1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/exceptionHandlerTable.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "compiler/oopMap.hpp"
  34 #include "opto/addnode.hpp"
  35 #include "opto/block.hpp"
  36 #include "opto/c2compiler.hpp"
  37 #include "opto/callGenerator.hpp"
  38 #include "opto/callnode.hpp"
  39 #include "opto/cfgnode.hpp"
  40 #include "opto/chaitin.hpp"
  41 #include "opto/compile.hpp"
  42 #include "opto/connode.hpp"
  43 #include "opto/divnode.hpp"
  44 #include "opto/escape.hpp"
  45 #include "opto/idealGraphPrinter.hpp"
  46 #include "opto/loopnode.hpp"
  47 #include "opto/machnode.hpp"
  48 #include "opto/macro.hpp"
  49 #include "opto/matcher.hpp"
  50 #include "opto/mathexactnode.hpp"
  51 #include "opto/memnode.hpp"
  52 #include "opto/mulnode.hpp"
  53 #include "opto/node.hpp"
  54 #include "opto/opcodes.hpp"
  55 #include "opto/output.hpp"
  56 #include "opto/parse.hpp"
  57 #include "opto/phaseX.hpp"
  58 #include "opto/rootnode.hpp"
  59 #include "opto/runtime.hpp"
  60 #include "opto/stringopts.hpp"
  61 #include "opto/type.hpp"
  62 #include "opto/vectornode.hpp"
  63 #include "runtime/arguments.hpp"
  64 #include "runtime/signature.hpp"
  65 #include "runtime/stubRoutines.hpp"
  66 #include "runtime/timer.hpp"
  67 #include "trace/tracing.hpp"
  68 #include "utilities/copy.hpp"
  69 #ifdef TARGET_ARCH_MODEL_x86_32
  70 # include "adfiles/ad_x86_32.hpp"
  71 #endif
  72 #ifdef TARGET_ARCH_MODEL_x86_64
  73 # include "adfiles/ad_x86_64.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_MODEL_sparc
  76 # include "adfiles/ad_sparc.hpp"
  77 #endif
  78 #ifdef TARGET_ARCH_MODEL_zero
  79 # include "adfiles/ad_zero.hpp"
  80 #endif
  81 #ifdef TARGET_ARCH_MODEL_arm
  82 # include "adfiles/ad_arm.hpp"
  83 #endif
  84 #ifdef TARGET_ARCH_MODEL_ppc_32
  85 # include "adfiles/ad_ppc_32.hpp"
  86 #endif
  87 #ifdef TARGET_ARCH_MODEL_ppc_64
  88 # include "adfiles/ad_ppc_64.hpp"
  89 #endif
  90 
  91 
  92 // -------------------- Compile::mach_constant_base_node -----------------------
  93 // Constant table base node singleton.
  94 MachConstantBaseNode* Compile::mach_constant_base_node() {
  95   if (_mach_constant_base_node == NULL) {
  96     _mach_constant_base_node = new (C) MachConstantBaseNode();
  97     _mach_constant_base_node->add_req(C->root());
  98   }
  99   return _mach_constant_base_node;
 100 }
 101 
 102 
 103 /// Support for intrinsics.
 104 
 105 // Return the index at which m must be inserted (or already exists).
 106 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 107 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 108 #ifdef ASSERT
 109   for (int i = 1; i < _intrinsics->length(); i++) {
 110     CallGenerator* cg1 = _intrinsics->at(i-1);
 111     CallGenerator* cg2 = _intrinsics->at(i);
 112     assert(cg1->method() != cg2->method()
 113            ? cg1->method()     < cg2->method()
 114            : cg1->is_virtual() < cg2->is_virtual(),
 115            "compiler intrinsics list must stay sorted");
 116   }
 117 #endif
 118   // Binary search sorted list, in decreasing intervals [lo, hi].
