1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/block.hpp"
  29 #include "opto/cfgnode.hpp"
  30 #include "opto/chaitin.hpp"
  31 #include "opto/loopnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/matcher.hpp"
  34 #include "opto/opcodes.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "utilities/copy.hpp"
  37 
  38 void Block_Array::grow( uint i ) {
  39   assert(i >= Max(), "must be an overflow");
  40   debug_only(_limit = i+1);
  41   if( i < _size )  return;
  42   if( !_size ) {
  43     _size = 1;
  44     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
  45     _blocks[0] = NULL;
  46   }
  47   uint old = _size;
  48   while( i >= _size ) _size <<= 1;      // Double to fit
  49   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
  50   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
  51 }
  52 
  53 void Block_List::remove(uint i) {
  54   assert(i < _cnt, "index out of bounds");
  55   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
  56   pop(); // shrink list by one block
  57 }
  58 
  59 void Block_List::insert(uint i, Block *b) {
  60   push(b); // grow list by one block
  61   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
  62   _blocks[i] = b;
  63 }
  64 
  65 #ifndef PRODUCT
  66 void Block_List::print() {
  67   for (uint i=0; i < size(); i++) {
  68     tty->print("B%d ", _blocks[i]->_pre_order);
  69   }
  70   tty->print("size = %d\n", size());
  71 }
  72 #endif
  73 
  74 uint Block::code_alignment() {
  75   // Check for Root block
  76   if (_pre_order == 0) return CodeEntryAlignment;
  77   // Check for Start block
  78   if (_pre_order == 1) return InteriorEntryAlignment;
  79   // Check for loop alignment
  80   if (has_loop_alignment()) return loop_alignment();
  81 
  82   return relocInfo::addr_unit(); // no particular alignment
  83 }
  84 
  85 uint Block::compute_loop_alignment() {
  86   Node *h = head();
  87   int unit_sz = relocInfo::addr_unit();
  88   if (h->is_Loop() && h->as_Loop()->is_inner_loop())  {
  89     // Pre- and post-loops have low trip count so do not bother with
  90     // NOPs for align loop head.  The constants are hidden from tuning
  91     // but only because my "divide by 4" heuristic surely gets nearly
  92     // all possible gain (a "do not align at all" heuristic has a
  93     // chance of getting a really tiny gain).
  94     if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
  95                                 h->as_CountedLoop()->is_post_loop())) {
  96       return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
  97     }
  98     // Loops with low backedge frequency should not be aligned.
  99     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
 100     if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
 101       return unit_sz; // Loop does not loop, more often than not!
 102     }
 103     return OptoLoopAlignment; // Otherwise align loop head
 104   }
 105 
 106   return unit_sz; // no particular alignment
 107 }
 108 
 109 // Compute the size of first 'inst_cnt' instructions in this block.
 110 // Return the number of instructions left to compute if the block has
 111 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
 112 // exceeds OptoLoopAlignment.
 113 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
 114                                     PhaseRegAlloc* ra) {
 115   uint last_inst = number_of_nodes();
 116   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
 117     uint inst_size = get_node(j)->size(ra);
 118     if( inst_size > 0 ) {
 119       inst_cnt--;
 120       uint sz = sum_size + inst_size;
 121       if( sz <= (uint)OptoLoopAlignment ) {
 122         // Compute size of instructions which fit into fetch buffer only
 123         // since all inst_cnt instructions will not fit even if we align them.
 124         sum_size = sz;
 125       } else {
 126         return 0;
 127       }
 128     }
 129   }
 130   return inst_cnt;
 131 }
 132 
 133 uint Block::find_node( const Node *n ) const {
 134   for( uint i = 0; i < number_of_nodes(); i++ ) {
 135     if( get_node(i) == n )
 136       return i;
 137   }
 138   ShouldNotReachHere();
 139   return 0;
 140 }
 141 
 142 // Find and remove n from block list
 143 void Block::find_remove( const Node *n ) {
 144   remove_node(find_node(n));
 145 }
 146 
 147 bool Block::contains(const Node *n) const {
 148   return _nodes.contains(n);
 149 }
 150 
 151 // Return empty status of a block.  Empty blocks contain only the head, other
 152 // ideal nodes, and an optional trailing goto.
 153 int Block::is_Empty() const {
 154 
 155   // Root or start block is not considered empty
 156   if (head()->is_Root() || head()->is_Start()) {
 157     return not_empty;
 158   }
 159 
 160   int success_result = completely_empty;
 161   int end_idx = number_of_nodes() - 1;
 162 
 163   // Check for ending goto
 164   if ((end_idx > 0) && (get_node(end_idx)->is_MachGoto())) {
 165     success_result = empty_with_goto;
 166     end_idx--;
 167   }
 168 
 169   // Unreachable blocks are considered empty
 170   if (num_preds() <= 1) {
 171     return success_result;
 172   }
 173 
 174   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
 175   // turn directly into code, because only MachNodes have non-trivial
 176   // emit() functions.
 177   while ((end_idx > 0) && !get_node(end_idx)->is_Mach()) {
 178     end_idx--;
 179   }
 180 
 181   // No room for any interesting instructions?
 182   if (end_idx == 0) {
 183     return success_result;
 184   }
 185 
 186   return not_empty;
 187 }
 188 
 189 // Return true if the block's code implies that it is likely to be
 190 // executed infrequently.  Check to see if the block ends in a Halt or
 191 // a low probability call.
 192 bool Block::has_uncommon_code() const {
 193   Node* en = end();
 194 
 195   if (en->is_MachGoto())
 196     en = en->in(0);
 197   if (en->is_Catch())
 198     en = en->in(0);
 199   if (en->is_MachProj() && en->in(0)->is_MachCall()) {
 200     MachCallNode* call = en->in(0)->as_MachCall();
 201     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
 202       // This is true for slow-path stubs like new_{instance,array},
 203       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
 204       // The magic number corresponds to the probability of an uncommon_trap,
 205       // even though it is a count not a probability.
 206       return true;
 207     }
 208   }
 209 
 210   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
 211   return op == Op_Halt;
 212 }
 213 
 214 // True if block is low enough frequency or guarded by a test which
 215 // mostly does not go here.
 216 bool PhaseCFG::is_uncommon(const Block* block) {
 217   // Initial blocks must never be moved, so are never uncommon.
 218   if (block->head()->is_Root() || block->head()->is_Start())  return false;
 219 
 220   // Check for way-low freq
 221   if(block->_freq < BLOCK_FREQUENCY(0.00001f) ) return true;
 222 
 223   // Look for code shape indicating uncommon_trap or slow path
 224   if (block->has_uncommon_code()) return true;
 225 
 226   const float epsilon = 0.05f;
 227   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
 228   uint uncommon_preds = 0;
 229   uint freq_preds = 0;
 230   uint uncommon_for_freq_preds = 0;
 231 
 232   for( uint i=1; i< block->num_preds(); i++ ) {
 233     Block* guard = get_block_for_node(block->pred(i));
 234     // Check to see if this block follows its guard 1 time out of 10000
 235     // or less.
 236     //
 237     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
 238     // we intend to be "uncommon", such as slow-path TLE allocation,
 239     // predicted call failure, and uncommon trap triggers.
 240     //
 241     // Use an epsilon value of 5% to allow for variability in frequency
 242     // predictions and floating point calculations. The net effect is
 243     // that guard_factor is set to 9500.
 244     //
 245     // Ignore low-frequency blocks.
 246     // The next check is (guard->_freq < 1.e-5 * 9500.).
 247     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
 248       uncommon_preds++;
 249     } else {
 250       freq_preds++;
 251       if(block->_freq < guard->_freq * guard_factor ) {
 252         uncommon_for_freq_preds++;
 253       }
 254     }
 255   }
 256   if( block->num_preds() > 1 &&
 257       // The block is uncommon if all preds are uncommon or
 258       (uncommon_preds == (block->num_preds()-1) ||
 259       // it is uncommon for all frequent preds.
