1 /*
   2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // output_h.cpp - Class HPP file output routines for architecture definition
  26 #include "adlc.hpp"
  27 
  28 // The comment delimiter used in format statements after assembler instructions.
  29 #define commentSeperator "!"
  30 
  31 // Generate the #define that describes the number of registers.
  32 static void defineRegCount(FILE *fp, RegisterForm *registers) {
  33   if (registers) {
  34     int regCount =  AdlcVMDeps::Physical + registers->_rdefs.count();
  35     fprintf(fp,"\n");
  36     fprintf(fp,"// the number of reserved registers + machine registers.\n");
  37     fprintf(fp,"#define REG_COUNT    %d\n", regCount);
  38   }
  39 }
  40 
  41 // Output enumeration of machine register numbers
  42 // (1)
  43 // // Enumerate machine registers starting after reserved regs.
  44 // // in the order of occurrence in the register block.
  45 // enum MachRegisterNumbers {
  46 //   EAX_num = 0,
  47 //   ...
  48 //   _last_Mach_Reg
  49 // }
  50 void ArchDesc::buildMachRegisterNumbers(FILE *fp_hpp) {
  51   if (_register) {
  52     RegDef *reg_def = NULL;
  53 
  54     // Output a #define for the number of machine registers
  55     defineRegCount(fp_hpp, _register);
  56 
  57     // Count all the Save_On_Entry and Always_Save registers
  58     int    saved_on_entry = 0;
  59     int  c_saved_on_entry = 0;
  60     _register->reset_RegDefs();
  61     while( (reg_def = _register->iter_RegDefs()) != NULL ) {
  62       if( strcmp(reg_def->_callconv,"SOE") == 0 ||
  63           strcmp(reg_def->_callconv,"AS")  == 0 )  ++saved_on_entry;
  64       if( strcmp(reg_def->_c_conv,"SOE") == 0 ||
  65           strcmp(reg_def->_c_conv,"AS")  == 0 )  ++c_saved_on_entry;
  66     }
  67     fprintf(fp_hpp, "\n");
  68     fprintf(fp_hpp, "// the number of save_on_entry + always_saved registers.\n");
  69     fprintf(fp_hpp, "#define MAX_SAVED_ON_ENTRY_REG_COUNT    %d\n",   max(saved_on_entry,c_saved_on_entry));
  70     fprintf(fp_hpp, "#define     SAVED_ON_ENTRY_REG_COUNT    %d\n",   saved_on_entry);
  71     fprintf(fp_hpp, "#define   C_SAVED_ON_ENTRY_REG_COUNT    %d\n", c_saved_on_entry);
  72 
  73     // (1)
  74     // Build definition for enumeration of register numbers
  75     fprintf(fp_hpp, "\n");
  76     fprintf(fp_hpp, "// Enumerate machine register numbers starting after reserved regs.\n");
  77     fprintf(fp_hpp, "// in the order of occurrence in the register block.\n");
  78     fprintf(fp_hpp, "enum MachRegisterNumbers {\n");
  79 
  80     // Output the register number for each register in the allocation classes
  81     _register->reset_RegDefs();
  82     int i = 0;
  83     while( (reg_def = _register->iter_RegDefs()) != NULL ) {
  84       fprintf(fp_hpp,"  %s_num,", reg_def->_regname);
  85       for (int j = 0; j < 20-(int)strlen(reg_def->_regname); j++) fprintf(fp_hpp, " ");
  86       fprintf(fp_hpp," // enum %3d, regnum %3d, reg encode %3s\n",
  87               i++,
  88               reg_def->register_num(),
  89               reg_def->register_encode());
  90     }
  91     // Finish defining enumeration
  92     fprintf(fp_hpp, "  _last_Mach_Reg            // %d\n", i);
  93     fprintf(fp_hpp, "};\n");
  94   }
  95 
  96   fprintf(fp_hpp, "\n// Size of register-mask in ints\n");
  97   fprintf(fp_hpp, "#define RM_SIZE %d\n",RegisterForm::RegMask_Size());
  98   fprintf(fp_hpp, "// Unroll factor for loops over the data in a RegMask\n");
  99   fprintf(fp_hpp, "#define FORALL_BODY ");
 100   int len = RegisterForm::RegMask_Size();
 101   for( int i = 0; i < len; i++ )
 102     fprintf(fp_hpp, "BODY(%d) ",i);
 103   fprintf(fp_hpp, "\n\n");
 104 
 105   fprintf(fp_hpp,"class RegMask;\n");
 106   // All RegMasks are declared "extern const ..." in ad_<arch>.hpp
 107   // fprintf(fp_hpp,"extern RegMask STACK_OR_STACK_SLOTS_mask;\n\n");
 108 }
 109 
 110 
 111 // Output enumeration of machine register encodings
 112 // (2)
 113 // // Enumerate machine registers starting after reserved regs.
 114 // // in the order of occurrence in the alloc_class(es).
 115 // enum MachRegisterEncodes {
 116 //   EAX_enc = 0x00,
 117 //   ...
 118 // }
 119 void ArchDesc::buildMachRegisterEncodes(FILE *fp_hpp) {
 120   if (_register) {
 121     RegDef *reg_def = NULL;
 122     RegDef *reg_def_next = NULL;
 123 
 124     // (2)
 125     // Build definition for enumeration of encode values
 126     fprintf(fp_hpp, "\n");
 127     fprintf(fp_hpp, "// Enumerate machine registers starting after reserved regs.\n");
 128     fprintf(fp_hpp, "// in the order of occurrence in the alloc_class(es).\n");
 129     fprintf(fp_hpp, "enum MachRegisterEncodes {\n");
 130 
 131     // Find max enum string length.
 132     size_t maxlen = 0;
 133     _register->reset_RegDefs();
 134     reg_def = _register->iter_RegDefs();
 135     while (reg_def != NULL) {
 136       size_t len = strlen(reg_def->_regname);
 137       if (len > maxlen) maxlen = len;
 138       reg_def = _register->iter_RegDefs();
 139     }
 140 
 141     // Output the register encoding for each register in the allocation classes
 142     _register->reset_RegDefs();
 143     reg_def_next = _register->iter_RegDefs();
 144     while( (reg_def = reg_def_next) != NULL ) {
 145       reg_def_next = _register->iter_RegDefs();
 146       fprintf(fp_hpp,"  %s_enc", reg_def->_regname);
 147       for (size_t i = strlen(reg_def->_regname); i < maxlen; i++) fprintf(fp_hpp, " ");
 148       fprintf(fp_hpp," = %3s%s\n", reg_def->register_encode(), reg_def_next == NULL? "" : "," );
 149     }
 150     // Finish defining enumeration
 151     fprintf(fp_hpp, "};\n");
 152 
 153   } // Done with register form
 154 }
 155 
 156 
 157 // Declare an array containing the machine register names, strings.
 158 static void declareRegNames(FILE *fp, RegisterForm *registers) {
 159   if (registers) {
 160 //    fprintf(fp,"\n");
 161 //    fprintf(fp,"// An array of character pointers to machine register names.\n");
 162 //    fprintf(fp,"extern const char *regName[];\n");
 163   }
 164 }
 165 
 166 // Declare an array containing the machine register sizes in 32-bit words.
 167 void ArchDesc::declareRegSizes(FILE *fp) {
 168 // regSize[] is not used
 169 }
 170 
 171 // Declare an array containing the machine register encoding values
 172 static void declareRegEncodes(FILE *fp, RegisterForm *registers) {
 173   if (registers) {
 174     // // //
 175     // fprintf(fp,"\n");
 176     // fprintf(fp,"// An array containing the machine register encode values\n");
 177     // fprintf(fp,"extern const char  regEncode[];\n");
 178   }
 179 }
 180 
 181 
 182 // ---------------------------------------------------------------------------
 183 //------------------------------Utilities to build Instruction Classes--------
 184 // ---------------------------------------------------------------------------
 185 static void out_RegMask(FILE *fp) {
 186   fprintf(fp,"  virtual const RegMask &out_RegMask() const;\n");
 187 }
 188 
 189 // ---------------------------------------------------------------------------
 190 //--------Utilities to build MachOper and MachNode derived Classes------------
 191 // ---------------------------------------------------------------------------
 192 
 193 //------------------------------Utilities to build Operand Classes------------
 194 static void in_RegMask(FILE *fp) {
 195   fprintf(fp,"  virtual const RegMask *in_RegMask(int index) const;\n");
 196 }
 197 
 198 static void declareConstStorage(FILE *fp, FormDict &globals, OperandForm *oper) {
 199   int i = 0;
 200   Component *comp;
 201 
 202   if (oper->num_consts(globals) == 0) return;
 203   // Iterate over the component list looking for constants
 204   oper->_components.reset();
 205   if ((comp = oper->_components.iter()) == NULL) {
 206     assert(oper->num_consts(globals) == 1, "Bad component list detected.\n");
 207     const char *type = oper->ideal_type(globals);
 208     if (!strcmp(type, "ConI")) {
 209       if (i > 0) fprintf(fp,", ");
 210       fprintf(fp,"  int32          _c%d;\n", i);
 211     }
 212     else if (!strcmp(type, "ConP")) {
 213       if (i > 0) fprintf(fp,", ");
 214       fprintf(fp,"  const TypePtr *_c%d;\n", i);
 215     }
 216     else if (!strcmp(type, "ConN")) {
 217       if (i > 0) fprintf(fp,", ");
 218       fprintf(fp,"  const TypeNarrowOop *_c%d;\n", i);
 219     }
 220     else if (!strcmp(type, "ConNKlass")) {
 221       if (i > 0) fprintf(fp,", ");
 222       fprintf(fp,"  const TypeNarrowKlass *_c%d;\n", i);
 223     }
 224     else if (!strcmp(type, "ConL")) {
 225       if (i > 0) fprintf(fp,", ");
 226       fprintf(fp,"  jlong          _c%d;\n", i);
 227     }
 228     else if (!strcmp(type, "ConF")) {
 229       if (i > 0) fprintf(fp,", ");
 230       fprintf(fp,"  jfloat         _c%d;\n", i);
 231     }
 232     else if (!strcmp(type, "ConD")) {
 233       if (i > 0) fprintf(fp,", ");
 234       fprintf(fp,"  jdouble        _c%d;\n", i);
 235     }
 236     else if (!strcmp(type, "Bool")) {
 237       fprintf(fp,"private:\n");
 238       fprintf(fp,"  BoolTest::mask _c%d;\n", i);
 239       fprintf(fp,"public:\n");
 240     }
 241     else {
 242       assert(0, "Non-constant operand lacks component list.");
 243     }
 244   } // end if NULL
 245   else {
 246     oper->_components.reset();
 247     while ((comp = oper->_components.iter()) != NULL) {
 248       if (!strcmp(comp->base_type(globals), "ConI")) {
 249         fprintf(fp,"  jint             _c%d;\n", i);
 250         i++;
 251       }
 252       else if (!strcmp(comp->base_type(globals), "ConP")) {
 253         fprintf(fp,"  const TypePtr *_c%d;\n", i);
 254         i++;
 255       }
 256       else if (!strcmp(comp->base_type(globals), "ConN")) {
 257         fprintf(fp,"  const TypePtr *_c%d;\n", i);
 258         i++;
 259       }
 260       else if (!strcmp(comp->base_type(globals), "ConNKlass")) {
 261         fprintf(fp,"  const TypePtr *_c%d;\n", i);
 262         i++;
 263       }
 264       else if (!strcmp(comp->base_type(globals), "ConL")) {
 265         fprintf(fp,"  jlong            _c%d;\n", i);
 266         i++;
 267       }
 268       else if (!strcmp(comp->base_type(globals), "ConF")) {
 269         fprintf(fp,"  jfloat           _c%d;\n", i);
 270         i++;
 271       }
 272       else if (!strcmp(comp->base_type(globals), "ConD")) {
 273         fprintf(fp,"  jdouble          _c%d;\n", i);
 274         i++;
 275       }
 276     }
 277   }
 278 }
 279 
 280 // Declare constructor.
