1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/exceptionHandlerTable.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "compiler/oopMap.hpp"
  34 #include "opto/addnode.hpp"
  35 #include "opto/block.hpp"
  36 #include "opto/c2compiler.hpp"
  37 #include "opto/callGenerator.hpp"
  38 #include "opto/callnode.hpp"
  39 #include "opto/cfgnode.hpp"
  40 #include "opto/chaitin.hpp"
  41 #include "opto/compile.hpp"
  42 #include "opto/connode.hpp"
  43 #include "opto/divnode.hpp"
  44 #include "opto/escape.hpp"
  45 #include "opto/idealGraphPrinter.hpp"
  46 #include "opto/loopnode.hpp"
  47 #include "opto/machnode.hpp"
  48 #include "opto/macro.hpp"
  49 #include "opto/matcher.hpp"
  50 #include "opto/mathexactnode.hpp"
  51 #include "opto/memnode.hpp"
  52 #include "opto/mulnode.hpp"
  53 #include "opto/node.hpp"
  54 #include "opto/opcodes.hpp"
  55 #include "opto/output.hpp"
  56 #include "opto/parse.hpp"
  57 #include "opto/phaseX.hpp"
  58 #include "opto/rootnode.hpp"
  59 #include "opto/runtime.hpp"
  60 #include "opto/stringopts.hpp"
  61 #include "opto/type.hpp"
  62 #include "opto/vectornode.hpp"
  63 #include "runtime/arguments.hpp"
  64 #include "runtime/signature.hpp"
  65 #include "runtime/stubRoutines.hpp"
  66 #include "runtime/timer.hpp"
  67 #include "trace/tracing.hpp"
  68 #include "utilities/copy.hpp"
  69 #ifdef TARGET_ARCH_MODEL_x86_32
  70 # include "adfiles/ad_x86_32.hpp"
  71 #endif
  72 #ifdef TARGET_ARCH_MODEL_x86_64
  73 # include "adfiles/ad_x86_64.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_MODEL_sparc
  76 # include "adfiles/ad_sparc.hpp"
  77 #endif
  78 #ifdef TARGET_ARCH_MODEL_zero
  79 # include "adfiles/ad_zero.hpp"
  80 #endif
  81 #ifdef TARGET_ARCH_MODEL_arm
  82 # include "adfiles/ad_arm.hpp"
  83 #endif
  84 #ifdef TARGET_ARCH_MODEL_ppc_32
  85 # include "adfiles/ad_ppc_32.hpp"
  86 #endif
  87 #ifdef TARGET_ARCH_MODEL_ppc_64
  88 # include "adfiles/ad_ppc_64.hpp"
  89 #endif
  90 
  91 
  92 // -------------------- Compile::mach_constant_base_node -----------------------
  93 // Constant table base node singleton.
  94 MachConstantBaseNode* Compile::mach_constant_base_node() {
  95   if (_mach_constant_base_node == NULL) {
  96     _mach_constant_base_node = new (C) MachConstantBaseNode();
  97     _mach_constant_base_node->add_req(C->root());
  98   }
  99   return _mach_constant_base_node;
 100 }
 101 
 102 
 103 /// Support for intrinsics.
 104 
 105 // Return the index at which m must be inserted (or already exists).
 106 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 107 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 108 #ifdef ASSERT
 109   for (int i = 1; i < _intrinsics->length(); i++) {
 110     CallGenerator* cg1 = _intrinsics->at(i-1);
 111     CallGenerator* cg2 = _intrinsics->at(i);
 112     assert(cg1->method() != cg2->method()
 113            ? cg1->method()     < cg2->method()
 114            : cg1->is_virtual() < cg2->is_virtual(),
 115            "compiler intrinsics list must stay sorted");
 116   }
 117 #endif
 118   // Binary search sorted list, in decreasing intervals [lo, hi].
 119   int lo = 0, hi = _intrinsics->length()-1;
 120   while (lo <= hi) {
 121     int mid = (uint)(hi + lo) / 2;
 122     ciMethod* mid_m = _intrinsics->at(mid)->method();
 123     if (m < mid_m) {
 124       hi = mid-1;
 125     } else if (m > mid_m) {
 126       lo = mid+1;
 127     } else {
 128       // look at minor sort key
 129       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 130       if (is_virtual < mid_virt) {
 131         hi = mid-1;
 132       } else if (is_virtual > mid_virt) {
 133         lo = mid+1;
 134       } else {
 135         return mid;  // exact match
 136       }
 137     }
 138   }
 139   return lo;  // inexact match
 140 }
 141 
 142 void Compile::register_intrinsic(CallGenerator* cg) {
 143   if (_intrinsics == NULL) {
 144     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 145   }
 146   // This code is stolen from ciObjectFactory::insert.
 147   // Really, GrowableArray should have methods for
 148   // insert_at, remove_at, and binary_search.
 149   int len = _intrinsics->length();
 150   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 151   if (index == len) {
 152     _intrinsics->append(cg);
 153   } else {
 154 #ifdef ASSERT
 155     CallGenerator* oldcg = _intrinsics->at(index);
 156     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 157 #endif
 158     _intrinsics->append(_intrinsics->at(len-1));
 159     int pos;
 160     for (pos = len-2; pos >= index; pos--) {
 161       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 162     }
 163     _intrinsics->at_put(index, cg);
 164   }
 165   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 166 }
 167 
 168 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 169   assert(m->is_loaded(), "don't try this on unloaded methods");
 170   if (_intrinsics != NULL) {
 171     int index = intrinsic_insertion_index(m, is_virtual);
 172     if (index < _intrinsics->length()
 173         && _intrinsics->at(index)->method() == m
 174         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 175       return _intrinsics->at(index);
 176     }
 177   }
 178   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 179   if (m->intrinsic_id() != vmIntrinsics::_none &&
 180       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 181     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 182     if (cg != NULL) {
 183       // Save it for next time:
 184       register_intrinsic(cg);
 185       return cg;
 186     } else {
 187       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 188     }
 189   }
 190   return NULL;
 191 }
 192 
 193 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 194 // in library_call.cpp.
 195 
 196 
 197 #ifndef PRODUCT
 198 // statistics gathering...
 199 
 200 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 201 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 202 
 203 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 204   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 205   int oflags = _intrinsic_hist_flags[id];
 206   assert(flags != 0, "what happened?");
 207   if (is_virtual) {
 208     flags |= _intrinsic_virtual;
 209   }
 210   bool changed = (flags != oflags);
 211   if ((flags & _intrinsic_worked) != 0) {
 212     juint count = (_intrinsic_hist_count[id] += 1);
 213     if (count == 1) {
 214       changed = true;           // first time
 215     }
 216     // increment the overall count also:
 217     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 218   }
 219   if (changed) {
 220     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 221       // Something changed about the intrinsic's virtuality.
 222       if ((flags & _intrinsic_virtual) != 0) {
 223         // This is the first use of this intrinsic as a virtual call.
 224         if (oflags != 0) {
 225           // We already saw it as a non-virtual, so note both cases.
 226           flags |= _intrinsic_both;
 227         }
 228       } else if ((oflags & _intrinsic_both) == 0) {
 229         // This is the first use of this intrinsic as a non-virtual
 230         flags |= _intrinsic_both;
 231       }
 232     }
 233     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 234   }
 235   // update the overall flags also:
 236   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 237   return changed;
 238 }
 239 
 240 static char* format_flags(int flags, char* buf) {
 241   buf[0] = 0;
 242   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 243   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 244   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 245   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 246   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 247   if (buf[0] == 0)  strcat(buf, ",");
 248   assert(buf[0] == ',', "must be");
 249   return &buf[1];
 250 }
 251 
 252 void Compile::print_intrinsic_statistics() {
 253   char flagsbuf[100];
 254   ttyLocker ttyl;
 255   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 256   tty->print_cr("Compiler intrinsic usage:");
 257   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 258   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 259   #define PRINT_STAT_LINE(name, c, f) \
 260     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 261   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 262     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 263     int   flags = _intrinsic_hist_flags[id];
 264     juint count = _intrinsic_hist_count[id];
 265     if ((flags | count) != 0) {
 266       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 267     }
 268   }
 269   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 270   if (xtty != NULL)  xtty->tail("statistics");
 271 }
 272 
 273 void Compile::print_statistics() {
 274   { ttyLocker ttyl;
 275     if (xtty != NULL)  xtty->head("statistics type='opto'");
 276     Parse::print_statistics();
 277     PhaseCCP::print_statistics();
 278     PhaseRegAlloc::print_statistics();
 279     Scheduling::print_statistics();
 280     PhasePeephole::print_statistics();
 281     PhaseIdealLoop::print_statistics();
 282     if (xtty != NULL)  xtty->tail("statistics");
 283   }
 284   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 285     // put this under its own <statistics> element.
 286     print_intrinsic_statistics();
 287   }
 288 }
 289 #endif //PRODUCT
 290 
 291 // Support for bundling info
 292 Bundle* Compile::node_bundling(const Node *n) {
 293   assert(valid_bundle_info(n), "oob");
 294   return &_node_bundling_base[n->_idx];
 295 }
 296 
 297 bool Compile::valid_bundle_info(const Node *n) {
 298   return (_node_bundling_limit > n->_idx);
 299 }
 300 
 301 
 302 void Compile::gvn_replace_by(Node* n, Node* nn) {
 303   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 304     Node* use = n->last_out(i);
 305     bool is_in_table = initial_gvn()->hash_delete(use);
 306     uint uses_found = 0;
 307     for (uint j = 0; j < use->len(); j++) {
 308       if (use->in(j) == n) {
 309         if (j < use->req())
 310           use->set_req(j, nn);
 311         else
 312           use->set_prec(j, nn);
 313         uses_found++;
 314       }
 315     }
 316     if (is_in_table) {
 317       // reinsert into table
 318       initial_gvn()->hash_find_insert(use);
 319     }
 320     record_for_igvn(use);
 321     i -= uses_found;    // we deleted 1 or more copies of this edge
 322   }
 323 }
 324 
 325 
 326 static inline bool not_a_node(const Node* n) {
 327   if (n == NULL)                   return true;
 328   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 329   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 330   return false;
 331 }
 332 
 333 // Identify all nodes that are reachable from below, useful.
 334 // Use breadth-first pass that records state in a Unique_Node_List,
 335 // recursive traversal is slower.
 336 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 337   int estimated_worklist_size = unique();
 338   useful.map( estimated_worklist_size, NULL );  // preallocate space
 339 
 340   // Initialize worklist
 341   if (root() != NULL)     { useful.push(root()); }
 342   // If 'top' is cached, declare it useful to preserve cached node
 343   if( cached_top_node() ) { useful.push(cached_top_node()); }
 344 
 345   // Push all useful nodes onto the list, breadthfirst
 346   for( uint next = 0; next < useful.size(); ++next ) {
 347     assert( next < unique(), "Unique useful nodes < total nodes");
 348     Node *n  = useful.at(next);
 349     uint max = n->len();
 350     for( uint i = 0; i < max; ++i ) {
 351       Node *m = n->in(i);
 352       if (not_a_node(m))  continue;
 353       useful.push(m);
 354     }
 355   }
 356 }
 357 
 358 // Update dead_node_list with any missing dead nodes using useful
 359 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 360 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 361   uint max_idx = unique();
 362   VectorSet& useful_node_set = useful.member_set();
 363 
 364   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 365     // If node with index node_idx is not in useful set,
 366     // mark it as dead in dead node list.
 367     if (! useful_node_set.test(node_idx) ) {
 368       record_dead_node(node_idx);
 369     }
 370   }
 371 }
 372 
 373 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 374   int shift = 0;
 375   for (int i = 0; i < inlines->length(); i++) {
 376     CallGenerator* cg = inlines->at(i);
 377     CallNode* call = cg->call_node();
 378     if (shift > 0) {
 379       inlines->at_put(i-shift, cg);
 380     }
 381     if (!useful.member(call)) {
 382       shift++;
 383     }
 384   }
 385   inlines->trunc_to(inlines->length()-shift);
 386 }
 387 
 388 // Disconnect all useless nodes by disconnecting those at the boundary.
 389 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 390   uint next = 0;
 391   while (next < useful.size()) {
 392     Node *n = useful.at(next++);
 393     // Use raw traversal of out edges since this code removes out edges
 394     int max = n->outcnt();
 395     for (int j = 0; j < max; ++j) {
 396       Node* child = n->raw_out(j);
 397       if (! useful.member(child)) {
 398         assert(!child->is_top() || child != top(),
 399                "If top is cached in Compile object it is in useful list");
 400         // Only need to remove this out-edge to the useless node
 401         n->raw_del_out(j);
 402         --j;
 403         --max;
 404       }
 405     }
 406     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 407       record_for_igvn(n->unique_out());
 408     }
 409   }
 410   // Remove useless macro and predicate opaq nodes
 411   for (int i = C->macro_count()-1; i >= 0; i--) {
 412     Node* n = C->macro_node(i);
 413     if (!useful.member(n)) {
 414       remove_macro_node(n);
 415     }
 416   }
 417   // Remove useless expensive node
 418   for (int i = C->expensive_count()-1; i >= 0; i--) {
 419     Node* n = C->expensive_node(i);
 420     if (!useful.member(n)) {
 421       remove_expensive_node(n);
 422     }
 423   }
 424   // clean up the late inline lists
 425   remove_useless_late_inlines(&_string_late_inlines, useful);
 426   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 427   remove_useless_late_inlines(&_late_inlines, useful);
 428   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 429 }
 430 
 431 //------------------------------frame_size_in_words-----------------------------
 432 // frame_slots in units of words
 433 int Compile::frame_size_in_words() const {
 434   // shift is 0 in LP32 and 1 in LP64
 435   const int shift = (LogBytesPerWord - LogBytesPerInt);
 436   int words = _frame_slots >> shift;
 437   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 438   return words;
 439 }
 440 
 441 // ============================================================================
 442 //------------------------------CompileWrapper---------------------------------
 443 class CompileWrapper : public StackObj {
 444   Compile *const _compile;
 445  public:
 446   CompileWrapper(Compile* compile);
 447 
 448   ~CompileWrapper();
 449 };
 450 
 451 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 452   // the Compile* pointer is stored in the current ciEnv:
 453   ciEnv* env = compile->env();
 454   assert(env == ciEnv::current(), "must already be a ciEnv active");
 455   assert(env->compiler_data() == NULL, "compile already active?");
 456   env->set_compiler_data(compile);
 457   assert(compile == Compile::current(), "sanity");
 458 
 459   compile->set_type_dict(NULL);
 460   compile->set_type_hwm(NULL);
 461   compile->set_type_last_size(0);
 462   compile->set_last_tf(NULL, NULL);
 463   compile->set_indexSet_arena(NULL);
 464   compile->set_indexSet_free_block_list(NULL);
 465   compile->init_type_arena();
 466   Type::Initialize(compile);
 467   _compile->set_scratch_buffer_blob(NULL);
 468   _compile->begin_method();
 469 }
 470 CompileWrapper::~CompileWrapper() {
 471   _compile->end_method();
 472   if (_compile->scratch_buffer_blob() != NULL)
 473     BufferBlob::free(_compile->scratch_buffer_blob());
 474   _compile->env()->set_compiler_data(NULL);
 475 }
 476 
 477 
 478 //----------------------------print_compile_messages---------------------------
 479 void Compile::print_compile_messages() {
 480 #ifndef PRODUCT
 481   // Check if recompiling
 482   if (_subsume_loads == false && PrintOpto) {
 483     // Recompiling without allowing machine instructions to subsume loads
 484     tty->print_cr("*********************************************************");
 485     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 486     tty->print_cr("*********************************************************");
 487   }
 488   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 489     // Recompiling without escape analysis
 490     tty->print_cr("*********************************************************");
 491     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 492     tty->print_cr("*********************************************************");
 493   }
 494   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 495     // Recompiling without boxing elimination
 496     tty->print_cr("*********************************************************");
 497     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 498     tty->print_cr("*********************************************************");
 499   }
 500   if (env()->break_at_compile()) {
 501     // Open the debugger when compiling this method.
 502     tty->print("### Breaking when compiling: ");
 503     method()->print_short_name();
 504     tty->cr();
 505     BREAKPOINT;
 506   }
 507 
 508   if( PrintOpto ) {
 509     if (is_osr_compilation()) {
 510       tty->print("[OSR]%3d", _compile_id);
 511     } else {
 512       tty->print("%3d", _compile_id);
 513     }
 514   }
 515 #endif
 516 }
 517 
 518 
 519 //-----------------------init_scratch_buffer_blob------------------------------
 520 // Construct a temporary BufferBlob and cache it for this compile.
