1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/block.hpp"
  29 #include "opto/cfgnode.hpp"
  30 #include "opto/chaitin.hpp"
  31 #include "opto/loopnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/matcher.hpp"
  34 #include "opto/opcodes.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "utilities/copy.hpp"
  37 
  38 void Block_Array::grow( uint i ) {
  39   assert(i >= Max(), "must be an overflow");
  40   debug_only(_limit = i+1);
  41   if( i < _size )  return;
  42   if( !_size ) {
  43     _size = 1;
  44     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
  45     _blocks[0] = NULL;
  46   }
  47   uint old = _size;
  48   while( i >= _size ) _size <<= 1;      // Double to fit
  49   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
  50   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
  51 }
  52 
  53 void Block_List::remove(uint i) {
  54   assert(i < _cnt, "index out of bounds");
  55   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
  56   pop(); // shrink list by one block
  57 }
  58 
  59 void Block_List::insert(uint i, Block *b) {
  60   push(b); // grow list by one block
  61   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
  62   _blocks[i] = b;
  63 }
  64 
  65 #ifndef PRODUCT
  66 void Block_List::print() {
  67   for (uint i=0; i < size(); i++) {
  68     tty->print("B%d ", _blocks[i]->_pre_order);
  69   }
  70   tty->print("size = %d\n", size());
  71 }
  72 #endif
  73 
  74 uint Block::code_alignment() {
  75   // Check for Root block
  76   if (_pre_order == 0) return CodeEntryAlignment;
  77   // Check for Start block
  78   if (_pre_order == 1) return InteriorEntryAlignment;
  79   // Check for loop alignment
  80   if (has_loop_alignment()) return loop_alignment();
  81 
  82   return relocInfo::addr_unit(); // no particular alignment
  83 }
  84 
  85 uint Block::compute_loop_alignment() {
  86   Node *h = head();
  87   int unit_sz = relocInfo::addr_unit();
  88   if (h->is_Loop() && h->as_Loop()->is_inner_loop())  {
  89     // Pre- and post-loops have low trip count so do not bother with
  90     // NOPs for align loop head.  The constants are hidden from tuning
  91     // but only because my "divide by 4" heuristic surely gets nearly
  92     // all possible gain (a "do not align at all" heuristic has a
  93     // chance of getting a really tiny gain).
  94     if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
  95                                 h->as_CountedLoop()->is_post_loop())) {
  96       return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
  97     }
  98     // Loops with low backedge frequency should not be aligned.
  99     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
 100     if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
 101       return unit_sz; // Loop does not loop, more often than not!
 102     }
 103     return OptoLoopAlignment; // Otherwise align loop head
 104   }
 105 
 106   return unit_sz; // no particular alignment
 107 }
 108 
 109 // Compute the size of first 'inst_cnt' instructions in this block.
 110 // Return the number of instructions left to compute if the block has
 111 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
 112 // exceeds OptoLoopAlignment.
 113 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
 114                                     PhaseRegAlloc* ra) {
 115   uint last_inst = number_of_nodes();
 116   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
 117     uint inst_size = get_node(j)->size(ra);
 118     if( inst_size > 0 ) {
 119       inst_cnt--;
 120       uint sz = sum_size + inst_size;
 121       if( sz <= (uint)OptoLoopAlignment ) {
 122         // Compute size of instructions which fit into fetch buffer only
 123         // since all inst_cnt instructions will not fit even if we align them.
 124         sum_size = sz;
 125       } else {
 126         return 0;
 127       }
 128     }
 129   }
 130   return inst_cnt;
 131 }
 132 
 133 uint Block::find_node( const Node *n ) const {
 134   for( uint i = 0; i < number_of_nodes(); i++ ) {
 135     if( get_node(i) == n )
 136       return i;
 137   }
 138   ShouldNotReachHere();
 139   return 0;
 140 }
 141 
 142 // Find and remove n from block list
 143 void Block::find_remove( const Node *n ) {
 144   remove_node(find_node(n));
 145 }
 146 
 147 bool Block::contains(const Node *n) const {
 148   return _nodes.contains(n);
 149 }
 150 
 151 // Return empty status of a block.  Empty blocks contain only the head, other
 152 // ideal nodes, and an optional trailing goto.
 153 int Block::is_Empty() const {
 154 
 155   // Root or start block is not considered empty
 156   if (head()->is_Root() || head()->is_Start()) {
 157     return not_empty;
 158   }
 159 
 160   int success_result = completely_empty;
 161   int end_idx = number_of_nodes() - 1;
 162 
 163   // Check for ending goto
 164   if ((end_idx > 0) && (get_node(end_idx)->is_MachGoto())) {
 165     success_result = empty_with_goto;
 166     end_idx--;
 167   }
 168 
 169   // Unreachable blocks are considered empty
 170   if (num_preds() <= 1) {
 171     return success_result;
 172   }
 173 
 174   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
 175   // turn directly into code, because only MachNodes have non-trivial
 176   // emit() functions.
 177   while ((end_idx > 0) && !get_node(end_idx)->is_Mach()) {
 178     end_idx--;
 179   }
 180 
 181   // No room for any interesting instructions?
 182   if (end_idx == 0) {
 183     return success_result;
 184   }
 185 
 186   return not_empty;
 187 }
 188 
 189 // Return true if the block's code implies that it is likely to be
 190 // executed infrequently.  Check to see if the block ends in a Halt or
 191 // a low probability call.
 192 bool Block::has_uncommon_code() const {
 193   Node* en = end();
 194 
 195   if (en->is_MachGoto())
 196     en = en->in(0);
 197   if (en->is_Catch())
 198     en = en->in(0);
 199   if (en->is_MachProj() && en->in(0)->is_MachCall()) {
 200     MachCallNode* call = en->in(0)->as_MachCall();
 201     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
 202       // This is true for slow-path stubs like new_{instance,array},
 203       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
 204       // The magic number corresponds to the probability of an uncommon_trap,
 205       // even though it is a count not a probability.
 206       return true;
 207     }
 208   }
 209 
 210   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
 211   return op == Op_Halt;
 212 }
 213 
 214 // True if block is low enough frequency or guarded by a test which
 215 // mostly does not go here.
 216 bool PhaseCFG::is_uncommon(const Block* block) {
 217   // Initial blocks must never be moved, so are never uncommon.
 218   if (block->head()->is_Root() || block->head()->is_Start())  return false;
 219 
 220   // Check for way-low freq
 221   if(block->_freq < BLOCK_FREQUENCY(0.00001f) ) return true;
 222 
 223   // Look for code shape indicating uncommon_trap or slow path
 224   if (block->has_uncommon_code()) return true;
 225 
 226   const float epsilon = 0.05f;
 227   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
 228   uint uncommon_preds = 0;
 229   uint freq_preds = 0;
 230   uint uncommon_for_freq_preds = 0;
 231 
 232   for( uint i=1; i< block->num_preds(); i++ ) {
 233     Block* guard = get_block_for_node(block->pred(i));
 234     // Check to see if this block follows its guard 1 time out of 10000
 235     // or less.
 236     //
 237     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
 238     // we intend to be "uncommon", such as slow-path TLE allocation,
 239     // predicted call failure, and uncommon trap triggers.
 240     //
 241     // Use an epsilon value of 5% to allow for variability in frequency
 242     // predictions and floating point calculations. The net effect is
 243     // that guard_factor is set to 9500.
 244     //
 245     // Ignore low-frequency blocks.
 246     // The next check is (guard->_freq < 1.e-5 * 9500.).
 247     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
 248       uncommon_preds++;
 249     } else {
 250       freq_preds++;
 251       if(block->_freq < guard->_freq * guard_factor ) {
 252         uncommon_for_freq_preds++;
 253       }
 254     }
 255   }
 256   if( block->num_preds() > 1 &&
 257       // The block is uncommon if all preds are uncommon or
 258       (uncommon_preds == (block->num_preds()-1) ||
 259       // it is uncommon for all frequent preds.
