1 /*
   2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "interpreter/linkResolver.hpp"
  31 #include "memory/universe.inline.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/divnode.hpp"
  34 #include "opto/idealGraphPrinter.hpp"
  35 #include "opto/matcher.hpp"
  36 #include "opto/memnode.hpp"
  37 #include "opto/mulnode.hpp"
  38 #include "opto/parse.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 
  43 extern int explicit_null_checks_inserted,
  44            explicit_null_checks_elided;
  45 
  46 //---------------------------------array_load----------------------------------
  47 void Parse::array_load(BasicType elem_type) {
  48   const Type* elem = Type::TOP;
  49   Node* adr = array_addressing(elem_type, 0, &elem);
  50   if (stopped())  return;     // guaranteed null or range check
  51   dec_sp(2);                  // Pop array and index
  52   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
  53   Node* ld = make_load(control(), adr, elem, elem_type, adr_type, false, LoadNode::unordered);
  54   push(ld);
  55 }
  56 
  57 
  58 //--------------------------------array_store----------------------------------
  59 void Parse::array_store(BasicType elem_type) {
  60   Node* adr = array_addressing(elem_type, 1);
  61   if (stopped())  return;     // guaranteed null or range check
  62   Node* val = pop();
  63   dec_sp(2);                  // Pop array and index
  64   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
  65   store_to_memory(control(), adr, val, elem_type, adr_type, false, StoreNode::release_if_reference(elem_type));
  66 }
  67 
  68 
  69 //------------------------------array_addressing-------------------------------
  70 // Pull array and index from the stack.  Compute pointer-to-element.
  71 Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
  72   Node *idx   = peek(0+vals);   // Get from stack without popping
  73   Node *ary   = peek(1+vals);   // in case of exception
  74 
  75   // Null check the array base, with correct stack contents
  76   ary = null_check(ary, T_ARRAY);
  77   // Compile-time detect of null-exception?
  78   if (stopped())  return top();
  79 
  80   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
  81   const TypeInt*    sizetype = arytype->size();
  82   const Type*       elemtype = arytype->elem();
  83 
  84   if (UseUniqueSubclasses && result2 != NULL) {
  85     const Type* el = elemtype->make_ptr();
  86     if (el && el->isa_instptr()) {
  87       const TypeInstPtr* toop = el->is_instptr();
  88       if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
  89         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
  90         const Type* subklass = Type::get_const_type(toop->klass());
  91         elemtype = subklass->join(el);
  92       }
  93     }
  94   }
  95 
  96   // Check for big class initializers with all constant offsets
  97   // feeding into a known-size array.
  98   const TypeInt* idxtype = _gvn.type(idx)->is_int();
  99   // See if the highest idx value is less than the lowest array bound,
 100   // and if the idx value cannot be negative:
 101   bool need_range_check = true;
 102   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
 103     need_range_check = false;
 104     if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
 105   }
 106 
 107   ciKlass * arytype_klass = arytype->klass();
 108   if ((arytype_klass != NULL) && (!arytype_klass->is_loaded())) {
 109     // Only fails for some -Xcomp runs
 110     // The class is unloaded.  We have to run this bytecode in the interpreter.
 111     uncommon_trap(Deoptimization::Reason_unloaded,
 112                   Deoptimization::Action_reinterpret,
 113                   arytype->klass(), "!loaded array");
 114     return top();
 115   }
 116 
 117   // Do the range check
 118   if (GenerateRangeChecks && need_range_check) {
 119     Node* tst;
 120     if (sizetype->_hi <= 0) {
 121       // The greatest array bound is negative, so we can conclude that we're
 122       // compiling unreachable code, but the unsigned compare trick used below
 123       // only works with non-negative lengths.  Instead, hack "tst" to be zero so
 124       // the uncommon_trap path will always be taken.
 125       tst = _gvn.intcon(0);
 126     } else {
 127       // Range is constant in array-oop, so we can use the original state of mem
 128       Node* len = load_array_length(ary);
 129 
 130       // Test length vs index (standard trick using unsigned compare)
 131       Node* chk = _gvn.transform( new (C) CmpUNode(idx, len) );
 132       BoolTest::mask btest = BoolTest::lt;
 133       tst = _gvn.transform( new (C) BoolNode(chk, btest) );
 134     }
 135     // Branch to failure if out of bounds
 136     { BuildCutout unless(this, tst, PROB_MAX);
 137       if (C->allow_range_check_smearing()) {
 138         // Do not use builtin_throw, since range checks are sometimes
 139         // made more stringent by an optimistic transformation.
 140         // This creates "tentative" range checks at this point,
 141         // which are not guaranteed to throw exceptions.
 142         // See IfNode::Ideal, is_range_check, adjust_check.
 143         uncommon_trap(Deoptimization::Reason_range_check,
 144                       Deoptimization::Action_make_not_entrant,
 145                       NULL, "range_check");
 146       } else {
 147         // If we have already recompiled with the range-check-widening
 148         // heroic optimization turned off, then we must really be throwing
 149         // range check exceptions.
 150         builtin_throw(Deoptimization::Reason_range_check, idx);
 151       }
 152     }
 153   }
 154   // Check for always knowing you are throwing a range-check exception
 155   if (stopped())  return top();
 156 
 157   Node* ptr = array_element_address(ary, idx, type, sizetype);
 158 
 159   if (result2 != NULL)  *result2 = elemtype;
 160 
 161   assert(ptr != top(), "top should go hand-in-hand with stopped");
 162 
 163   return ptr;
 164 }
 165 
 166 
 167 // returns IfNode
 168 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
 169   Node   *cmp = _gvn.transform( new (C) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
 170   Node   *tst = _gvn.transform( new (C) BoolNode( cmp, mask));
 171   IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
 172   return iff;
 173 }
 174 
 175 // return Region node
 176 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
 177   Node *region  = new (C) RegionNode(3); // 2 results
 178   record_for_igvn(region);
 179   region->init_req(1, iffalse);
 180   region->init_req(2, iftrue );
 181   _gvn.set_type(region, Type::CONTROL);
 182   region = _gvn.transform(region);
 183   set_control (region);
 184   return region;
 185 }
 186 
 187 
 188 //------------------------------helper for tableswitch-------------------------
 189 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
 190   // True branch, use existing map info
 191   { PreserveJVMState pjvms(this);
 192     Node *iftrue  = _gvn.transform( new (C) IfTrueNode (iff) );
 193     set_control( iftrue );
 194     profile_switch_case(prof_table_index);
 195     merge_new_path(dest_bci_if_true);
 196   }
 197 
 198   // False branch
 199   Node *iffalse = _gvn.transform( new (C) IfFalseNode(iff) );
 200   set_control( iffalse );
 201 }
 202 
 203 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
 204   // True branch, use existing map info
 205   { PreserveJVMState pjvms(this);
 206     Node *iffalse  = _gvn.transform( new (C) IfFalseNode (iff) );
 207     set_control( iffalse );
 208     profile_switch_case(prof_table_index);
 209     merge_new_path(dest_bci_if_true);
 210   }
 211 
 212   // False branch
 213   Node *iftrue = _gvn.transform( new (C) IfTrueNode(iff) );
 214   set_control( iftrue );
 215 }
 216 
 217 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
 218   // False branch, use existing map and control()
 219   profile_switch_case(prof_table_index);
 220   merge_new_path(dest_bci);
 221 }
 222 
 223 
 224 extern "C" {
 225   static int jint_cmp(const void *i, const void *j) {
 226     int a = *(jint *)i;
 227     int b = *(jint *)j;
 228     return a > b ? 1 : a < b ? -1 : 0;
 229   }
 230 }
 231 
 232 
 233 // Default value for methodData switch indexing. Must be a negative value to avoid
 234 // conflict with any legal switch index.
 235 #define NullTableIndex -1
 236 
 237 class SwitchRange : public StackObj {
 238   // a range of integers coupled with a bci destination
 239   jint _lo;                     // inclusive lower limit
 240   jint _hi;                     // inclusive upper limit
 241   int _dest;
 242   int _table_index;             // index into method data table
 243 
 244 public:
 245   jint lo() const              { return _lo;   }
 246   jint hi() const              { return _hi;   }
 247   int  dest() const            { return _dest; }
 248   int  table_index() const     { return _table_index; }
 249   bool is_singleton() const    { return _lo == _hi; }
 250 
 251   void setRange(jint lo, jint hi, int dest, int table_index) {
 252     assert(lo <= hi, "must be a non-empty range");
 253     _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
 254   }
 255   bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
 256     assert(lo <= hi, "must be a non-empty range");
 257     if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
 258       _hi = hi;
 259       return true;
 260     }
 261     return false;
 262   }
 263 
 264   void set (jint value, int dest, int table_index) {
 265     setRange(value, value, dest, table_index);
 266   }
 267   bool adjoin(jint value, int dest, int table_index) {
 268     return adjoinRange(value, value, dest, table_index);
 269   }
 270 
 271   void print() {
 272     if (is_singleton())
 273       tty->print(" {%d}=>%d", lo(), dest());
 274     else if (lo() == min_jint)
 275       tty->print(" {..%d}=>%d", hi(), dest());
 276     else if (hi() == max_jint)
 277       tty->print(" {%d..}=>%d", lo(), dest());
 278     else
 279       tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
 280   }
 281 };
 282 
 283 
 284 //-------------------------------do_tableswitch--------------------------------
 285 void Parse::do_tableswitch() {
 286   Node* lookup = pop();
 287 
 288   // Get information about tableswitch
 289   int default_dest = iter().get_dest_table(0);
 290   int lo_index     = iter().get_int_table(1);
 291   int hi_index     = iter().get_int_table(2);
 292   int len          = hi_index - lo_index + 1;
 293 
 294   if (len < 1) {
 295     // If this is a backward branch, add safepoint
 296     maybe_add_safepoint(default_dest);
 297     merge(default_dest);
 298     return;
 299   }
 300 
 301   // generate decision tree, using trichotomy when possible
 302   int rnum = len+2;
 303   bool makes_backward_branch = false;
 304   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 305   int rp = -1;
 306   if (lo_index != min_jint) {
 307     ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
 308   }
 309   for (int j = 0; j < len; j++) {
 310     jint match_int = lo_index+j;
 311     int  dest      = iter().get_dest_table(j+3);
 312     makes_backward_branch |= (dest <= bci());
 313     int  table_index = method_data_update() ? j : NullTableIndex;
 314     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
 315       ranges[++rp].set(match_int, dest, table_index);
 316     }
 317   }
 318   jint highest = lo_index+(len-1);
 319   assert(ranges[rp].hi() == highest, "");
 320   if (highest != max_jint
 321       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
 322     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
 323   }
 324   assert(rp < len+2, "not too many ranges");
 325 
 326   // Safepoint in case if backward branch observed
 327   if( makes_backward_branch && UseLoopSafepoints )
 328     add_safepoint();
 329 
 330   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 331 }
 332 
 333 
 334 //------------------------------do_lookupswitch--------------------------------
 335 void Parse::do_lookupswitch() {
 336   Node *lookup = pop();         // lookup value
 337   // Get information about lookupswitch
 338   int default_dest = iter().get_dest_table(0);
 339   int len          = iter().get_int_table(1);
 340 
 341   if (len < 1) {    // If this is a backward branch, add safepoint
 342     maybe_add_safepoint(default_dest);
 343     merge(default_dest);
 344     return;
 345   }
 346 
 347   // generate decision tree, using trichotomy when possible
 348   jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
 349   {
 350     for( int j = 0; j < len; j++ ) {
 351       table[j+j+0] = iter().get_int_table(2+j+j);
 352       table[j+j+1] = iter().get_dest_table(2+j+j+1);
 353     }
 354     qsort( table, len, 2*sizeof(table[0]), jint_cmp );
 355   }
 356 
 357   int rnum = len*2+1;
 358   bool makes_backward_branch = false;
 359   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 360   int rp = -1;
 361   for( int j = 0; j < len; j++ ) {
 362     jint match_int   = table[j+j+0];
 363     int  dest        = table[j+j+1];
 364     int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
 365     int  table_index = method_data_update() ? j : NullTableIndex;
 366     makes_backward_branch |= (dest <= bci());
 367     if( match_int != next_lo ) {
 368       ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
 369     }
 370     if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
 371       ranges[++rp].set(match_int, dest, table_index);
 372     }
 373   }
 374   jint highest = table[2*(len-1)];
 375   assert(ranges[rp].hi() == highest, "");
 376   if( highest != max_jint
 377       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
 378     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
 379   }
 380   assert(rp < rnum, "not too many ranges");
 381 
 382   // Safepoint in case backward branch observed
 383   if( makes_backward_branch && UseLoopSafepoints )
 384     add_safepoint();
 385 
 386   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 387 }
 388 
 389 //----------------------------create_jump_tables-------------------------------
 390 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
 391   // Are jumptables enabled
 392   if (!UseJumpTables)  return false;
 393 
 394   // Are jumptables supported
 395   if (!Matcher::has_match_rule(Op_Jump))  return false;
 396 
 397   // Don't make jump table if profiling
 398   if (method_data_update())  return false;
 399 
 400   // Decide if a guard is needed to lop off big ranges at either (or
 401   // both) end(s) of the input set. We'll call this the default target
 402   // even though we can't be sure that it is the true "default".