 521 void Compile::init_scratch_buffer_blob(int const_size) {
 522   // If there is already a scratch buffer blob allocated and the
 523   // constant section is big enough, use it.  Otherwise free the
 524   // current and allocate a new one.
 525   BufferBlob* blob = scratch_buffer_blob();
 526   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 527     // Use the current blob.
 528   } else {
 529     if (blob != NULL) {
 530       BufferBlob::free(blob);
 531     }
 532 
 533     ResourceMark rm;
 534     _scratch_const_size = const_size;
 535     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 536     blob = BufferBlob::create("Compile::scratch_buffer", size);
 537     // Record the buffer blob for next time.
 538     set_scratch_buffer_blob(blob);
 539     // Have we run out of code space?
 540     if (scratch_buffer_blob() == NULL) {
 541       // Let CompilerBroker disable further compilations.
 542       record_failure("Not enough space for scratch buffer in CodeCache");
 543       return;
 544     }
 545   }
 546 
 547   // Initialize the relocation buffers
 548   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 549   set_scratch_locs_memory(locs_buf);
 550 }
 551 
 552 
 553 //-----------------------scratch_emit_size-------------------------------------
 554 // Helper function that computes size by emitting code
 555 uint Compile::scratch_emit_size(const Node* n) {
 556   // Start scratch_emit_size section.
 557   set_in_scratch_emit_size(true);
 558 
 559   // Emit into a trash buffer and count bytes emitted.
 560   // This is a pretty expensive way to compute a size,
 561   // but it works well enough if seldom used.
 562   // All common fixed-size instructions are given a size
 563   // method by the AD file.
 564   // Note that the scratch buffer blob and locs memory are
 565   // allocated at the beginning of the compile task, and
 566   // may be shared by several calls to scratch_emit_size.
 567   // The allocation of the scratch buffer blob is particularly
 568   // expensive, since it has to grab the code cache lock.
 569   BufferBlob* blob = this->scratch_buffer_blob();
 570   assert(blob != NULL, "Initialize BufferBlob at start");
 571   assert(blob->size() > MAX_inst_size, "sanity");
 572   relocInfo* locs_buf = scratch_locs_memory();
 573   address blob_begin = blob->content_begin();
 574   address blob_end   = (address)locs_buf;
 575   assert(blob->content_contains(blob_end), "sanity");
 576   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 577   buf.initialize_consts_size(_scratch_const_size);
 578   buf.initialize_stubs_size(MAX_stubs_size);
 579   assert(locs_buf != NULL, "sanity");
 580   int lsize = MAX_locs_size / 3;
 581   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 582   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 583   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 584 
 585   // Do the emission.
 586 
 587   Label fakeL; // Fake label for branch instructions.
 588   Label*   saveL = NULL;
 589   uint save_bnum = 0;
 590   bool is_branch = n->is_MachBranch();
 591   if (is_branch) {
 592     MacroAssembler masm(&buf);
 593     masm.bind(fakeL);
 594     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 595     n->as_MachBranch()->label_set(&fakeL, 0);
 596   }
 597   n->emit(buf, this->regalloc());
 598   if (is_branch) // Restore label.
 599     n->as_MachBranch()->label_set(saveL, save_bnum);
 600 
 601   // End scratch_emit_size section.
 602   set_in_scratch_emit_size(false);
 603 
 604   return buf.insts_size();
 605 }
 606 
 607 
 608 // ============================================================================
 609 //------------------------------Compile standard-------------------------------
 610 debug_only( int Compile::_debug_idx = 100000; )
 611 
 612 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 613 // the continuation bci for on stack replacement.
 614 
 615 
 616 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 617                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 618                 : Phase(Compiler),
 619                   _env(ci_env),
 620                   _log(ci_env->log()),
 621                   _compile_id(ci_env->compile_id()),
 622                   _save_argument_registers(false),
 623                   _stub_name(NULL),
 624                   _stub_function(NULL),
 625                   _stub_entry_point(NULL),
 626                   _method(target),
 627                   _entry_bci(osr_bci),
 628                   _initial_gvn(NULL),
 629                   _for_igvn(NULL),
 630                   _warm_calls(NULL),
 631                   _subsume_loads(subsume_loads),
 632                   _do_escape_analysis(do_escape_analysis),
 633                   _eliminate_boxing(eliminate_boxing),
 634                   _failure_reason(NULL),
 635                   _code_buffer("Compile::Fill_buffer"),
 636                   _orig_pc_slot(0),
 637                   _orig_pc_slot_offset_in_bytes(0),
 638                   _has_method_handle_invokes(false),
 639                   _mach_constant_base_node(NULL),
 640                   _node_bundling_limit(0),
 641                   _node_bundling_base(NULL),
 642                   _java_calls(0),
 643                   _inner_loops(0),
 644                   _scratch_const_size(-1),
 645                   _in_scratch_emit_size(false),
 646                   _dead_node_list(comp_arena()),
 647                   _dead_node_count(0),
 648 #ifndef PRODUCT
 649                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 650                   _in_dump_cnt(0),
 651                   _printer(IdealGraphPrinter::printer()),
 652 #endif
 653                   _congraph(NULL),
 654                   _late_inlines(comp_arena(), 2, 0, NULL),
 655                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 656                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 657                   _late_inlines_pos(0),
 658                   _number_of_mh_late_inlines(0),
 659                   _inlining_progress(false),
 660                   _inlining_incrementally(false),
 661                   _print_inlining_list(NULL),
 662                   _print_inlining_idx(0),
 663                   _preserve_jvm_state(0) {
 664   C = this;
 665 
 666   CompileWrapper cw(this);
 667 #ifndef PRODUCT
 668   if (TimeCompiler2) {
 669     tty->print(" ");
 670     target->holder()->name()->print();
 671     tty->print(".");
 672     target->print_short_name();
 673     tty->print("  ");
 674   }
 675   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 676   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 677   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 678   if (!print_opto_assembly) {
 679     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 680     if (print_assembly && !Disassembler::can_decode()) {
 681       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 682       print_opto_assembly = true;
 683     }
 684   }
 685   set_print_assembly(print_opto_assembly);
 686   set_parsed_irreducible_loop(false);
 687 #endif
 688   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 689   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 690 
 691   if (ProfileTraps) {
 692     // Make sure the method being compiled gets its own MDO,
 693     // so we can at least track the decompile_count().
 694     method()->ensure_method_data();
 695   }
 696 
 697   Init(::AliasLevel);
 698 
 699 
 700   print_compile_messages();
 701 
 702   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
 703     _ilt = InlineTree::build_inline_tree_root();
 704   else
 705     _ilt = NULL;
 706 
 707   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 708   assert(num_alias_types() >= AliasIdxRaw, "");
 709 
 710 #define MINIMUM_NODE_HASH  1023
 711   // Node list that Iterative GVN will start with
 712   Unique_Node_List for_igvn(comp_arena());
 713   set_for_igvn(&for_igvn);
 714 
 715   // GVN that will be run immediately on new nodes
 716   uint estimated_size = method()->code_size()*4+64;
 717   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 718   PhaseGVN gvn(node_arena(), estimated_size);
 719   set_initial_gvn(&gvn);
 720 
 721   if (print_inlining() || print_intrinsics()) {
 722     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
 723   }
 724   { // Scope for timing the parser
 725     TracePhase t3("parse", &_t_parser, true);
 726 
 727     // Put top into the hash table ASAP.
 728     initial_gvn()->transform_no_reclaim(top());
 729 
 730     // Set up tf(), start(), and find a CallGenerator.
 731     CallGenerator* cg = NULL;
 732     if (is_osr_compilation()) {
 733       const TypeTuple *domain = StartOSRNode::osr_domain();
 734       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 735       init_tf(TypeFunc::make(domain, range));
 736       StartNode* s = new (this) StartOSRNode(root(), domain);
 737       initial_gvn()->set_type_bottom(s);
 738       init_start(s);
 739       cg = CallGenerator::for_osr(method(), entry_bci());
 740     } else {
 741       // Normal case.
 742       init_tf(TypeFunc::make(method()));
 743       StartNode* s = new (this) StartNode(root(), tf()->domain());
 744       initial_gvn()->set_type_bottom(s);
 745       init_start(s);
 746       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 747         // With java.lang.ref.reference.get() we must go through the
 748         // intrinsic when G1 is enabled - even when get() is the root
 749         // method of the compile - so that, if necessary, the value in
 750         // the referent field of the reference object gets recorded by
 751         // the pre-barrier code.
 752         // Specifically, if G1 is enabled, the value in the referent
 753         // field is recorded by the G1 SATB pre barrier. This will
 754         // result in the referent being marked live and the reference
 755         // object removed from the list of discovered references during
 756         // reference processing.
 757         cg = find_intrinsic(method(), false);
 758       }
 759       if (cg == NULL) {
 760         float past_uses = method()->interpreter_invocation_count();
 761         float expected_uses = past_uses;
 762         cg = CallGenerator::for_inline(method(), expected_uses);
 763       }
 764     }
 765     if (failing())  return;
 766     if (cg == NULL) {
 767       record_method_not_compilable_all_tiers("cannot parse method");
 768       return;
 769     }
 770     JVMState* jvms = build_start_state(start(), tf());
 771     if ((jvms = cg->generate(jvms, NULL)) == NULL) {
 772       record_method_not_compilable("method parse failed");
 773       return;
 774     }
 775     GraphKit kit(jvms);
 776 
 777     if (!kit.stopped()) {
 778       // Accept return values, and transfer control we know not where.
 779       // This is done by a special, unique ReturnNode bound to root.
 780       return_values(kit.jvms());
 781     }
 782 
 783     if (kit.has_exceptions()) {
 784       // Any exceptions that escape from this call must be rethrown
 785       // to whatever caller is dynamically above us on the stack.
 786       // This is done by a special, unique RethrowNode bound to root.
 787       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 788     }
 789 
 790     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 791 
 792     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 793       inline_string_calls(true);
 794     }
 795 
 796     if (failing())  return;
 797 
 798     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 799 
 800     // Remove clutter produced by parsing.
 801     if (!failing()) {
 802       ResourceMark rm;
 803       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 804     }
 805   }
 806 
 807   // Note:  Large methods are capped off in do_one_bytecode().
 808   if (failing())  return;
 809 
 810   // After parsing, node notes are no longer automagic.
 811   // They must be propagated by register_new_node_with_optimizer(),
 812   // clone(), or the like.
 813   set_default_node_notes(NULL);
 814 
 815   for (;;) {
 816     int successes = Inline_Warm();
 817     if (failing())  return;
 818     if (successes == 0)  break;
 819   }
 820 
 821   // Drain the list.
 822   Finish_Warm();
 823 #ifndef PRODUCT
 824   if (_printer) {
 825     _printer->print_inlining(this);
 826   }
 827 #endif
 828 
 829   if (failing())  return;
 830   NOT_PRODUCT( verify_graph_edges(); )
 831 
 832   // Now optimize
 833   Optimize();
 834   if (failing())  return;
 835   NOT_PRODUCT( verify_graph_edges(); )
 836 
 837 #ifndef PRODUCT
 838   if (PrintIdeal) {
 839     ttyLocker ttyl;  // keep the following output all in one block
 840     // This output goes directly to the tty, not the compiler log.
 841     // To enable tools to match it up with the compilation activity,
 842     // be sure to tag this tty output with the compile ID.
 843     if (xtty != NULL) {
 844       xtty->head("ideal compile_id='%d'%s", compile_id(),
 845                  is_osr_compilation()    ? " compile_kind='osr'" :
 846                  "");
 847     }
 848     root()->dump(9999);
 849     if (xtty != NULL) {
 850       xtty->tail("ideal");
 851     }
 852   }
 853 #endif
 854 
 855   NOT_PRODUCT( verify_barriers(); )
 856   // Now that we know the size of all the monitors we can add a fixed slot
 857   // for the original deopt pc.
 858 
 859   _orig_pc_slot =  fixed_slots();
 860   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 861   set_fixed_slots(next_slot);
 862 
 863   // Now generate code
 864   Code_Gen();
 865   if (failing())  return;
 866 
 867   // Check if we want to skip execution of all compiled code.
 868   {
 869 #ifndef PRODUCT
 870     if (OptoNoExecute) {
 871       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 872       return;
 873     }
 874     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 875 #endif
 876 
 877     if (is_osr_compilation()) {
 878       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 879       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 880     } else {
 881       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 882       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 883     }
 884 
 885     env()->register_method(_method, _entry_bci,
 886                            &_code_offsets,
 887                            _orig_pc_slot_offset_in_bytes,
 888                            code_buffer(),
 889                            frame_size_in_words(), _oop_map_set,
 890                            &_handler_table, &_inc_table,
 891                            compiler,
 892                            env()->comp_level(),
 893                            has_unsafe_access(),
 894                            SharedRuntime::is_wide_vector(max_vector_size())
 895                            );
 896 
 897     if (log() != NULL) // Print code cache state into compiler log
 898       log()->code_cache_state();
 899   }
 900 }
 901 
 902 //------------------------------Compile----------------------------------------
 903 // Compile a runtime stub
 904 Compile::Compile( ciEnv* ci_env,
 905                   TypeFunc_generator generator,
 906                   address stub_function,
 907                   const char *stub_name,
 908                   int is_fancy_jump,
 909                   bool pass_tls,
 910                   bool save_arg_registers,
 911                   bool return_pc )
 912   : Phase(Compiler),
 913     _env(ci_env),
 914     _log(ci_env->log()),
 915     _compile_id(0),
 916     _save_argument_registers(save_arg_registers),
 917     _method(NULL),
 918     _stub_name(stub_name),
 919     _stub_function(stub_function),
 920     _stub_entry_point(NULL),
 921     _entry_bci(InvocationEntryBci),
 922     _initial_gvn(NULL),
 923     _for_igvn(NULL),
 924     _warm_calls(NULL),
 925     _orig_pc_slot(0),
 926     _orig_pc_slot_offset_in_bytes(0),
 927     _subsume_loads(true),
 928     _do_escape_analysis(false),
 929     _eliminate_boxing(false),
 930     _failure_reason(NULL),
 931     _code_buffer("Compile::Fill_buffer"),
 932     _has_method_handle_invokes(false),
 933     _mach_constant_base_node(NULL),
 934     _node_bundling_limit(0),
 935     _node_bundling_base(NULL),
 936     _java_calls(0),
 937     _inner_loops(0),
 938 #ifndef PRODUCT
 939     _trace_opto_output(TraceOptoOutput),
 940     _in_dump_cnt(0),
 941     _printer(NULL),
 942 #endif
 943     _dead_node_list(comp_arena()),
 944     _dead_node_count(0),
 945     _congraph(NULL),
 946     _number_of_mh_late_inlines(0),
 947     _inlining_progress(false),
 948     _inlining_incrementally(false),
 949     _print_inlining_list(NULL),
 950     _print_inlining_idx(0),
 951     _preserve_jvm_state(0) {
 952   C = this;
 953 
 954 #ifndef PRODUCT
 955   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 956   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 957   set_print_assembly(PrintFrameConverterAssembly);
 958   set_parsed_irreducible_loop(false);
 959 #endif
 960   CompileWrapper cw(this);
 961   Init(/*AliasLevel=*/ 0);
 962   init_tf((*generator)());
 963 
 964   {
 965     // The following is a dummy for the sake of GraphKit::gen_stub
 966     Unique_Node_List for_igvn(comp_arena());
 967     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 968     PhaseGVN gvn(Thread::current()->resource_area(),255);
 969     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 970     gvn.transform_no_reclaim(top());
 971 
 972     GraphKit kit;
 973     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 974   }
 975 
 976   NOT_PRODUCT( verify_graph_edges(); )
 977   Code_Gen();
 978   if (failing())  return;
 979 
 980 
 981   // Entry point will be accessed using compile->stub_entry_point();
 982   if (code_buffer() == NULL) {
 983     Matcher::soft_match_failure();
 984   } else {
 985     if (PrintAssembly && (WizardMode || Verbose))
 986       tty->print_cr("### Stub::%s", stub_name);
 987 
 988     if (!failing()) {
 989       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
 990 
 991       // Make the NMethod
 992       // For now we mark the frame as never safe for profile stackwalking
 993       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
 994                                                       code_buffer(),
 995                                                       CodeOffsets::frame_never_safe,
 996                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
 997                                                       frame_size_in_words(),
 998                                                       _oop_map_set,
 999                                                       save_arg_registers);
1000       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1001 
1002       _stub_entry_point = rs->entry_point();
1003     }
1004   }
1005 }
1006 
1007 //------------------------------Init-------------------------------------------
1008 // Prepare for a single compilation
1009 void Compile::Init(int aliaslevel) {
1010   _unique  = 0;
1011   _regalloc = NULL;
1012 
1013   _tf      = NULL;  // filled in later
1014   _top     = NULL;  // cached later
1015   _matcher = NULL;  // filled in later
1016   _cfg     = NULL;  // filled in later
1017 
1018   set_24_bit_selection_and_mode(Use24BitFP, false);
1019 
1020   _node_note_array = NULL;
1021   _default_node_notes = NULL;
1022 
1023   _immutable_memory = NULL; // filled in at first inquiry
1024 
1025   // Globally visible Nodes
1026   // First set TOP to NULL to give safe behavior during creation of RootNode
1027   set_cached_top_node(NULL);
1028   set_root(new (this) RootNode());
1029   // Now that you have a Root to point to, create the real TOP
1030   set_cached_top_node( new (this) ConNode(Type::TOP) );
1031   set_recent_alloc(NULL, NULL);
1032 
1033   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1034   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1035   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1036   env()->set_dependencies(new Dependencies(env()));
1037 
1038   _fixed_slots = 0;
1039   set_has_split_ifs(false);
1040   set_has_loops(has_method() && method()->has_loops()); // first approximation
1041   set_has_stringbuilder(false);
1042   set_has_boxed_value(false);
1043   _trap_can_recompile = false;  // no traps emitted yet
1044   _major_progress = true; // start out assuming good things will happen
1045   set_has_unsafe_access(false);
1046   set_max_vector_size(0);
1047   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1048   set_decompile_count(0);
1049 
1050   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1051   set_num_loop_opts(LoopOptsCount);
1052   set_do_inlining(Inline);
1053   set_max_inline_size(MaxInlineSize);
1054   set_freq_inline_size(FreqInlineSize);
1055   set_do_scheduling(OptoScheduling);
1056   set_do_count_invocations(false);
1057   set_do_method_data_update(false);
1058 
1059   if (debug_info()->recording_non_safepoints()) {
1060     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1061                         (comp_arena(), 8, 0, NULL));
1062     set_default_node_notes(Node_Notes::make(this));
1063   }
1064 
1065   // // -- Initialize types before each compile --
1066   // // Update cached type information
1067   // if( _method && _method->constants() )
1068   //   Type::update_loaded_types(_method, _method->constants());
1069 
1070   // Init alias_type map.