 260        uncommon_for_freq_preds == freq_preds) ) {
 261     return true;
 262   }
 263   return false;
 264 }
 265 
 266 #ifndef PRODUCT
 267 void Block::dump_bidx(const Block* orig, outputStream* st) const {
 268   if (_pre_order) st->print("B%d",_pre_order);
 269   else st->print("N%d", head()->_idx);
 270 
 271   if (Verbose && orig != this) {
 272     // Dump the original block's idx
 273     st->print(" (");
 274     orig->dump_bidx(orig, st);
 275     st->print(")");
 276   }
 277 }
 278 
 279 void Block::dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st) const {
 280   if (is_connector()) {
 281     for (uint i=1; i<num_preds(); i++) {
 282       Block *p = cfg->get_block_for_node(pred(i));
 283       p->dump_pred(cfg, orig, st);
 284     }
 285   } else {
 286     dump_bidx(orig, st);
 287     st->print(" ");
 288   }
 289 }
 290 
 291 void Block::dump_head(const PhaseCFG* cfg, outputStream* st) const {
 292   // Print the basic block
 293   dump_bidx(this, st);
 294   st->print(": #\t");
 295 
 296   // Print the incoming CFG edges and the outgoing CFG edges
 297   for( uint i=0; i<_num_succs; i++ ) {
 298     non_connector_successor(i)->dump_bidx(_succs[i], st);
 299     st->print(" ");
 300   }
 301   st->print("<- ");
 302   if( head()->is_block_start() ) {
 303     for (uint i=1; i<num_preds(); i++) {
 304       Node *s = pred(i);
 305       if (cfg != NULL) {
 306         Block *p = cfg->get_block_for_node(s);
 307         p->dump_pred(cfg, p, st);
 308       } else {
 309         while (!s->is_block_start())
 310           s = s->in(0);
 311         st->print("N%d ", s->_idx );
 312       }
 313     }
 314   } else {
 315     st->print("BLOCK HEAD IS JUNK  ");
 316   }
 317 
 318   // Print loop, if any
 319   const Block *bhead = this;    // Head of self-loop
 320   Node *bh = bhead->head();
 321 
 322   if ((cfg != NULL) && bh->is_Loop() && !head()->is_Root()) {
 323     LoopNode *loop = bh->as_Loop();
 324     const Block *bx = cfg->get_block_for_node(loop->in(LoopNode::LoopBackControl));
 325     while (bx->is_connector()) {
 326       bx = cfg->get_block_for_node(bx->pred(1));
 327     }
 328     st->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
 329     // Dump any loop-specific bits, especially for CountedLoops.
 330     loop->dump_spec(st);
 331   } else if (has_loop_alignment()) {
 332     st->print(" top-of-loop");
 333   }
 334   st->print(" Freq: %g",_freq);
 335   if( Verbose || WizardMode ) {
 336     st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
 337     st->print(" RegPressure: %d",_reg_pressure);
 338     st->print(" IHRP Index: %d",_ihrp_index);
 339     st->print(" FRegPressure: %d",_freg_pressure);
 340     st->print(" FHRP Index: %d",_fhrp_index);
 341   }
 342   st->print_cr("");
 343 }
 344 
 345 void Block::dump() const {
 346   dump(NULL);
 347 }
 348 
 349 void Block::dump(const PhaseCFG* cfg) const {
 350   dump_head(cfg);
 351   for (uint i=0; i< number_of_nodes(); i++) {
 352     get_node(i)->dump();
 353   }
 354   tty->print("\n");
 355 }
 356 #endif
 357 
 358 PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
 359 : Phase(CFG)
 360 , _block_arena(arena)
 361 , _root(root)
 362 , _matcher(matcher)
 363 , _node_to_block_mapping(arena)
 364 , _node_latency(NULL)
 365 #ifndef PRODUCT
 366 , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
 367 #endif
 368 #ifdef ASSERT
 369 , _raw_oops(arena)
 370 #endif
 371 {
 372   ResourceMark rm;
 373   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
 374   // then Match it into a machine-specific Node.  Then clone the machine
 375   // Node on demand.
 376   Node *x = new (C) GotoNode(NULL);
 377   x->init_req(0, x);
 378   _goto = matcher.match_tree(x);
 379   assert(_goto != NULL, "");
 380   _goto->set_req(0,_goto);
 381 
 382   // Build the CFG in Reverse Post Order
 383   _number_of_blocks = build_cfg();
 384   _root_block = get_block_for_node(_root);
 385 }
 386 
 387 // Build a proper looking CFG.  Make every block begin with either a StartNode
 388 // or a RegionNode.  Make every block end with either a Goto, If or Return.
 389 // The RootNode both starts and ends it's own block.  Do this with a recursive
 390 // backwards walk over the control edges.
 391 uint PhaseCFG::build_cfg() {
 392   Arena *a = Thread::current()->resource_area();
 393   VectorSet visited(a);
 394 
 395   // Allocate stack with enough space to avoid frequent realloc
 396   Node_Stack nstack(a, C->unique() >> 1);
 397   nstack.push(_root, 0);
 398   uint sum = 0;                 // Counter for blocks
 399 
 400   while (nstack.is_nonempty()) {
 401     // node and in's index from stack's top
 402     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
 403     // only nodes which point to the start of basic block (see below).
 404     Node *np = nstack.node();
 405     // idx > 0, except for the first node (_root) pushed on stack
 406     // at the beginning when idx == 0.
 407     // We will use the condition (idx == 0) later to end the build.
 408     uint idx = nstack.index();
 409     Node *proj = np->in(idx);
 410     const Node *x = proj->is_block_proj();
 411     // Does the block end with a proper block-ending Node?  One of Return,
 412     // If or Goto? (This check should be done for visited nodes also).
 413     if (x == NULL) {                    // Does not end right...
 414       Node *g = _goto->clone(); // Force it to end in a Goto
 415       g->set_req(0, proj);
 416       np->set_req(idx, g);
 417       x = proj = g;
 418     }
 419     if (!visited.test_set(x->_idx)) { // Visit this block once
 420       // Skip any control-pinned middle'in stuff
 421       Node *p = proj;
 422       do {
 423         proj = p;                   // Update pointer to last Control
 424         p = p->in(0);               // Move control forward
 425       } while( !p->is_block_proj() &&
 426                !p->is_block_start() );
 427       // Make the block begin with one of Region or StartNode.
 428       if( !p->is_block_start() ) {
 429         RegionNode *r = new (C) RegionNode( 2 );
 430         r->init_req(1, p);         // Insert RegionNode in the way
 431         proj->set_req(0, r);        // Insert RegionNode in the way
 432         p = r;
 433       }
 434       // 'p' now points to the start of this basic block
 435 
 436       // Put self in array of basic blocks
 437       Block *bb = new (_block_arena) Block(_block_arena, p);
 438       map_node_to_block(p, bb);
 439       map_node_to_block(x, bb);
 440       if( x != p ) {                // Only for root is x == p
 441         bb->push_node((Node*)x);
 442       }
 443       // Now handle predecessors
 444       ++sum;                        // Count 1 for self block
 445       uint cnt = bb->num_preds();
 446       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
 447         Node *prevproj = p->in(i);  // Get prior input
 448         assert( !prevproj->is_Con(), "dead input not removed" );
 449         // Check to see if p->in(i) is a "control-dependent" CFG edge -
 450         // i.e., it splits at the source (via an IF or SWITCH) and merges
 451         // at the destination (via a many-input Region).
 452         // This breaks critical edges.  The RegionNode to start the block
 453         // will be added when <p,i> is pulled off the node stack
 454         if ( cnt > 2 ) {             // Merging many things?
 455           assert( prevproj== bb->pred(i),"");
 456           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
 457             // Force a block on the control-dependent edge
 458             Node *g = _goto->clone();       // Force it to end in a Goto
 459             g->set_req(0,prevproj);
 460             p->set_req(i,g);
 461           }
 462         }
 463         nstack.push(p, i);  // 'p' is RegionNode or StartNode
 464       }
 465     } else { // Post-processing visited nodes
 466       nstack.pop();                 // remove node from stack
 467       // Check if it the fist node pushed on stack at the beginning.
 468       if (idx == 0) break;          // end of the build
 469       // Find predecessor basic block
 470       Block *pb = get_block_for_node(x);
 471       // Insert into nodes array, if not already there
 472       if (!has_block(proj)) {
 473         assert( x != proj, "" );
 474         // Map basic block of projection
 475         map_node_to_block(proj, pb);
 476         pb->push_node(proj);
 477       }
 478       // Insert self as a child of my predecessor block
 479       pb->_succs.map(pb->_num_succs++, get_block_for_node(np));
 480       assert( pb->get_node(pb->number_of_nodes() - pb->_num_succs)->is_block_proj(),
 481               "too many control users, not a CFG?" );
 482     }
 483   }
 484   // Return number of basic blocks for all children and self
 485   return sum;
 486 }
 487 
 488 // Inserts a goto & corresponding basic block between
 489 // block[block_no] and its succ_no'th successor block
 490 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
 491   // get block with block_no
 492   assert(block_no < number_of_blocks(), "illegal block number");
 493   Block* in  = get_block(block_no);
 494   // get successor block succ_no
 495   assert(succ_no < in->_num_succs, "illegal successor number");
 496   Block* out = in->_succs[succ_no];
 497   // Compute frequency of the new block. Do this before inserting
 498   // new block in case succ_prob() needs to infer the probability from
 499   // surrounding blocks.
