1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/compile.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/matcher.hpp"
  37 #include "opto/memnode.hpp"
  38 #include "opto/mulnode.hpp"
  39 #include "opto/phaseX.hpp"
  40 #include "opto/regmask.hpp"
  41 
  42 // Portions of code courtesy of Clifford Click
  43 
  44 // Optimization - Graph Style
  45 
  46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  47 
  48 //=============================================================================
  49 uint MemNode::size_of() const { return sizeof(*this); }
  50 
  51 const TypePtr *MemNode::adr_type() const {
  52   Node* adr = in(Address);
  53   const TypePtr* cross_check = NULL;
  54   DEBUG_ONLY(cross_check = _adr_type);
  55   return calculate_adr_type(adr->bottom_type(), cross_check);
  56 }
  57 
  58 #ifndef PRODUCT
  59 void MemNode::dump_spec(outputStream *st) const {
  60   if (in(Address) == NULL)  return; // node is dead
  61 #ifndef ASSERT
  62   // fake the missing field
  63   const TypePtr* _adr_type = NULL;
  64   if (in(Address) != NULL)
  65     _adr_type = in(Address)->bottom_type()->isa_ptr();
  66 #endif
  67   dump_adr_type(this, _adr_type, st);
  68 
  69   Compile* C = Compile::current();
  70   if( C->alias_type(_adr_type)->is_volatile() )
  71     st->print(" Volatile!");
  72 }
  73 
  74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
  75   st->print(" @");
  76   if (adr_type == NULL) {
  77     st->print("NULL");
  78   } else {
  79     adr_type->dump_on(st);
  80     Compile* C = Compile::current();
  81     Compile::AliasType* atp = NULL;
  82     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
  83     if (atp == NULL)
  84       st->print(", idx=?\?;");
  85     else if (atp->index() == Compile::AliasIdxBot)
  86       st->print(", idx=Bot;");
  87     else if (atp->index() == Compile::AliasIdxTop)
  88       st->print(", idx=Top;");
  89     else if (atp->index() == Compile::AliasIdxRaw)
  90       st->print(", idx=Raw;");
  91     else {
  92       ciField* field = atp->field();
  93       if (field) {
  94         st->print(", name=");
  95         field->print_name_on(st);
  96       }
  97       st->print(", idx=%d;", atp->index());
  98     }
  99   }
 100 }
 101 
 102 extern void print_alias_types();
 103 
 104 #endif
 105 
 106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 107   assert((t_oop != NULL), "sanity");
 108   bool is_instance = t_oop->is_known_instance_field();
 109   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 110                              (load != NULL) && load->is_Load() &&
 111                              (phase->is_IterGVN() != NULL);
 112   if (!(is_instance || is_boxed_value_load))
 113     return mchain;  // don't try to optimize non-instance types
 114   uint instance_id = t_oop->instance_id();
 115   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
 116   Node *prev = NULL;
 117   Node *result = mchain;
 118   while (prev != result) {
 119     prev = result;
 120     if (result == start_mem)
 121       break;  // hit one of our sentinels
 122     // skip over a call which does not affect this memory slice
 123     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 124       Node *proj_in = result->in(0);
 125       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 126         break;  // hit one of our sentinels
 127       } else if (proj_in->is_Call()) {
 128         CallNode *call = proj_in->as_Call();
 129         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 130           result = call->in(TypeFunc::Memory);
 131         }
 132       } else if (proj_in->is_Initialize()) {
 133         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 134         // Stop if this is the initialization for the object instance which
 135         // which contains this memory slice, otherwise skip over it.
 136         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 137           break;
 138         }
 139         if (is_instance) {
 140           result = proj_in->in(TypeFunc::Memory);
 141         } else if (is_boxed_value_load) {
 142           Node* klass = alloc->in(AllocateNode::KlassNode);
 143           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 144           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 145             result = proj_in->in(TypeFunc::Memory); // not related allocation
 146           }
 147         }
 148       } else if (proj_in->is_MemBar()) {
 149         result = proj_in->in(TypeFunc::Memory);
 150       } else {
 151         assert(false, "unexpected projection");
 152       }
 153     } else if (result->is_ClearArray()) {
 154       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 155         // Can not bypass initialization of the instance
 156         // we are looking for.
 157         break;
 158       }
 159       // Otherwise skip it (the call updated 'result' value).
 160     } else if (result->is_MergeMem()) {
 161       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 162     }
 163   }
 164   return result;
 165 }
 166 
 167 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 168   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 169   if (t_oop == NULL)
 170     return mchain;  // don't try to optimize non-oop types
 171   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 172   bool is_instance = t_oop->is_known_instance_field();
 173   PhaseIterGVN *igvn = phase->is_IterGVN();
 174   if (is_instance && igvn != NULL  && result->is_Phi()) {
 175     PhiNode *mphi = result->as_Phi();
 176     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 177     const TypePtr *t = mphi->adr_type();
 178     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 179         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 180         t->is_oopptr()->cast_to_exactness(true)
 181          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 182          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
 183       // clone the Phi with our address type
 184       result = mphi->split_out_instance(t_adr, igvn);
 185     } else {
 186       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 187     }
 188   }
 189   return result;
 190 }
 191 
 192 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 193   uint alias_idx = phase->C->get_alias_index(tp);
 194   Node *mem = mmem;
 195 #ifdef ASSERT
 196   {
 197     // Check that current type is consistent with the alias index used during graph construction
 198     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 199     bool consistent =  adr_check == NULL || adr_check->empty() ||
 200                        phase->C->must_alias(adr_check, alias_idx );
 201     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 202     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 203                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 204         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 205         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 206           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 207           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 208       // don't assert if it is dead code.
 209       consistent = true;
 210     }
 211     if( !consistent ) {
 212       st->print("alias_idx==%d, adr_check==", alias_idx);
 213       if( adr_check == NULL ) {
 214         st->print("NULL");
 215       } else {
 216         adr_check->dump();
 217       }
 218       st->cr();
 219       print_alias_types();
 220       assert(consistent, "adr_check must match alias idx");
 221     }
 222   }
 223 #endif
 224   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 225   // means an array I have not precisely typed yet.  Do not do any
 226   // alias stuff with it any time soon.
 227   const TypeOopPtr *toop = tp->isa_oopptr();
 228   if( tp->base() != Type::AnyPtr &&
 229       !(toop &&
 230         toop->klass() != NULL &&
 231         toop->klass()->is_java_lang_Object() &&
 232         toop->offset() == Type::OffsetBot) ) {
 233     // compress paths and change unreachable cycles to TOP
 234     // If not, we can update the input infinitely along a MergeMem cycle
 235     // Equivalent code in PhiNode::Ideal
 236     Node* m  = phase->transform(mmem);
 237     // If transformed to a MergeMem, get the desired slice
 238     // Otherwise the returned node represents memory for every slice
 239     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 240     // Update input if it is progress over what we have now
 241   }
 242   return mem;
 243 }
 244 
 245 //--------------------------Ideal_common---------------------------------------
 246 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 247 // Unhook non-raw memories from complete (macro-expanded) initializations.
 248 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 249   // If our control input is a dead region, kill all below the region
 250   Node *ctl = in(MemNode::Control);
 251   if (ctl && remove_dead_region(phase, can_reshape))
 252     return this;
 253   ctl = in(MemNode::Control);
 254   // Don't bother trying to transform a dead node
 255   if (ctl && ctl->is_top())  return NodeSentinel;
 256 
 257   PhaseIterGVN *igvn = phase->is_IterGVN();
 258   // Wait if control on the worklist.
 259   if (ctl && can_reshape && igvn != NULL) {
 260     Node* bol = NULL;
 261     Node* cmp = NULL;
 262     if (ctl->in(0)->is_If()) {
 263       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 264       bol = ctl->in(0)->in(1);
 265       if (bol->is_Bool())
 266         cmp = ctl->in(0)->in(1)->in(1);
 267     }
 268     if (igvn->_worklist.member(ctl) ||
 269         (bol != NULL && igvn->_worklist.member(bol)) ||
 270         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 271       // This control path may be dead.
 272       // Delay this memory node transformation until the control is processed.
 273       phase->is_IterGVN()->_worklist.push(this);
 274       return NodeSentinel; // caller will return NULL
 275     }
 276   }
 277   // Ignore if memory is dead, or self-loop
 278   Node *mem = in(MemNode::Memory);
 279   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 280   assert(mem != this, "dead loop in MemNode::Ideal");
 281 
 282   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 283     // This memory slice may be dead.
 284     // Delay this mem node transformation until the memory is processed.
 285     phase->is_IterGVN()->_worklist.push(this);
 286     return NodeSentinel; // caller will return NULL
 287   }
 288 
 289   Node *address = in(MemNode::Address);
 290   const Type *t_adr = phase->type(address);
 291   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 292 
 293   if (can_reshape && igvn != NULL &&
 294       (igvn->_worklist.member(address) ||
 295        igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
 296     // The address's base and type may change when the address is processed.
 297     // Delay this mem node transformation until the address is processed.
 298     phase->is_IterGVN()->_worklist.push(this);
 299     return NodeSentinel; // caller will return NULL
 300   }
 301 
 302   // Do NOT remove or optimize the next lines: ensure a new alias index
 303   // is allocated for an oop pointer type before Escape Analysis.
 304   // Note: C++ will not remove it since the call has side effect.
 305   if (t_adr->isa_oopptr()) {
 306     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 307   }
 308 
 309 #ifdef ASSERT
 310   Node* base = NULL;
 311   if (address->is_AddP())
 312     base = address->in(AddPNode::Base);
 313   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 314       !t_adr->isa_rawptr()) {
 315     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 316     Compile* C = phase->C;
 317     tty->cr();
 318     tty->print_cr("===== NULL+offs not RAW address =====");
 319     if (C->is_dead_node(this->_idx))    tty->print_cr("'this' is dead");
 320     if ((ctl != NULL) && C->is_dead_node(ctl->_idx)) tty->print_cr("'ctl' is dead");
 321     if (C->is_dead_node(mem->_idx))     tty->print_cr("'mem' is dead");
 322     if (C->is_dead_node(address->_idx)) tty->print_cr("'address' is dead");
 323     if (C->is_dead_node(base->_idx))    tty->print_cr("'base' is dead");
 324     tty->cr();
 325     base->dump(1);
 326     tty->cr();
 327     this->dump(2);
 328     tty->print("this->adr_type():     "); adr_type()->dump(); tty->cr();
 329     tty->print("phase->type(address): "); t_adr->dump(); tty->cr();
 330     tty->print("phase->type(base):    "); phase->type(address)->dump(); tty->cr();
 331     tty->cr();
 332   }
 333   assert(base == NULL || t_adr->isa_rawptr() ||
 334         !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
 335 #endif
 336 
 337   // Avoid independent memory operations
 338   Node* old_mem = mem;
 339 
 340   // The code which unhooks non-raw memories from complete (macro-expanded)
 341   // initializations was removed. After macro-expansion all stores catched
 342   // by Initialize node became raw stores and there is no information
 343   // which memory slices they modify. So it is unsafe to move any memory
 344   // operation above these stores. Also in most cases hooked non-raw memories
 345   // were already unhooked by using information from detect_ptr_independence()
 346   // and find_previous_store().
 347 
 348   if (mem->is_MergeMem()) {
 349     MergeMemNode* mmem = mem->as_MergeMem();
 350     const TypePtr *tp = t_adr->is_ptr();
 351 
 352     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 353   }
 354 
 355   if (mem != old_mem) {
 356     set_req(MemNode::Memory, mem);
 357     if (can_reshape && old_mem->outcnt() == 0) {
 358         igvn->_worklist.push(old_mem);
 359     }
 360     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 361     return this;
 362   }
 363 
 364   // let the subclass continue analyzing...
 365   return NULL;
 366 }
 367 
 368 // Helper function for proving some simple control dominations.
 369 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 370 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 371 // is not a constant (dominated by the method's StartNode).
 372 // Used by MemNode::find_previous_store to prove that the
 373 // control input of a memory operation predates (dominates)
 374 // an allocation it wants to look past.
 375 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 376   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 377     return false; // Conservative answer for dead code
 378 
 379   // Check 'dom'. Skip Proj and CatchProj nodes.
 380   dom = dom->find_exact_control(dom);
 381   if (dom == NULL || dom->is_top())
 382     return false; // Conservative answer for dead code
 383 
 384   if (dom == sub) {
 385     // For the case when, for example, 'sub' is Initialize and the original
 386     // 'dom' is Proj node of the 'sub'.
 387     return false;
 388   }
 389 
 390   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 391     return true;
 392 
 393   // 'dom' dominates 'sub' if its control edge and control edges
 394   // of all its inputs dominate or equal to sub's control edge.
 395 
 396   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 397   // Or Region for the check in LoadNode::Ideal();
 398   // 'sub' should have sub->in(0) != NULL.
 399   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 400          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 401 
 402   // Get control edge of 'sub'.
 403   Node* orig_sub = sub;
 404   sub = sub->find_exact_control(sub->in(0));
 405   if (sub == NULL || sub->is_top())
 406     return false; // Conservative answer for dead code
 407 
 408   assert(sub->is_CFG(), "expecting control");
 409 
 410   if (sub == dom)
 411     return true;
 412 
 413   if (sub->is_Start() || sub->is_Root())
 414     return false;
 415 
 416   {
 417     // Check all control edges of 'dom'.
 418 
 419     ResourceMark rm;
 420     Arena* arena = Thread::current()->resource_area();
 421     Node_List nlist(arena);
 422     Unique_Node_List dom_list(arena);
 423 
 424     dom_list.push(dom);
 425     bool only_dominating_controls = false;
 426 
 427     for (uint next = 0; next < dom_list.size(); next++) {
 428       Node* n = dom_list.at(next);
 429       if (n == orig_sub)
 430         return false; // One of dom's inputs dominated by sub.
 431       if (!n->is_CFG() && n->pinned()) {
 432         // Check only own control edge for pinned non-control nodes.
 433         n = n->find_exact_control(n->in(0));
 434         if (n == NULL || n->is_top())
 435           return false; // Conservative answer for dead code
 436         assert(n->is_CFG(), "expecting control");
 437         dom_list.push(n);
 438       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 439         only_dominating_controls = true;
 440       } else if (n->is_CFG()) {
 441         if (n->dominates(sub, nlist))
 442           only_dominating_controls = true;
 443         else
 444           return false;
 445       } else {
 446         // First, own control edge.
 447         Node* m = n->find_exact_control(n->in(0));
 448         if (m != NULL) {
 449           if (m->is_top())
 450             return false; // Conservative answer for dead code
 451           dom_list.push(m);
 452         }
 453         // Now, the rest of edges.
 454         uint cnt = n->req();
 455         for (uint i = 1; i < cnt; i++) {
 456           m = n->find_exact_control(n->in(i));
 457           if (m == NULL || m->is_top())
 458             continue;
 459           dom_list.push(m);
 460         }
 461       }
 462     }
 463     return only_dominating_controls;
 464   }
 465 }
 466 
 467 //---------------------detect_ptr_independence---------------------------------
 468 // Used by MemNode::find_previous_store to prove that two base
 469 // pointers are never equal.
 470 // The pointers are accompanied by their associated allocations,
 471 // if any, which have been previously discovered by the caller.
 472 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 473                                       Node* p2, AllocateNode* a2,
 474                                       PhaseTransform* phase) {
 475   // Attempt to prove that these two pointers cannot be aliased.
 476   // They may both manifestly be allocations, and they should differ.
 477   // Or, if they are not both allocations, they can be distinct constants.
 478   // Otherwise, one is an allocation and the other a pre-existing value.
 479   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 480     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 481   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 482     return (a1 != a2);
 483   } else if (a1 != NULL) {                  // one allocation a1
 484     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 485     return all_controls_dominate(p2, a1);
 486   } else { //(a2 != NULL)                   // one allocation a2
 487     return all_controls_dominate(p1, a2);
 488   }
 489   return false;
 490 }
 491 
 492 
 493 // The logic for reordering loads and stores uses four steps:
 494 // (a) Walk carefully past stores and initializations which we
 495 //     can prove are independent of this load.
 496 // (b) Observe that the next memory state makes an exact match
 497 //     with self (load or store), and locate the relevant store.
 498 // (c) Ensure that, if we were to wire self directly to the store,
 499 //     the optimizer would fold it up somehow.
 500 // (d) Do the rewiring, and return, depending on some other part of
 501 //     the optimizer to fold up the load.
 502 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 503 // specific to loads and stores, so they are handled by the callers.
 504 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 505 //
 506 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 507   Node*         ctrl   = in(MemNode::Control);
 508   Node*         adr    = in(MemNode::Address);
 509   intptr_t      offset = 0;
 510   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 511   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 512 
 513   if (offset == Type::OffsetBot)
 514     return NULL;            // cannot unalias unless there are precise offsets
 515 
 516   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 517 
 518   intptr_t size_in_bytes = memory_size();
 519 
 520   Node* mem = in(MemNode::Memory);   // start searching here...
 521 
 522   int cnt = 50;             // Cycle limiter
 523   for (;;) {                // While we can dance past unrelated stores...
 524     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 525 
 526     if (mem->is_Store()) {
 527       Node* st_adr = mem->in(MemNode::Address);
 528       intptr_t st_offset = 0;
 529       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 530       if (st_base == NULL)
 531         break;              // inscrutable pointer
 532       if (st_offset != offset && st_offset != Type::OffsetBot) {
 533         const int MAX_STORE = BytesPerLong;
 534         if (st_offset >= offset + size_in_bytes ||
 535             st_offset <= offset - MAX_STORE ||
 536             st_offset <= offset - mem->as_Store()->memory_size()) {
 537           // Success:  The offsets are provably independent.
 538           // (You may ask, why not just test st_offset != offset and be done?
 539           // The answer is that stores of different sizes can co-exist
 540           // in the same sequence of RawMem effects.  We sometimes initialize
 541           // a whole 'tile' of array elements with a single jint or jlong.)
 542           mem = mem->in(MemNode::Memory);
 543           continue;           // (a) advance through independent store memory
 544         }
 545       }
 546       if (st_base != base &&
 547           detect_ptr_independence(base, alloc,
 548                                   st_base,
 549                                   AllocateNode::Ideal_allocation(st_base, phase),
 550                                   phase)) {
 551         // Success:  The bases are provably independent.
 552         mem = mem->in(MemNode::Memory);
 553         continue;           // (a) advance through independent store memory
 554       }
 555 
 556       // (b) At this point, if the bases or offsets do not agree, we lose,
 557       // since we have not managed to prove 'this' and 'mem' independent.
 558       if (st_base == base && st_offset == offset) {
 559         return mem;         // let caller handle steps (c), (d)
 560       }
 561 
 562     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 563       InitializeNode* st_init = mem->in(0)->as_Initialize();
 564       AllocateNode*  st_alloc = st_init->allocation();
 565       if (st_alloc == NULL)
 566         break;              // something degenerated
 567       bool known_identical = false;
 568       bool known_independent = false;
 569       if (alloc == st_alloc)
 570         known_identical = true;
 571       else if (alloc != NULL)
 572         known_independent = true;
 573       else if (all_controls_dominate(this, st_alloc))
 574         known_independent = true;
 575 
 576       if (known_independent) {
 577         // The bases are provably independent: Either they are
 578         // manifestly distinct allocations, or else the control
 579         // of this load dominates the store's allocation.
 580         int alias_idx = phase->C->get_alias_index(adr_type());
 581         if (alias_idx == Compile::AliasIdxRaw) {
 582           mem = st_alloc->in(TypeFunc::Memory);
 583         } else {
 584           mem = st_init->memory(alias_idx);
 585         }
 586         continue;           // (a) advance through independent store memory
 587       }
 588 
 589       // (b) at this point, if we are not looking at a store initializing
 590       // the same allocation we are loading from, we lose.
 591       if (known_identical) {
 592         // From caller, can_see_stored_value will consult find_captured_store.
 593         return mem;         // let caller handle steps (c), (d)
 594       }
 595 
 596     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 597       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 598       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 599         CallNode *call = mem->in(0)->as_Call();
 600         if (!call->may_modify(addr_t, phase)) {
 601           mem = call->in(TypeFunc::Memory);
 602           continue;         // (a) advance through independent call memory
 603         }
 604       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 605         mem = mem->in(0)->in(TypeFunc::Memory);
 606         continue;           // (a) advance through independent MemBar memory
 607       } else if (mem->is_ClearArray()) {
 608         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 609           // (the call updated 'mem' value)
 610           continue;         // (a) advance through independent allocation memory
 611         } else {
 612           // Can not bypass initialization of the instance
 613           // we are looking for.