1071   if (!_do_escape_analysis && aliaslevel == 3)
1072     aliaslevel = 2;  // No unique types without escape analysis
1073   _AliasLevel = aliaslevel;
1074   const int grow_ats = 16;
1075   _max_alias_types = grow_ats;
1076   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1077   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1078   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1079   {
1080     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1081   }
1082   // Initialize the first few types.
1083   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1084   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1085   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1086   _num_alias_types = AliasIdxRaw+1;
1087   // Zero out the alias type cache.
1088   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1089   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1090   probe_alias_cache(NULL)->_index = AliasIdxTop;
1091 
1092   _intrinsics = NULL;
1093   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1094   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1095   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1096   register_library_intrinsics();
1097 }
1098 
1099 //---------------------------init_start----------------------------------------
1100 // Install the StartNode on this compile object.
1101 void Compile::init_start(StartNode* s) {
1102   if (failing())
1103     return; // already failing
1104   assert(s == start(), "");
1105 }
1106 
1107 StartNode* Compile::start() const {
1108   assert(!failing(), "");
1109   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1110     Node* start = root()->fast_out(i);
1111     if( start->is_Start() )
1112       return start->as_Start();
1113   }
1114   ShouldNotReachHere();
1115   return NULL;
1116 }
1117 
1118 //-------------------------------immutable_memory-------------------------------------
1119 // Access immutable memory
1120 Node* Compile::immutable_memory() {
1121   if (_immutable_memory != NULL) {
1122     return _immutable_memory;
1123   }
1124   StartNode* s = start();
1125   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1126     Node *p = s->fast_out(i);
1127     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1128       _immutable_memory = p;
1129       return _immutable_memory;
1130     }
1131   }
1132   ShouldNotReachHere();
1133   return NULL;
1134 }
1135 
1136 //----------------------set_cached_top_node------------------------------------
1137 // Install the cached top node, and make sure Node::is_top works correctly.
1138 void Compile::set_cached_top_node(Node* tn) {
1139   if (tn != NULL)  verify_top(tn);
1140   Node* old_top = _top;
1141   _top = tn;
1142   // Calling Node::setup_is_top allows the nodes the chance to adjust
1143   // their _out arrays.
1144   if (_top != NULL)     _top->setup_is_top();
1145   if (old_top != NULL)  old_top->setup_is_top();
1146   assert(_top == NULL || top()->is_top(), "");
1147 }
1148 
1149 #ifdef ASSERT
1150 uint Compile::count_live_nodes_by_graph_walk() {
1151   Unique_Node_List useful(comp_arena());
1152   // Get useful node list by walking the graph.
1153   identify_useful_nodes(useful);
1154   return useful.size();
1155 }
1156 
1157 void Compile::print_missing_nodes() {
1158 
1159   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1160   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1161     return;
1162   }
1163 
1164   // This is an expensive function. It is executed only when the user
1165   // specifies VerifyIdealNodeCount option or otherwise knows the
1166   // additional work that needs to be done to identify reachable nodes
1167   // by walking the flow graph and find the missing ones using
1168   // _dead_node_list.
1169 
1170   Unique_Node_List useful(comp_arena());
1171   // Get useful node list by walking the graph.
1172   identify_useful_nodes(useful);
1173 
1174   uint l_nodes = C->live_nodes();
1175   uint l_nodes_by_walk = useful.size();
1176 
1177   if (l_nodes != l_nodes_by_walk) {
1178     if (_log != NULL) {
1179       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1180       _log->stamp();
1181       _log->end_head();
1182     }
1183     VectorSet& useful_member_set = useful.member_set();
1184     int last_idx = l_nodes_by_walk;
1185     for (int i = 0; i < last_idx; i++) {
1186       if (useful_member_set.test(i)) {
1187         if (_dead_node_list.test(i)) {
1188           if (_log != NULL) {
1189             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1190           }
1191           if (PrintIdealNodeCount) {
1192             // Print the log message to tty
1193               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1194               useful.at(i)->dump();
1195           }
1196         }
1197       }
1198       else if (! _dead_node_list.test(i)) {
1199         if (_log != NULL) {
1200           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1201         }
1202         if (PrintIdealNodeCount) {
1203           // Print the log message to tty
1204           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1205         }
1206       }
1207     }
1208     if (_log != NULL) {
1209       _log->tail("mismatched_nodes");
1210     }
1211   }
1212 }
1213 #endif
1214 
1215 #ifndef PRODUCT
1216 void Compile::verify_top(Node* tn) const {
1217   if (tn != NULL) {
1218     assert(tn->is_Con(), "top node must be a constant");
1219     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1220     assert(tn->in(0) != NULL, "must have live top node");
1221   }
1222 }
1223 #endif
1224 
1225 
1226 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1227 
1228 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1229   guarantee(arr != NULL, "");
1230   int num_blocks = arr->length();
1231   if (grow_by < num_blocks)  grow_by = num_blocks;
1232   int num_notes = grow_by * _node_notes_block_size;
1233   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1234   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1235   while (num_notes > 0) {
1236     arr->append(notes);
1237     notes     += _node_notes_block_size;
1238     num_notes -= _node_notes_block_size;
1239   }
1240   assert(num_notes == 0, "exact multiple, please");
1241 }
1242 
1243 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1244   if (source == NULL || dest == NULL)  return false;
1245 
1246   if (dest->is_Con())
1247     return false;               // Do not push debug info onto constants.
1248 
1249 #ifdef ASSERT
1250   // Leave a bread crumb trail pointing to the original node:
1251   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1252     dest->set_debug_orig(source);
1253   }
1254 #endif
1255 
1256   if (node_note_array() == NULL)
1257     return false;               // Not collecting any notes now.
1258 
1259   // This is a copy onto a pre-existing node, which may already have notes.
1260   // If both nodes have notes, do not overwrite any pre-existing notes.
1261   Node_Notes* source_notes = node_notes_at(source->_idx);
1262   if (source_notes == NULL || source_notes->is_clear())  return false;
1263   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1264   if (dest_notes == NULL || dest_notes->is_clear()) {
1265     return set_node_notes_at(dest->_idx, source_notes);
1266   }
1267 
1268   Node_Notes merged_notes = (*source_notes);
1269   // The order of operations here ensures that dest notes will win...
1270   merged_notes.update_from(dest_notes);
1271   return set_node_notes_at(dest->_idx, &merged_notes);
1272 }
1273 
1274 
1275 //--------------------------allow_range_check_smearing-------------------------
1276 // Gating condition for coalescing similar range checks.
1277 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1278 // single covering check that is at least as strong as any of them.
1279 // If the optimization succeeds, the simplified (strengthened) range check
1280 // will always succeed.  If it fails, we will deopt, and then give up
1281 // on the optimization.
1282 bool Compile::allow_range_check_smearing() const {
1283   // If this method has already thrown a range-check,
1284   // assume it was because we already tried range smearing
1285   // and it failed.
1286   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1287   return !already_trapped;
1288 }
1289 
1290 
1291 //------------------------------flatten_alias_type-----------------------------
1292 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1293   int offset = tj->offset();
1294   TypePtr::PTR ptr = tj->ptr();
1295 
1296   // Known instance (scalarizable allocation) alias only with itself.
1297   bool is_known_inst = tj->isa_oopptr() != NULL &&
1298                        tj->is_oopptr()->is_known_instance();
1299 
1300   // Process weird unsafe references.
1301   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1302     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1303     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1304     tj = TypeOopPtr::BOTTOM;
1305     ptr = tj->ptr();
1306     offset = tj->offset();
1307   }
1308 
1309   // Array pointers need some flattening
1310   const TypeAryPtr *ta = tj->isa_aryptr();
1311   if (ta && ta->is_stable()) {
1312     // Erase stability property for alias analysis.
1313     tj = ta = ta->cast_to_stable(false);
1314   }
1315   if( ta && is_known_inst ) {
1316     if ( offset != Type::OffsetBot &&
1317          offset > arrayOopDesc::length_offset_in_bytes() ) {
1318       offset = Type::OffsetBot; // Flatten constant access into array body only
1319       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1320     }
1321   } else if( ta && _AliasLevel >= 2 ) {
1322     // For arrays indexed by constant indices, we flatten the alias
1323     // space to include all of the array body.  Only the header, klass
1324     // and array length can be accessed un-aliased.
1325     if( offset != Type::OffsetBot ) {
1326       if( ta->const_oop() ) { // MethodData* or Method*
1327         offset = Type::OffsetBot;   // Flatten constant access into array body
1328         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1329       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1330         // range is OK as-is.
1331         tj = ta = TypeAryPtr::RANGE;
1332       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1333         tj = TypeInstPtr::KLASS; // all klass loads look alike
1334         ta = TypeAryPtr::RANGE; // generic ignored junk
1335         ptr = TypePtr::BotPTR;
1336       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1337         tj = TypeInstPtr::MARK;
1338         ta = TypeAryPtr::RANGE; // generic ignored junk
1339         ptr = TypePtr::BotPTR;
1340       } else {                  // Random constant offset into array body
1341         offset = Type::OffsetBot;   // Flatten constant access into array body
1342         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1343       }
1344     }
1345     // Arrays of fixed size alias with arrays of unknown size.
1346     if (ta->size() != TypeInt::POS) {
1347       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1348       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1349     }
1350     // Arrays of known objects become arrays of unknown objects.
1351     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1352       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1353       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1354     }
1355     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1356       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1357       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1358     }
1359     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1360     // cannot be distinguished by bytecode alone.
1361     if (ta->elem() == TypeInt::BOOL) {
1362       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1363       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1364       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1365     }
1366     // During the 2nd round of IterGVN, NotNull castings are removed.
1367     // Make sure the Bottom and NotNull variants alias the same.
1368     // Also, make sure exact and non-exact variants alias the same.
1369     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1370       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1371     }
1372   }
1373 
1374   // Oop pointers need some flattening
1375   const TypeInstPtr *to = tj->isa_instptr();
1376   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1377     ciInstanceKlass *k = to->klass()->as_instance_klass();
1378     if( ptr == TypePtr::Constant ) {
1379       if (to->klass() != ciEnv::current()->Class_klass() ||
1380           offset < k->size_helper() * wordSize) {
1381         // No constant oop pointers (such as Strings); they alias with
1382         // unknown strings.
1383         assert(!is_known_inst, "not scalarizable allocation");
1384         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1385       }
1386     } else if( is_known_inst ) {
1387       tj = to; // Keep NotNull and klass_is_exact for instance type
1388     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1389       // During the 2nd round of IterGVN, NotNull castings are removed.
1390       // Make sure the Bottom and NotNull variants alias the same.
1391       // Also, make sure exact and non-exact variants alias the same.
1392       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1393     }
1394     if (to->speculative() != NULL) {
1395       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1396     }
1397     // Canonicalize the holder of this field
1398     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1399       // First handle header references such as a LoadKlassNode, even if the
1400       // object's klass is unloaded at compile time (4965979).
1401       if (!is_known_inst) { // Do it only for non-instance types
1402         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1403       }
1404     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1405       // Static fields are in the space above the normal instance
1406       // fields in the java.lang.Class instance.
1407       if (to->klass() != ciEnv::current()->Class_klass()) {
1408         to = NULL;
1409         tj = TypeOopPtr::BOTTOM;
1410         offset = tj->offset();
1411       }
1412     } else {
1413       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1414       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1415         if( is_known_inst ) {
1416           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1417         } else {
1418           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1419         }
1420       }
1421     }
1422   }
1423 
1424   // Klass pointers to object array klasses need some flattening
1425   const TypeKlassPtr *tk = tj->isa_klassptr();
1426   if( tk ) {
1427     // If we are referencing a field within a Klass, we need
1428     // to assume the worst case of an Object.  Both exact and
1429     // inexact types must flatten to the same alias class so
1430     // use NotNull as the PTR.
1431     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1432 
1433       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1434                                    TypeKlassPtr::OBJECT->klass(),
1435                                    offset);
1436     }
1437 
1438     ciKlass* klass = tk->klass();
1439     if( klass->is_obj_array_klass() ) {
1440       ciKlass* k = TypeAryPtr::OOPS->klass();
1441       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1442         k = TypeInstPtr::BOTTOM->klass();
1443       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1444     }
1445 
1446     // Check for precise loads from the primary supertype array and force them
1447     // to the supertype cache alias index.  Check for generic array loads from
1448     // the primary supertype array and also force them to the supertype cache
1449     // alias index.  Since the same load can reach both, we need to merge
1450     // these 2 disparate memories into the same alias class.  Since the
1451     // primary supertype array is read-only, there's no chance of confusion
1452     // where we bypass an array load and an array store.
1453     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1454     if (offset == Type::OffsetBot ||
1455         (offset >= primary_supers_offset &&
1456          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1457         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1458       offset = in_bytes(Klass::secondary_super_cache_offset());
1459       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1460     }
1461   }
1462 
1463   // Flatten all Raw pointers together.