 500   float freq = in->_freq * in->succ_prob(succ_no);
 501   // get ProjNode corresponding to the succ_no'th successor of the in block
 502   ProjNode* proj = in->get_node(in->number_of_nodes() - in->_num_succs + succ_no)->as_Proj();
 503   // create region for basic block
 504   RegionNode* region = new (C) RegionNode(2);
 505   region->init_req(1, proj);
 506   // setup corresponding basic block
 507   Block* block = new (_block_arena) Block(_block_arena, region);
 508   map_node_to_block(region, block);
 509   C->regalloc()->set_bad(region->_idx);
 510   // add a goto node
 511   Node* gto = _goto->clone(); // get a new goto node
 512   gto->set_req(0, region);
 513   // add it to the basic block
 514   block->push_node(gto);
 515   map_node_to_block(gto, block);
 516   C->regalloc()->set_bad(gto->_idx);
 517   // hook up successor block
 518   block->_succs.map(block->_num_succs++, out);
 519   // remap successor's predecessors if necessary
 520   for (uint i = 1; i < out->num_preds(); i++) {
 521     if (out->pred(i) == proj) out->head()->set_req(i, gto);
 522   }
 523   // remap predecessor's successor to new block
 524   in->_succs.map(succ_no, block);
 525   // Set the frequency of the new block
 526   block->_freq = freq;
 527   // add new basic block to basic block list
 528   add_block_at(block_no + 1, block);
 529 }
 530 
 531 // Does this block end in a multiway branch that cannot have the default case
 532 // flipped for another case?
 533 static bool no_flip_branch(Block *b) {
 534   int branch_idx = b->number_of_nodes() - b->_num_succs-1;
 535   if (branch_idx < 1) {
 536     return false;
 537   }
 538   Node *branch = b->get_node(branch_idx);
 539   if (branch->is_Catch()) {
 540     return true;
 541   }
 542   if (branch->is_Mach()) {
 543     if (branch->is_MachNullCheck()) {
 544       return true;
 545     }
 546     int iop = branch->as_Mach()->ideal_Opcode();
 547     if (iop == Op_FastLock || iop == Op_FastUnlock) {
 548       return true;
 549     }
 550     // Don't flip if branch has an implicit check.
 551     if (branch->as_Mach()->is_TrapBasedCheckNode()) {
 552       return true;
 553     }
 554   }
 555   return false;
 556 }
 557 
 558 // Check for NeverBranch at block end.  This needs to become a GOTO to the
 559 // true target.  NeverBranch are treated as a conditional branch that always
 560 // goes the same direction for most of the optimizer and are used to give a
 561 // fake exit path to infinite loops.  At this late stage they need to turn
 562 // into Goto's so that when you enter the infinite loop you indeed hang.
 563 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
 564   // Find true target
 565   int end_idx = b->end_idx();
 566   int idx = b->get_node(end_idx+1)->as_Proj()->_con;
 567   Block *succ = b->_succs[idx];
 568   Node* gto = _goto->clone(); // get a new goto node
 569   gto->set_req(0, b->head());
 570   Node *bp = b->get_node(end_idx);
 571   b->map_node(gto, end_idx); // Slam over NeverBranch
 572   map_node_to_block(gto, b);
 573   C->regalloc()->set_bad(gto->_idx);
 574   b->pop_node();              // Yank projections
 575   b->pop_node();              // Yank projections
 576   b->_succs.map(0,succ);        // Map only successor
 577   b->_num_succs = 1;
 578   // remap successor's predecessors if necessary
 579   uint j;
 580   for( j = 1; j < succ->num_preds(); j++)
 581     if( succ->pred(j)->in(0) == bp )
 582       succ->head()->set_req(j, gto);
 583   // Kill alternate exit path
 584   Block *dead = b->_succs[1-idx];
 585   for( j = 1; j < dead->num_preds(); j++)
 586     if( dead->pred(j)->in(0) == bp )
 587       break;
 588   // Scan through block, yanking dead path from
 589   // all regions and phis.
 590   dead->head()->del_req(j);
 591   for( int k = 1; dead->get_node(k)->is_Phi(); k++ )
 592     dead->get_node(k)->del_req(j);
 593 }
 594 
 595 // Helper function to move block bx to the slot following b_index. Return
 596 // true if the move is successful, otherwise false
 597 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
 598   if (bx == NULL) return false;
 599 
 600   // Return false if bx is already scheduled.
 601   uint bx_index = bx->_pre_order;
 602   if ((bx_index <= b_index) && (get_block(bx_index) == bx)) {
 603     return false;
 604   }
 605 
 606   // Find the current index of block bx on the block list
 607   bx_index = b_index + 1;
 608   while (bx_index < number_of_blocks() && get_block(bx_index) != bx) {
 609     bx_index++;
 610   }
 611   assert(get_block(bx_index) == bx, "block not found");
 612 
 613   // If the previous block conditionally falls into bx, return false,
 614   // because moving bx will create an extra jump.
 615   for(uint k = 1; k < bx->num_preds(); k++ ) {
 616     Block* pred = get_block_for_node(bx->pred(k));
 617     if (pred == get_block(bx_index - 1)) {
 618       if (pred->_num_succs != 1) {
 619         return false;
 620       }
 621     }
 622   }
 623 
 624   // Reinsert bx just past block 'b'
 625   _blocks.remove(bx_index);
 626   _blocks.insert(b_index + 1, bx);
 627   return true;
 628 }
 629 
 630 // Move empty and uncommon blocks to the end.
 631 void PhaseCFG::move_to_end(Block *b, uint i) {
 632   int e = b->is_Empty();
 633   if (e != Block::not_empty) {
 634     if (e == Block::empty_with_goto) {
 635       // Remove the goto, but leave the block.
 636       b->pop_node();
 637     }
 638     // Mark this block as a connector block, which will cause it to be
 639     // ignored in certain functions such as non_connector_successor().
 640     b->set_connector();
 641   }
 642   // Move the empty block to the end, and don't recheck.
 643   _blocks.remove(i);
 644   _blocks.push(b);
 645 }
 646 
 647 // Set loop alignment for every block
 648 void PhaseCFG::set_loop_alignment() {
 649   uint last = number_of_blocks();
 650   assert(get_block(0) == get_root_block(), "");
 651 
 652   for (uint i = 1; i < last; i++) {
 653     Block* block = get_block(i);
 654     if (block->head()->is_Loop()) {
 655       block->set_loop_alignment(block);
 656     }
 657   }
 658 }
 659 
 660 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
 661 // to the end.
 662 void PhaseCFG::remove_empty_blocks() {
 663   // Move uncommon blocks to the end
 664   uint last = number_of_blocks();
 665   assert(get_block(0) == get_root_block(), "");
 666 
 667   for (uint i = 1; i < last; i++) {
 668     Block* block = get_block(i);
 669     if (block->is_connector()) {
 670       break;
 671     }
 672 
 673     // Check for NeverBranch at block end.  This needs to become a GOTO to the
 674     // true target.  NeverBranch are treated as a conditional branch that
 675     // always goes the same direction for most of the optimizer and are used
 676     // to give a fake exit path to infinite loops.  At this late stage they
 677     // need to turn into Goto's so that when you enter the infinite loop you
 678     // indeed hang.
 679     if (block->get_node(block->end_idx())->Opcode() == Op_NeverBranch) {
 680       convert_NeverBranch_to_Goto(block);
 681     }
 682 
 683     // Look for uncommon blocks and move to end.
 684     if (!C->do_freq_based_layout()) {
 685       if (is_uncommon(block)) {
 686         move_to_end(block, i);
 687         last--;                   // No longer check for being uncommon!
 688         if (no_flip_branch(block)) { // Fall-thru case must follow?