 281 // Parameters start with condition code, then all other constants
 282 //
 283 // (0) public:
 284 // (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
 285 // (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
 286 //
 287 static void defineConstructor(FILE *fp, const char *name, uint num_consts,
 288                               ComponentList &lst, bool is_ideal_bool,
 289                               Form::DataType constant_type, FormDict &globals) {
 290   fprintf(fp,"public:\n");
 291   // generate line (1)
 292   fprintf(fp,"  %sOper(", name);
 293   if( num_consts == 0 ) {
 294     fprintf(fp,") {}\n");
 295     return;
 296   }
 297 
 298   // generate parameters for constants
 299   uint i = 0;
 300   Component *comp;
 301   lst.reset();
 302   if ((comp = lst.iter()) == NULL) {
 303     assert(num_consts == 1, "Bad component list detected.\n");
 304     switch( constant_type ) {
 305     case Form::idealI : {
 306       fprintf(fp,is_ideal_bool ? "BoolTest::mask c%d" : "int32 c%d", i);
 307       break;
 308     }
 309     case Form::idealN :      { fprintf(fp,"const TypeNarrowOop *c%d", i); break; }
 310     case Form::idealNKlass : { fprintf(fp,"const TypeNarrowKlass *c%d", i); break; }
 311     case Form::idealP :      { fprintf(fp,"const TypePtr *c%d", i); break; }
 312     case Form::idealL :      { fprintf(fp,"jlong c%d", i);   break;        }
 313     case Form::idealF :      { fprintf(fp,"jfloat c%d", i);  break;        }
 314     case Form::idealD :      { fprintf(fp,"jdouble c%d", i); break;        }
 315     default:
 316       assert(!is_ideal_bool, "Non-constant operand lacks component list.");
 317       break;
 318     }
 319   } // end if NULL
 320   else {
 321     lst.reset();
 322     while((comp = lst.iter()) != NULL) {
 323       if (!strcmp(comp->base_type(globals), "ConI")) {
 324         if (i > 0) fprintf(fp,", ");
 325         fprintf(fp,"int32 c%d", i);
 326         i++;
 327       }
 328       else if (!strcmp(comp->base_type(globals), "ConP")) {
 329         if (i > 0) fprintf(fp,", ");
 330         fprintf(fp,"const TypePtr *c%d", i);
 331         i++;
 332       }
 333       else if (!strcmp(comp->base_type(globals), "ConN")) {
 334         if (i > 0) fprintf(fp,", ");
 335         fprintf(fp,"const TypePtr *c%d", i);
 336         i++;
 337       }
 338       else if (!strcmp(comp->base_type(globals), "ConNKlass")) {
 339         if (i > 0) fprintf(fp,", ");
 340         fprintf(fp,"const TypePtr *c%d", i);
 341         i++;
 342       }
 343       else if (!strcmp(comp->base_type(globals), "ConL")) {
 344         if (i > 0) fprintf(fp,", ");
 345         fprintf(fp,"jlong c%d", i);
 346         i++;
 347       }
 348       else if (!strcmp(comp->base_type(globals), "ConF")) {
 349         if (i > 0) fprintf(fp,", ");
 350         fprintf(fp,"jfloat c%d", i);
 351         i++;
 352       }
 353       else if (!strcmp(comp->base_type(globals), "ConD")) {
 354         if (i > 0) fprintf(fp,", ");
 355         fprintf(fp,"jdouble c%d", i);
 356         i++;
 357       }
 358       else if (!strcmp(comp->base_type(globals), "Bool")) {
 359         if (i > 0) fprintf(fp,", ");
 360         fprintf(fp,"BoolTest::mask c%d", i);
 361         i++;
 362       }
 363     }
 364   }
 365   // finish line (1) and start line (2)
 366   fprintf(fp,")  : ");
 367   // generate initializers for constants
 368   i = 0;
 369   fprintf(fp,"_c%d(c%d)", i, i);
 370   for( i = 1; i < num_consts; ++i) {
 371     fprintf(fp,", _c%d(c%d)", i, i);
 372   }
 373   // The body for the constructor is empty
 374   fprintf(fp," {}\n");
 375 }
 376 
 377 // ---------------------------------------------------------------------------
 378 // Utilities to generate format rules for machine operands and instructions
 379 // ---------------------------------------------------------------------------
 380 
 381 // Generate the format rule for condition codes
 382 static void defineCCodeDump(OperandForm* oper, FILE *fp, int i) {
 383   assert(oper != NULL, "what");
 384   CondInterface* cond = oper->_interface->is_CondInterface();
 385   fprintf(fp, "       if( _c%d == BoolTest::eq ) st->print(\"%s\");\n",i,cond->_equal_format);
 386   fprintf(fp, "  else if( _c%d == BoolTest::ne ) st->print(\"%s\");\n",i,cond->_not_equal_format);
 387   fprintf(fp, "  else if( _c%d == BoolTest::le ) st->print(\"%s\");\n",i,cond->_less_equal_format);
 388   fprintf(fp, "  else if( _c%d == BoolTest::ge ) st->print(\"%s\");\n",i,cond->_greater_equal_format);
 389   fprintf(fp, "  else if( _c%d == BoolTest::lt ) st->print(\"%s\");\n",i,cond->_less_format);
 390   fprintf(fp, "  else if( _c%d == BoolTest::gt ) st->print(\"%s\");\n",i,cond->_greater_format);
 391 }
 392 
 393 // Output code that dumps constant values, increment "i" if type is constant
 394 static uint dump_spec_constant(FILE *fp, const char *ideal_type, uint i, OperandForm* oper) {
 395   if (!strcmp(ideal_type, "ConI")) {
 396     fprintf(fp,"   st->print(\"#%%d\", _c%d);\n", i);
 397     fprintf(fp,"   st->print(\"/0x%%08x\", _c%d);\n", i);
 398     ++i;
 399   }
 400   else if (!strcmp(ideal_type, "ConP")) {
 401     fprintf(fp,"    _c%d->dump_on(st);\n", i);
 402     ++i;
 403   }
 404   else if (!strcmp(ideal_type, "ConN")) {
 405     fprintf(fp,"    _c%d->dump_on(st);\n", i);
 406     ++i;
 407   }
 408   else if (!strcmp(ideal_type, "ConNKlass")) {
 409     fprintf(fp,"    _c%d->dump_on(st);\n", i);
 410     ++i;
 411   }
 412   else if (!strcmp(ideal_type, "ConL")) {
 413     fprintf(fp,"    st->print(\"#\" INT64_FORMAT, _c%d);\n", i);
 414     fprintf(fp,"    st->print(\"/\" PTR64_FORMAT, _c%d);\n", i);
 415     ++i;
 416   }
 417   else if (!strcmp(ideal_type, "ConF")) {
 418     fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
 419     fprintf(fp,"    jint _c%di = JavaValue(_c%d).get_jint();\n", i, i);
 420     fprintf(fp,"    st->print(\"/0x%%x/\", _c%di);\n", i);
 421     ++i;
 422   }
 423   else if (!strcmp(ideal_type, "ConD")) {
 424     fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
 425     fprintf(fp,"    jlong _c%dl = JavaValue(_c%d).get_jlong();\n", i, i);
 426     fprintf(fp,"    st->print(\"/\" PTR64_FORMAT, _c%dl);\n", i);
 427     ++i;
 428   }
 429   else if (!strcmp(ideal_type, "Bool")) {
 430     defineCCodeDump(oper, fp,i);
 431     ++i;
 432   }
 433 
 434   return i;
 435 }
 436 
 437 // Generate the format rule for an operand
 438 void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file = false) {
 439   if (!for_c_file) {
 440     // invoked after output #ifndef PRODUCT to ad_<arch>.hpp
 441     // compile the bodies separately, to cut down on recompilations
 442     fprintf(fp,"  virtual void           int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const;\n");
 443     fprintf(fp,"  virtual void           ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const;\n");
 444     return;
 445   }
 446 
 447   // Local pointer indicates remaining part of format rule
 448   int idx = 0;                   // position of operand in match rule
 449 
 450   // Generate internal format function, used when stored locally
 451   fprintf(fp, "\n#ifndef PRODUCT\n");
 452   fprintf(fp,"void %sOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {\n", oper._ident);
 453   // Generate the user-defined portion of the format
 454   if (oper._format) {
 455     if ( oper._format->_strings.count() != 0 ) {
 456       // No initialization code for int_format
 457 
 458       // Build the format from the entries in strings and rep_vars
 459       const char  *string  = NULL;
 460       oper._format->_rep_vars.reset();
 461       oper._format->_strings.reset();
 462       while ( (string = oper._format->_strings.iter()) != NULL ) {
 463 
 464         // Check if this is a standard string or a replacement variable
 465         if ( string != NameList::_signal ) {
 466           // Normal string
 467           // Pass through to st->print
 468           fprintf(fp,"  st->print(\"%s\");\n", string);
 469         } else {
 470           // Replacement variable
 471           const char *rep_var = oper._format->_rep_vars.iter();
 472           // Check that it is a local name, and an operand
 473           const Form* form = oper._localNames[rep_var];
 474           if (form == NULL) {
 475             globalAD->syntax_err(oper._linenum,
 476                                  "\'%s\' not found in format for %s\n", rep_var, oper._ident);
 477             assert(form, "replacement variable was not found in local names");
 478           }
 479           OperandForm *op      = form->is_operand();
 480           // Get index if register or constant
 481           if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
 482             idx  = oper.register_position( globals, rep_var);
 483           }
 484           else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
 485             idx  = oper.constant_position( globals, rep_var);
 486           } else {
 487             idx = 0;
 488           }
 489 
 490           // output invocation of "$..."s format function
 491           if ( op != NULL ) op->int_format(fp, globals, idx);
 492 
 493           if ( idx == -1 ) {
 494             fprintf(stderr,
 495                     "Using a name, %s, that isn't in match rule\n", rep_var);
 496             assert( strcmp(op->_ident,"label")==0, "Unimplemented");
 497           }
 498         } // Done with a replacement variable
 499       } // Done with all format strings
 500     } else {
 501       // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
 502       oper.int_format(fp, globals, 0);
 503     }
 504 
 505   } else { // oper._format == NULL
 506     // Provide a few special case formats where the AD writer cannot.
 507     if ( strcmp(oper._ident,"Universe")==0 ) {
 508       fprintf(fp, "  st->print(\"$$univ\");\n");
 509     }
 510     // labelOper::int_format is defined in ad_<...>.cpp
 511   }
 512   // ALWAYS! Provide a special case output for condition codes.
 513   if( oper.is_ideal_bool() ) {
 514     defineCCodeDump(&oper, fp,0);
 515   }
 516   fprintf(fp,"}\n");
 517 
 518   // Generate external format function, when data is stored externally
 519   fprintf(fp,"void %sOper::ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const {\n", oper._ident);
 520   // Generate the user-defined portion of the format
 521   if (oper._format) {
 522     if ( oper._format->_strings.count() != 0 ) {
 523 
 524       // Check for a replacement string "$..."
 525       if ( oper._format->_rep_vars.count() != 0 ) {
 526         // Initialization code for ext_format
 527       }
 528 
 529       // Build the format from the entries in strings and rep_vars
 530       const char  *string  = NULL;
 531       oper._format->_rep_vars.reset();
 532       oper._format->_strings.reset();
 533       while ( (string = oper._format->_strings.iter()) != NULL ) {
 534 
 535         // Check if this is a standard string or a replacement variable
 536         if ( string != NameList::_signal ) {
 537           // Normal string
 538           // Pass through to st->print
 539           fprintf(fp,"  st->print(\"%s\");\n", string);
 540         } else {
 541           // Replacement variable
 542           const char *rep_var = oper._format->_rep_vars.iter();
 543          // Check that it is a local name, and an operand
 544           const Form* form = oper._localNames[rep_var];
 545           if (form == NULL) {
 546             globalAD->syntax_err(oper._linenum,
 547                                  "\'%s\' not found in format for %s\n", rep_var, oper._ident);
 548             assert(form, "replacement variable was not found in local names");
 549           }
 550           OperandForm *op      = form->is_operand();
 551           // Get index if register or constant
 552           if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
 553             idx  = oper.register_position( globals, rep_var);
 554           }
 555           else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
 556             idx  = oper.constant_position( globals, rep_var);
 557           } else {
 558             idx = 0;
 559           }
 560           // output invocation of "$..."s format function
 561           if ( op != NULL )   op->ext_format(fp, globals, idx);
 562 
 563           // Lookup the index position of the replacement variable
 564           idx      = oper._components.operand_position_format(rep_var, &oper);
 565           if ( idx == -1 ) {
 566             fprintf(stderr,
 567                     "Using a name, %s, that isn't in match rule\n", rep_var);
 568             assert( strcmp(op->_ident,"label")==0, "Unimplemented");
 569           }
 570         } // Done with a replacement variable
 571       } // Done with all format strings
 572 
 573     } else {
 574       // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
 575       oper.ext_format(fp, globals, 0);
 576     }
 577   } else { // oper._format == NULL
 578     // Provide a few special case formats where the AD writer cannot.
 579     if ( strcmp(oper._ident,"Universe")==0 ) {
 580       fprintf(fp, "  st->print(\"$$univ\");\n");
 581     }
 582     // labelOper::ext_format is defined in ad_<...>.cpp
 583   }
 584   // ALWAYS! Provide a special case output for condition codes.