 260        uncommon_for_freq_preds == freq_preds) ) {
 261     return true;
 262   }
 263   return false;
 264 }
 265 
 266 #ifndef PRODUCT
 267 void Block::dump_bidx(const Block* orig, outputStream* st) const {
 268   if (_pre_order) st->print("B%d",_pre_order);
 269   else st->print("N%d", head()->_idx);
 270 
 271   if (Verbose && orig != this) {
 272     // Dump the original block's idx
 273     st->print(" (");
 274     orig->dump_bidx(orig, st);
 275     st->print(")");
 276   }
 277 }
 278 
 279 void Block::dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st) const {
 280   if (is_connector()) {
 281     for (uint i=1; i<num_preds(); i++) {
 282       Block *p = cfg->get_block_for_node(pred(i));
 283       p->dump_pred(cfg, orig, st);
 284     }
 285   } else {
 286     dump_bidx(orig, st);
 287     st->print(" ");
 288   }
 289 }
 290 
 291 void Block::dump_head(const PhaseCFG* cfg, outputStream* st) const {
 292   // Print the basic block
 293   dump_bidx(this, st);
 294   st->print(": #\t");
 295 
 296   // Print the incoming CFG edges and the outgoing CFG edges
 297   for( uint i=0; i<_num_succs; i++ ) {
 298     non_connector_successor(i)->dump_bidx(_succs[i], st);
 299     st->print(" ");
 300   }
 301   st->print("<- ");
 302   if( head()->is_block_start() ) {
 303     for (uint i=1; i<num_preds(); i++) {
 304       Node *s = pred(i);
 305       if (cfg != NULL) {
 306         Block *p = cfg->get_block_for_node(s);
 307         p->dump_pred(cfg, p, st);
 308       } else {
 309         while (!s->is_block_start())
 310           s = s->in(0);
 311         st->print("N%d ", s->_idx );
 312       }
 313     }
 314   } else {
 315     st->print("BLOCK HEAD IS JUNK  ");
 316   }
 317 
 318   // Print loop, if any
 319   const Block *bhead = this;    // Head of self-loop
 320   Node *bh = bhead->head();
 321 
 322   if ((cfg != NULL) && bh->is_Loop() && !head()->is_Root()) {
 323     LoopNode *loop = bh->as_Loop();
 324     const Block *bx = cfg->get_block_for_node(loop->in(LoopNode::LoopBackControl));
 325     while (bx->is_connector()) {
 326       bx = cfg->get_block_for_node(bx->pred(1));
 327     }
 328     st->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
 329     // Dump any loop-specific bits, especially for CountedLoops.
 330     loop->dump_spec(st);
 331   } else if (has_loop_alignment()) {
 332     st->print(" top-of-loop");
 333   }
 334   st->print(" Freq: %g",_freq);
 335   if( Verbose || WizardMode ) {
 336     st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
 337     st->print(" RegPressure: %d",_reg_pressure);
 338     st->print(" IHRP Index: %d",_ihrp_index);
 339     st->print(" FRegPressure: %d",_freg_pressure);
 340     st->print(" FHRP Index: %d",_fhrp_index);
 341   }
 342   st->print_cr("");
 343 }
 344 
 345 void Block::dump() const {
 346   dump(NULL);
 347 }
 348 
 349 void Block::dump(const PhaseCFG* cfg) const {
 350   dump_head(cfg);
 351   for (uint i=0; i< number_of_nodes(); i++) {
 352     get_node(i)->dump();
 353   }
 354   tty->print("\n");
 355 }
 356 #endif
 357 
 358 PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
 359 : Phase(CFG)
 360 , _block_arena(arena)
 361 , _root(root)
 362 , _matcher(matcher)
 363 , _node_to_block_mapping(arena)
 364 , _node_latency(NULL)
 365 #ifndef PRODUCT
 366 , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
 367 #endif
 368 #ifdef ASSERT
 369 , _raw_oops(arena)
 370 #endif
 371 {
 372   ResourceMark rm;
 373   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
 374   // then Match it into a machine-specific Node.  Then clone the machine
 375   // Node on demand.
 376   Node *x = new (C) GotoNode(NULL);
 377   x->init_req(0, x);
 378   _goto = matcher.match_tree(x);
 379   assert(_goto != NULL, "");
 380   _goto->set_req(0,_goto);
 381 
 382   // Build the CFG in Reverse Post Order
 383   _number_of_blocks = build_cfg();
 384   _root_block = get_block_for_node(_root);
 385 }
 386 
 387 // Build a proper looking CFG.  Make every block begin with either a StartNode
 388 // or a RegionNode.  Make every block end with either a Goto, If or Return.
 389 // The RootNode both starts and ends it's own block.  Do this with a recursive
 390 // backwards walk over the control edges.
 391 uint PhaseCFG::build_cfg() {
 392   Arena *a = Thread::current()->resource_area();
 393   VectorSet visited(a);
 394 
 395   // Allocate stack with enough space to avoid frequent realloc
 396   Node_Stack nstack(a, C->unique() >> 1);
 397   nstack.push(_root, 0);
 398   uint sum = 0;                 // Counter for blocks
 399 
 400   while (nstack.is_nonempty()) {
 401     // node and in's index from stack's top
 402     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
 403     // only nodes which point to the start of basic block (see below).
 404     Node *np = nstack.node();
 405     // idx > 0, except for the first node (_root) pushed on stack
 406     // at the beginning when idx == 0.
 407     // We will use the condition (idx == 0) later to end the build.
 408     uint idx = nstack.index();
 409     Node *proj = np->in(idx);
 410     const Node *x = proj->is_block_proj();
 411     // Does the block end with a proper block-ending Node?  One of Return,
 412     // If or Goto? (This check should be done for visited nodes also).
 413     if (x == NULL) {                    // Does not end right...
 414       Node *g = _goto->clone(); // Force it to end in a Goto
 415       g->set_req(0, proj);
 416       np->set_req(idx, g);
 417       x = proj = g;
 418     }
 419     if (!visited.test_set(x->_idx)) { // Visit this block once
 420       // Skip any control-pinned middle'in stuff
 421       Node *p = proj;
 422       do {
 423         proj = p;                   // Update pointer to last Control
 424         p = p->in(0);               // Move control forward
 425       } while( !p->is_block_proj() &&
 426                !p->is_block_start() );
 427       // Make the block begin with one of Region or StartNode.
 428       if( !p->is_block_start() ) {
 429         RegionNode *r = new (C) RegionNode( 2 );
 430         r->init_req(1, p);         // Insert RegionNode in the way
 431         proj->set_req(0, r);        // Insert RegionNode in the way
 432         p = r;
 433       }
 434       // 'p' now points to the start of this basic block
 435 
 436       // Put self in array of basic blocks
 437       Block *bb = new (_block_arena) Block(_block_arena, p);
 438       map_node_to_block(p, bb);
 439       map_node_to_block(x, bb);
 440       if( x != p ) {                // Only for root is x == p
 441         bb->push_node((Node*)x);
 442       }
 443       // Now handle predecessors
 444       ++sum;                        // Count 1 for self block
 445       uint cnt = bb->num_preds();
 446       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
 447         Node *prevproj = p->in(i);  // Get prior input
 448         assert( !prevproj->is_Con(), "dead input not removed" );
 449         // Check to see if p->in(i) is a "control-dependent" CFG edge -
 450         // i.e., it splits at the source (via an IF or SWITCH) and merges
 451         // at the destination (via a many-input Region).
 452         // This breaks critical edges.  The RegionNode to start the block
 453         // will be added when <p,i> is pulled off the node stack
 454         if ( cnt > 2 ) {             // Merging many things?
 455           assert( prevproj== bb->pred(i),"");
 456           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
 457             // Force a block on the control-dependent edge
 458             Node *g = _goto->clone();       // Force it to end in a Goto
 459             g->set_req(0,prevproj);
 460             p->set_req(i,g);
 461           }
 462         }
 463         nstack.push(p, i);  // 'p' is RegionNode or StartNode
 464       }
 465     } else { // Post-processing visited nodes
 466       nstack.pop();                 // remove node from stack
 467       // Check if it the fist node pushed on stack at the beginning.