 614           return mem;
 615         }
 616       } else if (mem->is_MergeMem()) {
 617         int alias_idx = phase->C->get_alias_index(adr_type());
 618         mem = mem->as_MergeMem()->memory_at(alias_idx);
 619         continue;           // (a) advance through independent MergeMem memory
 620       }
 621     }
 622 
 623     // Unless there is an explicit 'continue', we must bail out here,
 624     // because 'mem' is an inscrutable memory state (e.g., a call).
 625     break;
 626   }
 627 
 628   return NULL;              // bail out
 629 }
 630 
 631 //----------------------calculate_adr_type-------------------------------------
 632 // Helper function.  Notices when the given type of address hits top or bottom.
 633 // Also, asserts a cross-check of the type against the expected address type.
 634 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 635   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 636   #ifdef PRODUCT
 637   cross_check = NULL;
 638   #else
 639   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
 640   #endif
 641   const TypePtr* tp = t->isa_ptr();
 642   if (tp == NULL) {
 643     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 644     return TypePtr::BOTTOM;           // touches lots of memory
 645   } else {
 646     #ifdef ASSERT
 647     // %%%% [phh] We don't check the alias index if cross_check is
 648     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 649     if (cross_check != NULL &&
 650         cross_check != TypePtr::BOTTOM &&
 651         cross_check != TypeRawPtr::BOTTOM) {
 652       // Recheck the alias index, to see if it has changed (due to a bug).
 653       Compile* C = Compile::current();
 654       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 655              "must stay in the original alias category");
 656       // The type of the address must be contained in the adr_type,
 657       // disregarding "null"-ness.
 658       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 659       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 660       assert(cross_check->meet(tp_notnull) == cross_check,
 661              "real address must not escape from expected memory type");
 662     }
 663     #endif
 664     return tp;
 665   }
 666 }
 667 
 668 //------------------------adr_phi_is_loop_invariant----------------------------
 669 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
 670 // loop is loop invariant. Make a quick traversal of Phi and associated
 671 // CastPP nodes, looking to see if they are a closed group within the loop.
 672 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
 673   // The idea is that the phi-nest must boil down to only CastPP nodes
 674   // with the same data. This implies that any path into the loop already
 675   // includes such a CastPP, and so the original cast, whatever its input,
 676   // must be covered by an equivalent cast, with an earlier control input.
 677   ResourceMark rm;
 678 
 679   // The loop entry input of the phi should be the unique dominating
 680   // node for every Phi/CastPP in the loop.
 681   Unique_Node_List closure;
 682   closure.push(adr_phi->in(LoopNode::EntryControl));
 683 
 684   // Add the phi node and the cast to the worklist.
 685   Unique_Node_List worklist;
 686   worklist.push(adr_phi);
 687   if( cast != NULL ){
 688     if( !cast->is_ConstraintCast() ) return false;
 689     worklist.push(cast);
 690   }
 691 
 692   // Begin recursive walk of phi nodes.
 693   while( worklist.size() ){
 694     // Take a node off the worklist
 695     Node *n = worklist.pop();
 696     if( !closure.member(n) ){
 697       // Add it to the closure.
 698       closure.push(n);
 699       // Make a sanity check to ensure we don't waste too much time here.
 700       if( closure.size() > 20) return false;
 701       // This node is OK if:
 702       //  - it is a cast of an identical value
 703       //  - or it is a phi node (then we add its inputs to the worklist)
 704       // Otherwise, the node is not OK, and we presume the cast is not invariant
 705       if( n->is_ConstraintCast() ){
 706         worklist.push(n->in(1));
 707       } else if( n->is_Phi() ) {
 708         for( uint i = 1; i < n->req(); i++ ) {
 709           worklist.push(n->in(i));
 710         }
 711       } else {
 712         return false;
 713       }
 714     }
 715   }
 716 
 717   // Quit when the worklist is empty, and we've found no offending nodes.
 718   return true;
 719 }
 720 
 721 //------------------------------Ideal_DU_postCCP-------------------------------
 722 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
 723 // going away in this pass and we need to make this memory op depend on the
 724 // gating null check.
 725 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
 726   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
 727 }
 728 
 729 // I tried to leave the CastPP's in.  This makes the graph more accurate in
 730 // some sense; we get to keep around the knowledge that an oop is not-null
 731 // after some test.  Alas, the CastPP's interfere with GVN (some values are
 732 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
 733 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
 734 // some of the more trivial cases in the optimizer.  Removing more useless
 735 // Phi's started allowing Loads to illegally float above null checks.  I gave
 736 // up on this approach.  CNC 10/20/2000
 737 // This static method may be called not from MemNode (EncodePNode calls it).
 738 // Only the control edge of the node 'n' might be updated.
 739 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
 740   Node *skipped_cast = NULL;
 741   // Need a null check?  Regular static accesses do not because they are
 742   // from constant addresses.  Array ops are gated by the range check (which
 743   // always includes a NULL check).  Just check field ops.
 744   if( n->in(MemNode::Control) == NULL ) {
 745     // Scan upwards for the highest location we can place this memory op.
 746     while( true ) {
 747       switch( adr->Opcode() ) {
 748 
 749       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
 750         adr = adr->in(AddPNode::Base);
 751         continue;
 752 
 753       case Op_DecodeN:         // No change to NULL-ness, so peek thru
 754       case Op_DecodeNKlass:
 755         adr = adr->in(1);
 756         continue;
 757 
 758       case Op_EncodeP:
 759       case Op_EncodePKlass:
 760         // EncodeP node's control edge could be set by this method
 761         // when EncodeP node depends on CastPP node.
 762         //
 763         // Use its control edge for memory op because EncodeP may go away
 764         // later when it is folded with following or preceding DecodeN node.
 765         if (adr->in(0) == NULL) {
 766           // Keep looking for cast nodes.
 767           adr = adr->in(1);
 768           continue;
 769         }
 770         ccp->hash_delete(n);
 771         n->set_req(MemNode::Control, adr->in(0));
 772         ccp->hash_insert(n);
 773         return n;
 774 
 775       case Op_CastPP:
 776         // If the CastPP is useless, just peek on through it.
 777         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
 778           // Remember the cast that we've peeked though. If we peek
 779           // through more than one, then we end up remembering the highest
 780           // one, that is, if in a loop, the one closest to the top.
 781           skipped_cast = adr;
 782           adr = adr->in(1);
 783           continue;
 784         }
 785         // CastPP is going away in this pass!  We need this memory op to be
 786         // control-dependent on the test that is guarding the CastPP.
 787         ccp->hash_delete(n);
 788         n->set_req(MemNode::Control, adr->in(0));
 789         ccp->hash_insert(n);
 790         return n;
 791 
 792       case Op_Phi:
 793         // Attempt to float above a Phi to some dominating point.
 794         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
 795           // If we've already peeked through a Cast (which could have set the
 796           // control), we can't float above a Phi, because the skipped Cast
 797           // may not be loop invariant.
 798           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
 799             adr = adr->in(1);
 800             continue;
 801           }
 802         }
 803 
 804         // Intentional fallthrough!
 805 
 806         // No obvious dominating point.  The mem op is pinned below the Phi
 807         // by the Phi itself.  If the Phi goes away (no true value is merged)
 808         // then the mem op can float, but not indefinitely.  It must be pinned
 809         // behind the controls leading to the Phi.
 810       case Op_CheckCastPP:
 811         // These usually stick around to change address type, however a
 812         // useless one can be elided and we still need to pick up a control edge
 813         if (adr->in(0) == NULL) {
 814           // This CheckCastPP node has NO control and is likely useless. But we
 815           // need check further up the ancestor chain for a control input to keep
 816           // the node in place. 4959717.
 817           skipped_cast = adr;
 818           adr = adr->in(1);
 819           continue;
 820         }
 821         ccp->hash_delete(n);
 822         n->set_req(MemNode::Control, adr->in(0));
 823         ccp->hash_insert(n);
 824         return n;
 825 
 826         // List of "safe" opcodes; those that implicitly block the memory
 827         // op below any null check.
 828       case Op_CastX2P:          // no null checks on native pointers
 829       case Op_Parm:             // 'this' pointer is not null
 830       case Op_LoadP:            // Loading from within a klass
 831       case Op_LoadN:            // Loading from within a klass
 832       case Op_LoadKlass:        // Loading from within a klass
 833       case Op_LoadNKlass:       // Loading from within a klass
 834       case Op_ConP:             // Loading from a klass
 835       case Op_ConN:             // Loading from a klass
 836       case Op_ConNKlass:        // Loading from a klass
 837       case Op_CreateEx:         // Sucking up the guts of an exception oop
 838       case Op_Con:              // Reading from TLS
 839       case Op_CMoveP:           // CMoveP is pinned
 840       case Op_CMoveN:           // CMoveN is pinned
 841         break;                  // No progress
 842 
 843       case Op_Proj:             // Direct call to an allocation routine
 844       case Op_SCMemProj:        // Memory state from store conditional ops
 845 #ifdef ASSERT
 846         {
 847           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
 848           const Node* call = adr->in(0);
 849           if (call->is_CallJava()) {
 850             const CallJavaNode* call_java = call->as_CallJava();
 851             const TypeTuple *r = call_java->tf()->range();
 852             assert(r->cnt() > TypeFunc::Parms, "must return value");
 853             const Type* ret_type = r->field_at(TypeFunc::Parms);
 854             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
 855             // We further presume that this is one of
 856             // new_instance_Java, new_array_Java, or
 857             // the like, but do not assert for this.
 858           } else if (call->is_Allocate()) {
 859             // similar case to new_instance_Java, etc.
 860           } else if (!call->is_CallLeaf()) {
 861             // Projections from fetch_oop (OSR) are allowed as well.
 862             ShouldNotReachHere();
 863           }
 864         }
 865 #endif
 866         break;
 867       default:
 868         ShouldNotReachHere();
 869       }
 870       break;
 871     }
 872   }
 873 
 874   return  NULL;               // No progress
 875 }
 876 
 877 
 878 //=============================================================================
 879 uint LoadNode::size_of() const { return sizeof(*this); }
 880 uint LoadNode::cmp( const Node &n ) const
 881 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 882 const Type *LoadNode::bottom_type() const { return _type; }
 883 uint LoadNode::ideal_reg() const {
 884   return _type->ideal_reg();
 885 }
 886 
 887 #ifndef PRODUCT
 888 void LoadNode::dump_spec(outputStream *st) const {
 889   MemNode::dump_spec(st);
 890   if( !Verbose && !WizardMode ) {
 891     // standard dump does this in Verbose and WizardMode
 892     st->print(" #"); _type->dump_on(st);
 893   }
 894 }
 895 #endif
 896 
 897 #ifdef ASSERT
 898 //----------------------------is_immutable_value-------------------------------
 899 // Helper function to allow a raw load without control edge for some cases
 900 bool LoadNode::is_immutable_value(Node* adr) {
 901   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 902           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 903           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 904            in_bytes(JavaThread::osthread_offset())));
 905 }
 906 #endif
 907 
 908 //----------------------------LoadNode::make-----------------------------------
 909 // Polymorphic factory method:
 910 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, Sem sem) {
 911   Compile* C = gvn.C;
 912 
 913   // sanity check the alias category against the created node type
 914   assert(!(adr_type->isa_oopptr() &&
 915            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 916          "use LoadKlassNode instead");
 917   assert(!(adr_type->isa_aryptr() &&
 918            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 919          "use LoadRangeNode instead");
 920   // Check control edge of raw loads
 921   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 922           // oop will be recorded in oop map if load crosses safepoint
 923           rt->isa_oopptr() || is_immutable_value(adr),
 924           "raw memory operations should have control edge");
 925   switch (bt) {
 926   case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  sem);
 927   case T_BYTE:    return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  sem);
 928   case T_INT:     return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  sem);
 929   case T_CHAR:    return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  sem);
 930   case T_SHORT:   return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  sem);
 931   case T_LONG:    return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), false, sem);
 932   case T_FLOAT:   return new (C) LoadFNode (ctl, mem, adr, adr_type, rt,            sem);
 933   case T_DOUBLE:  return new (C) LoadDNode (ctl, mem, adr, adr_type, rt,            sem);
 934   case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  sem);
 935   case T_OBJECT:
 936 #ifdef _LP64
 937     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 938       Node* load  = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), sem));
 939       return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
 940     } else
 941 #endif
 942     {
 943       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 944       return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr(), sem);
 945     }
 946   }
 947   ShouldNotReachHere();
 948   return (LoadNode*)NULL;
 949 }
 950 
 951 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, Sem sem) {
 952   bool require_atomic = true;
 953   return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic, sem);
 954 }
 955 
 956 
 957 
 958 
 959 //------------------------------hash-------------------------------------------
 960 uint LoadNode::hash() const {
 961   // unroll addition of interesting fields
 962   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 963 }
 964 
 965 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 966   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 967     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 968     bool is_stable_ary = FoldStableValues &&
 969                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 970                          tp->isa_aryptr()->is_stable();
 971 
 972     return (eliminate_boxing && non_volatile) || is_stable_ary;
 973   }
 974 
 975   return false;
 976 }
 977 
 978 //---------------------------can_see_stored_value------------------------------
 979 // This routine exists to make sure this set of tests is done the same
 980 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 981 // will change the graph shape in a way which makes memory alive twice at the
 982 // same time (uses the Oracle model of aliasing), then some
 983 // LoadXNode::Identity will fold things back to the equivalence-class model
 984 // of aliasing.
 985 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 986   Node* ld_adr = in(MemNode::Address);
 987   intptr_t ld_off = 0;
 988   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 989   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 990   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
 991   // This is more general than load from boxing objects.
 992   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
 993     uint alias_idx = atp->index();
 994     bool final = !atp->is_rewritable();
 995     Node* result = NULL;
 996     Node* current = st;
 997     // Skip through chains of MemBarNodes checking the MergeMems for
 998     // new states for the slice of this load.  Stop once any other
 999     // kind of node is encountered.  Loads from final memory can skip
1000     // through any kind of MemBar but normal loads shouldn't skip
1001     // through MemBarAcquire since the could allow them to move out of
1002     // a synchronized region.
1003     while (current->is_Proj()) {
1004       int opc = current->in(0)->Opcode();
1005       if ((final && (opc == Op_MemBarAcquire || opc == Op_MemBarAcquireLock)) ||
1006           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder ||
1007           opc == Op_MemBarReleaseLock) {
1008         Node* mem = current->in(0)->in(TypeFunc::Memory);
1009         if (mem->is_MergeMem()) {
1010           MergeMemNode* merge = mem->as_MergeMem();
1011           Node* new_st = merge->memory_at(alias_idx);
1012           if (new_st == merge->base_memory()) {
1013             // Keep searching
1014             current = new_st;
1015             continue;
1016           }
1017           // Save the new memory state for the slice and fall through
1018           // to exit.
1019           result = new_st;
1020         }
1021       }
1022       break;
1023     }
1024     if (result != NULL) {
1025       st = result;
1026     }
1027   }
1028 
1029   // Loop around twice in the case Load -> Initialize -> Store.
1030   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1031   for (int trip = 0; trip <= 1; trip++) {
1032 
1033     if (st->is_Store()) {
1034       Node* st_adr = st->in(MemNode::Address);
1035       if (!phase->eqv(st_adr, ld_adr)) {
1036         // Try harder before giving up...  Match raw and non-raw pointers.
1037         intptr_t st_off = 0;
1038         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1039         if (alloc == NULL)       return NULL;
1040         if (alloc != ld_alloc)   return NULL;
1041         if (ld_off != st_off)    return NULL;
1042         // At this point we have proven something like this setup:
1043         //  A = Allocate(...)
1044         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1045         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1046         // (Actually, we haven't yet proven the Q's are the same.)
1047         // In other words, we are loading from a casted version of
1048         // the same pointer-and-offset that we stored to.
1049         // Thus, we are able to replace L by V.
1050       }
1051       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1052       if (store_Opcode() != st->Opcode())
1053         return NULL;
1054       return st->in(MemNode::ValueIn);
1055     }
1056 
1057     // A load from a freshly-created object always returns zero.
1058     // (This can happen after LoadNode::Ideal resets the load's memory input
1059     // to find_captured_store, which returned InitializeNode::zero_memory.)
1060     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1061         (st->in(0) == ld_alloc) &&
1062         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1063       // return a zero value for the load's basic type
1064       // (This is one of the few places where a generic PhaseTransform
1065       // can create new nodes.  Think of it as lazily manifesting
1066       // virtually pre-existing constants.)
1067       return phase->zerocon(memory_type());
1068     }
1069 
1070     // A load from an initialization barrier can match a captured store.
1071     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1072       InitializeNode* init = st->in(0)->as_Initialize();
1073       AllocateNode* alloc = init->allocation();
1074       if ((alloc != NULL) && (alloc == ld_alloc)) {
1075         // examine a captured store value
1076         st = init->find_captured_store(ld_off, memory_size(), phase);
1077         if (st != NULL)
1078           continue;             // take one more trip around
1079       }
1080     }
1081 
1082     // Load boxed value from result of valueOf() call is input parameter.
1083     if (this->is_Load() && ld_adr->is_AddP() &&
1084         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1085       intptr_t ignore = 0;
1086       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1087       if (base != NULL && base->is_Proj() &&
1088           base->as_Proj()->_con == TypeFunc::Parms &&
1089           base->in(0)->is_CallStaticJava() &&
1090           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1091         return base->in(0)->in(TypeFunc::Parms);
1092       }
1093     }
1094 
1095     break;
1096   }
1097 
1098   return NULL;
1099 }
1100 
1101 //----------------------is_instance_field_load_with_local_phi------------------
1102 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1103   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1104       in(Address)->is_AddP() ) {
1105     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1106     // Only instances and boxed values.
1107     if( t_oop != NULL &&
1108         (t_oop->is_ptr_to_boxed_value() ||
1109          t_oop->is_known_instance_field()) &&
1110         t_oop->offset() != Type::OffsetBot &&
1111         t_oop->offset() != Type::OffsetTop) {
1112       return true;
1113     }
1114   }
1115   return false;
1116 }
1117 
1118 //------------------------------Identity---------------------------------------
1119 // Loads are identity if previous store is to same address
1120 Node *LoadNode::Identity( PhaseTransform *phase ) {
1121   // If the previous store-maker is the right kind of Store, and the store is
1122   // to the same address, then we are equal to the value stored.
1123   Node* mem = in(Memory);
1124   Node* value = can_see_stored_value(mem, phase);
1125   if( value ) {
1126     // byte, short & char stores truncate naturally.
1127     // A load has to load the truncated value which requires
1128     // some sort of masking operation and that requires an
1129     // Ideal call instead of an Identity call.
1130     if (memory_size() < BytesPerInt) {
1131       // If the input to the store does not fit with the load's result type,
1132       // it must be truncated via an Ideal call.
1133       if (!phase->type(value)->higher_equal(phase->type(this)))
1134         return this;
1135     }
1136     // (This works even when value is a Con, but LoadNode::Value
1137     // usually runs first, producing the singleton type of the Con.)
1138     return value;
1139   }
1140 
1141   // Search for an existing data phi which was generated before for the same
1142   // instance's field to avoid infinite generation of phis in a loop.
1143   Node *region = mem->in(0);
1144   if (is_instance_field_load_with_local_phi(region)) {
1145     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1146     int this_index  = phase->C->get_alias_index(addr_t);
1147     int this_offset = addr_t->offset();
1148     int this_iid    = addr_t->instance_id();
1149     if (!addr_t->is_known_instance() &&
1150          addr_t->is_ptr_to_boxed_value()) {
1151       // Use _idx of address base (could be Phi node) for boxed values.
1152       intptr_t   ignore = 0;
1153       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1154       this_iid = base->_idx;
1155     }
1156     const Type* this_type = bottom_type();
1157     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1158       Node* phi = region->fast_out(i);
1159       if (phi->is_Phi() && phi != mem &&
1160           phi->as_Phi()->is_same_inst_field(this_type, this_iid, this_index, this_offset)) {
1161         return phi;
1162       }
1163     }
1164   }
1165 
1166   return this;
1167 }
1168 
1169 // We're loading from an object which has autobox behaviour.
1170 // If this object is result of a valueOf call we'll have a phi
1171 // merging a newly allocated object and a load from the cache.