 585   if( oper.is_ideal_bool() ) {
 586     defineCCodeDump(&oper, fp,0);
 587   }
 588   fprintf(fp, "}\n");
 589   fprintf(fp, "#endif\n");
 590 }
 591 
 592 
 593 // Generate the format rule for an instruction
 594 void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &inst, bool for_c_file = false) {
 595   if (!for_c_file) {
 596     // compile the bodies separately, to cut down on recompilations
 597     // #ifndef PRODUCT region generated by caller
 598     fprintf(fp,"  virtual void           format(PhaseRegAlloc *ra, outputStream *st) const;\n");
 599     return;
 600   }
 601 
 602   // Define the format function
 603   fprintf(fp, "#ifndef PRODUCT\n");
 604   fprintf(fp, "void %sNode::format(PhaseRegAlloc *ra, outputStream *st) const {\n", inst._ident);
 605 
 606   // Generate the user-defined portion of the format
 607   if( inst._format ) {
 608     // If there are replacement variables,
 609     // Generate index values needed for determining the operand position
 610     if( inst._format->_rep_vars.count() )
 611       inst.index_temps(fp, globals);
 612 
 613     // Build the format from the entries in strings and rep_vars
 614     const char  *string  = NULL;
 615     inst._format->_rep_vars.reset();
 616     inst._format->_strings.reset();
 617     while( (string = inst._format->_strings.iter()) != NULL ) {
 618       fprintf(fp,"  ");
 619       // Check if this is a standard string or a replacement variable
 620       if( string == NameList::_signal ) { // Replacement variable
 621         const char* rep_var =  inst._format->_rep_vars.iter();
 622         inst.rep_var_format( fp, rep_var);
 623       } else if( string == NameList::_signal3 ) { // Replacement variable in raw text
 624         const char* rep_var =  inst._format->_rep_vars.iter();
 625         const Form *form   = inst._localNames[rep_var];
 626         if (form == NULL) {
 627           fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
 628           assert(false, "ShouldNotReachHere()");
 629         }
 630         OpClassForm *opc   = form->is_opclass();
 631         assert( opc, "replacement variable was not found in local names");
 632         // Lookup the index position of the replacement variable
 633         int idx  = inst.operand_position_format(rep_var);
 634         if ( idx == -1 ) {
 635           assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
 636           assert( false, "ShouldNotReachHere()");
 637         }
 638 
 639         if (inst.is_noninput_operand(idx)) {
 640           assert( false, "ShouldNotReachHere()");
 641         } else {
 642           // Output the format call for this operand
 643           fprintf(fp,"opnd_array(%d)",idx);
 644         }
 645         rep_var =  inst._format->_rep_vars.iter();
 646         inst._format->_strings.iter();
 647         if ( strcmp(rep_var,"$constant") == 0 && opc->is_operand()) {
 648           Form::DataType constant_type = form->is_operand()->is_base_constant(globals);
 649           if ( constant_type == Form::idealD ) {
 650             fprintf(fp,"->constantD()");
 651           } else if ( constant_type == Form::idealF ) {
 652             fprintf(fp,"->constantF()");
 653           } else if ( constant_type == Form::idealL ) {
 654             fprintf(fp,"->constantL()");
 655           } else {
 656             fprintf(fp,"->constant()");
 657           }
 658         } else if ( strcmp(rep_var,"$cmpcode") == 0) {
 659             fprintf(fp,"->ccode()");
 660         } else {
 661           assert( false, "ShouldNotReachHere()");
 662         }
 663       } else if( string == NameList::_signal2 ) // Raw program text
 664         fputs(inst._format->_strings.iter(), fp);
 665       else
 666         fprintf(fp,"st->print(\"%s\");\n", string);
 667     } // Done with all format strings
 668   } // Done generating the user-defined portion of the format
 669 
 670   // Add call debug info automatically
 671   Form::CallType call_type = inst.is_ideal_call();
 672   if( call_type != Form::invalid_type ) {
 673     switch( call_type ) {
 674     case Form::JAVA_DYNAMIC:
 675       fprintf(fp,"  _method->print_short_name(st);\n");
 676       break;
 677     case Form::JAVA_STATIC:
 678       fprintf(fp,"  if( _method ) _method->print_short_name(st);\n");
 679       fprintf(fp,"  else st->print(\" wrapper for: %%s\", _name);\n");
 680       fprintf(fp,"  if( !_method ) dump_trap_args(st);\n");
 681       break;
 682     case Form::JAVA_COMPILED:
 683     case Form::JAVA_INTERP:
 684       break;
 685     case Form::JAVA_RUNTIME:
 686     case Form::JAVA_LEAF:
 687     case Form::JAVA_NATIVE:
 688       fprintf(fp,"  st->print(\" %%s\", _name);");
 689       break;
 690     default:
 691       assert(0,"ShouldNotReachHere");
 692     }
 693     fprintf(fp,  "  st->print_cr(\"\");\n" );
 694     fprintf(fp,  "  if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
 695     fprintf(fp,  "  st->print(\"        # \");\n" );
 696     fprintf(fp,  "  if( _jvms && _oop_map ) _oop_map->print_on(st);\n");
 697   }
 698   else if(inst.is_ideal_safepoint()) {
 699     fprintf(fp,  "  st->print(\"\");\n" );
 700     fprintf(fp,  "  if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
 701     fprintf(fp,  "  st->print(\"        # \");\n" );
 702     fprintf(fp,  "  if( _jvms && _oop_map ) _oop_map->print_on(st);\n");
 703   }
 704   else if( inst.is_ideal_if() ) {
 705     fprintf(fp,  "  st->print(\"  P=%%f C=%%f\",_prob,_fcnt);\n" );
 706   }
 707   else if( inst.is_ideal_mem() ) {
 708     // Print out the field name if available to improve readability
 709     fprintf(fp,  "  if (ra->C->alias_type(adr_type())->field() != NULL) {\n");
 710     fprintf(fp,  "    ciField* f = ra->C->alias_type(adr_type())->field();\n");
 711     fprintf(fp,  "    st->print(\" %s Field: \");\n", commentSeperator);
 712     fprintf(fp,  "    if (f->is_volatile())\n");
 713     fprintf(fp,  "      st->print(\"volatile \");\n");
 714     fprintf(fp,  "    f->holder()->name()->print_symbol_on(st);\n");
 715     fprintf(fp,  "    st->print(\".\");\n");
 716     fprintf(fp,  "    f->name()->print_symbol_on(st);\n");
 717     fprintf(fp,  "    if (f->is_constant())\n");
 718     fprintf(fp,  "      st->print(\" (constant)\");\n");
 719     fprintf(fp,  "  } else {\n");
 720     // Make sure 'Volatile' gets printed out
 721     fprintf(fp,  "    if (ra->C->alias_type(adr_type())->is_volatile())\n");
 722     fprintf(fp,  "      st->print(\" volatile!\");\n");
 723     fprintf(fp,  "  }\n");
 724   }
 725 
 726   // Complete the definition of the format function
 727   fprintf(fp, "}\n#endif\n");
 728 }
 729 
 730 void ArchDesc::declare_pipe_classes(FILE *fp_hpp) {
 731   if (!_pipeline)
 732     return;
 733 
 734   fprintf(fp_hpp, "\n");
 735   fprintf(fp_hpp, "// Pipeline_Use_Cycle_Mask Class\n");
 736   fprintf(fp_hpp, "class Pipeline_Use_Cycle_Mask {\n");
 737 
 738   if (_pipeline->_maxcycleused <=
 739 #ifdef SPARC
 740     64
 741 #else
 742     32
 743 #endif
 744       ) {
 745     fprintf(fp_hpp, "protected:\n");
 746     fprintf(fp_hpp, "  %s _mask;\n\n", _pipeline->_maxcycleused <= 32 ? "uint" : "uint64_t" );
 747     fprintf(fp_hpp, "public:\n");
 748     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : _mask(0) {}\n\n");
 749     if (_pipeline->_maxcycleused <= 32)
 750       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask) : _mask(mask) {}\n\n");
 751     else {
 752       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask1, uint mask2) : _mask((((uint64_t)mask1) << 32) | mask2) {}\n\n");
 753       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint64_t mask) : _mask(mask) {}\n\n");
 754     }
 755     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
 756     fprintf(fp_hpp, "    _mask = in._mask;\n");
 757     fprintf(fp_hpp, "    return *this;\n");
 758     fprintf(fp_hpp, "  }\n\n");
 759     fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
 760     fprintf(fp_hpp, "    return ((_mask & in2._mask) != 0);\n");
 761     fprintf(fp_hpp, "  }\n\n");
 762     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
 763     fprintf(fp_hpp, "    _mask <<= n;\n");
 764     fprintf(fp_hpp, "    return *this;\n");
 765     fprintf(fp_hpp, "  }\n\n");
 766     fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &in2) {\n");
 767     fprintf(fp_hpp, "    _mask |= in2._mask;\n");
 768     fprintf(fp_hpp, "  }\n\n");
 769     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
 770     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
 771   }
 772   else {
 773     fprintf(fp_hpp, "protected:\n");
 774     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 775     uint l;
 776     fprintf(fp_hpp, "  uint ");
 777     for (l = 1; l <= masklen; l++)
 778       fprintf(fp_hpp, "_mask%d%s", l, l < masklen ? ", " : ";\n\n");
 779     fprintf(fp_hpp, "public:\n");
 780     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : ");
 781     for (l = 1; l <= masklen; l++)
 782       fprintf(fp_hpp, "_mask%d(0)%s", l, l < masklen ? ", " : " {}\n\n");
 783     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(");
 784     for (l = 1; l <= masklen; l++)
 785       fprintf(fp_hpp, "uint mask%d%s", l, l < masklen ? ", " : ") : ");
 786     for (l = 1; l <= masklen; l++)
 787       fprintf(fp_hpp, "_mask%d(mask%d)%s", l, l, l < masklen ? ", " : " {}\n\n");
 788 
 789     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
 790     for (l = 1; l <= masklen; l++)
 791       fprintf(fp_hpp, "    _mask%d = in._mask%d;\n", l, l);
 792     fprintf(fp_hpp, "    return *this;\n");
 793     fprintf(fp_hpp, "  }\n\n");
 794     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask intersect(const Pipeline_Use_Cycle_Mask &in2) {\n");
 795     fprintf(fp_hpp, "    Pipeline_Use_Cycle_Mask out;\n");
 796     for (l = 1; l <= masklen; l++)
 797       fprintf(fp_hpp, "    out._mask%d = _mask%d & in2._mask%d;\n", l, l, l);
 798     fprintf(fp_hpp, "    return out;\n");
 799     fprintf(fp_hpp, "  }\n\n");
 800     fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
 801     fprintf(fp_hpp, "    return (");
 802     for (l = 1; l <= masklen; l++)
 803       fprintf(fp_hpp, "((_mask%d & in2._mask%d) != 0)%s", l, l, l < masklen ? " || " : "");
 804     fprintf(fp_hpp, ") ? true : false;\n");
 805     fprintf(fp_hpp, "  }\n\n");
 806     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
 807     fprintf(fp_hpp, "    if (n >= 32)\n");
 808     fprintf(fp_hpp, "      do {\n       ");
 809     for (l = masklen; l > 1; l--)
 810       fprintf(fp_hpp, " _mask%d = _mask%d;", l, l-1);
 811     fprintf(fp_hpp, " _mask%d = 0;\n", 1);
 812     fprintf(fp_hpp, "      } while ((n -= 32) >= 32);\n\n");
 813     fprintf(fp_hpp, "    if (n > 0) {\n");
 814     fprintf(fp_hpp, "      uint m = 32 - n;\n");
 815     fprintf(fp_hpp, "      uint mask = (1 << n) - 1;\n");
 816     fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n;\n", 2, 1, 1);
 817     for (l = 2; l < masklen; l++) {
 818       fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n; _mask%d |= temp%d;\n", l+1, l, l, l, l);
 819     }
 820     fprintf(fp_hpp, "      _mask%d <<= n; _mask%d |= temp%d;\n", masklen, masklen, masklen);
 821     fprintf(fp_hpp, "    }\n");
 822 
 823     fprintf(fp_hpp, "    return *this;\n");
 824     fprintf(fp_hpp, "  }\n\n");
 825     fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &);\n\n");
 826     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
 827     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
 828   }
 829 
 830   fprintf(fp_hpp, "  friend class Pipeline_Use;\n\n");
 831   fprintf(fp_hpp, "  friend class Pipeline_Use_Element;\n\n");
 832   fprintf(fp_hpp, "};\n\n");
 833 
 834   uint rescount = 0;
 835   const char *resource;
 836 
 837   for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
 838       int mask = _pipeline->_resdict[resource]->is_resource()->mask();
 839       if ((mask & (mask-1)) == 0)
 840         rescount++;
 841     }
 842 
 843   fprintf(fp_hpp, "// Pipeline_Use_Element Class\n");
 844   fprintf(fp_hpp, "class Pipeline_Use_Element {\n");
 845   fprintf(fp_hpp, "protected:\n");
 846   fprintf(fp_hpp, "  // Mask of used functional units\n");
 847   fprintf(fp_hpp, "  uint _used;\n\n");
 848   fprintf(fp_hpp, "  // Lower and upper bound of functional unit number range\n");
 849   fprintf(fp_hpp, "  uint _lb, _ub;\n\n");
 850   fprintf(fp_hpp, "  // Indicates multiple functionals units available\n");
 851   fprintf(fp_hpp, "  bool _multiple;\n\n");
 852   fprintf(fp_hpp, "  // Mask of specific used cycles\n");
 853   fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask _mask;\n\n");
