1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/exceptionHandlerTable.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "compiler/oopMap.hpp"
  34 #include "opto/addnode.hpp"
  35 #include "opto/block.hpp"
  36 #include "opto/c2compiler.hpp"
  37 #include "opto/callGenerator.hpp"
  38 #include "opto/callnode.hpp"
  39 #include "opto/cfgnode.hpp"
  40 #include "opto/chaitin.hpp"
  41 #include "opto/compile.hpp"
  42 #include "opto/connode.hpp"
  43 #include "opto/divnode.hpp"
  44 #include "opto/escape.hpp"
  45 #include "opto/idealGraphPrinter.hpp"
  46 #include "opto/loopnode.hpp"
  47 #include "opto/machnode.hpp"
  48 #include "opto/macro.hpp"
  49 #include "opto/matcher.hpp"
  50 #include "opto/mathexactnode.hpp"
  51 #include "opto/memnode.hpp"
  52 #include "opto/mulnode.hpp"
  53 #include "opto/node.hpp"
  54 #include "opto/opcodes.hpp"
  55 #include "opto/output.hpp"
  56 #include "opto/parse.hpp"
  57 #include "opto/phaseX.hpp"
  58 #include "opto/rootnode.hpp"
  59 #include "opto/runtime.hpp"
  60 #include "opto/stringopts.hpp"
  61 #include "opto/type.hpp"
  62 #include "opto/vectornode.hpp"
  63 #include "runtime/arguments.hpp"
  64 #include "runtime/signature.hpp"
  65 #include "runtime/stubRoutines.hpp"
  66 #include "runtime/timer.hpp"
  67 #include "trace/tracing.hpp"
  68 #include "utilities/copy.hpp"
  69 #ifdef TARGET_ARCH_MODEL_x86_32
  70 # include "adfiles/ad_x86_32.hpp"
  71 #endif
  72 #ifdef TARGET_ARCH_MODEL_x86_64
  73 # include "adfiles/ad_x86_64.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_MODEL_sparc
  76 # include "adfiles/ad_sparc.hpp"
  77 #endif
  78 #ifdef TARGET_ARCH_MODEL_zero
  79 # include "adfiles/ad_zero.hpp"
  80 #endif
  81 #ifdef TARGET_ARCH_MODEL_arm
  82 # include "adfiles/ad_arm.hpp"
  83 #endif
  84 #ifdef TARGET_ARCH_MODEL_ppc_32
  85 # include "adfiles/ad_ppc_32.hpp"
  86 #endif
  87 #ifdef TARGET_ARCH_MODEL_ppc_64
  88 # include "adfiles/ad_ppc_64.hpp"
  89 #endif
  90 
  91 
  92 // -------------------- Compile::mach_constant_base_node -----------------------
  93 // Constant table base node singleton.
  94 MachConstantBaseNode* Compile::mach_constant_base_node() {
  95   if (_mach_constant_base_node == NULL) {
  96     _mach_constant_base_node = new (C) MachConstantBaseNode();
  97     _mach_constant_base_node->add_req(C->root());
  98   }
  99   return _mach_constant_base_node;
 100 }
 101 
 102 
 103 /// Support for intrinsics.
 104 
 105 // Return the index at which m must be inserted (or already exists).
 106 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 107 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 108 #ifdef ASSERT
 109   for (int i = 1; i < _intrinsics->length(); i++) {
 110     CallGenerator* cg1 = _intrinsics->at(i-1);
 111     CallGenerator* cg2 = _intrinsics->at(i);
 112     assert(cg1->method() != cg2->method()
 113            ? cg1->method()     < cg2->method()
 114            : cg1->is_virtual() < cg2->is_virtual(),
 115            "compiler intrinsics list must stay sorted");
 116   }
 117 #endif
 118   // Binary search sorted list, in decreasing intervals [lo, hi].
 119   int lo = 0, hi = _intrinsics->length()-1;
 120   while (lo <= hi) {
 121     int mid = (uint)(hi + lo) / 2;
 122     ciMethod* mid_m = _intrinsics->at(mid)->method();
 123     if (m < mid_m) {
 124       hi = mid-1;
 125     } else if (m > mid_m) {
 126       lo = mid+1;
 127     } else {
 128       // look at minor sort key
 129       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 130       if (is_virtual < mid_virt) {
 131         hi = mid-1;
 132       } else if (is_virtual > mid_virt) {
 133         lo = mid+1;
 134       } else {
 135         return mid;  // exact match
 136       }
 137     }
 138   }
 139   return lo;  // inexact match
 140 }
 141 
 142 void Compile::register_intrinsic(CallGenerator* cg) {
 143   if (_intrinsics == NULL) {
 144     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 145   }
 146   // This code is stolen from ciObjectFactory::insert.
 147   // Really, GrowableArray should have methods for
 148   // insert_at, remove_at, and binary_search.
 149   int len = _intrinsics->length();
 150   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 151   if (index == len) {
 152     _intrinsics->append(cg);
 153   } else {
 154 #ifdef ASSERT
 155     CallGenerator* oldcg = _intrinsics->at(index);
 156     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 157 #endif
 158     _intrinsics->append(_intrinsics->at(len-1));
 159     int pos;
 160     for (pos = len-2; pos >= index; pos--) {
 161       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 162     }
 163     _intrinsics->at_put(index, cg);
 164   }
 165   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 166 }
 167 
 168 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 169   assert(m->is_loaded(), "don't try this on unloaded methods");
 170   if (_intrinsics != NULL) {
 171     int index = intrinsic_insertion_index(m, is_virtual);
 172     if (index < _intrinsics->length()
 173         && _intrinsics->at(index)->method() == m
 174         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 175       return _intrinsics->at(index);
 176     }
 177   }
 178   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 179   if (m->intrinsic_id() != vmIntrinsics::_none &&
 180       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 181     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 182     if (cg != NULL) {
 183       // Save it for next time:
 184       register_intrinsic(cg);
 185       return cg;
 186     } else {
 187       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 188     }
 189   }
 190   return NULL;
 191 }
 192 
 193 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 194 // in library_call.cpp.
 195 
 196 
 197 #ifndef PRODUCT
 198 // statistics gathering...
 199 
 200 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 201 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 202 
 203 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 204   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 205   int oflags = _intrinsic_hist_flags[id];
 206   assert(flags != 0, "what happened?");
 207   if (is_virtual) {
 208     flags |= _intrinsic_virtual;
 209   }
 210   bool changed = (flags != oflags);
 211   if ((flags & _intrinsic_worked) != 0) {
 212     juint count = (_intrinsic_hist_count[id] += 1);
 213     if (count == 1) {
 214       changed = true;           // first time
 215     }
 216     // increment the overall count also:
 217     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 218   }
 219   if (changed) {
 220     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 221       // Something changed about the intrinsic's virtuality.
 222       if ((flags & _intrinsic_virtual) != 0) {
 223         // This is the first use of this intrinsic as a virtual call.
 224         if (oflags != 0) {
 225           // We already saw it as a non-virtual, so note both cases.
 226           flags |= _intrinsic_both;
 227         }
 228       } else if ((oflags & _intrinsic_both) == 0) {
 229         // This is the first use of this intrinsic as a non-virtual
 230         flags |= _intrinsic_both;
 231       }
 232     }
 233     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 234   }
 235   // update the overall flags also:
 236   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 237   return changed;
 238 }
 239 
 240 static char* format_flags(int flags, char* buf) {
 241   buf[0] = 0;
 242   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 243   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 244   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 245   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 246   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 247   if (buf[0] == 0)  strcat(buf, ",");
 248   assert(buf[0] == ',', "must be");
 249   return &buf[1];
 250 }
 251 
 252 void Compile::print_intrinsic_statistics() {
 253   char flagsbuf[100];
 254   ttyLocker ttyl;
 255   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 256   tty->print_cr("Compiler intrinsic usage:");
 257   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 258   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 259   #define PRINT_STAT_LINE(name, c, f) \
 260     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 261   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 262     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 263     int   flags = _intrinsic_hist_flags[id];
 264     juint count = _intrinsic_hist_count[id];
 265     if ((flags | count) != 0) {
 266       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 267     }
 268   }
 269   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 270   if (xtty != NULL)  xtty->tail("statistics");
 271 }
 272 
 273 void Compile::print_statistics() {
 274   { ttyLocker ttyl;
 275     if (xtty != NULL)  xtty->head("statistics type='opto'");
 276     Parse::print_statistics();
 277     PhaseCCP::print_statistics();
 278     PhaseRegAlloc::print_statistics();
 279     Scheduling::print_statistics();
 280     PhasePeephole::print_statistics();
 281     PhaseIdealLoop::print_statistics();
 282     if (xtty != NULL)  xtty->tail("statistics");
 283   }
 284   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 285     // put this under its own <statistics> element.
 286     print_intrinsic_statistics();
 287   }
 288 }
 289 #endif //PRODUCT
 290 
 291 // Support for bundling info
 292 Bundle* Compile::node_bundling(const Node *n) {
 293   assert(valid_bundle_info(n), "oob");
 294   return &_node_bundling_base[n->_idx];
 295 }
 296 
 297 bool Compile::valid_bundle_info(const Node *n) {
 298   return (_node_bundling_limit > n->_idx);
 299 }
 300 
 301 
 302 void Compile::gvn_replace_by(Node* n, Node* nn) {
 303   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 304     Node* use = n->last_out(i);
 305     bool is_in_table = initial_gvn()->hash_delete(use);
 306     uint uses_found = 0;
 307     for (uint j = 0; j < use->len(); j++) {
 308       if (use->in(j) == n) {
 309         if (j < use->req())
 310           use->set_req(j, nn);
 311         else
 312           use->set_prec(j, nn);
 313         uses_found++;
 314       }
 315     }
 316     if (is_in_table) {
 317       // reinsert into table
 318       initial_gvn()->hash_find_insert(use);
 319     }
 320     record_for_igvn(use);
 321     i -= uses_found;    // we deleted 1 or more copies of this edge
 322   }
 323 }
 324 
 325 
 326 static inline bool not_a_node(const Node* n) {
 327   if (n == NULL)                   return true;
 328   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 329   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 330   return false;
 331 }
 332 
 333 // Identify all nodes that are reachable from below, useful.
 334 // Use breadth-first pass that records state in a Unique_Node_List,
 335 // recursive traversal is slower.
 336 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 337   int estimated_worklist_size = unique();
 338   useful.map( estimated_worklist_size, NULL );  // preallocate space
 339 
 340   // Initialize worklist
 341   if (root() != NULL)     { useful.push(root()); }
 342   // If 'top' is cached, declare it useful to preserve cached node
 343   if( cached_top_node() ) { useful.push(cached_top_node()); }
 344 
 345   // Push all useful nodes onto the list, breadthfirst
 346   for( uint next = 0; next < useful.size(); ++next ) {
 347     assert( next < unique(), "Unique useful nodes < total nodes");
 348     Node *n  = useful.at(next);
 349     uint max = n->len();
 350     for( uint i = 0; i < max; ++i ) {
 351       Node *m = n->in(i);
 352       if (not_a_node(m))  continue;
 353       useful.push(m);
 354     }
 355   }
 356 }
 357 
 358 // Update dead_node_list with any missing dead nodes using useful
 359 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 360 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 361   uint max_idx = unique();
 362   VectorSet& useful_node_set = useful.member_set();
 363 
 364   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 365     // If node with index node_idx is not in useful set,
 366     // mark it as dead in dead node list.
 367     if (! useful_node_set.test(node_idx) ) {
 368       record_dead_node(node_idx);
 369     }
 370   }
 371 }
 372 
 373 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 374   int shift = 0;
 375   for (int i = 0; i < inlines->length(); i++) {
 376     CallGenerator* cg = inlines->at(i);
 377     CallNode* call = cg->call_node();
 378     if (shift > 0) {
 379       inlines->at_put(i-shift, cg);
 380     }
 381     if (!useful.member(call)) {
 382       shift++;
 383     }
 384   }
 385   inlines->trunc_to(inlines->length()-shift);
 386 }
 387 
 388 // Disconnect all useless nodes by disconnecting those at the boundary.
 389 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 390   uint next = 0;
 391   while (next < useful.size()) {
 392     Node *n = useful.at(next++);
 393     // Use raw traversal of out edges since this code removes out edges
 394     int max = n->outcnt();
 395     for (int j = 0; j < max; ++j) {
 396       Node* child = n->raw_out(j);
 397       if (! useful.member(child)) {
 398         assert(!child->is_top() || child != top(),
 399                "If top is cached in Compile object it is in useful list");
 400         // Only need to remove this out-edge to the useless node
 401         n->raw_del_out(j);
 402         --j;
 403         --max;
 404       }
 405     }
 406     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 407       record_for_igvn(n->unique_out());
 408     }
 409   }
 410   // Remove useless macro and predicate opaq nodes
 411   for (int i = C->macro_count()-1; i >= 0; i--) {
 412     Node* n = C->macro_node(i);
 413     if (!useful.member(n)) {
 414       remove_macro_node(n);
 415     }
 416   }
 417   // Remove useless expensive node
 418   for (int i = C->expensive_count()-1; i >= 0; i--) {
 419     Node* n = C->expensive_node(i);
 420     if (!useful.member(n)) {
 421       remove_expensive_node(n);
 422     }
 423   }
 424   // clean up the late inline lists
 425   remove_useless_late_inlines(&_string_late_inlines, useful);
 426   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 427   remove_useless_late_inlines(&_late_inlines, useful);
 428   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 429 }
 430 
 431 //------------------------------frame_size_in_words-----------------------------
 432 // frame_slots in units of words
 433 int Compile::frame_size_in_words() const {
 434   // shift is 0 in LP32 and 1 in LP64
 435   const int shift = (LogBytesPerWord - LogBytesPerInt);
 436   int words = _frame_slots >> shift;
 437   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 438   return words;
 439 }
 440 
 441 // ============================================================================
 442 //------------------------------CompileWrapper---------------------------------
 443 class CompileWrapper : public StackObj {
 444   Compile *const _compile;
 445  public:
 446   CompileWrapper(Compile* compile);
 447 
 448   ~CompileWrapper();
 449 };
 450 
 451 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 452   // the Compile* pointer is stored in the current ciEnv:
 453   ciEnv* env = compile->env();
 454   assert(env == ciEnv::current(), "must already be a ciEnv active");
 455   assert(env->compiler_data() == NULL, "compile already active?");
 456   env->set_compiler_data(compile);
 457   assert(compile == Compile::current(), "sanity");
 458 
 459   compile->set_type_dict(NULL);
 460   compile->set_type_hwm(NULL);
 461   compile->set_type_last_size(0);
 462   compile->set_last_tf(NULL, NULL);
 463   compile->set_indexSet_arena(NULL);
 464   compile->set_indexSet_free_block_list(NULL);
 465   compile->init_type_arena();
 466   Type::Initialize(compile);
 467   _compile->set_scratch_buffer_blob(NULL);
 468   _compile->begin_method();
 469 }
 470 CompileWrapper::~CompileWrapper() {
 471   _compile->end_method();
 472   if (_compile->scratch_buffer_blob() != NULL)
 473     BufferBlob::free(_compile->scratch_buffer_blob());
 474   _compile->env()->set_compiler_data(NULL);
 475 }
 476 
 477 
 478 //----------------------------print_compile_messages---------------------------
 479 void Compile::print_compile_messages() {
 480 #ifndef PRODUCT
 481   // Check if recompiling
 482   if (_subsume_loads == false && PrintOpto) {
 483     // Recompiling without allowing machine instructions to subsume loads
 484     tty->print_cr("*********************************************************");
 485     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 486     tty->print_cr("*********************************************************");
 487   }
 488   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 489     // Recompiling without escape analysis
 490     tty->print_cr("*********************************************************");
 491     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 492     tty->print_cr("*********************************************************");
 493   }
 494   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 495     // Recompiling without boxing elimination
 496     tty->print_cr("*********************************************************");
 497     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 498     tty->print_cr("*********************************************************");
 499   }
 500   if (env()->break_at_compile()) {
 501     // Open the debugger when compiling this method.
 502     tty->print("### Breaking when compiling: ");
 503     method()->print_short_name();
 504     tty->cr();
 505     BREAKPOINT;
 506   }
 507 
 508   if( PrintOpto ) {
 509     if (is_osr_compilation()) {
 510       tty->print("[OSR]%3d", _compile_id);
 511     } else {
 512       tty->print("%3d", _compile_id);
 513     }
 514   }
 515 #endif
 516 }
 517 
 518 
 519 //-----------------------init_scratch_buffer_blob------------------------------
 520 // Construct a temporary BufferBlob and cache it for this compile.