1172 // We want to replace this load with the original incoming
1173 // argument to the valueOf call.
1174 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1175   assert(phase->C->eliminate_boxing(), "sanity");
1176   intptr_t ignore = 0;
1177   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1178   if ((base == NULL) || base->is_Phi()) {
1179     // Push the loads from the phi that comes from valueOf up
1180     // through it to allow elimination of the loads and the recovery
1181     // of the original value. It is done in split_through_phi().
1182     return NULL;
1183   } else if (base->is_Load() ||
1184              base->is_DecodeN() && base->in(1)->is_Load()) {
1185     // Eliminate the load of boxed value for integer types from the cache
1186     // array by deriving the value from the index into the array.
1187     // Capture the offset of the load and then reverse the computation.
1188 
1189     // Get LoadN node which loads a boxing object from 'cache' array.
1190     if (base->is_DecodeN()) {
1191       base = base->in(1);
1192     }
1193     if (!base->in(Address)->is_AddP()) {
1194       return NULL; // Complex address
1195     }
1196     AddPNode* address = base->in(Address)->as_AddP();
1197     Node* cache_base = address->in(AddPNode::Base);
1198     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1199       // Get ConP node which is static 'cache' field.
1200       cache_base = cache_base->in(1);
1201     }
1202     if ((cache_base != NULL) && cache_base->is_Con()) {
1203       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1204       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1205         Node* elements[4];
1206         int shift = exact_log2(type2aelembytes(T_OBJECT));
1207         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1208         if ((count >  0) && elements[0]->is_Con() &&
1209             ((count == 1) ||
1210              (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
1211                              elements[1]->in(2) == phase->intcon(shift))) {
1212           ciObjArray* array = base_type->const_oop()->as_obj_array();
1213           // Fetch the box object cache[0] at the base of the array and get its value
1214           ciInstance* box = array->obj_at(0)->as_instance();
1215           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1216           assert(ik->is_box_klass(), "sanity");
1217           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1218           if (ik->nof_nonstatic_fields() == 1) {
1219             // This should be true nonstatic_field_at requires calling
1220             // nof_nonstatic_fields so check it anyway
1221             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1222             BasicType bt = c.basic_type();
1223             // Only integer types have boxing cache.
1224             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1225                    bt == T_BYTE    || bt == T_SHORT ||
1226                    bt == T_INT     || bt == T_LONG, err_msg_res("wrong type = %s", type2name(bt)));
1227             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1228             if (cache_low != (int)cache_low) {
1229               return NULL; // should not happen since cache is array indexed by value
1230             }
1231             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1232             if (offset != (int)offset) {
1233               return NULL; // should not happen since cache is array indexed by value
1234             }
1235            // Add up all the offsets making of the address of the load
1236             Node* result = elements[0];
1237             for (int i = 1; i < count; i++) {
1238               result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
1239             }
1240             // Remove the constant offset from the address and then
1241             result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-(int)offset)));
1242             // remove the scaling of the offset to recover the original index.
1243             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1244               // Peel the shift off directly but wrap it in a dummy node
1245               // since Ideal can't return existing nodes
1246               result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
1247             } else if (result->is_Add() && result->in(2)->is_Con() &&
1248                        result->in(1)->Opcode() == Op_LShiftX &&
1249                        result->in(1)->in(2) == phase->intcon(shift)) {
1250               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1251               // but for boxing cache access we know that X<<Z will not overflow
1252               // (there is range check) so we do this optimizatrion by hand here.
1253               Node* add_con = new (phase->C) RShiftXNode(result->in(2), phase->intcon(shift));
1254               result = new (phase->C) AddXNode(result->in(1)->in(1), phase->transform(add_con));
1255             } else {
1256               result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
1257             }
1258 #ifdef _LP64
1259             if (bt != T_LONG) {
1260               result = new (phase->C) ConvL2INode(phase->transform(result));
1261             }
1262 #else
1263             if (bt == T_LONG) {
1264               result = new (phase->C) ConvI2LNode(phase->transform(result));
1265             }
1266 #endif
1267             return result;
1268           }
1269         }
1270       }
1271     }
1272   }
1273   return NULL;
1274 }
1275 
1276 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1277   Node* region = phi->in(0);
1278   if (region == NULL) {
1279     return false; // Wait stable graph
1280   }
1281   uint cnt = phi->req();
1282   for (uint i = 1; i < cnt; i++) {
1283     Node* rc = region->in(i);
1284     if (rc == NULL || phase->type(rc) == Type::TOP)
1285       return false; // Wait stable graph
1286     Node* in = phi->in(i);
1287     if (in == NULL || phase->type(in) == Type::TOP)
1288       return false; // Wait stable graph
1289   }
1290   return true;
1291 }
1292 //------------------------------split_through_phi------------------------------
1293 // Split instance or boxed field load through Phi.
1294 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1295   Node* mem     = in(Memory);
1296   Node* address = in(Address);
1297   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1298 
1299   assert((t_oop != NULL) &&
1300          (t_oop->is_known_instance_field() ||
1301           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1302 
1303   Compile* C = phase->C;
1304   intptr_t ignore = 0;
1305   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1306   bool base_is_phi = (base != NULL) && base->is_Phi();
1307   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1308                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1309                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1310 
1311   if (!((mem->is_Phi() || base_is_phi) &&
1312         (load_boxed_values || t_oop->is_known_instance_field()))) {
1313     return NULL; // memory is not Phi
1314   }
1315 
1316   if (mem->is_Phi()) {
1317     if (!stable_phi(mem->as_Phi(), phase)) {
1318       return NULL; // Wait stable graph
1319     }
1320     uint cnt = mem->req();
1321     // Check for loop invariant memory.
1322     if (cnt == 3) {
1323       for (uint i = 1; i < cnt; i++) {
1324         Node* in = mem->in(i);
1325         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1326         if (m == mem) {
1327           set_req(Memory, mem->in(cnt - i));
1328           return this; // made change
1329         }
1330       }
1331     }
1332   }
1333   if (base_is_phi) {
1334     if (!stable_phi(base->as_Phi(), phase)) {
1335       return NULL; // Wait stable graph
1336     }
1337     uint cnt = base->req();
1338     // Check for loop invariant memory.
1339     if (cnt == 3) {
1340       for (uint i = 1; i < cnt; i++) {
1341         if (base->in(i) == base) {
1342           return NULL; // Wait stable graph
1343         }
1344       }
1345     }
1346   }
1347 
1348   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1349 
1350   // Split through Phi (see original code in loopopts.cpp).
1351   assert(C->have_alias_type(t_oop), "instance should have alias type");
1352 
1353   // Do nothing here if Identity will find a value
1354   // (to avoid infinite chain of value phis generation).
1355   if (!phase->eqv(this, this->Identity(phase)))
1356     return NULL;
1357 
1358   // Select Region to split through.
1359   Node* region;
1360   if (!base_is_phi) {
1361     assert(mem->is_Phi(), "sanity");
1362     region = mem->in(0);
1363     // Skip if the region dominates some control edge of the address.
1364     if (!MemNode::all_controls_dominate(address, region))
1365       return NULL;
1366   } else if (!mem->is_Phi()) {
1367     assert(base_is_phi, "sanity");
1368     region = base->in(0);
1369     // Skip if the region dominates some control edge of the memory.
1370     if (!MemNode::all_controls_dominate(mem, region))
1371       return NULL;
1372   } else if (base->in(0) != mem->in(0)) {
1373     assert(base_is_phi && mem->is_Phi(), "sanity");
1374     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1375       region = base->in(0);
1376     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1377       region = mem->in(0);
1378     } else {
1379       return NULL; // complex graph
1380     }
1381   } else {
1382     assert(base->in(0) == mem->in(0), "sanity");
1383     region = mem->in(0);
1384   }
1385 
1386   const Type* this_type = this->bottom_type();
1387   int this_index  = C->get_alias_index(t_oop);
1388   int this_offset = t_oop->offset();
1389   int this_iid    = t_oop->instance_id();
1390   if (!t_oop->is_known_instance() && load_boxed_values) {
1391     // Use _idx of address base for boxed values.
1392     this_iid = base->_idx;
1393   }
1394   PhaseIterGVN* igvn = phase->is_IterGVN();
1395   Node* phi = new (C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1396   for (uint i = 1; i < region->req(); i++) {
1397     Node* x;
1398     Node* the_clone = NULL;
1399     if (region->in(i) == C->top()) {
1400       x = C->top();      // Dead path?  Use a dead data op
1401     } else {
1402       x = this->clone();        // Else clone up the data op
1403       the_clone = x;            // Remember for possible deletion.
1404       // Alter data node to use pre-phi inputs
1405       if (this->in(0) == region) {
1406         x->set_req(0, region->in(i));
1407       } else {
1408         x->set_req(0, NULL);
1409       }
1410       if (mem->is_Phi() && (mem->in(0) == region)) {
1411         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1412       }
1413       if (address->is_Phi() && address->in(0) == region) {
1414         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1415       }
1416       if (base_is_phi && (base->in(0) == region)) {
1417         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1418         Node* adr_x = phase->transform(new (C) AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1419         x->set_req(Address, adr_x);
1420       }
1421     }
1422     // Check for a 'win' on some paths
1423     const Type *t = x->Value(igvn);
1424 
1425     bool singleton = t->singleton();
1426 
1427     // See comments in PhaseIdealLoop::split_thru_phi().
1428     if (singleton && t == Type::TOP) {
1429       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1430     }
1431 
1432     if (singleton) {
1433       x = igvn->makecon(t);
1434     } else {
1435       // We now call Identity to try to simplify the cloned node.
1436       // Note that some Identity methods call phase->type(this).
1437       // Make sure that the type array is big enough for
1438       // our new node, even though we may throw the node away.
1439       // (This tweaking with igvn only works because x is a new node.)
1440       igvn->set_type(x, t);
1441       // If x is a TypeNode, capture any more-precise type permanently into Node
1442       // otherwise it will be not updated during igvn->transform since
1443       // igvn->type(x) is set to x->Value() already.
1444       x->raise_bottom_type(t);
1445       Node *y = x->Identity(igvn);
1446       if (y != x) {
1447         x = y;
1448       } else {
1449         y = igvn->hash_find_insert(x);
1450         if (y) {
1451           x = y;
1452         } else {
1453           // Else x is a new node we are keeping
1454           // We do not need register_new_node_with_optimizer
1455           // because set_type has already been called.
1456           igvn->_worklist.push(x);
1457         }
1458       }
1459     }
1460     if (x != the_clone && the_clone != NULL) {
1461       igvn->remove_dead_node(the_clone);
1462     }
1463     phi->set_req(i, x);
1464   }
1465   // Record Phi
1466   igvn->register_new_node_with_optimizer(phi);
1467   return phi;
1468 }
1469 
1470 //------------------------------Ideal------------------------------------------
1471 // If the load is from Field memory and the pointer is non-null, we can
1472 // zero out the control input.
1473 // If the offset is constant and the base is an object allocation,
1474 // try to hook me up to the exact initializing store.
1475 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1476   Node* p = MemNode::Ideal_common(phase, can_reshape);
1477   if (p)  return (p == NodeSentinel) ? NULL : p;
1478 
1479   Node* ctrl    = in(MemNode::Control);
1480   Node* address = in(MemNode::Address);
1481 
1482   // Skip up past a SafePoint control.  Cannot do this for Stores because
1483   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1484   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1485       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1486     ctrl = ctrl->in(0);
1487     set_req(MemNode::Control,ctrl);
1488   }
1489 
1490   intptr_t ignore = 0;
1491   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1492   if (base != NULL
1493       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1494     // Check for useless control edge in some common special cases
1495     if (in(MemNode::Control) != NULL
1496         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1497         && all_controls_dominate(base, phase->C->start())) {
1498       // A method-invariant, non-null address (constant or 'this' argument).
1499       set_req(MemNode::Control, NULL);
1500     }
1501   }
1502 
1503   Node* mem = in(MemNode::Memory);
1504   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1505 
1506   if (can_reshape && (addr_t != NULL)) {
1507     // try to optimize our memory input
1508     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1509     if (opt_mem != mem) {
1510       set_req(MemNode::Memory, opt_mem);
1511       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1512       return this;
1513     }
1514     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1515     if ((t_oop != NULL) &&
1516         (t_oop->is_known_instance_field() ||
1517          t_oop->is_ptr_to_boxed_value())) {
1518       PhaseIterGVN *igvn = phase->is_IterGVN();
1519       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1520         // Delay this transformation until memory Phi is processed.
1521         phase->is_IterGVN()->_worklist.push(this);
1522         return NULL;
1523       }
1524       // Split instance field load through Phi.
1525       Node* result = split_through_phi(phase);
1526       if (result != NULL) return result;
1527 
1528       if (t_oop->is_ptr_to_boxed_value()) {
1529         Node* result = eliminate_autobox(phase);
1530         if (result != NULL) return result;
1531       }
1532     }
1533   }
1534 
1535   // Check for prior store with a different base or offset; make Load
1536   // independent.  Skip through any number of them.  Bail out if the stores
1537   // are in an endless dead cycle and report no progress.  This is a key
1538   // transform for Reflection.  However, if after skipping through the Stores
1539   // we can't then fold up against a prior store do NOT do the transform as
1540   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1541   // array memory alive twice: once for the hoisted Load and again after the
1542   // bypassed Store.  This situation only works if EVERYBODY who does
1543   // anti-dependence work knows how to bypass.  I.e. we need all
1544   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1545   // the alias index stuff.  So instead, peek through Stores and IFF we can
1546   // fold up, do so.
1547   Node* prev_mem = find_previous_store(phase);
1548   // Steps (a), (b):  Walk past independent stores to find an exact match.
1549   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1550     // (c) See if we can fold up on the spot, but don't fold up here.
1551     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1552     // just return a prior value, which is done by Identity calls.
1553     if (can_see_stored_value(prev_mem, phase)) {
1554       // Make ready for step (d):
1555       set_req(MemNode::Memory, prev_mem);
1556       return this;
1557     }
1558   }
1559 
1560   return NULL;                  // No further progress
1561 }
1562 
1563 // Helper to recognize certain Klass fields which are invariant across
1564 // some group of array types (e.g., int[] or all T[] where T < Object).
1565 const Type*
1566 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1567                                  ciKlass* klass) const {
1568   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1569     // The field is Klass::_modifier_flags.  Return its (constant) value.
1570     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1571     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1572     return TypeInt::make(klass->modifier_flags());
1573   }
1574   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1575     // The field is Klass::_access_flags.  Return its (constant) value.
1576     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1577     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1578     return TypeInt::make(klass->access_flags());
1579   }
1580   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1581     // The field is Klass::_layout_helper.  Return its constant value if known.
1582     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1583     return TypeInt::make(klass->layout_helper());
1584   }
1585 
1586   // No match.
1587   return NULL;
1588 }
1589 
1590 // Try to constant-fold a stable array element.
1591 static const Type* fold_stable_ary_elem(const TypeAryPtr* ary, int off, BasicType loadbt) {
1592   assert(ary->is_stable(), "array should be stable");
1593 
1594   if (ary->const_oop() != NULL) {
1595     // Decode the results of GraphKit::array_element_address.
1596     ciArray* aobj = ary->const_oop()->as_array();
1597     ciConstant con = aobj->element_value_by_offset(off);
1598 
1599     if (con.basic_type() != T_ILLEGAL && !con.is_null_or_zero()) {
1600       const Type* con_type = Type::make_from_constant(con);
1601       if (con_type != NULL) {
1602         if (con_type->isa_aryptr()) {
1603           // Join with the array element type, in case it is also stable.
1604           int dim = ary->stable_dimension();
1605           con_type = con_type->is_aryptr()->cast_to_stable(true, dim-1);
1606         }
1607         if (loadbt == T_NARROWOOP && con_type->isa_oopptr()) {
1608           con_type = con_type->make_narrowoop();
1609         }
1610 #ifndef PRODUCT
1611         if (TraceIterativeGVN) {
1612           tty->print("FoldStableValues: array element [off=%d]: con_type=", off);
1613           con_type->dump(); tty->cr();
1614         }
1615 #endif //PRODUCT
1616         return con_type;
1617       }
1618     }
1619   }
1620 
1621   return NULL;
1622 }
1623 
1624 //------------------------------Value-----------------------------------------
1625 const Type *LoadNode::Value( PhaseTransform *phase ) const {
1626   // Either input is TOP ==> the result is TOP
1627   Node* mem = in(MemNode::Memory);
1628   const Type *t1 = phase->type(mem);
1629   if (t1 == Type::TOP)  return Type::TOP;
1630   Node* adr = in(MemNode::Address);
1631   const TypePtr* tp = phase->type(adr)->isa_ptr();
1632   if (tp == NULL || tp->empty())  return Type::TOP;
1633   int off = tp->offset();
1634   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1635   Compile* C = phase->C;
1636 
1637   // Try to guess loaded type from pointer type
1638   if (tp->isa_aryptr()) {
1639     const TypeAryPtr* ary = tp->is_aryptr();
1640     const Type *t = ary->elem();
1641 
1642     // Determine whether the reference is beyond the header or not, by comparing
1643     // the offset against the offset of the start of the array's data.
1644     // Different array types begin at slightly different offsets (12 vs. 16).
1645     // We choose T_BYTE as an example base type that is least restrictive
1646     // as to alignment, which will therefore produce the smallest
1647     // possible base offset.
1648     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1649     const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1650 
1651     // Try to constant-fold a stable array element.
1652     if (FoldStableValues && ary->is_stable()) {
1653       // Make sure the reference is not into the header
1654       if (off_beyond_header && off != Type::OffsetBot) {
1655         assert(adr->is_AddP() && adr->in(AddPNode::Offset)->is_Con(), "offset is a constant");
1656         const Type* con_type = fold_stable_ary_elem(ary, off, memory_type());
1657         if (con_type != NULL) {
1658           return con_type;
1659         }
1660       }
1661     }
1662 
1663     // Don't do this for integer types. There is only potential profit if
1664     // the element type t is lower than _type; that is, for int types, if _type is
1665     // more restrictive than t.  This only happens here if one is short and the other
1666     // char (both 16 bits), and in those cases we've made an intentional decision
1667     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1668     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1669     //
1670     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1671     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1672     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1673     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1674     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1675     // In fact, that could have been the original type of p1, and p1 could have
1676     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1677     // expression (LShiftL quux 3) independently optimized to the constant 8.
1678     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1679         && (_type->isa_vect() == NULL)
1680         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1681       // t might actually be lower than _type, if _type is a unique
1682       // concrete subclass of abstract class t.
1683       if (off_beyond_header) {  // is the offset beyond the header?
1684         const Type* jt = t->join(_type);
1685         // In any case, do not allow the join, per se, to empty out the type.
1686         if (jt->empty() && !t->empty()) {
1687           // This can happen if a interface-typed array narrows to a class type.
1688           jt = _type;
1689         }
1690 #ifdef ASSERT
1691         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1692           // The pointers in the autobox arrays are always non-null
1693           Node* base = adr->in(AddPNode::Base);
1694           if ((base != NULL) && base->is_DecodeN()) {
1695             // Get LoadN node which loads IntegerCache.cache field
1696             base = base->in(1);
1697           }
1698           if ((base != NULL) && base->is_Con()) {
1699             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1700             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1701               // It could be narrow oop
1702               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1703             }
1704           }
1705         }
1706 #endif
1707         return jt;
1708       }
1709     }
1710   } else if (tp->base() == Type::InstPtr) {
1711     ciEnv* env = C->env();
1712     const TypeInstPtr* tinst = tp->is_instptr();
1713     ciKlass* klass = tinst->klass();
1714     assert( off != Type::OffsetBot ||
1715             // arrays can be cast to Objects
1716             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1717             // unsafe field access may not have a constant offset
1718             C->has_unsafe_access(),
1719             "Field accesses must be precise" );
1720     // For oop loads, we expect the _type to be precise
1721     if (klass == env->String_klass() &&
1722         adr->is_AddP() && off != Type::OffsetBot) {
1723       // For constant Strings treat the final fields as compile time constants.