 854   fprintf(fp_hpp, "public:\n");
 855   fprintf(fp_hpp, "  Pipeline_Use_Element() {}\n\n");
 856   fprintf(fp_hpp, "  Pipeline_Use_Element(uint used, uint lb, uint ub, bool multiple, Pipeline_Use_Cycle_Mask mask)\n");
 857   fprintf(fp_hpp, "  : _used(used), _lb(lb), _ub(ub), _multiple(multiple), _mask(mask) {}\n\n");
 858   fprintf(fp_hpp, "  uint used() const { return _used; }\n\n");
 859   fprintf(fp_hpp, "  uint lowerBound() const { return _lb; }\n\n");
 860   fprintf(fp_hpp, "  uint upperBound() const { return _ub; }\n\n");
 861   fprintf(fp_hpp, "  bool multiple() const { return _multiple; }\n\n");
 862   fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask mask() const { return _mask; }\n\n");
 863   fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Element &in2) const {\n");
 864   fprintf(fp_hpp, "    return ((_used & in2._used) != 0 && _mask.overlaps(in2._mask));\n");
 865   fprintf(fp_hpp, "  }\n\n");
 866   fprintf(fp_hpp, "  void step(uint cycles) {\n");
 867   fprintf(fp_hpp, "    _used = 0;\n");
 868   fprintf(fp_hpp, "    _mask <<= cycles;\n");
 869   fprintf(fp_hpp, "  }\n\n");
 870   fprintf(fp_hpp, "  friend class Pipeline_Use;\n");
 871   fprintf(fp_hpp, "};\n\n");
 872 
 873   fprintf(fp_hpp, "// Pipeline_Use Class\n");
 874   fprintf(fp_hpp, "class Pipeline_Use {\n");
 875   fprintf(fp_hpp, "protected:\n");
 876   fprintf(fp_hpp, "  // These resources can be used\n");
 877   fprintf(fp_hpp, "  uint _resources_used;\n\n");
 878   fprintf(fp_hpp, "  // These resources are used; excludes multiple choice functional units\n");
 879   fprintf(fp_hpp, "  uint _resources_used_exclusively;\n\n");
 880   fprintf(fp_hpp, "  // Number of elements\n");
 881   fprintf(fp_hpp, "  uint _count;\n\n");
 882   fprintf(fp_hpp, "  // This is the array of Pipeline_Use_Elements\n");
 883   fprintf(fp_hpp, "  Pipeline_Use_Element * _elements;\n\n");
 884   fprintf(fp_hpp, "public:\n");
 885   fprintf(fp_hpp, "  Pipeline_Use(uint resources_used, uint resources_used_exclusively, uint count, Pipeline_Use_Element *elements)\n");
 886   fprintf(fp_hpp, "  : _resources_used(resources_used)\n");
 887   fprintf(fp_hpp, "  , _resources_used_exclusively(resources_used_exclusively)\n");
 888   fprintf(fp_hpp, "  , _count(count)\n");
 889   fprintf(fp_hpp, "  , _elements(elements)\n");
 890   fprintf(fp_hpp, "  {}\n\n");
 891   fprintf(fp_hpp, "  uint resourcesUsed() const { return _resources_used; }\n\n");
 892   fprintf(fp_hpp, "  uint resourcesUsedExclusively() const { return _resources_used_exclusively; }\n\n");
 893   fprintf(fp_hpp, "  uint count() const { return _count; }\n\n");
 894   fprintf(fp_hpp, "  Pipeline_Use_Element * element(uint i) const { return &_elements[i]; }\n\n");
 895   fprintf(fp_hpp, "  uint full_latency(uint delay, const Pipeline_Use &pred) const;\n\n");
 896   fprintf(fp_hpp, "  void add_usage(const Pipeline_Use &pred);\n\n");
 897   fprintf(fp_hpp, "  void reset() {\n");
 898   fprintf(fp_hpp, "    _resources_used = _resources_used_exclusively = 0;\n");
 899   fprintf(fp_hpp, "  };\n\n");
 900   fprintf(fp_hpp, "  void step(uint cycles) {\n");
 901   fprintf(fp_hpp, "    reset();\n");
 902   fprintf(fp_hpp, "    for (uint i = 0; i < %d; i++)\n",
 903     rescount);
 904   fprintf(fp_hpp, "      (&_elements[i])->step(cycles);\n");
 905   fprintf(fp_hpp, "  };\n\n");
 906   fprintf(fp_hpp, "  static const Pipeline_Use         elaborated_use;\n");
 907   fprintf(fp_hpp, "  static const Pipeline_Use_Element elaborated_elements[%d];\n\n",
 908     rescount);
 909   fprintf(fp_hpp, "  friend class Pipeline;\n");
 910   fprintf(fp_hpp, "};\n\n");
 911 
 912   fprintf(fp_hpp, "// Pipeline Class\n");
 913   fprintf(fp_hpp, "class Pipeline {\n");
 914   fprintf(fp_hpp, "public:\n");
 915 
 916   fprintf(fp_hpp, "  static bool enabled() { return %s; }\n\n",
 917     _pipeline ? "true" : "false" );
 918 
 919   assert( _pipeline->_maxInstrsPerBundle &&
 920         ( _pipeline->_instrUnitSize || _pipeline->_bundleUnitSize) &&
 921           _pipeline->_instrFetchUnitSize &&
 922           _pipeline->_instrFetchUnits,
 923     "unspecified pipeline architecture units");
 924 
 925   uint unitSize = _pipeline->_instrUnitSize ? _pipeline->_instrUnitSize : _pipeline->_bundleUnitSize;
 926 
 927   fprintf(fp_hpp, "  enum {\n");
 928   fprintf(fp_hpp, "    _variable_size_instructions = %d,\n",
 929     _pipeline->_variableSizeInstrs ? 1 : 0);
 930   fprintf(fp_hpp, "    _fixed_size_instructions = %d,\n",
 931     _pipeline->_variableSizeInstrs ? 0 : 1);
 932   fprintf(fp_hpp, "    _branch_has_delay_slot = %d,\n",
 933     _pipeline->_branchHasDelaySlot ? 1 : 0);
 934   fprintf(fp_hpp, "    _max_instrs_per_bundle = %d,\n",
 935     _pipeline->_maxInstrsPerBundle);
 936   fprintf(fp_hpp, "    _max_bundles_per_cycle = %d,\n",
 937     _pipeline->_maxBundlesPerCycle);
 938   fprintf(fp_hpp, "    _max_instrs_per_cycle = %d\n",
 939     _pipeline->_maxBundlesPerCycle * _pipeline->_maxInstrsPerBundle);
 940   fprintf(fp_hpp, "  };\n\n");
 941 
 942   fprintf(fp_hpp, "  static bool instr_has_unit_size() { return %s; }\n\n",
 943     _pipeline->_instrUnitSize != 0 ? "true" : "false" );
 944   if( _pipeline->_bundleUnitSize != 0 )
 945     if( _pipeline->_instrUnitSize != 0 )
 946       fprintf(fp_hpp, "// Individual Instructions may be bundled together by the hardware\n\n");
 947     else
 948       fprintf(fp_hpp, "// Instructions exist only in bundles\n\n");
 949   else
 950     fprintf(fp_hpp, "// Bundling is not supported\n\n");
 951   if( _pipeline->_instrUnitSize != 0 )
 952     fprintf(fp_hpp, "  // Size of an instruction\n");
 953   else
 954     fprintf(fp_hpp, "  // Size of an individual instruction does not exist - unsupported\n");
 955   fprintf(fp_hpp, "  static uint instr_unit_size() {");
 956   if( _pipeline->_instrUnitSize == 0 )
 957     fprintf(fp_hpp, " assert( false, \"Instructions are only in bundles\" );");
 958   fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_instrUnitSize);
 959 
 960   if( _pipeline->_bundleUnitSize != 0 )
 961     fprintf(fp_hpp, "  // Size of a bundle\n");
 962   else
 963     fprintf(fp_hpp, "  // Bundles do not exist - unsupported\n");
 964   fprintf(fp_hpp, "  static uint bundle_unit_size() {");
 965   if( _pipeline->_bundleUnitSize == 0 )
 966     fprintf(fp_hpp, " assert( false, \"Bundles are not supported\" );");
 967   fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_bundleUnitSize);
 968 
 969   fprintf(fp_hpp, "  static bool requires_bundling() { return %s; }\n\n",
 970     _pipeline->_bundleUnitSize != 0 && _pipeline->_instrUnitSize == 0 ? "true" : "false" );
 971 
 972   fprintf(fp_hpp, "private:\n");
 973   fprintf(fp_hpp, "  Pipeline();  // Not a legal constructor\n");
 974   fprintf(fp_hpp, "\n");
 975   fprintf(fp_hpp, "  const unsigned char                   _read_stage_count;\n");
 976   fprintf(fp_hpp, "  const unsigned char                   _write_stage;\n");
 977   fprintf(fp_hpp, "  const unsigned char                   _fixed_latency;\n");
 978   fprintf(fp_hpp, "  const unsigned char                   _instruction_count;\n");
 979   fprintf(fp_hpp, "  const bool                            _has_fixed_latency;\n");
 980   fprintf(fp_hpp, "  const bool                            _has_branch_delay;\n");
 981   fprintf(fp_hpp, "  const bool                            _has_multiple_bundles;\n");
 982   fprintf(fp_hpp, "  const bool                            _force_serialization;\n");
 983   fprintf(fp_hpp, "  const bool                            _may_have_no_code;\n");
 984   fprintf(fp_hpp, "  const enum machPipelineStages * const _read_stages;\n");
 985   fprintf(fp_hpp, "  const enum machPipelineStages * const _resource_stage;\n");
 986   fprintf(fp_hpp, "  const uint                    * const _resource_cycles;\n");
 987   fprintf(fp_hpp, "  const Pipeline_Use                    _resource_use;\n");
 988   fprintf(fp_hpp, "\n");
 989   fprintf(fp_hpp, "public:\n");
 990   fprintf(fp_hpp, "  Pipeline(uint                            write_stage,\n");
 991   fprintf(fp_hpp, "           uint                            count,\n");
 992   fprintf(fp_hpp, "           bool                            has_fixed_latency,\n");
 993   fprintf(fp_hpp, "           uint                            fixed_latency,\n");
 994   fprintf(fp_hpp, "           uint                            instruction_count,\n");
 995   fprintf(fp_hpp, "           bool                            has_branch_delay,\n");
 996   fprintf(fp_hpp, "           bool                            has_multiple_bundles,\n");
 997   fprintf(fp_hpp, "           bool                            force_serialization,\n");
 998   fprintf(fp_hpp, "           bool                            may_have_no_code,\n");
 999   fprintf(fp_hpp, "           enum machPipelineStages * const dst,\n");
1000   fprintf(fp_hpp, "           enum machPipelineStages * const stage,\n");
1001   fprintf(fp_hpp, "           uint                    * const cycles,\n");
1002   fprintf(fp_hpp, "           Pipeline_Use                    resource_use)\n");
1003   fprintf(fp_hpp, "  : _write_stage(write_stage)\n");
1004   fprintf(fp_hpp, "  , _read_stage_count(count)\n");
1005   fprintf(fp_hpp, "  , _has_fixed_latency(has_fixed_latency)\n");
1006   fprintf(fp_hpp, "  , _fixed_latency(fixed_latency)\n");
1007   fprintf(fp_hpp, "  , _read_stages(dst)\n");
1008   fprintf(fp_hpp, "  , _resource_stage(stage)\n");
1009   fprintf(fp_hpp, "  , _resource_cycles(cycles)\n");
1010   fprintf(fp_hpp, "  , _resource_use(resource_use)\n");
1011   fprintf(fp_hpp, "  , _instruction_count(instruction_count)\n");
1012   fprintf(fp_hpp, "  , _has_branch_delay(has_branch_delay)\n");
1013   fprintf(fp_hpp, "  , _has_multiple_bundles(has_multiple_bundles)\n");
1014   fprintf(fp_hpp, "  , _force_serialization(force_serialization)\n");
1015   fprintf(fp_hpp, "  , _may_have_no_code(may_have_no_code)\n");
1016   fprintf(fp_hpp, "  {};\n");
1017   fprintf(fp_hpp, "\n");
1018   fprintf(fp_hpp, "  uint writeStage() const {\n");
1019   fprintf(fp_hpp, "    return (_write_stage);\n");
1020   fprintf(fp_hpp, "  }\n");
1021   fprintf(fp_hpp, "\n");
1022   fprintf(fp_hpp, "  enum machPipelineStages readStage(int ndx) const {\n");
1023   fprintf(fp_hpp, "    return (ndx < _read_stage_count ? _read_stages[ndx] : stage_undefined);");
1024   fprintf(fp_hpp, "  }\n\n");
1025   fprintf(fp_hpp, "  uint resourcesUsed() const {\n");
1026   fprintf(fp_hpp, "    return _resource_use.resourcesUsed();\n  }\n\n");
1027   fprintf(fp_hpp, "  uint resourcesUsedExclusively() const {\n");
1028   fprintf(fp_hpp, "    return _resource_use.resourcesUsedExclusively();\n  }\n\n");
1029   fprintf(fp_hpp, "  bool hasFixedLatency() const {\n");
1030   fprintf(fp_hpp, "    return (_has_fixed_latency);\n  }\n\n");
1031   fprintf(fp_hpp, "  uint fixedLatency() const {\n");
1032   fprintf(fp_hpp, "    return (_fixed_latency);\n  }\n\n");
1033   fprintf(fp_hpp, "  uint functional_unit_latency(uint start, const Pipeline *pred) const;\n\n");
1034   fprintf(fp_hpp, "  uint operand_latency(uint opnd, const Pipeline *pred) const;\n\n");
1035   fprintf(fp_hpp, "  const Pipeline_Use& resourceUse() const {\n");
1036   fprintf(fp_hpp, "    return (_resource_use); }\n\n");
1037   fprintf(fp_hpp, "  const Pipeline_Use_Element * resourceUseElement(uint i) const {\n");
1038   fprintf(fp_hpp, "    return (&_resource_use._elements[i]); }\n\n");
1039   fprintf(fp_hpp, "  uint resourceUseCount() const {\n");
1040   fprintf(fp_hpp, "    return (_resource_use._count); }\n\n");
1041   fprintf(fp_hpp, "  uint instructionCount() const {\n");
1042   fprintf(fp_hpp, "    return (_instruction_count); }\n\n");
1043   fprintf(fp_hpp, "  bool hasBranchDelay() const {\n");
1044   fprintf(fp_hpp, "    return (_has_branch_delay); }\n\n");
1045   fprintf(fp_hpp, "  bool hasMultipleBundles() const {\n");
1046   fprintf(fp_hpp, "    return (_has_multiple_bundles); }\n\n");
1047   fprintf(fp_hpp, "  bool forceSerialization() const {\n");
1048   fprintf(fp_hpp, "    return (_force_serialization); }\n\n");
1049   fprintf(fp_hpp, "  bool mayHaveNoCode() const {\n");
1050   fprintf(fp_hpp, "    return (_may_have_no_code); }\n\n");
1051   fprintf(fp_hpp, "//const Pipeline_Use_Cycle_Mask& resourceUseMask(int resource) const {\n");
1052   fprintf(fp_hpp, "//  return (_resource_use_masks[resource]); }\n\n");
1053   fprintf(fp_hpp, "\n#ifndef PRODUCT\n");
1054   fprintf(fp_hpp, "  static const char * stageName(uint i);\n");
1055   fprintf(fp_hpp, "#endif\n");
1056   fprintf(fp_hpp, "};\n\n");
1057 
1058   fprintf(fp_hpp, "// Bundle class\n");
1059   fprintf(fp_hpp, "class Bundle {\n");
1060 
1061   uint mshift = 0;