 119   int lo = 0, hi = _intrinsics->length()-1;
 120   while (lo <= hi) {
 121     int mid = (uint)(hi + lo) / 2;
 122     ciMethod* mid_m = _intrinsics->at(mid)->method();
 123     if (m < mid_m) {
 124       hi = mid-1;
 125     } else if (m > mid_m) {
 126       lo = mid+1;
 127     } else {
 128       // look at minor sort key
 129       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 130       if (is_virtual < mid_virt) {
 131         hi = mid-1;
 132       } else if (is_virtual > mid_virt) {
 133         lo = mid+1;
 134       } else {
 135         return mid;  // exact match
 136       }
 137     }
 138   }
 139   return lo;  // inexact match
 140 }
 141 
 142 void Compile::register_intrinsic(CallGenerator* cg) {
 143   if (_intrinsics == NULL) {
 144     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 145   }
 146   // This code is stolen from ciObjectFactory::insert.
 147   // Really, GrowableArray should have methods for
 148   // insert_at, remove_at, and binary_search.
 149   int len = _intrinsics->length();
 150   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 151   if (index == len) {
 152     _intrinsics->append(cg);
 153   } else {
 154 #ifdef ASSERT
 155     CallGenerator* oldcg = _intrinsics->at(index);
 156     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 157 #endif
 158     _intrinsics->append(_intrinsics->at(len-1));
 159     int pos;
 160     for (pos = len-2; pos >= index; pos--) {
 161       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 162     }
 163     _intrinsics->at_put(index, cg);
 164   }
 165   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 166 }
 167 
 168 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 169   assert(m->is_loaded(), "don't try this on unloaded methods");
 170   if (_intrinsics != NULL) {
 171     int index = intrinsic_insertion_index(m, is_virtual);
 172     if (index < _intrinsics->length()
 173         && _intrinsics->at(index)->method() == m
 174         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 175       return _intrinsics->at(index);
 176     }
 177   }
 178   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 179   if (m->intrinsic_id() != vmIntrinsics::_none &&
 180       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 181     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 182     if (cg != NULL) {
 183       // Save it for next time:
 184       register_intrinsic(cg);
 185       return cg;
 186     } else {
 187       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 188     }
 189   }
 190   return NULL;
 191 }
 192 
 193 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 194 // in library_call.cpp.
 195 
 196 
 197 #ifndef PRODUCT
 198 // statistics gathering...
 199 
 200 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 201 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 202 
 203 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 204   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 205   int oflags = _intrinsic_hist_flags[id];
 206   assert(flags != 0, "what happened?");
 207   if (is_virtual) {
 208     flags |= _intrinsic_virtual;
 209   }
 210   bool changed = (flags != oflags);
 211   if ((flags & _intrinsic_worked) != 0) {
 212     juint count = (_intrinsic_hist_count[id] += 1);
 213     if (count == 1) {
 214       changed = true;           // first time
 215     }
 216     // increment the overall count also:
 217     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 218   }
 219   if (changed) {
 220     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 221       // Something changed about the intrinsic's virtuality.
 222       if ((flags & _intrinsic_virtual) != 0) {
 223         // This is the first use of this intrinsic as a virtual call.
 224         if (oflags != 0) {
 225           // We already saw it as a non-virtual, so note both cases.