 689           // Find the fall-thru block
 690           block = get_block(i);
 691           move_to_end(block, i);
 692           last--;
 693         }
 694         // backup block counter post-increment
 695         i--;
 696       }
 697     }
 698   }
 699 
 700   // Move empty blocks to the end
 701   last = number_of_blocks();
 702   for (uint i = 1; i < last; i++) {
 703     Block* block = get_block(i);
 704     if (block->is_Empty() != Block::not_empty) {
 705       move_to_end(block, i);
 706       last--;
 707       i--;
 708     }
 709   } // End of for all blocks
 710 }
 711 
 712 Block *PhaseCFG::fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext) {
 713   // Trap based checks must fall through to the successor with
 714   // PROB_ALWAYS.
 715   // They should be an If with 2 successors.
 716   assert(branch->is_MachIf(),   "must be If");
 717   assert(block->_num_succs == 2, "must have 2 successors");
 718 
 719   // Get the If node and the projection for the first successor.
 720   MachIfNode *iff   = block->get_node(block->number_of_nodes()-3)->as_MachIf();
 721   ProjNode   *proj0 = block->get_node(block->number_of_nodes()-2)->as_Proj();
 722   ProjNode   *proj1 = block->get_node(block->number_of_nodes()-1)->as_Proj();
 723   ProjNode   *projt = (proj0->Opcode() == Op_IfTrue)  ? proj0 : proj1;
 724   ProjNode   *projf = (proj0->Opcode() == Op_IfFalse) ? proj0 : proj1;
 725 
 726   // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
 727   assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
 728   assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
 729 
 730   ProjNode *proj_always;
 731   ProjNode *proj_never;
 732   // We must negate the branch if the implicit check doesn't follow
 733   // the branch's TRUE path. Then, the new TRUE branch target will
 734   // be the old FALSE branch target.
 735   if (iff->_prob <= 2*PROB_NEVER) {   // There are small rounding errors.
 736     proj_never  = projt;
 737     proj_always = projf;
 738   } else {
 739     // We must negate the branch if the trap doesn't follow the
 740     // branch's TRUE path. Then, the new TRUE branch target will
 741     // be the old FALSE branch target.
 742     proj_never  = projf;
 743     proj_always = projt;
 744     iff->negate();
 745   }
 746   assert(iff->_prob <= 2*PROB_NEVER, "Trap based checks are expected to trap never!");
 747   // Map the successors properly
 748   block->_succs.map(0, get_block_for_node(proj_never ->raw_out(0)));   // The target of the trap.
 749   block->_succs.map(1, get_block_for_node(proj_always->raw_out(0)));   // The fall through target.
 750 
 751   // Place the fall through block after this block.
 752   Block *bs1 = block->non_connector_successor(1);
 753   if (bs1 != bnext && move_to_next(bs1, block_pos)) {
 754     bnext = bs1;
 755   }
 756   // If the fall through block still is not the next block, insert a goto.
 757   if (bs1 != bnext) {
 758     insert_goto_at(block_pos, 1);
 759   }
 760   return bnext;
 761 }
 762 
 763 // Fix up the final control flow for basic blocks.
 764 void PhaseCFG::fixup_flow() {
 765   // Fixup final control flow for the blocks.  Remove jump-to-next
 766   // block. If neither arm of an IF follows the conditional branch, we
 767   // have to add a second jump after the conditional.  We place the
 768   // TRUE branch target in succs[0] for both GOTOs and IFs.
 769   for (uint i = 0; i < number_of_blocks(); i++) {
 770     Block* block = get_block(i);
 771     block->_pre_order = i;          // turn pre-order into block-index
 772 
 773     // Connector blocks need no further processing.
 774     if (block->is_connector()) {
 775       assert((i+1) == number_of_blocks() || get_block(i + 1)->is_connector(), "All connector blocks should sink to the end");
 776       continue;
 777     }
 778     assert(block->is_Empty() != Block::completely_empty, "Empty blocks should be connectors");
 779 
 780     Block* bnext = (i < number_of_blocks() - 1) ? get_block(i + 1) : NULL;
 781     Block* bs0 = block->non_connector_successor(0);
 782 
 783     // Check for multi-way branches where I cannot negate the test to
 784     // exchange the true and false targets.
 785     if (no_flip_branch(block)) {
 786       // Find fall through case - if must fall into its target.
 787       // Get the index of the branch's first successor.
 788       int branch_idx = block->number_of_nodes() - block->_num_succs;
 789 
 790       // The branch is 1 before the branch's first successor.
 791       Node *branch = block->get_node(branch_idx-1);
 792 
 793       // Handle no-flip branches which have implicit checks and which require
 794       // special block ordering and individual semantics of the 'fall through
 795       // case'.
 796       if ((TrapBasedNullChecks || TrapBasedRangeChecks) &&
 797           branch->is_Mach() && branch->as_Mach()->is_TrapBasedCheckNode()) {
 798         bnext = fixup_trap_based_check(branch, block, i, bnext);
 799       } else {
 800         // Else, default handling for no-flip branches
 801         for (uint j2 = 0; j2 < block->_num_succs; j2++) {
 802           const ProjNode* p = block->get_node(branch_idx + j2)->as_Proj();
 803           if (p->_con == 0) {
 804             // successor j2 is fall through case
 805             if (block->non_connector_successor(j2) != bnext) {
 806               // but it is not the next block => insert a goto
 807               insert_goto_at(i, j2);
 808             }
 809             // Put taken branch in slot 0
 810             if (j2 == 0 && block->_num_succs == 2) {
 811               // Flip targets in succs map
 812               Block *tbs0 = block->_succs[0];
 813               Block *tbs1 = block->_succs[1];
 814               block->_succs.map(0, tbs1);
 815               block->_succs.map(1, tbs0);
 816             }
 817             break;
 818           }
 819         }
 820       }
 821 
 822       // Remove all CatchProjs
 823       for (uint j = 0; j < block->_num_succs; j++) {
 824         block->pop_node();
 825       }
 826 
 827     } else if (block->_num_succs == 1) {
 828       // Block ends in a Goto?
 829       if (bnext == bs0) {
 830         // We fall into next block; remove the Goto
 831         block->pop_node();
 832       }
 833 
 834     } else if(block->_num_succs == 2) { // Block ends in a If?
 835       // Get opcode of 1st projection (matches _succs[0])
 836       // Note: Since this basic block has 2 exits, the last 2 nodes must
 837       //       be projections (in any order), the 3rd last node must be
 838       //       the IfNode (we have excluded other 2-way exits such as
 839       //       CatchNodes already).
 840       MachNode* iff   = block->get_node(block->number_of_nodes() - 3)->as_Mach();
 841       ProjNode* proj0 = block->get_node(block->number_of_nodes() - 2)->as_Proj();
 842       ProjNode* proj1 = block->get_node(block->number_of_nodes() - 1)->as_Proj();
 843 
 844       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
 845       assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
 846       assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
 847 
 848       Block* bs1 = block->non_connector_successor(1);
 849 
 850       // Check for neither successor block following the current
 851       // block ending in a conditional. If so, move one of the
 852       // successors after the current one, provided that the
 853       // successor was previously unscheduled, but moveable
 854       // (i.e., all paths to it involve a branch).
 855       if (!C->do_freq_based_layout() && bnext != bs0 && bnext != bs1) {
 856         // Choose the more common successor based on the probability
 857         // of the conditional branch.
 858         Block* bx = bs0;
 859         Block* by = bs1;
 860 
 861         // _prob is the probability of taking the true path. Make
 862         // p the probability of taking successor #1.
 863         float p = iff->as_MachIf()->_prob;
 864         if (proj0->Opcode() == Op_IfTrue) {
 865           p = 1.0 - p;
 866         }
 867 
 868         // Prefer successor #1 if p > 0.5
 869         if (p > PROB_FAIR) {
 870           bx = bs1;
 871           by = bs0;
 872         }
 873 
 874         // Attempt the more common successor first
 875         if (move_to_next(bx, i)) {
 876           bnext = bx;
 877         } else if (move_to_next(by, i)) {
 878           bnext = by;
 879         }
 880       }
 881 
 882       // Check for conditional branching the wrong way.  Negate
 883       // conditional, if needed, so it falls into the following block
 884       // and branches to the not-following block.
 885 
 886       // Check for the next block being in succs[0].  We are going to branch
 887       // to succs[0], so we want the fall-thru case as the next block in
 888       // succs[1].