 521 void Compile::init_scratch_buffer_blob(int const_size) {
 522   // If there is already a scratch buffer blob allocated and the
 523   // constant section is big enough, use it.  Otherwise free the
 524   // current and allocate a new one.
 525   BufferBlob* blob = scratch_buffer_blob();
 526   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 527     // Use the current blob.
 528   } else {
 529     if (blob != NULL) {
 530       BufferBlob::free(blob);
 531     }
 532 
 533     ResourceMark rm;
 534     _scratch_const_size = const_size;
 535     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 536     blob = BufferBlob::create("Compile::scratch_buffer", size);
 537     // Record the buffer blob for next time.
 538     set_scratch_buffer_blob(blob);
 539     // Have we run out of code space?
 540     if (scratch_buffer_blob() == NULL) {
 541       // Let CompilerBroker disable further compilations.
 542       record_failure("Not enough space for scratch buffer in CodeCache");
 543       return;
 544     }
 545   }
 546 
 547   // Initialize the relocation buffers
 548   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 549   set_scratch_locs_memory(locs_buf);
 550 }
 551 
 552 
 553 //-----------------------scratch_emit_size-------------------------------------
 554 // Helper function that computes size by emitting code
 555 uint Compile::scratch_emit_size(const Node* n) {
 556   // Start scratch_emit_size section.
 557   set_in_scratch_emit_size(true);
 558 
 559   // Emit into a trash buffer and count bytes emitted.
 560   // This is a pretty expensive way to compute a size,
 561   // but it works well enough if seldom used.
 562   // All common fixed-size instructions are given a size
 563   // method by the AD file.
 564   // Note that the scratch buffer blob and locs memory are
 565   // allocated at the beginning of the compile task, and
 566   // may be shared by several calls to scratch_emit_size.
 567   // The allocation of the scratch buffer blob is particularly
 568   // expensive, since it has to grab the code cache lock.
 569   BufferBlob* blob = this->scratch_buffer_blob();
 570   assert(blob != NULL, "Initialize BufferBlob at start");
 571   assert(blob->size() > MAX_inst_size, "sanity");
 572   relocInfo* locs_buf = scratch_locs_memory();
 573   address blob_begin = blob->content_begin();
 574   address blob_end   = (address)locs_buf;
 575   assert(blob->content_contains(blob_end), "sanity");
 576   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 577   buf.initialize_consts_size(_scratch_const_size);
 578   buf.initialize_stubs_size(MAX_stubs_size);
 579   assert(locs_buf != NULL, "sanity");
 580   int lsize = MAX_locs_size / 3;
 581   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 582   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 583   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 584 
 585   // Do the emission.
 586 
 587   Label fakeL; // Fake label for branch instructions.
 588   Label*   saveL = NULL;
 589   uint save_bnum = 0;
 590   bool is_branch = n->is_MachBranch();
 591   if (is_branch) {
 592     MacroAssembler masm(&buf);
 593     masm.bind(fakeL);
 594     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 595     n->as_MachBranch()->label_set(&fakeL, 0);
 596   }
 597   n->emit(buf, this->regalloc());
 598   if (is_branch) // Restore label.
 599     n->as_MachBranch()->label_set(saveL, save_bnum);
 600 
 601   // End scratch_emit_size section.
 602   set_in_scratch_emit_size(false);
 603 
 604   return buf.insts_size();
 605 }
 606 
 607 
 608 // ============================================================================
 609 //------------------------------Compile standard-------------------------------
 610 debug_only( int Compile::_debug_idx = 100000; )
 611 
 612 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 613 // the continuation bci for on stack replacement.
 614 
 615 
 616 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 617                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 618                 : Phase(Compiler),
 619                   _env(ci_env),
 620                   _log(ci_env->log()),
 621                   _compile_id(ci_env->compile_id()),
 622                   _save_argument_registers(false),
 623                   _stub_name(NULL),
 624                   _stub_function(NULL),
 625                   _stub_entry_point(NULL),
 626                   _method(target),
 627                   _entry_bci(osr_bci),
 628                   _initial_gvn(NULL),
 629                   _for_igvn(NULL),
 630                   _warm_calls(NULL),
 631                   _subsume_loads(subsume_loads),
 632                   _do_escape_analysis(do_escape_analysis),
 633                   _eliminate_boxing(eliminate_boxing),
 634                   _failure_reason(NULL),
 635                   _code_buffer("Compile::Fill_buffer"),
 636                   _orig_pc_slot(0),
 637                   _orig_pc_slot_offset_in_bytes(0),
 638                   _has_method_handle_invokes(false),
 639                   _mach_constant_base_node(NULL),
 640                   _node_bundling_limit(0),
 641                   _node_bundling_base(NULL),
 642                   _java_calls(0),
 643                   _inner_loops(0),
 644                   _scratch_const_size(-1),
 645                   _in_scratch_emit_size(false),
 646                   _dead_node_list(comp_arena()),
 647                   _dead_node_count(0),
 648 #ifndef PRODUCT
 649                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 650                   _in_dump_cnt(0),
 651                   _printer(IdealGraphPrinter::printer()),
 652 #endif
 653                   _congraph(NULL),
 654                   _late_inlines(comp_arena(), 2, 0, NULL),
 655                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 656                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 657                   _late_inlines_pos(0),
 658                   _number_of_mh_late_inlines(0),
 659                   _inlining_progress(false),
 660                   _inlining_incrementally(false),
 661                   _print_inlining_list(NULL),
 662                   _print_inlining_idx(0),
 663                   _preserve_jvm_state(0) {
 664   C = this;
 665 
 666   CompileWrapper cw(this);
 667 #ifndef PRODUCT
 668   if (TimeCompiler2) {
 669     tty->print(" ");
 670     target->holder()->name()->print();
 671     tty->print(".");
 672     target->print_short_name();
 673     tty->print("  ");
 674   }
 675   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 676   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 677   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 678   if (!print_opto_assembly) {
 679     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 680     if (print_assembly && !Disassembler::can_decode()) {
 681       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 682       print_opto_assembly = true;
 683     }
 684   }
 685   set_print_assembly(print_opto_assembly);
 686   set_parsed_irreducible_loop(false);
 687 #endif
 688   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 689   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 690 
 691   if (ProfileTraps) {
 692     // Make sure the method being compiled gets its own MDO,
 693     // so we can at least track the decompile_count().
 694     method()->ensure_method_data();
 695   }
 696 
 697   Init(::AliasLevel);
 698 
 699 
 700   print_compile_messages();
 701 
 702   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
 703     _ilt = InlineTree::build_inline_tree_root();
 704   else
 705     _ilt = NULL;
 706 
 707   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 708   assert(num_alias_types() >= AliasIdxRaw, "");
 709 
 710 #define MINIMUM_NODE_HASH  1023
 711   // Node list that Iterative GVN will start with
 712   Unique_Node_List for_igvn(comp_arena());
 713   set_for_igvn(&for_igvn);
 714 
 715   // GVN that will be run immediately on new nodes
 716   uint estimated_size = method()->code_size()*4+64;
 717   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 718   PhaseGVN gvn(node_arena(), estimated_size);
 719   set_initial_gvn(&gvn);
 720 
 721   if (print_inlining() || print_intrinsics()) {
 722     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
 723   }
 724   { // Scope for timing the parser
 725     TracePhase t3("parse", &_t_parser, true);
 726 
 727     // Put top into the hash table ASAP.
 728     initial_gvn()->transform_no_reclaim(top());
 729 
 730     // Set up tf(), start(), and find a CallGenerator.
 731     CallGenerator* cg = NULL;
 732     if (is_osr_compilation()) {
 733       const TypeTuple *domain = StartOSRNode::osr_domain();
 734       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 735       init_tf(TypeFunc::make(domain, range));
 736       StartNode* s = new (this) StartOSRNode(root(), domain);
 737       initial_gvn()->set_type_bottom(s);
 738       init_start(s);
 739       cg = CallGenerator::for_osr(method(), entry_bci());
 740     } else {
 741       // Normal case.
 742       init_tf(TypeFunc::make(method()));
 743       StartNode* s = new (this) StartNode(root(), tf()->domain());
 744       initial_gvn()->set_type_bottom(s);
 745       init_start(s);
 746       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 747         // With java.lang.ref.reference.get() we must go through the
 748         // intrinsic when G1 is enabled - even when get() is the root
 749         // method of the compile - so that, if necessary, the value in
 750         // the referent field of the reference object gets recorded by
 751         // the pre-barrier code.
 752         // Specifically, if G1 is enabled, the value in the referent
 753         // field is recorded by the G1 SATB pre barrier. This will
 754         // result in the referent being marked live and the reference
 755         // object removed from the list of discovered references during
 756         // reference processing.
 757         cg = find_intrinsic(method(), false);
 758       }
 759       if (cg == NULL) {
 760         float past_uses = method()->interpreter_invocation_count();
 761         float expected_uses = past_uses;
 762         cg = CallGenerator::for_inline(method(), expected_uses);
 763       }
 764     }
 765     if (failing())  return;
 766     if (cg == NULL) {
 767       record_method_not_compilable_all_tiers("cannot parse method");
 768       return;
 769     }
 770     JVMState* jvms = build_start_state(start(), tf());
 771     if ((jvms = cg->generate(jvms, NULL)) == NULL) {
 772       record_method_not_compilable("method parse failed");
 773       return;
 774     }
 775     GraphKit kit(jvms);
 776 
 777     if (!kit.stopped()) {
 778       // Accept return values, and transfer control we know not where.
 779       // This is done by a special, unique ReturnNode bound to root.
 780       return_values(kit.jvms());
 781     }
 782 
 783     if (kit.has_exceptions()) {
 784       // Any exceptions that escape from this call must be rethrown
 785       // to whatever caller is dynamically above us on the stack.
 786       // This is done by a special, unique RethrowNode bound to root.
 787       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 788     }
 789 
 790     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 791 
 792     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 793       inline_string_calls(true);
 794     }
 795 
 796     if (failing())  return;
 797 
 798     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 799 
 800     // Remove clutter produced by parsing.
 801     if (!failing()) {
 802       ResourceMark rm;
 803       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 804     }
 805   }
 806 
 807   // Note:  Large methods are capped off in do_one_bytecode().
 808   if (failing())  return;
 809 
 810   // After parsing, node notes are no longer automagic.
 811   // They must be propagated by register_new_node_with_optimizer(),
 812   // clone(), or the like.
 813   set_default_node_notes(NULL);
 814 
 815   for (;;) {
 816     int successes = Inline_Warm();
 817     if (failing())  return;
 818     if (successes == 0)  break;
 819   }
 820 
 821   // Drain the list.
 822   Finish_Warm();
 823 #ifndef PRODUCT
 824   if (_printer) {
 825     _printer->print_inlining(this);
 826   }
 827 #endif
 828 
 829   if (failing())  return;
 830   NOT_PRODUCT( verify_graph_edges(); )
 831 
 832   // Now optimize
 833   Optimize();
 834   if (failing())  return;
 835   NOT_PRODUCT( verify_graph_edges(); )
 836 
 837 #ifndef PRODUCT
 838   if (PrintIdeal) {
 839     ttyLocker ttyl;  // keep the following output all in one block
 840     // This output goes directly to the tty, not the compiler log.
 841     // To enable tools to match it up with the compilation activity,
 842     // be sure to tag this tty output with the compile ID.
 843     if (xtty != NULL) {
 844       xtty->head("ideal compile_id='%d'%s", compile_id(),
 845                  is_osr_compilation()    ? " compile_kind='osr'" :
 846                  "");
 847     }
 848     root()->dump(9999);
 849     if (xtty != NULL) {
 850       xtty->tail("ideal");
 851     }
 852   }
 853 #endif
 854 
 855   NOT_PRODUCT( verify_barriers(); )
 856   // Now that we know the size of all the monitors we can add a fixed slot
 857   // for the original deopt pc.
 858 
 859   _orig_pc_slot =  fixed_slots();
 860   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 861   set_fixed_slots(next_slot);
 862 
 863   // Compute when to use implicit null checks. Used by matching trap based
 864   // nodes and NullCheck optimization.
 865   set_allowed_deopt_reasons();
 866 
 867   // Now generate code
 868   Code_Gen();
 869   if (failing())  return;
 870 
 871   // Check if we want to skip execution of all compiled code.
 872   {
 873 #ifndef PRODUCT
 874     if (OptoNoExecute) {
 875       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 876       return;
 877     }
 878     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 879 #endif
 880 
 881     if (is_osr_compilation()) {
 882       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 883       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 884     } else {
 885       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 886       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 887     }
 888 
 889     env()->register_method(_method, _entry_bci,
 890                            &_code_offsets,
 891                            _orig_pc_slot_offset_in_bytes,
 892                            code_buffer(),
 893                            frame_size_in_words(), _oop_map_set,
 894                            &_handler_table, &_inc_table,
 895                            compiler,
 896                            env()->comp_level(),
 897                            has_unsafe_access(),
 898                            SharedRuntime::is_wide_vector(max_vector_size())
 899                            );
 900 
 901     if (log() != NULL) // Print code cache state into compiler log
 902       log()->code_cache_state();
 903   }
 904 }
 905 
 906 //------------------------------Compile----------------------------------------
 907 // Compile a runtime stub
 908 Compile::Compile( ciEnv* ci_env,
 909                   TypeFunc_generator generator,
 910                   address stub_function,
 911                   const char *stub_name,
 912                   int is_fancy_jump,
 913                   bool pass_tls,
 914                   bool save_arg_registers,
 915                   bool return_pc )
 916   : Phase(Compiler),
 917     _env(ci_env),
 918     _log(ci_env->log()),
 919     _compile_id(0),
 920     _save_argument_registers(save_arg_registers),
 921     _method(NULL),
 922     _stub_name(stub_name),
 923     _stub_function(stub_function),
 924     _stub_entry_point(NULL),
 925     _entry_bci(InvocationEntryBci),
 926     _initial_gvn(NULL),
 927     _for_igvn(NULL),
 928     _warm_calls(NULL),
 929     _orig_pc_slot(0),
 930     _orig_pc_slot_offset_in_bytes(0),
 931     _subsume_loads(true),
 932     _do_escape_analysis(false),
 933     _eliminate_boxing(false),
 934     _failure_reason(NULL),
 935     _code_buffer("Compile::Fill_buffer"),
 936     _has_method_handle_invokes(false),
 937     _mach_constant_base_node(NULL),
 938     _node_bundling_limit(0),
 939     _node_bundling_base(NULL),
 940     _java_calls(0),
 941     _inner_loops(0),
 942 #ifndef PRODUCT
 943     _trace_opto_output(TraceOptoOutput),
 944     _in_dump_cnt(0),
 945     _printer(NULL),
 946 #endif
 947     _dead_node_list(comp_arena()),
 948     _dead_node_count(0),
 949     _congraph(NULL),
 950     _number_of_mh_late_inlines(0),
 951     _inlining_progress(false),
 952     _inlining_incrementally(false),
 953     _print_inlining_list(NULL),
 954     _print_inlining_idx(0),
 955     _preserve_jvm_state(0),
 956     _allowed_reasons(0) {
 957   C = this;
 958 
 959 #ifndef PRODUCT
 960   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 961   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 962   set_print_assembly(PrintFrameConverterAssembly);
 963   set_parsed_irreducible_loop(false);
 964 #endif
 965   CompileWrapper cw(this);
 966   Init(/*AliasLevel=*/ 0);
 967   init_tf((*generator)());
 968 
 969   {
 970     // The following is a dummy for the sake of GraphKit::gen_stub
 971     Unique_Node_List for_igvn(comp_arena());
 972     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 973     PhaseGVN gvn(Thread::current()->resource_area(),255);
 974     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 975     gvn.transform_no_reclaim(top());
 976 
 977     GraphKit kit;
 978     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 979   }
 980 
 981   NOT_PRODUCT( verify_graph_edges(); )
 982   Code_Gen();
 983   if (failing())  return;
 984 
 985 
 986   // Entry point will be accessed using compile->stub_entry_point();
 987   if (code_buffer() == NULL) {
 988     Matcher::soft_match_failure();
 989   } else {
 990     if (PrintAssembly && (WizardMode || Verbose))
 991       tty->print_cr("### Stub::%s", stub_name);
 992 
 993     if (!failing()) {
 994       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
 995 
 996       // Make the NMethod
 997       // For now we mark the frame as never safe for profile stackwalking
 998       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
 999                                                       code_buffer(),
1000                                                       CodeOffsets::frame_never_safe,
1001                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1002                                                       frame_size_in_words(),
1003                                                       _oop_map_set,
1004                                                       save_arg_registers);
1005       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1006 
1007       _stub_entry_point = rs->entry_point();
1008     }
1009   }
1010 }
1011 
1012 //------------------------------Init-------------------------------------------
1013 // Prepare for a single compilation
1014 void Compile::Init(int aliaslevel) {
1015   _unique  = 0;
1016   _regalloc = NULL;
1017 
1018   _tf      = NULL;  // filled in later
1019   _top     = NULL;  // cached later
1020   _matcher = NULL;  // filled in later
1021   _cfg     = NULL;  // filled in later
1022 
1023   set_24_bit_selection_and_mode(Use24BitFP, false);
1024 
1025   _node_note_array = NULL;
1026   _default_node_notes = NULL;
1027 
1028   _immutable_memory = NULL; // filled in at first inquiry
1029 
1030   // Globally visible Nodes
1031   // First set TOP to NULL to give safe behavior during creation of RootNode
1032   set_cached_top_node(NULL);
1033   set_root(new (this) RootNode());
1034   // Now that you have a Root to point to, create the real TOP
1035   set_cached_top_node( new (this) ConNode(Type::TOP) );
1036   set_recent_alloc(NULL, NULL);
1037 
1038   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1039   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1040   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1041   env()->set_dependencies(new Dependencies(env()));
1042 
1043   _fixed_slots = 0;
1044   set_has_split_ifs(false);
1045   set_has_loops(has_method() && method()->has_loops()); // first approximation
1046   set_has_stringbuilder(false);
1047   set_has_boxed_value(false);
1048   _trap_can_recompile = false;  // no traps emitted yet
1049   _major_progress = true; // start out assuming good things will happen
1050   set_has_unsafe_access(false);
1051   set_max_vector_size(0);
1052   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1053   set_decompile_count(0);
1054 
1055   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1056   set_num_loop_opts(LoopOptsCount);
1057   set_do_inlining(Inline);
1058   set_max_inline_size(MaxInlineSize);
1059   set_freq_inline_size(FreqInlineSize);
1060   set_do_scheduling(OptoScheduling);
1061   set_do_count_invocations(false);
1062   set_do_method_data_update(false);
1063 
1064   if (debug_info()->recording_non_safepoints()) {
1065     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1066                         (comp_arena(), 8, 0, NULL));
1067     set_default_node_notes(Node_Notes::make(this));
1068   }
1069 
1070   // // -- Initialize types before each compile --
1071   // // Update cached type information
1072   // if( _method && _method->constants() )
1073   //   Type::update_loaded_types(_method, _method->constants());
1074 
1075   // Init alias_type map.