 226           flags |= _intrinsic_both;
 227         }
 228       } else if ((oflags & _intrinsic_both) == 0) {
 229         // This is the first use of this intrinsic as a non-virtual
 230         flags |= _intrinsic_both;
 231       }
 232     }
 233     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 234   }
 235   // update the overall flags also:
 236   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 237   return changed;
 238 }
 239 
 240 static char* format_flags(int flags, char* buf) {
 241   buf[0] = 0;
 242   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 243   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 244   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 245   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 246   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 247   if (buf[0] == 0)  strcat(buf, ",");
 248   assert(buf[0] == ',', "must be");
 249   return &buf[1];
 250 }
 251 
 252 void Compile::print_intrinsic_statistics() {
 253   char flagsbuf[100];
 254   ttyLocker ttyl;
 255   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 256   tty->print_cr("Compiler intrinsic usage:");
 257   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 258   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 259   #define PRINT_STAT_LINE(name, c, f) \
 260     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 261   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 262     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 263     int   flags = _intrinsic_hist_flags[id];
 264     juint count = _intrinsic_hist_count[id];
 265     if ((flags | count) != 0) {
 266       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 267     }
 268   }
 269   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 270   if (xtty != NULL)  xtty->tail("statistics");
 271 }
 272 
 273 void Compile::print_statistics() {
 274   { ttyLocker ttyl;
 275     if (xtty != NULL)  xtty->head("statistics type='opto'");
 276     Parse::print_statistics();
 277     PhaseCCP::print_statistics();
 278     PhaseRegAlloc::print_statistics();
 279     Scheduling::print_statistics();
 280     PhasePeephole::print_statistics();
 281     PhaseIdealLoop::print_statistics();
 282     if (xtty != NULL)  xtty->tail("statistics");
 283   }
 284   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 285     // put this under its own <statistics> element.
 286     print_intrinsic_statistics();
 287   }
 288 }
 289 #endif //PRODUCT
 290 
 291 // Support for bundling info
 292 Bundle* Compile::node_bundling(const Node *n) {
 293   assert(valid_bundle_info(n), "oob");
 294   return &_node_bundling_base[n->_idx];
 295 }
 296 
 297 bool Compile::valid_bundle_info(const Node *n) {
 298   return (_node_bundling_limit > n->_idx);
 299 }
 300 
 301 
 302 void Compile::gvn_replace_by(Node* n, Node* nn) {
 303   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 304     Node* use = n->last_out(i);
 305     bool is_in_table = initial_gvn()->hash_delete(use);
 306     uint uses_found = 0;
 307     for (uint j = 0; j < use->len(); j++) {
 308       if (use->in(j) == n) {
 309         if (j < use->req())
 310           use->set_req(j, nn);
 311         else
 312           use->set_prec(j, nn);
 313         uses_found++;
 314       }
 315     }
 316     if (is_in_table) {
 317       // reinsert into table
 318       initial_gvn()->hash_find_insert(use);
 319     }
 320     record_for_igvn(use);
 321     i -= uses_found;    // we deleted 1 or more copies of this edge
 322   }
 323 }
 324 
 325 
 326 static inline bool not_a_node(const Node* n) {
 327   if (n == NULL)                   return true;
 328   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 329   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 330   return false;
 331 }
 332 
 333 // Identify all nodes that are reachable from below, useful.
 334 // Use breadth-first pass that records state in a Unique_Node_List,
 335 // recursive traversal is slower.
 336 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 337   int estimated_worklist_size = unique();
 338   useful.map( estimated_worklist_size, NULL );  // preallocate space
 339 
 340   // Initialize worklist
 341   if (root() != NULL)     { useful.push(root()); }
 342   // If 'top' is cached, declare it useful to preserve cached node
 343   if( cached_top_node() ) { useful.push(cached_top_node()); }
 344 
 345   // Push all useful nodes onto the list, breadthfirst
 346   for( uint next = 0; next < useful.size(); ++next ) {
 347     assert( next < unique(), "Unique useful nodes < total nodes");
 348     Node *n  = useful.at(next);
 349     uint max = n->len();
 350     for( uint i = 0; i < max; ++i ) {
 351       Node *m = n->in(i);
 352       if (not_a_node(m))  continue;
 353       useful.push(m);
 354     }
 355   }
 356 }
 357 
 358 // Update dead_node_list with any missing dead nodes using useful
 359 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 360 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 361   uint max_idx = unique();
 362   VectorSet& useful_node_set = useful.member_set();
 363 
 364   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 365     // If node with index node_idx is not in useful set,
 366     // mark it as dead in dead node list.