1464   if (tj->base() == Type::RawPtr)
1465     tj = TypeRawPtr::BOTTOM;
1466 
1467   if (tj->base() == Type::AnyPtr)
1468     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1469 
1470   // Flatten all to bottom for now
1471   switch( _AliasLevel ) {
1472   case 0:
1473     tj = TypePtr::BOTTOM;
1474     break;
1475   case 1:                       // Flatten to: oop, static, field or array
1476     switch (tj->base()) {
1477     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1478     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1479     case Type::AryPtr:   // do not distinguish arrays at all
1480     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1481     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1482     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1483     default: ShouldNotReachHere();
1484     }
1485     break;
1486   case 2:                       // No collapsing at level 2; keep all splits
1487   case 3:                       // No collapsing at level 3; keep all splits
1488     break;
1489   default:
1490     Unimplemented();
1491   }
1492 
1493   offset = tj->offset();
1494   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1495 
1496   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1497           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1498           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1499           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1500           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1501           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1502           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1503           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1504   assert( tj->ptr() != TypePtr::TopPTR &&
1505           tj->ptr() != TypePtr::AnyNull &&
1506           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1507 //    assert( tj->ptr() != TypePtr::Constant ||
1508 //            tj->base() == Type::RawPtr ||
1509 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1510 
1511   return tj;
1512 }
1513 
1514 void Compile::AliasType::Init(int i, const TypePtr* at) {
1515   _index = i;
1516   _adr_type = at;
1517   _field = NULL;
1518   _element = NULL;
1519   _is_rewritable = true; // default
1520   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1521   if (atoop != NULL && atoop->is_known_instance()) {
1522     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1523     _general_index = Compile::current()->get_alias_index(gt);
1524   } else {
1525     _general_index = 0;
1526   }
1527 }
1528 
1529 //---------------------------------print_on------------------------------------
1530 #ifndef PRODUCT
1531 void Compile::AliasType::print_on(outputStream* st) {
1532   if (index() < 10)
1533         st->print("@ <%d> ", index());
1534   else  st->print("@ <%d>",  index());
1535   st->print(is_rewritable() ? "   " : " RO");
1536   int offset = adr_type()->offset();
1537   if (offset == Type::OffsetBot)
1538         st->print(" +any");
1539   else  st->print(" +%-3d", offset);
1540   st->print(" in ");
1541   adr_type()->dump_on(st);
1542   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1543   if (field() != NULL && tjp) {
1544     if (tjp->klass()  != field()->holder() ||
1545         tjp->offset() != field()->offset_in_bytes()) {
1546       st->print(" != ");
1547       field()->print();
1548       st->print(" ***");
1549     }
1550   }
1551 }
1552 
1553 void print_alias_types() {
1554   Compile* C = Compile::current();
1555   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1556   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1557     C->alias_type(idx)->print_on(tty);
1558     tty->cr();
1559   }
1560 }
1561 #endif
1562 
1563 
1564 //----------------------------probe_alias_cache--------------------------------
1565 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1566   intptr_t key = (intptr_t) adr_type;
1567   key ^= key >> logAliasCacheSize;
1568   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1569 }
1570 
1571 
1572 //-----------------------------grow_alias_types--------------------------------
1573 void Compile::grow_alias_types() {
1574   const int old_ats  = _max_alias_types; // how many before?
1575   const int new_ats  = old_ats;          // how many more?
1576   const int grow_ats = old_ats+new_ats;  // how many now?
1577   _max_alias_types = grow_ats;
1578   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1579   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1580   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1581   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1582 }
1583 
1584 
1585 //--------------------------------find_alias_type------------------------------
1586 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1587   if (_AliasLevel == 0)
1588     return alias_type(AliasIdxBot);
1589 
1590   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1591   if (ace->_adr_type == adr_type) {
1592     return alias_type(ace->_index);
1593   }
1594 
1595   // Handle special cases.
1596   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1597   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1598 
1599   // Do it the slow way.
1600   const TypePtr* flat = flatten_alias_type(adr_type);
1601 
1602 #ifdef ASSERT
1603   assert(flat == flatten_alias_type(flat), "idempotent");
1604   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1605   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1606     const TypeOopPtr* foop = flat->is_oopptr();
1607     // Scalarizable allocations have exact klass always.
1608     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1609     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1610     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1611   }
1612   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1613 #endif
1614 
1615   int idx = AliasIdxTop;
1616   for (int i = 0; i < num_alias_types(); i++) {
1617     if (alias_type(i)->adr_type() == flat) {
1618       idx = i;
1619       break;
1620     }
1621   }
1622 
1623   if (idx == AliasIdxTop) {
1624     if (no_create)  return NULL;
1625     // Grow the array if necessary.
1626     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1627     // Add a new alias type.
1628     idx = _num_alias_types++;
1629     _alias_types[idx]->Init(idx, flat);
1630     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1631     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1632     if (flat->isa_instptr()) {
1633       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1634           && flat->is_instptr()->klass() == env()->Class_klass())
1635         alias_type(idx)->set_rewritable(false);
1636     }
1637     if (flat->isa_aryptr()) {
1638 #ifdef ASSERT
1639       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1640       // (T_BYTE has the weakest alignment and size restrictions...)
1641       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1642 #endif
1643       if (flat->offset() == TypePtr::OffsetBot) {
1644         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1645       }
1646     }
1647     if (flat->isa_klassptr()) {
1648       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1649         alias_type(idx)->set_rewritable(false);
1650       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1651         alias_type(idx)->set_rewritable(false);
1652       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1653         alias_type(idx)->set_rewritable(false);
1654       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1655         alias_type(idx)->set_rewritable(false);
1656     }
1657     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1658     // but the base pointer type is not distinctive enough to identify
1659     // references into JavaThread.)
1660 
1661     // Check for final fields.
1662     const TypeInstPtr* tinst = flat->isa_instptr();
1663     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1664       ciField* field;
1665       if (tinst->const_oop() != NULL &&
1666           tinst->klass() == ciEnv::current()->Class_klass() &&
1667           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1668         // static field
1669         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1670         field = k->get_field_by_offset(tinst->offset(), true);
1671       } else {
1672         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1673         field = k->get_field_by_offset(tinst->offset(), false);
1674       }
1675       assert(field == NULL ||
1676              original_field == NULL ||
1677              (field->holder() == original_field->holder() &&
1678               field->offset() == original_field->offset() &&
1679               field->is_static() == original_field->is_static()), "wrong field?");
1680       // Set field() and is_rewritable() attributes.
1681       if (field != NULL)  alias_type(idx)->set_field(field);
1682     }
1683   }
1684 
1685   // Fill the cache for next time.
1686   ace->_adr_type = adr_type;
1687   ace->_index    = idx;
1688   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1689 
1690   // Might as well try to fill the cache for the flattened version, too.
1691   AliasCacheEntry* face = probe_alias_cache(flat);
1692   if (face->_adr_type == NULL) {
1693     face->_adr_type = flat;
1694     face->_index    = idx;
1695     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1696   }
1697 
1698   return alias_type(idx);
1699 }
1700 
1701 
1702 Compile::AliasType* Compile::alias_type(ciField* field) {
1703   const TypeOopPtr* t;
1704   if (field->is_static())
1705     t = TypeInstPtr::make(field->holder()->java_mirror());
1706   else
1707     t = TypeOopPtr::make_from_klass_raw(field->holder());
1708   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1709   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1710   return atp;
1711 }
1712 
1713 
1714 //------------------------------have_alias_type--------------------------------
1715 bool Compile::have_alias_type(const TypePtr* adr_type) {
1716   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1717   if (ace->_adr_type == adr_type) {
1718     return true;
1719   }
1720 
1721   // Handle special cases.
1722   if (adr_type == NULL)             return true;
1723   if (adr_type == TypePtr::BOTTOM)  return true;
1724 
1725   return find_alias_type(adr_type, true, NULL) != NULL;
1726 }
1727 
1728 //-----------------------------must_alias--------------------------------------
1729 // True if all values of the given address type are in the given alias category.
1730 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1731   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1732   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1733   if (alias_idx == AliasIdxTop)         return false; // the empty category
1734   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1735 
1736   // the only remaining possible overlap is identity
1737   int adr_idx = get_alias_index(adr_type);
1738   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1739   assert(adr_idx == alias_idx ||
1740          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1741           && adr_type                       != TypeOopPtr::BOTTOM),
1742          "should not be testing for overlap with an unsafe pointer");
1743   return adr_idx == alias_idx;
1744 }
1745 
1746 //------------------------------can_alias--------------------------------------
1747 // True if any values of the given address type are in the given alias category.
1748 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1749   if (alias_idx == AliasIdxTop)         return false; // the empty category
1750   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1751   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1752   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1753 
1754   // the only remaining possible overlap is identity
1755   int adr_idx = get_alias_index(adr_type);
1756   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1757   return adr_idx == alias_idx;
1758 }
1759 
1760 
1761 
1762 //---------------------------pop_warm_call-------------------------------------
1763 WarmCallInfo* Compile::pop_warm_call() {
1764   WarmCallInfo* wci = _warm_calls;
1765   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1766   return wci;
1767 }
1768 
1769 //----------------------------Inline_Warm--------------------------------------
1770 int Compile::Inline_Warm() {
1771   // If there is room, try to inline some more warm call sites.
1772   // %%% Do a graph index compaction pass when we think we're out of space?
1773   if (!InlineWarmCalls)  return 0;
1774 
1775   int calls_made_hot = 0;
1776   int room_to_grow   = NodeCountInliningCutoff - unique();
1777   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1778   int amount_grown   = 0;
1779   WarmCallInfo* call;
1780   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1781     int est_size = (int)call->size();
1782     if (est_size > (room_to_grow - amount_grown)) {
1783       // This one won't fit anyway.  Get rid of it.
1784       call->make_cold();
1785       continue;
1786     }
1787     call->make_hot();
1788     calls_made_hot++;
1789     amount_grown   += est_size;
1790     amount_to_grow -= est_size;
1791   }
1792 
1793   if (calls_made_hot > 0)  set_major_progress();
1794   return calls_made_hot;
1795 }
1796 
1797 
1798 //----------------------------Finish_Warm--------------------------------------
1799 void Compile::Finish_Warm() {
1800   if (!InlineWarmCalls)  return;
1801   if (failing())  return;
1802   if (warm_calls() == NULL)  return;
1803 
1804   // Clean up loose ends, if we are out of space for inlining.
1805   WarmCallInfo* call;
1806   while ((call = pop_warm_call()) != NULL) {
1807     call->make_cold();
1808   }
1809 }
1810 
1811 //---------------------cleanup_loop_predicates-----------------------
1812 // Remove the opaque nodes that protect the predicates so that all unused
1813 // checks and uncommon_traps will be eliminated from the ideal graph
1814 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1815   if (predicate_count()==0) return;
1816   for (int i = predicate_count(); i > 0; i--) {
1817     Node * n = predicate_opaque1_node(i-1);
1818     assert(n->Opcode() == Op_Opaque1, "must be");
1819     igvn.replace_node(n, n->in(1));
1820   }
1821   assert(predicate_count()==0, "should be clean!");
1822 }
1823 
1824 // StringOpts and late inlining of string methods
1825 void Compile::inline_string_calls(bool parse_time) {
1826   {
1827     // remove useless nodes to make the usage analysis simpler
1828     ResourceMark rm;
1829     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1830   }
1831 
1832   {
1833     ResourceMark rm;
1834     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1835     PhaseStringOpts pso(initial_gvn(), for_igvn());
1836     print_method(PHASE_AFTER_STRINGOPTS, 3);
1837   }
1838 
1839   // now inline anything that we skipped the first time around
1840   if (!parse_time) {
1841     _late_inlines_pos = _late_inlines.length();
1842   }
1843 
1844   while (_string_late_inlines.length() > 0) {
1845     CallGenerator* cg = _string_late_inlines.pop();
1846     cg->do_late_inline();
1847     if (failing())  return;
1848   }
1849   _string_late_inlines.trunc_to(0);
1850 }
1851 
1852 // Late inlining of boxing methods
1853 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1854   if (_boxing_late_inlines.length() > 0) {
1855     assert(has_boxed_value(), "inconsistent");
1856 
1857     PhaseGVN* gvn = initial_gvn();
1858     set_inlining_incrementally(true);
1859 
1860     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1861     for_igvn()->clear();
1862     gvn->replace_with(&igvn);
1863 
1864     while (_boxing_late_inlines.length() > 0) {
1865       CallGenerator* cg = _boxing_late_inlines.pop();
1866       cg->do_late_inline();
1867       if (failing())  return;
1868     }
1869     _boxing_late_inlines.trunc_to(0);
1870 
1871     {
1872       ResourceMark rm;
1873       PhaseRemoveUseless pru(gvn, for_igvn());
1874     }
1875 
1876     igvn = PhaseIterGVN(gvn);
1877     igvn.optimize();
1878 
1879     set_inlining_progress(false);
1880     set_inlining_incrementally(false);
1881   }
1882 }
1883 
1884 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1885   assert(IncrementalInline, "incremental inlining should be on");
1886   PhaseGVN* gvn = initial_gvn();
1887 
1888   set_inlining_progress(false);
1889   for_igvn()->clear();
1890   gvn->replace_with(&igvn);
1891 
1892   int i = 0;
1893 
1894   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1895     CallGenerator* cg = _late_inlines.at(i);
1896     _late_inlines_pos = i+1;
1897     cg->do_late_inline();
1898     if (failing())  return;
1899   }
1900   int j = 0;
1901   for (; i < _late_inlines.length(); i++, j++) {
1902     _late_inlines.at_put(j, _late_inlines.at(i));
1903   }
1904   _late_inlines.trunc_to(j);
1905 
1906   {
1907     ResourceMark rm;
1908     PhaseRemoveUseless pru(gvn, for_igvn());
1909   }
1910 
1911   igvn = PhaseIterGVN(gvn);
1912 }
1913 
1914 // Perform incremental inlining until bound on number of live nodes is reached
1915 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1916   PhaseGVN* gvn = initial_gvn();
1917 
1918   set_inlining_incrementally(true);
1919   set_inlining_progress(true);
1920   uint low_live_nodes = 0;
1921 
1922   while(inlining_progress() && _late_inlines.length() > 0) {
1923 
1924     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1925       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1926         // PhaseIdealLoop is expensive so we only try it once we are
1927         // out of loop and we only try it again if the previous helped
1928         // got the number of nodes down significantly
1929         PhaseIdealLoop ideal_loop( igvn, false, true );
1930         if (failing())  return;
1931         low_live_nodes = live_nodes();
1932         _major_progress = true;
1933       }
1934 
1935       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1936         break;
1937       }
1938     }
1939 
1940     inline_incrementally_one(igvn);
1941 
1942     if (failing())  return;
1943 
1944     igvn.optimize();
1945 
1946     if (failing())  return;
1947   }
1948 
1949   assert( igvn._worklist.size() == 0, "should be done with igvn" );
1950 
1951   if (_string_late_inlines.length() > 0) {
1952     assert(has_stringbuilder(), "inconsistent");
1953     for_igvn()->clear();
1954     initial_gvn()->replace_with(&igvn);
1955 
1956     inline_string_calls(false);
1957 
1958     if (failing())  return;
1959 
1960     {
1961       ResourceMark rm;
1962       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1963     }
1964 
1965     igvn = PhaseIterGVN(gvn);
1966 
1967     igvn.optimize();
1968   }
1969 
1970   set_inlining_incrementally(false);
1971 }
1972 
1973 
1974 //------------------------------Optimize---------------------------------------
1975 // Given a graph, optimize it.
1976 void Compile::Optimize() {
1977   TracePhase t1("optimizer", &_t_optimizer, true);
1978 
1979 #ifndef PRODUCT
1980   if (env()->break_at_compile()) {
1981     BREAKPOINT;
1982   }
1983 
1984 #endif
1985 
1986   ResourceMark rm;
1987   int          loop_opts_cnt;
1988 
1989   NOT_PRODUCT( verify_graph_edges(); )
1990 
1991   print_method(PHASE_AFTER_PARSING);
1992 
1993  {
1994   // Iterative Global Value Numbering, including ideal transforms
1995   // Initialize IterGVN with types and values from parse-time GVN
1996   PhaseIterGVN igvn(initial_gvn());
1997   {
1998     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1999     igvn.optimize();
2000   }
2001 
2002   print_method(PHASE_ITER_GVN1, 2);
2003 
2004   if (failing())  return;
2005 
2006   {
2007     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2008     inline_incrementally(igvn);
2009   }
2010 
2011   print_method(PHASE_INCREMENTAL_INLINE, 2);
2012 
2013   if (failing())  return;
2014 
2015   if (eliminate_boxing()) {
2016     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2017     // Inline valueOf() methods now.
2018     inline_boxing_calls(igvn);
2019 
2020     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2021 
2022     if (failing())  return;
2023   }
2024 
2025   // Remove the speculative part of types and clean up the graph from
2026   // the extra CastPP nodes whose only purpose is to carry them. Do
2027   // that early so that optimizations are not disrupted by the extra
2028   // CastPP nodes.
2029   remove_speculative_types(igvn);
2030 
2031   // No more new expensive nodes will be added to the list from here
2032   // so keep only the actual candidates for optimizations.
2033   cleanup_expensive_nodes(igvn);
2034 
2035   // Perform escape analysis
2036   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2037     if (has_loops()) {
2038       // Cleanup graph (remove dead nodes).