 403 
 404   bool needs_guard = false;
 405   int default_dest;
 406   int64 total_outlier_size = 0;
 407   int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
 408   int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;
 409 
 410   if (lo->dest() == hi->dest()) {
 411     total_outlier_size = hi_size + lo_size;
 412     default_dest = lo->dest();
 413   } else if (lo_size > hi_size) {
 414     total_outlier_size = lo_size;
 415     default_dest = lo->dest();
 416   } else {
 417     total_outlier_size = hi_size;
 418     default_dest = hi->dest();
 419   }
 420 
 421   // If a guard test will eliminate very sparse end ranges, then
 422   // it is worth the cost of an extra jump.
 423   if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
 424     needs_guard = true;
 425     if (default_dest == lo->dest()) lo++;
 426     if (default_dest == hi->dest()) hi--;
 427   }
 428 
 429   // Find the total number of cases and ranges
 430   int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
 431   int num_range = hi - lo + 1;
 432 
 433   // Don't create table if: too large, too small, or too sparse.
 434   if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
 435     return false;
 436   if (num_cases > (MaxJumpTableSparseness * num_range))
 437     return false;
 438 
 439   // Normalize table lookups to zero
 440   int lowval = lo->lo();
 441   key_val = _gvn.transform( new (C) SubINode(key_val, _gvn.intcon(lowval)) );
 442 
 443   // Generate a guard to protect against input keyvals that aren't
 444   // in the switch domain.
 445   if (needs_guard) {
 446     Node*   size = _gvn.intcon(num_cases);
 447     Node*   cmp = _gvn.transform( new (C) CmpUNode(key_val, size) );
 448     Node*   tst = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ge) );
 449     IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
 450     jump_if_true_fork(iff, default_dest, NullTableIndex);
 451   }
 452 
 453   // Create an ideal node JumpTable that has projections
 454   // of all possible ranges for a switch statement
 455   // The key_val input must be converted to a pointer offset and scaled.
 456   // Compare Parse::array_addressing above.
 457 #ifdef _LP64
 458   // Clean the 32-bit int into a real 64-bit offset.
 459   // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
 460   const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
 461   key_val       = _gvn.transform( new (C) ConvI2LNode(key_val, lkeytype) );
 462 #endif
 463   // Shift the value by wordsize so we have an index into the table, rather
 464   // than a switch value
 465   Node *shiftWord = _gvn.MakeConX(wordSize);
 466   key_val = _gvn.transform( new (C) MulXNode( key_val, shiftWord));
 467 
 468   // Create the JumpNode
 469   Node* jtn = _gvn.transform( new (C) JumpNode(control(), key_val, num_cases) );
 470 
 471   // These are the switch destinations hanging off the jumpnode
 472   int i = 0;
 473   for (SwitchRange* r = lo; r <= hi; r++) {
 474     for (int64 j = r->lo(); j <= r->hi(); j++, i++) {
 475       Node* input = _gvn.transform(new (C) JumpProjNode(jtn, i, r->dest(), (int)(j - lowval)));
 476       {
 477         PreserveJVMState pjvms(this);
 478         set_control(input);
 479         jump_if_always_fork(r->dest(), r->table_index());
 480       }
 481     }
 482   }
 483   assert(i == num_cases, "miscount of cases");
 484   stop_and_kill_map();  // no more uses for this JVMS
 485   return true;
 486 }
 487 
 488 //----------------------------jump_switch_ranges-------------------------------
 489 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
 490   Block* switch_block = block();
 491 
 492   if (switch_depth == 0) {
 493     // Do special processing for the top-level call.
 494     assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
 495     assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
 496 
 497     // Decrement pred-numbers for the unique set of nodes.
 498 #ifdef ASSERT
 499     // Ensure that the block's successors are a (duplicate-free) set.
 500     int successors_counted = 0;  // block occurrences in [hi..lo]
 501     int unique_successors = switch_block->num_successors();
 502     for (int i = 0; i < unique_successors; i++) {
 503       Block* target = switch_block->successor_at(i);
 504 
 505       // Check that the set of successors is the same in both places.
 506       int successors_found = 0;
 507       for (SwitchRange* p = lo; p <= hi; p++) {
 508         if (p->dest() == target->start())  successors_found++;
 509       }
 510       assert(successors_found > 0, "successor must be known");
 511       successors_counted += successors_found;
 512     }
 513     assert(successors_counted == (hi-lo)+1, "no unexpected successors");
 514 #endif
 515 
 516     // Maybe prune the inputs, based on the type of key_val.
 517     jint min_val = min_jint;
 518     jint max_val = max_jint;
 519     const TypeInt* ti = key_val->bottom_type()->isa_int();
 520     if (ti != NULL) {
 521       min_val = ti->_lo;
 522       max_val = ti->_hi;
 523       assert(min_val <= max_val, "invalid int type");
 524     }
 525     while (lo->hi() < min_val)  lo++;
 526     if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
 527     while (hi->lo() > max_val)  hi--;
 528     if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
 529   }
 530 
 531 #ifndef PRODUCT
 532   if (switch_depth == 0) {
 533     _max_switch_depth = 0;
 534     _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
 535   }
 536 #endif
 537 
 538   assert(lo <= hi, "must be a non-empty set of ranges");
 539   if (lo == hi) {
 540     jump_if_always_fork(lo->dest(), lo->table_index());
 541   } else {
 542     assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
 543     assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
 544 
 545     if (create_jump_tables(key_val, lo, hi)) return;
 546 
 547     int nr = hi - lo + 1;
 548 
 549     SwitchRange* mid = lo + nr/2;
 550     // if there is an easy choice, pivot at a singleton:
 551     if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
 552 
 553     assert(lo < mid && mid <= hi, "good pivot choice");
 554     assert(nr != 2 || mid == hi,   "should pick higher of 2");
 555     assert(nr != 3 || mid == hi-1, "should pick middle of 3");
 556 
 557     Node *test_val = _gvn.intcon(mid->lo());
 558 
 559     if (mid->is_singleton()) {
 560       IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
 561       jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
 562 
 563       // Special Case:  If there are exactly three ranges, and the high
 564       // and low range each go to the same place, omit the "gt" test,
 565       // since it will not discriminate anything.
 566       bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
 567       if (eq_test_only) {
 568         assert(mid == hi-1, "");
 569       }
 570 
 571       // if there is a higher range, test for it and process it:
 572       if (mid < hi && !eq_test_only) {
 573         // two comparisons of same values--should enable 1 test for 2 branches
 574         // Use BoolTest::le instead of BoolTest::gt
 575         IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
 576         Node   *iftrue  = _gvn.transform( new (C) IfTrueNode(iff_le) );
 577         Node   *iffalse = _gvn.transform( new (C) IfFalseNode(iff_le) );
 578         { PreserveJVMState pjvms(this);
 579           set_control(iffalse);
 580           jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
 581         }
 582         set_control(iftrue);
 583       }
 584 
 585     } else {
 586       // mid is a range, not a singleton, so treat mid..hi as a unit
 587       IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
 588 
 589       // if there is a higher range, test for it and process it:
 590       if (mid == hi) {
 591         jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
 592       } else {
 593         Node *iftrue  = _gvn.transform( new (C) IfTrueNode(iff_ge) );
 594         Node *iffalse = _gvn.transform( new (C) IfFalseNode(iff_ge) );
 595         { PreserveJVMState pjvms(this);
 596           set_control(iftrue);
 597           jump_switch_ranges(key_val, mid, hi, switch_depth+1);
 598         }
 599         set_control(iffalse);
 600       }
 601     }
 602 
 603     // in any case, process the lower range
 604     jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
 605   }
 606 
 607   // Decrease pred_count for each successor after all is done.
 608   if (switch_depth == 0) {
 609     int unique_successors = switch_block->num_successors();
 610     for (int i = 0; i < unique_successors; i++) {
 611       Block* target = switch_block->successor_at(i);
 612       // Throw away the pre-allocated path for each unique successor.