1062   for (uint msize = _pipeline->_maxInstrsPerBundle * _pipeline->_maxBundlesPerCycle; msize != 0; msize >>= 1)
1063     mshift++;
1064 
1065   uint rshift = rescount;
1066 
1067   fprintf(fp_hpp, "protected:\n");
1068   fprintf(fp_hpp, "  enum {\n");
1069   fprintf(fp_hpp, "    _unused_delay                   = 0x%x,\n", 0);
1070   fprintf(fp_hpp, "    _use_nop_delay                  = 0x%x,\n", 1);
1071   fprintf(fp_hpp, "    _use_unconditional_delay        = 0x%x,\n", 2);
1072   fprintf(fp_hpp, "    _use_conditional_delay          = 0x%x,\n", 3);
1073   fprintf(fp_hpp, "    _used_in_conditional_delay      = 0x%x,\n", 4);
1074   fprintf(fp_hpp, "    _used_in_unconditional_delay    = 0x%x,\n", 5);
1075   fprintf(fp_hpp, "    _used_in_all_conditional_delays = 0x%x,\n", 6);
1076   fprintf(fp_hpp, "\n");
1077   fprintf(fp_hpp, "    _use_delay                      = 0x%x,\n", 3);
1078   fprintf(fp_hpp, "    _used_in_delay                  = 0x%x\n",  4);
1079   fprintf(fp_hpp, "  };\n\n");
1080   fprintf(fp_hpp, "  uint _flags          : 3,\n");
1081   fprintf(fp_hpp, "       _starts_bundle  : 1,\n");
1082   fprintf(fp_hpp, "       _instr_count    : %d,\n",   mshift);
1083   fprintf(fp_hpp, "       _resources_used : %d;\n",   rshift);
1084   fprintf(fp_hpp, "public:\n");
1085   fprintf(fp_hpp, "  Bundle() : _flags(_unused_delay), _starts_bundle(0), _instr_count(0), _resources_used(0) {}\n\n");
1086   fprintf(fp_hpp, "  void set_instr_count(uint i) { _instr_count  = i; }\n");
1087   fprintf(fp_hpp, "  void set_resources_used(uint i) { _resources_used   = i; }\n");
1088   fprintf(fp_hpp, "  void clear_usage() { _flags = _unused_delay; }\n");
1089   fprintf(fp_hpp, "  void set_starts_bundle() { _starts_bundle = true; }\n");
1090 
1091   fprintf(fp_hpp, "  uint flags() const { return (_flags); }\n");
1092   fprintf(fp_hpp, "  uint instr_count() const { return (_instr_count); }\n");
1093   fprintf(fp_hpp, "  uint resources_used() const { return (_resources_used); }\n");
1094   fprintf(fp_hpp, "  bool starts_bundle() const { return (_starts_bundle != 0); }\n");
1095 
1096   fprintf(fp_hpp, "  void set_use_nop_delay() { _flags = _use_nop_delay; }\n");
1097   fprintf(fp_hpp, "  void set_use_unconditional_delay() { _flags = _use_unconditional_delay; }\n");
1098   fprintf(fp_hpp, "  void set_use_conditional_delay() { _flags = _use_conditional_delay; }\n");
1099   fprintf(fp_hpp, "  void set_used_in_unconditional_delay() { _flags = _used_in_unconditional_delay; }\n");
1100   fprintf(fp_hpp, "  void set_used_in_conditional_delay() { _flags = _used_in_conditional_delay; }\n");
1101   fprintf(fp_hpp, "  void set_used_in_all_conditional_delays() { _flags = _used_in_all_conditional_delays; }\n");
1102 
1103   fprintf(fp_hpp, "  bool use_nop_delay() { return (_flags == _use_nop_delay); }\n");
1104   fprintf(fp_hpp, "  bool use_unconditional_delay() { return (_flags == _use_unconditional_delay); }\n");
1105   fprintf(fp_hpp, "  bool use_conditional_delay() { return (_flags == _use_conditional_delay); }\n");
1106   fprintf(fp_hpp, "  bool used_in_unconditional_delay() { return (_flags == _used_in_unconditional_delay); }\n");
1107   fprintf(fp_hpp, "  bool used_in_conditional_delay() { return (_flags == _used_in_conditional_delay); }\n");
1108   fprintf(fp_hpp, "  bool used_in_all_conditional_delays() { return (_flags == _used_in_all_conditional_delays); }\n");
1109   fprintf(fp_hpp, "  bool use_delay() { return ((_flags & _use_delay) != 0); }\n");
1110   fprintf(fp_hpp, "  bool used_in_delay() { return ((_flags & _used_in_delay) != 0); }\n\n");
1111 
1112   fprintf(fp_hpp, "  enum {\n");
1113   fprintf(fp_hpp, "    _nop_count = %d\n",
1114     _pipeline->_nopcnt);
1115   fprintf(fp_hpp, "  };\n\n");
1116   fprintf(fp_hpp, "  static void initialize_nops(MachNode *nop_list[%d], Compile* C);\n\n",
1117     _pipeline->_nopcnt);
1118   fprintf(fp_hpp, "#ifndef PRODUCT\n");
1119   fprintf(fp_hpp, "  void dump(outputStream *st = tty) const;\n");
1120   fprintf(fp_hpp, "#endif\n");
1121   fprintf(fp_hpp, "};\n\n");
1122 
1123 //  const char *classname;
1124 //  for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
1125 //    PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
1126 //    fprintf(fp_hpp, "// Pipeline Class Instance for \"%s\"\n", classname);
1127 //  }
1128 }
1129 
1130 //------------------------------declareClasses---------------------------------
1131 // Construct the class hierarchy of MachNode classes from the instruction &
1132 // operand lists
1133 void ArchDesc::declareClasses(FILE *fp) {
1134 
1135   // Declare an array containing the machine register names, strings.
1136   declareRegNames(fp, _register);
1137 
1138   // Declare an array containing the machine register encoding values
1139   declareRegEncodes(fp, _register);
1140 
1141   // Generate declarations for the total number of operands
1142   fprintf(fp,"\n");
1143   fprintf(fp,"// Total number of operands defined in architecture definition\n");
1144   int num_operands = 0;
1145   OperandForm *op;
1146   for (_operands.reset(); (op = (OperandForm*)_operands.iter()) != NULL; ) {
1147     // Ensure this is a machine-world instruction
1148     if (op->ideal_only()) continue;
1149 
1150     ++num_operands;
1151   }
1152   int first_operand_class = num_operands;
1153   OpClassForm *opc;
1154   for (_opclass.reset(); (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
1155     // Ensure this is a machine-world instruction
1156     if (opc->ideal_only()) continue;
1157 
1158     ++num_operands;
1159   }
1160   fprintf(fp,"#define FIRST_OPERAND_CLASS   %d\n", first_operand_class);
1161   fprintf(fp,"#define NUM_OPERANDS          %d\n", num_operands);
1162   fprintf(fp,"\n");
1163   // Generate declarations for the total number of instructions
1164   fprintf(fp,"// Total number of instructions defined in architecture definition\n");
1165   fprintf(fp,"#define NUM_INSTRUCTIONS   %d\n",instructFormCount());
1166 
1167 
1168   // Generate Machine Classes for each operand defined in AD file
1169   fprintf(fp,"\n");
1170   fprintf(fp,"//----------------------------Declare classes derived from MachOper----------\n");
1171   // Iterate through all operands
1172   _operands.reset();
1173   OperandForm *oper;
1174   for( ; (oper = (OperandForm*)_operands.iter()) != NULL;) {
1175     // Ensure this is a machine-world instruction
1176     if (oper->ideal_only() ) continue;
1177     // The declaration of labelOper is in machine-independent file: machnode
1178     if ( strcmp(oper->_ident,"label")  == 0 ) continue;
1179     // The declaration of methodOper is in machine-independent file: machnode
1180     if ( strcmp(oper->_ident,"method") == 0 ) continue;
1181 
1182     // Build class definition for this operand
1183     fprintf(fp,"\n");
1184     fprintf(fp,"class %sOper : public MachOper { \n",oper->_ident);
1185     fprintf(fp,"private:\n");
1186     // Operand definitions that depend upon number of input edges
1187     {
1188       uint num_edges = oper->num_edges(_globalNames);
1189       if( num_edges != 1 ) { // Use MachOper::num_edges() {return 1;}
1190         fprintf(fp,"  virtual uint           num_edges() const { return %d; }\n",
1191               num_edges );
1192       }
1193       if( num_edges > 0 ) {
1194         in_RegMask(fp);
1195       }
1196     }
1197 
1198     // Support storing constants inside the MachOper
1199     declareConstStorage(fp,_globalNames,oper);
1200 
1201     // Support storage of the condition codes
1202     if( oper->is_ideal_bool() ) {
1203       fprintf(fp,"  virtual int ccode() const { \n");
1204       fprintf(fp,"    switch (_c0) {\n");
1205       fprintf(fp,"    case  BoolTest::eq : return equal();\n");
1206       fprintf(fp,"    case  BoolTest::gt : return greater();\n");
1207       fprintf(fp,"    case  BoolTest::lt : return less();\n");
1208       fprintf(fp,"    case  BoolTest::ne : return not_equal();\n");
1209       fprintf(fp,"    case  BoolTest::le : return less_equal();\n");
1210       fprintf(fp,"    case  BoolTest::ge : return greater_equal();\n");
1211       fprintf(fp,"    default : ShouldNotReachHere(); return 0;\n");
1212       fprintf(fp,"    }\n");
1213       fprintf(fp,"  };\n");
1214     }
1215 
1216     // Support storage of the condition codes
1217     if( oper->is_ideal_bool() ) {
1218       fprintf(fp,"  virtual void negate() { \n");
1219       fprintf(fp,"    _c0 = (BoolTest::mask)((int)_c0^0x4); \n");
1220       fprintf(fp,"  };\n");
1221     }
1222 
1223     // Declare constructor.
1224     // Parameters start with condition code, then all other constants
1225     //
1226     // (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
1227     // (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
1228     //
1229     Form::DataType constant_type = oper->simple_type(_globalNames);
1230     defineConstructor(fp, oper->_ident, oper->num_consts(_globalNames),
1231                       oper->_components, oper->is_ideal_bool(),
1232                       constant_type, _globalNames);
1233 
1234     // Clone function
1235     fprintf(fp,"  virtual MachOper      *clone(Compile* C) const;\n");
1236 
1237     // Support setting a spill offset into a constant operand.
1238     // We only support setting an 'int' offset, while in the
1239     // LP64 build spill offsets are added with an AddP which
1240     // requires a long constant.  Thus we don't support spilling
1241     // in frames larger than 4Gig.
1242     if( oper->has_conI(_globalNames) ||
1243         oper->has_conL(_globalNames) )
1244       fprintf(fp, "  virtual void set_con( jint c0 ) { _c0 = c0; }\n");
1245 
1246     // virtual functions for encoding and format
1247     //    fprintf(fp,"  virtual void           encode()   const {\n    %s }\n",
1248     //            (oper->_encrule)?(oper->_encrule->_encrule):"");
1249     // Check the interface type, and generate the correct query functions
1250     // encoding queries based upon MEMORY_INTER, REG_INTER, CONST_INTER.
1251 
1252     fprintf(fp,"  virtual uint           opcode() const { return %s; }\n",
1253             machOperEnum(oper->_ident));
1254 
1255     // virtual function to look up ideal return type of machine instruction
1256     //
1257     // (1)  virtual const Type    *type() const { return .....; }
1258     //
1259     if ((oper->_matrule) && (oper->_matrule->_lChild == NULL) &&
1260         (oper->_matrule->_rChild == NULL)) {
1261       unsigned int position = 0;
1262       const char  *opret, *opname, *optype;
1263       oper->_matrule->base_operand(position,_globalNames,opret,opname,optype);
1264       fprintf(fp,"  virtual const Type    *type() const {");
1265       const char *type = getIdealType(optype);
1266       if( type != NULL ) {
1267         Form::DataType data_type = oper->is_base_constant(_globalNames);
1268         // Check if we are an ideal pointer type
1269         if( data_type == Form::idealP || data_type == Form::idealN || data_type == Form::idealNKlass ) {
1270           // Return the ideal type we already have: <TypePtr *>
1271           fprintf(fp," return _c0;");
1272         } else {
1273           // Return the appropriate bottom type
1274           fprintf(fp," return %s;", getIdealType(optype));
1275         }
1276       } else {
1277         fprintf(fp," ShouldNotCallThis(); return Type::BOTTOM;");
1278       }
1279       fprintf(fp," }\n");
1280     } else {
1281       // Check for user-defined stack slots, based upon sRegX
1282       Form::DataType data_type = oper->is_user_name_for_sReg();
1283       if( data_type != Form::none ){
1284         const char *type = NULL;
1285         switch( data_type ) {
1286         case Form::idealI: type = "TypeInt::INT";   break;
1287         case Form::idealP: type = "TypePtr::BOTTOM";break;
1288         case Form::idealF: type = "Type::FLOAT";    break;
1289         case Form::idealD: type = "Type::DOUBLE";   break;
1290         case Form::idealL: type = "TypeLong::LONG"; break;
1291         case Form::none: // fall through
1292         default:
1293           assert( false, "No support for this type of stackSlot");
1294         }
1295         fprintf(fp,"  virtual const Type    *type() const { return %s; } // stackSlotX\n", type);
1296       }
1297     }
1298 
1299 
1300     //
1301     // virtual functions for defining the encoding interface.
1302     //
1303     // Access the linearized ideal register mask,
1304     // map to physical register encoding
1305     if ( oper->_matrule && oper->_matrule->is_base_register(_globalNames) ) {
1306       // Just use the default virtual 'reg' call
1307     } else if ( oper->ideal_to_sReg_type(oper->_ident) != Form::none ) {
1308       // Special handling for operand 'sReg', a Stack Slot Register.