 468       if (idx == 0) break;          // end of the build
 469       // Find predecessor basic block
 470       Block *pb = get_block_for_node(x);
 471       // Insert into nodes array, if not already there
 472       if (!has_block(proj)) {
 473         assert( x != proj, "" );
 474         // Map basic block of projection
 475         map_node_to_block(proj, pb);
 476         pb->push_node(proj);
 477       }
 478       // Insert self as a child of my predecessor block
 479       pb->_succs.map(pb->_num_succs++, get_block_for_node(np));
 480       assert( pb->get_node(pb->number_of_nodes() - pb->_num_succs)->is_block_proj(),
 481               "too many control users, not a CFG?" );
 482     }
 483   }
 484   // Return number of basic blocks for all children and self
 485   return sum;
 486 }
 487 
 488 // Inserts a goto & corresponding basic block between
 489 // block[block_no] and its succ_no'th successor block
 490 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
 491   // get block with block_no
 492   assert(block_no < number_of_blocks(), "illegal block number");
 493   Block* in  = get_block(block_no);
 494   // get successor block succ_no
 495   assert(succ_no < in->_num_succs, "illegal successor number");
 496   Block* out = in->_succs[succ_no];
 497   // Compute frequency of the new block. Do this before inserting
 498   // new block in case succ_prob() needs to infer the probability from
 499   // surrounding blocks.
 500   float freq = in->_freq * in->succ_prob(succ_no);
 501   // get ProjNode corresponding to the succ_no'th successor of the in block
 502   ProjNode* proj = in->get_node(in->number_of_nodes() - in->_num_succs + succ_no)->as_Proj();
 503   // create region for basic block
 504   RegionNode* region = new (C) RegionNode(2);
 505   region->init_req(1, proj);
 506   // setup corresponding basic block
 507   Block* block = new (_block_arena) Block(_block_arena, region);
 508   map_node_to_block(region, block);
 509   C->regalloc()->set_bad(region->_idx);
 510   // add a goto node
 511   Node* gto = _goto->clone(); // get a new goto node
 512   gto->set_req(0, region);
 513   // add it to the basic block
 514   block->push_node(gto);
 515   map_node_to_block(gto, block);
 516   C->regalloc()->set_bad(gto->_idx);
 517   // hook up successor block
 518   block->_succs.map(block->_num_succs++, out);
 519   // remap successor's predecessors if necessary
 520   for (uint i = 1; i < out->num_preds(); i++) {
 521     if (out->pred(i) == proj) out->head()->set_req(i, gto);
 522   }
 523   // remap predecessor's successor to new block
 524   in->_succs.map(succ_no, block);
 525   // Set the frequency of the new block
 526   block->_freq = freq;
 527   // add new basic block to basic block list
 528   add_block_at(block_no + 1, block);
 529 }
 530 
 531 // Does this block end in a multiway branch that cannot have the default case
 532 // flipped for another case?
 533 static bool no_flip_branch( Block *b ) {
 534   int branch_idx = b->number_of_nodes() - b->_num_succs-1;
 535   if( branch_idx < 1 ) return false;
 536   Node *bra = b->get_node(branch_idx);
 537   if( bra->is_Catch() )
 538     return true;
 539   if( bra->is_Mach() ) {
 540     if( bra->is_MachNullCheck() )
 541       return true;
 542     int iop = bra->as_Mach()->ideal_Opcode();
 543     if( iop == Op_FastLock || iop == Op_FastUnlock )
 544       return true;
 545   }
 546   return false;
 547 }
 548 
 549 // Check for NeverBranch at block end.  This needs to become a GOTO to the
 550 // true target.  NeverBranch are treated as a conditional branch that always
 551 // goes the same direction for most of the optimizer and are used to give a
 552 // fake exit path to infinite loops.  At this late stage they need to turn
 553 // into Goto's so that when you enter the infinite loop you indeed hang.
 554 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
 555   // Find true target
 556   int end_idx = b->end_idx();
 557   int idx = b->get_node(end_idx+1)->as_Proj()->_con;
 558   Block *succ = b->_succs[idx];
 559   Node* gto = _goto->clone(); // get a new goto node
 560   gto->set_req(0, b->head());
 561   Node *bp = b->get_node(end_idx);
 562   b->map_node(gto, end_idx); // Slam over NeverBranch
 563   map_node_to_block(gto, b);
 564   C->regalloc()->set_bad(gto->_idx);
 565   b->pop_node();              // Yank projections
 566   b->pop_node();              // Yank projections
 567   b->_succs.map(0,succ);        // Map only successor
 568   b->_num_succs = 1;
 569   // remap successor's predecessors if necessary
 570   uint j;
 571   for( j = 1; j < succ->num_preds(); j++)
 572     if( succ->pred(j)->in(0) == bp )
 573       succ->head()->set_req(j, gto);
 574   // Kill alternate exit path
 575   Block *dead = b->_succs[1-idx];
 576   for( j = 1; j < dead->num_preds(); j++)
 577     if( dead->pred(j)->in(0) == bp )
 578       break;
 579   // Scan through block, yanking dead path from
 580   // all regions and phis.
 581   dead->head()->del_req(j);
 582   for( int k = 1; dead->get_node(k)->is_Phi(); k++ )
 583     dead->get_node(k)->del_req(j);
 584 }
 585 
 586 // Helper function to move block bx to the slot following b_index. Return
 587 // true if the move is successful, otherwise false
 588 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
 589   if (bx == NULL) return false;
 590 
 591   // Return false if bx is already scheduled.
 592   uint bx_index = bx->_pre_order;
 593   if ((bx_index <= b_index) && (get_block(bx_index) == bx)) {
 594     return false;
 595   }
 596 
 597   // Find the current index of block bx on the block list
 598   bx_index = b_index + 1;
 599   while (bx_index < number_of_blocks() && get_block(bx_index) != bx) {
 600     bx_index++;
 601   }
 602   assert(get_block(bx_index) == bx, "block not found");
 603 
 604   // If the previous block conditionally falls into bx, return false,
 605   // because moving bx will create an extra jump.
 606   for(uint k = 1; k < bx->num_preds(); k++ ) {
 607     Block* pred = get_block_for_node(bx->pred(k));
 608     if (pred == get_block(bx_index - 1)) {
 609       if (pred->_num_succs != 1) {
 610         return false;
 611       }
 612     }
 613   }
 614 
 615   // Reinsert bx just past block 'b'
 616   _blocks.remove(bx_index);
 617   _blocks.insert(b_index + 1, bx);
 618   return true;
 619 }
 620 
 621 // Move empty and uncommon blocks to the end.
 622 void PhaseCFG::move_to_end(Block *b, uint i) {
 623   int e = b->is_Empty();
 624   if (e != Block::not_empty) {
 625     if (e == Block::empty_with_goto) {
 626       // Remove the goto, but leave the block.
 627       b->pop_node();
 628     }
 629     // Mark this block as a connector block, which will cause it to be
 630     // ignored in certain functions such as non_connector_successor().
 631     b->set_connector();
 632   }
 633   // Move the empty block to the end, and don't recheck.
 634   _blocks.remove(i);
 635   _blocks.push(b);
 636 }
 637 
 638 // Set loop alignment for every block
 639 void PhaseCFG::set_loop_alignment() {
 640   uint last = number_of_blocks();
 641   assert(get_block(0) == get_root_block(), "");
 642 
 643   for (uint i = 1; i < last; i++) {
 644     Block* block = get_block(i);
 645     if (block->head()->is_Loop()) {
 646       block->set_loop_alignment(block);
 647     }
 648   }
 649 }
 650 
 651 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
 652 // to the end.