 613       target->next_path_num();
 614     }
 615   }
 616 
 617 #ifndef PRODUCT
 618   _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
 619   if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
 620     SwitchRange* r;
 621     int nsing = 0;
 622     for( r = lo; r <= hi; r++ ) {
 623       if( r->is_singleton() )  nsing++;
 624     }
 625     tty->print(">>> ");
 626     _method->print_short_name();
 627     tty->print_cr(" switch decision tree");
 628     tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
 629                   hi-lo+1, nsing, _max_switch_depth, _est_switch_depth);
 630     if (_max_switch_depth > _est_switch_depth) {
 631       tty->print_cr("******** BAD SWITCH DEPTH ********");
 632     }
 633     tty->print("   ");
 634     for( r = lo; r <= hi; r++ ) {
 635       r->print();
 636     }
 637     tty->print_cr("");
 638   }
 639 #endif
 640 }
 641 
 642 void Parse::modf() {
 643   Node *f2 = pop();
 644   Node *f1 = pop();
 645   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
 646                               CAST_FROM_FN_PTR(address, SharedRuntime::frem),
 647                               "frem", NULL, //no memory effects
 648                               f1, f2);
 649   Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0));
 650 
 651   push(res);
 652 }
 653 
 654 void Parse::modd() {
 655   Node *d2 = pop_pair();
 656   Node *d1 = pop_pair();
 657   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
 658                               CAST_FROM_FN_PTR(address, SharedRuntime::drem),
 659                               "drem", NULL, //no memory effects
 660                               d1, top(), d2, top());
 661   Node* res_d   = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0));
 662 
 663 #ifdef ASSERT
 664   Node* res_top = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 1));
 665   assert(res_top == top(), "second value must be top");
 666 #endif
 667 
 668   push_pair(res_d);
 669 }
 670 
 671 void Parse::l2f() {
 672   Node* f2 = pop();
 673   Node* f1 = pop();
 674   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
 675                               CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
 676                               "l2f", NULL, //no memory effects
 677                               f1, f2);
 678   Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0));
 679 
 680   push(res);
 681 }
 682 
 683 void Parse::do_irem() {
 684   // Must keep both values on the expression-stack during null-check
 685   zero_check_int(peek());
 686   // Compile-time detect of null-exception?
 687   if (stopped())  return;
 688 
 689   Node* b = pop();
 690   Node* a = pop();
 691 
 692   const Type *t = _gvn.type(b);
 693   if (t != Type::TOP) {
 694     const TypeInt *ti = t->is_int();
 695     if (ti->is_con()) {
 696       int divisor = ti->get_con();
 697       // check for positive power of 2
 698       if (divisor > 0 &&
 699           (divisor & ~(divisor-1)) == divisor) {
 700         // yes !
 701         Node *mask = _gvn.intcon((divisor - 1));
 702         // Sigh, must handle negative dividends
 703         Node *zero = _gvn.intcon(0);
 704         IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
 705         Node *iff = _gvn.transform( new (C) IfFalseNode(ifff) );
 706         Node *ift = _gvn.transform( new (C) IfTrueNode (ifff) );
 707         Node *reg = jump_if_join(ift, iff);
 708         Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
 709         // Negative path; negate/and/negate
 710         Node *neg = _gvn.transform( new (C) SubINode(zero, a) );
 711         Node *andn= _gvn.transform( new (C) AndINode(neg, mask) );
 712         Node *negn= _gvn.transform( new (C) SubINode(zero, andn) );
 713         phi->init_req(1, negn);
 714         // Fast positive case
 715         Node *andx = _gvn.transform( new (C) AndINode(a, mask) );
 716         phi->init_req(2, andx);
 717         // Push the merge
 718         push( _gvn.transform(phi) );
 719         return;
 720       }
 721     }
 722   }
 723   // Default case
 724   push( _gvn.transform( new (C) ModINode(control(),a,b) ) );
 725 }
 726 
 727 // Handle jsr and jsr_w bytecode
 728 void Parse::do_jsr() {
 729   assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
 730 
 731   // Store information about current state, tagged with new _jsr_bci
 732   int return_bci = iter().next_bci();
 733   int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
 734 
 735   // Update method data
 736   profile_taken_branch(jsr_bci);
 737 
 738   // The way we do things now, there is only one successor block
 739   // for the jsr, because the target code is cloned by ciTypeFlow.
 740   Block* target = successor_for_bci(jsr_bci);
 741 
 742   // What got pushed?
 743   const Type* ret_addr = target->peek();
 744   assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
 745 
 746   // Effect on jsr on stack
 747   push(_gvn.makecon(ret_addr));
 748 
 749   // Flow to the jsr.
 750   merge(jsr_bci);
 751 }
 752 
 753 // Handle ret bytecode
 754 void Parse::do_ret() {
 755   // Find to whom we return.
 756   assert(block()->num_successors() == 1, "a ret can only go one place now");
 757   Block* target = block()->successor_at(0);
 758   assert(!target->is_ready(), "our arrival must be expected");
 759   profile_ret(target->flow()->start());
 760   int pnum = target->next_path_num();
 761   merge_common(target, pnum);
 762 }
 763 
 764 //--------------------------dynamic_branch_prediction--------------------------
 765 // Try to gather dynamic branch prediction behavior.  Return a probability
 766 // of the branch being taken and set the "cnt" field.  Returns a -1.0
 767 // if we need to use static prediction for some reason.
 768 float Parse::dynamic_branch_prediction(float &cnt) {
 769   ResourceMark rm;
 770 
 771   cnt  = COUNT_UNKNOWN;
 772 
 773   // Use MethodData information if it is available
 774   // FIXME: free the ProfileData structure
 775   ciMethodData* methodData = method()->method_data();
 776   if (!methodData->is_mature())  return PROB_UNKNOWN;
 777   ciProfileData* data = methodData->bci_to_data(bci());
 778   if (!data->is_JumpData())  return PROB_UNKNOWN;
 779 
 780   // get taken and not taken values
 781   int     taken = data->as_JumpData()->taken();
 782   int not_taken = 0;
 783   if (data->is_BranchData()) {
 784     not_taken = data->as_BranchData()->not_taken();
 785   }
 786 
 787   // scale the counts to be commensurate with invocation counts:
 788   taken = method()->scale_count(taken);
 789   not_taken = method()->scale_count(not_taken);
 790 
 791   // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful.
 792   // We also check that individual counters are positive first, overwise the sum can become positive.
 793   if (taken < 0 || not_taken < 0 || taken + not_taken < 40) {
 794     if (C->log() != NULL) {
 795       C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
 796     }
 797     return PROB_UNKNOWN;
 798   }
 799 
 800   // Compute frequency that we arrive here
 801   float sum = taken + not_taken;
 802   // Adjust, if this block is a cloned private block but the
 803   // Jump counts are shared.  Taken the private counts for
 804   // just this path instead of the shared counts.
 805   if( block()->count() > 0 )
 806     sum = block()->count();
 807   cnt = sum / FreqCountInvocations;
 808 
 809   // Pin probability to sane limits
 810   float prob;
 811   if( !taken )
 812     prob = (0+PROB_MIN) / 2;
 813   else if( !not_taken )
 814     prob = (1+PROB_MAX) / 2;
 815   else {                         // Compute probability of true path
 816     prob = (float)taken / (float)(taken + not_taken);
 817     if (prob > PROB_MAX)  prob = PROB_MAX;
 818     if (prob < PROB_MIN)   prob = PROB_MIN;
 819   }
 820 
 821   assert((cnt > 0.0f) && (prob > 0.0f),
 822          "Bad frequency assignment in if");
 823 
 824   if (C->log() != NULL) {
 825     const char* prob_str = NULL;
 826     if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
 827     if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
 828     char prob_str_buf[30];
 829     if (prob_str == NULL) {
 830       sprintf(prob_str_buf, "%g", prob);
 831       prob_str = prob_str_buf;
 832     }
 833     C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
 834                    iter().get_dest(), taken, not_taken, cnt, prob_str);
 835   }
 836   return prob;
 837 }
 838 
 839 //-----------------------------branch_prediction-------------------------------
 840 float Parse::branch_prediction(float& cnt,
 841                                BoolTest::mask btest,
 842                                int target_bci) {
 843   float prob = dynamic_branch_prediction(cnt);
 844   // If prob is unknown, switch to static prediction
 845   if (prob != PROB_UNKNOWN)  return prob;
 846 
 847   prob = PROB_FAIR;                   // Set default value
 848   if (btest == BoolTest::eq)          // Exactly equal test?
 849     prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
 850   else if (btest == BoolTest::ne)
 851     prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
 852 
 853   // If this is a conditional test guarding a backwards branch,
 854   // assume its a loop-back edge.  Make it a likely taken branch.
 855   if (target_bci < bci()) {
 856     if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
 857       // Since it's an OSR, we probably have profile data, but since
 858       // branch_prediction returned PROB_UNKNOWN, the counts are too small.
 859       // Let's make a special check here for completely zero counts.
 860       ciMethodData* methodData = method()->method_data();
 861       if (!methodData->is_empty()) {
 862         ciProfileData* data = methodData->bci_to_data(bci());
 863         // Only stop for truly zero counts, which mean an unknown part
 864         // of the OSR-ed method, and we want to deopt to gather more stats.
 865         // If you have ANY counts, then this loop is simply 'cold' relative
 866         // to the OSR loop.
 867         if (data->as_BranchData()->taken() +
 868             data->as_BranchData()->not_taken() == 0 ) {
 869           // This is the only way to return PROB_UNKNOWN:
 870           return PROB_UNKNOWN;
 871         }
 872       }
 873     }
 874     prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
 875   }
 876 
 877   assert(prob != PROB_UNKNOWN, "must have some guess at this point");
 878   return prob;
 879 }
 880 
 881 // The magic constants are chosen so as to match the output of
 882 // branch_prediction() when the profile reports a zero taken count.
 883 // It is important to distinguish zero counts unambiguously, because
 884 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
 885 // very small but nonzero probabilities, which if confused with zero
 886 // counts would keep the program recompiling indefinitely.
 887 bool Parse::seems_never_taken(float prob) {
 888   return prob < PROB_MIN;
 889 }
 890 
 891 // True if the comparison seems to be the kind that will not change its
 892 // statistics from true to false.  See comments in adjust_map_after_if.
 893 // This question is only asked along paths which are already
 894 // classifed as untaken (by seems_never_taken), so really,
 895 // if a path is never taken, its controlling comparison is
 896 // already acting in a stable fashion.  If the comparison
 897 // seems stable, we will put an expensive uncommon trap
 898 // on the untaken path.  To be conservative, and to allow
 899 // partially executed counted loops to be compiled fully,
 900 // we will plant uncommon traps only after pointer comparisons.
 901 bool Parse::seems_stable_comparison(BoolTest::mask btest, Node* cmp) {
 902   for (int depth = 4; depth > 0; depth--) {
 903     // The following switch can find CmpP here over half the time for
 904     // dynamic language code rich with type tests.
 905     // Code using counted loops or array manipulations (typical
 906     // of benchmarks) will have many (>80%) CmpI instructions.
 907     switch (cmp->Opcode()) {
 908     case Op_CmpP:
 909       // A never-taken null check looks like CmpP/BoolTest::eq.