1076   if (!_do_escape_analysis && aliaslevel == 3)
1077     aliaslevel = 2;  // No unique types without escape analysis
1078   _AliasLevel = aliaslevel;
1079   const int grow_ats = 16;
1080   _max_alias_types = grow_ats;
1081   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1082   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1083   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1084   {
1085     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1086   }
1087   // Initialize the first few types.
1088   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1089   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1090   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1091   _num_alias_types = AliasIdxRaw+1;
1092   // Zero out the alias type cache.
1093   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1094   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1095   probe_alias_cache(NULL)->_index = AliasIdxTop;
1096 
1097   _intrinsics = NULL;
1098   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1099   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1100   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1101   register_library_intrinsics();
1102 }
1103 
1104 //---------------------------init_start----------------------------------------
1105 // Install the StartNode on this compile object.
1106 void Compile::init_start(StartNode* s) {
1107   if (failing())
1108     return; // already failing
1109   assert(s == start(), "");
1110 }
1111 
1112 StartNode* Compile::start() const {
1113   assert(!failing(), "");
1114   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1115     Node* start = root()->fast_out(i);
1116     if( start->is_Start() )
1117       return start->as_Start();
1118   }
1119   ShouldNotReachHere();
1120   return NULL;
1121 }
1122 
1123 //-------------------------------immutable_memory-------------------------------------
1124 // Access immutable memory
1125 Node* Compile::immutable_memory() {
1126   if (_immutable_memory != NULL) {
1127     return _immutable_memory;
1128   }
1129   StartNode* s = start();
1130   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1131     Node *p = s->fast_out(i);
1132     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1133       _immutable_memory = p;
1134       return _immutable_memory;
1135     }
1136   }
1137   ShouldNotReachHere();
1138   return NULL;
1139 }
1140 
1141 //----------------------set_cached_top_node------------------------------------
1142 // Install the cached top node, and make sure Node::is_top works correctly.
1143 void Compile::set_cached_top_node(Node* tn) {
1144   if (tn != NULL)  verify_top(tn);
1145   Node* old_top = _top;
1146   _top = tn;
1147   // Calling Node::setup_is_top allows the nodes the chance to adjust
1148   // their _out arrays.
1149   if (_top != NULL)     _top->setup_is_top();
1150   if (old_top != NULL)  old_top->setup_is_top();
1151   assert(_top == NULL || top()->is_top(), "");
1152 }
1153 
1154 #ifdef ASSERT
1155 uint Compile::count_live_nodes_by_graph_walk() {
1156   Unique_Node_List useful(comp_arena());
1157   // Get useful node list by walking the graph.
1158   identify_useful_nodes(useful);
1159   return useful.size();
1160 }
1161 
1162 void Compile::print_missing_nodes() {
1163 
1164   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1165   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1166     return;
1167   }
1168 
1169   // This is an expensive function. It is executed only when the user
1170   // specifies VerifyIdealNodeCount option or otherwise knows the
1171   // additional work that needs to be done to identify reachable nodes
1172   // by walking the flow graph and find the missing ones using
1173   // _dead_node_list.
1174 
1175   Unique_Node_List useful(comp_arena());
1176   // Get useful node list by walking the graph.
1177   identify_useful_nodes(useful);
1178 
1179   uint l_nodes = C->live_nodes();
1180   uint l_nodes_by_walk = useful.size();
1181 
1182   if (l_nodes != l_nodes_by_walk) {
1183     if (_log != NULL) {
1184       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1185       _log->stamp();
1186       _log->end_head();
1187     }
1188     VectorSet& useful_member_set = useful.member_set();
1189     int last_idx = l_nodes_by_walk;
1190     for (int i = 0; i < last_idx; i++) {
1191       if (useful_member_set.test(i)) {
1192         if (_dead_node_list.test(i)) {
1193           if (_log != NULL) {
1194             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1195           }
1196           if (PrintIdealNodeCount) {
1197             // Print the log message to tty
1198               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1199               useful.at(i)->dump();
1200           }
1201         }
1202       }
1203       else if (! _dead_node_list.test(i)) {
1204         if (_log != NULL) {
1205           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1206         }
1207         if (PrintIdealNodeCount) {
1208           // Print the log message to tty
1209           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1210         }
1211       }
1212     }
1213     if (_log != NULL) {
1214       _log->tail("mismatched_nodes");
1215     }
1216   }
1217 }
1218 #endif
1219 
1220 #ifndef PRODUCT
1221 void Compile::verify_top(Node* tn) const {
1222   if (tn != NULL) {
1223     assert(tn->is_Con(), "top node must be a constant");
1224     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1225     assert(tn->in(0) != NULL, "must have live top node");
1226   }
1227 }
1228 #endif
1229 
1230 
1231 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1232 
1233 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1234   guarantee(arr != NULL, "");
1235   int num_blocks = arr->length();
1236   if (grow_by < num_blocks)  grow_by = num_blocks;
1237   int num_notes = grow_by * _node_notes_block_size;
1238   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1239   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1240   while (num_notes > 0) {
1241     arr->append(notes);
1242     notes     += _node_notes_block_size;
1243     num_notes -= _node_notes_block_size;
1244   }
1245   assert(num_notes == 0, "exact multiple, please");
1246 }
1247 
1248 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1249   if (source == NULL || dest == NULL)  return false;
1250 
1251   if (dest->is_Con())
1252     return false;               // Do not push debug info onto constants.
1253 
1254 #ifdef ASSERT
1255   // Leave a bread crumb trail pointing to the original node:
1256   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1257     dest->set_debug_orig(source);
1258   }
1259 #endif
1260 
1261   if (node_note_array() == NULL)
1262     return false;               // Not collecting any notes now.
1263 
1264   // This is a copy onto a pre-existing node, which may already have notes.
1265   // If both nodes have notes, do not overwrite any pre-existing notes.
1266   Node_Notes* source_notes = node_notes_at(source->_idx);
1267   if (source_notes == NULL || source_notes->is_clear())  return false;
1268   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1269   if (dest_notes == NULL || dest_notes->is_clear()) {
1270     return set_node_notes_at(dest->_idx, source_notes);
1271   }
1272 
1273   Node_Notes merged_notes = (*source_notes);
1274   // The order of operations here ensures that dest notes will win...
1275   merged_notes.update_from(dest_notes);
1276   return set_node_notes_at(dest->_idx, &merged_notes);
1277 }
1278 
1279 
1280 //--------------------------allow_range_check_smearing-------------------------
1281 // Gating condition for coalescing similar range checks.
1282 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1283 // single covering check that is at least as strong as any of them.
1284 // If the optimization succeeds, the simplified (strengthened) range check
1285 // will always succeed.  If it fails, we will deopt, and then give up
1286 // on the optimization.
1287 bool Compile::allow_range_check_smearing() const {
1288   // If this method has already thrown a range-check,
1289   // assume it was because we already tried range smearing
1290   // and it failed.
1291   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1292   return !already_trapped;
1293 }
1294 
1295 
1296 //------------------------------flatten_alias_type-----------------------------
1297 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1298   int offset = tj->offset();
1299   TypePtr::PTR ptr = tj->ptr();
1300 
1301   // Known instance (scalarizable allocation) alias only with itself.
1302   bool is_known_inst = tj->isa_oopptr() != NULL &&
1303                        tj->is_oopptr()->is_known_instance();
1304 
1305   // Process weird unsafe references.
1306   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1307     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1308     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1309     tj = TypeOopPtr::BOTTOM;
1310     ptr = tj->ptr();
1311     offset = tj->offset();
1312   }
1313 
1314   // Array pointers need some flattening
1315   const TypeAryPtr *ta = tj->isa_aryptr();
1316   if (ta && ta->is_stable()) {
1317     // Erase stability property for alias analysis.
1318     tj = ta = ta->cast_to_stable(false);
1319   }
1320   if( ta && is_known_inst ) {
1321     if ( offset != Type::OffsetBot &&
1322          offset > arrayOopDesc::length_offset_in_bytes() ) {
1323       offset = Type::OffsetBot; // Flatten constant access into array body only
1324       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1325     }
1326   } else if( ta && _AliasLevel >= 2 ) {
1327     // For arrays indexed by constant indices, we flatten the alias
1328     // space to include all of the array body.  Only the header, klass
1329     // and array length can be accessed un-aliased.
1330     if( offset != Type::OffsetBot ) {
1331       if( ta->const_oop() ) { // MethodData* or Method*
1332         offset = Type::OffsetBot;   // Flatten constant access into array body
1333         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1334       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1335         // range is OK as-is.
1336         tj = ta = TypeAryPtr::RANGE;
1337       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1338         tj = TypeInstPtr::KLASS; // all klass loads look alike
1339         ta = TypeAryPtr::RANGE; // generic ignored junk
1340         ptr = TypePtr::BotPTR;
1341       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1342         tj = TypeInstPtr::MARK;
1343         ta = TypeAryPtr::RANGE; // generic ignored junk
1344         ptr = TypePtr::BotPTR;
1345       } else {                  // Random constant offset into array body
1346         offset = Type::OffsetBot;   // Flatten constant access into array body
1347         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1348       }
1349     }
1350     // Arrays of fixed size alias with arrays of unknown size.
1351     if (ta->size() != TypeInt::POS) {
1352       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1353       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1354     }
1355     // Arrays of known objects become arrays of unknown objects.
1356     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1357       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1358       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1359     }
1360     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1361       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1362       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1363     }
1364     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1365     // cannot be distinguished by bytecode alone.
1366     if (ta->elem() == TypeInt::BOOL) {
1367       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1368       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1369       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1370     }
1371     // During the 2nd round of IterGVN, NotNull castings are removed.
1372     // Make sure the Bottom and NotNull variants alias the same.
1373     // Also, make sure exact and non-exact variants alias the same.
1374     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1375       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1376     }
1377   }
1378 
1379   // Oop pointers need some flattening
1380   const TypeInstPtr *to = tj->isa_instptr();
1381   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1382     ciInstanceKlass *k = to->klass()->as_instance_klass();
1383     if( ptr == TypePtr::Constant ) {
1384       if (to->klass() != ciEnv::current()->Class_klass() ||
1385           offset < k->size_helper() * wordSize) {
1386         // No constant oop pointers (such as Strings); they alias with
1387         // unknown strings.
1388         assert(!is_known_inst, "not scalarizable allocation");
1389         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1390       }
1391     } else if( is_known_inst ) {
1392       tj = to; // Keep NotNull and klass_is_exact for instance type
1393     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1394       // During the 2nd round of IterGVN, NotNull castings are removed.
1395       // Make sure the Bottom and NotNull variants alias the same.
1396       // Also, make sure exact and non-exact variants alias the same.
1397       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1398     }
1399     if (to->speculative() != NULL) {
1400       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1401     }
1402     // Canonicalize the holder of this field
1403     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1404       // First handle header references such as a LoadKlassNode, even if the
1405       // object's klass is unloaded at compile time (4965979).
1406       if (!is_known_inst) { // Do it only for non-instance types
1407         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1408       }
1409     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1410       // Static fields are in the space above the normal instance
1411       // fields in the java.lang.Class instance.
1412       if (to->klass() != ciEnv::current()->Class_klass()) {
1413         to = NULL;
1414         tj = TypeOopPtr::BOTTOM;
1415         offset = tj->offset();
1416       }
1417     } else {
1418       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1419       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1420         if( is_known_inst ) {
1421           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1422         } else {
1423           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1424         }
1425       }
1426     }
1427   }
1428 
1429   // Klass pointers to object array klasses need some flattening
1430   const TypeKlassPtr *tk = tj->isa_klassptr();
1431   if( tk ) {
1432     // If we are referencing a field within a Klass, we need
1433     // to assume the worst case of an Object.  Both exact and
1434     // inexact types must flatten to the same alias class so
1435     // use NotNull as the PTR.
1436     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1437 
1438       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1439                                    TypeKlassPtr::OBJECT->klass(),
1440                                    offset);
1441     }
1442 
1443     ciKlass* klass = tk->klass();
1444     if( klass->is_obj_array_klass() ) {
1445       ciKlass* k = TypeAryPtr::OOPS->klass();
1446       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1447         k = TypeInstPtr::BOTTOM->klass();
1448       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1449     }
1450 
1451     // Check for precise loads from the primary supertype array and force them
1452     // to the supertype cache alias index.  Check for generic array loads from
1453     // the primary supertype array and also force them to the supertype cache
1454     // alias index.  Since the same load can reach both, we need to merge
1455     // these 2 disparate memories into the same alias class.  Since the
1456     // primary supertype array is read-only, there's no chance of confusion
1457     // where we bypass an array load and an array store.
1458     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1459     if (offset == Type::OffsetBot ||
1460         (offset >= primary_supers_offset &&
1461          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1462         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1463       offset = in_bytes(Klass::secondary_super_cache_offset());
1464       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1465     }
1466   }
1467 
1468   // Flatten all Raw pointers together.