 653 void PhaseCFG::remove_empty_blocks() {
 654   // Move uncommon blocks to the end
 655   uint last = number_of_blocks();
 656   assert(get_block(0) == get_root_block(), "");
 657 
 658   for (uint i = 1; i < last; i++) {
 659     Block* block = get_block(i);
 660     if (block->is_connector()) {
 661       break;
 662     }
 663 
 664     // Check for NeverBranch at block end.  This needs to become a GOTO to the
 665     // true target.  NeverBranch are treated as a conditional branch that
 666     // always goes the same direction for most of the optimizer and are used
 667     // to give a fake exit path to infinite loops.  At this late stage they
 668     // need to turn into Goto's so that when you enter the infinite loop you
 669     // indeed hang.
 670     if (block->get_node(block->end_idx())->Opcode() == Op_NeverBranch) {
 671       convert_NeverBranch_to_Goto(block);
 672     }
 673 
 674     // Look for uncommon blocks and move to end.
 675     if (!C->do_freq_based_layout()) {
 676       if (is_uncommon(block)) {
 677         move_to_end(block, i);
 678         last--;                   // No longer check for being uncommon!
 679         if (no_flip_branch(block)) { // Fall-thru case must follow?
 680           // Find the fall-thru block
 681           block = get_block(i);
 682           move_to_end(block, i);
 683           last--;
 684         }
 685         // backup block counter post-increment
 686         i--;
 687       }
 688     }
 689   }
 690 
 691   // Move empty blocks to the end
 692   last = number_of_blocks();
 693   for (uint i = 1; i < last; i++) {
 694     Block* block = get_block(i);
 695     if (block->is_Empty() != Block::not_empty) {
 696       move_to_end(block, i);
 697       last--;
 698       i--;
 699     }
 700   } // End of for all blocks
 701 }
 702 
 703 // Fix up the final control flow for basic blocks.
 704 void PhaseCFG::fixup_flow() {
 705   // Fixup final control flow for the blocks.  Remove jump-to-next
 706   // block. If neither arm of an IF follows the conditional branch, we
 707   // have to add a second jump after the conditional.  We place the
 708   // TRUE branch target in succs[0] for both GOTOs and IFs.
 709   for (uint i = 0; i < number_of_blocks(); i++) {
 710     Block* block = get_block(i);
 711     block->_pre_order = i;          // turn pre-order into block-index
 712 
 713     // Connector blocks need no further processing.
 714     if (block->is_connector()) {
 715       assert((i+1) == number_of_blocks() || get_block(i + 1)->is_connector(), "All connector blocks should sink to the end");
 716       continue;
 717     }
 718     assert(block->is_Empty() != Block::completely_empty, "Empty blocks should be connectors");
 719 
 720     Block* bnext = (i < number_of_blocks() - 1) ? get_block(i + 1) : NULL;
 721     Block* bs0 = block->non_connector_successor(0);
 722 
 723     // Check for multi-way branches where I cannot negate the test to
 724     // exchange the true and false targets.
 725     if (no_flip_branch(block)) {
 726       // Find fall through case - if must fall into its target
 727       int branch_idx = block->number_of_nodes() - block->_num_succs;
 728       for (uint j2 = 0; j2 < block->_num_succs; j2++) {
 729         const ProjNode* p = block->get_node(branch_idx + j2)->as_Proj();
 730         if (p->_con == 0) {
 731           // successor j2 is fall through case
 732           if (block->non_connector_successor(j2) != bnext) {
 733             // but it is not the next block => insert a goto
 734             insert_goto_at(i, j2);
 735           }
 736           // Put taken branch in slot 0
 737           if (j2 == 0 && block->_num_succs == 2) {
 738             // Flip targets in succs map
 739             Block *tbs0 = block->_succs[0];
 740             Block *tbs1 = block->_succs[1];
 741             block->_succs.map(0, tbs1);
 742             block->_succs.map(1, tbs0);
 743           }
 744           break;
 745         }
 746       }
 747 
 748       // Remove all CatchProjs
 749       for (uint j = 0; j < block->_num_succs; j++) {
 750         block->pop_node();
 751       }
 752 
 753     } else if (block->_num_succs == 1) {
 754       // Block ends in a Goto?
 755       if (bnext == bs0) {
 756         // We fall into next block; remove the Goto
 757         block->pop_node();
 758       }
 759 
 760     } else if(block->_num_succs == 2) { // Block ends in a If?
 761       // Get opcode of 1st projection (matches _succs[0])
 762       // Note: Since this basic block has 2 exits, the last 2 nodes must
 763       //       be projections (in any order), the 3rd last node must be
 764       //       the IfNode (we have excluded other 2-way exits such as
 765       //       CatchNodes already).
 766       MachNode* iff   = block->get_node(block->number_of_nodes() - 3)->as_Mach();
 767       ProjNode* proj0 = block->get_node(block->number_of_nodes() - 2)->as_Proj();
 768       ProjNode* proj1 = block->get_node(block->number_of_nodes() - 1)->as_Proj();
 769 
 770       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
 771       assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
 772       assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
 773 
 774       Block* bs1 = block->non_connector_successor(1);
 775 
 776       // Check for neither successor block following the current
 777       // block ending in a conditional. If so, move one of the
 778       // successors after the current one, provided that the
 779       // successor was previously unscheduled, but moveable
 780       // (i.e., all paths to it involve a branch).
 781       if (!C->do_freq_based_layout() && bnext != bs0 && bnext != bs1) {
 782         // Choose the more common successor based on the probability
 783         // of the conditional branch.
 784         Block* bx = bs0;
 785         Block* by = bs1;
 786 
 787         // _prob is the probability of taking the true path. Make
 788         // p the probability of taking successor #1.
 789         float p = iff->as_MachIf()->_prob;
 790         if (proj0->Opcode() == Op_IfTrue) {
 791           p = 1.0 - p;
 792         }
 793 
 794         // Prefer successor #1 if p > 0.5
 795         if (p > PROB_FAIR) {
 796           bx = bs1;
 797           by = bs0;
 798         }
 799 
 800         // Attempt the more common successor first
 801         if (move_to_next(bx, i)) {
 802           bnext = bx;
 803         } else if (move_to_next(by, i)) {
 804           bnext = by;
 805         }
 806       }
 807 
 808       // Check for conditional branching the wrong way.  Negate
 809       // conditional, if needed, so it falls into the following block
 810       // and branches to the not-following block.
 811 
 812       // Check for the next block being in succs[0].  We are going to branch
 813       // to succs[0], so we want the fall-thru case as the next block in
 814       // succs[1].
 815       if (bnext == bs0) {
 816         // Fall-thru case in succs[0], so flip targets in succs map
 817         Block* tbs0 = block->_succs[0];
 818         Block* tbs1 = block->_succs[1];
 819         block->_succs.map(0, tbs1);
 820         block->_succs.map(1, tbs0);
 821         // Flip projection for each target
 822         ProjNode* tmp = proj0;
 823         proj0 = proj1;
 824         proj1 = tmp;
 825 
 826       } else if(bnext != bs1) {
 827         // Need a double-branch
 828         // The existing conditional branch need not change.
 829         // Add a unconditional branch to the false target.
 830         // Alas, it must appear in its own block and adding a
 831         // block this late in the game is complicated.  Sigh.
 832         insert_goto_at(i, 1);
 833       }
 834 
 835       // Make sure we TRUE branch to the target
 836       if (proj0->Opcode() == Op_IfFalse) {
 837         iff->as_MachIf()->negate();
 838       }
 839 
 840       block->pop_node();          // Remove IfFalse & IfTrue projections
 841       block->pop_node();
 842 
 843     } else {
 844       // Multi-exit block, e.g. a switch statement
 845       // But we don't need to do anything here
 846     }
 847   } // End of for all blocks
 848 }
 849 
 850 
 851 // postalloc_expand: Expand nodes after register allocation.
 852 //
 853 // postalloc_expand has to be called after register allocation, just
 854 // before output (i.e. scheduling). It only gets called if
 855 // Matcher::require_postalloc_expand is true.