 910       // These certainly should be closed off as uncommon traps.
 911       if (btest == BoolTest::eq)
 912         return true;
 913       // A never-failed type check looks like CmpP/BoolTest::ne.
 914       // Let's put traps on those, too, so that we don't have to compile
 915       // unused paths with indeterminate dynamic type information.
 916       if (ProfileDynamicTypes)
 917         return true;
 918       return false;
 919 
 920     case Op_CmpI:
 921       // A small minority (< 10%) of CmpP are masked as CmpI,
 922       // as if by boolean conversion ((p == q? 1: 0) != 0).
 923       // Detect that here, even if it hasn't optimized away yet.
 924       // Specifically, this covers the 'instanceof' operator.
 925       if (btest == BoolTest::ne || btest == BoolTest::eq) {
 926         if (_gvn.type(cmp->in(2))->singleton() &&
 927             cmp->in(1)->is_Phi()) {
 928           PhiNode* phi = cmp->in(1)->as_Phi();
 929           int true_path = phi->is_diamond_phi();
 930           if (true_path > 0 &&
 931               _gvn.type(phi->in(1))->singleton() &&
 932               _gvn.type(phi->in(2))->singleton()) {
 933             // phi->region->if_proj->ifnode->bool->cmp
 934             BoolNode* bol = phi->in(0)->in(1)->in(0)->in(1)->as_Bool();
 935             btest = bol->_test._test;
 936             cmp = bol->in(1);
 937             continue;
 938           }
 939         }
 940       }
 941       return false;
 942     }
 943   }
 944   return false;
 945 }
 946 
 947 //-------------------------------repush_if_args--------------------------------
 948 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
 949 inline int Parse::repush_if_args() {
 950 #ifndef PRODUCT
 951   if (PrintOpto && WizardMode) {
 952     tty->print("defending against excessive implicit null exceptions on %s @%d in ",
 953                Bytecodes::name(iter().cur_bc()), iter().cur_bci());
 954     method()->print_name(); tty->cr();
 955   }
 956 #endif
 957   int bc_depth = - Bytecodes::depth(iter().cur_bc());
 958   assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
 959   DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
 960   assert(argument(0) != NULL, "must exist");
 961   assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
 962   inc_sp(bc_depth);
 963   return bc_depth;
 964 }
 965 
 966 //----------------------------------do_ifnull----------------------------------
 967 void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
 968   int target_bci = iter().get_dest();
 969 
 970   Block* branch_block = successor_for_bci(target_bci);
 971   Block* next_block   = successor_for_bci(iter().next_bci());
 972 
 973   float cnt;
 974   float prob = branch_prediction(cnt, btest, target_bci);
 975   if (prob == PROB_UNKNOWN) {
 976     // (An earlier version of do_ifnull omitted this trap for OSR methods.)
 977 #ifndef PRODUCT
 978     if (PrintOpto && Verbose)
 979       tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
 980 #endif
 981     repush_if_args(); // to gather stats on loop
 982     // We need to mark this branch as taken so that if we recompile we will
 983     // see that it is possible. In the tiered system the interpreter doesn't
 984     // do profiling and by the time we get to the lower tier from the interpreter
 985     // the path may be cold again. Make sure it doesn't look untaken
 986     profile_taken_branch(target_bci, !ProfileInterpreter);
 987     uncommon_trap(Deoptimization::Reason_unreached,
 988                   Deoptimization::Action_reinterpret,
 989                   NULL, "cold");
 990     if (C->eliminate_boxing()) {
 991       // Mark the successor blocks as parsed
 992       branch_block->next_path_num();
 993       next_block->next_path_num();
 994     }
 995     return;
 996   }
 997 
 998   explicit_null_checks_inserted++;
 999 
1000   // Generate real control flow
1001   Node   *tst = _gvn.transform( new (C) BoolNode( c, btest ) );
1002 
1003   // Sanity check the probability value
1004   assert(prob > 0.0f,"Bad probability in Parser");
1005  // Need xform to put node in hash table
1006   IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
1007   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1008   // True branch
1009   { PreserveJVMState pjvms(this);
1010     Node* iftrue  = _gvn.transform( new (C) IfTrueNode (iff) );
1011     set_control(iftrue);
1012 
1013     if (stopped()) {            // Path is dead?
1014       explicit_null_checks_elided++;
1015       if (C->eliminate_boxing()) {
1016         // Mark the successor block as parsed
1017         branch_block->next_path_num();
1018       }
1019     } else {                    // Path is live.
1020       // Update method data
1021       profile_taken_branch(target_bci);
1022       adjust_map_after_if(btest, c, prob, branch_block, next_block);
1023       if (!stopped()) {
1024         merge(target_bci);
1025       }
1026     }
1027   }
1028 
1029   // False branch
1030   Node* iffalse = _gvn.transform( new (C) IfFalseNode(iff) );
1031   set_control(iffalse);
1032 
1033   if (stopped()) {              // Path is dead?
1034     explicit_null_checks_elided++;
1035     if (C->eliminate_boxing()) {
1036       // Mark the successor block as parsed
1037       next_block->next_path_num();
1038     }
1039   } else  {                     // Path is live.
1040     // Update method data
1041     profile_not_taken_branch();
1042     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
1043                         next_block, branch_block);
1044   }
1045 }
1046 
1047 //------------------------------------do_if------------------------------------
1048 void Parse::do_if(BoolTest::mask btest, Node* c) {
1049   int target_bci = iter().get_dest();
1050 
1051   Block* branch_block = successor_for_bci(target_bci);
1052   Block* next_block   = successor_for_bci(iter().next_bci());
1053 
1054   float cnt;
1055   float prob = branch_prediction(cnt, btest, target_bci);
1056   float untaken_prob = 1.0 - prob;
1057 
1058   if (prob == PROB_UNKNOWN) {
1059 #ifndef PRODUCT
1060     if (PrintOpto && Verbose)
1061       tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
1062 #endif
1063     repush_if_args(); // to gather stats on loop
1064     // We need to mark this branch as taken so that if we recompile we will
1065     // see that it is possible. In the tiered system the interpreter doesn't
1066     // do profiling and by the time we get to the lower tier from the interpreter
1067     // the path may be cold again. Make sure it doesn't look untaken
1068     profile_taken_branch(target_bci, !ProfileInterpreter);
1069     uncommon_trap(Deoptimization::Reason_unreached,
1070                   Deoptimization::Action_reinterpret,
1071                   NULL, "cold");
1072     if (C->eliminate_boxing()) {
1073       // Mark the successor blocks as parsed
1074       branch_block->next_path_num();
1075       next_block->next_path_num();
1076     }
1077     return;
1078   }
1079 
1080   // Sanity check the probability value
1081   assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
1082 
1083   bool taken_if_true = true;
1084   // Convert BoolTest to canonical form:
1085   if (!BoolTest(btest).is_canonical()) {
1086     btest         = BoolTest(btest).negate();
1087     taken_if_true = false;
1088     // prob is NOT updated here; it remains the probability of the taken
1089     // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
1090   }
1091   assert(btest != BoolTest::eq, "!= is the only canonical exact test");
1092 
1093   Node* tst0 = new (C) BoolNode(c, btest);
1094   Node* tst = _gvn.transform(tst0);
1095   BoolTest::mask taken_btest   = BoolTest::illegal;
1096   BoolTest::mask untaken_btest = BoolTest::illegal;
1097 
1098   if (tst->is_Bool()) {
1099     // Refresh c from the transformed bool node, since it may be
1100     // simpler than the original c.  Also re-canonicalize btest.
1101     // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
1102     // That can arise from statements like: if (x instanceof C) ...
1103     if (tst != tst0) {
1104       // Canonicalize one more time since transform can change it.
1105       btest = tst->as_Bool()->_test._test;
1106       if (!BoolTest(btest).is_canonical()) {
1107         // Reverse edges one more time...
1108         tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
1109         btest = tst->as_Bool()->_test._test;
1110         assert(BoolTest(btest).is_canonical(), "sanity");
1111         taken_if_true = !taken_if_true;
1112       }
1113       c = tst->in(1);
1114     }
1115     BoolTest::mask neg_btest = BoolTest(btest).negate();
1116     taken_btest   = taken_if_true ?     btest : neg_btest;
1117     untaken_btest = taken_if_true ? neg_btest :     btest;
1118   }
1119 
1120   // Generate real control flow
1121   float true_prob = (taken_if_true ? prob : untaken_prob);
1122   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1123   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1124   Node* taken_branch   = new (C) IfTrueNode(iff);
1125   Node* untaken_branch = new (C) IfFalseNode(iff);
1126   if (!taken_if_true) {  // Finish conversion to canonical form
1127     Node* tmp      = taken_branch;
1128     taken_branch   = untaken_branch;
1129     untaken_branch = tmp;
1130   }
1131 
1132   // Branch is taken:
1133   { PreserveJVMState pjvms(this);
1134     taken_branch = _gvn.transform(taken_branch);
1135     set_control(taken_branch);
1136 
1137     if (stopped()) {
1138       if (C->eliminate_boxing()) {
1139         // Mark the successor block as parsed
1140         branch_block->next_path_num();
1141       }
1142     } else {
1143       // Update method data
1144       profile_taken_branch(target_bci);
1145       adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
1146       if (!stopped()) {
1147         merge(target_bci);
1148       }
1149     }
1150   }
1151 
1152   untaken_branch = _gvn.transform(untaken_branch);
1153   set_control(untaken_branch);
1154 
1155   // Branch not taken.
1156   if (stopped()) {
1157     if (C->eliminate_boxing()) {
1158       // Mark the successor block as parsed
1159       next_block->next_path_num();
1160     }
1161   } else {
1162     // Update method data
1163     profile_not_taken_branch();
1164     adjust_map_after_if(untaken_btest, c, untaken_prob,
1165                         next_block, branch_block);
1166   }
1167 }
1168 
1169 //----------------------------adjust_map_after_if------------------------------
1170 // Adjust the JVM state to reflect the result of taking this path.
1171 // Basically, it means inspecting the CmpNode controlling this
1172 // branch, seeing how it constrains a tested value, and then
1173 // deciding if it's worth our while to encode this constraint
1174 // as graph nodes in the current abstract interpretation map.
1175 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
1176                                 Block* path, Block* other_path) {
1177   if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
1178     return;                             // nothing to do
1179 
1180   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1181 
1182   if (seems_never_taken(prob) && seems_stable_comparison(btest, c)) {
1183     // If this might possibly turn into an implicit null check,
1184     // and the null has never yet been seen, we need to generate
1185     // an uncommon trap, so as to recompile instead of suffering
1186     // with very slow branches.  (We'll get the slow branches if
1187     // the program ever changes phase and starts seeing nulls here.)
1188     //
1189     // We do not inspect for a null constant, since a node may
1190     // optimize to 'null' later on.