1469   if (tj->base() == Type::RawPtr)
1470     tj = TypeRawPtr::BOTTOM;
1471 
1472   if (tj->base() == Type::AnyPtr)
1473     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1474 
1475   // Flatten all to bottom for now
1476   switch( _AliasLevel ) {
1477   case 0:
1478     tj = TypePtr::BOTTOM;
1479     break;
1480   case 1:                       // Flatten to: oop, static, field or array
1481     switch (tj->base()) {
1482     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1483     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1484     case Type::AryPtr:   // do not distinguish arrays at all
1485     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1486     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1487     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1488     default: ShouldNotReachHere();
1489     }
1490     break;
1491   case 2:                       // No collapsing at level 2; keep all splits
1492   case 3:                       // No collapsing at level 3; keep all splits
1493     break;
1494   default:
1495     Unimplemented();
1496   }
1497 
1498   offset = tj->offset();
1499   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1500 
1501   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1502           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1503           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1504           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1505           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1506           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1507           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1508           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1509   assert( tj->ptr() != TypePtr::TopPTR &&
1510           tj->ptr() != TypePtr::AnyNull &&
1511           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1512 //    assert( tj->ptr() != TypePtr::Constant ||
1513 //            tj->base() == Type::RawPtr ||
1514 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1515 
1516   return tj;
1517 }
1518 
1519 void Compile::AliasType::Init(int i, const TypePtr* at) {
1520   _index = i;
1521   _adr_type = at;
1522   _field = NULL;
1523   _element = NULL;
1524   _is_rewritable = true; // default
1525   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1526   if (atoop != NULL && atoop->is_known_instance()) {
1527     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1528     _general_index = Compile::current()->get_alias_index(gt);
1529   } else {
1530     _general_index = 0;
1531   }
1532 }
1533 
1534 //---------------------------------print_on------------------------------------
1535 #ifndef PRODUCT
1536 void Compile::AliasType::print_on(outputStream* st) {
1537   if (index() < 10)
1538         st->print("@ <%d> ", index());
1539   else  st->print("@ <%d>",  index());
1540   st->print(is_rewritable() ? "   " : " RO");
1541   int offset = adr_type()->offset();
1542   if (offset == Type::OffsetBot)
1543         st->print(" +any");
1544   else  st->print(" +%-3d", offset);
1545   st->print(" in ");
1546   adr_type()->dump_on(st);
1547   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1548   if (field() != NULL && tjp) {
1549     if (tjp->klass()  != field()->holder() ||
1550         tjp->offset() != field()->offset_in_bytes()) {
1551       st->print(" != ");
1552       field()->print();
1553       st->print(" ***");
1554     }
1555   }
1556 }
1557 
1558 void print_alias_types() {
1559   Compile* C = Compile::current();
1560   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1561   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1562     C->alias_type(idx)->print_on(tty);
1563     tty->cr();
1564   }
1565 }
1566 #endif
1567 
1568 
1569 //----------------------------probe_alias_cache--------------------------------
1570 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1571   intptr_t key = (intptr_t) adr_type;
1572   key ^= key >> logAliasCacheSize;
1573   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1574 }
1575 
1576 
1577 //-----------------------------grow_alias_types--------------------------------
1578 void Compile::grow_alias_types() {
1579   const int old_ats  = _max_alias_types; // how many before?
1580   const int new_ats  = old_ats;          // how many more?
1581   const int grow_ats = old_ats+new_ats;  // how many now?
1582   _max_alias_types = grow_ats;
1583   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1584   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1585   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1586   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1587 }
1588 
1589 
1590 //--------------------------------find_alias_type------------------------------
1591 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1592   if (_AliasLevel == 0)
1593     return alias_type(AliasIdxBot);
1594 
1595   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1596   if (ace->_adr_type == adr_type) {
1597     return alias_type(ace->_index);
1598   }
1599 
1600   // Handle special cases.
1601   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1602   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1603 
1604   // Do it the slow way.
1605   const TypePtr* flat = flatten_alias_type(adr_type);
1606 
1607 #ifdef ASSERT
1608   assert(flat == flatten_alias_type(flat), "idempotent");
1609   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1610   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1611     const TypeOopPtr* foop = flat->is_oopptr();
1612     // Scalarizable allocations have exact klass always.
1613     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1614     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1615     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1616   }
1617   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1618 #endif
1619 
1620   int idx = AliasIdxTop;
1621   for (int i = 0; i < num_alias_types(); i++) {
1622     if (alias_type(i)->adr_type() == flat) {
1623       idx = i;
1624       break;
1625     }
1626   }
1627 
1628   if (idx == AliasIdxTop) {
1629     if (no_create)  return NULL;
1630     // Grow the array if necessary.
1631     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1632     // Add a new alias type.
1633     idx = _num_alias_types++;
1634     _alias_types[idx]->Init(idx, flat);
1635     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1636     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1637     if (flat->isa_instptr()) {
1638       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1639           && flat->is_instptr()->klass() == env()->Class_klass())
1640         alias_type(idx)->set_rewritable(false);
1641     }
1642     if (flat->isa_aryptr()) {
1643 #ifdef ASSERT
1644       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1645       // (T_BYTE has the weakest alignment and size restrictions...)
1646       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1647 #endif
1648       if (flat->offset() == TypePtr::OffsetBot) {
1649         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1650       }
1651     }
1652     if (flat->isa_klassptr()) {
1653       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1654         alias_type(idx)->set_rewritable(false);
1655       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1656         alias_type(idx)->set_rewritable(false);
1657       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1658         alias_type(idx)->set_rewritable(false);
1659       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1660         alias_type(idx)->set_rewritable(false);
1661     }
1662     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1663     // but the base pointer type is not distinctive enough to identify
1664     // references into JavaThread.)
1665 
1666     // Check for final fields.
1667     const TypeInstPtr* tinst = flat->isa_instptr();
1668     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1669       ciField* field;
1670       if (tinst->const_oop() != NULL &&
1671           tinst->klass() == ciEnv::current()->Class_klass() &&
1672           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1673         // static field
1674         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1675         field = k->get_field_by_offset(tinst->offset(), true);
1676       } else {
1677         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1678         field = k->get_field_by_offset(tinst->offset(), false);
1679       }
1680       assert(field == NULL ||
1681              original_field == NULL ||
1682              (field->holder() == original_field->holder() &&
1683               field->offset() == original_field->offset() &&
1684               field->is_static() == original_field->is_static()), "wrong field?");
1685       // Set field() and is_rewritable() attributes.
1686       if (field != NULL)  alias_type(idx)->set_field(field);
1687     }
1688   }
1689 
1690   // Fill the cache for next time.
1691   ace->_adr_type = adr_type;
1692   ace->_index    = idx;
1693   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1694 
1695   // Might as well try to fill the cache for the flattened version, too.
1696   AliasCacheEntry* face = probe_alias_cache(flat);
1697   if (face->_adr_type == NULL) {
1698     face->_adr_type = flat;
1699     face->_index    = idx;
1700     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1701   }
1702 
1703   return alias_type(idx);
1704 }
1705 
1706 
1707 Compile::AliasType* Compile::alias_type(ciField* field) {
1708   const TypeOopPtr* t;
1709   if (field->is_static())
1710     t = TypeInstPtr::make(field->holder()->java_mirror());
1711   else
1712     t = TypeOopPtr::make_from_klass_raw(field->holder());
1713   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1714   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1715   return atp;
1716 }
1717 
1718 
1719 //------------------------------have_alias_type--------------------------------
1720 bool Compile::have_alias_type(const TypePtr* adr_type) {
1721   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1722   if (ace->_adr_type == adr_type) {
1723     return true;
1724   }
1725 
1726   // Handle special cases.
1727   if (adr_type == NULL)             return true;
1728   if (adr_type == TypePtr::BOTTOM)  return true;
1729 
1730   return find_alias_type(adr_type, true, NULL) != NULL;
1731 }
1732 
1733 //-----------------------------must_alias--------------------------------------
1734 // True if all values of the given address type are in the given alias category.
1735 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1736   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1737   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1738   if (alias_idx == AliasIdxTop)         return false; // the empty category
1739   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1740 
1741   // the only remaining possible overlap is identity
1742   int adr_idx = get_alias_index(adr_type);
1743   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1744   assert(adr_idx == alias_idx ||
1745          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1746           && adr_type                       != TypeOopPtr::BOTTOM),
1747          "should not be testing for overlap with an unsafe pointer");
1748   return adr_idx == alias_idx;
1749 }
1750 
1751 //------------------------------can_alias--------------------------------------
1752 // True if any values of the given address type are in the given alias category.
1753 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1754   if (alias_idx == AliasIdxTop)         return false; // the empty category
1755   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1756   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1757   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1758 
1759   // the only remaining possible overlap is identity
1760   int adr_idx = get_alias_index(adr_type);
1761   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1762   return adr_idx == alias_idx;
1763 }
1764 
1765 
1766 
1767 //---------------------------pop_warm_call-------------------------------------
1768 WarmCallInfo* Compile::pop_warm_call() {
1769   WarmCallInfo* wci = _warm_calls;
1770   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1771   return wci;
1772 }
1773 
1774 //----------------------------Inline_Warm--------------------------------------
1775 int Compile::Inline_Warm() {
1776   // If there is room, try to inline some more warm call sites.
1777   // %%% Do a graph index compaction pass when we think we're out of space?
1778   if (!InlineWarmCalls)  return 0;
1779 
1780   int calls_made_hot = 0;
1781   int room_to_grow   = NodeCountInliningCutoff - unique();
1782   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1783   int amount_grown   = 0;
1784   WarmCallInfo* call;
1785   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1786     int est_size = (int)call->size();
1787     if (est_size > (room_to_grow - amount_grown)) {
1788       // This one won't fit anyway.  Get rid of it.
1789       call->make_cold();
1790       continue;
1791     }
1792     call->make_hot();
1793     calls_made_hot++;
1794     amount_grown   += est_size;
1795     amount_to_grow -= est_size;
1796   }
1797 
1798   if (calls_made_hot > 0)  set_major_progress();
1799   return calls_made_hot;
1800 }
1801 
1802 
1803 //----------------------------Finish_Warm--------------------------------------
1804 void Compile::Finish_Warm() {
1805   if (!InlineWarmCalls)  return;
1806   if (failing())  return;
1807   if (warm_calls() == NULL)  return;
1808 
1809   // Clean up loose ends, if we are out of space for inlining.
1810   WarmCallInfo* call;
1811   while ((call = pop_warm_call()) != NULL) {
1812     call->make_cold();
1813   }
1814 }
1815 
1816 //---------------------cleanup_loop_predicates-----------------------
1817 // Remove the opaque nodes that protect the predicates so that all unused
1818 // checks and uncommon_traps will be eliminated from the ideal graph
1819 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1820   if (predicate_count()==0) return;
1821   for (int i = predicate_count(); i > 0; i--) {
1822     Node * n = predicate_opaque1_node(i-1);
1823     assert(n->Opcode() == Op_Opaque1, "must be");
1824     igvn.replace_node(n, n->in(1));
1825   }
1826   assert(predicate_count()==0, "should be clean!");
1827 }
1828 
1829 // StringOpts and late inlining of string methods
1830 void Compile::inline_string_calls(bool parse_time) {
1831   {
1832     // remove useless nodes to make the usage analysis simpler
1833     ResourceMark rm;
1834     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1835   }
1836 
1837   {
1838     ResourceMark rm;
1839     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1840     PhaseStringOpts pso(initial_gvn(), for_igvn());
1841     print_method(PHASE_AFTER_STRINGOPTS, 3);
1842   }
1843 
1844   // now inline anything that we skipped the first time around
1845   if (!parse_time) {
1846     _late_inlines_pos = _late_inlines.length();
1847   }
1848 
1849   while (_string_late_inlines.length() > 0) {
1850     CallGenerator* cg = _string_late_inlines.pop();
1851     cg->do_late_inline();
1852     if (failing())  return;
1853   }
1854   _string_late_inlines.trunc_to(0);
1855 }
1856 
1857 // Late inlining of boxing methods
1858 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1859   if (_boxing_late_inlines.length() > 0) {
1860     assert(has_boxed_value(), "inconsistent");
1861 
1862     PhaseGVN* gvn = initial_gvn();
1863     set_inlining_incrementally(true);
1864 
1865     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1866     for_igvn()->clear();
1867     gvn->replace_with(&igvn);
1868 
1869     while (_boxing_late_inlines.length() > 0) {
1870       CallGenerator* cg = _boxing_late_inlines.pop();
1871       cg->do_late_inline();
1872       if (failing())  return;
1873     }
1874     _boxing_late_inlines.trunc_to(0);
1875 
1876     {
1877       ResourceMark rm;
1878       PhaseRemoveUseless pru(gvn, for_igvn());
1879     }
1880 
1881     igvn = PhaseIterGVN(gvn);
1882     igvn.optimize();
1883 
1884     set_inlining_progress(false);
1885     set_inlining_incrementally(false);
1886   }
1887 }
1888 
1889 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1890   assert(IncrementalInline, "incremental inlining should be on");
1891   PhaseGVN* gvn = initial_gvn();
1892 
1893   set_inlining_progress(false);
1894   for_igvn()->clear();
1895   gvn->replace_with(&igvn);
1896 
1897   int i = 0;
1898 
1899   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1900     CallGenerator* cg = _late_inlines.at(i);
1901     _late_inlines_pos = i+1;
1902     cg->do_late_inline();
1903     if (failing())  return;
1904   }
1905   int j = 0;
1906   for (; i < _late_inlines.length(); i++, j++) {
1907     _late_inlines.at_put(j, _late_inlines.at(i));
1908   }
1909   _late_inlines.trunc_to(j);
1910 
1911   {
1912     ResourceMark rm;
1913     PhaseRemoveUseless pru(gvn, for_igvn());
1914   }
1915 
1916   igvn = PhaseIterGVN(gvn);
1917 }
1918 
1919 // Perform incremental inlining until bound on number of live nodes is reached
1920 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1921   PhaseGVN* gvn = initial_gvn();
1922 
1923   set_inlining_incrementally(true);
1924   set_inlining_progress(true);
1925   uint low_live_nodes = 0;
1926 
1927   while(inlining_progress() && _late_inlines.length() > 0) {
1928 
1929     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1930       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1931         // PhaseIdealLoop is expensive so we only try it once we are
1932         // out of loop and we only try it again if the previous helped
1933         // got the number of nodes down significantly
1934         PhaseIdealLoop ideal_loop( igvn, false, true );
1935         if (failing())  return;
1936         low_live_nodes = live_nodes();
1937         _major_progress = true;
1938       }
1939 
1940       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1941         break;
1942       }
1943     }
1944 
1945     inline_incrementally_one(igvn);
1946 
1947     if (failing())  return;
1948 
1949     igvn.optimize();
1950 
1951     if (failing())  return;
1952   }
1953 
1954   assert( igvn._worklist.size() == 0, "should be done with igvn" );
1955 
1956   if (_string_late_inlines.length() > 0) {
1957     assert(has_stringbuilder(), "inconsistent");
1958     for_igvn()->clear();
1959     initial_gvn()->replace_with(&igvn);
1960 
1961     inline_string_calls(false);
1962 
1963     if (failing())  return;
1964 
1965     {
1966       ResourceMark rm;
1967       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1968     }
1969 
1970     igvn = PhaseIterGVN(gvn);
1971 
1972     igvn.optimize();
1973   }
1974 
1975   set_inlining_incrementally(false);
1976 }
1977 
1978 
1979 //------------------------------Optimize---------------------------------------
1980 // Given a graph, optimize it.
1981 void Compile::Optimize() {
1982   TracePhase t1("optimizer", &_t_optimizer, true);
1983 
1984 #ifndef PRODUCT
1985   if (env()->break_at_compile()) {
1986     BREAKPOINT;
1987   }
1988 
1989 #endif
1990 
1991   ResourceMark rm;
1992   int          loop_opts_cnt;
1993 
1994   NOT_PRODUCT( verify_graph_edges(); )
1995 
1996   print_method(PHASE_AFTER_PARSING);
1997 
1998  {
1999   // Iterative Global Value Numbering, including ideal transforms
2000   // Initialize IterGVN with types and values from parse-time GVN
2001   PhaseIterGVN igvn(initial_gvn());
2002   {
2003     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2004     igvn.optimize();
2005   }
2006 
2007   print_method(PHASE_ITER_GVN1, 2);
2008 
2009   if (failing())  return;
2010 
2011   {
2012     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2013     inline_incrementally(igvn);
2014   }
2015 
2016   print_method(PHASE_INCREMENTAL_INLINE, 2);
2017 
2018   if (failing())  return;
2019 
2020   if (eliminate_boxing()) {
2021     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2022     // Inline valueOf() methods now.
2023     inline_boxing_calls(igvn);
2024 
2025     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2026 
2027     if (failing())  return;
2028   }
2029 
2030   // Remove the speculative part of types and clean up the graph from
2031   // the extra CastPP nodes whose only purpose is to carry them. Do
2032   // that early so that optimizations are not disrupted by the extra
2033   // CastPP nodes.
2034   remove_speculative_types(igvn);
2035 
2036   // No more new expensive nodes will be added to the list from here
2037   // so keep only the actual candidates for optimizations.
2038   cleanup_expensive_nodes(igvn);
2039 
2040   // Perform escape analysis
2041   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2042     if (has_loops()) {
2043       // Cleanup graph (remove dead nodes).