 856 //
 857 // Background:
 858 //
 859 // Nodes that are expandend (one compound node requiring several
 860 // assembler instructions to be implemented split into two or more
 861 // non-compound nodes) after register allocation are not as nice as
 862 // the ones expanded before register allocation - they don't
 863 // participate in optimizations as global code motion. But after
 864 // register allocation we can expand nodes that use registers which
 865 // are not spillable or registers that are not allocated, because the
 866 // old compound node is simply replaced (in its location in the basic
 867 // block) by a new subgraph which does not contain compound nodes any
 868 // more. The scheduler called during output can later on process these
 869 // non-compound nodes.
 870 //
 871 // Implementation:
 872 //
 873 // Nodes requiring postalloc expand are specified in the ad file by using
 874 // a postalloc_expand statement instead of ins_encode. A postalloc_expand
 875 // contains a single call to an encoding, as does an ins_encode
 876 // statement. Instead of an emit() function a postalloc_expand() function
 877 // is generated that doesn't emit assembler but creates a new
 878 // subgraph. The code below calls this postalloc_expand function for each
 879 // node with the appropriate attribute. This function returns the new
 880 // nodes generated in an array passed in the call. The old node,
 881 // potential MachTemps before and potential Projs after it then get
 882 // disconnected and replaced by the new nodes. The instruction
 883 // generating the result has to be the last one in the array. In
 884 // general it is assumed that Projs after the node expanded are
 885 // kills. These kills are not required any more after expanding as
 886 // there are now explicitly visible def-use chains and the Projs are
 887 // removed. This does not hold for calls: They do not only have
 888 // kill-Projs but also Projs defining values. Therefore Projs after
 889 // the node expanded are removed for all but for calls. If a node is
 890 // to be reused, it must be added to the nodes list returned, and it
 891 // will be added again.
 892 //
 893 // Implementing the postalloc_expand function for a node in an enc_class
 894 // is rather tedious. It requires knowledge about many node details, as
 895 // the nodes and the subgraph must be hand crafted. To simplify this,
 896 // adlc generates some utility variables into the postalloc_expand function,
 897 // e.g., holding the operands as specified by the postalloc_expand encoding
 898 // specification, e.g.:
 899 //  * unsigned idx_<par_name>  holding the index of the node in the ins
 900 //  * Node *n_<par_name>       holding the node loaded from the ins
 901 //  * MachOpnd *op_<par_name>  holding the corresponding operand
 902 //
 903 // The ordering of operands can not be determined by looking at a
 904 // rule. Especially if a match rule matches several different trees,
 905 // several nodes are generated from one instruct specification with
 906 // different operand orderings. In this case the adlc generated
 907 // variables are the only way to access the ins and operands
 908 // deterministically.
 909 //
 910 // If assigning a register to a node that contains an oop, don't
 911 // forget to call ra_->set_oop() for the node.
 912 void PhaseCFG::postalloc_expand(PhaseRegAlloc* _ra) {
 913   GrowableArray <Node *> new_nodes(32); // Array with new nodes filled by postalloc_expand function of node.
 914   GrowableArray <Node *> remove(32);
 915   GrowableArray <Node *> succs(32);
 916   unsigned int max_idx = C->unique();   // Remember to distinguish new from old nodes.
 917   DEBUG_ONLY(bool foundNode = false);
 918 
 919   // for all blocks
 920   for (uint i = 0; i < number_of_blocks(); i++) {
 921     Block *b = _blocks[i];
 922     // For all instructions in the current block.
 923     for (uint j = 0; j < b->number_of_nodes(); j++) {
 924       Node *n = b->get_node(j);
 925       if (n->is_Mach() && n->as_Mach()->requires_postalloc_expand()) {
 926 #ifdef ASSERT
 927         if (TracePostallocExpand) {
 928           if (!foundNode) {
 929             foundNode = true;
 930             tty->print("POSTALLOC EXPANDING %d %s\n", C->compile_id(),
 931                        C->method() ? C->method()->name()->as_utf8() : C->stub_name());
 932           }
 933           tty->print("  postalloc expanding "); n->dump();
 934           if (Verbose) {
 935             tty->print("    with ins:\n");
 936             for (uint k = 0; k < n->len(); ++k) {
 937               if (n->in(k)) { tty->print("        "); n->in(k)->dump(); }
 938             }
 939           }
 940         }
 941 #endif
 942         new_nodes.clear();
 943         // Collect nodes that have to be removed from the block later on.
 944         uint req = n->req();
 945         remove.clear();
 946         for (uint k = 0; k < req; ++k) {
 947           if (n->in(k) && n->in(k)->is_MachTemp()) {
 948             remove.push(n->in(k)); // MachTemps which are inputs to the old node have to be removed.
 949             n->in(k)->del_req(0);
 950             j--;
 951           }
 952         }
 953 
 954         // Check whether we can allocate enough nodes. We set a fix limit for
 955         // the size of postalloc expands with this.
 956         uint unique_limit = C->unique() + 40;
 957         if (unique_limit >= _ra->node_regs_max_index()) {
 958           Compile::current()->record_failure("out of nodes in postalloc expand");
 959           return;
 960         }
 961 
 962         // Emit (i.e. generate new nodes).
 963         n->as_Mach()->postalloc_expand(&new_nodes, _ra);
 964 
 965         assert(C->unique() < unique_limit, "You allocated too many nodes in your postalloc expand.");
 966 
 967         // Disconnect the inputs of the old node.
 968         //
 969         // We reuse MachSpillCopy nodes. If we need to expand them, there
 970         // are many, so reusing pays off. If reused, the node already
 971         // has the new ins. n must be the last node on new_nodes list.
 972         if (!n->is_MachSpillCopy()) {
 973           for (int k = req - 1; k >= 0; --k) {
 974             n->del_req(k);
 975           }
 976         }
 977 
 978 #ifdef ASSERT
 979         // Check that all nodes have proper operands.
 980         for (int k = 0; k < new_nodes.length(); ++k) {
 981           if (new_nodes.at(k)->_idx < max_idx || !new_nodes.at(k)->is_Mach()) continue; // old node, Proj ...
 982           MachNode *m = new_nodes.at(k)->as_Mach();
 983           for (unsigned int l = 0; l < m->num_opnds(); ++l) {
 984             if (MachOper::notAnOper(m->_opnds[l])) {
 985               outputStream *os = tty;
 986               os->print("Node %s ", m->Name());
 987               os->print("has invalid opnd %d: %p\n", l, m->_opnds[l]);
 988               assert(0, "Invalid operands, see inline trace in hs_err_pid file.");
 989             }
 990           }
 991         }
 992 #endif
 993 
 994         // Collect succs of old node in remove (for projections) and in succs (for
 995         // all other nodes) do _not_ collect projections in remove (but in succs)
 996         // in case the node is a call. We need the projections for calls as they are
 997         // associated with registes (i.e. they are defs).
 998         succs.clear();
 999         for (DUIterator k = n->outs(); n->has_out(k); k++) {
1000           if (n->out(k)->is_Proj() && !n->is_MachCall() && !n->is_MachBranch()) {
1001             remove.push(n->out(k));
1002           } else {
1003             succs.push(n->out(k));
1004           }
1005         }
1006         // Replace old node n as input of its succs by last of the new nodes.
1007         for (int k = 0; k < succs.length(); ++k) {
1008           Node *succ = succs.at(k);
1009           for (uint l = 0; l < succ->req(); ++l) {
1010             if (succ->in(l) == n) {
1011               succ->set_req(l, new_nodes.at(new_nodes.length() - 1));
1012             }
1013           }
1014           for (uint l = succ->req(); l < succ->len(); ++l) {
1015             if (succ->in(l) == n) {
1016               succ->set_prec(l, new_nodes.at(new_nodes.length() - 1));
1017             }
1018           }
1019         }
1020 
1021         // Index of old node in block.
1022         uint index = b->find_node(n);
1023         // Insert new nodes into block and map them in nodes->blocks array
1024         // and remember last node in n2.