1309       // Map linearized ideal register mask to stack slot number
1310       fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node) const {\n");
1311       fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node));/* sReg */\n");
1312       fprintf(fp,"  }\n");
1313       fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {\n");
1314       fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
1315       fprintf(fp,"  }\n");
1316     }
1317 
1318     // Output the operand specific access functions used by an enc_class
1319     // These are only defined when we want to override the default virtual func
1320     if (oper->_interface != NULL) {
1321       fprintf(fp,"\n");
1322       // Check if it is a Memory Interface
1323       if ( oper->_interface->is_MemInterface() != NULL ) {
1324         MemInterface *mem_interface = oper->_interface->is_MemInterface();
1325         const char *base = mem_interface->_base;
1326         if( base != NULL ) {
1327           define_oper_interface(fp, *oper, _globalNames, "base", base);
1328         }
1329         char *index = mem_interface->_index;
1330         if( index != NULL ) {
1331           define_oper_interface(fp, *oper, _globalNames, "index", index);
1332         }
1333         const char *scale = mem_interface->_scale;
1334         if( scale != NULL ) {
1335           define_oper_interface(fp, *oper, _globalNames, "scale", scale);
1336         }
1337         const char *disp = mem_interface->_disp;
1338         if( disp != NULL ) {
1339           define_oper_interface(fp, *oper, _globalNames, "disp", disp);
1340           oper->disp_is_oop(fp, _globalNames);
1341         }
1342         if( oper->stack_slots_only(_globalNames) ) {
1343           // should not call this:
1344           fprintf(fp,"  virtual int       constant_disp() const { return Type::OffsetBot; }");
1345         } else if ( disp != NULL ) {
1346           define_oper_interface(fp, *oper, _globalNames, "constant_disp", disp);
1347         }
1348       } // end Memory Interface
1349       // Check if it is a Conditional Interface
1350       else if (oper->_interface->is_CondInterface() != NULL) {
1351         CondInterface *cInterface = oper->_interface->is_CondInterface();
1352         const char *equal = cInterface->_equal;
1353         if( equal != NULL ) {
1354           define_oper_interface(fp, *oper, _globalNames, "equal", equal);
1355         }
1356         const char *not_equal = cInterface->_not_equal;
1357         if( not_equal != NULL ) {
1358           define_oper_interface(fp, *oper, _globalNames, "not_equal", not_equal);
1359         }
1360         const char *less = cInterface->_less;
1361         if( less != NULL ) {
1362           define_oper_interface(fp, *oper, _globalNames, "less", less);
1363         }
1364         const char *greater_equal = cInterface->_greater_equal;
1365         if( greater_equal != NULL ) {
1366           define_oper_interface(fp, *oper, _globalNames, "greater_equal", greater_equal);
1367         }
1368         const char *less_equal = cInterface->_less_equal;
1369         if( less_equal != NULL ) {
1370           define_oper_interface(fp, *oper, _globalNames, "less_equal", less_equal);
1371         }
1372         const char *greater = cInterface->_greater;
1373         if( greater != NULL ) {
1374           define_oper_interface(fp, *oper, _globalNames, "greater", greater);
1375         }
1376       } // end Conditional Interface
1377       // Check if it is a Constant Interface
1378       else if (oper->_interface->is_ConstInterface() != NULL ) {
1379         assert( oper->num_consts(_globalNames) == 1,
1380                 "Must have one constant when using CONST_INTER encoding");
1381         if (!strcmp(oper->ideal_type(_globalNames), "ConI")) {
1382           // Access the locally stored constant
1383           fprintf(fp,"  virtual intptr_t       constant() const {");
1384           fprintf(fp,   " return (intptr_t)_c0;");
1385           fprintf(fp,"  }\n");
1386         }
1387         else if (!strcmp(oper->ideal_type(_globalNames), "ConP")) {
1388           // Access the locally stored constant
1389           fprintf(fp,"  virtual intptr_t       constant() const {");
1390           fprintf(fp,   " return _c0->get_con();");
1391           fprintf(fp, " }\n");
1392           // Generate query to determine if this pointer is an oop
1393           fprintf(fp,"  virtual relocInfo::relocType           constant_reloc() const {");
1394           fprintf(fp,   " return _c0->reloc();");
1395           fprintf(fp, " }\n");
1396         }
1397         else if (!strcmp(oper->ideal_type(_globalNames), "ConN")) {
1398           // Access the locally stored constant
1399           fprintf(fp,"  virtual intptr_t       constant() const {");
1400           fprintf(fp,   " return _c0->get_ptrtype()->get_con();");
1401           fprintf(fp, " }\n");
1402           // Generate query to determine if this pointer is an oop
1403           fprintf(fp,"  virtual relocInfo::relocType           constant_reloc() const {");
1404           fprintf(fp,   " return _c0->get_ptrtype()->reloc();");
1405           fprintf(fp, " }\n");
1406         }
1407         else if (!strcmp(oper->ideal_type(_globalNames), "ConNKlass")) {
1408           // Access the locally stored constant
1409           fprintf(fp,"  virtual intptr_t       constant() const {");
1410           fprintf(fp,   " return _c0->get_ptrtype()->get_con();");
1411           fprintf(fp, " }\n");
1412           // Generate query to determine if this pointer is an oop
1413           fprintf(fp,"  virtual relocInfo::relocType           constant_reloc() const {");
1414           fprintf(fp,   " return _c0->get_ptrtype()->reloc();");
1415           fprintf(fp, " }\n");
1416         }
1417         else if (!strcmp(oper->ideal_type(_globalNames), "ConL")) {
1418           fprintf(fp,"  virtual intptr_t       constant() const {");
1419           // We don't support addressing modes with > 4Gig offsets.
1420           // Truncate to int.
1421           fprintf(fp,   "  return (intptr_t)_c0;");
1422           fprintf(fp, " }\n");
1423           fprintf(fp,"  virtual jlong          constantL() const {");
1424           fprintf(fp,   " return _c0;");
1425           fprintf(fp, " }\n");
1426         }
1427         else if (!strcmp(oper->ideal_type(_globalNames), "ConF")) {
1428           fprintf(fp,"  virtual intptr_t       constant() const {");
1429           fprintf(fp,   " ShouldNotReachHere(); return 0; ");
1430           fprintf(fp, " }\n");
1431           fprintf(fp,"  virtual jfloat         constantF() const {");
1432           fprintf(fp,   " return (jfloat)_c0;");
1433           fprintf(fp, " }\n");
1434         }
1435         else if (!strcmp(oper->ideal_type(_globalNames), "ConD")) {
1436           fprintf(fp,"  virtual intptr_t       constant() const {");
1437           fprintf(fp,   " ShouldNotReachHere(); return 0; ");
1438           fprintf(fp, " }\n");
1439           fprintf(fp,"  virtual jdouble        constantD() const {");
1440           fprintf(fp,   " return _c0;");
1441           fprintf(fp, " }\n");
1442         }
1443       }
1444       else if (oper->_interface->is_RegInterface() != NULL) {
1445         // make sure that a fixed format string isn't used for an
1446         // operand which might be assiged to multiple registers.
1447         // Otherwise the opto assembly output could be misleading.
1448         if (oper->_format->_strings.count() != 0 && !oper->is_bound_register()) {
1449           syntax_err(oper->_linenum,
1450                      "Only bound registers can have fixed formats: %s\n",
1451                      oper->_ident);
1452         }
1453       }
1454       else {
1455         assert( false, "ShouldNotReachHere();");
1456       }
1457     }
1458 
1459     fprintf(fp,"\n");
1460     // // Currently all XXXOper::hash() methods are identical (990820)
1461     // declare_hash(fp);
1462     // // Currently all XXXOper::Cmp() methods are identical (990820)
1463     // declare_cmp(fp);
1464 
1465     // Do not place dump_spec() and Name() into PRODUCT code
1466     // int_format and ext_format are not needed in PRODUCT code either
1467     fprintf(fp, "#ifndef PRODUCT\n");
1468 
1469     // Declare int_format() and ext_format()
1470     gen_oper_format(fp, _globalNames, *oper);
1471 
1472     // Machine independent print functionality for debugging
1473     // IF we have constants, create a dump_spec function for the derived class
1474     //
1475     // (1)  virtual void           dump_spec() const {
1476     // (2)    st->print("#%d", _c#);        // Constant != ConP
1477     //  OR    _c#->dump_on(st);             // Type ConP
1478     //  ...
1479     // (3)  }
1480     uint num_consts = oper->num_consts(_globalNames);
1481     if( num_consts > 0 ) {
1482       // line (1)
1483       fprintf(fp, "  virtual void           dump_spec(outputStream *st) const {\n");
1484       // generate format string for st->print
1485       // Iterate over the component list & spit out the right thing
1486       uint i = 0;
1487       const char *type = oper->ideal_type(_globalNames);
1488       Component  *comp;
1489       oper->_components.reset();
1490       if ((comp = oper->_components.iter()) == NULL) {
1491         assert(num_consts == 1, "Bad component list detected.\n");
1492         i = dump_spec_constant( fp, type, i, oper );
1493         // Check that type actually matched
1494         assert( i != 0, "Non-constant operand lacks component list.");
1495       } // end if NULL
1496       else {
1497         // line (2)
1498         // dump all components
1499         oper->_components.reset();
1500         while((comp = oper->_components.iter()) != NULL) {
1501           type = comp->base_type(_globalNames);
1502           i = dump_spec_constant( fp, type, i, NULL );
1503         }
1504       }
1505       // finish line (3)
1506       fprintf(fp,"  }\n");
1507     }
1508 
1509     fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
1510             oper->_ident);
1511 
1512     fprintf(fp,"#endif\n");
1513 
1514     // Close definition of this XxxMachOper
1515     fprintf(fp,"};\n");
1516   }
1517 
1518 
1519   // Generate Machine Classes for each instruction defined in AD file
1520   fprintf(fp,"\n");
1521   fprintf(fp,"//----------------------------Declare classes for Pipelines-----------------\n");
1522   declare_pipe_classes(fp);
1523 
1524   // Generate Machine Classes for each instruction defined in AD file
1525   fprintf(fp,"\n");
1526   fprintf(fp,"//----------------------------Declare classes derived from MachNode----------\n");
1527   _instructions.reset();
1528   InstructForm *instr;
1529   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
1530     // Ensure this is a machine-world instruction
1531     if ( instr->ideal_only() ) continue;
1532 
1533     // Build class definition for this instruction
1534     fprintf(fp,"\n");
1535     fprintf(fp,"class %sNode : public %s { \n",
1536             instr->_ident, instr->mach_base_class(_globalNames) );
1537     fprintf(fp,"private:\n");
1538     fprintf(fp,"  MachOper *_opnd_array[%d];\n", instr->num_opnds() );
1539     if ( instr->is_ideal_jump() ) {
1540       fprintf(fp, "  GrowableArray<Label*> _index2label;\n");
1541     }
1542 
1543     fprintf(fp, "public:\n");
1544 
1545     Attribute *att = instr->_attribs;
1546     // Fields of the node specified in the ad file.
1547     while (att != NULL) {
1548       if (strncmp(att->_ident, "ins_field_", 10) == 0) {
1549         const char *field_name = att->_ident+10;
1550         const char *field_type = att->_val;
1551         fprintf(fp, "  %s _%s;\n", field_type, field_name);
1552       }
1553       att = (Attribute *)att->_next;
1554     }
1555 
1556     fprintf(fp,"  MachOper *opnd_array(uint operand_index) const {\n");
1557     fprintf(fp,"    assert(operand_index < _num_opnds, \"invalid _opnd_array index\");\n");
1558     fprintf(fp,"    return _opnd_array[operand_index];\n");
1559     fprintf(fp,"  }\n");
1560     fprintf(fp,"  void      set_opnd_array(uint operand_index, MachOper *operand) {\n");
1561     fprintf(fp,"    assert(operand_index < _num_opnds, \"invalid _opnd_array index\");\n");
1562     fprintf(fp,"    _opnd_array[operand_index] = operand;\n");
1563     fprintf(fp,"  }\n");
1564     fprintf(fp,"private:\n");
1565     if ( instr->is_ideal_jump() ) {
1566       fprintf(fp,"  virtual void           add_case_label(int index_num, Label* blockLabel) {\n");
1567       fprintf(fp,"    _index2label.at_put_grow(index_num, blockLabel);\n");
1568       fprintf(fp,"  }\n");
1569     }
1570     if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
1571       fprintf(fp,"  const RegMask  *_cisc_RegMask;\n");
1572     }
1573 
1574     out_RegMask(fp);                      // output register mask
1575     fprintf(fp,"  virtual uint           rule() const { return %s_rule; }\n",
1576             instr->_ident);
1577 
1578     // If this instruction contains a labelOper
1579     // Declare Node::methods that set operand Label's contents
1580     int label_position = instr->label_position();
1581     if( label_position != -1 ) {
1582       // Set/Save the label, stored in labelOper::_branch_label
1583       fprintf(fp,"  virtual void           label_set( Label* label, uint block_num );\n");
1584       fprintf(fp,"  virtual void           save_label( Label** label, uint* block_num );\n");
1585     }
1586 
1587     // If this instruction contains a methodOper
1588     // Declare Node::methods that set operand method's contents
1589     int method_position = instr->method_position();
1590     if( method_position != -1 ) {
1591       // Set the address method, stored in methodOper::_method
1592       fprintf(fp,"  virtual void           method_set( intptr_t method );\n");
1593     }
1594 
1595     // virtual functions for attributes
1596     //
1597     // Each instruction attribute results in a virtual call of same name.
1598     // The ins_cost is not handled here.
1599     Attribute *attr = instr->_attribs;
1600     bool avoid_back_to_back = false;
1601     while (attr != NULL) {
1602       if (strcmp (attr->_ident,"ins_cost") &&
1603           strncmp(attr->_ident,"ins_field_", 10) != 0 &&
1604           strcmp (attr->_ident,"ins_short_branch")) {
1605         fprintf(fp,"          int            %s() const { return %s; }\n",
1606                 attr->_ident, attr->_val);
1607       }
1608       // Check value for ins_avoid_back_to_back, and if it is true (1), set the flag
1609       if (!strcmp(attr->_ident,"ins_avoid_back_to_back") && attr->int_val(*this) != 0)
1610         avoid_back_to_back = true;
1611       attr = (Attribute *)attr->_next;
1612     }
1613 
1614     // virtual functions for encode and format
1615 
1616     // Virtual function for evaluating the constant.
1617     if (instr->is_mach_constant()) {
1618       fprintf(fp,"  virtual void           eval_constant(Compile* C);\n");
1619     }
1620 
1621     // Output the opcode function and the encode function here using the
1622     // encoding class information in the _insencode slot.
1623     if ( instr->_insencode ) {
1624       fprintf(fp,"  virtual void           emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;\n");
1625     }
1626 
1627     // virtual function for getting the size of an instruction
1628     if ( instr->_size ) {
1629       fprintf(fp,"  virtual uint           size(PhaseRegAlloc *ra_) const;\n");
1630     }
1631 
1632     // Return the top-level ideal opcode.
1633     // Use MachNode::ideal_Opcode() for nodes based on MachNode class
1634     // if the ideal_Opcode == Op_Node.