2044       TracePhase t2("idealLoop", &_t_idealLoop, true);
2045       PhaseIdealLoop ideal_loop( igvn, false, true );
2046       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2047       if (failing())  return;
2048     }
2049     ConnectionGraph::do_analysis(this, &igvn);
2050 
2051     if (failing())  return;
2052 
2053     // Optimize out fields loads from scalar replaceable allocations.
2054     igvn.optimize();
2055     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2056 
2057     if (failing())  return;
2058 
2059     if (congraph() != NULL && macro_count() > 0) {
2060       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2061       PhaseMacroExpand mexp(igvn);
2062       mexp.eliminate_macro_nodes();
2063       igvn.set_delay_transform(false);
2064 
2065       igvn.optimize();
2066       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2067 
2068       if (failing())  return;
2069     }
2070   }
2071 
2072   // Loop transforms on the ideal graph.  Range Check Elimination,
2073   // peeling, unrolling, etc.
2074 
2075   // Set loop opts counter
2076   loop_opts_cnt = num_loop_opts();
2077   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2078     {
2079       TracePhase t2("idealLoop", &_t_idealLoop, true);
2080       PhaseIdealLoop ideal_loop( igvn, true );
2081       loop_opts_cnt--;
2082       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2083       if (failing())  return;
2084     }
2085     // Loop opts pass if partial peeling occurred in previous pass
2086     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2087       TracePhase t3("idealLoop", &_t_idealLoop, true);
2088       PhaseIdealLoop ideal_loop( igvn, false );
2089       loop_opts_cnt--;
2090       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2091       if (failing())  return;
2092     }
2093     // Loop opts pass for loop-unrolling before CCP
2094     if(major_progress() && (loop_opts_cnt > 0)) {
2095       TracePhase t4("idealLoop", &_t_idealLoop, true);
2096       PhaseIdealLoop ideal_loop( igvn, false );
2097       loop_opts_cnt--;
2098       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2099     }
2100     if (!failing()) {
2101       // Verify that last round of loop opts produced a valid graph
2102       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2103       PhaseIdealLoop::verify(igvn);
2104     }
2105   }
2106   if (failing())  return;
2107 
2108   // Conditional Constant Propagation;
2109   PhaseCCP ccp( &igvn );
2110   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2111   {
2112     TracePhase t2("ccp", &_t_ccp, true);
2113     ccp.do_transform();
2114   }
2115   print_method(PHASE_CPP1, 2);
2116 
2117   assert( true, "Break here to ccp.dump_old2new_map()");
2118 
2119   // Iterative Global Value Numbering, including ideal transforms
2120   {
2121     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2122     igvn = ccp;
2123     igvn.optimize();
2124   }
2125 
2126   print_method(PHASE_ITER_GVN2, 2);
2127 
2128   if (failing())  return;
2129 
2130   // Loop transforms on the ideal graph.  Range Check Elimination,
2131   // peeling, unrolling, etc.
2132   if(loop_opts_cnt > 0) {
2133     debug_only( int cnt = 0; );
2134     while(major_progress() && (loop_opts_cnt > 0)) {
2135       TracePhase t2("idealLoop", &_t_idealLoop, true);
2136       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2137       PhaseIdealLoop ideal_loop( igvn, true);
2138       loop_opts_cnt--;
2139       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2140       if (failing())  return;
2141     }
2142   }
2143 
2144   {
2145     // Verify that all previous optimizations produced a valid graph
2146     // at least to this point, even if no loop optimizations were done.
2147     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2148     PhaseIdealLoop::verify(igvn);
2149   }
2150 
2151   {
2152     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2153     PhaseMacroExpand  mex(igvn);
2154     if (mex.expand_macro_nodes()) {
2155       assert(failing(), "must bail out w/ explicit message");
2156       return;
2157     }
2158   }
2159 
2160  } // (End scope of igvn; run destructor if necessary for asserts.)
2161 
2162   dump_inlining();
2163   // A method with only infinite loops has no edges entering loops from root
2164   {
2165     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2166     if (final_graph_reshaping()) {
2167       assert(failing(), "must bail out w/ explicit message");
2168       return;
2169     }
2170   }
2171 
2172   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2173 }
2174 
2175 
2176 //------------------------------Code_Gen---------------------------------------
2177 // Given a graph, generate code for it
2178 void Compile::Code_Gen() {
2179   if (failing()) {
2180     return;
2181   }
2182 
2183   // Perform instruction selection.  You might think we could reclaim Matcher
2184   // memory PDQ, but actually the Matcher is used in generating spill code.
2185   // Internals of the Matcher (including some VectorSets) must remain live
2186   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2187   // set a bit in reclaimed memory.
2188 
2189   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2190   // nodes.  Mapping is only valid at the root of each matched subtree.
2191   NOT_PRODUCT( verify_graph_edges(); )
2192 
2193   Matcher matcher;
2194   _matcher = &matcher;
2195   {
2196     TracePhase t2("matcher", &_t_matcher, true);
2197     matcher.match();
2198   }
2199   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2200   // nodes.  Mapping is only valid at the root of each matched subtree.
2201   NOT_PRODUCT( verify_graph_edges(); )
2202 
2203   // If you have too many nodes, or if matching has failed, bail out
2204   check_node_count(0, "out of nodes matching instructions");
2205   if (failing()) {
2206     return;
2207   }
2208 
2209   // Build a proper-looking CFG
2210   PhaseCFG cfg(node_arena(), root(), matcher);
2211   _cfg = &cfg;
2212   {
2213     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2214     bool success = cfg.do_global_code_motion();
2215     if (!success) {
2216       return;
2217     }
2218 
2219     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2220     NOT_PRODUCT( verify_graph_edges(); )
2221     debug_only( cfg.verify(); )
2222   }
2223 
2224   PhaseChaitin regalloc(unique(), cfg, matcher);
2225   _regalloc = &regalloc;
2226   {
2227     TracePhase t2("regalloc", &_t_registerAllocation, true);
2228     // Perform register allocation.  After Chaitin, use-def chains are
2229     // no longer accurate (at spill code) and so must be ignored.
2230     // Node->LRG->reg mappings are still accurate.
2231     _regalloc->Register_Allocate();
2232 
2233     // Bail out if the allocator builds too many nodes
2234     if (failing()) {
2235       return;
2236     }
2237   }
2238 
2239   // Prior to register allocation we kept empty basic blocks in case the
2240   // the allocator needed a place to spill.  After register allocation we
2241   // are not adding any new instructions.  If any basic block is empty, we
2242   // can now safely remove it.
2243   {
2244     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2245     cfg.remove_empty_blocks();
2246     if (do_freq_based_layout()) {
2247       PhaseBlockLayout layout(cfg);
2248     } else {
2249       cfg.set_loop_alignment();
2250     }
2251     cfg.fixup_flow();
2252   }
2253 
2254   // Apply peephole optimizations
2255   if( OptoPeephole ) {
2256     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2257     PhasePeephole peep( _regalloc, cfg);
2258     peep.do_transform();
2259   }
2260 
2261   // Do late expand if CPU requires this.
2262   if (Matcher::require_postalloc_expand) {
2263     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2264     cfg.postalloc_expand(_regalloc);
2265   }
2266 
2267   // Convert Nodes to instruction bits in a buffer
2268   {
2269     // %%%% workspace merge brought two timers together for one job
2270     TracePhase t2a("output", &_t_output, true);
2271     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2272     Output();
2273   }
2274 
2275   print_method(PHASE_FINAL_CODE);
2276 
2277   // He's dead, Jim.
2278   _cfg     = (PhaseCFG*)0xdeadbeef;
2279   _regalloc = (PhaseChaitin*)0xdeadbeef;
2280 }
2281 
2282 
2283 //------------------------------dump_asm---------------------------------------
2284 // Dump formatted assembly
2285 #ifndef PRODUCT
2286 void Compile::dump_asm(int *pcs, uint pc_limit) {
2287   bool cut_short = false;
2288   tty->print_cr("#");
2289   tty->print("#  ");  _tf->dump();  tty->cr();
2290   tty->print_cr("#");
2291 
2292   // For all blocks
2293   int pc = 0x0;                 // Program counter
2294   char starts_bundle = ' ';
2295   _regalloc->dump_frame();
2296 
2297   Node *n = NULL;
2298   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2299     if (VMThread::should_terminate()) {
2300       cut_short = true;
2301       break;
2302     }
2303     Block* block = _cfg->get_block(i);
2304     if (block->is_connector() && !Verbose) {
2305       continue;
2306     }
2307     n = block->head();
2308     if (pcs && n->_idx < pc_limit) {
2309       tty->print("%3.3x   ", pcs[n->_idx]);
2310     } else {
2311       tty->print("      ");
2312     }
2313     block->dump_head(_cfg);
2314     if (block->is_connector()) {
2315       tty->print_cr("        # Empty connector block");
2316     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2317       tty->print_cr("        # Block is sole successor of call");
2318     }
2319 
2320     // For all instructions
2321     Node *delay = NULL;
2322     for (uint j = 0; j < block->number_of_nodes(); j++) {
2323       if (VMThread::should_terminate()) {
2324         cut_short = true;
2325         break;
2326       }
2327       n = block->get_node(j);
2328       if (valid_bundle_info(n)) {
2329         Bundle* bundle = node_bundling(n);
2330         if (bundle->used_in_unconditional_delay()) {
2331           delay = n;
2332           continue;
2333         }
2334         if (bundle->starts_bundle()) {
2335           starts_bundle = '+';
2336         }
2337       }
2338 
2339       if (WizardMode) {
2340         n->dump();
2341       }
2342 
2343       if( !n->is_Region() &&    // Dont print in the Assembly
2344           !n->is_Phi() &&       // a few noisely useless nodes
2345           !n->is_Proj() &&
2346           !n->is_MachTemp() &&
2347           !n->is_SafePointScalarObject() &&
2348           !n->is_Catch() &&     // Would be nice to print exception table targets
2349           !n->is_MergeMem() &&  // Not very interesting
2350           !n->is_top() &&       // Debug info table constants
2351           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2352           ) {
2353         if (pcs && n->_idx < pc_limit)
2354           tty->print("%3.3x", pcs[n->_idx]);
2355         else
2356           tty->print("   ");
2357         tty->print(" %c ", starts_bundle);
2358         starts_bundle = ' ';
2359         tty->print("\t");
2360         n->format(_regalloc, tty);
2361         tty->cr();
2362       }
2363 
2364       // If we have an instruction with a delay slot, and have seen a delay,
2365       // then back up and print it
2366       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2367         assert(delay != NULL, "no unconditional delay instruction");
2368         if (WizardMode) delay->dump();
2369 
2370         if (node_bundling(delay)->starts_bundle())
2371           starts_bundle = '+';
2372         if (pcs && n->_idx < pc_limit)
2373           tty->print("%3.3x", pcs[n->_idx]);
2374         else
2375           tty->print("   ");
2376         tty->print(" %c ", starts_bundle);
2377         starts_bundle = ' ';
2378         tty->print("\t");
2379         delay->format(_regalloc, tty);
2380         tty->print_cr("");
2381         delay = NULL;
2382       }
2383 
2384       // Dump the exception table as well
2385       if( n->is_Catch() && (Verbose || WizardMode) ) {
2386         // Print the exception table for this offset
2387         _handler_table.print_subtable_for(pc);
2388       }
2389     }
2390 
2391     if (pcs && n->_idx < pc_limit)
2392       tty->print_cr("%3.3x", pcs[n->_idx]);
2393     else
2394       tty->print_cr("");
2395 
2396     assert(cut_short || delay == NULL, "no unconditional delay branch");
2397 
2398   } // End of per-block dump
2399   tty->print_cr("");
2400 
2401   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2402 }
2403 #endif
2404 
2405 //------------------------------Final_Reshape_Counts---------------------------
2406 // This class defines counters to help identify when a method
2407 // may/must be executed using hardware with only 24-bit precision.
2408 struct Final_Reshape_Counts : public StackObj {
2409   int  _call_count;             // count non-inlined 'common' calls
2410   int  _float_count;            // count float ops requiring 24-bit precision
2411   int  _double_count;           // count double ops requiring more precision
2412   int  _java_call_count;        // count non-inlined 'java' calls
2413   int  _inner_loop_count;       // count loops which need alignment
2414   VectorSet _visited;           // Visitation flags
2415   Node_List _tests;             // Set of IfNodes & PCTableNodes
2416 
2417   Final_Reshape_Counts() :
2418     _call_count(0), _float_count(0), _double_count(0),
2419     _java_call_count(0), _inner_loop_count(0),
2420     _visited( Thread::current()->resource_area() ) { }
2421 
2422   void inc_call_count  () { _call_count  ++; }
2423   void inc_float_count () { _float_count ++; }
2424   void inc_double_count() { _double_count++; }
2425   void inc_java_call_count() { _java_call_count++; }
2426   void inc_inner_loop_count() { _inner_loop_count++; }
2427 
2428   int  get_call_count  () const { return _call_count  ; }
2429   int  get_float_count () const { return _float_count ; }
2430   int  get_double_count() const { return _double_count; }
2431   int  get_java_call_count() const { return _java_call_count; }
2432   int  get_inner_loop_count() const { return _inner_loop_count; }
2433 };
2434 
2435 #ifdef ASSERT
2436 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2437   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2438   // Make sure the offset goes inside the instance layout.
2439   return k->contains_field_offset(tp->offset());
2440   // Note that OffsetBot and OffsetTop are very negative.
2441 }
2442 #endif
2443 
2444 // Eliminate trivially redundant StoreCMs and accumulate their
2445 // precedence edges.
2446 void Compile::eliminate_redundant_card_marks(Node* n) {
2447   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2448   if (n->in(MemNode::Address)->outcnt() > 1) {
2449     // There are multiple users of the same address so it might be
2450     // possible to eliminate some of the StoreCMs
2451     Node* mem = n->in(MemNode::Memory);
2452     Node* adr = n->in(MemNode::Address);
2453     Node* val = n->in(MemNode::ValueIn);
2454     Node* prev = n;
2455     bool done = false;
2456     // Walk the chain of StoreCMs eliminating ones that match.  As
2457     // long as it's a chain of single users then the optimization is
2458     // safe.  Eliminating partially redundant StoreCMs would require
2459     // cloning copies down the other paths.
2460     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2461       if (adr == mem->in(MemNode::Address) &&
2462           val == mem->in(MemNode::ValueIn)) {
2463         // redundant StoreCM
2464         if (mem->req() > MemNode::OopStore) {
2465           // Hasn't been processed by this code yet.
2466           n->add_prec(mem->in(MemNode::OopStore));
2467         } else {
2468           // Already converted to precedence edge
2469           for (uint i = mem->req(); i < mem->len(); i++) {
2470             // Accumulate any precedence edges
2471             if (mem->in(i) != NULL) {
2472               n->add_prec(mem->in(i));
2473             }
2474           }
2475           // Everything above this point has been processed.
2476           done = true;
2477         }
2478         // Eliminate the previous StoreCM
2479         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2480         assert(mem->outcnt() == 0, "should be dead");
2481         mem->disconnect_inputs(NULL, this);
2482       } else {
2483         prev = mem;
2484       }
2485       mem = prev->in(MemNode::Memory);
2486     }
2487   }
2488 }
2489 
2490 //------------------------------final_graph_reshaping_impl----------------------
2491 // Implement items 1-5 from final_graph_reshaping below.
2492 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2493 
2494   if ( n->outcnt() == 0 ) return; // dead node
2495   uint nop = n->Opcode();
2496 
2497   // Check for 2-input instruction with "last use" on right input.
2498   // Swap to left input.  Implements item (2).