2039       TracePhase t2("idealLoop", &_t_idealLoop, true);
2040       PhaseIdealLoop ideal_loop( igvn, false, true );
2041       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2042       if (failing())  return;
2043     }
2044     ConnectionGraph::do_analysis(this, &igvn);
2045 
2046     if (failing())  return;
2047 
2048     // Optimize out fields loads from scalar replaceable allocations.
2049     igvn.optimize();
2050     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2051 
2052     if (failing())  return;
2053 
2054     if (congraph() != NULL && macro_count() > 0) {
2055       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2056       PhaseMacroExpand mexp(igvn);
2057       mexp.eliminate_macro_nodes();
2058       igvn.set_delay_transform(false);
2059 
2060       igvn.optimize();
2061       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2062 
2063       if (failing())  return;
2064     }
2065   }
2066 
2067   // Loop transforms on the ideal graph.  Range Check Elimination,
2068   // peeling, unrolling, etc.
2069 
2070   // Set loop opts counter
2071   loop_opts_cnt = num_loop_opts();
2072   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2073     {
2074       TracePhase t2("idealLoop", &_t_idealLoop, true);
2075       PhaseIdealLoop ideal_loop( igvn, true );
2076       loop_opts_cnt--;
2077       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2078       if (failing())  return;
2079     }
2080     // Loop opts pass if partial peeling occurred in previous pass
2081     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2082       TracePhase t3("idealLoop", &_t_idealLoop, true);
2083       PhaseIdealLoop ideal_loop( igvn, false );
2084       loop_opts_cnt--;
2085       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2086       if (failing())  return;
2087     }
2088     // Loop opts pass for loop-unrolling before CCP
2089     if(major_progress() && (loop_opts_cnt > 0)) {
2090       TracePhase t4("idealLoop", &_t_idealLoop, true);
2091       PhaseIdealLoop ideal_loop( igvn, false );
2092       loop_opts_cnt--;
2093       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2094     }
2095     if (!failing()) {
2096       // Verify that last round of loop opts produced a valid graph
2097       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2098       PhaseIdealLoop::verify(igvn);
2099     }
2100   }
2101   if (failing())  return;
2102 
2103   // Conditional Constant Propagation;
2104   PhaseCCP ccp( &igvn );
2105   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2106   {
2107     TracePhase t2("ccp", &_t_ccp, true);
2108     ccp.do_transform();
2109   }
2110   print_method(PHASE_CPP1, 2);
2111 
2112   assert( true, "Break here to ccp.dump_old2new_map()");
2113 
2114   // Iterative Global Value Numbering, including ideal transforms
2115   {
2116     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2117     igvn = ccp;
2118     igvn.optimize();
2119   }
2120 
2121   print_method(PHASE_ITER_GVN2, 2);
2122 
2123   if (failing())  return;
2124 
2125   // Loop transforms on the ideal graph.  Range Check Elimination,
2126   // peeling, unrolling, etc.
2127   if(loop_opts_cnt > 0) {
2128     debug_only( int cnt = 0; );
2129     while(major_progress() && (loop_opts_cnt > 0)) {
2130       TracePhase t2("idealLoop", &_t_idealLoop, true);
2131       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2132       PhaseIdealLoop ideal_loop( igvn, true);
2133       loop_opts_cnt--;
2134       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2135       if (failing())  return;
2136     }
2137   }
2138 
2139   {
2140     // Verify that all previous optimizations produced a valid graph
2141     // at least to this point, even if no loop optimizations were done.
2142     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2143     PhaseIdealLoop::verify(igvn);
2144   }
2145 
2146   {
2147     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2148     PhaseMacroExpand  mex(igvn);
2149     if (mex.expand_macro_nodes()) {
2150       assert(failing(), "must bail out w/ explicit message");
2151       return;
2152     }
2153   }
2154 
2155  } // (End scope of igvn; run destructor if necessary for asserts.)
2156 
2157   dump_inlining();
2158   // A method with only infinite loops has no edges entering loops from root
2159   {
2160     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2161     if (final_graph_reshaping()) {
2162       assert(failing(), "must bail out w/ explicit message");
2163       return;
2164     }
2165   }
2166 
2167   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2168 }
2169 
2170 
2171 //------------------------------Code_Gen---------------------------------------
2172 // Given a graph, generate code for it
2173 void Compile::Code_Gen() {
2174   if (failing()) {
2175     return;
2176   }
2177 
2178   // Perform instruction selection.  You might think we could reclaim Matcher
2179   // memory PDQ, but actually the Matcher is used in generating spill code.
2180   // Internals of the Matcher (including some VectorSets) must remain live
2181   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2182   // set a bit in reclaimed memory.
2183 
2184   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2185   // nodes.  Mapping is only valid at the root of each matched subtree.
2186   NOT_PRODUCT( verify_graph_edges(); )
2187 
2188   Matcher matcher;
2189   _matcher = &matcher;
2190   {
2191     TracePhase t2("matcher", &_t_matcher, true);
2192     matcher.match();
2193   }
2194   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2195   // nodes.  Mapping is only valid at the root of each matched subtree.
2196   NOT_PRODUCT( verify_graph_edges(); )
2197 
2198   // If you have too many nodes, or if matching has failed, bail out
2199   check_node_count(0, "out of nodes matching instructions");
2200   if (failing()) {
2201     return;
2202   }
2203 
2204   // Build a proper-looking CFG
2205   PhaseCFG cfg(node_arena(), root(), matcher);
2206   _cfg = &cfg;
2207   {
2208     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2209     bool success = cfg.do_global_code_motion();
2210     if (!success) {
2211       return;
2212     }
2213 
2214     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2215     NOT_PRODUCT( verify_graph_edges(); )
2216     debug_only( cfg.verify(); )
2217   }
2218 
2219   PhaseChaitin regalloc(unique(), cfg, matcher);
2220   _regalloc = &regalloc;
2221   {
2222     TracePhase t2("regalloc", &_t_registerAllocation, true);
2223     // Perform register allocation.  After Chaitin, use-def chains are
2224     // no longer accurate (at spill code) and so must be ignored.
2225     // Node->LRG->reg mappings are still accurate.
2226     _regalloc->Register_Allocate();
2227 
2228     // Bail out if the allocator builds too many nodes
2229     if (failing()) {
2230       return;
2231     }
2232   }
2233 
2234   // Prior to register allocation we kept empty basic blocks in case the
2235   // the allocator needed a place to spill.  After register allocation we
2236   // are not adding any new instructions.  If any basic block is empty, we
2237   // can now safely remove it.
2238   {
2239     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2240     cfg.remove_empty_blocks();
2241     if (do_freq_based_layout()) {
2242       PhaseBlockLayout layout(cfg);
2243     } else {
2244       cfg.set_loop_alignment();
2245     }
2246     cfg.fixup_flow();
2247   }
2248 
2249   // Apply peephole optimizations
2250   if( OptoPeephole ) {
2251     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2252     PhasePeephole peep( _regalloc, cfg);
2253     peep.do_transform();
2254   }
2255 
2256   // Do late expand if CPU requires this.
2257   if (Matcher::require_postalloc_expand) {
2258     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2259     cfg.postalloc_expand(_regalloc);
2260   }
2261 
2262   // Convert Nodes to instruction bits in a buffer
2263   {
2264     // %%%% workspace merge brought two timers together for one job
2265     TracePhase t2a("output", &_t_output, true);
2266     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2267     Output();
2268   }
2269 
2270   print_method(PHASE_FINAL_CODE);
2271 
2272   // He's dead, Jim.
2273   _cfg     = (PhaseCFG*)0xdeadbeef;
2274   _regalloc = (PhaseChaitin*)0xdeadbeef;
2275 }
2276 
2277 
2278 //------------------------------dump_asm---------------------------------------
2279 // Dump formatted assembly
2280 #ifndef PRODUCT
2281 void Compile::dump_asm(int *pcs, uint pc_limit) {
2282   bool cut_short = false;
2283   tty->print_cr("#");
2284   tty->print("#  ");  _tf->dump();  tty->cr();
2285   tty->print_cr("#");
2286 
2287   // For all blocks
2288   int pc = 0x0;                 // Program counter
2289   char starts_bundle = ' ';
2290   _regalloc->dump_frame();
2291 
2292   Node *n = NULL;
2293   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2294     if (VMThread::should_terminate()) {
2295       cut_short = true;
2296       break;
2297     }
2298     Block* block = _cfg->get_block(i);
2299     if (block->is_connector() && !Verbose) {
2300       continue;
2301     }
2302     n = block->head();
2303     if (pcs && n->_idx < pc_limit) {
2304       tty->print("%3.3x   ", pcs[n->_idx]);
2305     } else {
2306       tty->print("      ");
2307     }
2308     block->dump_head(_cfg);
2309     if (block->is_connector()) {
2310       tty->print_cr("        # Empty connector block");
2311     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2312       tty->print_cr("        # Block is sole successor of call");
2313     }
2314 
2315     // For all instructions
2316     Node *delay = NULL;
2317     for (uint j = 0; j < block->number_of_nodes(); j++) {
2318       if (VMThread::should_terminate()) {
2319         cut_short = true;
2320         break;
2321       }
2322       n = block->get_node(j);
2323       if (valid_bundle_info(n)) {
2324         Bundle* bundle = node_bundling(n);
2325         if (bundle->used_in_unconditional_delay()) {
2326           delay = n;
2327           continue;
2328         }
2329         if (bundle->starts_bundle()) {
2330           starts_bundle = '+';
2331         }
2332       }
2333 
2334       if (WizardMode) {
2335         n->dump();
2336       }
2337 
2338       if( !n->is_Region() &&    // Dont print in the Assembly
2339           !n->is_Phi() &&       // a few noisely useless nodes
2340           !n->is_Proj() &&
2341           !n->is_MachTemp() &&
2342           !n->is_SafePointScalarObject() &&
2343           !n->is_Catch() &&     // Would be nice to print exception table targets
2344           !n->is_MergeMem() &&  // Not very interesting
2345           !n->is_top() &&       // Debug info table constants
2346           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2347           ) {
2348         if (pcs && n->_idx < pc_limit)
2349           tty->print("%3.3x", pcs[n->_idx]);
2350         else
2351           tty->print("   ");
2352         tty->print(" %c ", starts_bundle);
2353         starts_bundle = ' ';
2354         tty->print("\t");
2355         n->format(_regalloc, tty);
2356         tty->cr();
2357       }
2358 
2359       // If we have an instruction with a delay slot, and have seen a delay,
2360       // then back up and print it
2361       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2362         assert(delay != NULL, "no unconditional delay instruction");
2363         if (WizardMode) delay->dump();
2364 
2365         if (node_bundling(delay)->starts_bundle())
2366           starts_bundle = '+';
2367         if (pcs && n->_idx < pc_limit)
2368           tty->print("%3.3x", pcs[n->_idx]);
2369         else
2370           tty->print("   ");
2371         tty->print(" %c ", starts_bundle);
2372         starts_bundle = ' ';
2373         tty->print("\t");
2374         delay->format(_regalloc, tty);
2375         tty->print_cr("");
2376         delay = NULL;
2377       }
2378 
2379       // Dump the exception table as well
2380       if( n->is_Catch() && (Verbose || WizardMode) ) {
2381         // Print the exception table for this offset
2382         _handler_table.print_subtable_for(pc);
2383       }
2384     }
2385 
2386     if (pcs && n->_idx < pc_limit)
2387       tty->print_cr("%3.3x", pcs[n->_idx]);
2388     else
2389       tty->print_cr("");
2390 
2391     assert(cut_short || delay == NULL, "no unconditional delay branch");
2392 
2393   } // End of per-block dump
2394   tty->print_cr("");
2395 
2396   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2397 }
2398 #endif
2399 
2400 //------------------------------Final_Reshape_Counts---------------------------
2401 // This class defines counters to help identify when a method
2402 // may/must be executed using hardware with only 24-bit precision.
2403 struct Final_Reshape_Counts : public StackObj {
2404   int  _call_count;             // count non-inlined 'common' calls
2405   int  _float_count;            // count float ops requiring 24-bit precision
2406   int  _double_count;           // count double ops requiring more precision
2407   int  _java_call_count;        // count non-inlined 'java' calls
2408   int  _inner_loop_count;       // count loops which need alignment
2409   VectorSet _visited;           // Visitation flags
2410   Node_List _tests;             // Set of IfNodes & PCTableNodes
2411 
2412   Final_Reshape_Counts() :
2413     _call_count(0), _float_count(0), _double_count(0),
2414     _java_call_count(0), _inner_loop_count(0),
2415     _visited( Thread::current()->resource_area() ) { }
2416 
2417   void inc_call_count  () { _call_count  ++; }
2418   void inc_float_count () { _float_count ++; }
2419   void inc_double_count() { _double_count++; }
2420   void inc_java_call_count() { _java_call_count++; }
2421   void inc_inner_loop_count() { _inner_loop_count++; }
2422 
2423   int  get_call_count  () const { return _call_count  ; }
2424   int  get_float_count () const { return _float_count ; }
2425   int  get_double_count() const { return _double_count; }
2426   int  get_java_call_count() const { return _java_call_count; }
2427   int  get_inner_loop_count() const { return _inner_loop_count; }
2428 };
2429 
2430 #ifdef ASSERT
2431 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2432   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2433   // Make sure the offset goes inside the instance layout.
2434   return k->contains_field_offset(tp->offset());
2435   // Note that OffsetBot and OffsetTop are very negative.
2436 }
2437 #endif
2438 
2439 // Eliminate trivially redundant StoreCMs and accumulate their
2440 // precedence edges.
2441 void Compile::eliminate_redundant_card_marks(Node* n) {
2442   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2443   if (n->in(MemNode::Address)->outcnt() > 1) {
2444     // There are multiple users of the same address so it might be
2445     // possible to eliminate some of the StoreCMs
2446     Node* mem = n->in(MemNode::Memory);
2447     Node* adr = n->in(MemNode::Address);
2448     Node* val = n->in(MemNode::ValueIn);
2449     Node* prev = n;
2450     bool done = false;
2451     // Walk the chain of StoreCMs eliminating ones that match.  As
2452     // long as it's a chain of single users then the optimization is
2453     // safe.  Eliminating partially redundant StoreCMs would require
2454     // cloning copies down the other paths.
2455     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2456       if (adr == mem->in(MemNode::Address) &&
2457           val == mem->in(MemNode::ValueIn)) {
2458         // redundant StoreCM
2459         if (mem->req() > MemNode::OopStore) {
2460           // Hasn't been processed by this code yet.
2461           n->add_prec(mem->in(MemNode::OopStore));
2462         } else {
2463           // Already converted to precedence edge
2464           for (uint i = mem->req(); i < mem->len(); i++) {
2465             // Accumulate any precedence edges
2466             if (mem->in(i) != NULL) {
2467               n->add_prec(mem->in(i));
2468             }
2469           }
2470           // Everything above this point has been processed.
2471           done = true;
2472         }
2473         // Eliminate the previous StoreCM
2474         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2475         assert(mem->outcnt() == 0, "should be dead");
2476         mem->disconnect_inputs(NULL, this);
2477       } else {
2478         prev = mem;
2479       }
2480       mem = prev->in(MemNode::Memory);
2481     }
2482   }
2483 }
2484 
2485 //------------------------------final_graph_reshaping_impl----------------------
2486 // Implement items 1-5 from final_graph_reshaping below.
2487 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2488 
2489   if ( n->outcnt() == 0 ) return; // dead node
2490   uint nop = n->Opcode();
2491 
2492   // Check for 2-input instruction with "last use" on right input.
2493   // Swap to left input.  Implements item (2).