1025         Node *n2 = NULL;
1026         for (int k = 0; k < new_nodes.length(); ++k) {
1027           n2 = new_nodes.at(k);
1028           b->insert_node(n2, ++index);
1029           map_node_to_block(n2, b);
1030         }
1031 
1032         // Add old node n to remove and remove them all from block.
1033         remove.push(n);
1034         j--;
1035 #ifdef ASSERT
1036         if (TracePostallocExpand && Verbose) {
1037           tty->print("    removing:\n");
1038           for (int k = 0; k < remove.length(); ++k) {
1039             tty->print("        "); remove.at(k)->dump();
1040           }
1041           tty->print("    inserting:\n");
1042           for (int k = 0; k < new_nodes.length(); ++k) {
1043             tty->print("        "); new_nodes.at(k)->dump();
1044           }
1045         }
1046 #endif
1047         for (int k = 0; k < remove.length(); ++k) {
1048           if (b->contains(remove.at(k))) {
1049             b->find_remove(remove.at(k));
1050           } else {
1051             assert(remove.at(k)->is_Proj() && (remove.at(k)->in(0)->is_MachBranch()), "");
1052           }
1053         }
1054         // If anything has been inserted (n2 != NULL), continue after last node inserted.
1055         // This does not always work. Some postalloc expands don't insert any nodes, if they
1056         // do optimizations (e.g., max(x,x)). In this case we decrement j accordingly.
1057         j = n2 ? b->find_node(n2) : j;
1058       }
1059     }
1060   }
1061 
1062 #ifdef ASSERT
1063   if (foundNode) {
1064     tty->print("FINISHED %d %s\n", C->compile_id(),
1065                C->method() ? C->method()->name()->as_utf8() : C->stub_name());
1066     tty->flush();
1067   }
1068 #endif
1069 }
1070 
1071 
1072 //------------------------------dump-------------------------------------------
1073 #ifndef PRODUCT
1074 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
1075   const Node *x = end->is_block_proj();
1076   assert( x, "not a CFG" );
1077 
1078   // Do not visit this block again
1079   if( visited.test_set(x->_idx) ) return;
1080 
1081   // Skip through this block
1082   const Node *p = x;
1083   do {
1084     p = p->in(0);               // Move control forward
1085     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
1086   } while( !p->is_block_start() );
1087 
1088   // Recursively visit
1089   for (uint i = 1; i < p->req(); i++) {
1090     _dump_cfg(p->in(i), visited);
1091   }
1092 
1093   // Dump the block
1094   get_block_for_node(p)->dump(this);
1095 }
1096 
1097 void PhaseCFG::dump( ) const {
1098   tty->print("\n--- CFG --- %d BBs\n", number_of_blocks());
1099   if (_blocks.size()) {        // Did we do basic-block layout?
1100     for (uint i = 0; i < number_of_blocks(); i++) {
1101       const Block* block = get_block(i);
1102       block->dump(this);
1103     }
1104   } else {                      // Else do it with a DFS
1105     VectorSet visited(_block_arena);
1106     _dump_cfg(_root,visited);
1107   }
1108 }
1109 
1110 void PhaseCFG::dump_headers() {
1111   for (uint i = 0; i < number_of_blocks(); i++) {
1112     Block* block = get_block(i);
1113     if (block != NULL) {
1114       block->dump_head(this);
1115     }
1116   }
1117 }
1118 
1119 void PhaseCFG::verify() const {
1120 #ifdef ASSERT
1121   // Verify sane CFG
1122   for (uint i = 0; i < number_of_blocks(); i++) {
1123     Block* block = get_block(i);
1124     uint cnt = block->number_of_nodes();
1125     uint j;
1126     for (j = 0; j < cnt; j++)  {
1127       Node *n = block->get_node(j);
1128       assert(get_block_for_node(n) == block, "");
1129       if (j >= 1 && n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1130         assert(j == 1 || block->get_node(j-1)->is_Phi(), "CreateEx must be first instruction in block");
1131       }
1132       for (uint k = 0; k < n->req(); k++) {
1133         Node *def = n->in(k);
1134         if (def && def != n) {
1135           assert(get_block_for_node(def) || def->is_Con(), "must have block; constants for debug info ok");
1136           // Verify that instructions in the block is in correct order.
1137           // Uses must follow their definition if they are at the same block.
1138           // Mostly done to check that MachSpillCopy nodes are placed correctly
1139           // when CreateEx node is moved in build_ifg_physical().
1140           if (get_block_for_node(def) == block && !(block->head()->is_Loop() && n->is_Phi()) &&
1141               // See (+++) comment in reg_split.cpp
1142               !(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
1143             bool is_loop = false;
1144             if (n->is_Phi()) {
1145               for (uint l = 1; l < def->req(); l++) {
1146                 if (n == def->in(l)) {
1147                   is_loop = true;
1148                   break; // Some kind of loop
1149                 }
1150               }
1151             }
1152             assert(is_loop || block->find_node(def) < j, "uses must follow definitions");
1153           }
1154         }
1155       }
1156     }
1157 
1158     j = block->end_idx();
1159     Node* bp = (Node*)block->get_node(block->number_of_nodes() - 1)->is_block_proj();
1160     assert(bp, "last instruction must be a block proj");
1161     assert(bp == block->get_node(j), "wrong number of successors for this block");
1162     if (bp->is_Catch()) {
1163       while (block->get_node(--j)->is_MachProj()) {
1164         ;
1165       }
1166       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1167     } else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
1168       assert(block->_num_succs == 2, "Conditional branch must have two targets");
1169     }
1170   }
1171 #endif
1172 }
1173 #endif
1174 
1175 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
1176   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
1177 }
1178 
1179 void UnionFind::extend( uint from_idx, uint to_idx ) {
1180   _nesting.check();
1181   if( from_idx >= _max ) {
1182     uint size = 16;
1183     while( size <= from_idx ) size <<=1;
1184     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
1185     _max = size;
1186   }
1187   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
1188   _indices[from_idx] = to_idx;
1189 }
1190 
1191 void UnionFind::reset( uint max ) {
1192   assert( max <= max_uint, "Must fit within uint" );
1193   // Force the Union-Find mapping to be at least this large
1194   extend(max,0);
1195   // Initialize to be the ID mapping.
1196   for( uint i=0; i<max; i++ ) map(i,i);
1197 }
1198 
1199 // Straight out of Tarjan's union-find algorithm
1200 uint UnionFind::Find_compress( uint idx ) {
1201   uint cur  = idx;
1202   uint next = lookup(cur);
1203   while( next != cur ) {        // Scan chain of equivalences
1204     assert( next < cur, "always union smaller" );
1205     cur = next;                 // until find a fixed-point
1206     next = lookup(cur);
1207   }
1208   // Core of union-find algorithm: update chain of
1209   // equivalences to be equal to the root.
1210   while( idx != next ) {
1211     uint tmp = lookup(idx);
1212     map(idx, next);
1213     idx = tmp;
1214   }
1215   return idx;
1216 }
1217 
1218 // Like Find above, but no path compress, so bad asymptotic behavior
1219 uint UnionFind::Find_const( uint idx ) const {
1220   if( idx == 0 ) return idx;    // Ignore the zero idx
1221   // Off the end?  This can happen during debugging dumps
1222   // when data structures have not finished being updated.
1223   if( idx >= _max ) return idx;
1224   uint next = lookup(idx);
1225   while( next != idx ) {        // Scan chain of equivalences
1226     idx = next;                 // until find a fixed-point
1227     next = lookup(idx);
1228   }
1229   return next;
1230 }
1231 
1232 // union 2 sets together.