2499   if( n->req() == 3 &&          // two-input instruction
2500       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2501       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2502       n->in(2)->outcnt() == 1 &&// right use IS a last use
2503       !n->in(2)->is_Con() ) {   // right use is not a constant
2504     // Check for commutative opcode
2505     switch( nop ) {
2506     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2507     case Op_MaxI:  case Op_MinI:
2508     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2509     case Op_AndL:  case Op_XorL:  case Op_OrL:
2510     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2511       // Move "last use" input to left by swapping inputs
2512       n->swap_edges(1, 2);
2513       break;
2514     }
2515     default:
2516       break;
2517     }
2518   }
2519 
2520 #ifdef ASSERT
2521   if( n->is_Mem() ) {
2522     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2523     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2524             // oop will be recorded in oop map if load crosses safepoint
2525             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2526                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2527             "raw memory operations should have control edge");
2528   }
2529 #endif
2530   // Count FPU ops and common calls, implements item (3)
2531   switch( nop ) {
2532   // Count all float operations that may use FPU
2533   case Op_AddF:
2534   case Op_SubF:
2535   case Op_MulF:
2536   case Op_DivF:
2537   case Op_NegF:
2538   case Op_ModF:
2539   case Op_ConvI2F:
2540   case Op_ConF:
2541   case Op_CmpF:
2542   case Op_CmpF3:
2543   // case Op_ConvL2F: // longs are split into 32-bit halves
2544     frc.inc_float_count();
2545     break;
2546 
2547   case Op_ConvF2D:
2548   case Op_ConvD2F:
2549     frc.inc_float_count();
2550     frc.inc_double_count();
2551     break;
2552 
2553   // Count all double operations that may use FPU
2554   case Op_AddD:
2555   case Op_SubD:
2556   case Op_MulD:
2557   case Op_DivD:
2558   case Op_NegD:
2559   case Op_ModD:
2560   case Op_ConvI2D:
2561   case Op_ConvD2I:
2562   // case Op_ConvL2D: // handled by leaf call
2563   // case Op_ConvD2L: // handled by leaf call
2564   case Op_ConD:
2565   case Op_CmpD:
2566   case Op_CmpD3:
2567     frc.inc_double_count();
2568     break;
2569   case Op_Opaque1:              // Remove Opaque Nodes before matching
2570   case Op_Opaque2:              // Remove Opaque Nodes before matching
2571     n->subsume_by(n->in(1), this);
2572     break;
2573   case Op_CallStaticJava:
2574   case Op_CallJava:
2575   case Op_CallDynamicJava:
2576     frc.inc_java_call_count(); // Count java call site;
2577   case Op_CallRuntime:
2578   case Op_CallLeaf:
2579   case Op_CallLeafNoFP: {
2580     assert( n->is_Call(), "" );
2581     CallNode *call = n->as_Call();
2582     // Count call sites where the FP mode bit would have to be flipped.
2583     // Do not count uncommon runtime calls:
2584     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2585     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2586     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2587       frc.inc_call_count();   // Count the call site
2588     } else {                  // See if uncommon argument is shared
2589       Node *n = call->in(TypeFunc::Parms);
2590       int nop = n->Opcode();
2591       // Clone shared simple arguments to uncommon calls, item (1).
2592       if( n->outcnt() > 1 &&
2593           !n->is_Proj() &&
2594           nop != Op_CreateEx &&
2595           nop != Op_CheckCastPP &&
2596           nop != Op_DecodeN &&
2597           nop != Op_DecodeNKlass &&
2598           !n->is_Mem() ) {
2599         Node *x = n->clone();
2600         call->set_req( TypeFunc::Parms, x );
2601       }
2602     }
2603     break;
2604   }
2605 
2606   case Op_StoreD:
2607   case Op_LoadD:
2608   case Op_LoadD_unaligned:
2609     frc.inc_double_count();
2610     goto handle_mem;
2611   case Op_StoreF:
2612   case Op_LoadF:
2613     frc.inc_float_count();
2614     goto handle_mem;
2615 
2616   case Op_StoreCM:
2617     {
2618       // Convert OopStore dependence into precedence edge
2619       Node* prec = n->in(MemNode::OopStore);
2620       n->del_req(MemNode::OopStore);
2621       n->add_prec(prec);
2622       eliminate_redundant_card_marks(n);
2623     }
2624 
2625     // fall through
2626 
2627   case Op_StoreB:
2628   case Op_StoreC:
2629   case Op_StorePConditional:
2630   case Op_StoreI:
2631   case Op_StoreL:
2632   case Op_StoreIConditional:
2633   case Op_StoreLConditional:
2634   case Op_CompareAndSwapI:
2635   case Op_CompareAndSwapL:
2636   case Op_CompareAndSwapP:
2637   case Op_CompareAndSwapN:
2638   case Op_GetAndAddI:
2639   case Op_GetAndAddL:
2640   case Op_GetAndSetI:
2641   case Op_GetAndSetL:
2642   case Op_GetAndSetP:
2643   case Op_GetAndSetN:
2644   case Op_StoreP:
2645   case Op_StoreN:
2646   case Op_StoreNKlass:
2647   case Op_LoadB:
2648   case Op_LoadUB:
2649   case Op_LoadUS:
2650   case Op_LoadI:
2651   case Op_LoadKlass:
2652   case Op_LoadNKlass:
2653   case Op_LoadL:
2654   case Op_LoadL_unaligned:
2655   case Op_LoadPLocked:
2656   case Op_LoadP:
2657   case Op_LoadN:
2658   case Op_LoadRange:
2659   case Op_LoadS: {
2660   handle_mem:
2661 #ifdef ASSERT
2662     if( VerifyOptoOopOffsets ) {
2663       assert( n->is_Mem(), "" );
2664       MemNode *mem  = (MemNode*)n;
2665       // Check to see if address types have grounded out somehow.
2666       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2667       assert( !tp || oop_offset_is_sane(tp), "" );
2668     }
2669 #endif
2670     break;
2671   }
2672 
2673   case Op_AddP: {               // Assert sane base pointers
2674     Node *addp = n->in(AddPNode::Address);
2675     assert( !addp->is_AddP() ||
2676             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2677             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2678             "Base pointers must match" );
2679 #ifdef _LP64
2680     if ((UseCompressedOops || UseCompressedClassPointers) &&
2681         addp->Opcode() == Op_ConP &&
2682         addp == n->in(AddPNode::Base) &&
2683         n->in(AddPNode::Offset)->is_Con()) {
2684       // Use addressing with narrow klass to load with offset on x86.
2685       // On sparc loading 32-bits constant and decoding it have less
2686       // instructions (4) then load 64-bits constant (7).
2687       // Do this transformation here since IGVN will convert ConN back to ConP.
2688       const Type* t = addp->bottom_type();
2689       if (t->isa_oopptr() || t->isa_klassptr()) {
2690         Node* nn = NULL;
2691 
2692         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2693 
2694         // Look for existing ConN node of the same exact type.
2695         Node* r  = root();
2696         uint cnt = r->outcnt();
2697         for (uint i = 0; i < cnt; i++) {
2698           Node* m = r->raw_out(i);
2699           if (m!= NULL && m->Opcode() == op &&
2700               m->bottom_type()->make_ptr() == t) {
2701             nn = m;
2702             break;
2703           }
2704         }
2705         if (nn != NULL) {
2706           // Decode a narrow oop to match address
2707           // [R12 + narrow_oop_reg<<3 + offset]
2708           if (t->isa_oopptr()) {
2709             nn = new (this) DecodeNNode(nn, t);
2710           } else {
2711             nn = new (this) DecodeNKlassNode(nn, t);
2712           }
2713           n->set_req(AddPNode::Base, nn);
2714           n->set_req(AddPNode::Address, nn);
2715           if (addp->outcnt() == 0) {
2716             addp->disconnect_inputs(NULL, this);
2717           }
2718         }
2719       }
2720     }
2721 #endif
2722     break;
2723   }
2724 
2725 #ifdef _LP64
2726   case Op_CastPP:
2727     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2728       Node* in1 = n->in(1);
2729       const Type* t = n->bottom_type();
2730       Node* new_in1 = in1->clone();
2731       new_in1->as_DecodeN()->set_type(t);
2732 
2733       if (!Matcher::narrow_oop_use_complex_address()) {
2734         //
2735         // x86, ARM and friends can handle 2 adds in addressing mode
2736         // and Matcher can fold a DecodeN node into address by using
2737         // a narrow oop directly and do implicit NULL check in address:
2738         //
2739         // [R12 + narrow_oop_reg<<3 + offset]
2740         // NullCheck narrow_oop_reg
2741         //
2742         // On other platforms (Sparc) we have to keep new DecodeN node and
2743         // use it to do implicit NULL check in address:
2744         //
2745         // decode_not_null narrow_oop_reg, base_reg
2746         // [base_reg + offset]
2747         // NullCheck base_reg
2748         //
2749         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2750         // to keep the information to which NULL check the new DecodeN node
2751         // corresponds to use it as value in implicit_null_check().
2752         //
2753         new_in1->set_req(0, n->in(0));
2754       }
2755 
2756       n->subsume_by(new_in1, this);
2757       if (in1->outcnt() == 0) {
2758         in1->disconnect_inputs(NULL, this);
2759       }
2760     }
2761     break;
2762 
2763   case Op_CmpP:
2764     // Do this transformation here to preserve CmpPNode::sub() and
2765     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2766     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2767       Node* in1 = n->in(1);
2768       Node* in2 = n->in(2);
2769       if (!in1->is_DecodeNarrowPtr()) {
2770         in2 = in1;
2771         in1 = n->in(2);
2772       }
2773       assert(in1->is_DecodeNarrowPtr(), "sanity");
2774 
2775       Node* new_in2 = NULL;
2776       if (in2->is_DecodeNarrowPtr()) {
2777         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2778         new_in2 = in2->in(1);
2779       } else if (in2->Opcode() == Op_ConP) {
2780         const Type* t = in2->bottom_type();
2781         if (t == TypePtr::NULL_PTR) {
2782           assert(in1->is_DecodeN(), "compare klass to null?");
2783           // Don't convert CmpP null check into CmpN if compressed
2784           // oops implicit null check is not generated.
2785           // This will allow to generate normal oop implicit null check.
2786           if (Matcher::gen_narrow_oop_implicit_null_checks())
2787             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2788           //
2789           // This transformation together with CastPP transformation above
2790           // will generated code for implicit NULL checks for compressed oops.
2791           //
2792           // The original code after Optimize()
2793           //
2794           //    LoadN memory, narrow_oop_reg
2795           //    decode narrow_oop_reg, base_reg
2796           //    CmpP base_reg, NULL
2797           //    CastPP base_reg // NotNull
2798           //    Load [base_reg + offset], val_reg
2799           //
2800           // after these transformations will be
2801           //
2802           //    LoadN memory, narrow_oop_reg
2803           //    CmpN narrow_oop_reg, NULL
2804           //    decode_not_null narrow_oop_reg, base_reg
2805           //    Load [base_reg + offset], val_reg
2806           //
2807           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2808           // since narrow oops can be used in debug info now (see the code in
2809           // final_graph_reshaping_walk()).
2810           //
2811           // At the end the code will be matched to
2812           // on x86:
2813           //
2814           //    Load_narrow_oop memory, narrow_oop_reg
2815           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2816           //    NullCheck narrow_oop_reg
2817           //
2818           // and on sparc:
2819           //
2820           //    Load_narrow_oop memory, narrow_oop_reg
2821           //    decode_not_null narrow_oop_reg, base_reg
2822           //    Load [base_reg + offset], val_reg
2823           //    NullCheck base_reg
2824           //
2825         } else if (t->isa_oopptr()) {
2826           new_in2 = ConNode::make(this, t->make_narrowoop());
2827         } else if (t->isa_klassptr()) {
2828           new_in2 = ConNode::make(this, t->make_narrowklass());
2829         }
2830       }
2831       if (new_in2 != NULL) {
2832         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2833         n->subsume_by(cmpN, this);
2834         if (in1->outcnt() == 0) {
2835           in1->disconnect_inputs(NULL, this);
2836         }
2837         if (in2->outcnt() == 0) {
2838           in2->disconnect_inputs(NULL, this);
2839         }
2840       }
2841     }
2842     break;
2843 
2844   case Op_DecodeN:
2845   case Op_DecodeNKlass:
2846     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2847     // DecodeN could be pinned when it can't be fold into
2848     // an address expression, see the code for Op_CastPP above.
2849     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2850     break;
2851 
2852   case Op_EncodeP:
2853   case Op_EncodePKlass: {
2854     Node* in1 = n->in(1);
2855     if (in1->is_DecodeNarrowPtr()) {
2856       n->subsume_by(in1->in(1), this);
2857     } else if (in1->Opcode() == Op_ConP) {
2858       const Type* t = in1->bottom_type();
2859       if (t == TypePtr::NULL_PTR) {
2860         assert(t->isa_oopptr(), "null klass?");
2861         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2862       } else if (t->isa_oopptr()) {
2863         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2864       } else if (t->isa_klassptr()) {
2865         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2866       }
2867     }
2868     if (in1->outcnt() == 0) {
2869       in1->disconnect_inputs(NULL, this);
2870     }
2871     break;
2872   }
2873 
2874   case Op_Proj: {
2875     if (OptimizeStringConcat) {
2876       ProjNode* p = n->as_Proj();
2877       if (p->_is_io_use) {
2878         // Separate projections were used for the exception path which
2879         // are normally removed by a late inline.  If it wasn't inlined
2880         // then they will hang around and should just be replaced with
2881         // the original one.
2882         Node* proj = NULL;
2883         // Replace with just one
2884         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2885           Node *use = i.get();
2886           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2887             proj = use;
2888             break;
2889           }
2890         }
2891         assert(proj != NULL, "must be found");
2892         p->subsume_by(proj, this);
2893       }
2894     }
2895     break;
2896   }
2897 
2898   case Op_Phi:
2899     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2900       // The EncodeP optimization may create Phi with the same edges
2901       // for all paths. It is not handled well by Register Allocator.
2902       Node* unique_in = n->in(1);
2903       assert(unique_in != NULL, "");
2904       uint cnt = n->req();
2905       for (uint i = 2; i < cnt; i++) {
2906         Node* m = n->in(i);
2907         assert(m != NULL, "");
2908         if (unique_in != m)
2909           unique_in = NULL;
2910       }
2911       if (unique_in != NULL) {
2912         n->subsume_by(unique_in, this);
2913       }
2914     }
2915     break;
2916 
2917 #endif
2918 
2919   case Op_ModI:
2920     if (UseDivMod) {
2921       // Check if a%b and a/b both exist
2922       Node* d = n->find_similar(Op_DivI);
2923       if (d) {
2924         // Replace them with a fused divmod if supported
2925         if (Matcher::has_match_rule(Op_DivModI)) {
2926           DivModINode* divmod = DivModINode::make(this, n);
2927           d->subsume_by(divmod->div_proj(), this);
2928           n->subsume_by(divmod->mod_proj(), this);
2929         } else {
2930           // replace a%b with a-((a/b)*b)
2931           Node* mult = new (this) MulINode(d, d->in(2));
2932           Node* sub  = new (this) SubINode(d->in(1), mult);
2933           n->subsume_by(sub, this);
2934         }
2935       }
2936     }
2937     break;
2938 
2939   case Op_ModL:
2940     if (UseDivMod) {
2941       // Check if a%b and a/b both exist
2942       Node* d = n->find_similar(Op_DivL);
2943       if (d) {
2944         // Replace them with a fused divmod if supported
2945         if (Matcher::has_match_rule(Op_DivModL)) {
2946           DivModLNode* divmod = DivModLNode::make(this, n);
2947           d->subsume_by(divmod->div_proj(), this);
2948           n->subsume_by(divmod->mod_proj(), this);
2949         } else {
2950           // replace a%b with a-((a/b)*b)
2951           Node* mult = new (this) MulLNode(d, d->in(2));
2952           Node* sub  = new (this) SubLNode(d->in(1), mult);
2953           n->subsume_by(sub, this);
2954         }
2955       }
2956     }
2957     break;
2958 
2959   case Op_LoadVector:
2960   case Op_StoreVector:
2961     break;
2962 
2963   case Op_PackB:
2964   case Op_PackS:
2965   case Op_PackI:
2966   case Op_PackF:
2967   case Op_PackL:
2968   case Op_PackD:
2969     if (n->req()-1 > 2) {
2970       // Replace many operand PackNodes with a binary tree for matching
2971       PackNode* p = (PackNode*) n;
2972       Node* btp = p->binary_tree_pack(this, 1, n->req());
2973       n->subsume_by(btp, this);
2974     }
2975     break;
2976   case Op_Loop:
2977   case Op_CountedLoop:
2978     if (n->as_Loop()->is_inner_loop()) {
2979       frc.inc_inner_loop_count();
2980     }
2981     break;
2982   case Op_LShiftI:
2983   case Op_RShiftI:
2984   case Op_URShiftI:
2985   case Op_LShiftL:
2986   case Op_RShiftL:
2987   case Op_URShiftL:
2988     if (Matcher::need_masked_shift_count) {
2989       // The cpu's shift instructions don't restrict the count to the
2990       // lower 5/6 bits. We need to do the masking ourselves.