1724       Node* base = adr->in(AddPNode::Base);
1725       const TypeOopPtr* t = phase->type(base)->isa_oopptr();
1726       if (t != NULL && t->singleton()) {
1727         ciField* field = env->String_klass()->get_field_by_offset(off, false);
1728         if (field != NULL && field->is_final()) {
1729           ciObject* string = t->const_oop();
1730           ciConstant constant = string->as_instance()->field_value(field);
1731           if (constant.basic_type() == T_INT) {
1732             return TypeInt::make(constant.as_int());
1733           } else if (constant.basic_type() == T_ARRAY) {
1734             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1735               return TypeNarrowOop::make_from_constant(constant.as_object(), true);
1736             } else {
1737               return TypeOopPtr::make_from_constant(constant.as_object(), true);
1738             }
1739           }
1740         }
1741       }
1742     }
1743     // Optimizations for constant objects
1744     ciObject* const_oop = tinst->const_oop();
1745     if (const_oop != NULL) {
1746       // For constant Boxed value treat the target field as a compile time constant.
1747       if (tinst->is_ptr_to_boxed_value()) {
1748         return tinst->get_const_boxed_value();
1749       } else
1750       // For constant CallSites treat the target field as a compile time constant.
1751       if (const_oop->is_call_site()) {
1752         ciCallSite* call_site = const_oop->as_call_site();
1753         ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
1754         if (field != NULL && field->is_call_site_target()) {
1755           ciMethodHandle* target = call_site->get_target();
1756           if (target != NULL) {  // just in case
1757             ciConstant constant(T_OBJECT, target);
1758             const Type* t;
1759             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1760               t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
1761             } else {
1762               t = TypeOopPtr::make_from_constant(constant.as_object(), true);
1763             }
1764             // Add a dependence for invalidation of the optimization.
1765             if (!call_site->is_constant_call_site()) {
1766               C->dependencies()->assert_call_site_target_value(call_site, target);
1767             }
1768             return t;
1769           }
1770         }
1771       }
1772     }
1773   } else if (tp->base() == Type::KlassPtr) {
1774     assert( off != Type::OffsetBot ||
1775             // arrays can be cast to Objects
1776             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1777             // also allow array-loading from the primary supertype
1778             // array during subtype checks
1779             Opcode() == Op_LoadKlass,
1780             "Field accesses must be precise" );
1781     // For klass/static loads, we expect the _type to be precise
1782   }
1783 
1784   const TypeKlassPtr *tkls = tp->isa_klassptr();
1785   if (tkls != NULL && !StressReflectiveCode) {
1786     ciKlass* klass = tkls->klass();
1787     if (klass->is_loaded() && tkls->klass_is_exact()) {
1788       // We are loading a field from a Klass metaobject whose identity
1789       // is known at compile time (the type is "exact" or "precise").
1790       // Check for fields we know are maintained as constants by the VM.
1791       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1792         // The field is Klass::_super_check_offset.  Return its (constant) value.
1793         // (Folds up type checking code.)
1794         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1795         return TypeInt::make(klass->super_check_offset());
1796       }
1797       // Compute index into primary_supers array
1798       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1799       // Check for overflowing; use unsigned compare to handle the negative case.
1800       if( depth < ciKlass::primary_super_limit() ) {
1801         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1802         // (Folds up type checking code.)
1803         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1804         ciKlass *ss = klass->super_of_depth(depth);
1805         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1806       }
1807       const Type* aift = load_array_final_field(tkls, klass);
1808       if (aift != NULL)  return aift;
1809       if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
1810           && klass->is_array_klass()) {
1811         // The field is ArrayKlass::_component_mirror.  Return its (constant) value.
1812         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1813         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1814         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1815       }
1816       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1817         // The field is Klass::_java_mirror.  Return its (constant) value.
1818         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1819         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1820         return TypeInstPtr::make(klass->java_mirror());
1821       }
1822     }
1823 
1824     // We can still check if we are loading from the primary_supers array at a
1825     // shallow enough depth.  Even though the klass is not exact, entries less
1826     // than or equal to its super depth are correct.
1827     if (klass->is_loaded() ) {
1828       ciType *inner = klass;
1829       while( inner->is_obj_array_klass() )
1830         inner = inner->as_obj_array_klass()->base_element_type();
1831       if( inner->is_instance_klass() &&
1832           !inner->as_instance_klass()->flags().is_interface() ) {
1833         // Compute index into primary_supers array
1834         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1835         // Check for overflowing; use unsigned compare to handle the negative case.
1836         if( depth < ciKlass::primary_super_limit() &&
1837             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1838           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1839           // (Folds up type checking code.)
1840           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1841           ciKlass *ss = klass->super_of_depth(depth);
1842           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1843         }
1844       }
1845     }
1846 
1847     // If the type is enough to determine that the thing is not an array,
1848     // we can give the layout_helper a positive interval type.
1849     // This will help short-circuit some reflective code.
1850     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1851         && !klass->is_array_klass() // not directly typed as an array
1852         && !klass->is_interface()  // specifically not Serializable & Cloneable
1853         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1854         ) {
1855       // Note:  When interfaces are reliable, we can narrow the interface
1856       // test to (klass != Serializable && klass != Cloneable).
1857       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1858       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1859       // The key property of this type is that it folds up tests
1860       // for array-ness, since it proves that the layout_helper is positive.
1861       // Thus, a generic value like the basic object layout helper works fine.
1862       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1863     }
1864   }
1865 
1866   // If we are loading from a freshly-allocated object, produce a zero,
1867   // if the load is provably beyond the header of the object.
1868   // (Also allow a variable load from a fresh array to produce zero.)
1869   const TypeOopPtr *tinst = tp->isa_oopptr();
1870   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1871   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1872   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1873     Node* value = can_see_stored_value(mem,phase);
1874     if (value != NULL && value->is_Con()) {
1875       assert(value->bottom_type()->higher_equal(_type),"sanity");
1876       return value->bottom_type();
1877     }
1878   }
1879 
1880   if (is_instance) {
1881     // If we have an instance type and our memory input is the
1882     // programs's initial memory state, there is no matching store,
1883     // so just return a zero of the appropriate type
1884     Node *mem = in(MemNode::Memory);
1885     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1886       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1887       return Type::get_zero_type(_type->basic_type());
1888     }
1889   }
1890   return _type;
1891 }
1892 
1893 //------------------------------match_edge-------------------------------------
1894 // Do we Match on this edge index or not?  Match only the address.
1895 uint LoadNode::match_edge(uint idx) const {
1896   return idx == MemNode::Address;
1897 }
1898 
1899 //--------------------------LoadBNode::Ideal--------------------------------------
1900 //
1901 //  If the previous store is to the same address as this load,
1902 //  and the value stored was larger than a byte, replace this load
1903 //  with the value stored truncated to a byte.  If no truncation is
1904 //  needed, the replacement is done in LoadNode::Identity().
1905 //
1906 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1907   Node* mem = in(MemNode::Memory);
1908   Node* value = can_see_stored_value(mem,phase);
1909   if( value && !phase->type(value)->higher_equal( _type ) ) {
1910     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
1911     return new (phase->C) RShiftINode(result, phase->intcon(24));
1912   }
1913   // Identity call will handle the case where truncation is not needed.
1914   return LoadNode::Ideal(phase, can_reshape);
1915 }
1916 
1917 const Type* LoadBNode::Value(PhaseTransform *phase) const {
1918   Node* mem = in(MemNode::Memory);
1919   Node* value = can_see_stored_value(mem,phase);
1920   if (value != NULL && value->is_Con() &&
1921       !value->bottom_type()->higher_equal(_type)) {
1922     // If the input to the store does not fit with the load's result type,
1923     // it must be truncated. We can't delay until Ideal call since
1924     // a singleton Value is needed for split_thru_phi optimization.
1925     int con = value->get_int();
1926     return TypeInt::make((con << 24) >> 24);
1927   }
1928   return LoadNode::Value(phase);
1929 }
1930 
1931 //--------------------------LoadUBNode::Ideal-------------------------------------
1932 //
1933 //  If the previous store is to the same address as this load,
1934 //  and the value stored was larger than a byte, replace this load
1935 //  with the value stored truncated to a byte.  If no truncation is
1936 //  needed, the replacement is done in LoadNode::Identity().
1937 //
1938 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1939   Node* mem = in(MemNode::Memory);
1940   Node* value = can_see_stored_value(mem, phase);
1941   if (value && !phase->type(value)->higher_equal(_type))
1942     return new (phase->C) AndINode(value, phase->intcon(0xFF));
1943   // Identity call will handle the case where truncation is not needed.
1944   return LoadNode::Ideal(phase, can_reshape);
1945 }
1946 
1947 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
1948   Node* mem = in(MemNode::Memory);
1949   Node* value = can_see_stored_value(mem,phase);
1950   if (value != NULL && value->is_Con() &&
1951       !value->bottom_type()->higher_equal(_type)) {
1952     // If the input to the store does not fit with the load's result type,
1953     // it must be truncated. We can't delay until Ideal call since
1954     // a singleton Value is needed for split_thru_phi optimization.
1955     int con = value->get_int();
1956     return TypeInt::make(con & 0xFF);
1957   }
1958   return LoadNode::Value(phase);
1959 }
1960 
1961 //--------------------------LoadUSNode::Ideal-------------------------------------
1962 //
1963 //  If the previous store is to the same address as this load,
1964 //  and the value stored was larger than a char, replace this load
1965 //  with the value stored truncated to a char.  If no truncation is
1966 //  needed, the replacement is done in LoadNode::Identity().
1967 //
1968 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1969   Node* mem = in(MemNode::Memory);
1970   Node* value = can_see_stored_value(mem,phase);
1971   if( value && !phase->type(value)->higher_equal( _type ) )
1972     return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
1973   // Identity call will handle the case where truncation is not needed.
1974   return LoadNode::Ideal(phase, can_reshape);
1975 }
1976 
1977 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
1978   Node* mem = in(MemNode::Memory);
1979   Node* value = can_see_stored_value(mem,phase);
1980   if (value != NULL && value->is_Con() &&
1981       !value->bottom_type()->higher_equal(_type)) {
1982     // If the input to the store does not fit with the load's result type,
1983     // it must be truncated. We can't delay until Ideal call since
1984     // a singleton Value is needed for split_thru_phi optimization.
1985     int con = value->get_int();
1986     return TypeInt::make(con & 0xFFFF);
1987   }
1988   return LoadNode::Value(phase);
1989 }
1990 
1991 //--------------------------LoadSNode::Ideal--------------------------------------
1992 //
1993 //  If the previous store is to the same address as this load,
1994 //  and the value stored was larger than a short, replace this load
1995 //  with the value stored truncated to a short.  If no truncation is
1996 //  needed, the replacement is done in LoadNode::Identity().
1997 //
1998 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1999   Node* mem = in(MemNode::Memory);
2000   Node* value = can_see_stored_value(mem,phase);
2001   if( value && !phase->type(value)->higher_equal( _type ) ) {
2002     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
2003     return new (phase->C) RShiftINode(result, phase->intcon(16));
2004   }
2005   // Identity call will handle the case where truncation is not needed.
2006   return LoadNode::Ideal(phase, can_reshape);
2007 }
2008 
2009 const Type* LoadSNode::Value(PhaseTransform *phase) const {
2010   Node* mem = in(MemNode::Memory);
2011   Node* value = can_see_stored_value(mem,phase);
2012   if (value != NULL && value->is_Con() &&
2013       !value->bottom_type()->higher_equal(_type)) {
2014     // If the input to the store does not fit with the load's result type,
2015     // it must be truncated. We can't delay until Ideal call since
2016     // a singleton Value is needed for split_thru_phi optimization.
2017     int con = value->get_int();
2018     return TypeInt::make((con << 16) >> 16);
2019   }
2020   return LoadNode::Value(phase);
2021 }
2022 
2023 //=============================================================================
2024 //----------------------------LoadKlassNode::make------------------------------
2025 // Polymorphic factory method:
2026 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
2027   Compile* C = gvn.C;
2028   Node *ctl = NULL;
2029   // sanity check the alias category against the created node type
2030   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2031   assert(adr_type != NULL, "expecting TypeKlassPtr");
2032 #ifdef _LP64
2033   if (adr_type->is_ptr_to_narrowklass()) {
2034     assert(UseCompressedClassPointers, "no compressed klasses");
2035     Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), LoadNode::unordered));
2036     return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2037   }
2038 #endif
2039   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2040   return new (C) LoadKlassNode(ctl, mem, adr, at, tk, LoadNode::unordered);
2041 }
2042 
2043 //------------------------------Value------------------------------------------
2044 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
2045   return klass_value_common(phase);
2046 }
2047 
2048 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
2049   // Either input is TOP ==> the result is TOP
2050   const Type *t1 = phase->type( in(MemNode::Memory) );
2051   if (t1 == Type::TOP)  return Type::TOP;
2052   Node *adr = in(MemNode::Address);
2053   const Type *t2 = phase->type( adr );
2054   if (t2 == Type::TOP)  return Type::TOP;
2055   const TypePtr *tp = t2->is_ptr();
2056   if (TypePtr::above_centerline(tp->ptr()) ||
2057       tp->ptr() == TypePtr::Null)  return Type::TOP;
2058 
2059   // Return a more precise klass, if possible
2060   const TypeInstPtr *tinst = tp->isa_instptr();
2061   if (tinst != NULL) {
2062     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2063     int offset = tinst->offset();
2064     if (ik == phase->C->env()->Class_klass()
2065         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2066             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2067       // We are loading a special hidden field from a Class mirror object,
2068       // the field which points to the VM's Klass metaobject.
2069       ciType* t = tinst->java_mirror_type();
2070       // java_mirror_type returns non-null for compile-time Class constants.
2071       if (t != NULL) {
2072         // constant oop => constant klass
2073         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2074           return TypeKlassPtr::make(ciArrayKlass::make(t));
2075         }
2076         if (!t->is_klass()) {
2077           // a primitive Class (e.g., int.class) has NULL for a klass field
2078           return TypePtr::NULL_PTR;
2079         }
2080         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2081         return TypeKlassPtr::make(t->as_klass());
2082       }
2083       // non-constant mirror, so we can't tell what's going on
2084     }
2085     if( !ik->is_loaded() )
2086       return _type;             // Bail out if not loaded
2087     if (offset == oopDesc::klass_offset_in_bytes()) {
2088       if (tinst->klass_is_exact()) {
2089         return TypeKlassPtr::make(ik);
2090       }
2091       // See if we can become precise: no subklasses and no interface
2092       // (Note:  We need to support verified interfaces.)
2093       if (!ik->is_interface() && !ik->has_subklass()) {
2094         //assert(!UseExactTypes, "this code should be useless with exact types");
2095         // Add a dependence; if any subclass added we need to recompile
2096         if (!ik->is_final()) {
2097           // %%% should use stronger assert_unique_concrete_subtype instead
2098           phase->C->dependencies()->assert_leaf_type(ik);
2099         }
2100         // Return precise klass
2101         return TypeKlassPtr::make(ik);
2102       }
2103 
2104       // Return root of possible klass
2105       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2106     }
2107   }
2108 
2109   // Check for loading klass from an array
2110   const TypeAryPtr *tary = tp->isa_aryptr();
2111   if( tary != NULL ) {
2112     ciKlass *tary_klass = tary->klass();
2113     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2114         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2115       if (tary->klass_is_exact()) {
2116         return TypeKlassPtr::make(tary_klass);
2117       }
2118       ciArrayKlass *ak = tary->klass()->as_array_klass();
2119       // If the klass is an object array, we defer the question to the
2120       // array component klass.
2121       if( ak->is_obj_array_klass() ) {
2122         assert( ak->is_loaded(), "" );
2123         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2124         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2125           ciInstanceKlass* ik = base_k->as_instance_klass();
2126           // See if we can become precise: no subklasses and no interface
2127           if (!ik->is_interface() && !ik->has_subklass()) {
2128             //assert(!UseExactTypes, "this code should be useless with exact types");
2129             // Add a dependence; if any subclass added we need to recompile
2130             if (!ik->is_final()) {
2131               phase->C->dependencies()->assert_leaf_type(ik);
2132             }
2133             // Return precise array klass
2134             return TypeKlassPtr::make(ak);
2135           }
2136         }
2137         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2138       } else {                  // Found a type-array?
2139         //assert(!UseExactTypes, "this code should be useless with exact types");
2140         assert( ak->is_type_array_klass(), "" );
2141         return TypeKlassPtr::make(ak); // These are always precise
2142       }
2143     }
2144   }
2145 
2146   // Check for loading klass from an array klass
2147   const TypeKlassPtr *tkls = tp->isa_klassptr();
2148   if (tkls != NULL && !StressReflectiveCode) {
2149     ciKlass* klass = tkls->klass();
2150     if( !klass->is_loaded() )
2151       return _type;             // Bail out if not loaded
2152     if( klass->is_obj_array_klass() &&
2153         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2154       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2155       // // Always returning precise element type is incorrect,
2156       // // e.g., element type could be object and array may contain strings
2157       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2158 
2159       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2160       // according to the element type's subclassing.
2161       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2162     }
2163     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2164         tkls->offset() == in_bytes(Klass::super_offset())) {
2165       ciKlass* sup = klass->as_instance_klass()->super();
2166       // The field is Klass::_super.  Return its (constant) value.
2167       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2168       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2169     }
2170   }
2171 
2172   // Bailout case
2173   return LoadNode::Value(phase);
2174 }
2175 
2176 //------------------------------Identity---------------------------------------
2177 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2178 // Also feed through the klass in Allocate(...klass...)._klass.
2179 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
2180   return klass_identity_common(phase);
2181 }
2182 
2183 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
2184   Node* x = LoadNode::Identity(phase);
2185   if (x != this)  return x;
2186 
2187   // Take apart the address into an oop and and offset.
2188   // Return 'this' if we cannot.
2189   Node*    adr    = in(MemNode::Address);
2190   intptr_t offset = 0;
2191   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2192   if (base == NULL)     return this;
2193   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2194   if (toop == NULL)     return this;
2195 
2196   // We can fetch the klass directly through an AllocateNode.
2197   // This works even if the klass is not constant (clone or newArray).
2198   if (offset == oopDesc::klass_offset_in_bytes()) {
2199     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2200     if (allocated_klass != NULL) {
2201       return allocated_klass;
2202     }
2203   }
2204 
2205   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2206   // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
2207   // See inline_native_Class_query for occurrences of these patterns.
2208   // Java Example:  x.getClass().isAssignableFrom(y)
2209   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
2210   //
2211   // This improves reflective code, often making the Class
2212   // mirror go completely dead.  (Current exception:  Class
2213   // mirrors may appear in debug info, but we could clean them out by
2214   // introducing a new debug info operator for Klass*.java_mirror).
2215   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2216       && (offset == java_lang_Class::klass_offset_in_bytes() ||
2217           offset == java_lang_Class::array_klass_offset_in_bytes())) {
2218     // We are loading a special hidden field from a Class mirror,
2219     // the field which points to its Klass or ArrayKlass metaobject.
2220     if (base->is_Load()) {
2221       Node* adr2 = base->in(MemNode::Address);
2222       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2223       if (tkls != NULL && !tkls->empty()
2224           && (tkls->klass()->is_instance_klass() ||
2225               tkls->klass()->is_array_klass())
2226           && adr2->is_AddP()
2227           ) {
2228         int mirror_field = in_bytes(Klass::java_mirror_offset());
2229         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2230           mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
2231         }
2232         if (tkls->offset() == mirror_field) {
2233           return adr2->in(AddPNode::Base);
2234         }
2235       }
2236     }
2237   }
2238 
2239   return this;
2240 }
2241 
2242 
2243 //------------------------------Value------------------------------------------
2244 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
2245   const Type *t = klass_value_common(phase);
2246   if (t == Type::TOP)
2247     return t;
2248 
2249   return t->make_narrowklass();
2250 }
2251 
2252 //------------------------------Identity---------------------------------------
2253 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2254 // Also feed through the klass in Allocate(...klass...)._klass.
2255 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
2256   Node *x = klass_identity_common(phase);
2257 
2258   const Type *t = phase->type( x );
2259   if( t == Type::TOP ) return x;
2260   if( t->isa_narrowklass()) return x;
2261   assert (!t->isa_narrowoop(), "no narrow oop here");
2262 
2263   return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
2264 }
2265 
2266 //------------------------------Value-----------------------------------------
2267 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
2268   // Either input is TOP ==> the result is TOP
2269   const Type *t1 = phase->type( in(MemNode::Memory) );
2270   if( t1 == Type::TOP ) return Type::TOP;
2271   Node *adr = in(MemNode::Address);
2272   const Type *t2 = phase->type( adr );
2273   if( t2 == Type::TOP ) return Type::TOP;
2274   const TypePtr *tp = t2->is_ptr();
2275   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2276   const TypeAryPtr *tap = tp->isa_aryptr();
2277   if( !tap ) return _type;
2278   return tap->size();
2279 }
2280 
2281 //-------------------------------Ideal---------------------------------------
2282 // Feed through the length in AllocateArray(...length...)._length.