1635     if ( strcmp("Node", instr->ideal_Opcode(_globalNames)) != 0 ||
1636          strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) {
1637       fprintf(fp,"  virtual int            ideal_Opcode() const { return Op_%s; }\n",
1638             instr->ideal_Opcode(_globalNames) );
1639     }
1640 
1641     // Allow machine-independent optimization, invert the sense of the IF test
1642     if( instr->is_ideal_if() ) {
1643       fprintf(fp,"  virtual void           negate() { \n");
1644       // Identify which operand contains the negate(able) ideal condition code
1645       int   idx = 0;
1646       instr->_components.reset();
1647       for( Component *comp; (comp = instr->_components.iter()) != NULL; ) {
1648         // Check that component is an operand
1649         Form *form = (Form*)_globalNames[comp->_type];
1650         OperandForm *opForm = form ? form->is_operand() : NULL;
1651         if( opForm == NULL ) continue;
1652 
1653         // Lookup the position of the operand in the instruction.
1654         if( opForm->is_ideal_bool() ) {
1655           idx = instr->operand_position(comp->_name, comp->_usedef);
1656           assert( idx != NameList::Not_in_list, "Did not find component in list that contained it.");
1657           break;
1658         }
1659       }
1660       fprintf(fp,"    opnd_array(%d)->negate();\n", idx);
1661       fprintf(fp,"    _prob = 1.0f - _prob;\n");
1662       fprintf(fp,"  };\n");
1663     }
1664 
1665 
1666     // Identify which input register matches the input register.
1667     uint  matching_input = instr->two_address(_globalNames);
1668 
1669     // Generate the method if it returns != 0 otherwise use MachNode::two_adr()
1670     if( matching_input != 0 ) {
1671       fprintf(fp,"  virtual uint           two_adr() const  ");
1672       fprintf(fp,"{ return oper_input_base()");
1673       for( uint i = 2; i <= matching_input; i++ )
1674         fprintf(fp," + opnd_array(%d)->num_edges()",i-1);
1675       fprintf(fp,"; }\n");
1676     }
1677 
1678     // Declare cisc_version, if applicable
1679     //   MachNode *cisc_version( int offset /* ,... */ );
1680     instr->declare_cisc_version(*this, fp);
1681 
1682     // If there is an explicit peephole rule, build it
1683     if ( instr->peepholes() != NULL ) {
1684       fprintf(fp,"  virtual MachNode      *peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile *C);\n");
1685     }
1686 
1687     // Output the declaration for number of relocation entries
1688     if ( instr->reloc(_globalNames) != 0 ) {
1689       fprintf(fp,"  virtual int            reloc() const;\n");
1690     }
1691 
1692     if (instr->alignment() != 1) {
1693       fprintf(fp,"  virtual int            alignment_required() const { return %d; }\n", instr->alignment());
1694       fprintf(fp,"  virtual int            compute_padding(int current_offset) const;\n");
1695     }
1696 
1697     // Starting point for inputs matcher wants.
1698     // Use MachNode::oper_input_base() for nodes based on MachNode class
1699     // if the base == 1.
1700     if ( instr->oper_input_base(_globalNames) != 1 ||
1701          strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) {
1702       fprintf(fp,"  virtual uint           oper_input_base() const { return %d; }\n",
1703             instr->oper_input_base(_globalNames));
1704     }
1705 
1706     // Make the constructor and following methods 'public:'
1707     fprintf(fp,"public:\n");
1708 
1709     // Constructor
1710     if ( instr->is_ideal_jump() ) {
1711       fprintf(fp,"  %sNode() : _index2label(MinJumpTableSize*2) { ", instr->_ident);
1712     } else {
1713       fprintf(fp,"  %sNode() { ", instr->_ident);
1714       if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
1715         fprintf(fp,"_cisc_RegMask = NULL; ");
1716       }
1717     }
1718 
1719     fprintf(fp," _num_opnds = %d; _opnds = _opnd_array; ", instr->num_opnds());
1720 
1721     bool node_flags_set = false;
1722     // flag: if this instruction matches an ideal 'Copy*' node
1723     if ( instr->is_ideal_copy() != 0 ) {
1724       fprintf(fp,"init_flags(Flag_is_Copy");
1725       node_flags_set = true;
1726     }
1727 
1728     // Is an instruction is a constant?  If so, get its type
1729     Form::DataType  data_type;
1730     const char     *opType = NULL;
1731     const char     *result = NULL;
1732     data_type    = instr->is_chain_of_constant(_globalNames, opType, result);
1733     // Check if this instruction is a constant
1734     if ( data_type != Form::none ) {
1735       if ( node_flags_set ) {
1736         fprintf(fp," | Flag_is_Con");
1737       } else {
1738         fprintf(fp,"init_flags(Flag_is_Con");
1739         node_flags_set = true;
1740       }
1741     }
1742 
1743     // flag: if this instruction is cisc alternate
1744     if ( can_cisc_spill() && instr->is_cisc_alternate() ) {
1745       if ( node_flags_set ) {
1746         fprintf(fp," | Flag_is_cisc_alternate");
1747       } else {
1748         fprintf(fp,"init_flags(Flag_is_cisc_alternate");
1749         node_flags_set = true;
1750       }
1751     }
1752 
1753     // flag: if this instruction has short branch form
1754     if ( instr->has_short_branch_form() ) {
1755       if ( node_flags_set ) {
1756         fprintf(fp," | Flag_may_be_short_branch");
1757       } else {
1758         fprintf(fp,"init_flags(Flag_may_be_short_branch");
1759         node_flags_set = true;
1760       }
1761     }
1762 
1763     // flag: if this instruction should not be generated back to back.
1764     if ( avoid_back_to_back ) {
1765       if ( node_flags_set ) {
1766         fprintf(fp," | Flag_avoid_back_to_back");
1767       } else {
1768         fprintf(fp,"init_flags(Flag_avoid_back_to_back");
1769         node_flags_set = true;
1770       }
1771     }
1772 
1773     // Check if machine instructions that USE memory, but do not DEF memory,
1774     // depend upon a node that defines memory in machine-independent graph.
1775     if ( instr->needs_anti_dependence_check(_globalNames) ) {
1776       if ( node_flags_set ) {
1777         fprintf(fp," | Flag_needs_anti_dependence_check");
1778       } else {
1779         fprintf(fp,"init_flags(Flag_needs_anti_dependence_check");
1780         node_flags_set = true;
1781       }
1782     }
1783 
1784     // flag: if this instruction is implemented with a call
1785     if ( instr->_has_call ) {
1786       if ( node_flags_set ) {
1787         fprintf(fp," | Flag_has_call");
1788       } else {
1789         fprintf(fp,"init_flags(Flag_has_call");
1790         node_flags_set = true;
1791       }
1792     }
1793 
1794     if ( node_flags_set ) {
1795       fprintf(fp,"); ");
1796     }
1797 
1798     fprintf(fp,"}\n");
1799 
1800     // size_of, used by base class's clone to obtain the correct size.
1801     fprintf(fp,"  virtual uint           size_of() const {");
1802     fprintf(fp,   " return sizeof(%sNode);", instr->_ident);
1803     fprintf(fp, " }\n");
1804 
1805     // Virtual methods which are only generated to override base class
1806     if( instr->expands() || instr->needs_projections() ||
1807         instr->has_temps() ||
1808         instr->is_mach_constant() ||
1809         instr->_matrule != NULL &&
1810         instr->num_opnds() != instr->num_unique_opnds() ) {
1811       fprintf(fp,"  virtual MachNode      *Expand(State *state, Node_List &proj_list, Node* mem);\n");
1812     }
1813 
1814     if (instr->is_pinned(_globalNames)) {
1815       fprintf(fp,"  virtual bool           pinned() const { return ");
1816       if (instr->is_parm(_globalNames)) {
1817         fprintf(fp,"_in[0]->pinned();");
1818       } else {
1819         fprintf(fp,"true;");
1820       }
1821       fprintf(fp," }\n");
1822     }
1823     if (instr->is_projection(_globalNames)) {
1824       fprintf(fp,"  virtual const Node *is_block_proj() const { return this; }\n");
1825     }
1826     if ( instr->num_post_match_opnds() != 0
1827          || instr->is_chain_of_constant(_globalNames) ) {
1828       fprintf(fp,"  friend MachNode *State::MachNodeGenerator(int opcode, Compile* C);\n");
1829     }
1830     if ( instr->rematerialize(_globalNames, get_registers()) ) {
1831       fprintf(fp,"  // Rematerialize %s\n", instr->_ident);
1832     }
1833 
1834     // Declare short branch methods, if applicable
1835     instr->declare_short_branch_methods(fp);
1836 
1837     // See if there is an "ins_pipe" declaration for this instruction
1838     if (instr->_ins_pipe) {
1839       fprintf(fp,"  static  const Pipeline *pipeline_class();\n");
1840       fprintf(fp,"  virtual const Pipeline *pipeline() const;\n");
1841     }
1842 
1843     // Generate virtual function for MachNodeX::bottom_type when necessary
1844     //
1845     // Note on accuracy:  Pointer-types of machine nodes need to be accurate,
1846     // or else alias analysis on the matched graph may produce bad code.
1847     // Moreover, the aliasing decisions made on machine-node graph must be
1848     // no less accurate than those made on the ideal graph, or else the graph
1849     // may fail to schedule.  (Reason:  Memory ops which are reordered in
1850     // the ideal graph might look interdependent in the machine graph,
1851     // thereby removing degrees of scheduling freedom that the optimizer
1852     // assumed would be available.)
1853     //
1854     // %%% We should handle many of these cases with an explicit ADL clause:
1855     // instruct foo() %{ ... bottom_type(TypeRawPtr::BOTTOM); ... %}
1856     if( data_type != Form::none ) {
1857       // A constant's bottom_type returns a Type containing its constant value
1858 
1859       // !!!!!
1860       // Convert all ints, floats, ... to machine-independent TypeXs
1861       // as is done for pointers
1862       //
1863       // Construct appropriate constant type containing the constant value.
1864       fprintf(fp,"  virtual const class Type *bottom_type() const {\n");
1865       switch( data_type ) {
1866       case Form::idealI:
1867         fprintf(fp,"    return  TypeInt::make(opnd_array(1)->constant());\n");
1868         break;
1869       case Form::idealP:
1870       case Form::idealN:
1871       case Form::idealNKlass:
1872         fprintf(fp,"    return  opnd_array(1)->type();\n");
1873         break;
1874       case Form::idealD:
1875         fprintf(fp,"    return  TypeD::make(opnd_array(1)->constantD());\n");
1876         break;
1877       case Form::idealF:
1878         fprintf(fp,"    return  TypeF::make(opnd_array(1)->constantF());\n");
1879         break;
1880       case Form::idealL:
1881         fprintf(fp,"    return  TypeLong::make(opnd_array(1)->constantL());\n");
1882         break;
1883       default:
1884         assert( false, "Unimplemented()" );
1885         break;
1886       }
1887       fprintf(fp,"  };\n");
1888     }
1889 /*    else if ( instr->_matrule && instr->_matrule->_rChild &&
1890         (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
1891         || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
1892       // !!!!! !!!!!
1893       // Provide explicit bottom type for conversions to int
1894       // On Intel the result operand is a stackSlot, untyped.
1895       fprintf(fp,"  virtual const class Type *bottom_type() const {");
1896       fprintf(fp,   " return  TypeInt::INT;");
1897       fprintf(fp, " };\n");
1898     }*/
1899     else if( instr->is_ideal_copy() &&
1900               !strcmp(instr->_matrule->_lChild->_opType,"stackSlotP") ) {
1901       // !!!!!
1902       // Special hack for ideal Copy of pointer.  Bottom type is oop or not depending on input.
1903       fprintf(fp,"  const Type            *bottom_type() const { return in(1)->bottom_type(); } // Copy?\n");
1904     }
1905     else if( instr->is_ideal_loadPC() ) {
1906       // LoadPCNode provides the return address of a call to native code.
1907       // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
1908       // since it is a pointer to an internal VM location and must have a zero offset.
1909       // Allocation detects derived pointers, in part, by their non-zero offsets.
1910       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // LoadPC?\n");
1911     }
1912     else if( instr->is_ideal_box() ) {
1913       // BoxNode provides the address of a stack slot.
1914       // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
1915       // This prevent s insert_anti_dependencies from complaining. It will
1916       // complain if it sees that the pointer base is TypePtr::BOTTOM since
1917       // it doesn't understand what that might alias.
1918       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // Box?\n");
1919     }
1920     else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveP") ) {
1921       int offset = 1;
1922       // Special special hack to see if the Cmp? has been incorporated in the conditional move
1923       MatchNode *rl = instr->_matrule->_rChild->_lChild;
1924       if( rl && !strcmp(rl->_opType, "Binary") ) {
1925           MatchNode *rlr = rl->_rChild;
1926           if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
1927             offset = 2;
1928       }
1929       // Special hack for ideal CMoveP; ideal type depends on inputs
1930       fprintf(fp,"  const Type            *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveP\n",
1931         offset, offset+1, offset+1);
1932     }
1933     else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveN") ) {
1934       int offset = 1;
1935       // Special special hack to see if the Cmp? has been incorporated in the conditional move
1936       MatchNode *rl = instr->_matrule->_rChild->_lChild;
1937       if( rl && !strcmp(rl->_opType, "Binary") ) {
1938           MatchNode *rlr = rl->_rChild;
1939           if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
1940             offset = 2;
1941       }
1942       // Special hack for ideal CMoveN; ideal type depends on inputs
1943       fprintf(fp,"  const Type            *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveN\n",
1944         offset, offset+1, offset+1);
1945     }
1946     else if (instr->is_tls_instruction()) {
1947       // Special hack for tlsLoadP
1948       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // tlsLoadP\n");
1949     }
1950     else if ( instr->is_ideal_if() ) {
1951       fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::IFBOTH; } // matched IfNode\n");
1952     }
1953     else if ( instr->is_ideal_membar() ) {
1954       fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::MEMBAR; } // matched MemBar\n");
1955     }
1956 
1957     // Check where 'ideal_type' must be customized
1958     /*
1959     if ( instr->_matrule && instr->_matrule->_rChild &&
1960         (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
1961         || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
1962       fprintf(fp,"  virtual uint           ideal_reg() const { return Compile::current()->matcher()->base2reg[Type::Int]; }\n");
1963     }*/
1964 
1965     // Analyze machine instructions that either USE or DEF memory.