1191     //
1192     // Null checks, and other tests which expect inequality,
1193     // show btest == BoolTest::eq along the non-taken branch.
1194     // On the other hand, type tests, must-be-null tests,
1195     // and other tests which expect pointer equality,
1196     // show btest == BoolTest::ne along the non-taken branch.
1197     // We prune both types of branches if they look unused.
1198     repush_if_args();
1199     // We need to mark this branch as taken so that if we recompile we will
1200     // see that it is possible. In the tiered system the interpreter doesn't
1201     // do profiling and by the time we get to the lower tier from the interpreter
1202     // the path may be cold again. Make sure it doesn't look untaken
1203     if (is_fallthrough) {
1204       profile_not_taken_branch(!ProfileInterpreter);
1205     } else {
1206       profile_taken_branch(iter().get_dest(), !ProfileInterpreter);
1207     }
1208     uncommon_trap(Deoptimization::Reason_unreached,
1209                   Deoptimization::Action_reinterpret,
1210                   NULL,
1211                   (is_fallthrough ? "taken always" : "taken never"));
1212     return;
1213   }
1214 
1215   Node* val = c->in(1);
1216   Node* con = c->in(2);
1217   const Type* tcon = _gvn.type(con);
1218   const Type* tval = _gvn.type(val);
1219   bool have_con = tcon->singleton();
1220   if (tval->singleton()) {
1221     if (!have_con) {
1222       // Swap, so constant is in con.
1223       con  = val;
1224       tcon = tval;
1225       val  = c->in(2);
1226       tval = _gvn.type(val);
1227       btest = BoolTest(btest).commute();
1228       have_con = true;
1229     } else {
1230       // Do we have two constants?  Then leave well enough alone.
1231       have_con = false;
1232     }
1233   }
1234   if (!have_con)                        // remaining adjustments need a con
1235     return;
1236 
1237   sharpen_type_after_if(btest, con, tcon, val, tval);
1238 }
1239 
1240 
1241 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) {
1242   Node* ldk;
1243   if (n->is_DecodeNKlass()) {
1244     if (n->in(1)->Opcode() != Op_LoadNKlass) {
1245       return NULL;
1246     } else {
1247       ldk = n->in(1);
1248     }
1249   } else if (n->Opcode() != Op_LoadKlass) {
1250     return NULL;
1251   } else {
1252     ldk = n;
1253   }
1254   assert(ldk != NULL && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node");
1255 
1256   Node* adr = ldk->in(MemNode::Address);
1257   intptr_t off = 0;
1258   Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off);
1259   if (obj == NULL || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass?
1260     return NULL;
1261   const TypePtr* tp = gvn->type(obj)->is_ptr();
1262   if (tp == NULL || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr?
1263     return NULL;
1264 
1265   return obj;
1266 }
1267 
1268 void Parse::sharpen_type_after_if(BoolTest::mask btest,
1269                                   Node* con, const Type* tcon,
1270                                   Node* val, const Type* tval) {
1271   // Look for opportunities to sharpen the type of a node
1272   // whose klass is compared with a constant klass.
1273   if (btest == BoolTest::eq && tcon->isa_klassptr()) {
1274     Node* obj = extract_obj_from_klass_load(&_gvn, val);
1275     const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type();
1276     if (obj != NULL && (con_type->isa_instptr() || con_type->isa_aryptr())) {
1277        // Found:
1278        //   Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
1279        // or the narrowOop equivalent.
1280        const Type* obj_type = _gvn.type(obj);
1281        const TypeOopPtr* tboth = obj_type->join(con_type)->isa_oopptr();
1282        if (tboth != NULL && tboth->klass_is_exact() && tboth != obj_type &&
1283            tboth->higher_equal(obj_type)) {
1284           // obj has to be of the exact type Foo if the CmpP succeeds.
1285           int obj_in_map = map()->find_edge(obj);
1286           JVMState* jvms = this->jvms();
1287           if (obj_in_map >= 0 &&
1288               (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
1289             TypeNode* ccast = new (C) CheckCastPPNode(control(), obj, tboth);
1290             const Type* tcc = ccast->as_Type()->type();
1291             assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
1292             // Delay transform() call to allow recovery of pre-cast value
1293             // at the control merge.
1294             _gvn.set_type_bottom(ccast);
1295             record_for_igvn(ccast);
1296             // Here's the payoff.
1297             replace_in_map(obj, ccast);
1298           }
1299        }
1300     }
1301   }
1302 
1303   int val_in_map = map()->find_edge(val);
1304   if (val_in_map < 0)  return;          // replace_in_map would be useless
1305   {
1306     JVMState* jvms = this->jvms();
1307     if (!(jvms->is_loc(val_in_map) ||
1308           jvms->is_stk(val_in_map)))
1309       return;                           // again, it would be useless
1310   }
1311 
1312   // Check for a comparison to a constant, and "know" that the compared
1313   // value is constrained on this path.
1314   assert(tcon->singleton(), "");
1315   ConstraintCastNode* ccast = NULL;
1316   Node* cast = NULL;
1317 
1318   switch (btest) {
1319   case BoolTest::eq:                    // Constant test?
1320     {
1321       const Type* tboth = tcon->join(tval);
1322       if (tboth == tval)  break;        // Nothing to gain.
1323       if (tcon->isa_int()) {
1324         ccast = new (C) CastIINode(val, tboth);
1325       } else if (tcon == TypePtr::NULL_PTR) {
1326         // Cast to null, but keep the pointer identity temporarily live.
1327         ccast = new (C) CastPPNode(val, tboth);
1328       } else {
1329         const TypeF* tf = tcon->isa_float_constant();
1330         const TypeD* td = tcon->isa_double_constant();
1331         // Exclude tests vs float/double 0 as these could be
1332         // either +0 or -0.  Just because you are equal to +0
1333         // doesn't mean you ARE +0!
1334         // Note, following code also replaces Long and Oop values.
1335         if ((!tf || tf->_f != 0.0) &&
1336             (!td || td->_d != 0.0))
1337           cast = con;                   // Replace non-constant val by con.
1338       }
1339     }
1340     break;
1341 
1342   case BoolTest::ne:
1343     if (tcon == TypePtr::NULL_PTR) {
1344       cast = cast_not_null(val, false);
1345     }
1346     break;
1347 
1348   default:
1349     // (At this point we could record int range types with CastII.)
1350     break;
1351   }
1352 
1353   if (ccast != NULL) {
1354     const Type* tcc = ccast->as_Type()->type();
1355     assert(tcc != tval && tcc->higher_equal(tval), "must improve");
1356     // Delay transform() call to allow recovery of pre-cast value
1357     // at the control merge.
1358     ccast->set_req(0, control());
1359     _gvn.set_type_bottom(ccast);
1360     record_for_igvn(ccast);
1361     cast = ccast;
1362   }
1363 
1364   if (cast != NULL) {                   // Here's the payoff.
1365     replace_in_map(val, cast);
1366   }
1367 }
1368 
1369 /**
1370  * Use speculative type to optimize CmpP node: if comparison is
1371  * against the low level class, cast the object to the speculative
1372  * type if any. CmpP should then go away.
1373  *
1374  * @param c  expected CmpP node
1375  * @return   result of CmpP on object casted to speculative type
1376  *
1377  */
1378 Node* Parse::optimize_cmp_with_klass(Node* c) {
1379   // If this is transformed by the _gvn to a comparison with the low
1380   // level klass then we may be able to use speculation
1381   if (c->Opcode() == Op_CmpP &&
1382       (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
1383       c->in(2)->is_Con()) {
1384     Node* load_klass = NULL;
1385     Node* decode = NULL;
1386     if (c->in(1)->Opcode() == Op_DecodeNKlass) {
1387       decode = c->in(1);
1388       load_klass = c->in(1)->in(1);
1389     } else {
1390       load_klass = c->in(1);
1391     }
1392     if (load_klass->in(2)->is_AddP()) {
1393       Node* addp = load_klass->in(2);
1394       Node* obj = addp->in(AddPNode::Address);
1395       const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
1396       if (obj_type->speculative_type() != NULL) {
1397         ciKlass* k = obj_type->speculative_type();
1398         inc_sp(2);
1399         obj = maybe_cast_profiled_obj(obj, k);
1400         dec_sp(2);
1401         // Make the CmpP use the casted obj
1402         addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
1403         load_klass = load_klass->clone();
1404         load_klass->set_req(2, addp);
1405         load_klass = _gvn.transform(load_klass);
1406         if (decode != NULL) {
1407           decode = decode->clone();
1408           decode->set_req(1, load_klass);
1409           load_klass = _gvn.transform(decode);
1410         }
1411         c = c->clone();
1412         c->set_req(1, load_klass);
1413         c = _gvn.transform(c);
1414       }
1415     }
1416   }
1417   return c;
1418 }
1419 
1420 //------------------------------do_one_bytecode--------------------------------
1421 // Parse this bytecode, and alter the Parsers JVM->Node mapping
1422 void Parse::do_one_bytecode() {
1423   Node *a, *b, *c, *d;          // Handy temps
1424   BoolTest::mask btest;
1425   int i;
1426 
1427   assert(!has_exceptions(), "bytecode entry state must be clear of throws");
1428 
1429   if (C->check_node_count(NodeLimitFudgeFactor * 5,
1430                           "out of nodes parsing method")) {
1431     return;
1432   }
1433 
1434 #ifdef ASSERT
1435   // for setting breakpoints
1436   if (TraceOptoParse) {
1437     tty->print(" @");
1438     dump_bci(bci());
1439     tty->cr();
1440   }
1441 #endif
1442 
1443   switch (bc()) {
1444   case Bytecodes::_nop:
1445     // do nothing
1446     break;
1447   case Bytecodes::_lconst_0:
1448     push_pair(longcon(0));
1449     break;
1450 
1451   case Bytecodes::_lconst_1:
1452     push_pair(longcon(1));
1453     break;
1454 
1455   case Bytecodes::_fconst_0:
1456     push(zerocon(T_FLOAT));
1457     break;
1458 
1459   case Bytecodes::_fconst_1:
1460     push(makecon(TypeF::ONE));
1461     break;
1462 
1463   case Bytecodes::_fconst_2:
1464     push(makecon(TypeF::make(2.0f)));
1465     break;
1466 
1467   case Bytecodes::_dconst_0:
1468     push_pair(zerocon(T_DOUBLE));
1469     break;
1470 
1471   case Bytecodes::_dconst_1:
1472     push_pair(makecon(TypeD::ONE));
1473     break;
1474 
1475   case Bytecodes::_iconst_m1:push(intcon(-1)); break;
1476   case Bytecodes::_iconst_0: push(intcon( 0)); break;
1477   case Bytecodes::_iconst_1: push(intcon( 1)); break;
1478   case Bytecodes::_iconst_2: push(intcon( 2)); break;
1479   case Bytecodes::_iconst_3: push(intcon( 3)); break;
1480   case Bytecodes::_iconst_4: push(intcon( 4)); break;
1481   case Bytecodes::_iconst_5: push(intcon( 5)); break;
1482   case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
1483   case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
1484   case Bytecodes::_aconst_null: push(null());  break;
1485   case Bytecodes::_ldc:
1486   case Bytecodes::_ldc_w:
1487   case Bytecodes::_ldc2_w:
1488     // If the constant is unresolved, run this BC once in the interpreter.