2283 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2284   Node* p = MemNode::Ideal_common(phase, can_reshape);
2285   if (p)  return (p == NodeSentinel) ? NULL : p;
2286 
2287   // Take apart the address into an oop and and offset.
2288   // Return 'this' if we cannot.
2289   Node*    adr    = in(MemNode::Address);
2290   intptr_t offset = 0;
2291   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2292   if (base == NULL)     return NULL;
2293   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2294   if (tary == NULL)     return NULL;
2295 
2296   // We can fetch the length directly through an AllocateArrayNode.
2297   // This works even if the length is not constant (clone or newArray).
2298   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2299     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2300     if (alloc != NULL) {
2301       Node* allocated_length = alloc->Ideal_length();
2302       Node* len = alloc->make_ideal_length(tary, phase);
2303       if (allocated_length != len) {
2304         // New CastII improves on this.
2305         return len;
2306       }
2307     }
2308   }
2309 
2310   return NULL;
2311 }
2312 
2313 //------------------------------Identity---------------------------------------
2314 // Feed through the length in AllocateArray(...length...)._length.
2315 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
2316   Node* x = LoadINode::Identity(phase);
2317   if (x != this)  return x;
2318 
2319   // Take apart the address into an oop and and offset.
2320   // Return 'this' if we cannot.
2321   Node*    adr    = in(MemNode::Address);
2322   intptr_t offset = 0;
2323   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2324   if (base == NULL)     return this;
2325   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2326   if (tary == NULL)     return this;
2327 
2328   // We can fetch the length directly through an AllocateArrayNode.
2329   // This works even if the length is not constant (clone or newArray).
2330   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2331     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2332     if (alloc != NULL) {
2333       Node* allocated_length = alloc->Ideal_length();
2334       // Do not allow make_ideal_length to allocate a CastII node.
2335       Node* len = alloc->make_ideal_length(tary, phase, false);
2336       if (allocated_length == len) {
2337         // Return allocated_length only if it would not be improved by a CastII.
2338         return allocated_length;
2339       }
2340     }
2341   }
2342 
2343   return this;
2344 
2345 }
2346 
2347 //=============================================================================
2348 //---------------------------StoreNode::make-----------------------------------
2349 // Polymorphic factory method:
2350 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, Sem sem) {
2351   assert((sem == unordered || sem == release), "unexpected");
2352   Compile* C = gvn.C;
2353   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2354          ctl != NULL, "raw memory operations should have control edge");
2355 
2356   switch (bt) {
2357   case T_BOOLEAN:
2358   case T_BYTE:    return new (C) StoreBNode(ctl, mem, adr, adr_type, val, sem);
2359   case T_INT:     return new (C) StoreINode(ctl, mem, adr, adr_type, val, sem);
2360   case T_CHAR:
2361   case T_SHORT:   return new (C) StoreCNode(ctl, mem, adr, adr_type, val, sem);
2362   case T_LONG:    return new (C) StoreLNode(ctl, mem, adr, adr_type, val, false, sem);
2363   case T_FLOAT:   return new (C) StoreFNode(ctl, mem, adr, adr_type, val, sem);
2364   case T_DOUBLE:  return new (C) StoreDNode(ctl, mem, adr, adr_type, val, sem);
2365   case T_METADATA:
2366   case T_ADDRESS:
2367   case T_OBJECT:
2368 #ifdef _LP64
2369     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2370       val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
2371       return new (C) StoreNNode(ctl, mem, adr, adr_type, val, sem);
2372     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2373                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2374                 adr->bottom_type()->isa_rawptr())) {
2375       val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2376       return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val, sem);
2377     }
2378 #endif
2379     {
2380       return new (C) StorePNode(ctl, mem, adr, adr_type, val, sem);
2381     }
2382   }
2383   ShouldNotReachHere();
2384   return (StoreNode*)NULL;
2385 }
2386 
2387 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, Sem sem) {
2388   bool require_atomic = true;
2389   return new (C) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic, sem);
2390 }
2391 
2392 
2393 //--------------------------bottom_type----------------------------------------
2394 const Type *StoreNode::bottom_type() const {
2395   return Type::MEMORY;
2396 }
2397 
2398 //------------------------------hash-------------------------------------------
2399 uint StoreNode::hash() const {
2400   // unroll addition of interesting fields
2401   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2402 
2403   // Since they are not commoned, do not hash them:
2404   return NO_HASH;
2405 }
2406 
2407 //------------------------------Ideal------------------------------------------
2408 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2409 // When a store immediately follows a relevant allocation/initialization,
2410 // try to capture it into the initialization, or hoist it above.
2411 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2412   Node* p = MemNode::Ideal_common(phase, can_reshape);
2413   if (p)  return (p == NodeSentinel) ? NULL : p;
2414 
2415   Node* mem     = in(MemNode::Memory);
2416   Node* address = in(MemNode::Address);
2417 
2418   // Back-to-back stores to same address?  Fold em up.  Generally
2419   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2420   // since they must follow each StoreP operation.  Redundant StoreCMs
2421   // are eliminated just before matching in final_graph_reshape.
2422   if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
2423       mem->Opcode() != Op_StoreCM) {
2424     // Looking at a dead closed cycle of memory?
2425     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2426 
2427     assert(Opcode() == mem->Opcode() ||
2428            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2429            "no mismatched stores, except on raw memory");
2430 
2431     if (mem->outcnt() == 1 &&           // check for intervening uses
2432         mem->as_Store()->memory_size() <= this->memory_size()) {
2433       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2434       // For example, 'mem' might be the final state at a conditional return.
2435       // Or, 'mem' might be used by some node which is live at the same time
2436       // 'this' is live, which might be unschedulable.  So, require exactly
2437       // ONE user, the 'this' store, until such time as we clone 'mem' for
2438       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2439       if (can_reshape) {  // (%%% is this an anachronism?)
2440         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2441                   phase->is_IterGVN());
2442       } else {
2443         // It's OK to do this in the parser, since DU info is always accurate,
2444         // and the parser always refers to nodes via SafePointNode maps.
2445         set_req(MemNode::Memory, mem->in(MemNode::Memory));
2446       }
2447       return this;
2448     }
2449   }
2450 
2451   // Capture an unaliased, unconditional, simple store into an initializer.
2452   // Or, if it is independent of the allocation, hoist it above the allocation.
2453   if (ReduceFieldZeroing && /*can_reshape &&*/
2454       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2455     InitializeNode* init = mem->in(0)->as_Initialize();
2456     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2457     if (offset > 0) {
2458       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2459       // If the InitializeNode captured me, it made a raw copy of me,
2460       // and I need to disappear.
2461       if (moved != NULL) {
2462         // %%% hack to ensure that Ideal returns a new node:
2463         mem = MergeMemNode::make(phase->C, mem);
2464         return mem;             // fold me away
2465       }
2466     }
2467   }
2468 
2469   return NULL;                  // No further progress
2470 }
2471 
2472 //------------------------------Value-----------------------------------------
2473 const Type *StoreNode::Value( PhaseTransform *phase ) const {
2474   // Either input is TOP ==> the result is TOP
2475   const Type *t1 = phase->type( in(MemNode::Memory) );
2476   if( t1 == Type::TOP ) return Type::TOP;
2477   const Type *t2 = phase->type( in(MemNode::Address) );
2478   if( t2 == Type::TOP ) return Type::TOP;
2479   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2480   if( t3 == Type::TOP ) return Type::TOP;
2481   return Type::MEMORY;
2482 }
2483 
2484 //------------------------------Identity---------------------------------------
2485 // Remove redundant stores:
2486 //   Store(m, p, Load(m, p)) changes to m.
2487 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2488 Node *StoreNode::Identity( PhaseTransform *phase ) {
2489   Node* mem = in(MemNode::Memory);
2490   Node* adr = in(MemNode::Address);
2491   Node* val = in(MemNode::ValueIn);
2492 
2493   // Load then Store?  Then the Store is useless
2494   if (val->is_Load() &&
2495       val->in(MemNode::Address)->eqv_uncast(adr) &&
2496       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2497       val->as_Load()->store_Opcode() == Opcode()) {
2498     return mem;
2499   }
2500 
2501   // Two stores in a row of the same value?
2502   if (mem->is_Store() &&
2503       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2504       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2505       mem->Opcode() == Opcode()) {
2506     return mem;
2507   }
2508 
2509   // Store of zero anywhere into a freshly-allocated object?
2510   // Then the store is useless.
2511   // (It must already have been captured by the InitializeNode.)
2512   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2513     // a newly allocated object is already all-zeroes everywhere
2514     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2515       return mem;
2516     }
2517 
2518     // the store may also apply to zero-bits in an earlier object
2519     Node* prev_mem = find_previous_store(phase);
2520     // Steps (a), (b):  Walk past independent stores to find an exact match.
2521     if (prev_mem != NULL) {
2522       Node* prev_val = can_see_stored_value(prev_mem, phase);
2523       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2524         // prev_val and val might differ by a cast; it would be good
2525         // to keep the more informative of the two.
2526         return mem;
2527       }
2528     }
2529   }
2530 
2531   return this;
2532 }
2533 
2534 //------------------------------match_edge-------------------------------------
2535 // Do we Match on this edge index or not?  Match only memory & value
2536 uint StoreNode::match_edge(uint idx) const {
2537   return idx == MemNode::Address || idx == MemNode::ValueIn;
2538 }
2539 
2540 //------------------------------cmp--------------------------------------------
2541 // Do not common stores up together.  They generally have to be split
2542 // back up anyways, so do not bother.
2543 uint StoreNode::cmp( const Node &n ) const {
2544   return (&n == this);          // Always fail except on self
2545 }
2546 
2547 //------------------------------Ideal_masked_input-----------------------------
2548 // Check for a useless mask before a partial-word store
2549 // (StoreB ... (AndI valIn conIa) )
2550 // If (conIa & mask == mask) this simplifies to
2551 // (StoreB ... (valIn) )
2552 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2553   Node *val = in(MemNode::ValueIn);
2554   if( val->Opcode() == Op_AndI ) {
2555     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2556     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2557       set_req(MemNode::ValueIn, val->in(1));
2558       return this;
2559     }
2560   }
2561   return NULL;
2562 }
2563 
2564 
2565 //------------------------------Ideal_sign_extended_input----------------------
2566 // Check for useless sign-extension before a partial-word store
2567 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2568 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2569 // (StoreB ... (valIn) )
2570 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2571   Node *val = in(MemNode::ValueIn);
2572   if( val->Opcode() == Op_RShiftI ) {
2573     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2574     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2575       Node *shl = val->in(1);
2576       if( shl->Opcode() == Op_LShiftI ) {
2577         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2578         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2579           set_req(MemNode::ValueIn, shl->in(1));
2580           return this;
2581         }
2582       }
2583     }
2584   }
2585   return NULL;
2586 }
2587 
2588 //------------------------------value_never_loaded-----------------------------------
2589 // Determine whether there are any possible loads of the value stored.
2590 // For simplicity, we actually check if there are any loads from the
2591 // address stored to, not just for loads of the value stored by this node.
2592 //
2593 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2594   Node *adr = in(Address);
2595   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2596   if (adr_oop == NULL)
2597     return false;
2598   if (!adr_oop->is_known_instance_field())
2599     return false; // if not a distinct instance, there may be aliases of the address
2600   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2601     Node *use = adr->fast_out(i);
2602     int opc = use->Opcode();
2603     if (use->is_Load() || use->is_LoadStore()) {
2604       return false;
2605     }
2606   }
2607   return true;
2608 }
2609 
2610 //=============================================================================
2611 //------------------------------Ideal------------------------------------------
2612 // If the store is from an AND mask that leaves the low bits untouched, then
2613 // we can skip the AND operation.  If the store is from a sign-extension
2614 // (a left shift, then right shift) we can skip both.
2615 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2616   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2617   if( progress != NULL ) return progress;
2618 
2619   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2620   if( progress != NULL ) return progress;
2621 
2622   // Finally check the default case
2623   return StoreNode::Ideal(phase, can_reshape);
2624 }
2625 
2626 //=============================================================================
2627 //------------------------------Ideal------------------------------------------
2628 // If the store is from an AND mask that leaves the low bits untouched, then
2629 // we can skip the AND operation
2630 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2631   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2632   if( progress != NULL ) return progress;
2633 
2634   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2635   if( progress != NULL ) return progress;
2636 
2637   // Finally check the default case
2638   return StoreNode::Ideal(phase, can_reshape);
2639 }
2640 
2641 //=============================================================================
2642 //------------------------------Identity---------------------------------------
2643 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2644   // No need to card mark when storing a null ptr
2645   Node* my_store = in(MemNode::OopStore);
2646   if (my_store->is_Store()) {
2647     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2648     if( t1 == TypePtr::NULL_PTR ) {
2649       return in(MemNode::Memory);
2650     }
2651   }
2652   return this;
2653 }
2654 
2655 //=============================================================================
2656 //------------------------------Ideal---------------------------------------
2657 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2658   Node* progress = StoreNode::Ideal(phase, can_reshape);
2659   if (progress != NULL) return progress;
2660 
2661   Node* my_store = in(MemNode::OopStore);
2662   if (my_store->is_MergeMem()) {
2663     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2664     set_req(MemNode::OopStore, mem);
2665     return this;
2666   }
2667 
2668   return NULL;
2669 }
2670 
2671 //------------------------------Value-----------------------------------------
2672 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2673   // Either input is TOP ==> the result is TOP
2674   const Type *t = phase->type( in(MemNode::Memory) );
2675   if( t == Type::TOP ) return Type::TOP;
2676   t = phase->type( in(MemNode::Address) );
2677   if( t == Type::TOP ) return Type::TOP;
2678   t = phase->type( in(MemNode::ValueIn) );
2679   if( t == Type::TOP ) return Type::TOP;
2680   // If extra input is TOP ==> the result is TOP
2681   t = phase->type( in(MemNode::OopStore) );
2682   if( t == Type::TOP ) return Type::TOP;
2683 
2684   return StoreNode::Value( phase );
2685 }
2686 
2687 
2688 //=============================================================================
2689 //----------------------------------SCMemProjNode------------------------------
2690 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2691 {
2692   return bottom_type();
2693 }
2694 
2695 //=============================================================================
2696 //----------------------------------LoadStoreNode------------------------------
2697 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2698   : Node(required),
2699     _type(rt),
2700     _adr_type(at)
2701 {
2702   init_req(MemNode::Control, c  );
2703   init_req(MemNode::Memory , mem);
2704   init_req(MemNode::Address, adr);
2705   init_req(MemNode::ValueIn, val);
2706   init_class_id(Class_LoadStore);
2707 }
2708 
2709 uint LoadStoreNode::ideal_reg() const {
2710   return _type->ideal_reg();
2711 }
2712 
2713 bool LoadStoreNode::result_not_used() const {
2714   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2715     Node *x = fast_out(i);
2716     if (x->Opcode() == Op_SCMemProj) continue;
2717     return false;
2718   }
2719   return true;
2720 }
2721 
2722 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2723 
2724 //=============================================================================
2725 //----------------------------------LoadStoreConditionalNode--------------------
2726 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2727   init_req(ExpectedIn, ex );
2728 }
2729 
2730 //=============================================================================
2731 //-------------------------------adr_type--------------------------------------
2732 // Do we Match on this edge index or not?  Do not match memory
2733 const TypePtr* ClearArrayNode::adr_type() const {
2734   Node *adr = in(3);
2735   return MemNode::calculate_adr_type(adr->bottom_type());
2736 }
2737 
2738 //------------------------------match_edge-------------------------------------
2739 // Do we Match on this edge index or not?  Do not match memory
2740 uint ClearArrayNode::match_edge(uint idx) const {
2741   return idx > 1;
2742 }
2743 
2744 //------------------------------Identity---------------------------------------
2745 // Clearing a zero length array does nothing
2746 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2747   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2748 }
2749 
2750 //------------------------------Idealize---------------------------------------
2751 // Clearing a short array is faster with stores
2752 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2753   const int unit = BytesPerLong;
2754   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2755   if (!t)  return NULL;
2756   if (!t->is_con())  return NULL;
2757   intptr_t raw_count = t->get_con();
2758   intptr_t size = raw_count;
2759   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2760   // Clearing nothing uses the Identity call.
2761   // Negative clears are possible on dead ClearArrays
2762   // (see jck test stmt114.stmt11402.val).
2763   if (size <= 0 || size % unit != 0)  return NULL;
2764   intptr_t count = size / unit;
2765   // Length too long; use fast hardware clear
2766   if (size > Matcher::init_array_short_size)  return NULL;
2767   Node *mem = in(1);
2768   if( phase->type(mem)==Type::TOP ) return NULL;
2769   Node *adr = in(3);
2770   const Type* at = phase->type(adr);
2771   if( at==Type::TOP ) return NULL;
2772   const TypePtr* atp = at->isa_ptr();
2773   // adjust atp to be the correct array element address type
2774   if (atp == NULL)  atp = TypePtr::BOTTOM;
2775   else              atp = atp->add_offset(Type::OffsetBot);
2776   // Get base for derived pointer purposes
2777   if( adr->Opcode() != Op_AddP ) Unimplemented();
2778   Node *base = adr->in(1);
2779 
2780   Node *zero = phase->makecon(TypeLong::ZERO);
2781   Node *off  = phase->MakeConX(BytesPerLong);
2782   mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,false,StoreNode::unordered);
2783   count--;
2784   while( count-- ) {
2785     mem = phase->transform(mem);
2786     adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
2787     mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,false,StoreNode::unordered);
2788   }
2789   return mem;
2790 }
2791 
2792 //----------------------------step_through----------------------------------
2793 // Return allocation input memory edge if it is different instance
2794 // or itself if it is the one we are looking for.
2795 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2796   Node* n = *np;
2797   assert(n->is_ClearArray(), "sanity");
2798   intptr_t offset;
2799   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2800   // This method is called only before Allocate nodes are expanded during
2801   // macro nodes expansion. Before that ClearArray nodes are only generated
2802   // in LibraryCallKit::generate_arraycopy() which follows allocations.
2803   assert(alloc != NULL, "should have allocation");
2804   if (alloc->_idx == instance_id) {
2805     // Can not bypass initialization of the instance we are looking for.
2806     return false;
2807   }
2808   // Otherwise skip it.
2809   InitializeNode* init = alloc->initialization();
2810   if (init != NULL)
2811     *np = init->in(TypeFunc::Memory);
2812   else
2813     *np = alloc->in(TypeFunc::Memory);
2814   return true;
2815 }
2816 
2817 //----------------------------clear_memory-------------------------------------
2818 // Generate code to initialize object storage to zero.
2819 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2820                                    intptr_t start_offset,
2821                                    Node* end_offset,
2822                                    PhaseGVN* phase) {
2823   Compile* C = phase->C;
2824   intptr_t offset = start_offset;
2825 
2826   int unit = BytesPerLong;
2827   if ((offset % unit) != 0) {
2828     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
2829     adr = phase->transform(adr);
2830     const TypePtr* atp = TypeRawPtr::BOTTOM;
2831     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, StoreNode::unordered);
2832     mem = phase->transform(mem);
2833     offset += BytesPerInt;
2834   }
2835   assert((offset % unit) == 0, "");
2836 
2837   // Initialize the remaining stuff, if any, with a ClearArray.
2838   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2839 }
2840 
2841 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2842                                    Node* start_offset,
2843                                    Node* end_offset,
2844                                    PhaseGVN* phase) {
2845   if (start_offset == end_offset) {
2846     // nothing to do
2847     return mem;
2848   }
2849 
2850   Compile* C = phase->C;
2851   int unit = BytesPerLong;
2852   Node* zbase = start_offset;
2853   Node* zend  = end_offset;
2854 
2855   // Scale to the unit required by the CPU:
2856   if (!Matcher::init_array_count_is_in_bytes) {
2857     Node* shift = phase->intcon(exact_log2(unit));
2858     zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
2859     zend  = phase->transform( new(C) URShiftXNode(zend,  shift) );
2860   }
2861 
2862   // Bulk clear double-words
2863   Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
2864   Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
2865   mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
2866   return phase->transform(mem);
2867 }
2868 
2869 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2870                                    intptr_t start_offset,
2871                                    intptr_t end_offset,
2872                                    PhaseGVN* phase) {
2873   if (start_offset == end_offset) {
2874     // nothing to do
2875     return mem;
2876   }
2877 
2878   Compile* C = phase->C;
2879   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2880   intptr_t done_offset = end_offset;
2881   if ((done_offset % BytesPerLong) != 0) {
2882     done_offset -= BytesPerInt;
2883   }
2884   if (done_offset > start_offset) {
2885     mem = clear_memory(ctl, mem, dest,
2886                        start_offset, phase->MakeConX(done_offset), phase);
2887   }
2888   if (done_offset < end_offset) { // emit the final 32-bit store
2889     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
2890     adr = phase->transform(adr);
2891     const TypePtr* atp = TypeRawPtr::BOTTOM;
2892     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, StoreNode::unordered);
2893     mem = phase->transform(mem);
2894     done_offset += BytesPerInt;
2895   }
2896   assert(done_offset == end_offset, "");
2897   return mem;
2898 }
2899 
2900 //=============================================================================
2901 // Do not match memory edge.