2991       Node* in2 = n->in(2);
2992       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2993       const TypeInt* t = in2->find_int_type();
2994       if (t != NULL && t->is_con()) {
2995         juint shift = t->get_con();
2996         if (shift > mask) { // Unsigned cmp
2997           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
2998         }
2999       } else {
3000         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3001           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
3002           n->set_req(2, shift);
3003         }
3004       }
3005       if (in2->outcnt() == 0) { // Remove dead node
3006         in2->disconnect_inputs(NULL, this);
3007       }
3008     }
3009     break;
3010   case Op_MemBarStoreStore:
3011   case Op_MemBarRelease:
3012     // Break the link with AllocateNode: it is no longer useful and
3013     // confuses register allocation.
3014     if (n->req() > MemBarNode::Precedent) {
3015       n->set_req(MemBarNode::Precedent, top());
3016     }
3017     break;
3018     // Must set a control edge on all nodes that produce a FlagsProj
3019     // so they can't escape the block that consumes the flags.
3020     // Must also set the non throwing branch as the control
3021     // for all nodes that depends on the result. Unless the node
3022     // already have a control that isn't the control of the
3023     // flag producer
3024   case Op_FlagsProj:
3025     {
3026       MathExactNode* math = (MathExactNode*)  n->in(0);
3027       Node* ctrl = math->control_node();
3028       Node* non_throwing = math->non_throwing_branch();
3029       math->set_req(0, ctrl);
3030 
3031       Node* result = math->result_node();
3032       if (result != NULL) {
3033         for (DUIterator_Fast jmax, j = result->fast_outs(jmax); j < jmax; j++) {
3034           Node* out = result->fast_out(j);
3035           // Phi nodes shouldn't be moved. They would only match below if they
3036           // had the same control as the MathExactNode. The only time that
3037           // would happen is if the Phi is also an input to the MathExact
3038           //
3039           // Cmp nodes shouldn't have control set at all.
3040           if (out->is_Phi() ||
3041               out->is_Cmp()) {
3042             continue;
3043           }
3044 
3045           if (out->in(0) == NULL) {
3046             out->set_req(0, non_throwing);
3047           } else if (out->in(0) == ctrl) {
3048             out->set_req(0, non_throwing);
3049           }
3050         }
3051       }
3052     }
3053     break;
3054   default:
3055     assert( !n->is_Call(), "" );
3056     assert( !n->is_Mem(), "" );
3057     break;
3058   }
3059 
3060   // Collect CFG split points
3061   if (n->is_MultiBranch())
3062     frc._tests.push(n);
3063 }
3064 
3065 //------------------------------final_graph_reshaping_walk---------------------
3066 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3067 // requires that the walk visits a node's inputs before visiting the node.
3068 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3069   ResourceArea *area = Thread::current()->resource_area();
3070   Unique_Node_List sfpt(area);
3071 
3072   frc._visited.set(root->_idx); // first, mark node as visited
3073   uint cnt = root->req();
3074   Node *n = root;
3075   uint  i = 0;
3076   while (true) {
3077     if (i < cnt) {
3078       // Place all non-visited non-null inputs onto stack
3079       Node* m = n->in(i);
3080       ++i;
3081       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3082         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
3083           sfpt.push(m);
3084         cnt = m->req();
3085         nstack.push(n, i); // put on stack parent and next input's index
3086         n = m;
3087         i = 0;
3088       }
3089     } else {
3090       // Now do post-visit work
3091       final_graph_reshaping_impl( n, frc );
3092       if (nstack.is_empty())
3093         break;             // finished
3094       n = nstack.node();   // Get node from stack
3095       cnt = n->req();
3096       i = nstack.index();
3097       nstack.pop();        // Shift to the next node on stack
3098     }
3099   }
3100 
3101   // Skip next transformation if compressed oops are not used.
3102   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3103       (!UseCompressedOops && !UseCompressedClassPointers))
3104     return;
3105 
3106   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3107   // It could be done for an uncommon traps or any safepoints/calls
3108   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3109   while (sfpt.size() > 0) {
3110     n = sfpt.pop();
3111     JVMState *jvms = n->as_SafePoint()->jvms();
3112     assert(jvms != NULL, "sanity");
3113     int start = jvms->debug_start();
3114     int end   = n->req();
3115     bool is_uncommon = (n->is_CallStaticJava() &&
3116                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3117     for (int j = start; j < end; j++) {
3118       Node* in = n->in(j);
3119       if (in->is_DecodeNarrowPtr()) {
3120         bool safe_to_skip = true;
3121         if (!is_uncommon ) {
3122           // Is it safe to skip?
3123           for (uint i = 0; i < in->outcnt(); i++) {
3124             Node* u = in->raw_out(i);
3125             if (!u->is_SafePoint() ||
3126                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3127               safe_to_skip = false;
3128             }
3129           }
3130         }
3131         if (safe_to_skip) {
3132           n->set_req(j, in->in(1));
3133         }
3134         if (in->outcnt() == 0) {
3135           in->disconnect_inputs(NULL, this);
3136         }
3137       }
3138     }
3139   }
3140 }
3141 
3142 //------------------------------final_graph_reshaping--------------------------
3143 // Final Graph Reshaping.
3144 //
3145 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3146 //     and not commoned up and forced early.  Must come after regular
3147 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3148 //     inputs to Loop Phis; these will be split by the allocator anyways.
3149 //     Remove Opaque nodes.
3150 // (2) Move last-uses by commutative operations to the left input to encourage
3151 //     Intel update-in-place two-address operations and better register usage
3152 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3153 //     calls canonicalizing them back.
3154 // (3) Count the number of double-precision FP ops, single-precision FP ops
3155 //     and call sites.  On Intel, we can get correct rounding either by
3156 //     forcing singles to memory (requires extra stores and loads after each
3157 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3158 //     clearing the mode bit around call sites).  The mode bit is only used
3159 //     if the relative frequency of single FP ops to calls is low enough.
3160 //     This is a key transform for SPEC mpeg_audio.
3161 // (4) Detect infinite loops; blobs of code reachable from above but not
3162 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3163 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3164 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3165 //     Detection is by looking for IfNodes where only 1 projection is
3166 //     reachable from below or CatchNodes missing some targets.
3167 // (5) Assert for insane oop offsets in debug mode.
3168 
3169 bool Compile::final_graph_reshaping() {
3170   // an infinite loop may have been eliminated by the optimizer,
3171   // in which case the graph will be empty.
3172   if (root()->req() == 1) {
3173     record_method_not_compilable("trivial infinite loop");
3174     return true;
3175   }
3176 
3177   // Expensive nodes have their control input set to prevent the GVN
3178   // from freely commoning them. There's no GVN beyond this point so
3179   // no need to keep the control input. We want the expensive nodes to
3180   // be freely moved to the least frequent code path by gcm.
3181   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3182   for (int i = 0; i < expensive_count(); i++) {
3183     _expensive_nodes->at(i)->set_req(0, NULL);
3184   }
3185 
3186   Final_Reshape_Counts frc;
3187 
3188   // Visit everybody reachable!
3189   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3190   Node_Stack nstack(unique() >> 1);
3191   final_graph_reshaping_walk(nstack, root(), frc);
3192 
3193   // Check for unreachable (from below) code (i.e., infinite loops).
3194   for( uint i = 0; i < frc._tests.size(); i++ ) {
3195     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3196     // Get number of CFG targets.
3197     // Note that PCTables include exception targets after calls.
3198     uint required_outcnt = n->required_outcnt();
3199     if (n->outcnt() != required_outcnt) {
3200       // Check for a few special cases.  Rethrow Nodes never take the
3201       // 'fall-thru' path, so expected kids is 1 less.
3202       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3203         if (n->in(0)->in(0)->is_Call()) {
3204           CallNode *call = n->in(0)->in(0)->as_Call();
3205           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3206             required_outcnt--;      // Rethrow always has 1 less kid
3207           } else if (call->req() > TypeFunc::Parms &&
3208                      call->is_CallDynamicJava()) {
3209             // Check for null receiver. In such case, the optimizer has
3210             // detected that the virtual call will always result in a null
3211             // pointer exception. The fall-through projection of this CatchNode
3212             // will not be populated.
3213             Node *arg0 = call->in(TypeFunc::Parms);
3214             if (arg0->is_Type() &&
3215                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3216               required_outcnt--;
3217             }
3218           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3219                      call->req() > TypeFunc::Parms+1 &&
3220                      call->is_CallStaticJava()) {
3221             // Check for negative array length. In such case, the optimizer has
3222             // detected that the allocation attempt will always result in an
3223             // exception. There is no fall-through projection of this CatchNode .
3224             Node *arg1 = call->in(TypeFunc::Parms+1);
3225             if (arg1->is_Type() &&
3226                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3227               required_outcnt--;
3228             }
3229           }
3230         }
3231       }
3232       // Recheck with a better notion of 'required_outcnt'
3233       if (n->outcnt() != required_outcnt) {
3234         record_method_not_compilable("malformed control flow");
3235         return true;            // Not all targets reachable!
3236       }
3237     }
3238     // Check that I actually visited all kids.  Unreached kids
3239     // must be infinite loops.
3240     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3241       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3242         record_method_not_compilable("infinite loop");
3243         return true;            // Found unvisited kid; must be unreach
3244       }
3245   }
3246 
3247   // If original bytecodes contained a mixture of floats and doubles
3248   // check if the optimizer has made it homogenous, item (3).
3249   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3250       frc.get_float_count() > 32 &&
3251       frc.get_double_count() == 0 &&
3252       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3253     set_24_bit_selection_and_mode( false,  true );
3254   }
3255 
3256   set_java_calls(frc.get_java_call_count());
3257   set_inner_loops(frc.get_inner_loop_count());
3258 
3259   // No infinite loops, no reason to bail out.
3260   return false;
3261 }
3262 
3263 //-----------------------------too_many_traps----------------------------------
3264 // Report if there are too many traps at the current method and bci.
3265 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3266 bool Compile::too_many_traps(ciMethod* method,
3267                              int bci,
3268                              Deoptimization::DeoptReason reason) {
3269   ciMethodData* md = method->method_data();
3270   if (md->is_empty()) {
3271     // Assume the trap has not occurred, or that it occurred only
3272     // because of a transient condition during start-up in the interpreter.
3273     return false;
3274   }
3275   if (md->has_trap_at(bci, reason) != 0) {
3276     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3277     // Also, if there are multiple reasons, or if there is no per-BCI record,
3278     // assume the worst.
3279     if (log())
3280       log()->elem("observe trap='%s' count='%d'",
3281                   Deoptimization::trap_reason_name(reason),
3282                   md->trap_count(reason));
3283     return true;
3284   } else {
3285     // Ignore method/bci and see if there have been too many globally.
3286     return too_many_traps(reason, md);
3287   }
3288 }
3289 
3290 // Less-accurate variant which does not require a method and bci.
3291 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3292                              ciMethodData* logmd) {
3293  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
3294     // Too many traps globally.
3295     // Note that we use cumulative trap_count, not just md->trap_count.
3296     if (log()) {
3297       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3298       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3299                   Deoptimization::trap_reason_name(reason),
3300                   mcount, trap_count(reason));
3301     }
3302     return true;
3303   } else {
3304     // The coast is clear.
3305     return false;
3306   }
3307 }
3308 
3309 //--------------------------too_many_recompiles--------------------------------
3310 // Report if there are too many recompiles at the current method and bci.
3311 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3312 // Is not eager to return true, since this will cause the compiler to use
3313 // Action_none for a trap point, to avoid too many recompilations.
3314 bool Compile::too_many_recompiles(ciMethod* method,
3315                                   int bci,
3316                                   Deoptimization::DeoptReason reason) {
3317   ciMethodData* md = method->method_data();
3318   if (md->is_empty()) {
3319     // Assume the trap has not occurred, or that it occurred only
3320     // because of a transient condition during start-up in the interpreter.
3321     return false;
3322   }
3323   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3324   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3325   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3326   Deoptimization::DeoptReason per_bc_reason
3327     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3328   if ((per_bc_reason == Deoptimization::Reason_none
3329        || md->has_trap_at(bci, reason) != 0)
3330       // The trap frequency measure we care about is the recompile count:
3331       && md->trap_recompiled_at(bci)
3332       && md->overflow_recompile_count() >= bc_cutoff) {
3333     // Do not emit a trap here if it has already caused recompilations.
3334     // Also, if there are multiple reasons, or if there is no per-BCI record,
3335     // assume the worst.
3336     if (log())
3337       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3338                   Deoptimization::trap_reason_name(reason),
3339                   md->trap_count(reason),
3340                   md->overflow_recompile_count());
3341     return true;
3342   } else if (trap_count(reason) != 0
3343              && decompile_count() >= m_cutoff) {
3344     // Too many recompiles globally, and we have seen this sort of trap.
3345     // Use cumulative decompile_count, not just md->decompile_count.
3346     if (log())
3347       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3348                   Deoptimization::trap_reason_name(reason),
3349                   md->trap_count(reason), trap_count(reason),
3350                   md->decompile_count(), decompile_count());
3351     return true;
3352   } else {
3353     // The coast is clear.
3354     return false;
3355   }
3356 }
3357 
3358 // Compute when not to trap. Used by matching trap based nodes and
3359 // NullCheck optimization.
3360 void Compile::set_allowed_deopt_reasons() {
3361   _allowed_reasons = 0;
3362   if (is_method_compilation()) {
3363     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3364       assert(rs < BitsPerInt, "recode bit map");
3365       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3366         _allowed_reasons |= nth_bit(rs);
3367       }
3368     }
3369   }
3370 }
3371 
3372 #ifndef PRODUCT
3373 //------------------------------verify_graph_edges---------------------------
3374 // Walk the Graph and verify that there is a one-to-one correspondence
3375 // between Use-Def edges and Def-Use edges in the graph.
3376 void Compile::verify_graph_edges(bool no_dead_code) {
3377   if (VerifyGraphEdges) {
3378     ResourceArea *area = Thread::current()->resource_area();
3379     Unique_Node_List visited(area);
3380     // Call recursive graph walk to check edges
3381     _root->verify_edges(visited);
3382     if (no_dead_code) {
3383       // Now make sure that no visited node is used by an unvisited node.
3384       bool dead_nodes = 0;
3385       Unique_Node_List checked(area);
3386       while (visited.size() > 0) {
3387         Node* n = visited.pop();
3388         checked.push(n);
3389         for (uint i = 0; i < n->outcnt(); i++) {
3390           Node* use = n->raw_out(i);
3391           if (checked.member(use))  continue;  // already checked
3392           if (visited.member(use))  continue;  // already in the graph
3393           if (use->is_Con())        continue;  // a dead ConNode is OK
3394           // At this point, we have found a dead node which is DU-reachable.
3395           if (dead_nodes++ == 0)
3396             tty->print_cr("*** Dead nodes reachable via DU edges:");
3397           use->dump(2);
3398           tty->print_cr("---");
3399           checked.push(use);  // No repeats; pretend it is now checked.
3400         }
3401       }
3402       assert(dead_nodes == 0, "using nodes must be reachable from root");
3403     }
3404   }
3405 }
3406 
3407 // Verify GC barriers consistency
3408 // Currently supported:
3409 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3410 void Compile::verify_barriers() {
3411   if (UseG1GC) {
3412     // Verify G1 pre-barriers
3413     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3414 
3415     ResourceArea *area = Thread::current()->resource_area();
3416     Unique_Node_List visited(area);
3417     Node_List worklist(area);
3418     // We're going to walk control flow backwards starting from the Root
3419     worklist.push(_root);
3420     while (worklist.size() > 0) {
3421       Node* x = worklist.pop();
3422       if (x == NULL || x == top()) continue;
3423       if (visited.member(x)) {
3424         continue;
3425       } else {
3426         visited.push(x);
3427       }
3428 
3429       if (x->is_Region()) {
3430         for (uint i = 1; i < x->req(); i++) {
3431           worklist.push(x->in(i));
3432         }
3433       } else {
3434         worklist.push(x->in(0));
3435         // We are looking for the pattern:
3436         //                            /->ThreadLocal
3437         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3438         //              \->ConI(0)
3439         // We want to verify that the If and the LoadB have the same control
3440         // See GraphKit::g1_write_barrier_pre()
3441         if (x->is_If()) {
3442           IfNode *iff = x->as_If();
3443           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3444             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3445             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3446                 && cmp->in(1)->is_Load()) {
3447               LoadNode* load = cmp->in(1)->as_Load();
3448               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3449                   && load->in(2)->in(3)->is_Con()
3450                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3451 
3452                 Node* if_ctrl = iff->in(0);
3453                 Node* load_ctrl = load->in(0);
3454 
3455                 if (if_ctrl != load_ctrl) {
3456                   // Skip possible CProj->NeverBranch in infinite loops
3457                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3458                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3459                     if_ctrl = if_ctrl->in(0)->in(0);
3460                   }
3461                 }
3462                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3463               }
3464             }
3465           }
3466         }
3467       }
3468     }
3469   }
3470 }
3471 
3472 #endif
3473 
3474 // The Compile object keeps track of failure reasons separately from the ciEnv.