2494   if( n->req() == 3 &&          // two-input instruction
2495       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2496       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2497       n->in(2)->outcnt() == 1 &&// right use IS a last use
2498       !n->in(2)->is_Con() ) {   // right use is not a constant
2499     // Check for commutative opcode
2500     switch( nop ) {
2501     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2502     case Op_MaxI:  case Op_MinI:
2503     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2504     case Op_AndL:  case Op_XorL:  case Op_OrL:
2505     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2506       // Move "last use" input to left by swapping inputs
2507       n->swap_edges(1, 2);
2508       break;
2509     }
2510     default:
2511       break;
2512     }
2513   }
2514 
2515 #ifdef ASSERT
2516   if( n->is_Mem() ) {
2517     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2518     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2519             // oop will be recorded in oop map if load crosses safepoint
2520             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2521                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2522             "raw memory operations should have control edge");
2523   }
2524 #endif
2525   // Count FPU ops and common calls, implements item (3)
2526   switch( nop ) {
2527   // Count all float operations that may use FPU
2528   case Op_AddF:
2529   case Op_SubF:
2530   case Op_MulF:
2531   case Op_DivF:
2532   case Op_NegF:
2533   case Op_ModF:
2534   case Op_ConvI2F:
2535   case Op_ConF:
2536   case Op_CmpF:
2537   case Op_CmpF3:
2538   // case Op_ConvL2F: // longs are split into 32-bit halves
2539     frc.inc_float_count();
2540     break;
2541 
2542   case Op_ConvF2D:
2543   case Op_ConvD2F:
2544     frc.inc_float_count();
2545     frc.inc_double_count();
2546     break;
2547 
2548   // Count all double operations that may use FPU
2549   case Op_AddD:
2550   case Op_SubD:
2551   case Op_MulD:
2552   case Op_DivD:
2553   case Op_NegD:
2554   case Op_ModD:
2555   case Op_ConvI2D:
2556   case Op_ConvD2I:
2557   // case Op_ConvL2D: // handled by leaf call
2558   // case Op_ConvD2L: // handled by leaf call
2559   case Op_ConD:
2560   case Op_CmpD:
2561   case Op_CmpD3:
2562     frc.inc_double_count();
2563     break;
2564   case Op_Opaque1:              // Remove Opaque Nodes before matching
2565   case Op_Opaque2:              // Remove Opaque Nodes before matching
2566     n->subsume_by(n->in(1), this);
2567     break;
2568   case Op_CallStaticJava:
2569   case Op_CallJava:
2570   case Op_CallDynamicJava:
2571     frc.inc_java_call_count(); // Count java call site;
2572   case Op_CallRuntime:
2573   case Op_CallLeaf:
2574   case Op_CallLeafNoFP: {
2575     assert( n->is_Call(), "" );
2576     CallNode *call = n->as_Call();
2577     // Count call sites where the FP mode bit would have to be flipped.
2578     // Do not count uncommon runtime calls:
2579     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2580     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2581     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2582       frc.inc_call_count();   // Count the call site
2583     } else {                  // See if uncommon argument is shared
2584       Node *n = call->in(TypeFunc::Parms);
2585       int nop = n->Opcode();
2586       // Clone shared simple arguments to uncommon calls, item (1).
2587       if( n->outcnt() > 1 &&
2588           !n->is_Proj() &&
2589           nop != Op_CreateEx &&
2590           nop != Op_CheckCastPP &&
2591           nop != Op_DecodeN &&
2592           nop != Op_DecodeNKlass &&
2593           !n->is_Mem() ) {
2594         Node *x = n->clone();
2595         call->set_req( TypeFunc::Parms, x );
2596       }
2597     }
2598     break;
2599   }
2600 
2601   case Op_StoreD:
2602   case Op_LoadD:
2603   case Op_LoadD_unaligned:
2604     frc.inc_double_count();
2605     goto handle_mem;
2606   case Op_StoreF:
2607   case Op_LoadF:
2608     frc.inc_float_count();
2609     goto handle_mem;
2610 
2611   case Op_StoreCM:
2612     {
2613       // Convert OopStore dependence into precedence edge
2614       Node* prec = n->in(MemNode::OopStore);
2615       n->del_req(MemNode::OopStore);
2616       n->add_prec(prec);
2617       eliminate_redundant_card_marks(n);
2618     }
2619 
2620     // fall through
2621 
2622   case Op_StoreB:
2623   case Op_StoreC:
2624   case Op_StorePConditional:
2625   case Op_StoreI:
2626   case Op_StoreL:
2627   case Op_StoreIConditional:
2628   case Op_StoreLConditional:
2629   case Op_CompareAndSwapI:
2630   case Op_CompareAndSwapL:
2631   case Op_CompareAndSwapP:
2632   case Op_CompareAndSwapN:
2633   case Op_GetAndAddI:
2634   case Op_GetAndAddL:
2635   case Op_GetAndSetI:
2636   case Op_GetAndSetL:
2637   case Op_GetAndSetP:
2638   case Op_GetAndSetN:
2639   case Op_StoreP:
2640   case Op_StoreN:
2641   case Op_StoreNKlass:
2642   case Op_LoadB:
2643   case Op_LoadUB:
2644   case Op_LoadUS:
2645   case Op_LoadI:
2646   case Op_LoadKlass:
2647   case Op_LoadNKlass:
2648   case Op_LoadL:
2649   case Op_LoadL_unaligned:
2650   case Op_LoadPLocked:
2651   case Op_LoadP:
2652   case Op_LoadN:
2653   case Op_LoadRange:
2654   case Op_LoadS: {
2655   handle_mem:
2656 #ifdef ASSERT
2657     if( VerifyOptoOopOffsets ) {
2658       assert( n->is_Mem(), "" );
2659       MemNode *mem  = (MemNode*)n;
2660       // Check to see if address types have grounded out somehow.
2661       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2662       assert( !tp || oop_offset_is_sane(tp), "" );
2663     }
2664 #endif
2665     break;
2666   }
2667 
2668   case Op_AddP: {               // Assert sane base pointers
2669     Node *addp = n->in(AddPNode::Address);
2670     assert( !addp->is_AddP() ||
2671             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2672             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2673             "Base pointers must match" );
2674 #ifdef _LP64
2675     if ((UseCompressedOops || UseCompressedClassPointers) &&
2676         addp->Opcode() == Op_ConP &&
2677         addp == n->in(AddPNode::Base) &&
2678         n->in(AddPNode::Offset)->is_Con()) {
2679       // Use addressing with narrow klass to load with offset on x86.
2680       // On sparc loading 32-bits constant and decoding it have less
2681       // instructions (4) then load 64-bits constant (7).
2682       // Do this transformation here since IGVN will convert ConN back to ConP.
2683       const Type* t = addp->bottom_type();
2684       if (t->isa_oopptr() || t->isa_klassptr()) {
2685         Node* nn = NULL;
2686 
2687         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2688 
2689         // Look for existing ConN node of the same exact type.
2690         Node* r  = root();
2691         uint cnt = r->outcnt();
2692         for (uint i = 0; i < cnt; i++) {
2693           Node* m = r->raw_out(i);
2694           if (m!= NULL && m->Opcode() == op &&
2695               m->bottom_type()->make_ptr() == t) {
2696             nn = m;
2697             break;
2698           }
2699         }
2700         if (nn != NULL) {
2701           // Decode a narrow oop to match address
2702           // [R12 + narrow_oop_reg<<3 + offset]
2703           if (t->isa_oopptr()) {
2704             nn = new (this) DecodeNNode(nn, t);
2705           } else {
2706             nn = new (this) DecodeNKlassNode(nn, t);
2707           }
2708           n->set_req(AddPNode::Base, nn);
2709           n->set_req(AddPNode::Address, nn);
2710           if (addp->outcnt() == 0) {
2711             addp->disconnect_inputs(NULL, this);
2712           }
2713         }
2714       }
2715     }
2716 #endif
2717     break;
2718   }
2719 
2720 #ifdef _LP64
2721   case Op_CastPP:
2722     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2723       Node* in1 = n->in(1);
2724       const Type* t = n->bottom_type();
2725       Node* new_in1 = in1->clone();
2726       new_in1->as_DecodeN()->set_type(t);
2727 
2728       if (!Matcher::narrow_oop_use_complex_address()) {
2729         //
2730         // x86, ARM and friends can handle 2 adds in addressing mode
2731         // and Matcher can fold a DecodeN node into address by using
2732         // a narrow oop directly and do implicit NULL check in address:
2733         //
2734         // [R12 + narrow_oop_reg<<3 + offset]
2735         // NullCheck narrow_oop_reg
2736         //
2737         // On other platforms (Sparc) we have to keep new DecodeN node and
2738         // use it to do implicit NULL check in address:
2739         //
2740         // decode_not_null narrow_oop_reg, base_reg
2741         // [base_reg + offset]
2742         // NullCheck base_reg
2743         //
2744         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2745         // to keep the information to which NULL check the new DecodeN node
2746         // corresponds to use it as value in implicit_null_check().
2747         //
2748         new_in1->set_req(0, n->in(0));
2749       }
2750 
2751       n->subsume_by(new_in1, this);
2752       if (in1->outcnt() == 0) {
2753         in1->disconnect_inputs(NULL, this);
2754       }
2755     }
2756     break;
2757 
2758   case Op_CmpP:
2759     // Do this transformation here to preserve CmpPNode::sub() and
2760     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2761     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2762       Node* in1 = n->in(1);
2763       Node* in2 = n->in(2);
2764       if (!in1->is_DecodeNarrowPtr()) {
2765         in2 = in1;
2766         in1 = n->in(2);
2767       }
2768       assert(in1->is_DecodeNarrowPtr(), "sanity");
2769 
2770       Node* new_in2 = NULL;
2771       if (in2->is_DecodeNarrowPtr()) {
2772         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2773         new_in2 = in2->in(1);
2774       } else if (in2->Opcode() == Op_ConP) {
2775         const Type* t = in2->bottom_type();
2776         if (t == TypePtr::NULL_PTR) {
2777           assert(in1->is_DecodeN(), "compare klass to null?");
2778           // Don't convert CmpP null check into CmpN if compressed
2779           // oops implicit null check is not generated.
2780           // This will allow to generate normal oop implicit null check.
2781           if (Matcher::gen_narrow_oop_implicit_null_checks())
2782             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2783           //
2784           // This transformation together with CastPP transformation above
2785           // will generated code for implicit NULL checks for compressed oops.
2786           //
2787           // The original code after Optimize()
2788           //
2789           //    LoadN memory, narrow_oop_reg
2790           //    decode narrow_oop_reg, base_reg
2791           //    CmpP base_reg, NULL
2792           //    CastPP base_reg // NotNull
2793           //    Load [base_reg + offset], val_reg
2794           //
2795           // after these transformations will be
2796           //
2797           //    LoadN memory, narrow_oop_reg
2798           //    CmpN narrow_oop_reg, NULL
2799           //    decode_not_null narrow_oop_reg, base_reg
2800           //    Load [base_reg + offset], val_reg
2801           //
2802           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2803           // since narrow oops can be used in debug info now (see the code in
2804           // final_graph_reshaping_walk()).
2805           //
2806           // At the end the code will be matched to
2807           // on x86:
2808           //
2809           //    Load_narrow_oop memory, narrow_oop_reg
2810           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2811           //    NullCheck narrow_oop_reg
2812           //
2813           // and on sparc:
2814           //
2815           //    Load_narrow_oop memory, narrow_oop_reg
2816           //    decode_not_null narrow_oop_reg, base_reg
2817           //    Load [base_reg + offset], val_reg
2818           //    NullCheck base_reg
2819           //
2820         } else if (t->isa_oopptr()) {
2821           new_in2 = ConNode::make(this, t->make_narrowoop());
2822         } else if (t->isa_klassptr()) {
2823           new_in2 = ConNode::make(this, t->make_narrowklass());
2824         }
2825       }
2826       if (new_in2 != NULL) {
2827         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2828         n->subsume_by(cmpN, this);
2829         if (in1->outcnt() == 0) {
2830           in1->disconnect_inputs(NULL, this);
2831         }
2832         if (in2->outcnt() == 0) {
2833           in2->disconnect_inputs(NULL, this);
2834         }
2835       }
2836     }
2837     break;
2838 
2839   case Op_DecodeN:
2840   case Op_DecodeNKlass:
2841     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2842     // DecodeN could be pinned when it can't be fold into
2843     // an address expression, see the code for Op_CastPP above.
2844     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2845     break;
2846 
2847   case Op_EncodeP:
2848   case Op_EncodePKlass: {
2849     Node* in1 = n->in(1);
2850     if (in1->is_DecodeNarrowPtr()) {
2851       n->subsume_by(in1->in(1), this);
2852     } else if (in1->Opcode() == Op_ConP) {
2853       const Type* t = in1->bottom_type();
2854       if (t == TypePtr::NULL_PTR) {
2855         assert(t->isa_oopptr(), "null klass?");
2856         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2857       } else if (t->isa_oopptr()) {
2858         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2859       } else if (t->isa_klassptr()) {
2860         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2861       }
2862     }
2863     if (in1->outcnt() == 0) {
2864       in1->disconnect_inputs(NULL, this);
2865     }
2866     break;
2867   }
2868 
2869   case Op_Proj: {
2870     if (OptimizeStringConcat) {
2871       ProjNode* p = n->as_Proj();
2872       if (p->_is_io_use) {
2873         // Separate projections were used for the exception path which
2874         // are normally removed by a late inline.  If it wasn't inlined
2875         // then they will hang around and should just be replaced with
2876         // the original one.
2877         Node* proj = NULL;
2878         // Replace with just one
2879         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2880           Node *use = i.get();
2881           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2882             proj = use;
2883             break;
2884           }
2885         }
2886         assert(proj != NULL, "must be found");
2887         p->subsume_by(proj, this);
2888       }
2889     }
2890     break;
2891   }
2892 
2893   case Op_Phi:
2894     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2895       // The EncodeP optimization may create Phi with the same edges
2896       // for all paths. It is not handled well by Register Allocator.
2897       Node* unique_in = n->in(1);
2898       assert(unique_in != NULL, "");
2899       uint cnt = n->req();
2900       for (uint i = 2; i < cnt; i++) {
2901         Node* m = n->in(i);
2902         assert(m != NULL, "");
2903         if (unique_in != m)
2904           unique_in = NULL;
2905       }
2906       if (unique_in != NULL) {
2907         n->subsume_by(unique_in, this);
2908       }
2909     }
2910     break;
2911 
2912 #endif
2913 
2914   case Op_ModI:
2915     if (UseDivMod) {
2916       // Check if a%b and a/b both exist
2917       Node* d = n->find_similar(Op_DivI);
2918       if (d) {
2919         // Replace them with a fused divmod if supported
2920         if (Matcher::has_match_rule(Op_DivModI)) {
2921           DivModINode* divmod = DivModINode::make(this, n);
2922           d->subsume_by(divmod->div_proj(), this);
2923           n->subsume_by(divmod->mod_proj(), this);
2924         } else {
2925           // replace a%b with a-((a/b)*b)
2926           Node* mult = new (this) MulINode(d, d->in(2));
2927           Node* sub  = new (this) SubINode(d->in(1), mult);
2928           n->subsume_by(sub, this);
2929         }
2930       }
2931     }
2932     break;
2933 
2934   case Op_ModL:
2935     if (UseDivMod) {
2936       // Check if a%b and a/b both exist
2937       Node* d = n->find_similar(Op_DivL);
2938       if (d) {
2939         // Replace them with a fused divmod if supported
2940         if (Matcher::has_match_rule(Op_DivModL)) {
2941           DivModLNode* divmod = DivModLNode::make(this, n);
2942           d->subsume_by(divmod->div_proj(), this);
2943           n->subsume_by(divmod->mod_proj(), this);
2944         } else {
2945           // replace a%b with a-((a/b)*b)
2946           Node* mult = new (this) MulLNode(d, d->in(2));
2947           Node* sub  = new (this) SubLNode(d->in(1), mult);
2948           n->subsume_by(sub, this);
2949         }
2950       }
2951     }
2952     break;
2953 
2954   case Op_LoadVector:
2955   case Op_StoreVector:
2956     break;
2957 
2958   case Op_PackB:
2959   case Op_PackS:
2960   case Op_PackI:
2961   case Op_PackF:
2962   case Op_PackL:
2963   case Op_PackD:
2964     if (n->req()-1 > 2) {
2965       // Replace many operand PackNodes with a binary tree for matching
2966       PackNode* p = (PackNode*) n;
2967       Node* btp = p->binary_tree_pack(this, 1, n->req());
2968       n->subsume_by(btp, this);
2969     }
2970     break;
2971   case Op_Loop:
2972   case Op_CountedLoop:
2973     if (n->as_Loop()->is_inner_loop()) {
2974       frc.inc_inner_loop_count();
2975     }
2976     break;
2977   case Op_LShiftI:
2978   case Op_RShiftI:
2979   case Op_URShiftI:
2980   case Op_LShiftL:
2981   case Op_RShiftL:
2982   case Op_URShiftL:
2983     if (Matcher::need_masked_shift_count) {
2984       // The cpu's shift instructions don't restrict the count to the
2985       // lower 5/6 bits. We need to do the masking ourselves.