2902 uint StrIntrinsicNode::match_edge(uint idx) const {
2903   return idx == 2 || idx == 3;
2904 }
2905 
2906 //------------------------------Ideal------------------------------------------
2907 // Return a node which is more "ideal" than the current node.  Strip out
2908 // control copies
2909 Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2910   if (remove_dead_region(phase, can_reshape)) return this;
2911   // Don't bother trying to transform a dead node
2912   if (in(0) && in(0)->is_top())  return NULL;
2913 
2914   if (can_reshape) {
2915     Node* mem = phase->transform(in(MemNode::Memory));
2916     // If transformed to a MergeMem, get the desired slice
2917     uint alias_idx = phase->C->get_alias_index(adr_type());
2918     mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
2919     if (mem != in(MemNode::Memory)) {
2920       set_req(MemNode::Memory, mem);
2921       return this;
2922     }
2923   }
2924   return NULL;
2925 }
2926 
2927 //------------------------------Value------------------------------------------
2928 const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
2929   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2930   return bottom_type();
2931 }
2932 
2933 //=============================================================================
2934 //------------------------------match_edge-------------------------------------
2935 // Do not match memory edge
2936 uint EncodeISOArrayNode::match_edge(uint idx) const {
2937   return idx == 2 || idx == 3; // EncodeISOArray src (Binary dst len)
2938 }
2939 
2940 //------------------------------Ideal------------------------------------------
2941 // Return a node which is more "ideal" than the current node.  Strip out
2942 // control copies
2943 Node *EncodeISOArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2944   return remove_dead_region(phase, can_reshape) ? this : NULL;
2945 }
2946 
2947 //------------------------------Value------------------------------------------
2948 const Type *EncodeISOArrayNode::Value(PhaseTransform *phase) const {
2949   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2950   return bottom_type();
2951 }
2952 
2953 //=============================================================================
2954 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2955   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2956     _adr_type(C->get_adr_type(alias_idx))
2957 {
2958   init_class_id(Class_MemBar);
2959   Node* top = C->top();
2960   init_req(TypeFunc::I_O,top);
2961   init_req(TypeFunc::FramePtr,top);
2962   init_req(TypeFunc::ReturnAdr,top);
2963   if (precedent != NULL)
2964     init_req(TypeFunc::Parms, precedent);
2965 }
2966 
2967 //------------------------------cmp--------------------------------------------
2968 uint MemBarNode::hash() const { return NO_HASH; }
2969 uint MemBarNode::cmp( const Node &n ) const {
2970   return (&n == this);          // Always fail except on self
2971 }
2972 
2973 //------------------------------make-------------------------------------------
2974 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2975   switch (opcode) {
2976   case Op_MemBarAcquire:   return new(C) MemBarAcquireNode(C,  atp, pn);
2977   case Op_MemBarRelease:   return new(C) MemBarReleaseNode(C,  atp, pn);
2978   case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C,  atp, pn);
2979   case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C,  atp, pn);
2980   case Op_MemBarVolatile:  return new(C) MemBarVolatileNode(C, atp, pn);
2981   case Op_MemBarCPUOrder:  return new(C) MemBarCPUOrderNode(C, atp, pn);
2982   case Op_Initialize:      return new(C) InitializeNode(C,     atp, pn);
2983   case Op_MemBarStoreStore: return new(C) MemBarStoreStoreNode(C,  atp, pn);
2984   default:                 ShouldNotReachHere(); return NULL;
2985   }
2986 }
2987 
2988 //------------------------------Ideal------------------------------------------
2989 // Return a node which is more "ideal" than the current node.  Strip out
2990 // control copies
2991 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2992   if (remove_dead_region(phase, can_reshape)) return this;
2993   // Don't bother trying to transform a dead node
2994   if (in(0) && in(0)->is_top()) {
2995     return NULL;
2996   }
2997 
2998   // Eliminate volatile MemBars for scalar replaced objects.
2999   if (can_reshape && req() == (Precedent+1)) {
3000     bool eliminate = false;
3001     int opc = Opcode();
3002     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3003       // Volatile field loads and stores.
3004       Node* my_mem = in(MemBarNode::Precedent);
3005       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3006       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3007         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3008         // replace this Precedent (decodeN) with the Load instead.
3009         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3010           Node* load_node = my_mem->in(1);
3011           set_req(MemBarNode::Precedent, load_node);
3012           phase->is_IterGVN()->_worklist.push(my_mem);
3013           my_mem = load_node;
3014         } else {
3015           assert(my_mem->unique_out() == this, "sanity");
3016           del_req(Precedent);
3017           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3018           my_mem = NULL;
3019         }
3020       }
3021       if (my_mem != NULL && my_mem->is_Mem()) {
3022         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3023         // Check for scalar replaced object reference.
3024         if( t_oop != NULL && t_oop->is_known_instance_field() &&
3025             t_oop->offset() != Type::OffsetBot &&
3026             t_oop->offset() != Type::OffsetTop) {
3027           eliminate = true;
3028         }
3029       }
3030     } else if (opc == Op_MemBarRelease) {
3031       // Final field stores.
3032       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3033       if ((alloc != NULL) && alloc->is_Allocate() &&
3034           alloc->as_Allocate()->_is_non_escaping) {
3035         // The allocated object does not escape.
3036         eliminate = true;
3037       }
3038     }
3039     if (eliminate) {
3040       // Replace MemBar projections by its inputs.
3041       PhaseIterGVN* igvn = phase->is_IterGVN();
3042       igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3043       igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3044       // Must return either the original node (now dead) or a new node
3045       // (Do not return a top here, since that would break the uniqueness of top.)
3046       return new (phase->C) ConINode(TypeInt::ZERO);
3047     }
3048   }
3049   return NULL;
3050 }
3051 
3052 //------------------------------Value------------------------------------------
3053 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
3054   if( !in(0) ) return Type::TOP;
3055   if( phase->type(in(0)) == Type::TOP )
3056     return Type::TOP;
3057   return TypeTuple::MEMBAR;
3058 }
3059 
3060 //------------------------------match------------------------------------------
3061 // Construct projections for memory.
3062 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3063   switch (proj->_con) {
3064   case TypeFunc::Control:
3065   case TypeFunc::Memory:
3066     return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3067   }
3068   ShouldNotReachHere();
3069   return NULL;
3070 }
3071 
3072 //===========================InitializeNode====================================
3073 // SUMMARY:
3074 // This node acts as a memory barrier on raw memory, after some raw stores.
3075 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3076 // The Initialize can 'capture' suitably constrained stores as raw inits.
3077 // It can coalesce related raw stores into larger units (called 'tiles').
3078 // It can avoid zeroing new storage for memory units which have raw inits.
3079 // At macro-expansion, it is marked 'complete', and does not optimize further.
3080 //
3081 // EXAMPLE:
3082 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3083 //   ctl = incoming control; mem* = incoming memory
3084 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3085 // First allocate uninitialized memory and fill in the header:
3086 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3087 //   ctl := alloc.Control; mem* := alloc.Memory*
3088 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3089 // Then initialize to zero the non-header parts of the raw memory block:
3090 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3091 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3092 // After the initialize node executes, the object is ready for service:
3093 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3094 // Suppose its body is immediately initialized as {1,2}:
3095 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3096 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3097 //   mem.SLICE(#short[*]) := store2
3098 //
3099 // DETAILS:
3100 // An InitializeNode collects and isolates object initialization after
3101 // an AllocateNode and before the next possible safepoint.  As a
3102 // memory barrier (MemBarNode), it keeps critical stores from drifting
3103 // down past any safepoint or any publication of the allocation.
3104 // Before this barrier, a newly-allocated object may have uninitialized bits.
3105 // After this barrier, it may be treated as a real oop, and GC is allowed.
3106 //
3107 // The semantics of the InitializeNode include an implicit zeroing of
3108 // the new object from object header to the end of the object.
3109 // (The object header and end are determined by the AllocateNode.)
3110 //
3111 // Certain stores may be added as direct inputs to the InitializeNode.
3112 // These stores must update raw memory, and they must be to addresses
3113 // derived from the raw address produced by AllocateNode, and with
3114 // a constant offset.  They must be ordered by increasing offset.
3115 // The first one is at in(RawStores), the last at in(req()-1).
3116 // Unlike most memory operations, they are not linked in a chain,
3117 // but are displayed in parallel as users of the rawmem output of
3118 // the allocation.
3119 //
3120 // (See comments in InitializeNode::capture_store, which continue
3121 // the example given above.)
3122 //
3123 // When the associated Allocate is macro-expanded, the InitializeNode
3124 // may be rewritten to optimize collected stores.  A ClearArrayNode
3125 // may also be created at that point to represent any required zeroing.
3126 // The InitializeNode is then marked 'complete', prohibiting further
3127 // capturing of nearby memory operations.
3128 //
3129 // During macro-expansion, all captured initializations which store
3130 // constant values of 32 bits or smaller are coalesced (if advantageous)
3131 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3132 // initialized in fewer memory operations.  Memory words which are
3133 // covered by neither tiles nor non-constant stores are pre-zeroed
3134 // by explicit stores of zero.  (The code shape happens to do all
3135 // zeroing first, then all other stores, with both sequences occurring
3136 // in order of ascending offsets.)
3137 //
3138 // Alternatively, code may be inserted between an AllocateNode and its
3139 // InitializeNode, to perform arbitrary initialization of the new object.
3140 // E.g., the object copying intrinsics insert complex data transfers here.
3141 // The initialization must then be marked as 'complete' disable the
3142 // built-in zeroing semantics and the collection of initializing stores.
3143 //
3144 // While an InitializeNode is incomplete, reads from the memory state
3145 // produced by it are optimizable if they match the control edge and
3146 // new oop address associated with the allocation/initialization.
3147 // They return a stored value (if the offset matches) or else zero.
3148 // A write to the memory state, if it matches control and address,
3149 // and if it is to a constant offset, may be 'captured' by the
3150 // InitializeNode.  It is cloned as a raw memory operation and rewired
3151 // inside the initialization, to the raw oop produced by the allocation.
3152 // Operations on addresses which are provably distinct (e.g., to
3153 // other AllocateNodes) are allowed to bypass the initialization.
3154 //
3155 // The effect of all this is to consolidate object initialization
3156 // (both arrays and non-arrays, both piecewise and bulk) into a
3157 // single location, where it can be optimized as a unit.
3158 //
3159 // Only stores with an offset less than TrackedInitializationLimit words
3160 // will be considered for capture by an InitializeNode.  This puts a
3161 // reasonable limit on the complexity of optimized initializations.
3162 
3163 //---------------------------InitializeNode------------------------------------
3164 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3165   : _is_complete(Incomplete), _does_not_escape(false),
3166     MemBarNode(C, adr_type, rawoop)
3167 {
3168   init_class_id(Class_Initialize);
3169 
3170   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3171   assert(in(RawAddress) == rawoop, "proper init");
3172   // Note:  allocation() can be NULL, for secondary initialization barriers
3173 }
3174 
3175 // Since this node is not matched, it will be processed by the
3176 // register allocator.  Declare that there are no constraints
3177 // on the allocation of the RawAddress edge.
3178 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3179   // This edge should be set to top, by the set_complete.  But be conservative.
3180   if (idx == InitializeNode::RawAddress)
3181     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3182   return RegMask::Empty;
3183 }
3184 
3185 Node* InitializeNode::memory(uint alias_idx) {
3186   Node* mem = in(Memory);
3187   if (mem->is_MergeMem()) {
3188     return mem->as_MergeMem()->memory_at(alias_idx);
3189   } else {
3190     // incoming raw memory is not split
3191     return mem;
3192   }
3193 }
3194 
3195 bool InitializeNode::is_non_zero() {
3196   if (is_complete())  return false;
3197   remove_extra_zeroes();
3198   return (req() > RawStores);
3199 }
3200 
3201 void InitializeNode::set_complete(PhaseGVN* phase) {
3202   assert(!is_complete(), "caller responsibility");
3203   _is_complete = Complete;
3204 
3205   // After this node is complete, it contains a bunch of
3206   // raw-memory initializations.  There is no need for
3207   // it to have anything to do with non-raw memory effects.
3208   // Therefore, tell all non-raw users to re-optimize themselves,
3209   // after skipping the memory effects of this initialization.
3210   PhaseIterGVN* igvn = phase->is_IterGVN();
3211   if (igvn)  igvn->add_users_to_worklist(this);
3212 }
3213 
3214 // convenience function
3215 // return false if the init contains any stores already
3216 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3217   InitializeNode* init = initialization();
3218   if (init == NULL || init->is_complete())  return false;
3219   init->remove_extra_zeroes();
3220   // for now, if this allocation has already collected any inits, bail:
3221   if (init->is_non_zero())  return false;
3222   init->set_complete(phase);
3223   return true;
3224 }
3225 
3226 void InitializeNode::remove_extra_zeroes() {
3227   if (req() == RawStores)  return;
3228   Node* zmem = zero_memory();
3229   uint fill = RawStores;
3230   for (uint i = fill; i < req(); i++) {
3231     Node* n = in(i);
3232     if (n->is_top() || n == zmem)  continue;  // skip
3233     if (fill < i)  set_req(fill, n);          // compact
3234     ++fill;
3235   }
3236   // delete any empty spaces created:
3237   while (fill < req()) {
3238     del_req(fill);
3239   }
3240 }
3241 
3242 // Helper for remembering which stores go with which offsets.
3243 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3244   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3245   intptr_t offset = -1;
3246   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3247                                                phase, offset);
3248   if (base == NULL)     return -1;  // something is dead,
3249   if (offset < 0)       return -1;  //        dead, dead
3250   return offset;
3251 }
3252 
3253 // Helper for proving that an initialization expression is
3254 // "simple enough" to be folded into an object initialization.
3255 // Attempts to prove that a store's initial value 'n' can be captured
3256 // within the initialization without creating a vicious cycle, such as:
3257 //     { Foo p = new Foo(); p.next = p; }
3258 // True for constants and parameters and small combinations thereof.
3259 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3260   if (n == NULL)      return true;   // (can this really happen?)
3261   if (n->is_Proj())   n = n->in(0);
3262   if (n == this)      return false;  // found a cycle
3263   if (n->is_Con())    return true;
3264   if (n->is_Start())  return true;   // params, etc., are OK
3265   if (n->is_Root())   return true;   // even better
3266 
3267   Node* ctl = n->in(0);
3268   if (ctl != NULL && !ctl->is_top()) {
3269     if (ctl->is_Proj())  ctl = ctl->in(0);
3270     if (ctl == this)  return false;
3271 
3272     // If we already know that the enclosing memory op is pinned right after
3273     // the init, then any control flow that the store has picked up
3274     // must have preceded the init, or else be equal to the init.
3275     // Even after loop optimizations (which might change control edges)
3276     // a store is never pinned *before* the availability of its inputs.
3277     if (!MemNode::all_controls_dominate(n, this))
3278       return false;                  // failed to prove a good control
3279   }
3280 
3281   // Check data edges for possible dependencies on 'this'.
3282   if ((count += 1) > 20)  return false;  // complexity limit
3283   for (uint i = 1; i < n->req(); i++) {
3284     Node* m = n->in(i);
3285     if (m == NULL || m == n || m->is_top())  continue;
3286     uint first_i = n->find_edge(m);
3287     if (i != first_i)  continue;  // process duplicate edge just once
3288     if (!detect_init_independence(m, count)) {
3289       return false;
3290     }
3291   }
3292 
3293   return true;
3294 }
3295 
3296 // Here are all the checks a Store must pass before it can be moved into
3297 // an initialization.  Returns zero if a check fails.
3298 // On success, returns the (constant) offset to which the store applies,
3299 // within the initialized memory.
3300 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3301   const int FAIL = 0;
3302   if (st->req() != MemNode::ValueIn + 1)
3303     return FAIL;                // an inscrutable StoreNode (card mark?)
3304   Node* ctl = st->in(MemNode::Control);
3305   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3306     return FAIL;                // must be unconditional after the initialization
3307   Node* mem = st->in(MemNode::Memory);
3308   if (!(mem->is_Proj() && mem->in(0) == this))
3309     return FAIL;                // must not be preceded by other stores
3310   Node* adr = st->in(MemNode::Address);
3311   intptr_t offset;
3312   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3313   if (alloc == NULL)
3314     return FAIL;                // inscrutable address
3315   if (alloc != allocation())
3316     return FAIL;                // wrong allocation!  (store needs to float up)
3317   Node* val = st->in(MemNode::ValueIn);
3318   int complexity_count = 0;
3319   if (!detect_init_independence(val, complexity_count))
3320     return FAIL;                // stored value must be 'simple enough'
3321 
3322   // The Store can be captured only if nothing after the allocation
3323   // and before the Store is using the memory location that the store
3324   // overwrites.
3325   bool failed = false;
3326   // If is_complete_with_arraycopy() is true the shape of the graph is
3327   // well defined and is safe so no need for extra checks.
3328   if (!is_complete_with_arraycopy()) {
3329     // We are going to look at each use of the memory state following
3330     // the allocation to make sure nothing reads the memory that the
3331     // Store writes.
3332     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3333     int alias_idx = phase->C->get_alias_index(t_adr);
3334     ResourceMark rm;
3335     Unique_Node_List mems;
3336     mems.push(mem);
3337     Node* unique_merge = NULL;
3338     for (uint next = 0; next < mems.size(); ++next) {
3339       Node *m  = mems.at(next);
3340       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3341         Node *n = m->fast_out(j);
3342         if (n->outcnt() == 0) {
3343           continue;
3344         }
3345         if (n == st) {
3346           continue;
3347         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3348           // If the control of this use is different from the control
3349           // of the Store which is right after the InitializeNode then
3350           // this node cannot be between the InitializeNode and the
3351           // Store.
3352           continue;
3353         } else if (n->is_MergeMem()) {
3354           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3355             // We can hit a MergeMemNode (that will likely go away
3356             // later) that is a direct use of the memory state
3357             // following the InitializeNode on the same slice as the
3358             // store node that we'd like to capture. We need to check
3359             // the uses of the MergeMemNode.
3360             mems.push(n);
3361           }
3362         } else if (n->is_Mem()) {
3363           Node* other_adr = n->in(MemNode::Address);
3364           if (other_adr == adr) {
3365             failed = true;
3366             break;
3367           } else {
3368             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3369             if (other_t_adr != NULL) {
3370               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3371               if (other_alias_idx == alias_idx) {
3372                 // A load from the same memory slice as the store right
3373                 // after the InitializeNode. We check the control of the
3374                 // object/array that is loaded from. If it's the same as
3375                 // the store control then we cannot capture the store.
3376                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3377                 Node* base = other_adr;
3378                 assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
3379                 base = base->in(AddPNode::Base);
3380                 if (base != NULL) {
3381                   base = base->uncast();
3382                   if (base->is_Proj() && base->in(0) == alloc) {
3383                     failed = true;
3384                     break;
3385                   }
3386                 }
3387               }
3388             }
3389           }
3390         } else {
3391           failed = true;
3392           break;
3393         }
3394       }
3395     }
3396   }
3397   if (failed) {
3398     if (!can_reshape) {
3399       // We decided we couldn't capture the store during parsing. We
3400       // should try again during the next IGVN once the graph is
3401       // cleaner.
3402       phase->C->record_for_igvn(st);
3403     }
3404     return FAIL;
3405   }
3406 
3407   return offset;                // success
3408 }
3409 
3410 // Find the captured store in(i) which corresponds to the range
3411 // [start..start+size) in the initialized object.
