0; i < cnt; i+=2 ) {
2282     Node *test = _null_check_tests[i];
2283     Node *val = _null_check_tests[i+1];
2284     bool is_decoden = ((intptr_t)val) & 1;
2285     val = (Node*)(((intptr_t)val) & ~1);
2286     if (has_new_node(val)) {
2287       Node* new_val = new_node(val);
2288       if (is_decoden) {
2289         assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
2290         // Note: new_val may have a control edge if
2291         // the original ideal node DecodeN was matched before
2292         // it was unpinned in Matcher::collect_null_checks().
2293         // Unpin the mach node and mark it.
2294         new_val->set_req(0, NULL);
2295         new_val = (Node*)(((intptr_t)new_val) | 1);
2296       }
2297       // Is a match-tree root, so replace with the matched value
2298       _null_check_tests.map(i+1, new_val);
2299     } else {
2300       // Yank from candidate list
2301       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2302       _null_check_tests.map(i,_null_check_tests[--cnt]);
2303       _null_check_tests.pop();
2304       _null_check_tests.pop();
2305       i-=2;
2306     }
2307   }
2308 }
2309 
2310 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2311 // atomic instruction acting as a store_load barrier without any
2312 // intervening volatile load, and thus we don't need a barrier here.
2313 // We retain the Node to act as a compiler ordering barrier.
2314 bool Matcher::post_store_load_barrier(const Node* vmb) {
2315   Compile* C = Compile::current();
2316   assert(vmb->is_MemBar(), "");
2317   assert(vmb->Opcode() != Op_MemBarAcquire, "");
2318   const MemBarNode* membar = vmb->as_MemBar();
2319 
2320   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2321   Node* ctrl = NULL;
2322   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2323     Node* p = membar->fast_out(i);
2324     assert(p->is_Proj(), "only projections here");
2325     if ((p->as_Proj()->_con == TypeFunc::Control) &&
2326         !C->node_arena()->contains(p)) { // Unmatched old-space only
2327       ctrl = p;
2328       break;
2329     }
2330   }
2331   assert((ctrl != NULL), "missing control projection");
2332 
2333   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2334     Node *x = ctrl->fast_out(j);
2335     int xop = x->Opcode();
2336 
2337     // We don't need current barrier if we see another or a lock
2338     // before seeing volatile load.
2339     //
2340     // Op_Fastunlock previously appeared in the Op_* list below.
2341     // With the advent of 1-0 lock operations we're no longer guaranteed
2342     // that a monitor exit operation contains a serializing instruction.
2343 
2344     if (xop == Op_MemBarVolatile ||
2345         xop == Op_CompareAndSwapL ||
2346         xop == Op_CompareAndSwapP ||
2347         xop == Op_CompareAndSwapN ||
2348         xop == Op_CompareAndSwapI) {
2349       return true;
2350     }
2351 
2352     // Op_FastLock previously appeared in the Op_* list above.
2353     // With biased locking we're no longer guaranteed that a monitor
2354     // enter operation contains a serializing instruction.
2355     if ((xop == Op_FastLock) && !UseBiasedLocking) {
2356       return true;
2357     }
2358 
2359     if (x->is_MemBar()) {
2360       // We must retain this membar if there is an upcoming volatile
2361       // load, which will be followed by acquire membar.
2362       if (xop == Op_MemBarAcquire) {
2363         return false;
2364       } else {
2365         // For other kinds of barriers, check by pretending we
2366         // are them, and seeing if we can be removed.
2367         return post_store_load_barrier(x->as_MemBar());
2368       }
2369     }
2370 
2371     // probably not necessary to check for these
2372     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2373       return false;
2374     }
2375   }
2376   return false;
2377 }
2378 
2379 //=============================================================================
2380 //---------------------------State---------------------------------------------
2381 State::State(void) {
2382 #ifdef ASSERT
2383   _id = 0;
2384   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2385   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2386   //memset(_cost, -1, sizeof(_cost));
2387   //memset(_rule, -1, sizeof(_rule));
2388 #endif
2389   memset(_valid, 0, sizeof(_valid));
2390 }
2391 
2392 #ifdef ASSERT
2393 State::~State() {
2394   _id = 99;
2395   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2396   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2397   memset(_cost, -3, sizeof(_cost));
2398   memset(_rule, -3, sizeof(_rule));
2399 }
2400 #endif
2401 
2402 #ifndef PRODUCT
2403 //---------------------------dump----------------------------------------------
2404 void State::dump() {
2405   tty->print("\n");
2406   dump(0);
2407 }
2408 
2409 void State::dump(int depth) {
2410   for( int j = 0; j < depth; j++ )
2411     tty->print("   ");
2412   tty->print("--N: ");
2413   _leaf->dump();
2414   uint i;
2415   for( i = 0; i < _LAST_MACH_OPER; i++ )
2416     // Check for valid entry
2417     if( valid(i) ) {
2418       for( int j = 0; j < depth; j++ )
2419         tty->print("   ");
2420         assert(_cost[i] != max_juint, "cost must be a valid value");
2421         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2422         tty->print_cr("%s  %d  %s",
2423                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2424       }
2425   tty->print_cr("");
2426 
2427   for( i=0; i<2; i++ )
2428     if( _kids[i] )
2429       _kids[i]->dump(depth+1);
2430 }
2431 #endif