2986       Node* in2 = n->in(2);
2987       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2988       const TypeInt* t = in2->find_int_type();
2989       if (t != NULL && t->is_con()) {
2990         juint shift = t->get_con();
2991         if (shift > mask) { // Unsigned cmp
2992           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
2993         }
2994       } else {
2995         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2996           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
2997           n->set_req(2, shift);
2998         }
2999       }
3000       if (in2->outcnt() == 0) { // Remove dead node
3001         in2->disconnect_inputs(NULL, this);
3002       }
3003     }
3004     break;
3005   case Op_MemBarStoreStore:
3006   case Op_MemBarRelease:
3007     // Break the link with AllocateNode: it is no longer useful and
3008     // confuses register allocation.
3009     if (n->req() > MemBarNode::Precedent) {
3010       n->set_req(MemBarNode::Precedent, top());
3011     }
3012     break;
3013     // Must set a control edge on all nodes that produce a FlagsProj
3014     // so they can't escape the block that consumes the flags.
3015     // Must also set the non throwing branch as the control
3016     // for all nodes that depends on the result. Unless the node
3017     // already have a control that isn't the control of the
3018     // flag producer
3019   case Op_FlagsProj:
3020     {
3021       MathExactNode* math = (MathExactNode*)  n->in(0);
3022       Node* ctrl = math->control_node();
3023       Node* non_throwing = math->non_throwing_branch();
3024       math->set_req(0, ctrl);
3025 
3026       Node* result = math->result_node();
3027       if (result != NULL) {
3028         for (DUIterator_Fast jmax, j = result->fast_outs(jmax); j < jmax; j++) {
3029           Node* out = result->fast_out(j);
3030           // Phi nodes shouldn't be moved. They would only match below if they
3031           // had the same control as the MathExactNode. The only time that
3032           // would happen is if the Phi is also an input to the MathExact
3033           //
3034           // Cmp nodes shouldn't have control set at all.
3035           if (out->is_Phi() ||
3036               out->is_Cmp()) {
3037             continue;
3038           }
3039 
3040           if (out->in(0) == NULL) {
3041             out->set_req(0, non_throwing);
3042           } else if (out->in(0) == ctrl) {
3043             out->set_req(0, non_throwing);
3044           }
3045         }
3046       }
3047     }
3048     break;
3049   default:
3050     assert( !n->is_Call(), "" );
3051     assert( !n->is_Mem(), "" );
3052     break;
3053   }
3054 
3055   // Collect CFG split points
3056   if (n->is_MultiBranch())
3057     frc._tests.push(n);
3058 }
3059 
3060 //------------------------------final_graph_reshaping_walk---------------------
3061 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3062 // requires that the walk visits a node's inputs before visiting the node.
3063 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3064   ResourceArea *area = Thread::current()->resource_area();
3065   Unique_Node_List sfpt(area);
3066 
3067   frc._visited.set(root->_idx); // first, mark node as visited
3068   uint cnt = root->req();
3069   Node *n = root;
3070   uint  i = 0;
3071   while (true) {
3072     if (i < cnt) {
3073       // Place all non-visited non-null inputs onto stack
3074       Node* m = n->in(i);
3075       ++i;
3076       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3077         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
3078           sfpt.push(m);
3079         cnt = m->req();
3080         nstack.push(n, i); // put on stack parent and next input's index
3081         n = m;
3082         i = 0;
3083       }
3084     } else {
3085       // Now do post-visit work
3086       final_graph_reshaping_impl( n, frc );
3087       if (nstack.is_empty())
3088         break;             // finished
3089       n = nstack.node();   // Get node from stack
3090       cnt = n->req();
3091       i = nstack.index();
3092       nstack.pop();        // Shift to the next node on stack
3093     }
3094   }
3095 
3096   // Skip next transformation if compressed oops are not used.
3097   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3098       (!UseCompressedOops && !UseCompressedClassPointers))
3099     return;
3100 
3101   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3102   // It could be done for an uncommon traps or any safepoints/calls
3103   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3104   while (sfpt.size() > 0) {
3105     n = sfpt.pop();
3106     JVMState *jvms = n->as_SafePoint()->jvms();
3107     assert(jvms != NULL, "sanity");
3108     int start = jvms->debug_start();
3109     int end   = n->req();
3110     bool is_uncommon = (n->is_CallStaticJava() &&
3111                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3112     for (int j = start; j < end; j++) {
3113       Node* in = n->in(j);
3114       if (in->is_DecodeNarrowPtr()) {
3115         bool safe_to_skip = true;
3116         if (!is_uncommon ) {
3117           // Is it safe to skip?
3118           for (uint i = 0; i < in->outcnt(); i++) {
3119             Node* u = in->raw_out(i);
3120             if (!u->is_SafePoint() ||
3121                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3122               safe_to_skip = false;
3123             }
3124           }
3125         }
3126         if (safe_to_skip) {
3127           n->set_req(j, in->in(1));
3128         }
3129         if (in->outcnt() == 0) {
3130           in->disconnect_inputs(NULL, this);
3131         }
3132       }
3133     }
3134   }
3135 }
3136 
3137 //------------------------------final_graph_reshaping--------------------------
3138 // Final Graph Reshaping.
3139 //
3140 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3141 //     and not commoned up and forced early.  Must come after regular
3142 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3143 //     inputs to Loop Phis; these will be split by the allocator anyways.
3144 //     Remove Opaque nodes.
3145 // (2) Move last-uses by commutative operations to the left input to encourage
3146 //     Intel update-in-place two-address operations and better register usage
3147 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3148 //     calls canonicalizing them back.
3149 // (3) Count the number of double-precision FP ops, single-precision FP ops
3150 //     and call sites.  On Intel, we can get correct rounding either by
3151 //     forcing singles to memory (requires extra stores and loads after each
3152 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3153 //     clearing the mode bit around call sites).  The mode bit is only used
3154 //     if the relative frequency of single FP ops to calls is low enough.
3155 //     This is a key transform for SPEC mpeg_audio.
3156 // (4) Detect infinite loops; blobs of code reachable from above but not
3157 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3158 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3159 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3160 //     Detection is by looking for IfNodes where only 1 projection is
3161 //     reachable from below or CatchNodes missing some targets.
3162 // (5) Assert for insane oop offsets in debug mode.
3163 
3164 bool Compile::final_graph_reshaping() {
3165   // an infinite loop may have been eliminated by the optimizer,
3166   // in which case the graph will be empty.
3167   if (root()->req() == 1) {
3168     record_method_not_compilable("trivial infinite loop");
3169     return true;
3170   }
3171 
3172   // Expensive nodes have their control input set to prevent the GVN
3173   // from freely commoning them. There's no GVN beyond this point so
3174   // no need to keep the control input. We want the expensive nodes to
3175   // be freely moved to the least frequent code path by gcm.
3176   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3177   for (int i = 0; i < expensive_count(); i++) {
3178     _expensive_nodes->at(i)->set_req(0, NULL);
3179   }
3180 
3181   Final_Reshape_Counts frc;
3182 
3183   // Visit everybody reachable!
3184   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3185   Node_Stack nstack(unique() >> 1);
3186   final_graph_reshaping_walk(nstack, root(), frc);
3187 
3188   // Check for unreachable (from below) code (i.e., infinite loops).
3189   for( uint i = 0; i < frc._tests.size(); i++ ) {
3190     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3191     // Get number of CFG targets.
3192     // Note that PCTables include exception targets after calls.
3193     uint required_outcnt = n->required_outcnt();
3194     if (n->outcnt() != required_outcnt) {
3195       // Check for a few special cases.  Rethrow Nodes never take the
3196       // 'fall-thru' path, so expected kids is 1 less.
3197       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3198         if (n->in(0)->in(0)->is_Call()) {
3199           CallNode *call = n->in(0)->in(0)->as_Call();
3200           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3201             required_outcnt--;      // Rethrow always has 1 less kid
3202           } else if (call->req() > TypeFunc::Parms &&
3203                      call->is_CallDynamicJava()) {
3204             // Check for null receiver. In such case, the optimizer has
3205             // detected that the virtual call will always result in a null
3206             // pointer exception. The fall-through projection of this CatchNode
3207             // will not be populated.
3208             Node *arg0 = call->in(TypeFunc::Parms);
3209             if (arg0->is_Type() &&
3210                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3211               required_outcnt--;
3212             }
3213           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3214                      call->req() > TypeFunc::Parms+1 &&
3215                      call->is_CallStaticJava()) {
3216             // Check for negative array length. In such case, the optimizer has
3217             // detected that the allocation attempt will always result in an
3218             // exception. There is no fall-through projection of this CatchNode .
3219             Node *arg1 = call->in(TypeFunc::Parms+1);
3220             if (arg1->is_Type() &&
3221                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3222               required_outcnt--;
3223             }
3224           }
3225         }
3226       }
3227       // Recheck with a better notion of 'required_outcnt'
3228       if (n->outcnt() != required_outcnt) {
3229         record_method_not_compilable("malformed control flow");
3230         return true;            // Not all targets reachable!
3231       }
3232     }
3233     // Check that I actually visited all kids.  Unreached kids
3234     // must be infinite loops.
3235     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3236       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3237         record_method_not_compilable("infinite loop");
3238         return true;            // Found unvisited kid; must be unreach
3239       }
3240   }
3241 
3242   // If original bytecodes contained a mixture of floats and doubles
3243   // check if the optimizer has made it homogenous, item (3).
3244   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3245       frc.get_float_count() > 32 &&
3246       frc.get_double_count() == 0 &&
3247       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3248     set_24_bit_selection_and_mode( false,  true );
3249   }
3250 
3251   set_java_calls(frc.get_java_call_count());
3252   set_inner_loops(frc.get_inner_loop_count());
3253 
3254   // No infinite loops, no reason to bail out.
3255   return false;
3256 }
3257 
3258 //-----------------------------too_many_traps----------------------------------
3259 // Report if there are too many traps at the current method and bci.
3260 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3261 bool Compile::too_many_traps(ciMethod* method,
3262                              int bci,
3263                              Deoptimization::DeoptReason reason) {
3264   ciMethodData* md = method->method_data();
3265   if (md->is_empty()) {
3266     // Assume the trap has not occurred, or that it occurred only
3267     // because of a transient condition during start-up in the interpreter.
3268     return false;
3269   }
3270   if (md->has_trap_at(bci, reason) != 0) {
3271     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3272     // Also, if there are multiple reasons, or if there is no per-BCI record,
3273     // assume the worst.
3274     if (log())
3275       log()->elem("observe trap='%s' count='%d'",
3276                   Deoptimization::trap_reason_name(reason),
3277                   md->trap_count(reason));
3278     return true;
3279   } else {
3280     // Ignore method/bci and see if there have been too many globally.
3281     return too_many_traps(reason, md);
3282   }
3283 }
3284 
3285 // Less-accurate variant which does not require a method and bci.
3286 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3287                              ciMethodData* logmd) {
3288  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
3289     // Too many traps globally.
3290     // Note that we use cumulative trap_count, not just md->trap_count.
3291     if (log()) {
3292       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3293       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3294                   Deoptimization::trap_reason_name(reason),
3295                   mcount, trap_count(reason));
3296     }
3297     return true;
3298   } else {
3299     // The coast is clear.
3300     return false;
3301   }
3302 }
3303 
3304 //--------------------------too_many_recompiles--------------------------------
3305 // Report if there are too many recompiles at the current method and bci.
3306 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3307 // Is not eager to return true, since this will cause the compiler to use
3308 // Action_none for a trap point, to avoid too many recompilations.
3309 bool Compile::too_many_recompiles(ciMethod* method,
3310                                   int bci,
3311                                   Deoptimization::DeoptReason reason) {
3312   ciMethodData* md = method->method_data();
3313   if (md->is_empty()) {
3314     // Assume the trap has not occurred, or that it occurred only
3315     // because of a transient condition during start-up in the interpreter.
3316     return false;
3317   }
3318   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3319   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3320   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3321   Deoptimization::DeoptReason per_bc_reason
3322     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3323   if ((per_bc_reason == Deoptimization::Reason_none
3324        || md->has_trap_at(bci, reason) != 0)
3325       // The trap frequency measure we care about is the recompile count:
3326       && md->trap_recompiled_at(bci)
3327       && md->overflow_recompile_count() >= bc_cutoff) {
3328     // Do not emit a trap here if it has already caused recompilations.
3329     // Also, if there are multiple reasons, or if there is no per-BCI record,
3330     // assume the worst.
3331     if (log())
3332       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3333                   Deoptimization::trap_reason_name(reason),
3334                   md->trap_count(reason),
3335                   md->overflow_recompile_count());
3336     return true;
3337   } else if (trap_count(reason) != 0
3338              && decompile_count() >= m_cutoff) {
3339     // Too many recompiles globally, and we have seen this sort of trap.
3340     // Use cumulative decompile_count, not just md->decompile_count.
3341     if (log())
3342       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3343                   Deoptimization::trap_reason_name(reason),
3344                   md->trap_count(reason), trap_count(reason),
3345                   md->decompile_count(), decompile_count());
3346     return true;
3347   } else {
3348     // The coast is clear.
3349     return false;
3350   }
3351 }
3352 
3353 
3354 #ifndef PRODUCT
3355 //------------------------------verify_graph_edges---------------------------
3356 // Walk the Graph and verify that there is a one-to-one correspondence
3357 // between Use-Def edges and Def-Use edges in the graph.
3358 void Compile::verify_graph_edges(bool no_dead_code) {
3359   if (VerifyGraphEdges) {
3360     ResourceArea *area = Thread::current()->resource_area();
3361     Unique_Node_List visited(area);
3362     // Call recursive graph walk to check edges
3363     _root->verify_edges(visited);
3364     if (no_dead_code) {
3365       // Now make sure that no visited node is used by an unvisited node.
3366       bool dead_nodes = 0;
3367       Unique_Node_List checked(area);
3368       while (visited.size() > 0) {
3369         Node* n = visited.pop();
3370         checked.push(n);
3371         for (uint i = 0; i < n->outcnt(); i++) {
3372           Node* use = n->raw_out(i);
3373           if (checked.member(use))  continue;  // already checked
3374           if (visited.member(use))  continue;  // already in the graph
3375           if (use->is_Con())        continue;  // a dead ConNode is OK
3376           // At this point, we have found a dead node which is DU-reachable.
3377           if (dead_nodes++ == 0)
3378             tty->print_cr("*** Dead nodes reachable via DU edges:");
3379           use->dump(2);
3380           tty->print_cr("---");
3381           checked.push(use);  // No repeats; pretend it is now checked.
3382         }
3383       }
3384       assert(dead_nodes == 0, "using nodes must be reachable from root");
3385     }
3386   }
3387 }
3388 
3389 // Verify GC barriers consistency
3390 // Currently supported:
3391 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3392 void Compile::verify_barriers() {
3393   if (UseG1GC) {
3394     // Verify G1 pre-barriers
3395     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3396 
3397     ResourceArea *area = Thread::current()->resource_area();
3398     Unique_Node_List visited(area);
3399     Node_List worklist(area);
3400     // We're going to walk control flow backwards starting from the Root
3401     worklist.push(_root);
3402     while (worklist.size() > 0) {
3403       Node* x = worklist.pop();
3404       if (x == NULL || x == top()) continue;
3405       if (visited.member(x)) {
3406         continue;
3407       } else {
3408         visited.push(x);
3409       }
3410 
3411       if (x->is_Region()) {
3412         for (uint i = 1; i < x->req(); i++) {
3413           worklist.push(x->in(i));
3414         }
3415       } else {
3416         worklist.push(x->in(0));
3417         // We are looking for the pattern:
3418         //                            /->ThreadLocal
3419         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3420         //              \->ConI(0)
3421         // We want to verify that the If and the LoadB have the same control
3422         // See GraphKit::g1_write_barrier_pre()
3423         if (x->is_If()) {
3424           IfNode *iff = x->as_If();
3425           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3426             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3427             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3428                 && cmp->in(1)->is_Load()) {
3429               LoadNode* load = cmp->in(1)->as_Load();
3430               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3431                   && load->in(2)->in(3)->is_Con()
3432                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3433 
3434                 Node* if_ctrl = iff->in(0);
3435                 Node* load_ctrl = load->in(0);
3436 
3437                 if (if_ctrl != load_ctrl) {
3438                   // Skip possible CProj->NeverBranch in infinite loops
3439                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3440                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3441                     if_ctrl = if_ctrl->in(0)->in(0);
3442                   }
3443                 }
3444                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3445               }
3446             }
3447           }
3448         }
3449       }
3450     }
3451   }
3452 }
3453 
3454 #endif
3455 
3456 // The Compile object keeps track of failure reasons separately from the ciEnv.