 889       if (bnext == bs0) {
 890         // Fall-thru case in succs[0], so flip targets in succs map
 891         Block* tbs0 = block->_succs[0];
 892         Block* tbs1 = block->_succs[1];
 893         block->_succs.map(0, tbs1);
 894         block->_succs.map(1, tbs0);
 895         // Flip projection for each target
 896         ProjNode* tmp = proj0;
 897         proj0 = proj1;
 898         proj1 = tmp;
 899 
 900       } else if(bnext != bs1) {
 901         // Need a double-branch
 902         // The existing conditional branch need not change.
 903         // Add a unconditional branch to the false target.
 904         // Alas, it must appear in its own block and adding a
 905         // block this late in the game is complicated.  Sigh.
 906         insert_goto_at(i, 1);
 907       }
 908 
 909       // Make sure we TRUE branch to the target
 910       if (proj0->Opcode() == Op_IfFalse) {
 911         iff->as_MachIf()->negate();
 912       }
 913 
 914       block->pop_node();          // Remove IfFalse & IfTrue projections
 915       block->pop_node();
 916 
 917     } else {
 918       // Multi-exit block, e.g. a switch statement
 919       // But we don't need to do anything here
 920     }
 921   } // End of for all blocks
 922 }
 923 
 924 
 925 // postalloc_expand: Expand nodes after register allocation.
 926 //
 927 // postalloc_expand has to be called after register allocation, just
 928 // before output (i.e. scheduling). It only gets called if
 929 // Matcher::require_postalloc_expand is true.
 930 //
 931 // Background:
 932 //
 933 // Nodes that are expandend (one compound node requiring several
 934 // assembler instructions to be implemented split into two or more
 935 // non-compound nodes) after register allocation are not as nice as
 936 // the ones expanded before register allocation - they don't
 937 // participate in optimizations as global code motion. But after
 938 // register allocation we can expand nodes that use registers which
 939 // are not spillable or registers that are not allocated, because the
 940 // old compound node is simply replaced (in its location in the basic
 941 // block) by a new subgraph which does not contain compound nodes any
 942 // more. The scheduler called during output can later on process these
 943 // non-compound nodes.
 944 //
 945 // Implementation:
 946 //
 947 // Nodes requiring postalloc expand are specified in the ad file by using
 948 // a postalloc_expand statement instead of ins_encode. A postalloc_expand
 949 // contains a single call to an encoding, as does an ins_encode
 950 // statement. Instead of an emit() function a postalloc_expand() function
 951 // is generated that doesn't emit assembler but creates a new
 952 // subgraph. The code below calls this postalloc_expand function for each
 953 // node with the appropriate attribute. This function returns the new
 954 // nodes generated in an array passed in the call. The old node,
 955 // potential MachTemps before and potential Projs after it then get
 956 // disconnected and replaced by the new nodes. The instruction
 957 // generating the result has to be the last one in the array. In
 958 // general it is assumed that Projs after the node expanded are
 959 // kills. These kills are not required any more after expanding as
 960 // there are now explicitly visible def-use chains and the Projs are
 961 // removed. This does not hold for calls: They do not only have
 962 // kill-Projs but also Projs defining values. Therefore Projs after
 963 // the node expanded are removed for all but for calls. If a node is
 964 // to be reused, it must be added to the nodes list returned, and it
 965 // will be added again.
 966 //
 967 // Implementing the postalloc_expand function for a node in an enc_class
 968 // is rather tedious. It requires knowledge about many node details, as
 969 // the nodes and the subgraph must be hand crafted. To simplify this,
 970 // adlc generates some utility variables into the postalloc_expand function,
 971 // e.g., holding the operands as specified by the postalloc_expand encoding
 972 // specification, e.g.:
 973 //  * unsigned idx_<par_name>  holding the index of the node in the ins
 974 //  * Node *n_<par_name>       holding the node loaded from the ins
 975 //  * MachOpnd *op_<par_name>  holding the corresponding operand
 976 //
 977 // The ordering of operands can not be determined by looking at a
 978 // rule. Especially if a match rule matches several different trees,
 979 // several nodes are generated from one instruct specification with
 980 // different operand orderings. In this case the adlc generated
 981 // variables are the only way to access the ins and operands
 982 // deterministically.
 983 //
 984 // If assigning a register to a node that contains an oop, don't
 985 // forget to call ra_->set_oop() for the node.
 986 void PhaseCFG::postalloc_expand(PhaseRegAlloc* _ra) {
 987   GrowableArray <Node *> new_nodes(32); // Array with new nodes filled by postalloc_expand function of node.
 988   GrowableArray <Node *> remove(32);
 989   GrowableArray <Node *> succs(32);
 990   unsigned int max_idx = C->unique();   // Remember to distinguish new from old nodes.
 991   DEBUG_ONLY(bool foundNode = false);
 992 
 993   // for all blocks
 994   for (uint i = 0; i < number_of_blocks(); i++) {
 995     Block *b = _blocks[i];
 996     // For all instructions in the current block.
 997     for (uint j = 0; j < b->number_of_nodes(); j++) {
 998       Node *n = b->get_node(j);
 999       if (n->is_Mach() && n->as_Mach()->requires_postalloc_expand()) {
1000 #ifdef ASSERT
1001         if (TracePostallocExpand) {
1002           if (!foundNode) {
1003             foundNode = true;
1004             tty->print("POSTALLOC EXPANDING %d %s\n", C->compile_id(),
1005                        C->method() ? C->method()->name()->as_utf8() : C->stub_name());
1006           }
1007           tty->print("  postalloc expanding "); n->dump();
1008           if (Verbose) {
1009             tty->print("    with ins:\n");
1010             for (uint k = 0; k < n->len(); ++k) {
1011               if (n->in(k)) { tty->print("        "); n->in(k)->dump(); }
1012             }
1013           }
1014         }
1015 #endif
1016         new_nodes.clear();
1017         // Collect nodes that have to be removed from the block later on.
1018         uint req = n->req();
1019         remove.clear();
1020         for (uint k = 0; k < req; ++k) {
1021           if (n->in(k) && n->in(k)->is_MachTemp()) {
1022             remove.push(n->in(k)); // MachTemps which are inputs to the old node have to be removed.
1023             n->in(k)->del_req(0);
1024             j--;
1025           }
1026         }
1027 
1028         // Check whether we can allocate enough nodes. We set a fix limit for
1029         // the size of postalloc expands with this.
1030         uint unique_limit = C->unique() + 40;
1031         if (unique_limit >= _ra->node_regs_max_index()) {
1032           Compile::current()->record_failure("out of nodes in postalloc expand");
1033           return;
1034         }
1035 
1036         // Emit (i.e. generate new nodes).
1037         n->as_Mach()->postalloc_expand(&new_nodes, _ra);
1038 
1039         assert(C->unique() < unique_limit, "You allocated too many nodes in your postalloc expand.");
1040 
1041         // Disconnect the inputs of the old node.
1042         //
1043         // We reuse MachSpillCopy nodes. If we need to expand them, there
1044         // are many, so reusing pays off. If reused, the node already
1045         // has the new ins. n must be the last node on new_nodes list.
1046         if (!n->is_MachSpillCopy()) {
1047           for (int k = req - 1; k >= 0; --k) {
1048             n->del_req(k);
1049           }
1050         }
1051 
1052 #ifdef ASSERT
1053         // Check that all nodes have proper operands.
1054         for (int k = 0; k < new_nodes.length(); ++k) {
1055           if (new_nodes.at(k)->_idx < max_idx || !new_nodes.at(k)->is_Mach()) continue; // old node, Proj ...
1056           MachNode *m = new_nodes.at(k)->as_Mach();
1057           for (unsigned int l = 0; l < m->num_opnds(); ++l) {
1058             if (MachOper::notAnOper(m->_opnds[l])) {
1059               outputStream *os = tty;
1060               os->print("Node %s ", m->Name());
1061               os->print("has invalid opnd %d: %p\n", l, m->_opnds[l]);
1062               assert(0, "Invalid operands, see inline trace in hs_err_pid file.");
1063             }
1064           }
1065         }
1066 #endif
1067 
1068         // Collect succs of old node in remove (for projections) and in succs (for
1069         // all other nodes) do _not_ collect projections in remove (but in succs)
1070         // in case the node is a call. We need the projections for calls as they are
1071         // associated with registes (i.e. they are defs).