1233 void UnionFind::Union( uint idx1, uint idx2 ) {
1234   uint src = Find(idx1);
1235   uint dst = Find(idx2);
1236   assert( src, "" );
1237   assert( dst, "" );
1238   assert( src < _max, "oob" );
1239   assert( dst < _max, "oob" );
1240   assert( src < dst, "always union smaller" );
1241   map(dst,src);
1242 }
1243 
1244 #ifndef PRODUCT
1245 void Trace::dump( ) const {
1246   tty->print_cr("Trace (freq %f)", first_block()->_freq);
1247   for (Block *b = first_block(); b != NULL; b = next(b)) {
1248     tty->print("  B%d", b->_pre_order);
1249     if (b->head()->is_Loop()) {
1250       tty->print(" (L%d)", b->compute_loop_alignment());
1251     }
1252     if (b->has_loop_alignment()) {
1253       tty->print(" (T%d)", b->code_alignment());
1254     }
1255   }
1256   tty->cr();
1257 }
1258 
1259 void CFGEdge::dump( ) const {
1260   tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
1261              from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
1262   switch(state()) {
1263   case connected:
1264     tty->print("connected");
1265     break;
1266   case open:
1267     tty->print("open");
1268     break;
1269   case interior:
1270     tty->print("interior");
1271     break;
1272   }
1273   if (infrequent()) {
1274     tty->print("  infrequent");
1275   }
1276   tty->cr();
1277 }
1278 #endif
1279 
1280 // Comparison function for edges
1281 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
1282   float freq0 = (*e0)->freq();
1283   float freq1 = (*e1)->freq();
1284   if (freq0 != freq1) {
1285     return freq0 > freq1 ? -1 : 1;
1286   }
1287 
1288   int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
1289   int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
1290 
1291   return dist1 - dist0;
1292 }
1293 
1294 // Comparison function for edges
1295 extern "C" int trace_frequency_order(const void *p0, const void *p1) {
1296   Trace *tr0 = *(Trace **) p0;
1297   Trace *tr1 = *(Trace **) p1;
1298   Block *b0 = tr0->first_block();
1299   Block *b1 = tr1->first_block();
1300 
1301   // The trace of connector blocks goes at the end;
1302   // we only expect one such trace
1303   if (b0->is_connector() != b1->is_connector()) {
1304     return b1->is_connector() ? -1 : 1;
1305   }
1306 
1307   // Pull more frequently executed blocks to the beginning
1308   float freq0 = b0->_freq;
1309   float freq1 = b1->_freq;
1310   if (freq0 != freq1) {
1311     return freq0 > freq1 ? -1 : 1;
1312   }
1313 
1314   int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
1315 
1316   return diff;
1317 }
1318 
1319 // Find edges of interest, i.e, those which can fall through. Presumes that
1320 // edges which don't fall through are of low frequency and can be generally
1321 // ignored.  Initialize the list of traces.
1322 void PhaseBlockLayout::find_edges() {
1323   // Walk the blocks, creating edges and Traces
1324   uint i;
1325   Trace *tr = NULL;
1326   for (i = 0; i < _cfg.number_of_blocks(); i++) {
1327     Block* b = _cfg.get_block(i);
1328     tr = new Trace(b, next, prev);
1329     traces[tr->id()] = tr;
1330 
1331     // All connector blocks should be at the end of the list
1332     if (b->is_connector()) break;
1333 
1334     // If this block and the next one have a one-to-one successor
1335     // predecessor relationship, simply append the next block
1336     int nfallthru = b->num_fall_throughs();
1337     while (nfallthru == 1 &&
1338            b->succ_fall_through(0)) {
1339       Block *n = b->_succs[0];
1340 
1341       // Skip over single-entry connector blocks, we don't want to
1342       // add them to the trace.
1343       while (n->is_connector() && n->num_preds() == 1) {
1344         n = n->_succs[0];
1345       }
1346 
1347       // We see a merge point, so stop search for the next block
1348       if (n->num_preds() != 1) break;
1349 
1350       i++;
1351       assert(n = _cfg.get_block(i), "expecting next block");
1352       tr->append(n);
1353       uf->map(n->_pre_order, tr->id());
1354       traces[n->_pre_order] = NULL;
1355       nfallthru = b->num_fall_throughs();
1356       b = n;
1357     }
1358 
1359     if (nfallthru > 0) {
1360       // Create a CFGEdge for each outgoing
1361       // edge that could be a fall-through.
1362       for (uint j = 0; j < b->_num_succs; j++ ) {
1363         if (b->succ_fall_through(j)) {
1364           Block *target = b->non_connector_successor(j);
1365           float freq = b->_freq * b->succ_prob(j);
1366           int from_pct = (int) ((100 * freq) / b->_freq);
1367           int to_pct = (int) ((100 * freq) / target->_freq);
1368           edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
1369         }
1370       }
1371     }
1372   }
1373 
1374   // Group connector blocks into one trace
1375   for (i++; i < _cfg.number_of_blocks(); i++) {
1376     Block *b = _cfg.get_block(i);
1377     assert(b->is_connector(), "connector blocks at the end");
1378     tr->append(b);
1379     uf->map(b->_pre_order, tr->id());
1380     traces[b->_pre_order] = NULL;
1381   }
1382 }
1383 
1384 // Union two traces together in uf, and null out the trace in the list
1385 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) {
1386   uint old_id = old_trace->id();
1387   uint updated_id = updated_trace->id();
1388 
1389   uint lo_id = updated_id;
1390   uint hi_id = old_id;
1391 
1392   // If from is greater than to, swap values to meet
1393   // UnionFind guarantee.
1394   if (updated_id > old_id) {
1395     lo_id = old_id;
1396     hi_id = updated_id;
1397 
1398     // Fix up the trace ids
1399     traces[lo_id] = traces[updated_id];
1400     updated_trace->set_id(lo_id);
1401   }
1402 
1403   // Union the lower with the higher and remove the pointer
1404   // to the higher.
1405   uf->Union(lo_id, hi_id);
1406   traces[hi_id] = NULL;
1407 }
1408 
1409 // Append traces together via the most frequently executed edges
1410 void PhaseBlockLayout::grow_traces() {
1411   // Order the edges, and drive the growth of Traces via the most
1412   // frequently executed edges.
1413   edges->sort(edge_order);
1414   for (int i = 0; i < edges->length(); i++) {
1415     CFGEdge *e = edges->at(i);
1416 
1417     if (e->state() != CFGEdge::open) continue;
1418 
1419     Block *src_block = e->from();
1420     Block *targ_block = e->to();
1421 
1422     // Don't grow traces along backedges?
1423     if (!BlockLayoutRotateLoops) {
1424       if (targ_block->_rpo <= src_block->_rpo) {
1425         targ_block->set_loop_alignment(targ_block);
1426         continue;
1427       }
1428     }
1429 
1430     Trace *src_trace = trace(src_block);
1431     Trace *targ_trace = trace(targ_block);
1432 
1433     // If the edge in question can join two traces at their ends,
1434     // append one trace to the other.
1435    if (src_trace->last_block() == src_block) {
1436       if (src_trace == targ_trace) {
1437         e->set_state(CFGEdge::interior);
1438         if (targ_trace->backedge(e)) {
1439           // Reset i to catch any newly eligible edge
1440           // (Or we could remember the first "open" edge, and reset there)
1441           i = 0;
1442         }
1443       } else if (targ_trace->first_block() == targ_block) {
1444         e->set_state(CFGEdge::connected);
1445         src_trace->append(targ_trace);
1446         union_traces(src_trace, targ_trace);
1447       }
1448     }
1449   }
1450 }
1451 
1452 // Embed one trace into another, if the fork or join points are sufficiently
1453 // balanced.
1454 void PhaseBlockLayout::merge_traces(bool fall_thru_only) {
1455   // Walk the edge list a another time, looking at unprocessed edges.
1456   // Fold in diamonds
1457   for (int i = 0; i < edges->length(); i++) {
1458     CFGEdge *e = edges->at(i);
1459 
1460     if (e->state() != CFGEdge::open) continue;
1461     if (fall_thru_only) {
1462       if (e->infrequent()) continue;
1463     }
1464 
1465     Block *src_block = e->from();
1466     Trace *src_trace = trace(src_block);
1467     bool src_at_tail = src_trace->last_block() == src_block;
1468 
1469     Block *targ_block  = e->to();
1470     Trace *targ_trace  = trace(targ_block);
1471     bool targ_at_start = targ_trace->first_block() == targ_block;
1472 
1473     if (src_trace == targ_trace) {
1474       // This may be a loop, but we can't do much about it.