1489     {
1490       ciConstant constant = iter().get_constant();
1491       if (constant.basic_type() == T_OBJECT &&
1492           !constant.as_object()->is_loaded()) {
1493         int index = iter().get_constant_pool_index();
1494         constantTag tag = iter().get_constant_pool_tag(index);
1495         uncommon_trap(Deoptimization::make_trap_request
1496                       (Deoptimization::Reason_unloaded,
1497                        Deoptimization::Action_reinterpret,
1498                        index),
1499                       NULL, tag.internal_name());
1500         break;
1501       }
1502       assert(constant.basic_type() != T_OBJECT || constant.as_object()->is_instance(),
1503              "must be java_mirror of klass");
1504       bool pushed = push_constant(constant, true);
1505       guarantee(pushed, "must be possible to push this constant");
1506     }
1507 
1508     break;
1509 
1510   case Bytecodes::_aload_0:
1511     push( local(0) );
1512     break;
1513   case Bytecodes::_aload_1:
1514     push( local(1) );
1515     break;
1516   case Bytecodes::_aload_2:
1517     push( local(2) );
1518     break;
1519   case Bytecodes::_aload_3:
1520     push( local(3) );
1521     break;
1522   case Bytecodes::_aload:
1523     push( local(iter().get_index()) );
1524     break;
1525 
1526   case Bytecodes::_fload_0:
1527   case Bytecodes::_iload_0:
1528     push( local(0) );
1529     break;
1530   case Bytecodes::_fload_1:
1531   case Bytecodes::_iload_1:
1532     push( local(1) );
1533     break;
1534   case Bytecodes::_fload_2:
1535   case Bytecodes::_iload_2:
1536     push( local(2) );
1537     break;
1538   case Bytecodes::_fload_3:
1539   case Bytecodes::_iload_3:
1540     push( local(3) );
1541     break;
1542   case Bytecodes::_fload:
1543   case Bytecodes::_iload:
1544     push( local(iter().get_index()) );
1545     break;
1546   case Bytecodes::_lload_0:
1547     push_pair_local( 0 );
1548     break;
1549   case Bytecodes::_lload_1:
1550     push_pair_local( 1 );
1551     break;
1552   case Bytecodes::_lload_2:
1553     push_pair_local( 2 );
1554     break;
1555   case Bytecodes::_lload_3:
1556     push_pair_local( 3 );
1557     break;
1558   case Bytecodes::_lload:
1559     push_pair_local( iter().get_index() );
1560     break;
1561 
1562   case Bytecodes::_dload_0:
1563     push_pair_local(0);
1564     break;
1565   case Bytecodes::_dload_1:
1566     push_pair_local(1);
1567     break;
1568   case Bytecodes::_dload_2:
1569     push_pair_local(2);
1570     break;
1571   case Bytecodes::_dload_3:
1572     push_pair_local(3);
1573     break;
1574   case Bytecodes::_dload:
1575     push_pair_local(iter().get_index());
1576     break;
1577   case Bytecodes::_fstore_0:
1578   case Bytecodes::_istore_0:
1579   case Bytecodes::_astore_0:
1580     set_local( 0, pop() );
1581     break;
1582   case Bytecodes::_fstore_1:
1583   case Bytecodes::_istore_1:
1584   case Bytecodes::_astore_1:
1585     set_local( 1, pop() );
1586     break;
1587   case Bytecodes::_fstore_2:
1588   case Bytecodes::_istore_2:
1589   case Bytecodes::_astore_2:
1590     set_local( 2, pop() );
1591     break;
1592   case Bytecodes::_fstore_3:
1593   case Bytecodes::_istore_3:
1594   case Bytecodes::_astore_3:
1595     set_local( 3, pop() );
1596     break;
1597   case Bytecodes::_fstore:
1598   case Bytecodes::_istore:
1599   case Bytecodes::_astore:
1600     set_local( iter().get_index(), pop() );
1601     break;
1602   // long stores
1603   case Bytecodes::_lstore_0:
1604     set_pair_local( 0, pop_pair() );
1605     break;
1606   case Bytecodes::_lstore_1:
1607     set_pair_local( 1, pop_pair() );
1608     break;
1609   case Bytecodes::_lstore_2:
1610     set_pair_local( 2, pop_pair() );
1611     break;
1612   case Bytecodes::_lstore_3:
1613     set_pair_local( 3, pop_pair() );
1614     break;
1615   case Bytecodes::_lstore:
1616     set_pair_local( iter().get_index(), pop_pair() );
1617     break;
1618 
1619   // double stores
1620   case Bytecodes::_dstore_0:
1621     set_pair_local( 0, dstore_rounding(pop_pair()) );
1622     break;
1623   case Bytecodes::_dstore_1:
1624     set_pair_local( 1, dstore_rounding(pop_pair()) );
1625     break;
1626   case Bytecodes::_dstore_2:
1627     set_pair_local( 2, dstore_rounding(pop_pair()) );
1628     break;
1629   case Bytecodes::_dstore_3:
1630     set_pair_local( 3, dstore_rounding(pop_pair()) );
1631     break;
1632   case Bytecodes::_dstore:
1633     set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
1634     break;
1635 
1636   case Bytecodes::_pop:  dec_sp(1);   break;
1637   case Bytecodes::_pop2: dec_sp(2);   break;
1638   case Bytecodes::_swap:
1639     a = pop();
1640     b = pop();
1641     push(a);
1642     push(b);
1643     break;
1644   case Bytecodes::_dup:
1645     a = pop();
1646     push(a);
1647     push(a);
1648     break;
1649   case Bytecodes::_dup_x1:
1650     a = pop();
1651     b = pop();
1652     push( a );
1653     push( b );
1654     push( a );
1655     break;
1656   case Bytecodes::_dup_x2:
1657     a = pop();
1658     b = pop();
1659     c = pop();
1660     push( a );
1661     push( c );
1662     push( b );
1663     push( a );
1664     break;
1665   case Bytecodes::_dup2:
1666     a = pop();
1667     b = pop();
1668     push( b );
1669     push( a );
1670     push( b );
1671     push( a );
1672     break;
1673 
1674   case Bytecodes::_dup2_x1:
1675     // before: .. c, b, a
1676     // after:  .. b, a, c, b, a
1677     // not tested
1678     a = pop();
1679     b = pop();
1680     c = pop();
1681     push( b );
1682     push( a );
1683     push( c );
1684     push( b );
1685     push( a );
1686     break;
1687   case Bytecodes::_dup2_x2:
1688     // before: .. d, c, b, a
1689     // after:  .. b, a, d, c, b, a
1690     // not tested
1691     a = pop();
1692     b = pop();
1693     c = pop();
1694     d = pop();
1695     push( b );
1696     push( a );
1697     push( d );
1698     push( c );
1699     push( b );
1700     push( a );
1701     break;
1702 
1703   case Bytecodes::_arraylength: {
1704     // Must do null-check with value on expression stack
1705     Node *ary = null_check(peek(), T_ARRAY);
1706     // Compile-time detect of null-exception?
1707     if (stopped())  return;
1708     a = pop();
1709     push(load_array_length(a));
1710     break;
1711   }
1712 
1713   case Bytecodes::_baload: array_load(T_BYTE);   break;
1714   case Bytecodes::_caload: array_load(T_CHAR);   break;
1715   case Bytecodes::_iaload: array_load(T_INT);    break;
1716   case Bytecodes::_saload: array_load(T_SHORT);  break;
1717   case Bytecodes::_faload: array_load(T_FLOAT);  break;
1718   case Bytecodes::_aaload: array_load(T_OBJECT); break;
1719   case Bytecodes::_laload: {
1720     a = array_addressing(T_LONG, 0);
1721     if (stopped())  return;     // guaranteed null or range check
1722     dec_sp(2);                  // Pop array and index
1723     push_pair(make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS, false, LoadNode::unordered));
1724     break;
1725   }
1726   case Bytecodes::_daload: {
1727     a = array_addressing(T_DOUBLE, 0);
1728     if (stopped())  return;     // guaranteed null or range check
1729     dec_sp(2);                  // Pop array and index
1730     push_pair(make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES, false, LoadNode::unordered));
1731     break;
1732   }
1733   case Bytecodes::_bastore: array_store(T_BYTE);  break;
1734   case Bytecodes::_castore: array_store(T_CHAR);  break;
1735   case Bytecodes::_iastore: array_store(T_INT);   break;
1736   case Bytecodes::_sastore: array_store(T_SHORT); break;
1737   case Bytecodes::_fastore: array_store(T_FLOAT); break;
1738   case Bytecodes::_aastore: {
1739     d = array_addressing(T_OBJECT, 1);
1740     if (stopped())  return;     // guaranteed null or range check
1741     array_store_check();
1742     c = pop();                  // Oop to store
1743     b = pop();                  // index (already used)
1744     a = pop();                  // the array itself
1745     const TypeOopPtr* elemtype  = _gvn.type(a)->is_aryptr()->elem()->make_oopptr();
1746     const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
1747     Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT, StoreNode::release);
1748     break;
1749   }
1750   case Bytecodes::_lastore: {
1751     a = array_addressing(T_LONG, 2);
1752     if (stopped())  return;     // guaranteed null or range check
1753     c = pop_pair();
1754     dec_sp(2);                  // Pop array and index
1755     store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS, false, StoreNode::unordered);
1756     break;
1757   }
1758   case Bytecodes::_dastore: {
1759     a = array_addressing(T_DOUBLE, 2);
1760     if (stopped())  return;     // guaranteed null or range check
1761     c = pop_pair();
1762     dec_sp(2);                  // Pop array and index
1763     c = dstore_rounding(c);
1764     store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES, false, StoreNode::unordered);
1765     break;
1766   }
1767   case Bytecodes::_getfield:
1768     do_getfield();
1769     break;
1770 
1771   case Bytecodes::_getstatic:
1772     do_getstatic();
1773     break;
1774 
1775   case Bytecodes::_putfield:
1776     do_putfield();
1777     break;
1778 
1779   case Bytecodes::_putstatic:
1780     do_putstatic();
1781     break;
1782 
1783   case Bytecodes::_irem:
1784     do_irem();
1785     break;
1786   case Bytecodes::_idiv:
1787     // Must keep both values on the expression-stack during null-check
1788     zero_check_int(peek());
1789     // Compile-time detect of null-exception?