1072         succs.clear();
1073         for (DUIterator k = n->outs(); n->has_out(k); k++) {
1074           if (n->out(k)->is_Proj() && !n->is_MachCall() && !n->is_MachBranch()) {
1075             remove.push(n->out(k));
1076           } else {
1077             succs.push(n->out(k));
1078           }
1079         }
1080         // Replace old node n as input of its succs by last of the new nodes.
1081         for (int k = 0; k < succs.length(); ++k) {
1082           Node *succ = succs.at(k);
1083           for (uint l = 0; l < succ->req(); ++l) {
1084             if (succ->in(l) == n) {
1085               succ->set_req(l, new_nodes.at(new_nodes.length() - 1));
1086             }
1087           }
1088           for (uint l = succ->req(); l < succ->len(); ++l) {
1089             if (succ->in(l) == n) {
1090               succ->set_prec(l, new_nodes.at(new_nodes.length() - 1));
1091             }
1092           }
1093         }
1094 
1095         // Index of old node in block.
1096         uint index = b->find_node(n);
1097         // Insert new nodes into block and map them in nodes->blocks array
1098         // and remember last node in n2.
1099         Node *n2 = NULL;
1100         for (int k = 0; k < new_nodes.length(); ++k) {
1101           n2 = new_nodes.at(k);
1102           b->insert_node(n2, ++index);
1103           map_node_to_block(n2, b);
1104         }
1105 
1106         // Add old node n to remove and remove them all from block.
1107         remove.push(n);
1108         j--;
1109 #ifdef ASSERT
1110         if (TracePostallocExpand && Verbose) {
1111           tty->print("    removing:\n");
1112           for (int k = 0; k < remove.length(); ++k) {
1113             tty->print("        "); remove.at(k)->dump();
1114           }
1115           tty->print("    inserting:\n");
1116           for (int k = 0; k < new_nodes.length(); ++k) {
1117             tty->print("        "); new_nodes.at(k)->dump();
1118           }
1119         }
1120 #endif
1121         for (int k = 0; k < remove.length(); ++k) {
1122           if (b->contains(remove.at(k))) {
1123             b->find_remove(remove.at(k));
1124           } else {
1125             assert(remove.at(k)->is_Proj() && (remove.at(k)->in(0)->is_MachBranch()), "");
1126           }
1127         }
1128         // If anything has been inserted (n2 != NULL), continue after last node inserted.
1129         // This does not always work. Some postalloc expands don't insert any nodes, if they
1130         // do optimizations (e.g., max(x,x)). In this case we decrement j accordingly.
1131         j = n2 ? b->find_node(n2) : j;
1132       }
1133     }
1134   }
1135 
1136 #ifdef ASSERT
1137   if (foundNode) {
1138     tty->print("FINISHED %d %s\n", C->compile_id(),
1139                C->method() ? C->method()->name()->as_utf8() : C->stub_name());
1140     tty->flush();
1141   }
1142 #endif
1143 }
1144 
1145 
1146 //------------------------------dump-------------------------------------------
1147 #ifndef PRODUCT
1148 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
1149   const Node *x = end->is_block_proj();
1150   assert( x, "not a CFG" );
1151 
1152   // Do not visit this block again
1153   if( visited.test_set(x->_idx) ) return;
1154 
1155   // Skip through this block
1156   const Node *p = x;
1157   do {
1158     p = p->in(0);               // Move control forward
1159     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
1160   } while( !p->is_block_start() );
1161 
1162   // Recursively visit
1163   for (uint i = 1; i < p->req(); i++) {
1164     _dump_cfg(p->in(i), visited);
1165   }
1166 
1167   // Dump the block
1168   get_block_for_node(p)->dump(this);
1169 }
1170 
1171 void PhaseCFG::dump( ) const {
1172   tty->print("\n--- CFG --- %d BBs\n", number_of_blocks());
1173   if (_blocks.size()) {        // Did we do basic-block layout?
1174     for (uint i = 0; i < number_of_blocks(); i++) {
1175       const Block* block = get_block(i);
1176       block->dump(this);
1177     }
1178   } else {                      // Else do it with a DFS
1179     VectorSet visited(_block_arena);
1180     _dump_cfg(_root,visited);
1181   }
1182 }
1183 
1184 void PhaseCFG::dump_headers() {
1185   for (uint i = 0; i < number_of_blocks(); i++) {
1186     Block* block = get_block(i);
1187     if (block != NULL) {
1188       block->dump_head(this);
1189     }
1190   }
1191 }
1192 
1193 void PhaseCFG::verify() const {
1194 #ifdef ASSERT
1195   // Verify sane CFG
1196   for (uint i = 0; i < number_of_blocks(); i++) {
1197     Block* block = get_block(i);
1198     uint cnt = block->number_of_nodes();
1199     uint j;
1200     for (j = 0; j < cnt; j++)  {
1201       Node *n = block->get_node(j);
1202       assert(get_block_for_node(n) == block, "");
1203       if (j >= 1 && n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1204         assert(j == 1 || block->get_node(j-1)->is_Phi(), "CreateEx must be first instruction in block");
1205       }
1206       for (uint k = 0; k < n->req(); k++) {
1207         Node *def = n->in(k);
1208         if (def && def != n) {
1209           assert(get_block_for_node(def) || def->is_Con(), "must have block; constants for debug info ok");
1210           // Verify that instructions in the block is in correct order.
1211           // Uses must follow their definition if they are at the same block.
1212           // Mostly done to check that MachSpillCopy nodes are placed correctly
1213           // when CreateEx node is moved in build_ifg_physical().
1214           if (get_block_for_node(def) == block && !(block->head()->is_Loop() && n->is_Phi()) &&
1215               // See (+++) comment in reg_split.cpp
1216               !(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
1217             bool is_loop = false;
1218             if (n->is_Phi()) {
1219               for (uint l = 1; l < def->req(); l++) {
1220                 if (n == def->in(l)) {
1221                   is_loop = true;
1222                   break; // Some kind of loop
1223                 }
1224               }
1225             }
1226             assert(is_loop || block->find_node(def) < j, "uses must follow definitions");
1227           }
1228         }
1229       }
1230     }
1231 
1232     j = block->end_idx();
1233     Node* bp = (Node*)block->get_node(block->number_of_nodes() - 1)->is_block_proj();
1234     assert(bp, "last instruction must be a block proj");
1235     assert(bp == block->get_node(j), "wrong number of successors for this block");
1236     if (bp->is_Catch()) {
1237       while (block->get_node(--j)->is_MachProj()) {
1238         ;
1239       }
1240       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1241     } else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
1242       assert(block->_num_succs == 2, "Conditional branch must have two targets");
1243     }
1244   }
1245 #endif
1246 }
1247 #endif
1248 
1249 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
1250   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
1251 }
1252 
1253 void UnionFind::extend( uint from_idx, uint to_idx ) {
1254   _nesting.check();
1255   if( from_idx >= _max ) {
1256     uint size = 16;
1257     while( size <= from_idx ) size <<=1;
1258     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
1259     _max = size;
1260   }
1261   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
1262   _indices[from_idx] = to_idx;
1263 }
1264 
1265 void UnionFind::reset( uint max ) {
1266   assert( max <= max_uint, "Must fit within uint" );
1267   // Force the Union-Find mapping to be at least this large
1268   extend(max,0);
1269   // Initialize to be the ID mapping.
1270   for( uint i=0; i<max; i++ ) map(i,i);
1271 }
1272 
1273 // Straight out of Tarjan's union-find algorithm
1274 uint UnionFind::Find_compress( uint idx ) {
1275   uint cur  = idx;
1276   uint next = lookup(cur);
1277   while( next != cur ) {        // Scan chain of equivalences
1278     assert( next < cur, "always union smaller" );
1279     cur = next;                 // until find a fixed-point
1280     next = lookup(cur);
1281   }
1282   // Core of union-find algorithm: update chain of
1283   // equivalences to be equal to the root.
1284   while( idx != next ) {
1285     uint tmp = lookup(idx);
1286     map(idx, next);
1287     idx = tmp;
1288   }
1289   return idx;
1290 }
1291 
1292 // Like Find above, but no path compress, so bad asymptotic behavior
1293 uint UnionFind::Find_const( uint idx ) const {
1294   if( idx == 0 ) return idx;    // Ignore the zero idx
1295   // Off the end?  This can happen during debugging dumps
1296   // when data structures have not finished being updated.