1475       e->set_state(CFGEdge::interior);
1476       continue;
1477     }
1478 
1479     if (fall_thru_only) {
1480       // If the edge links the middle of two traces, we can't do anything.
1481       // Mark the edge and continue.
1482       if (!src_at_tail & !targ_at_start) {
1483         continue;
1484       }
1485 
1486       // Don't grow traces along backedges?
1487       if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
1488           continue;
1489       }
1490 
1491       // If both ends of the edge are available, why didn't we handle it earlier?
1492       assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
1493 
1494       if (targ_at_start) {
1495         // Insert the "targ" trace in the "src" trace if the insertion point
1496         // is a two way branch.
1497         // Better profitability check possible, but may not be worth it.
1498         // Someday, see if the this "fork" has an associated "join";
1499         // then make a policy on merging this trace at the fork or join.
1500         // For example, other things being equal, it may be better to place this
1501         // trace at the join point if the "src" trace ends in a two-way, but
1502         // the insertion point is one-way.
1503         assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
1504         e->set_state(CFGEdge::connected);
1505         src_trace->insert_after(src_block, targ_trace);
1506         union_traces(src_trace, targ_trace);
1507       } else if (src_at_tail) {
1508         if (src_trace != trace(_cfg.get_root_block())) {
1509           e->set_state(CFGEdge::connected);
1510           targ_trace->insert_before(targ_block, src_trace);
1511           union_traces(targ_trace, src_trace);
1512         }
1513       }
1514     } else if (e->state() == CFGEdge::open) {
1515       // Append traces, even without a fall-thru connection.
1516       // But leave root entry at the beginning of the block list.
1517       if (targ_trace != trace(_cfg.get_root_block())) {
1518         e->set_state(CFGEdge::connected);
1519         src_trace->append(targ_trace);
1520         union_traces(src_trace, targ_trace);
1521       }
1522     }
1523   }
1524 }
1525 
1526 // Order the sequence of the traces in some desirable way, and fixup the
1527 // jumps at the end of each block.
1528 void PhaseBlockLayout::reorder_traces(int count) {
1529   ResourceArea *area = Thread::current()->resource_area();
1530   Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
1531   Block_List worklist;
1532   int new_count = 0;
1533 
1534   // Compact the traces.
1535   for (int i = 0; i < count; i++) {
1536     Trace *tr = traces[i];
1537     if (tr != NULL) {
1538       new_traces[new_count++] = tr;
1539     }
1540   }
1541 
1542   // The entry block should be first on the new trace list.
1543   Trace *tr = trace(_cfg.get_root_block());
1544   assert(tr == new_traces[0], "entry trace misplaced");
1545 
1546   // Sort the new trace list by frequency
1547   qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
1548 
1549   // Patch up the successor blocks
1550   _cfg.clear_blocks();
1551   for (int i = 0; i < new_count; i++) {
1552     Trace *tr = new_traces[i];
1553     if (tr != NULL) {
1554       tr->fixup_blocks(_cfg);
1555     }
1556   }
1557 }
1558 
1559 // Order basic blocks based on frequency
1560 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg)
1561 : Phase(BlockLayout)
1562 , _cfg(cfg) {
1563   ResourceMark rm;
1564   ResourceArea *area = Thread::current()->resource_area();
1565 
1566   // List of traces
1567   int size = _cfg.number_of_blocks() + 1;
1568   traces = NEW_ARENA_ARRAY(area, Trace *, size);
1569   memset(traces, 0, size*sizeof(Trace*));
1570   next = NEW_ARENA_ARRAY(area, Block *, size);
1571   memset(next,   0, size*sizeof(Block *));
1572   prev = NEW_ARENA_ARRAY(area, Block *, size);
1573   memset(prev  , 0, size*sizeof(Block *));
1574 
1575   // List of edges
1576   edges = new GrowableArray<CFGEdge*>;
1577 
1578   // Mapping block index --> block_trace
1579   uf = new UnionFind(size);
1580   uf->reset(size);
1581 
1582   // Find edges and create traces.
1583   find_edges();
1584 
1585   // Grow traces at their ends via most frequent edges.
1586   grow_traces();
1587 
1588   // Merge one trace into another, but only at fall-through points.
1589   // This may make diamonds and other related shapes in a trace.
1590   merge_traces(true);
1591 
1592   // Run merge again, allowing two traces to be catenated, even if
1593   // one does not fall through into the other. This appends loosely
1594   // related traces to be near each other.
1595   merge_traces(false);
1596 
1597   // Re-order all the remaining traces by frequency
1598   reorder_traces(size);
1599 
1600   assert(_cfg.number_of_blocks() >= (uint) (size - 1), "number of blocks can not shrink");
1601 }
1602 
1603 
1604 // Edge e completes a loop in a trace. If the target block is head of the
1605 // loop, rotate the loop block so that the loop ends in a conditional branch.
1606 bool Trace::backedge(CFGEdge *e) {
1607   bool loop_rotated = false;
1608   Block *src_block  = e->from();
1609   Block *targ_block    = e->to();
1610 
1611   assert(last_block() == src_block, "loop discovery at back branch");
1612   if (first_block() == targ_block) {
1613     if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
1614       // Find the last block in the trace that has a conditional
1615       // branch.
1616       Block *b;
1617       for (b = last_block(); b != NULL; b = prev(b)) {
1618         if (b->num_fall_throughs() == 2) {
1619           break;
1620         }
1621       }
1622 
1623       if (b != last_block() && b != NULL) {
1624         loop_rotated = true;
1625 
1626         // Rotate the loop by doing two-part linked-list surgery.
1627         append(first_block());
1628         break_loop_after(b);
1629       }
1630     }
1631 
1632     // Backbranch to the top of a trace
1633     // Scroll forward through the trace from the targ_block. If we find
1634     // a loop head before another loop top, use the the loop head alignment.
1635     for (Block *b = targ_block; b != NULL; b = next(b)) {
1636       if (b->has_loop_alignment()) {
1637         break;
1638       }
1639       if (b->head()->is_Loop()) {
1640         targ_block = b;
1641         break;
1642       }
1643     }
1644 
1645     first_block()->set_loop_alignment(targ_block);
1646 
1647   } else {
1648     // Backbranch into the middle of a trace
1649     targ_block->set_loop_alignment(targ_block);
1650   }
1651 
1652   return loop_rotated;
1653 }
1654 
1655 // push blocks onto the CFG list
1656 // ensure that blocks have the correct two-way branch sense
1657 void Trace::fixup_blocks(PhaseCFG &cfg) {
1658   Block *last = last_block();
1659   for (Block *b = first_block(); b != NULL; b = next(b)) {
1660     cfg.add_block(b);
1661     if (!b->is_connector()) {
1662       int nfallthru = b->num_fall_throughs();
1663       if (b != last) {
1664         if (nfallthru == 2) {
1665           // Ensure that the sense of the branch is correct
1666           Block *bnext = next(b);
1667           Block *bs0 = b->non_connector_successor(0);
1668 
1669           MachNode *iff = b->get_node(b->number_of_nodes() - 3)->as_Mach();
1670           ProjNode *proj0 = b->get_node(b->number_of_nodes() - 2)->as_Proj();
1671           ProjNode *proj1 = b->get_node(b->number_of_nodes() - 1)->as_Proj();
1672 
1673           if (bnext == bs0) {
1674             // Fall-thru case in succs[0], should be in succs[1]
1675 
1676             // Flip targets in _succs map
1677             Block *tbs0 = b->_succs[0];
1678             Block *tbs1 = b->_succs[1];
1679             b->_succs.map( 0, tbs1 );
1680             b->_succs.map( 1, tbs0 );
1681 
1682             // Flip projections to match targets
1683             b->map_node(proj1, b->number_of_nodes() - 2);
1684             b->map_node(proj0, b->number_of_nodes() - 1);
1685           }
1686         }
1687       }
1688     }
1689   }
1690 }