3475 // This is required because there is not quite a 1-1 relation between the
3476 // ciEnv and its compilation task and the Compile object.  Note that one
3477 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3478 // to backtrack and retry without subsuming loads.  Other than this backtracking
3479 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3480 // by the logic in C2Compiler.
3481 void Compile::record_failure(const char* reason) {
3482   if (log() != NULL) {
3483     log()->elem("failure reason='%s' phase='compile'", reason);
3484   }
3485   if (_failure_reason == NULL) {
3486     // Record the first failure reason.
3487     _failure_reason = reason;
3488   }
3489 
3490   EventCompilerFailure event;
3491   if (event.should_commit()) {
3492     event.set_compileID(Compile::compile_id());
3493     event.set_failure(reason);
3494     event.commit();
3495   }
3496 
3497   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3498     C->print_method(PHASE_FAILURE);
3499   }
3500   _root = NULL;  // flush the graph, too
3501 }
3502 
3503 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3504   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3505     _phase_name(name), _dolog(dolog)
3506 {
3507   if (dolog) {
3508     C = Compile::current();
3509     _log = C->log();
3510   } else {
3511     C = NULL;
3512     _log = NULL;
3513   }
3514   if (_log != NULL) {
3515     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3516     _log->stamp();
3517     _log->end_head();
3518   }
3519 }
3520 
3521 Compile::TracePhase::~TracePhase() {
3522 
3523   C = Compile::current();
3524   if (_dolog) {
3525     _log = C->log();
3526   } else {
3527     _log = NULL;
3528   }
3529 
3530 #ifdef ASSERT
3531   if (PrintIdealNodeCount) {
3532     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3533                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3534   }
3535 
3536   if (VerifyIdealNodeCount) {
3537     Compile::current()->print_missing_nodes();
3538   }
3539 #endif
3540 
3541   if (_log != NULL) {
3542     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3543   }
3544 }
3545 
3546 //=============================================================================
3547 // Two Constant's are equal when the type and the value are equal.
3548 bool Compile::Constant::operator==(const Constant& other) {
3549   if (type()          != other.type()         )  return false;
3550   if (can_be_reused() != other.can_be_reused())  return false;
3551   // For floating point values we compare the bit pattern.
3552   switch (type()) {
3553   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3554   case T_LONG:
3555   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3556   case T_OBJECT:
3557   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3558   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3559   case T_METADATA: return (_v._metadata == other._v._metadata);
3560   default: ShouldNotReachHere();
3561   }
3562   return false;
3563 }
3564 
3565 static int type_to_size_in_bytes(BasicType t) {
3566   switch (t) {
3567   case T_LONG:    return sizeof(jlong  );
3568   case T_FLOAT:   return sizeof(jfloat );
3569   case T_DOUBLE:  return sizeof(jdouble);
3570   case T_METADATA: return sizeof(Metadata*);
3571     // We use T_VOID as marker for jump-table entries (labels) which
3572     // need an internal word relocation.
3573   case T_VOID:
3574   case T_ADDRESS:
3575   case T_OBJECT:  return sizeof(jobject);
3576   }
3577 
3578   ShouldNotReachHere();
3579   return -1;
3580 }
3581 
3582 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3583   // sort descending
3584   if (a->freq() > b->freq())  return -1;
3585   if (a->freq() < b->freq())  return  1;
3586   return 0;
3587 }
3588 
3589 void Compile::ConstantTable::calculate_offsets_and_size() {
3590   // First, sort the array by frequencies.
3591   _constants.sort(qsort_comparator);
3592 
3593 #ifdef ASSERT
3594   // Make sure all jump-table entries were sorted to the end of the
3595   // array (they have a negative frequency).
3596   bool found_void = false;
3597   for (int i = 0; i < _constants.length(); i++) {
3598     Constant con = _constants.at(i);
3599     if (con.type() == T_VOID)
3600       found_void = true;  // jump-tables
3601     else
3602       assert(!found_void, "wrong sorting");
3603   }
3604 #endif
3605 
3606   int offset = 0;
3607   for (int i = 0; i < _constants.length(); i++) {
3608     Constant* con = _constants.adr_at(i);
3609 
3610     // Align offset for type.
3611     int typesize = type_to_size_in_bytes(con->type());
3612     offset = align_size_up(offset, typesize);
3613     con->set_offset(offset);   // set constant's offset
3614 
3615     if (con->type() == T_VOID) {
3616       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3617       offset = offset + typesize * n->outcnt();  // expand jump-table
3618     } else {
3619       offset = offset + typesize;
3620     }
3621   }
3622 
3623   // Align size up to the next section start (which is insts; see
3624   // CodeBuffer::align_at_start).
3625   assert(_size == -1, "already set?");
3626   _size = align_size_up(offset, CodeEntryAlignment);
3627 }
3628 
3629 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3630   MacroAssembler _masm(&cb);
3631   for (int i = 0; i < _constants.length(); i++) {
3632     Constant con = _constants.at(i);
3633     address constant_addr;
3634     switch (con.type()) {
3635     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3636     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3637     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3638     case T_OBJECT: {
3639       jobject obj = con.get_jobject();
3640       int oop_index = _masm.oop_recorder()->find_index(obj);
3641       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3642       break;
3643     }
3644     case T_ADDRESS: {
3645       address addr = (address) con.get_jobject();
3646       constant_addr = _masm.address_constant(addr);
3647       break;
3648     }
3649     // We use T_VOID as marker for jump-table entries (labels) which
3650     // need an internal word relocation.
3651     case T_VOID: {
3652       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3653       // Fill the jump-table with a dummy word.  The real value is
3654       // filled in later in fill_jump_table.
3655       address dummy = (address) n;
3656       constant_addr = _masm.address_constant(dummy);
3657       // Expand jump-table
3658       for (uint i = 1; i < n->outcnt(); i++) {
3659         address temp_addr = _masm.address_constant(dummy + i);
3660         assert(temp_addr, "consts section too small");
3661       }
3662       break;
3663     }
3664     case T_METADATA: {
3665       Metadata* obj = con.get_metadata();
3666       int metadata_index = _masm.oop_recorder()->find_index(obj);
3667       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3668       break;
3669     }
3670     default: ShouldNotReachHere();
3671     }
3672     assert(constant_addr, "consts section too small");
3673     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3674   }
3675 }
3676 
3677 int Compile::ConstantTable::find_offset(Constant& con) const {
3678   int idx = _constants.find(con);
3679   assert(idx != -1, "constant must be in constant table");
3680   int offset = _constants.at(idx).offset();
3681   assert(offset != -1, "constant table not emitted yet?");
3682   return offset;
3683 }
3684 
3685 void Compile::ConstantTable::add(Constant& con) {
3686   if (con.can_be_reused()) {
3687     int idx = _constants.find(con);
3688     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3689       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3690       return;
3691     }
3692   }
3693   (void) _constants.append(con);
3694 }
3695 
3696 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3697   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3698   Constant con(type, value, b->_freq);
3699   add(con);
3700   return con;
3701 }
3702 
3703 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3704   Constant con(metadata);
3705   add(con);
3706   return con;
3707 }
3708 
3709 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3710   jvalue value;
3711   BasicType type = oper->type()->basic_type();
3712   switch (type) {
3713   case T_LONG:    value.j = oper->constantL(); break;
3714   case T_FLOAT:   value.f = oper->constantF(); break;
3715   case T_DOUBLE:  value.d = oper->constantD(); break;
3716   case T_OBJECT:
3717   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3718   case T_METADATA: return add((Metadata*)oper->constant()); break;
3719   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3720   }
3721   return add(n, type, value);
3722 }
3723 
3724 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3725   jvalue value;
3726   // We can use the node pointer here to identify the right jump-table
3727   // as this method is called from Compile::Fill_buffer right before
3728   // the MachNodes are emitted and the jump-table is filled (means the
3729   // MachNode pointers do not change anymore).
3730   value.l = (jobject) n;
3731   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3732   add(con);
3733   return con;
3734 }
3735 
3736 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3737   // If called from Compile::scratch_emit_size do nothing.
3738   if (Compile::current()->in_scratch_emit_size())  return;
3739 
3740   assert(labels.is_nonempty(), "must be");
3741   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3742 
3743   // Since MachConstantNode::constant_offset() also contains
3744   // table_base_offset() we need to subtract the table_base_offset()
3745   // to get the plain offset into the constant table.
3746   int offset = n->constant_offset() - table_base_offset();
3747 
3748   MacroAssembler _masm(&cb);
3749   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3750 
3751   for (uint i = 0; i < n->outcnt(); i++) {
3752     address* constant_addr = &jump_table_base[i];
3753     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
3754     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3755     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3756   }
3757 }
3758 
3759 void Compile::dump_inlining() {
3760   if (print_inlining() || print_intrinsics()) {
3761     // Print inlining message for candidates that we couldn't inline
3762     // for lack of space or non constant receiver
3763     for (int i = 0; i < _late_inlines.length(); i++) {
3764       CallGenerator* cg = _late_inlines.at(i);
3765       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3766     }
3767     Unique_Node_List useful;
3768     useful.push(root());
3769     for (uint next = 0; next < useful.size(); ++next) {
3770       Node* n  = useful.at(next);
3771       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3772         CallNode* call = n->as_Call();
3773         CallGenerator* cg = call->generator();
3774         cg->print_inlining_late("receiver not constant");
3775       }
3776       uint max = n->len();
3777       for ( uint i = 0; i < max; ++i ) {
3778         Node *m = n->in(i);
3779         if ( m == NULL ) continue;
3780         useful.push(m);
3781       }
3782     }
3783     for (int i = 0; i < _print_inlining_list->length(); i++) {
3784       tty->print(_print_inlining_list->adr_at(i)->ss()->as_string());
3785     }
3786   }
3787 }
3788 
3789 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3790   if (n1->Opcode() < n2->Opcode())      return -1;
3791   else if (n1->Opcode() > n2->Opcode()) return 1;
3792 
3793   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3794   for (uint i = 1; i < n1->req(); i++) {
3795     if (n1->in(i) < n2->in(i))      return -1;
3796     else if (n1->in(i) > n2->in(i)) return 1;
3797   }
3798 
3799   return 0;
3800 }
3801 
3802 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3803   Node* n1 = *n1p;
3804   Node* n2 = *n2p;
3805 
3806   return cmp_expensive_nodes(n1, n2);
3807 }
3808 
3809 void Compile::sort_expensive_nodes() {
3810   if (!expensive_nodes_sorted()) {
3811     _expensive_nodes->sort(cmp_expensive_nodes);
3812   }
3813 }
3814 
3815 bool Compile::expensive_nodes_sorted() const {
3816   for (int i = 1; i < _expensive_nodes->length(); i++) {
3817     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3818       return false;
3819     }
3820   }
3821   return true;
3822 }
3823 
3824 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3825   if (_expensive_nodes->length() == 0) {
3826     return false;
3827   }
3828 
3829   assert(OptimizeExpensiveOps, "optimization off?");
3830 
3831   // Take this opportunity to remove dead nodes from the list
3832   int j = 0;
3833   for (int i = 0; i < _expensive_nodes->length(); i++) {
3834     Node* n = _expensive_nodes->at(i);
3835     if (!n->is_unreachable(igvn)) {
3836       assert(n->is_expensive(), "should be expensive");
3837       _expensive_nodes->at_put(j, n);
3838       j++;
3839     }
3840   }
3841   _expensive_nodes->trunc_to(j);
3842 
3843   // Then sort the list so that similar nodes are next to each other
3844   // and check for at least two nodes of identical kind with same data
3845   // inputs.
3846   sort_expensive_nodes();
3847 
3848   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3849     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3850       return true;
3851     }
3852   }
3853 
3854   return false;
3855 }
3856 
3857 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3858   if (_expensive_nodes->length() == 0) {
3859     return;
3860   }
3861 
3862   assert(OptimizeExpensiveOps, "optimization off?");
3863 
3864   // Sort to bring similar nodes next to each other and clear the
3865   // control input of nodes for which there's only a single copy.
3866   sort_expensive_nodes();
3867 
3868   int j = 0;
3869   int identical = 0;
3870   int i = 0;
3871   for (; i < _expensive_nodes->length()-1; i++) {
3872     assert(j <= i, "can't write beyond current index");
3873     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3874       identical++;
3875       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3876       continue;
3877     }
3878     if (identical > 0) {
3879       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3880       identical = 0;
3881     } else {
3882       Node* n = _expensive_nodes->at(i);
3883       igvn.hash_delete(n);
3884       n->set_req(0, NULL);
3885       igvn.hash_insert(n);
3886     }
3887   }
3888   if (identical > 0) {
3889     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3890   } else if (_expensive_nodes->length() >= 1) {
3891     Node* n = _expensive_nodes->at(i);
3892     igvn.hash_delete(n);
3893     n->set_req(0, NULL);
3894     igvn.hash_insert(n);
3895   }
3896   _expensive_nodes->trunc_to(j);
3897 }
3898 
3899 void Compile::add_expensive_node(Node * n) {
3900   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
3901   assert(n->is_expensive(), "expensive nodes with non-null control here only");
3902   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
3903   if (OptimizeExpensiveOps) {
3904     _expensive_nodes->append(n);
3905   } else {
3906     // Clear control input and let IGVN optimize expensive nodes if
3907     // OptimizeExpensiveOps is off.
3908     n->set_req(0, NULL);
3909   }
3910 }
3911 
3912 /**
3913  * Remove the speculative part of types and clean up the graph
3914  */
3915 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
3916   if (UseTypeSpeculation) {
3917     Unique_Node_List worklist;
3918     worklist.push(root());
3919     int modified = 0;
3920     // Go over all type nodes that carry a speculative type, drop the
3921     // speculative part of the type and enqueue the node for an igvn
3922     // which may optimize it out.
3923     for (uint next = 0; next < worklist.size(); ++next) {
3924       Node *n  = worklist.at(next);
3925       if (n->is_Type() && n->as_Type()->type()->isa_oopptr() != NULL &&
3926           n->as_Type()->type()->is_oopptr()->speculative() != NULL) {
3927         TypeNode* tn = n->as_Type();
3928         const TypeOopPtr* t = tn->type()->is_oopptr();
3929         bool in_hash = igvn.hash_delete(n);
3930         assert(in_hash, "node should be in igvn hash table");
3931         tn->set_type(t->remove_speculative());
3932         igvn.hash_insert(n);
3933         igvn._worklist.push(n); // give it a chance to go away
3934         modified++;
3935       }
3936       uint max = n->len();
3937       for( uint i = 0; i < max; ++i ) {
3938         Node *m = n->in(i);
3939         if (not_a_node(m))  continue;
3940         worklist.push(m);
3941       }
3942     }
3943     // Drop the speculative part of all types in the igvn's type table
3944     igvn.remove_speculative_types();
3945     if (modified > 0) {
3946       igvn.optimize();
3947     }
3948   }
3949 }
3950 
3951 // Auxiliary method to support randomized stressing/fuzzing.
3952 //
3953 // This method can be called the arbitrary number of times, with current count
3954 // as the argument. The logic allows selecting a single candidate from the
3955 // running list of candidates as follows:
3956 //    int count = 0;
3957 //    Cand* selected = null;
3958 //    while(cand = cand->next()) {
3959 //      if (randomized_select(++count)) {
3960 //        selected = cand;
3961 //      }
3962 //    }
3963 //
3964 // Including count equalizes the chances any candidate is "selected".
3965 // This is useful when we don't have the complete list of candidates to choose
3966 // from uniformly. In this case, we need to adjust the randomicity of the
3967 // selection, or else we will end up biasing the selection towards the latter
3968 // candidates.
3969 //
3970 // Quick back-envelope calculation shows that for the list of n candidates
3971 // the equal probability for the candidate to persist as "best" can be
3972 // achieved by replacing it with "next" k-th candidate with the probability
3973 // of 1/k. It can be easily shown that by the end of the run, the
3974 // probability for any candidate is converged to 1/n, thus giving the
3975 // uniform distribution among all the candidates.
3976 //
3977 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
3978 #define RANDOMIZED_DOMAIN_POW 29
3979 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
3980 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
3981 bool Compile::randomized_select(int count) {
3982   assert(count > 0, "only positive");
3983   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
3984 }