1297   if( idx >= _max ) return idx;
1298   uint next = lookup(idx);
1299   while( next != idx ) {        // Scan chain of equivalences
1300     idx = next;                 // until find a fixed-point
1301     next = lookup(idx);
1302   }
1303   return next;
1304 }
1305 
1306 // union 2 sets together.
1307 void UnionFind::Union( uint idx1, uint idx2 ) {
1308   uint src = Find(idx1);
1309   uint dst = Find(idx2);
1310   assert( src, "" );
1311   assert( dst, "" );
1312   assert( src < _max, "oob" );
1313   assert( dst < _max, "oob" );
1314   assert( src < dst, "always union smaller" );
1315   map(dst,src);
1316 }
1317 
1318 #ifndef PRODUCT
1319 void Trace::dump( ) const {
1320   tty->print_cr("Trace (freq %f)", first_block()->_freq);
1321   for (Block *b = first_block(); b != NULL; b = next(b)) {
1322     tty->print("  B%d", b->_pre_order);
1323     if (b->head()->is_Loop()) {
1324       tty->print(" (L%d)", b->compute_loop_alignment());
1325     }
1326     if (b->has_loop_alignment()) {
1327       tty->print(" (T%d)", b->code_alignment());
1328     }
1329   }
1330   tty->cr();
1331 }
1332 
1333 void CFGEdge::dump( ) const {
1334   tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
1335              from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
1336   switch(state()) {
1337   case connected:
1338     tty->print("connected");
1339     break;
1340   case open:
1341     tty->print("open");
1342     break;
1343   case interior:
1344     tty->print("interior");
1345     break;
1346   }
1347   if (infrequent()) {
1348     tty->print("  infrequent");
1349   }
1350   tty->cr();
1351 }
1352 #endif
1353 
1354 // Comparison function for edges
1355 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
1356   float freq0 = (*e0)->freq();
1357   float freq1 = (*e1)->freq();
1358   if (freq0 != freq1) {
1359     return freq0 > freq1 ? -1 : 1;
1360   }
1361 
1362   int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
1363   int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
1364 
1365   return dist1 - dist0;
1366 }
1367 
1368 // Comparison function for edges
1369 extern "C" int trace_frequency_order(const void *p0, const void *p1) {
1370   Trace *tr0 = *(Trace **) p0;
1371   Trace *tr1 = *(Trace **) p1;
1372   Block *b0 = tr0->first_block();
1373   Block *b1 = tr1->first_block();
1374 
1375   // The trace of connector blocks goes at the end;
1376   // we only expect one such trace
1377   if (b0->is_connector() != b1->is_connector()) {
1378     return b1->is_connector() ? -1 : 1;
1379   }
1380 
1381   // Pull more frequently executed blocks to the beginning
1382   float freq0 = b0->_freq;
1383   float freq1 = b1->_freq;
1384   if (freq0 != freq1) {
1385     return freq0 > freq1 ? -1 : 1;
1386   }
1387 
1388   int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
1389 
1390   return diff;
1391 }
1392 
1393 // Find edges of interest, i.e, those which can fall through. Presumes that
1394 // edges which don't fall through are of low frequency and can be generally
1395 // ignored.  Initialize the list of traces.
1396 void PhaseBlockLayout::find_edges() {
1397   // Walk the blocks, creating edges and Traces
1398   uint i;
1399   Trace *tr = NULL;
1400   for (i = 0; i < _cfg.number_of_blocks(); i++) {
1401     Block* b = _cfg.get_block(i);
1402     tr = new Trace(b, next, prev);
1403     traces[tr->id()] = tr;
1404 
1405     // All connector blocks should be at the end of the list
1406     if (b->is_connector()) break;
1407 
1408     // If this block and the next one have a one-to-one successor
1409     // predecessor relationship, simply append the next block
1410     int nfallthru = b->num_fall_throughs();
1411     while (nfallthru == 1 &&
1412            b->succ_fall_through(0)) {
1413       Block *n = b->_succs[0];
1414 
1415       // Skip over single-entry connector blocks, we don't want to
1416       // add them to the trace.
1417       while (n->is_connector() && n->num_preds() == 1) {
1418         n = n->_succs[0];
1419       }
1420 
1421       // We see a merge point, so stop search for the next block
1422       if (n->num_preds() != 1) break;
1423 
1424       i++;
1425       assert(n = _cfg.get_block(i), "expecting next block");
1426       tr->append(n);
1427       uf->map(n->_pre_order, tr->id());
1428       traces[n->_pre_order] = NULL;
1429       nfallthru = b->num_fall_throughs();
1430       b = n;
1431     }
1432 
1433     if (nfallthru > 0) {
1434       // Create a CFGEdge for each outgoing
1435       // edge that could be a fall-through.
1436       for (uint j = 0; j < b->_num_succs; j++ ) {
1437         if (b->succ_fall_through(j)) {
1438           Block *target = b->non_connector_successor(j);
1439           float freq = b->_freq * b->succ_prob(j);
1440           int from_pct = (int) ((100 * freq) / b->_freq);
1441           int to_pct = (int) ((100 * freq) / target->_freq);
1442           edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
1443         }
1444       }
1445     }
1446   }
1447 
1448   // Group connector blocks into one trace
1449   for (i++; i < _cfg.number_of_blocks(); i++) {
1450     Block *b = _cfg.get_block(i);
1451     assert(b->is_connector(), "connector blocks at the end");
1452     tr->append(b);
1453     uf->map(b->_pre_order, tr->id());
1454     traces[b->_pre_order] = NULL;
1455   }
1456 }
1457 
1458 // Union two traces together in uf, and null out the trace in the list
1459 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) {
1460   uint old_id = old_trace->id();
1461   uint updated_id = updated_trace->id();
1462 
1463   uint lo_id = updated_id;
1464   uint hi_id = old_id;
1465 
1466   // If from is greater than to, swap values to meet
1467   // UnionFind guarantee.
1468   if (updated_id > old_id) {
1469     lo_id = old_id;
1470     hi_id = updated_id;
1471 
1472     // Fix up the trace ids
1473     traces[lo_id] = traces[updated_id];
1474     updated_trace->set_id(lo_id);
1475   }
1476 
1477   // Union the lower with the higher and remove the pointer
1478   // to the higher.
1479   uf->Union(lo_id, hi_id);
1480   traces[hi_id] = NULL;
1481 }
1482 
1483 // Append traces together via the most frequently executed edges
1484 void PhaseBlockLayout::grow_traces() {
1485   // Order the edges, and drive the growth of Traces via the most
1486   // frequently executed edges.
1487   edges->sort(edge_order);
1488   for (int i = 0; i < edges->length(); i++) {
1489     CFGEdge *e = edges->at(i);
1490 
1491     if (e->state() != CFGEdge::open) continue;
1492 
1493     Block *src_block = e->from();
1494     Block *targ_block = e->to();
1495 
1496     // Don't grow traces along backedges?
1497     if (!BlockLayoutRotateLoops) {
1498       if (targ_block->_rpo <= src_block->_rpo) {
1499         targ_block->set_loop_alignment(targ_block);
1500         continue;
1501       }
1502     }
1503 
1504     Trace *src_trace = trace(src_block);
1505     Trace *targ_trace = trace(targ_block);
1506 
1507     // If the edge in question can join two traces at their ends,
1508     // append one trace to the other.
1509    if (src_trace->last_block() == src_block) {
1510       if (src_trace == targ_trace) {
1511         e->set_state(CFGEdge::interior);
1512         if (targ_trace->backedge(e)) {
1513           // Reset i to catch any newly eligible edge
1514           // (Or we could remember the first "open" edge, and reset there)
1515           i = 0;
1516         }
1517       } else if (targ_trace->first_block() == targ_block) {
1518         e->set_state(CFGEdge::connected);
1519         src_trace->append(targ_trace);
1520         union_traces(src_trace, targ_trace);
1521       }
1522     }
1523   }
1524 }
1525 
1526 // Embed one trace into another, if the fork or join points are sufficiently
1527 // balanced.
1528 void PhaseBlockLayout::merge_traces(bool fall_thru_only) {
1529   // Walk the edge list a another time, looking at unprocessed edges.