3412 // If there is one, return its index i.  If there isn't, return the
3413 // negative of the index where it should be inserted.
3414 // Return 0 if the queried range overlaps an initialization boundary
3415 // or if dead code is encountered.
3416 // If size_in_bytes is zero, do not bother with overlap checks.
3417 int InitializeNode::captured_store_insertion_point(intptr_t start,
3418                                                    int size_in_bytes,
3419                                                    PhaseTransform* phase) {
3420   const int FAIL = 0, MAX_STORE = BytesPerLong;
3421 
3422   if (is_complete())
3423     return FAIL;                // arraycopy got here first; punt
3424 
3425   assert(allocation() != NULL, "must be present");
3426 
3427   // no negatives, no header fields:
3428   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3429 
3430   // after a certain size, we bail out on tracking all the stores:
3431   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3432   if (start >= ti_limit)  return FAIL;
3433 
3434   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3435     if (i >= limit)  return -(int)i; // not found; here is where to put it
3436 
3437     Node*    st     = in(i);
3438     intptr_t st_off = get_store_offset(st, phase);
3439     if (st_off < 0) {
3440       if (st != zero_memory()) {
3441         return FAIL;            // bail out if there is dead garbage
3442       }
3443     } else if (st_off > start) {
3444       // ...we are done, since stores are ordered
3445       if (st_off < start + size_in_bytes) {
3446         return FAIL;            // the next store overlaps
3447       }
3448       return -(int)i;           // not found; here is where to put it
3449     } else if (st_off < start) {
3450       if (size_in_bytes != 0 &&
3451           start < st_off + MAX_STORE &&
3452           start < st_off + st->as_Store()->memory_size()) {
3453         return FAIL;            // the previous store overlaps
3454       }
3455     } else {
3456       if (size_in_bytes != 0 &&
3457           st->as_Store()->memory_size() != size_in_bytes) {
3458         return FAIL;            // mismatched store size
3459       }
3460       return i;
3461     }
3462 
3463     ++i;
3464   }
3465 }
3466 
3467 // Look for a captured store which initializes at the offset 'start'
3468 // with the given size.  If there is no such store, and no other
3469 // initialization interferes, then return zero_memory (the memory
3470 // projection of the AllocateNode).
3471 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3472                                           PhaseTransform* phase) {
3473   assert(stores_are_sane(phase), "");
3474   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3475   if (i == 0) {
3476     return NULL;                // something is dead
3477   } else if (i < 0) {
3478     return zero_memory();       // just primordial zero bits here
3479   } else {
3480     Node* st = in(i);           // here is the store at this position
3481     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3482     return st;
3483   }
3484 }
3485 
3486 // Create, as a raw pointer, an address within my new object at 'offset'.
3487 Node* InitializeNode::make_raw_address(intptr_t offset,
3488                                        PhaseTransform* phase) {
3489   Node* addr = in(RawAddress);
3490   if (offset != 0) {
3491     Compile* C = phase->C;
3492     addr = phase->transform( new (C) AddPNode(C->top(), addr,
3493                                                  phase->MakeConX(offset)) );
3494   }
3495   return addr;
3496 }
3497 
3498 // Clone the given store, converting it into a raw store
3499 // initializing a field or element of my new object.
3500 // Caller is responsible for retiring the original store,
3501 // with subsume_node or the like.
3502 //
3503 // From the example above InitializeNode::InitializeNode,
3504 // here are the old stores to be captured:
3505 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3506 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3507 //
3508 // Here is the changed code; note the extra edges on init:
3509 //   alloc = (Allocate ...)
3510 //   rawoop = alloc.RawAddress
3511 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3512 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3513 //   init = (Initialize alloc.Control alloc.Memory rawoop
3514 //                      rawstore1 rawstore2)
3515 //
3516 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3517                                     PhaseTransform* phase, bool can_reshape) {
3518   assert(stores_are_sane(phase), "");
3519 
3520   if (start < 0)  return NULL;
3521   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3522 
3523   Compile* C = phase->C;
3524   int size_in_bytes = st->memory_size();
3525   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3526   if (i == 0)  return NULL;     // bail out
3527   Node* prev_mem = NULL;        // raw memory for the captured store
3528   if (i > 0) {
3529     prev_mem = in(i);           // there is a pre-existing store under this one
3530     set_req(i, C->top());       // temporarily disconnect it
3531     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3532   } else {
3533     i = -i;                     // no pre-existing store
3534     prev_mem = zero_memory();   // a slice of the newly allocated object
3535     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3536       set_req(--i, C->top());   // reuse this edge; it has been folded away
3537     else
3538       ins_req(i, C->top());     // build a new edge
3539   }
3540   Node* new_st = st->clone();
3541   new_st->set_req(MemNode::Control, in(Control));
3542   new_st->set_req(MemNode::Memory,  prev_mem);
3543   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3544   new_st = phase->transform(new_st);
3545 
3546   // At this point, new_st might have swallowed a pre-existing store
3547   // at the same offset, or perhaps new_st might have disappeared,
3548   // if it redundantly stored the same value (or zero to fresh memory).
3549 
3550   // In any case, wire it in:
3551   set_req(i, new_st);
3552 
3553   // The caller may now kill the old guy.
3554   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3555   assert(check_st == new_st || check_st == NULL, "must be findable");
3556   assert(!is_complete(), "");
3557   return new_st;
3558 }
3559 
3560 static bool store_constant(jlong* tiles, int num_tiles,
3561                            intptr_t st_off, int st_size,
3562                            jlong con) {
3563   if ((st_off & (st_size-1)) != 0)
3564     return false;               // strange store offset (assume size==2**N)
3565   address addr = (address)tiles + st_off;
3566   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3567   switch (st_size) {
3568   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3569   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3570   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3571   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3572   default: return false;        // strange store size (detect size!=2**N here)
3573   }
3574   return true;                  // return success to caller
3575 }
3576 
3577 // Coalesce subword constants into int constants and possibly
3578 // into long constants.  The goal, if the CPU permits,
3579 // is to initialize the object with a small number of 64-bit tiles.
3580 // Also, convert floating-point constants to bit patterns.
3581 // Non-constants are not relevant to this pass.
3582 //
3583 // In terms of the running example on InitializeNode::InitializeNode
3584 // and InitializeNode::capture_store, here is the transformation
3585 // of rawstore1 and rawstore2 into rawstore12:
3586 //   alloc = (Allocate ...)
3587 //   rawoop = alloc.RawAddress
3588 //   tile12 = 0x00010002
3589 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3590 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3591 //
3592 void
3593 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3594                                         Node* size_in_bytes,
3595                                         PhaseGVN* phase) {
3596   Compile* C = phase->C;
3597 
3598   assert(stores_are_sane(phase), "");
3599   // Note:  After this pass, they are not completely sane,
3600   // since there may be some overlaps.
3601 
3602   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3603 
3604   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3605   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3606   size_limit = MIN2(size_limit, ti_limit);
3607   size_limit = align_size_up(size_limit, BytesPerLong);
3608   int num_tiles = size_limit / BytesPerLong;
3609 
3610   // allocate space for the tile map:
3611   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3612   jlong  tiles_buf[small_len];
3613   Node*  nodes_buf[small_len];
3614   jlong  inits_buf[small_len];
3615   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3616                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3617   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3618                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3619   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3620                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3621   // tiles: exact bitwise model of all primitive constants
3622   // nodes: last constant-storing node subsumed into the tiles model
3623   // inits: which bytes (in each tile) are touched by any initializations
3624 
3625   //// Pass A: Fill in the tile model with any relevant stores.
3626 
3627   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3628   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3629   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3630   Node* zmem = zero_memory(); // initially zero memory state
3631   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3632     Node* st = in(i);
3633     intptr_t st_off = get_store_offset(st, phase);
3634 
3635     // Figure out the store's offset and constant value:
3636     if (st_off < header_size)             continue; //skip (ignore header)
3637     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3638     int st_size = st->as_Store()->memory_size();
3639     if (st_off + st_size > size_limit)    break;
3640 
3641     // Record which bytes are touched, whether by constant or not.
3642     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3643       continue;                 // skip (strange store size)
3644 
3645     const Type* val = phase->type(st->in(MemNode::ValueIn));
3646     if (!val->singleton())                continue; //skip (non-con store)
3647     BasicType type = val->basic_type();
3648 
3649     jlong con = 0;
3650     switch (type) {
3651     case T_INT:    con = val->is_int()->get_con();  break;
3652     case T_LONG:   con = val->is_long()->get_con(); break;
3653     case T_FLOAT:  con = jint_cast(val->getf());    break;
3654     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3655     default:                              continue; //skip (odd store type)
3656     }
3657 
3658     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3659         st->Opcode() == Op_StoreL) {
3660       continue;                 // This StoreL is already optimal.
3661     }
3662 
3663     // Store down the constant.
3664     store_constant(tiles, num_tiles, st_off, st_size, con);
3665 
3666     intptr_t j = st_off >> LogBytesPerLong;
3667 
3668     if (type == T_INT && st_size == BytesPerInt
3669         && (st_off & BytesPerInt) == BytesPerInt) {
3670       jlong lcon = tiles[j];
3671       if (!Matcher::isSimpleConstant64(lcon) &&
3672           st->Opcode() == Op_StoreI) {
3673         // This StoreI is already optimal by itself.
3674         jint* intcon = (jint*) &tiles[j];
3675         intcon[1] = 0;  // undo the store_constant()
3676 
3677         // If the previous store is also optimal by itself, back up and
3678         // undo the action of the previous loop iteration... if we can.
3679         // But if we can't, just let the previous half take care of itself.
3680         st = nodes[j];
3681         st_off -= BytesPerInt;
3682         con = intcon[0];
3683         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3684           assert(st_off >= header_size, "still ignoring header");
3685           assert(get_store_offset(st, phase) == st_off, "must be");
3686           assert(in(i-1) == zmem, "must be");
3687           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3688           assert(con == tcon->is_int()->get_con(), "must be");
3689           // Undo the effects of the previous loop trip, which swallowed st:
3690           intcon[0] = 0;        // undo store_constant()
3691           set_req(i-1, st);     // undo set_req(i, zmem)
3692           nodes[j] = NULL;      // undo nodes[j] = st
3693           --old_subword;        // undo ++old_subword
3694         }
3695         continue;               // This StoreI is already optimal.
3696       }
3697     }
3698 
3699     // This store is not needed.
3700     set_req(i, zmem);
3701     nodes[j] = st;              // record for the moment
3702     if (st_size < BytesPerLong) // something has changed
3703           ++old_subword;        // includes int/float, but who's counting...
3704     else  ++old_long;
3705   }
3706 
3707   if ((old_subword + old_long) == 0)
3708     return;                     // nothing more to do
3709 
3710   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3711   // Be sure to insert them before overlapping non-constant stores.
3712   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3713   for (int j = 0; j < num_tiles; j++) {
3714     jlong con  = tiles[j];
3715     jlong init = inits[j];
3716     if (con == 0)  continue;
3717     jint con0,  con1;           // split the constant, address-wise
3718     jint init0, init1;          // split the init map, address-wise
3719     { union { jlong con; jint intcon[2]; } u;
3720       u.con = con;
3721       con0  = u.intcon[0];
3722       con1  = u.intcon[1];
3723       u.con = init;
3724       init0 = u.intcon[0];
3725       init1 = u.intcon[1];
3726     }
3727 
3728     Node* old = nodes[j];
3729     assert(old != NULL, "need the prior store");
3730     intptr_t offset = (j * BytesPerLong);
3731 
3732     bool split = !Matcher::isSimpleConstant64(con);
3733 
3734     if (offset < header_size) {
3735       assert(offset + BytesPerInt >= header_size, "second int counts");
3736       assert(*(jint*)&tiles[j] == 0, "junk in header");
3737       split = true;             // only the second word counts
3738       // Example:  int a[] = { 42 ... }
3739     } else if (con0 == 0 && init0 == -1) {
3740       split = true;             // first word is covered by full inits
3741       // Example:  int a[] = { ... foo(), 42 ... }
3742     } else if (con1 == 0 && init1 == -1) {
3743       split = true;             // second word is covered by full inits
3744       // Example:  int a[] = { ... 42, foo() ... }
3745     }
3746 
3747     // Here's a case where init0 is neither 0 nor -1:
3748     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3749     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3750     // In this case the tile is not split; it is (jlong)42.
3751     // The big tile is stored down, and then the foo() value is inserted.
3752     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3753 
3754     Node* ctl = old->in(MemNode::Control);
3755     Node* adr = make_raw_address(offset, phase);
3756     const TypePtr* atp = TypeRawPtr::BOTTOM;
3757 
3758     // One or two coalesced stores to plop down.
3759     Node*    st[2];
3760     intptr_t off[2];
3761     int  nst = 0;
3762     if (!split) {
3763       ++new_long;
3764       off[nst] = offset;
3765       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3766                                   phase->longcon(con), T_LONG, StoreNode::unordered);
3767     } else {
3768       // Omit either if it is a zero.
3769       if (con0 != 0) {
3770         ++new_int;
3771         off[nst]  = offset;
3772         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3773                                     phase->intcon(con0), T_INT, StoreNode::unordered);
3774       }
3775       if (con1 != 0) {
3776         ++new_int;
3777         offset += BytesPerInt;
3778         adr = make_raw_address(offset, phase);
3779         off[nst]  = offset;
3780         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3781                                     phase->intcon(con1), T_INT, StoreNode::unordered);
3782       }
3783     }
3784 
3785     // Insert second store first, then the first before the second.
3786     // Insert each one just before any overlapping non-constant stores.
3787     while (nst > 0) {
3788       Node* st1 = st[--nst];
3789       C->copy_node_notes_to(st1, old);
3790       st1 = phase->transform(st1);
3791       offset = off[nst];
3792       assert(offset >= header_size, "do not smash header");
3793       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3794       guarantee(ins_idx != 0, "must re-insert constant store");
3795       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3796       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3797         set_req(--ins_idx, st1);
3798       else
3799         ins_req(ins_idx, st1);
3800     }
3801   }
3802 
3803   if (PrintCompilation && WizardMode)
3804     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3805                   old_subword, old_long, new_int, new_long);
3806   if (C->log() != NULL)
3807     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3808                    old_subword, old_long, new_int, new_long);
3809 
3810   // Clean up any remaining occurrences of zmem:
3811   remove_extra_zeroes();
3812 }
3813 
3814 // Explore forward from in(start) to find the first fully initialized
3815 // word, and return its offset.  Skip groups of subword stores which
3816 // together initialize full words.  If in(start) is itself part of a
3817 // fully initialized word, return the offset of in(start).  If there
3818 // are no following full-word stores, or if something is fishy, return
3819 // a negative value.
3820 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3821   int       int_map = 0;
3822   intptr_t  int_map_off = 0;
3823   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3824 
3825   for (uint i = start, limit = req(); i < limit; i++) {
3826     Node* st = in(i);
3827 
3828     intptr_t st_off = get_store_offset(st, phase);
3829     if (st_off < 0)  break;  // return conservative answer
3830 
3831     int st_size = st->as_Store()->memory_size();
3832     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3833       return st_off;            // we found a complete word init
3834     }
3835 
3836     // update the map:
3837 
3838     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3839     if (this_int_off != int_map_off) {
3840       // reset the map:
3841       int_map = 0;
3842       int_map_off = this_int_off;
3843     }
3844 
3845     int subword_off = st_off - this_int_off;
3846     int_map |= right_n_bits(st_size) << subword_off;
3847     if ((int_map & FULL_MAP) == FULL_MAP) {
3848       return this_int_off;      // we found a complete word init
3849     }
3850 
3851     // Did this store hit or cross the word boundary?
3852     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3853     if (next_int_off == this_int_off + BytesPerInt) {
3854       // We passed the current int, without fully initializing it.
3855       int_map_off = next_int_off;
3856       int_map >>= BytesPerInt;
3857     } else if (next_int_off > this_int_off + BytesPerInt) {
3858       // We passed the current and next int.
3859       return this_int_off + BytesPerInt;
3860     }
3861   }
3862 
3863   return -1;
3864 }
3865 
3866 
3867 // Called when the associated AllocateNode is expanded into CFG.
3868 // At this point, we may perform additional optimizations.
3869 // Linearize the stores by ascending offset, to make memory
3870 // activity as coherent as possible.
3871 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3872                                       intptr_t header_size,
3873                                       Node* size_in_bytes,
3874                                       PhaseGVN* phase) {
3875   assert(!is_complete(), "not already complete");
3876   assert(stores_are_sane(phase), "");
3877   assert(allocation() != NULL, "must be present");
3878 
3879   remove_extra_zeroes();
3880 
3881   if (ReduceFieldZeroing || ReduceBulkZeroing)
3882     // reduce instruction count for common initialization patterns
3883     coalesce_subword_stores(header_size, size_in_bytes, phase);
3884 
3885   Node* zmem = zero_memory();   // initially zero memory state
3886   Node* inits = zmem;           // accumulating a linearized chain of inits
3887   #ifdef ASSERT
3888   intptr_t first_offset = allocation()->minimum_header_size();
3889   intptr_t last_init_off = first_offset;  // previous init offset
3890   intptr_t last_init_end = first_offset;  // previous init offset+size
3891   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3892   #endif
3893   intptr_t zeroes_done = header_size;
3894 
3895   bool do_zeroing = true;       // we might give up if inits are very sparse
3896   int  big_init_gaps = 0;       // how many large gaps have we seen?
3897 
3898   if (ZeroTLAB)  do_zeroing = false;
3899   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3900 
3901   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3902     Node* st = in(i);
3903     intptr_t st_off = get_store_offset(st, phase);
3904     if (st_off < 0)
3905       break;                    // unknown junk in the inits
3906     if (st->in(MemNode::Memory) != zmem)
3907       break;                    // complicated store chains somehow in list
3908 
3909     int st_size = st->as_Store()->memory_size();
3910     intptr_t next_init_off = st_off + st_size;
3911 
3912     if (do_zeroing && zeroes_done < next_init_off) {
3913       // See if this store needs a zero before it or under it.
3914       intptr_t zeroes_needed = st_off;
3915 
3916       if (st_size < BytesPerInt) {
3917         // Look for subword stores which only partially initialize words.
3918         // If we find some, we must lay down some word-level zeroes first,
3919         // underneath the subword stores.
3920         //
3921         // Examples:
3922         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3923         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3924         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3925         //
3926         // Note:  coalesce_subword_stores may have already done this,
3927         // if it was prompted by constant non-zero subword initializers.
3928         // But this case can still arise with non-constant stores.
3929 
3930         intptr_t next_full_store = find_next_fullword_store(i, phase);
3931 
3932         // In the examples above:
3933         //   in(i)          p   q   r   s     x   y     z
3934         //   st_off        12  13  14  15    12  13    14
3935         //   st_size        1   1   1   1     1   1     1
3936         //   next_full_s.  12  16  16  16    16  16    16
3937         //   z's_done      12  16  16  16    12  16    12
3938         //   z's_needed    12  16  16  16    16  16    16
3939         //   zsize          0   0   0   0     4   0     4
3940         if (next_full_store < 0) {
3941           // Conservative tack:  Zero to end of current word.
3942           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3943         } else {
3944           // Zero to beginning of next fully initialized word.
3945           // Or, don't zero at all, if we are already in that word.
3946           assert(next_full_store >= zeroes_needed, "must go forward");
3947           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3948           zeroes_needed = next_full_store;
3949         }
3950       }
3951 
3952       if (zeroes_needed > zeroes_done) {
3953         intptr_t zsize = zeroes_needed - zeroes_done;
3954         // Do some incremental zeroing on rawmem, in parallel with inits.
3955         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3956         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3957                                               zeroes_done, zeroes_needed,
3958                                               phase);
3959         zeroes_done = zeroes_needed;
3960         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3961           do_zeroing = false;   // leave the hole, next time
3962       }
3963     }
3964 
3965     // Collect the store and move on:
3966     st->set_req(MemNode::Memory, inits);
3967     inits = st;                 // put it on the linearized chain
3968     set_req(i, zmem);           // unhook from previous position
3969 
3970     if (zeroes_done == st_off)
3971       zeroes_done = next_init_off;
3972 
3973     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3974 
3975     #ifdef ASSERT
3976     // Various order invariants.  Weaker than stores_are_sane because
3977     // a large constant tile can be filled in by smaller non-constant stores.