1790     if (stopped())  return;
1791     b = pop();
1792     a = pop();
1793     push( _gvn.transform( new (C) DivINode(control(),a,b) ) );
1794     break;
1795   case Bytecodes::_imul:
1796     b = pop(); a = pop();
1797     push( _gvn.transform( new (C) MulINode(a,b) ) );
1798     break;
1799   case Bytecodes::_iadd:
1800     b = pop(); a = pop();
1801     push( _gvn.transform( new (C) AddINode(a,b) ) );
1802     break;
1803   case Bytecodes::_ineg:
1804     a = pop();
1805     push( _gvn.transform( new (C) SubINode(_gvn.intcon(0),a)) );
1806     break;
1807   case Bytecodes::_isub:
1808     b = pop(); a = pop();
1809     push( _gvn.transform( new (C) SubINode(a,b) ) );
1810     break;
1811   case Bytecodes::_iand:
1812     b = pop(); a = pop();
1813     push( _gvn.transform( new (C) AndINode(a,b) ) );
1814     break;
1815   case Bytecodes::_ior:
1816     b = pop(); a = pop();
1817     push( _gvn.transform( new (C) OrINode(a,b) ) );
1818     break;
1819   case Bytecodes::_ixor:
1820     b = pop(); a = pop();
1821     push( _gvn.transform( new (C) XorINode(a,b) ) );
1822     break;
1823   case Bytecodes::_ishl:
1824     b = pop(); a = pop();
1825     push( _gvn.transform( new (C) LShiftINode(a,b) ) );
1826     break;
1827   case Bytecodes::_ishr:
1828     b = pop(); a = pop();
1829     push( _gvn.transform( new (C) RShiftINode(a,b) ) );
1830     break;
1831   case Bytecodes::_iushr:
1832     b = pop(); a = pop();
1833     push( _gvn.transform( new (C) URShiftINode(a,b) ) );
1834     break;
1835 
1836   case Bytecodes::_fneg:
1837     a = pop();
1838     b = _gvn.transform(new (C) NegFNode (a));
1839     push(b);
1840     break;
1841 
1842   case Bytecodes::_fsub:
1843     b = pop();
1844     a = pop();
1845     c = _gvn.transform( new (C) SubFNode(a,b) );
1846     d = precision_rounding(c);
1847     push( d );
1848     break;
1849 
1850   case Bytecodes::_fadd:
1851     b = pop();
1852     a = pop();
1853     c = _gvn.transform( new (C) AddFNode(a,b) );
1854     d = precision_rounding(c);
1855     push( d );
1856     break;
1857 
1858   case Bytecodes::_fmul:
1859     b = pop();
1860     a = pop();
1861     c = _gvn.transform( new (C) MulFNode(a,b) );
1862     d = precision_rounding(c);
1863     push( d );
1864     break;
1865 
1866   case Bytecodes::_fdiv:
1867     b = pop();
1868     a = pop();
1869     c = _gvn.transform( new (C) DivFNode(0,a,b) );
1870     d = precision_rounding(c);
1871     push( d );
1872     break;
1873 
1874   case Bytecodes::_frem:
1875     if (Matcher::has_match_rule(Op_ModF)) {
1876       // Generate a ModF node.
1877       b = pop();
1878       a = pop();
1879       c = _gvn.transform( new (C) ModFNode(0,a,b) );
1880       d = precision_rounding(c);
1881       push( d );
1882     }
1883     else {
1884       // Generate a call.
1885       modf();
1886     }
1887     break;
1888 
1889   case Bytecodes::_fcmpl:
1890     b = pop();
1891     a = pop();
1892     c = _gvn.transform( new (C) CmpF3Node( a, b));
1893     push(c);
1894     break;
1895   case Bytecodes::_fcmpg:
1896     b = pop();
1897     a = pop();
1898 
1899     // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
1900     // which negates the result sign except for unordered.  Flip the unordered
1901     // as well by using CmpF3 which implements unordered-lesser instead of
1902     // unordered-greater semantics.  Finally, commute the result bits.  Result
1903     // is same as using a CmpF3Greater except we did it with CmpF3 alone.
1904     c = _gvn.transform( new (C) CmpF3Node( b, a));
1905     c = _gvn.transform( new (C) SubINode(_gvn.intcon(0),c) );
1906     push(c);
1907     break;
1908 
1909   case Bytecodes::_f2i:
1910     a = pop();
1911     push(_gvn.transform(new (C) ConvF2INode(a)));
1912     break;
1913 
1914   case Bytecodes::_d2i:
1915     a = pop_pair();
1916     b = _gvn.transform(new (C) ConvD2INode(a));
1917     push( b );
1918     break;
1919 
1920   case Bytecodes::_f2d:
1921     a = pop();
1922     b = _gvn.transform( new (C) ConvF2DNode(a));
1923     push_pair( b );
1924     break;
1925 
1926   case Bytecodes::_d2f:
1927     a = pop_pair();
1928     b = _gvn.transform( new (C) ConvD2FNode(a));
1929     // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
1930     //b = _gvn.transform(new (C) RoundFloatNode(0, b) );
1931     push( b );
1932     break;
1933 
1934   case Bytecodes::_l2f:
1935     if (Matcher::convL2FSupported()) {
1936       a = pop_pair();
1937       b = _gvn.transform( new (C) ConvL2FNode(a));
1938       // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
1939       // Rather than storing the result into an FP register then pushing
1940       // out to memory to round, the machine instruction that implements
1941       // ConvL2D is responsible for rounding.
1942       // c = precision_rounding(b);
1943       c = _gvn.transform(b);
1944       push(c);
1945     } else {
1946       l2f();
1947     }
1948     break;
1949 
1950   case Bytecodes::_l2d:
1951     a = pop_pair();
1952     b = _gvn.transform( new (C) ConvL2DNode(a));
1953     // For i486.ad, rounding is always necessary (see _l2f above).
1954     // c = dprecision_rounding(b);
1955     c = _gvn.transform(b);
1956     push_pair(c);
1957     break;
1958 
1959   case Bytecodes::_f2l:
1960     a = pop();
1961     b = _gvn.transform( new (C) ConvF2LNode(a));
1962     push_pair(b);
1963     break;
1964 
1965   case Bytecodes::_d2l:
1966     a = pop_pair();
1967     b = _gvn.transform( new (C) ConvD2LNode(a));
1968     push_pair(b);
1969     break;
1970 
1971   case Bytecodes::_dsub:
1972     b = pop_pair();
1973     a = pop_pair();
1974     c = _gvn.transform( new (C) SubDNode(a,b) );
1975     d = dprecision_rounding(c);
1976     push_pair( d );
1977     break;
1978 
1979   case Bytecodes::_dadd:
1980     b = pop_pair();
1981     a = pop_pair();
1982     c = _gvn.transform( new (C) AddDNode(a,b) );
1983     d = dprecision_rounding(c);
1984     push_pair( d );
1985     break;
1986 
1987   case Bytecodes::_dmul:
1988     b = pop_pair();
1989     a = pop_pair();
1990     c = _gvn.transform( new (C) MulDNode(a,b) );
1991     d = dprecision_rounding(c);
1992     push_pair( d );
1993     break;
1994 
1995   case Bytecodes::_ddiv:
1996     b = pop_pair();
1997     a = pop_pair();
1998     c = _gvn.transform( new (C) DivDNode(0,a,b) );
1999     d = dprecision_rounding(c);
2000     push_pair( d );
2001     break;
2002 
2003   case Bytecodes::_dneg:
2004     a = pop_pair();
2005     b = _gvn.transform(new (C) NegDNode (a));
2006     push_pair(b);
2007     break;
2008 
2009   case Bytecodes::_drem:
2010     if (Matcher::has_match_rule(Op_ModD)) {
2011       // Generate a ModD node.
2012       b = pop_pair();
2013       a = pop_pair();
2014       // a % b
2015 
2016       c = _gvn.transform( new (C) ModDNode(0,a,b) );
2017       d = dprecision_rounding(c);
2018       push_pair( d );
2019     }
2020     else {
2021       // Generate a call.
2022       modd();
2023     }
2024     break;
2025 
2026   case Bytecodes::_dcmpl:
2027     b = pop_pair();
2028     a = pop_pair();
2029     c = _gvn.transform( new (C) CmpD3Node( a, b));
2030     push(c);
2031     break;
2032 
2033   case Bytecodes::_dcmpg:
2034     b = pop_pair();
2035     a = pop_pair();
2036     // Same as dcmpl but need to flip the unordered case.
2037     // Commute the inputs, which negates the result sign except for unordered.
2038     // Flip the unordered as well by using CmpD3 which implements
2039     // unordered-lesser instead of unordered-greater semantics.
2040     // Finally, negate the result bits.  Result is same as using a
2041     // CmpD3Greater except we did it with CmpD3 alone.
2042     c = _gvn.transform( new (C) CmpD3Node( b, a));
2043     c = _gvn.transform( new (C) SubINode(_gvn.intcon(0),c) );
2044     push(c);
2045     break;
2046 
2047 
2048     // Note for longs -> lo word is on TOS, hi word is on TOS - 1
2049   case Bytecodes::_land:
2050     b = pop_pair();
2051     a = pop_pair();
2052     c = _gvn.transform( new (C) AndLNode(a,b) );
2053     push_pair(c);
2054     break;
2055   case Bytecodes::_lor:
2056     b = pop_pair();
2057     a = pop_pair();
2058     c = _gvn.transform( new (C) OrLNode(a,b) );
2059     push_pair(c);
2060     break;
2061   case Bytecodes::_lxor:
2062     b = pop_pair();
2063     a = pop_pair();
2064     c = _gvn.transform( new (C) XorLNode(a,b) );
2065     push_pair(c);
2066     break;
2067 
2068   case Bytecodes::_lshl:
2069     b = pop();                  // the shift count
2070     a = pop_pair();             // value to be shifted
2071     c = _gvn.transform( new (C) LShiftLNode(a,b) );
2072     push_pair(c);
2073     break;
2074   case Bytecodes::_lshr:
2075     b = pop();                  // the shift count
2076     a = pop_pair();             // value to be shifted
2077     c = _gvn.transform( new (C) RShiftLNode(a,b) );
2078     push_pair(c);
2079     break;
2080   case Bytecodes::_lushr:
2081     b = pop();                  // the shift count
2082     a = pop_pair();             // value to be shifted
2083     c = _gvn.transform( new (C) URShiftLNode(a,b) );
2084     push_pair(c);
2085     break;
2086   case Bytecodes::_lmul:
2087     b = pop_pair();
2088     a = pop_pair();
2089     c = _gvn.transform( new (C) MulLNode(a,b) );
2090     push_pair(c);
2091     break;
2092 
2093   case Bytecodes::_lrem:
2094     // Must keep both values on the expression-stack during null-check
2095     assert(peek(0) == top(), "long word order");
2096     zero_check_long(peek(1));
2097     // Compile-time detect of null-exception?