3457 // This is required because there is not quite a 1-1 relation between the
3458 // ciEnv and its compilation task and the Compile object.  Note that one
3459 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3460 // to backtrack and retry without subsuming loads.  Other than this backtracking
3461 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3462 // by the logic in C2Compiler.
3463 void Compile::record_failure(const char* reason) {
3464   if (log() != NULL) {
3465     log()->elem("failure reason='%s' phase='compile'", reason);
3466   }
3467   if (_failure_reason == NULL) {
3468     // Record the first failure reason.
3469     _failure_reason = reason;
3470   }
3471 
3472   EventCompilerFailure event;
3473   if (event.should_commit()) {
3474     event.set_compileID(Compile::compile_id());
3475     event.set_failure(reason);
3476     event.commit();
3477   }
3478 
3479   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3480     C->print_method(PHASE_FAILURE);
3481   }
3482   _root = NULL;  // flush the graph, too
3483 }
3484 
3485 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3486   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3487     _phase_name(name), _dolog(dolog)
3488 {
3489   if (dolog) {
3490     C = Compile::current();
3491     _log = C->log();
3492   } else {
3493     C = NULL;
3494     _log = NULL;
3495   }
3496   if (_log != NULL) {
3497     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3498     _log->stamp();
3499     _log->end_head();
3500   }
3501 }
3502 
3503 Compile::TracePhase::~TracePhase() {
3504 
3505   C = Compile::current();
3506   if (_dolog) {
3507     _log = C->log();
3508   } else {
3509     _log = NULL;
3510   }
3511 
3512 #ifdef ASSERT
3513   if (PrintIdealNodeCount) {
3514     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3515                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3516   }
3517 
3518   if (VerifyIdealNodeCount) {
3519     Compile::current()->print_missing_nodes();
3520   }
3521 #endif
3522 
3523   if (_log != NULL) {
3524     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3525   }
3526 }
3527 
3528 //=============================================================================
3529 // Two Constant's are equal when the type and the value are equal.
3530 bool Compile::Constant::operator==(const Constant& other) {
3531   if (type()          != other.type()         )  return false;
3532   if (can_be_reused() != other.can_be_reused())  return false;
3533   // For floating point values we compare the bit pattern.
3534   switch (type()) {
3535   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3536   case T_LONG:
3537   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3538   case T_OBJECT:
3539   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3540   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3541   case T_METADATA: return (_v._metadata == other._v._metadata);
3542   default: ShouldNotReachHere();
3543   }
3544   return false;
3545 }
3546 
3547 static int type_to_size_in_bytes(BasicType t) {
3548   switch (t) {
3549   case T_LONG:    return sizeof(jlong  );
3550   case T_FLOAT:   return sizeof(jfloat );
3551   case T_DOUBLE:  return sizeof(jdouble);
3552   case T_METADATA: return sizeof(Metadata*);
3553     // We use T_VOID as marker for jump-table entries (labels) which
3554     // need an internal word relocation.
3555   case T_VOID:
3556   case T_ADDRESS:
3557   case T_OBJECT:  return sizeof(jobject);
3558   }
3559 
3560   ShouldNotReachHere();
3561   return -1;
3562 }
3563 
3564 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3565   // sort descending
3566   if (a->freq() > b->freq())  return -1;
3567   if (a->freq() < b->freq())  return  1;
3568   return 0;
3569 }
3570 
3571 void Compile::ConstantTable::calculate_offsets_and_size() {
3572   // First, sort the array by frequencies.
3573   _constants.sort(qsort_comparator);
3574 
3575 #ifdef ASSERT
3576   // Make sure all jump-table entries were sorted to the end of the
3577   // array (they have a negative frequency).
3578   bool found_void = false;
3579   for (int i = 0; i < _constants.length(); i++) {
3580     Constant con = _constants.at(i);
3581     if (con.type() == T_VOID)
3582       found_void = true;  // jump-tables
3583     else
3584       assert(!found_void, "wrong sorting");
3585   }
3586 #endif
3587 
3588   int offset = 0;
3589   for (int i = 0; i < _constants.length(); i++) {
3590     Constant* con = _constants.adr_at(i);
3591 
3592     // Align offset for type.
3593     int typesize = type_to_size_in_bytes(con->type());
3594     offset = align_size_up(offset, typesize);
3595     con->set_offset(offset);   // set constant's offset
3596 
3597     if (con->type() == T_VOID) {
3598       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3599       offset = offset + typesize * n->outcnt();  // expand jump-table
3600     } else {
3601       offset = offset + typesize;
3602     }
3603   }
3604 
3605   // Align size up to the next section start (which is insts; see
3606   // CodeBuffer::align_at_start).
3607   assert(_size == -1, "already set?");
3608   _size = align_size_up(offset, CodeEntryAlignment);
3609 }
3610 
3611 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3612   MacroAssembler _masm(&cb);
3613   for (int i = 0; i < _constants.length(); i++) {
3614     Constant con = _constants.at(i);
3615     address constant_addr;
3616     switch (con.type()) {
3617     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3618     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3619     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3620     case T_OBJECT: {
3621       jobject obj = con.get_jobject();
3622       int oop_index = _masm.oop_recorder()->find_index(obj);
3623       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3624       break;
3625     }
3626     case T_ADDRESS: {
3627       address addr = (address) con.get_jobject();
3628       constant_addr = _masm.address_constant(addr);
3629       break;
3630     }
3631     // We use T_VOID as marker for jump-table entries (labels) which
3632     // need an internal word relocation.
3633     case T_VOID: {
3634       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3635       // Fill the jump-table with a dummy word.  The real value is
3636       // filled in later in fill_jump_table.
3637       address dummy = (address) n;
3638       constant_addr = _masm.address_constant(dummy);
3639       // Expand jump-table
3640       for (uint i = 1; i < n->outcnt(); i++) {
3641         address temp_addr = _masm.address_constant(dummy + i);
3642         assert(temp_addr, "consts section too small");
3643       }
3644       break;
3645     }
3646     case T_METADATA: {
3647       Metadata* obj = con.get_metadata();
3648       int metadata_index = _masm.oop_recorder()->find_index(obj);
3649       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3650       break;
3651     }
3652     default: ShouldNotReachHere();
3653     }
3654     assert(constant_addr, "consts section too small");
3655     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3656   }
3657 }
3658 
3659 int Compile::ConstantTable::find_offset(Constant& con) const {
3660   int idx = _constants.find(con);
3661   assert(idx != -1, "constant must be in constant table");
3662   int offset = _constants.at(idx).offset();
3663   assert(offset != -1, "constant table not emitted yet?");
3664   return offset;
3665 }
3666 
3667 void Compile::ConstantTable::add(Constant& con) {
3668   if (con.can_be_reused()) {
3669     int idx = _constants.find(con);
3670     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3671       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3672       return;
3673     }
3674   }
3675   (void) _constants.append(con);
3676 }
3677 
3678 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3679   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3680   Constant con(type, value, b->_freq);
3681   add(con);
3682   return con;
3683 }
3684 
3685 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3686   Constant con(metadata);
3687   add(con);
3688   return con;
3689 }
3690 
3691 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3692   jvalue value;
3693   BasicType type = oper->type()->basic_type();
3694   switch (type) {
3695   case T_LONG:    value.j = oper->constantL(); break;
3696   case T_FLOAT:   value.f = oper->constantF(); break;
3697   case T_DOUBLE:  value.d = oper->constantD(); break;
3698   case T_OBJECT:
3699   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3700   case T_METADATA: return add((Metadata*)oper->constant()); break;
3701   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3702   }
3703   return add(n, type, value);
3704 }
3705 
3706 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3707   jvalue value;
3708   // We can use the node pointer here to identify the right jump-table
3709   // as this method is called from Compile::Fill_buffer right before
3710   // the MachNodes are emitted and the jump-table is filled (means the
3711   // MachNode pointers do not change anymore).
3712   value.l = (jobject) n;
3713   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3714   add(con);
3715   return con;
3716 }
3717 
3718 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3719   // If called from Compile::scratch_emit_size do nothing.
3720   if (Compile::current()->in_scratch_emit_size())  return;
3721 
3722   assert(labels.is_nonempty(), "must be");
3723   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3724 
3725   // Since MachConstantNode::constant_offset() also contains
3726   // table_base_offset() we need to subtract the table_base_offset()
3727   // to get the plain offset into the constant table.
3728   int offset = n->constant_offset() - table_base_offset();
3729 
3730   MacroAssembler _masm(&cb);
3731   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3732 
3733   for (uint i = 0; i < n->outcnt(); i++) {
3734     address* constant_addr = &jump_table_base[i];
3735     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
3736     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3737     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3738   }
3739 }
3740 
3741 void Compile::dump_inlining() {
3742   if (print_inlining() || print_intrinsics()) {
3743     // Print inlining message for candidates that we couldn't inline
3744     // for lack of space or non constant receiver
3745     for (int i = 0; i < _late_inlines.length(); i++) {
3746       CallGenerator* cg = _late_inlines.at(i);
3747       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3748     }
3749     Unique_Node_List useful;
3750     useful.push(root());
3751     for (uint next = 0; next < useful.size(); ++next) {
3752       Node* n  = useful.at(next);
3753       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3754         CallNode* call = n->as_Call();
3755         CallGenerator* cg = call->generator();
3756         cg->print_inlining_late("receiver not constant");
3757       }
3758       uint max = n->len();
3759       for ( uint i = 0; i < max; ++i ) {
3760         Node *m = n->in(i);
3761         if ( m == NULL ) continue;
3762         useful.push(m);
3763       }
3764     }
3765     for (int i = 0; i < _print_inlining_list->length(); i++) {
3766       tty->print(_print_inlining_list->adr_at(i)->ss()->as_string());
3767     }
3768   }
3769 }
3770 
3771 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3772   if (n1->Opcode() < n2->Opcode())      return -1;
3773   else if (n1->Opcode() > n2->Opcode()) return 1;
3774 
3775   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3776   for (uint i = 1; i < n1->req(); i++) {
3777     if (n1->in(i) < n2->in(i))      return -1;
3778     else if (n1->in(i) > n2->in(i)) return 1;
3779   }
3780 
3781   return 0;
3782 }
3783 
3784 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3785   Node* n1 = *n1p;
3786   Node* n2 = *n2p;
3787 
3788   return cmp_expensive_nodes(n1, n2);
3789 }
3790 
3791 void Compile::sort_expensive_nodes() {
3792   if (!expensive_nodes_sorted()) {
3793     _expensive_nodes->sort(cmp_expensive_nodes);
3794   }
3795 }
3796 
3797 bool Compile::expensive_nodes_sorted() const {
3798   for (int i = 1; i < _expensive_nodes->length(); i++) {
3799     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3800       return false;
3801     }
3802   }
3803   return true;
3804 }
3805 
3806 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3807   if (_expensive_nodes->length() == 0) {
3808     return false;
3809   }
3810 
3811   assert(OptimizeExpensiveOps, "optimization off?");
3812 
3813   // Take this opportunity to remove dead nodes from the list
3814   int j = 0;
3815   for (int i = 0; i < _expensive_nodes->length(); i++) {
3816     Node* n = _expensive_nodes->at(i);
3817     if (!n->is_unreachable(igvn)) {
3818       assert(n->is_expensive(), "should be expensive");
3819       _expensive_nodes->at_put(j, n);
3820       j++;
3821     }
3822   }
3823   _expensive_nodes->trunc_to(j);
3824 
3825   // Then sort the list so that similar nodes are next to each other
3826   // and check for at least two nodes of identical kind with same data
3827   // inputs.
3828   sort_expensive_nodes();
3829 
3830   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3831     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3832       return true;
3833     }
3834   }
3835 
3836   return false;
3837 }
3838 
3839 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3840   if (_expensive_nodes->length() == 0) {
3841     return;
3842   }
3843 
3844   assert(OptimizeExpensiveOps, "optimization off?");
3845 
3846   // Sort to bring similar nodes next to each other and clear the
3847   // control input of nodes for which there's only a single copy.
3848   sort_expensive_nodes();
3849 
3850   int j = 0;
3851   int identical = 0;
3852   int i = 0;
3853   for (; i < _expensive_nodes->length()-1; i++) {
3854     assert(j <= i, "can't write beyond current index");
3855     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3856       identical++;
3857       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3858       continue;
3859     }
3860     if (identical > 0) {
3861       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3862       identical = 0;
3863     } else {
3864       Node* n = _expensive_nodes->at(i);
3865       igvn.hash_delete(n);
3866       n->set_req(0, NULL);
3867       igvn.hash_insert(n);
3868     }
3869   }
3870   if (identical > 0) {
3871     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3872   } else if (_expensive_nodes->length() >= 1) {
3873     Node* n = _expensive_nodes->at(i);
3874     igvn.hash_delete(n);
3875     n->set_req(0, NULL);
3876     igvn.hash_insert(n);
3877   }
3878   _expensive_nodes->trunc_to(j);
3879 }
3880 
3881 void Compile::add_expensive_node(Node * n) {
3882   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
3883   assert(n->is_expensive(), "expensive nodes with non-null control here only");
3884   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
3885   if (OptimizeExpensiveOps) {
3886     _expensive_nodes->append(n);
3887   } else {
3888     // Clear control input and let IGVN optimize expensive nodes if
3889     // OptimizeExpensiveOps is off.
3890     n->set_req(0, NULL);
3891   }
3892 }
3893 
3894 /**
3895  * Remove the speculative part of types and clean up the graph
3896  */
3897 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
3898   if (UseTypeSpeculation) {
3899     Unique_Node_List worklist;
3900     worklist.push(root());
3901     int modified = 0;
3902     // Go over all type nodes that carry a speculative type, drop the
3903     // speculative part of the type and enqueue the node for an igvn
3904     // which may optimize it out.
3905     for (uint next = 0; next < worklist.size(); ++next) {
3906       Node *n  = worklist.at(next);
3907       if (n->is_Type() && n->as_Type()->type()->isa_oopptr() != NULL &&
3908           n->as_Type()->type()->is_oopptr()->speculative() != NULL) {
3909         TypeNode* tn = n->as_Type();
3910         const TypeOopPtr* t = tn->type()->is_oopptr();
3911         bool in_hash = igvn.hash_delete(n);
3912         assert(in_hash, "node should be in igvn hash table");
3913         tn->set_type(t->remove_speculative());
3914         igvn.hash_insert(n);
3915         igvn._worklist.push(n); // give it a chance to go away
3916         modified++;
3917       }
3918       uint max = n->len();
3919       for( uint i = 0; i < max; ++i ) {
3920         Node *m = n->in(i);
3921         if (not_a_node(m))  continue;
3922         worklist.push(m);
3923       }
3924     }
3925     // Drop the speculative part of all types in the igvn's type table
3926     igvn.remove_speculative_types();
3927     if (modified > 0) {
3928       igvn.optimize();
3929     }
3930   }
3931 }
3932 
3933 // Auxiliary method to support randomized stressing/fuzzing.
3934 //
3935 // This method can be called the arbitrary number of times, with current count
3936 // as the argument. The logic allows selecting a single candidate from the
3937 // running list of candidates as follows:
3938 //    int count = 0;
3939 //    Cand* selected = null;
3940 //    while(cand = cand->next()) {
3941 //      if (randomized_select(++count)) {
3942 //        selected = cand;
3943 //      }
3944 //    }
3945 //
3946 // Including count equalizes the chances any candidate is "selected".
3947 // This is useful when we don't have the complete list of candidates to choose
3948 // from uniformly. In this case, we need to adjust the randomicity of the
3949 // selection, or else we will end up biasing the selection towards the latter
3950 // candidates.
3951 //
3952 // Quick back-envelope calculation shows that for the list of n candidates
3953 // the equal probability for the candidate to persist as "best" can be
3954 // achieved by replacing it with "next" k-th candidate with the probability
3955 // of 1/k. It can be easily shown that by the end of the run, the
3956 // probability for any candidate is converged to 1/n, thus giving the
3957 // uniform distribution among all the candidates.
3958 //
3959 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
3960 #define RANDOMIZED_DOMAIN_POW 29
3961 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
3962 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
3963 bool Compile::randomized_select(int count) {
3964   assert(count > 0, "only positive");
3965   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
3966 }