1530   // Fold in diamonds
1531   for (int i = 0; i < edges->length(); i++) {
1532     CFGEdge *e = edges->at(i);
1533 
1534     if (e->state() != CFGEdge::open) continue;
1535     if (fall_thru_only) {
1536       if (e->infrequent()) continue;
1537     }
1538 
1539     Block *src_block = e->from();
1540     Trace *src_trace = trace(src_block);
1541     bool src_at_tail = src_trace->last_block() == src_block;
1542 
1543     Block *targ_block  = e->to();
1544     Trace *targ_trace  = trace(targ_block);
1545     bool targ_at_start = targ_trace->first_block() == targ_block;
1546 
1547     if (src_trace == targ_trace) {
1548       // This may be a loop, but we can't do much about it.
1549       e->set_state(CFGEdge::interior);
1550       continue;
1551     }
1552 
1553     if (fall_thru_only) {
1554       // If the edge links the middle of two traces, we can't do anything.
1555       // Mark the edge and continue.
1556       if (!src_at_tail & !targ_at_start) {
1557         continue;
1558       }
1559 
1560       // Don't grow traces along backedges?
1561       if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
1562           continue;
1563       }
1564 
1565       // If both ends of the edge are available, why didn't we handle it earlier?
1566       assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
1567 
1568       if (targ_at_start) {
1569         // Insert the "targ" trace in the "src" trace if the insertion point
1570         // is a two way branch.
1571         // Better profitability check possible, but may not be worth it.
1572         // Someday, see if the this "fork" has an associated "join";
1573         // then make a policy on merging this trace at the fork or join.
1574         // For example, other things being equal, it may be better to place this
1575         // trace at the join point if the "src" trace ends in a two-way, but
1576         // the insertion point is one-way.
1577         assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
1578         e->set_state(CFGEdge::connected);
1579         src_trace->insert_after(src_block, targ_trace);
1580         union_traces(src_trace, targ_trace);
1581       } else if (src_at_tail) {
1582         if (src_trace != trace(_cfg.get_root_block())) {
1583           e->set_state(CFGEdge::connected);
1584           targ_trace->insert_before(targ_block, src_trace);
1585           union_traces(targ_trace, src_trace);
1586         }
1587       }
1588     } else if (e->state() == CFGEdge::open) {
1589       // Append traces, even without a fall-thru connection.
1590       // But leave root entry at the beginning of the block list.
1591       if (targ_trace != trace(_cfg.get_root_block())) {
1592         e->set_state(CFGEdge::connected);
1593         src_trace->append(targ_trace);
1594         union_traces(src_trace, targ_trace);
1595       }
1596     }
1597   }
1598 }
1599 
1600 // Order the sequence of the traces in some desirable way, and fixup the
1601 // jumps at the end of each block.
1602 void PhaseBlockLayout::reorder_traces(int count) {
1603   ResourceArea *area = Thread::current()->resource_area();
1604   Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
1605   Block_List worklist;
1606   int new_count = 0;
1607 
1608   // Compact the traces.
1609   for (int i = 0; i < count; i++) {
1610     Trace *tr = traces[i];
1611     if (tr != NULL) {
1612       new_traces[new_count++] = tr;
1613     }
1614   }
1615 
1616   // The entry block should be first on the new trace list.
1617   Trace *tr = trace(_cfg.get_root_block());
1618   assert(tr == new_traces[0], "entry trace misplaced");
1619 
1620   // Sort the new trace list by frequency
1621   qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
1622 
1623   // Patch up the successor blocks
1624   _cfg.clear_blocks();
1625   for (int i = 0; i < new_count; i++) {
1626     Trace *tr = new_traces[i];
1627     if (tr != NULL) {
1628       tr->fixup_blocks(_cfg);
1629     }
1630   }
1631 }
1632 
1633 // Order basic blocks based on frequency
1634 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg)
1635 : Phase(BlockLayout)
1636 , _cfg(cfg) {
1637   ResourceMark rm;
1638   ResourceArea *area = Thread::current()->resource_area();
1639 
1640   // List of traces
1641   int size = _cfg.number_of_blocks() + 1;
1642   traces = NEW_ARENA_ARRAY(area, Trace *, size);
1643   memset(traces, 0, size*sizeof(Trace*));
1644   next = NEW_ARENA_ARRAY(area, Block *, size);
1645   memset(next,   0, size*sizeof(Block *));
1646   prev = NEW_ARENA_ARRAY(area, Block *, size);
1647   memset(prev  , 0, size*sizeof(Block *));
1648 
1649   // List of edges
1650   edges = new GrowableArray<CFGEdge*>;
1651 
1652   // Mapping block index --> block_trace
1653   uf = new UnionFind(size);
1654   uf->reset(size);
1655 
1656   // Find edges and create traces.
1657   find_edges();
1658 
1659   // Grow traces at their ends via most frequent edges.
1660   grow_traces();
1661 
1662   // Merge one trace into another, but only at fall-through points.
1663   // This may make diamonds and other related shapes in a trace.
1664   merge_traces(true);
1665 
1666   // Run merge again, allowing two traces to be catenated, even if
1667   // one does not fall through into the other. This appends loosely
1668   // related traces to be near each other.
1669   merge_traces(false);
1670 
1671   // Re-order all the remaining traces by frequency
1672   reorder_traces(size);
1673 
1674   assert(_cfg.number_of_blocks() >= (uint) (size - 1), "number of blocks can not shrink");
1675 }
1676 
1677 
1678 // Edge e completes a loop in a trace. If the target block is head of the
1679 // loop, rotate the loop block so that the loop ends in a conditional branch.
1680 bool Trace::backedge(CFGEdge *e) {
1681   bool loop_rotated = false;
1682   Block *src_block  = e->from();
1683   Block *targ_block    = e->to();
1684 
1685   assert(last_block() == src_block, "loop discovery at back branch");
1686   if (first_block() == targ_block) {
1687     if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
1688       // Find the last block in the trace that has a conditional
1689       // branch.
1690       Block *b;
1691       for (b = last_block(); b != NULL; b = prev(b)) {
1692         if (b->num_fall_throughs() == 2) {
1693           break;
1694         }
1695       }
1696 
1697       if (b != last_block() && b != NULL) {
1698         loop_rotated = true;
1699 
1700         // Rotate the loop by doing two-part linked-list surgery.
1701         append(first_block());
1702         break_loop_after(b);
1703       }
1704     }
1705 
1706     // Backbranch to the top of a trace
1707     // Scroll forward through the trace from the targ_block. If we find
1708     // a loop head before another loop top, use the the loop head alignment.
1709     for (Block *b = targ_block; b != NULL; b = next(b)) {
1710       if (b->has_loop_alignment()) {
1711         break;
1712       }
1713       if (b->head()->is_Loop()) {
1714         targ_block = b;
1715         break;
1716       }
1717     }
1718 
1719     first_block()->set_loop_alignment(targ_block);
1720 
1721   } else {
1722     // Backbranch into the middle of a trace
1723     targ_block->set_loop_alignment(targ_block);
1724   }
1725 
1726   return loop_rotated;
1727 }
1728 
1729 // push blocks onto the CFG list
1730 // ensure that blocks have the correct two-way branch sense
1731 void Trace::fixup_blocks(PhaseCFG &cfg) {
1732   Block *last = last_block();
1733   for (Block *b = first_block(); b != NULL; b = next(b)) {
1734     cfg.add_block(b);
1735     if (!b->is_connector()) {
1736       int nfallthru = b->num_fall_throughs();
1737       if (b != last) {
1738         if (nfallthru == 2) {
1739           // Ensure that the sense of the branch is correct
1740           Block *bnext = next(b);
1741           Block *bs0 = b->non_connector_successor(0);
1742 
1743           MachNode *iff = b->get_node(b->number_of_nodes() - 3)->as_Mach();
1744           ProjNode *proj0 = b->get_node(b->number_of_nodes() - 2)->as_Proj();
1745           ProjNode *proj1 = b->get_node(b->number_of_nodes() - 1)->as_Proj();
1746 
1747           if (bnext == bs0) {
1748             // Fall-thru case in succs[0], should be in succs[1]
1749 
1750             // Flip targets in _succs map
1751             Block *tbs0 = b->_succs[0];
1752             Block *tbs1 = b->_succs[1];
1753             b->_succs.map( 0, tbs1 );
1754             b->_succs.map( 1, tbs0 );
1755 
1756             // Flip projections to match targets
1757             b->map_node(proj1, b->number_of_nodes() - 2);
1758             b->map_node(proj0, b->number_of_nodes() - 1);
1759           }
1760         }
1761       }
1762     }
1763   }
1764 }