 367     if (! useful_node_set.test(node_idx) ) {
 368       record_dead_node(node_idx);
 369     }
 370   }
 371 }
 372 
 373 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 374   int shift = 0;
 375   for (int i = 0; i < inlines->length(); i++) {
 376     CallGenerator* cg = inlines->at(i);
 377     CallNode* call = cg->call_node();
 378     if (shift > 0) {
 379       inlines->at_put(i-shift, cg);
 380     }
 381     if (!useful.member(call)) {
 382       shift++;
 383     }
 384   }
 385   inlines->trunc_to(inlines->length()-shift);
 386 }
 387 
 388 // Disconnect all useless nodes by disconnecting those at the boundary.
 389 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 390   uint next = 0;
 391   while (next < useful.size()) {
 392     Node *n = useful.at(next++);
 393     // Use raw traversal of out edges since this code removes out edges
 394     int max = n->outcnt();
 395     for (int j = 0; j < max; ++j) {
 396       Node* child = n->raw_out(j);
 397       if (! useful.member(child)) {
 398         assert(!child->is_top() || child != top(),
 399                "If top is cached in Compile object it is in useful list");
 400         // Only need to remove this out-edge to the useless node
 401         n->raw_del_out(j);
 402         --j;
 403         --max;
 404       }
 405     }
 406     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 407       record_for_igvn(n->unique_out());
 408     }
 409   }
 410   // Remove useless macro and predicate opaq nodes
 411   for (int i = C->macro_count()-1; i >= 0; i--) {
 412     Node* n = C->macro_node(i);
 413     if (!useful.member(n)) {
 414       remove_macro_node(n);
 415     }
 416   }
 417   // Remove useless expensive node
 418   for (int i = C->expensive_count()-1; i >= 0; i--) {
 419     Node* n = C->expensive_node(i);
 420     if (!useful.member(n)) {
 421       remove_expensive_node(n);
 422     }
 423   }
 424   // clean up the late inline lists
 425   remove_useless_late_inlines(&_string_late_inlines, useful);
 426   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 427   remove_useless_late_inlines(&_late_inlines, useful);
 428   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 429 }
 430 
 431 //------------------------------frame_size_in_words-----------------------------
 432 // frame_slots in units of words
 433 int Compile::frame_size_in_words() const {
 434   // shift is 0 in LP32 and 1 in LP64
 435   const int shift = (LogBytesPerWord - LogBytesPerInt);
 436   int words = _frame_slots >> shift;
 437   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 438   return words;
 439 }
 440 
 441 // ============================================================================
 442 //------------------------------CompileWrapper---------------------------------
 443 class CompileWrapper : public StackObj {
 444   Compile *const _compile;
 445  public:
 446   CompileWrapper(Compile* compile);
 447 
 448   ~CompileWrapper();
 449 };
 450 
 451 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 452   // the Compile* pointer is stored in the current ciEnv:
 453   ciEnv* env = compile->env();
 454   assert(env == ciEnv::current(), "must already be a ciEnv active");
 455   assert(env->compiler_data() == NULL, "compile already active?");
 456   env->set_compiler_data(compile);
 457   assert(compile == Compile::current(), "sanity");
 458 
 459   compile->set_type_dict(NULL);
 460   compile->set_type_hwm(NULL);
 461   compile->set_type_last_size(0);
 462   compile->set_last_tf(NULL, NULL);
 463   compile->set_indexSet_arena(NULL);
 464   compile->set_indexSet_free_block_list(NULL);
 465   compile->init_type_arena();
 466   Type::Initialize(compile);
 467   _compile->set_scratch_buffer_blob(NULL);
 468   _compile->begin_method();
 469 }
 470 CompileWrapper::~CompileWrapper() {
 471   _compile->end_method();
 472   if (_compile->scratch_buffer_blob() != NULL)
 473     BufferBlob::free(_compile->scratch_buffer_blob());
 474   _compile->env()->set_compiler_data(NULL);
 475 }
 476 
 477 
 478 //----------------------------print_compile_messages---------------------------
 479 void Compile::print_compile_messages() {
 480 #ifndef PRODUCT
 481   // Check if recompiling
 482   if (_subsume_loads == false && PrintOpto) {
 483     // Recompiling without allowing machine instructions to subsume loads
 484     tty->print_cr("*********************************************************");
 485     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 486     tty->print_cr("*********************************************************");
 487   }
 488   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 489     // Recompiling without escape analysis
 490     tty->print_cr("*********************************************************");
 491     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 492     tty->print_cr("*********************************************************");
 493   }
 494   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 495     // Recompiling without boxing elimination
 496     tty->print_cr("*********************************************************");
 497     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 498     tty->print_cr("*********************************************************");
 499   }
 500   if (env()->break_at_compile()) {
 501     // Open the debugger when compiling this method.