2098     if (stopped())  return;
2099     b = pop_pair();
2100     a = pop_pair();
2101     c = _gvn.transform( new (C) ModLNode(control(),a,b) );
2102     push_pair(c);
2103     break;
2104 
2105   case Bytecodes::_ldiv:
2106     // Must keep both values on the expression-stack during null-check
2107     assert(peek(0) == top(), "long word order");
2108     zero_check_long(peek(1));
2109     // Compile-time detect of null-exception?
2110     if (stopped())  return;
2111     b = pop_pair();
2112     a = pop_pair();
2113     c = _gvn.transform( new (C) DivLNode(control(),a,b) );
2114     push_pair(c);
2115     break;
2116 
2117   case Bytecodes::_ladd:
2118     b = pop_pair();
2119     a = pop_pair();
2120     c = _gvn.transform( new (C) AddLNode(a,b) );
2121     push_pair(c);
2122     break;
2123   case Bytecodes::_lsub:
2124     b = pop_pair();
2125     a = pop_pair();
2126     c = _gvn.transform( new (C) SubLNode(a,b) );
2127     push_pair(c);
2128     break;
2129   case Bytecodes::_lcmp:
2130     // Safepoints are now inserted _before_ branches.  The long-compare
2131     // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
2132     // slew of control flow.  These are usually followed by a CmpI vs zero and
2133     // a branch; this pattern then optimizes to the obvious long-compare and
2134     // branch.  However, if the branch is backwards there's a Safepoint
2135     // inserted.  The inserted Safepoint captures the JVM state at the
2136     // pre-branch point, i.e. it captures the 3-way value.  Thus if a
2137     // long-compare is used to control a loop the debug info will force
2138     // computation of the 3-way value, even though the generated code uses a
2139     // long-compare and branch.  We try to rectify the situation by inserting
2140     // a SafePoint here and have it dominate and kill the safepoint added at a
2141     // following backwards branch.  At this point the JVM state merely holds 2
2142     // longs but not the 3-way value.
2143     if( UseLoopSafepoints ) {
2144       switch( iter().next_bc() ) {
2145       case Bytecodes::_ifgt:
2146       case Bytecodes::_iflt:
2147       case Bytecodes::_ifge:
2148       case Bytecodes::_ifle:
2149       case Bytecodes::_ifne:
2150       case Bytecodes::_ifeq:
2151         // If this is a backwards branch in the bytecodes, add Safepoint
2152         maybe_add_safepoint(iter().next_get_dest());
2153       }
2154     }
2155     b = pop_pair();
2156     a = pop_pair();
2157     c = _gvn.transform( new (C) CmpL3Node( a, b ));
2158     push(c);
2159     break;
2160 
2161   case Bytecodes::_lneg:
2162     a = pop_pair();
2163     b = _gvn.transform( new (C) SubLNode(longcon(0),a));
2164     push_pair(b);
2165     break;
2166   case Bytecodes::_l2i:
2167     a = pop_pair();
2168     push( _gvn.transform( new (C) ConvL2INode(a)));
2169     break;
2170   case Bytecodes::_i2l:
2171     a = pop();
2172     b = _gvn.transform( new (C) ConvI2LNode(a));
2173     push_pair(b);
2174     break;
2175   case Bytecodes::_i2b:
2176     // Sign extend
2177     a = pop();
2178     a = _gvn.transform( new (C) LShiftINode(a,_gvn.intcon(24)) );
2179     a = _gvn.transform( new (C) RShiftINode(a,_gvn.intcon(24)) );
2180     push( a );
2181     break;
2182   case Bytecodes::_i2s:
2183     a = pop();
2184     a = _gvn.transform( new (C) LShiftINode(a,_gvn.intcon(16)) );
2185     a = _gvn.transform( new (C) RShiftINode(a,_gvn.intcon(16)) );
2186     push( a );
2187     break;
2188   case Bytecodes::_i2c:
2189     a = pop();
2190     push( _gvn.transform( new (C) AndINode(a,_gvn.intcon(0xFFFF)) ) );
2191     break;
2192 
2193   case Bytecodes::_i2f:
2194     a = pop();
2195     b = _gvn.transform( new (C) ConvI2FNode(a) ) ;
2196     c = precision_rounding(b);
2197     push (b);
2198     break;
2199 
2200   case Bytecodes::_i2d:
2201     a = pop();
2202     b = _gvn.transform( new (C) ConvI2DNode(a));
2203     push_pair(b);
2204     break;
2205 
2206   case Bytecodes::_iinc:        // Increment local
2207     i = iter().get_index();     // Get local index
2208     set_local( i, _gvn.transform( new (C) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
2209     break;
2210 
2211   // Exit points of synchronized methods must have an unlock node
2212   case Bytecodes::_return:
2213     return_current(NULL);
2214     break;
2215 
2216   case Bytecodes::_ireturn:
2217   case Bytecodes::_areturn:
2218   case Bytecodes::_freturn:
2219     return_current(pop());
2220     break;
2221   case Bytecodes::_lreturn:
2222     return_current(pop_pair());
2223     break;
2224   case Bytecodes::_dreturn:
2225     return_current(pop_pair());
2226     break;
2227 
2228   case Bytecodes::_athrow:
2229     // null exception oop throws NULL pointer exception
2230     null_check(peek());
2231     if (stopped())  return;
2232     // Hook the thrown exception directly to subsequent handlers.
2233     if (BailoutToInterpreterForThrows) {
2234       // Keep method interpreted from now on.
2235       uncommon_trap(Deoptimization::Reason_unhandled,
2236                     Deoptimization::Action_make_not_compilable);
2237       return;
2238     }
2239     if (env()->jvmti_can_post_on_exceptions()) {
2240       // check if we must post exception events, take uncommon trap if so (with must_throw = false)
2241       uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
2242     }
2243     // Here if either can_post_on_exceptions or should_post_on_exceptions is false
2244     add_exception_state(make_exception_state(peek()));
2245     break;
2246 
2247   case Bytecodes::_goto:   // fall through
2248   case Bytecodes::_goto_w: {
2249     int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
2250 
2251     // If this is a backwards branch in the bytecodes, add Safepoint
2252     maybe_add_safepoint(target_bci);
2253 
2254     // Update method data
2255     profile_taken_branch(target_bci);
2256 
2257     // Merge the current control into the target basic block
2258     merge(target_bci);
2259 
2260     // See if we can get some profile data and hand it off to the next block
2261     Block *target_block = block()->successor_for_bci(target_bci);
2262     if (target_block->pred_count() != 1)  break;
2263     ciMethodData* methodData = method()->method_data();
2264     if (!methodData->is_mature())  break;
2265     ciProfileData* data = methodData->bci_to_data(bci());
2266     assert( data->is_JumpData(), "" );
2267     int taken = ((ciJumpData*)data)->taken();
2268     taken = method()->scale_count(taken);
2269     target_block->set_count(taken);
2270     break;
2271   }
2272 
2273   case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
2274   case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
2275   handle_if_null:
2276     // If this is a backwards branch in the bytecodes, add Safepoint
2277     maybe_add_safepoint(iter().get_dest());
2278     a = null();
2279     b = pop();
2280     c = _gvn.transform( new (C) CmpPNode(b, a) );
2281     do_ifnull(btest, c);
2282     break;
2283 
2284   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2285   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2286   handle_if_acmp:
2287     // If this is a backwards branch in the bytecodes, add Safepoint
2288     maybe_add_safepoint(iter().get_dest());
2289     a = pop();
2290     b = pop();
2291     c = _gvn.transform( new (C) CmpPNode(b, a) );
2292     c = optimize_cmp_with_klass(c);
2293     do_if(btest, c);
2294     break;
2295 
2296   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2297   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2298   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2299   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2300   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2301   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2302   handle_ifxx:
2303     // If this is a backwards branch in the bytecodes, add Safepoint
2304     maybe_add_safepoint(iter().get_dest());
2305     a = _gvn.intcon(0);
2306     b = pop();
2307     c = _gvn.transform( new (C) CmpINode(b, a) );
2308     do_if(btest, c);
2309     break;
2310 
2311   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2312   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2313   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
2314   case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
2315   case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
2316   case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
2317   handle_if_icmp:
2318     // If this is a backwards branch in the bytecodes, add Safepoint
2319     maybe_add_safepoint(iter().get_dest());
2320     a = pop();
2321     b = pop();
2322     c = _gvn.transform( new (C) CmpINode( b, a ) );
2323     do_if(btest, c);
2324     break;
2325 
2326   case Bytecodes::_tableswitch:
2327     do_tableswitch();
2328     break;
2329 
2330   case Bytecodes::_lookupswitch:
2331     do_lookupswitch();
2332     break;
2333 
2334   case Bytecodes::_invokestatic:
2335   case Bytecodes::_invokedynamic:
2336   case Bytecodes::_invokespecial:
2337   case Bytecodes::_invokevirtual:
2338   case Bytecodes::_invokeinterface:
2339     do_call();
2340     break;
2341   case Bytecodes::_checkcast:
2342     do_checkcast();
2343     break;
2344   case Bytecodes::_instanceof:
2345     do_instanceof();
2346     break;
2347   case Bytecodes::_anewarray:
2348     do_anewarray();
2349     break;
2350   case Bytecodes::_newarray:
2351     do_newarray((BasicType)iter().get_index());
2352     break;
2353   case Bytecodes::_multianewarray:
2354     do_multianewarray();
2355     break;
2356   case Bytecodes::_new:
2357     do_new();
2358     break;
2359 
2360   case Bytecodes::_jsr:
2361   case Bytecodes::_jsr_w:
2362     do_jsr();
2363     break;
2364 
2365   case Bytecodes::_ret:
2366     do_ret();
2367     break;
2368 
2369 
2370   case Bytecodes::_monitorenter:
2371     do_monitor_enter();
2372     break;
2373 
2374   case Bytecodes::_monitorexit:
2375     do_monitor_exit();
2376     break;
2377 
2378   case Bytecodes::_breakpoint:
2379     // Breakpoint set concurrently to compile
2380     // %%% use an uncommon trap?
2381     C->record_failure("breakpoint in method");
2382     return;
2383 
2384   default:
2385 #ifndef PRODUCT
2386     map()->dump(99);
2387 #endif
2388     tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
2389     ShouldNotReachHere();
2390   }
2391 
2392 #ifndef PRODUCT
2393   IdealGraphPrinter *printer = IdealGraphPrinter::printer();
2394   if(printer) {
2395     char buffer[256];
2396     sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
2397     bool old = printer->traverse_outs();
2398     printer->set_traverse_outs(true);
2399     printer->print_method(C, buffer, 4);
2400     printer->set_traverse_outs(old);
2401   }
2402 #endif
2403 }