1966     int memory_operand = instr->memory_operand(_globalNames);
1967     // Some guys kill all of memory
1968     if ( instr->is_wide_memory_kill(_globalNames) ) {
1969       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
1970     }
1971     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1972       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
1973         fprintf(fp,"  virtual const TypePtr *adr_type() const;\n");
1974       }
1975       fprintf(fp,"  virtual const MachOper *memory_operand() const;\n");
1976     }
1977 
1978     fprintf(fp, "#ifndef PRODUCT\n");
1979 
1980     // virtual function for generating the user's assembler output
1981     gen_inst_format(fp, _globalNames,*instr);
1982 
1983     // Machine independent print functionality for debugging
1984     fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
1985             instr->_ident);
1986 
1987     fprintf(fp, "#endif\n");
1988 
1989     // Close definition of this XxxMachNode
1990     fprintf(fp,"};\n");
1991   };
1992 
1993 }
1994 
1995 void ArchDesc::defineStateClass(FILE *fp) {
1996   static const char *state__valid    = "_valid[((uint)index) >> 5] &  (0x1 << (((uint)index) & 0x0001F))";
1997   static const char *state__set_valid= "_valid[((uint)index) >> 5] |= (0x1 << (((uint)index) & 0x0001F))";
1998 
1999   fprintf(fp,"\n");
2000   fprintf(fp,"// MACROS to inline and constant fold State::valid(index)...\n");
2001   fprintf(fp,"// when given a constant 'index' in dfa_<arch>.cpp\n");
2002   fprintf(fp,"//   uint word   = index >> 5;       // Shift out bit position\n");
2003   fprintf(fp,"//   uint bitpos = index & 0x0001F;  // Mask off word bits\n");
2004   fprintf(fp,"#define STATE__VALID(index) ");
2005   fprintf(fp,"    (%s)\n", state__valid);
2006   fprintf(fp,"\n");
2007   fprintf(fp,"#define STATE__NOT_YET_VALID(index) ");
2008   fprintf(fp,"  ( (%s) == 0 )\n", state__valid);
2009   fprintf(fp,"\n");
2010   fprintf(fp,"#define STATE__VALID_CHILD(state,index) ");
2011   fprintf(fp,"  ( state && (state->%s) )\n", state__valid);
2012   fprintf(fp,"\n");
2013   fprintf(fp,"#define STATE__SET_VALID(index) ");
2014   fprintf(fp,"  (%s)\n", state__set_valid);
2015   fprintf(fp,"\n");
2016   fprintf(fp,
2017           "//---------------------------State-------------------------------------------\n");
2018   fprintf(fp,"// State contains an integral cost vector, indexed by machine operand opcodes,\n");
2019   fprintf(fp,"// a rule vector consisting of machine operand/instruction opcodes, and also\n");
2020   fprintf(fp,"// indexed by machine operand opcodes, pointers to the children in the label\n");
2021   fprintf(fp,"// tree generated by the Label routines in ideal nodes (currently limited to\n");
2022   fprintf(fp,"// two for convenience, but this could change).\n");
2023   fprintf(fp,"class State : public ResourceObj {\n");
2024   fprintf(fp,"public:\n");
2025   fprintf(fp,"  int    _id;         // State identifier\n");
2026   fprintf(fp,"  Node  *_leaf;       // Ideal (non-machine-node) leaf of match tree\n");
2027   fprintf(fp,"  State *_kids[2];       // Children of state node in label tree\n");
2028   fprintf(fp,"  unsigned int _cost[_LAST_MACH_OPER];  // Cost vector, indexed by operand opcodes\n");
2029   fprintf(fp,"  unsigned int _rule[_LAST_MACH_OPER];  // Rule vector, indexed by operand opcodes\n");
2030   fprintf(fp,"  unsigned int _valid[(_LAST_MACH_OPER/32)+1]; // Bit Map of valid Cost/Rule entries\n");
2031   fprintf(fp,"\n");
2032   fprintf(fp,"  State(void);                      // Constructor\n");
2033   fprintf(fp,"  DEBUG_ONLY( ~State(void); )       // Destructor\n");
2034   fprintf(fp,"\n");
2035   fprintf(fp,"  // Methods created by ADLC and invoked by Reduce\n");
2036   fprintf(fp,"  MachOper *MachOperGenerator( int opcode, Compile* C );\n");
2037   fprintf(fp,"  MachNode *MachNodeGenerator( int opcode, Compile* C );\n");
2038   fprintf(fp,"\n");
2039   fprintf(fp,"  // Assign a state to a node, definition of method produced by ADLC\n");
2040   fprintf(fp,"  bool DFA( int opcode, const Node *ideal );\n");
2041   fprintf(fp,"\n");
2042   fprintf(fp,"  // Access function for _valid bit vector\n");
2043   fprintf(fp,"  bool valid(uint index) {\n");
2044   fprintf(fp,"    return( STATE__VALID(index) != 0 );\n");
2045   fprintf(fp,"  }\n");
2046   fprintf(fp,"\n");
2047   fprintf(fp,"  // Set function for _valid bit vector\n");
2048   fprintf(fp,"  void set_valid(uint index) {\n");
2049   fprintf(fp,"    STATE__SET_VALID(index);\n");
2050   fprintf(fp,"  }\n");
2051   fprintf(fp,"\n");
2052   fprintf(fp,"#ifndef PRODUCT\n");
2053   fprintf(fp,"  void dump();                // Debugging prints\n");
2054   fprintf(fp,"  void dump(int depth);\n");
2055   fprintf(fp,"#endif\n");
2056   if (_dfa_small) {
2057     // Generate the routine name we'll need
2058     for (int i = 1; i < _last_opcode; i++) {
2059       if (_mlistab[i] == NULL) continue;
2060       fprintf(fp, "  void  _sub_Op_%s(const Node *n);\n", NodeClassNames[i]);
2061     }
2062   }
2063   fprintf(fp,"};\n");
2064   fprintf(fp,"\n");
2065   fprintf(fp,"\n");
2066 
2067 }
2068 
2069 
2070 //---------------------------buildMachOperEnum---------------------------------
2071 // Build enumeration for densely packed operands.
2072 // This enumeration is used to index into the arrays in the State objects
2073 // that indicate cost and a successfull rule match.
2074 
2075 // Information needed to generate the ReduceOp mapping for the DFA
2076 class OutputMachOperands : public OutputMap {
2077 public:
2078   OutputMachOperands(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
2079     : OutputMap(hpp, cpp, globals, AD, "MachOperands") {};
2080 
2081   void declaration() { }
2082   void definition()  { fprintf(_cpp, "enum MachOperands {\n"); }
2083   void closing()     { fprintf(_cpp, "  _LAST_MACH_OPER\n");
2084                        OutputMap::closing();
2085   }
2086   void map(OpClassForm &opc)  {
2087     const char* opc_ident_to_upper = _AD.machOperEnum(opc._ident);
2088     fprintf(_cpp, "  %s", opc_ident_to_upper);
2089     delete[] opc_ident_to_upper;
2090   }
2091   void map(OperandForm &oper) {
2092     const char* oper_ident_to_upper = _AD.machOperEnum(oper._ident);
2093     fprintf(_cpp, "  %s", oper_ident_to_upper);
2094     delete[] oper_ident_to_upper;
2095   }
2096   void map(char *name) {
2097     const char* name_to_upper = _AD.machOperEnum(name);
2098     fprintf(_cpp, "  %s", name_to_upper);
2099     delete[] name_to_upper;
2100   }
2101 
2102   bool do_instructions()      { return false; }
2103   void map(InstructForm &inst){ assert( false, "ShouldNotCallThis()"); }
2104 };
2105 
2106 
2107 void ArchDesc::buildMachOperEnum(FILE *fp_hpp) {
2108   // Construct the table for MachOpcodes
2109   OutputMachOperands output_mach_operands(fp_hpp, fp_hpp, _globalNames, *this);
2110   build_map(output_mach_operands);
2111 }
2112 
2113 
2114 //---------------------------buildMachEnum----------------------------------
2115 // Build enumeration for all MachOpers and all MachNodes
2116 
2117 // Information needed to generate the ReduceOp mapping for the DFA
2118 class OutputMachOpcodes : public OutputMap {
2119   int begin_inst_chain_rule;
2120   int end_inst_chain_rule;
2121   int begin_rematerialize;
2122   int end_rematerialize;
2123   int end_instructions;
2124 public:
2125   OutputMachOpcodes(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
2126     : OutputMap(hpp, cpp, globals, AD, "MachOpcodes"),
2127       begin_inst_chain_rule(-1), end_inst_chain_rule(-1), end_instructions(-1)
2128   {};
2129 
2130   void declaration() { }
2131   void definition()  { fprintf(_cpp, "enum MachOpcodes {\n"); }
2132   void closing()     {
2133     if( begin_inst_chain_rule != -1 )
2134       fprintf(_cpp, "  _BEGIN_INST_CHAIN_RULE = %d,\n", begin_inst_chain_rule);
2135     if( end_inst_chain_rule   != -1 )
2136       fprintf(_cpp, "  _END_INST_CHAIN_RULE  = %d,\n", end_inst_chain_rule);
2137     if( begin_rematerialize   != -1 )
2138       fprintf(_cpp, "  _BEGIN_REMATERIALIZE   = %d,\n", begin_rematerialize);
2139     if( end_rematerialize     != -1 )
2140       fprintf(_cpp, "  _END_REMATERIALIZE    = %d,\n", end_rematerialize);
2141     // always execute since do_instructions() is true, and avoids trailing comma
2142     fprintf(_cpp, "  _last_Mach_Node  = %d \n",  end_instructions);
2143     OutputMap::closing();
2144   }
2145   void map(OpClassForm &opc)  { fprintf(_cpp, "  %s_rule", opc._ident ); }
2146   void map(OperandForm &oper) { fprintf(_cpp, "  %s_rule", oper._ident ); }
2147   void map(char        *name) { if (name) fprintf(_cpp, "  %s_rule", name);
2148                                 else      fprintf(_cpp, "  0"); }
2149   void map(InstructForm &inst) {fprintf(_cpp, "  %s_rule", inst._ident ); }
2150 
2151   void record_position(OutputMap::position place, int idx ) {
2152     switch(place) {
2153     case OutputMap::BEGIN_INST_CHAIN_RULES :
2154       begin_inst_chain_rule = idx;
2155       break;
2156     case OutputMap::END_INST_CHAIN_RULES :
2157       end_inst_chain_rule   = idx;
2158       break;
2159     case OutputMap::BEGIN_REMATERIALIZE :
2160       begin_rematerialize   = idx;
2161       break;
2162     case OutputMap::END_REMATERIALIZE :
2163       end_rematerialize     = idx;
2164       break;
2165     case OutputMap::END_INSTRUCTIONS :
2166       end_instructions      = idx;
2167       break;
2168     default:
2169       break;
2170     }
2171   }
2172 };
2173 
2174 
2175 void ArchDesc::buildMachOpcodesEnum(FILE *fp_hpp) {
2176   // Construct the table for MachOpcodes
2177   OutputMachOpcodes output_mach_opcodes(fp_hpp, fp_hpp, _globalNames, *this);
2178   build_map(output_mach_opcodes);
2179 }
2180 
2181 
2182 // Generate an enumeration of the pipeline states, and both
2183 // the functional units (resources) and the masks for
2184 // specifying resources
2185 void ArchDesc::build_pipeline_enums(FILE *fp_hpp) {
2186   int stagelen = (int)strlen("undefined");
2187   int stagenum = 0;
2188 
2189   if (_pipeline) {              // Find max enum string length
2190     const char *stage;
2191     for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; ) {
2192       int len = (int)strlen(stage);
2193       if (stagelen < len) stagelen = len;
2194     }
2195   }
2196 
2197   // Generate a list of stages
2198   fprintf(fp_hpp, "\n");
2199   fprintf(fp_hpp, "// Pipeline Stages\n");
2200   fprintf(fp_hpp, "enum machPipelineStages {\n");
2201   fprintf(fp_hpp, "   stage_%-*s = 0,\n", stagelen, "undefined");
2202 
2203   if( _pipeline ) {
2204     const char *stage;
2205     for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; )
2206       fprintf(fp_hpp, "   stage_%-*s = %d,\n", stagelen, stage, ++stagenum);
2207   }
2208 
2209   fprintf(fp_hpp, "   stage_%-*s = %d\n", stagelen, "count", stagenum);
2210   fprintf(fp_hpp, "};\n");
2211 
2212   fprintf(fp_hpp, "\n");
2213   fprintf(fp_hpp, "// Pipeline Resources\n");
2214   fprintf(fp_hpp, "enum machPipelineResources {\n");
2215   int rescount = 0;
2216 
2217   if( _pipeline ) {
2218     const char *resource;
2219     int reslen = 0;
2220 
2221     // Generate a list of resources, and masks
2222     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2223       int len = (int)strlen(resource);
2224       if (reslen < len)
2225         reslen = len;
2226     }
2227 
2228     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2229       const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
2230       int mask = resform->mask();
2231       if ((mask & (mask-1)) == 0)
2232         fprintf(fp_hpp, "   resource_%-*s = %d,\n", reslen, resource, rescount++);
2233     }
2234     fprintf(fp_hpp, "\n");
2235     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2236       const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
2237       fprintf(fp_hpp, "   res_mask_%-*s = 0x%08x,\n", reslen, resource, resform->mask());
2238     }
2239     fprintf(fp_hpp, "\n");
2240   }
2241   fprintf(fp_hpp, "   resource_count = %d\n", rescount);
2242   fprintf(fp_hpp, "};\n");
2243 }