3978     assert(st_off >= last_init_off, "inits do not reverse");
3979     last_init_off = st_off;
3980     const Type* val = NULL;
3981     if (st_size >= BytesPerInt &&
3982         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3983         (int)val->basic_type() < (int)T_OBJECT) {
3984       assert(st_off >= last_tile_end, "tiles do not overlap");
3985       assert(st_off >= last_init_end, "tiles do not overwrite inits");
3986       last_tile_end = MAX2(last_tile_end, next_init_off);
3987     } else {
3988       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3989       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3990       assert(st_off      >= last_init_end, "inits do not overlap");
3991       last_init_end = next_init_off;  // it's a non-tile
3992     }
3993     #endif //ASSERT
3994   }
3995 
3996   remove_extra_zeroes();        // clear out all the zmems left over
3997   add_req(inits);
3998 
3999   if (!ZeroTLAB) {
4000     // If anything remains to be zeroed, zero it all now.
4001     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
4002     // if it is the last unused 4 bytes of an instance, forget about it
4003     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4004     if (zeroes_done + BytesPerLong >= size_limit) {
4005       assert(allocation() != NULL, "");
4006       if (allocation()->Opcode() == Op_Allocate) {
4007         Node* klass_node = allocation()->in(AllocateNode::KlassNode);
4008         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4009         if (zeroes_done == k->layout_helper())
4010           zeroes_done = size_limit;
4011       }
4012     }
4013     if (zeroes_done < size_limit) {
4014       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4015                                             zeroes_done, size_in_bytes, phase);
4016     }
4017   }
4018 
4019   set_complete(phase);
4020   return rawmem;
4021 }
4022 
4023 
4024 #ifdef ASSERT
4025 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4026   if (is_complete())
4027     return true;                // stores could be anything at this point
4028   assert(allocation() != NULL, "must be present");
4029   intptr_t last_off = allocation()->minimum_header_size();
4030   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4031     Node* st = in(i);
4032     intptr_t st_off = get_store_offset(st, phase);
4033     if (st_off < 0)  continue;  // ignore dead garbage
4034     if (last_off > st_off) {
4035       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
4036       this->dump(2);
4037       assert(false, "ascending store offsets");
4038       return false;
4039     }
4040     last_off = st_off + st->as_Store()->memory_size();
4041   }
4042   return true;
4043 }
4044 #endif //ASSERT
4045 
4046 
4047 
4048 
4049 //============================MergeMemNode=====================================
4050 //
4051 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4052 // contributing store or call operations.  Each contributor provides the memory
4053 // state for a particular "alias type" (see Compile::alias_type).  For example,
4054 // if a MergeMem has an input X for alias category #6, then any memory reference
4055 // to alias category #6 may use X as its memory state input, as an exact equivalent
4056 // to using the MergeMem as a whole.
4057 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4058 //
4059 // (Here, the <N> notation gives the index of the relevant adr_type.)
4060 //
4061 // In one special case (and more cases in the future), alias categories overlap.
4062 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4063 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4064 // it is exactly equivalent to that state W:
4065 //   MergeMem(<Bot>: W) <==> W
4066 //
4067 // Usually, the merge has more than one input.  In that case, where inputs
4068 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4069 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4070 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4071 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4072 //
4073 // A merge can take a "wide" memory state as one of its narrow inputs.
4074 // This simply means that the merge observes out only the relevant parts of
4075 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4076 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4077 //
4078 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4079 // and that memory slices "leak through":
4080 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4081 //
4082 // But, in such a cascade, repeated memory slices can "block the leak":
4083 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4084 //
4085 // In the last example, Y is not part of the combined memory state of the
4086 // outermost MergeMem.  The system must, of course, prevent unschedulable
4087 // memory states from arising, so you can be sure that the state Y is somehow
4088 // a precursor to state Y'.
4089 //
4090 //
4091 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4092 // of each MergeMemNode array are exactly the numerical alias indexes, including
4093 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4094 // Compile::alias_type (and kin) produce and manage these indexes.
4095 //
4096 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4097 // (Note that this provides quick access to the top node inside MergeMem methods,
4098 // without the need to reach out via TLS to Compile::current.)
4099 //
4100 // As a consequence of what was just described, a MergeMem that represents a full
4101 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4102 // containing all alias categories.
4103 //
4104 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4105 //
4106 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4107 // a memory state for the alias type <N>, or else the top node, meaning that
4108 // there is no particular input for that alias type.  Note that the length of
4109 // a MergeMem is variable, and may be extended at any time to accommodate new
4110 // memory states at larger alias indexes.  When merges grow, they are of course
4111 // filled with "top" in the unused in() positions.
4112 //
4113 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4114 // (Top was chosen because it works smoothly with passes like GCM.)
4115 //
4116 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4117 // the type of random VM bits like TLS references.)  Since it is always the
4118 // first non-Bot memory slice, some low-level loops use it to initialize an
4119 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4120 //
4121 //
4122 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4123 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4124 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4125 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4126 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4127 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4128 //
4129 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4130 // really that different from the other memory inputs.  An abbreviation called
4131 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4132 //
4133 //
4134 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4135 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4136 // that "emerges though" the base memory will be marked as excluding the alias types
4137 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4138 //
4139 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4140 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4141 //
4142 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4143 // (It is currently unimplemented.)  As you can see, the resulting merge is
4144 // actually a disjoint union of memory states, rather than an overlay.
4145 //
4146 
4147 //------------------------------MergeMemNode-----------------------------------
4148 Node* MergeMemNode::make_empty_memory() {
4149   Node* empty_memory = (Node*) Compile::current()->top();
4150   assert(empty_memory->is_top(), "correct sentinel identity");
4151   return empty_memory;
4152 }
4153 
4154 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4155   init_class_id(Class_MergeMem);
4156   // all inputs are nullified in Node::Node(int)
4157   // set_input(0, NULL);  // no control input
4158 
4159   // Initialize the edges uniformly to top, for starters.
4160   Node* empty_mem = make_empty_memory();
4161   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4162     init_req(i,empty_mem);
4163   }
4164   assert(empty_memory() == empty_mem, "");
4165 
4166   if( new_base != NULL && new_base->is_MergeMem() ) {
4167     MergeMemNode* mdef = new_base->as_MergeMem();
4168     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4169     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4170       mms.set_memory(mms.memory2());
4171     }
4172     assert(base_memory() == mdef->base_memory(), "");
4173   } else {
4174     set_base_memory(new_base);
4175   }
4176 }
4177 
4178 // Make a new, untransformed MergeMem with the same base as 'mem'.
4179 // If mem is itself a MergeMem, populate the result with the same edges.
4180 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
4181   return new(C) MergeMemNode(mem);
4182 }
4183 
4184 //------------------------------cmp--------------------------------------------
4185 uint MergeMemNode::hash() const { return NO_HASH; }
4186 uint MergeMemNode::cmp( const Node &n ) const {
4187   return (&n == this);          // Always fail except on self
4188 }
4189 
4190 //------------------------------Identity---------------------------------------
4191 Node* MergeMemNode::Identity(PhaseTransform *phase) {
4192   // Identity if this merge point does not record any interesting memory
4193   // disambiguations.
4194   Node* base_mem = base_memory();
4195   Node* empty_mem = empty_memory();
4196   if (base_mem != empty_mem) {  // Memory path is not dead?
4197     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4198       Node* mem = in(i);
4199       if (mem != empty_mem && mem != base_mem) {
4200         return this;            // Many memory splits; no change
4201       }
4202     }
4203   }
4204   return base_mem;              // No memory splits; ID on the one true input
4205 }
4206 
4207 //------------------------------Ideal------------------------------------------
4208 // This method is invoked recursively on chains of MergeMem nodes
4209 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4210   // Remove chain'd MergeMems
4211   //
4212   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4213   // relative to the "in(Bot)".  Since we are patching both at the same time,
4214   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4215   // but rewrite each "in(i)" relative to the new "in(Bot)".
4216   Node *progress = NULL;
4217 
4218 
4219   Node* old_base = base_memory();
4220   Node* empty_mem = empty_memory();
4221   if (old_base == empty_mem)
4222     return NULL; // Dead memory path.
4223 
4224   MergeMemNode* old_mbase;
4225   if (old_base != NULL && old_base->is_MergeMem())
4226     old_mbase = old_base->as_MergeMem();
4227   else
4228     old_mbase = NULL;
4229   Node* new_base = old_base;
4230 
4231   // simplify stacked MergeMems in base memory
4232   if (old_mbase)  new_base = old_mbase->base_memory();
4233 
4234   // the base memory might contribute new slices beyond my req()
4235   if (old_mbase)  grow_to_match(old_mbase);
4236 
4237   // Look carefully at the base node if it is a phi.
4238   PhiNode* phi_base;
4239   if (new_base != NULL && new_base->is_Phi())
4240     phi_base = new_base->as_Phi();
4241   else
4242     phi_base = NULL;
4243 
4244   Node*    phi_reg = NULL;
4245   uint     phi_len = (uint)-1;
4246   if (phi_base != NULL && !phi_base->is_copy()) {
4247     // do not examine phi if degraded to a copy
4248     phi_reg = phi_base->region();
4249     phi_len = phi_base->req();
4250     // see if the phi is unfinished
4251     for (uint i = 1; i < phi_len; i++) {
4252       if (phi_base->in(i) == NULL) {
4253         // incomplete phi; do not look at it yet!
4254         phi_reg = NULL;
4255         phi_len = (uint)-1;
4256         break;
4257       }
4258     }
4259   }
4260 
4261   // Note:  We do not call verify_sparse on entry, because inputs
4262   // can normalize to the base_memory via subsume_node or similar
4263   // mechanisms.  This method repairs that damage.
4264 
4265   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4266 
4267   // Look at each slice.
4268   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4269     Node* old_in = in(i);
4270     // calculate the old memory value
4271     Node* old_mem = old_in;
4272     if (old_mem == empty_mem)  old_mem = old_base;
4273     assert(old_mem == memory_at(i), "");
4274 
4275     // maybe update (reslice) the old memory value
4276 
4277     // simplify stacked MergeMems
4278     Node* new_mem = old_mem;
4279     MergeMemNode* old_mmem;
4280     if (old_mem != NULL && old_mem->is_MergeMem())
4281       old_mmem = old_mem->as_MergeMem();
4282     else
4283       old_mmem = NULL;
4284     if (old_mmem == this) {
4285       // This can happen if loops break up and safepoints disappear.
4286       // A merge of BotPtr (default) with a RawPtr memory derived from a
4287       // safepoint can be rewritten to a merge of the same BotPtr with
4288       // the BotPtr phi coming into the loop.  If that phi disappears
4289       // also, we can end up with a self-loop of the mergemem.
4290       // In general, if loops degenerate and memory effects disappear,
4291       // a mergemem can be left looking at itself.  This simply means
4292       // that the mergemem's default should be used, since there is
4293       // no longer any apparent effect on this slice.
4294       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4295       //       from start.  Update the input to TOP.
4296       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4297     }
4298     else if (old_mmem != NULL) {
4299       new_mem = old_mmem->memory_at(i);
4300     }
4301     // else preceding memory was not a MergeMem
4302 
4303     // replace equivalent phis (unfortunately, they do not GVN together)
4304     if (new_mem != NULL && new_mem != new_base &&
4305         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4306       if (new_mem->is_Phi()) {
4307         PhiNode* phi_mem = new_mem->as_Phi();
4308         for (uint i = 1; i < phi_len; i++) {
4309           if (phi_base->in(i) != phi_mem->in(i)) {
4310             phi_mem = NULL;
4311             break;
4312           }
4313         }
4314         if (phi_mem != NULL) {
4315           // equivalent phi nodes; revert to the def
4316           new_mem = new_base;
4317         }
4318       }
4319     }
4320 
4321     // maybe store down a new value
4322     Node* new_in = new_mem;
4323     if (new_in == new_base)  new_in = empty_mem;
4324 
4325     if (new_in != old_in) {
4326       // Warning:  Do not combine this "if" with the previous "if"
4327       // A memory slice might have be be rewritten even if it is semantically
4328       // unchanged, if the base_memory value has changed.
4329       set_req(i, new_in);
4330       progress = this;          // Report progress
4331     }
4332   }
4333 
4334   if (new_base != old_base) {
4335     set_req(Compile::AliasIdxBot, new_base);
4336     // Don't use set_base_memory(new_base), because we need to update du.
4337     assert(base_memory() == new_base, "");
4338     progress = this;
4339   }
4340 
4341   if( base_memory() == this ) {
4342     // a self cycle indicates this memory path is dead
4343     set_req(Compile::AliasIdxBot, empty_mem);
4344   }
4345 
4346   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4347   // Recursion must occur after the self cycle check above
4348   if( base_memory()->is_MergeMem() ) {
4349     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4350     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4351     if( m != NULL && (m->is_top() ||
4352         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4353       // propagate rollup of dead cycle to self
4354       set_req(Compile::AliasIdxBot, empty_mem);
4355     }
4356   }
4357 
4358   if( base_memory() == empty_mem ) {
4359     progress = this;
4360     // Cut inputs during Parse phase only.
4361     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4362     if( !can_reshape ) {
4363       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4364         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4365       }
4366     }
4367   }
4368 
4369   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4370     // Check if PhiNode::Ideal's "Split phis through memory merges"
4371     // transform should be attempted. Look for this->phi->this cycle.
4372     uint merge_width = req();
4373     if (merge_width > Compile::AliasIdxRaw) {
4374       PhiNode* phi = base_memory()->as_Phi();
4375       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4376         if (phi->in(i) == this) {
4377           phase->is_IterGVN()->_worklist.push(phi);
4378           break;
4379         }
4380       }
4381     }
4382   }
4383 
4384   assert(progress || verify_sparse(), "please, no dups of base");
4385   return progress;
4386 }
4387 
4388 //-------------------------set_base_memory-------------------------------------
4389 void MergeMemNode::set_base_memory(Node *new_base) {
4390   Node* empty_mem = empty_memory();
4391   set_req(Compile::AliasIdxBot, new_base);
4392   assert(memory_at(req()) == new_base, "must set default memory");
4393   // Clear out other occurrences of new_base:
4394   if (new_base != empty_mem) {
4395     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4396       if (in(i) == new_base)  set_req(i, empty_mem);
4397     }
4398   }
4399 }
4400 
4401 //------------------------------out_RegMask------------------------------------
4402 const RegMask &MergeMemNode::out_RegMask() const {
4403   return RegMask::Empty;
4404 }
4405 
4406 //------------------------------dump_spec--------------------------------------
4407 #ifndef PRODUCT
4408 void MergeMemNode::dump_spec(outputStream *st) const {
4409   st->print(" {");
4410   Node* base_mem = base_memory();
4411   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4412     Node* mem = memory_at(i);
4413     if (mem == base_mem) { st->print(" -"); continue; }
4414     st->print( " N%d:", mem->_idx );
4415     Compile::current()->get_adr_type(i)->dump_on(st);
4416   }
4417   st->print(" }");
4418 }
4419 #endif // !PRODUCT
4420 
4421 
4422 #ifdef ASSERT
4423 static bool might_be_same(Node* a, Node* b) {
4424   if (a == b)  return true;
4425   if (!(a->is_Phi() || b->is_Phi()))  return false;
4426   // phis shift around during optimization
4427   return true;  // pretty stupid...
4428 }
4429 
4430 // verify a narrow slice (either incoming or outgoing)
4431 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4432   if (!VerifyAliases)       return;  // don't bother to verify unless requested
4433   if (is_error_reported())  return;  // muzzle asserts when debugging an error
4434   if (Node::in_dump())      return;  // muzzle asserts when printing
4435   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4436   assert(n != NULL, "");
4437   // Elide intervening MergeMem's
4438   while (n->is_MergeMem()) {
4439     n = n->as_MergeMem()->memory_at(alias_idx);
4440   }
4441   Compile* C = Compile::current();
4442   const TypePtr* n_adr_type = n->adr_type();
4443   if (n == m->empty_memory()) {
4444     // Implicit copy of base_memory()
4445   } else if (n_adr_type != TypePtr::BOTTOM) {
4446     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4447     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4448   } else {
4449     // A few places like make_runtime_call "know" that VM calls are narrow,
4450     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4451     bool expected_wide_mem = false;
4452     if (n == m->base_memory()) {
4453       expected_wide_mem = true;
4454     } else if (alias_idx == Compile::AliasIdxRaw ||
4455                n == m->memory_at(Compile::AliasIdxRaw)) {
4456       expected_wide_mem = true;
4457     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4458       // memory can "leak through" calls on channels that
4459       // are write-once.  Allow this also.
4460       expected_wide_mem = true;
4461     }
4462     assert(expected_wide_mem, "expected narrow slice replacement");
4463   }
4464 }
4465 #else // !ASSERT
4466 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4467 #endif
4468 
4469 
4470 //-----------------------------memory_at---------------------------------------
4471 Node* MergeMemNode::memory_at(uint alias_idx) const {
4472   assert(alias_idx >= Compile::AliasIdxRaw ||
4473          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4474          "must avoid base_memory and AliasIdxTop");
4475 
4476   // Otherwise, it is a narrow slice.
4477   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4478   Compile *C = Compile::current();
4479   if (is_empty_memory(n)) {
4480     // the array is sparse; empty slots are the "top" node
4481     n = base_memory();
4482     assert(Node::in_dump()
4483            || n == NULL || n->bottom_type() == Type::TOP
4484            || n->adr_type() == NULL // address is TOP
4485            || n->adr_type() == TypePtr::BOTTOM
4486            || n->adr_type() == TypeRawPtr::BOTTOM
4487            || Compile::current()->AliasLevel() == 0,
4488            "must be a wide memory");
4489     // AliasLevel == 0 if we are organizing the memory states manually.
4490     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4491   } else {
4492     // make sure the stored slice is sane
4493     #ifdef ASSERT
4494     if (is_error_reported() || Node::in_dump()) {
4495     } else if (might_be_same(n, base_memory())) {
4496       // Give it a pass:  It is a mostly harmless repetition of the base.
4497       // This can arise normally from node subsumption during optimization.
4498     } else {
4499       verify_memory_slice(this, alias_idx, n);
4500     }
4501     #endif
4502   }
4503   return n;
4504 }
4505 
4506 //---------------------------set_memory_at-------------------------------------
4507 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4508   verify_memory_slice(this, alias_idx, n);
4509   Node* empty_mem = empty_memory();
4510   if (n == base_memory())  n = empty_mem;  // collapse default
4511   uint need_req = alias_idx+1;
4512   if (req() < need_req) {
4513     if (n == empty_mem)  return;  // already the default, so do not grow me
4514     // grow the sparse array
4515     do {
4516       add_req(empty_mem);
4517     } while (req() < need_req);
4518   }
4519   set_req( alias_idx, n );
4520 }
4521 
4522 
4523 
4524 //--------------------------iteration_setup------------------------------------
4525 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4526   if (other != NULL) {
4527     grow_to_match(other);
4528     // invariant:  the finite support of mm2 is within mm->req()
4529     #ifdef ASSERT
4530     for (uint i = req(); i < other->req(); i++) {
4531       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4532     }
4533     #endif
4534   }
4535   // Replace spurious copies of base_memory by top.
4536   Node* base_mem = base_memory();
4537   if (base_mem != NULL && !base_mem->is_top()) {
4538     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4539       if (in(i) == base_mem)
4540         set_req(i, empty_memory());
4541     }
4542   }
4543 }
4544 
4545 //---------------------------grow_to_match-------------------------------------
4546 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4547   Node* empty_mem = empty_memory();
4548   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4549   // look for the finite support of the other memory
4550   for (uint i = other->req(); --i >= req(); ) {
4551     if (other->in(i) != empty_mem) {
4552       uint new_len = i+1;
4553       while (req() < new_len)  add_req(empty_mem);
4554       break;
4555     }
4556   }
4557 }
4558 
4559 //---------------------------verify_sparse-------------------------------------
4560 #ifndef PRODUCT
4561 bool MergeMemNode::verify_sparse() const {
4562   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4563   Node* base_mem = base_memory();
4564   // The following can happen in degenerate cases, since empty==top.
4565   if (is_empty_memory(base_mem))  return true;
4566   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4567     assert(in(i) != NULL, "sane slice");
4568     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4569   }
4570   return true;
4571 }
4572 
4573 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4574   Node* n;
4575   n = mm->in(idx);
4576   if (mem == n)  return true;  // might be empty_memory()
4577   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4578   if (mem == n)  return true;
4579   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4580     if (mem == n)  return true;
4581     if (n == NULL)  break;
4582   }
4583   return false;
4584 }
4585 #endif // !PRODUCT