 502     tty->print("### Breaking when compiling: ");
 503     method()->print_short_name();
 504     tty->cr();
 505     BREAKPOINT;
 506   }
 507 
 508   if( PrintOpto ) {
 509     if (is_osr_compilation()) {
 510       tty->print("[OSR]%3d", _compile_id);
 511     } else {
 512       tty->print("%3d", _compile_id);
 513     }
 514   }
 515 #endif
 516 }
 517 
 518 
 519 //-----------------------init_scratch_buffer_blob------------------------------
 520 // Construct a temporary BufferBlob and cache it for this compile.
 521 void Compile::init_scratch_buffer_blob(int const_size) {
 522   // If there is already a scratch buffer blob allocated and the
 523   // constant section is big enough, use it.  Otherwise free the
 524   // current and allocate a new one.
 525   BufferBlob* blob = scratch_buffer_blob();
 526   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 527     // Use the current blob.
 528   } else {
 529     if (blob != NULL) {
 530       BufferBlob::free(blob);
 531     }
 532 
 533     ResourceMark rm;
 534     _scratch_const_size = const_size;
 535     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 536     blob = BufferBlob::create("Compile::scratch_buffer", size);
 537     // Record the buffer blob for next time.
 538     set_scratch_buffer_blob(blob);
 539     // Have we run out of code space?
 540     if (scratch_buffer_blob() == NULL) {
 541       // Let CompilerBroker disable further compilations.
 542       record_failure("Not enough space for scratch buffer in CodeCache");
 543       return;
 544     }
 545   }
 546 
 547   // Initialize the relocation buffers
 548   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 549   set_scratch_locs_memory(locs_buf);
 550 }
 551 
 552 
 553 //-----------------------scratch_emit_size-------------------------------------
 554 // Helper function that computes size by emitting code
 555 uint Compile::scratch_emit_size(const Node* n) {
 556   // Start scratch_emit_size section.
 557   set_in_scratch_emit_size(true);
 558 
 559   // Emit into a trash buffer and count bytes emitted.
 560   // This is a pretty expensive way to compute a size,
 561   // but it works well enough if seldom used.
 562   // All common fixed-size instructions are given a size
 563   // method by the AD file.
 564   // Note that the scratch buffer blob and locs memory are
 565   // allocated at the beginning of the compile task, and
 566   // may be shared by several calls to scratch_emit_size.
 567   // The allocation of the scratch buffer blob is particularly
 568   // expensive, since it has to grab the code cache lock.
 569   BufferBlob* blob = this->scratch_buffer_blob();
 570   assert(blob != NULL, "Initialize BufferBlob at start");
 571   assert(blob->size() > MAX_inst_size, "sanity");
 572   relocInfo* locs_buf = scratch_locs_memory();
 573   address blob_begin = blob->content_begin();
 574   address blob_end   = (address)locs_buf;
 575   assert(blob->content_contains(blob_end), "sanity");
 576   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 577   buf.initialize_consts_size(_scratch_const_size);
 578   buf.initialize_stubs_size(MAX_stubs_size);
 579   assert(locs_buf != NULL, "sanity");
 580   int lsize = MAX_locs_size / 3;
 581   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 582   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 583   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 584 
 585   // Do the emission.
 586 
 587   Label fakeL; // Fake label for branch instructions.
 588   Label*   saveL = NULL;
 589   uint save_bnum = 0;
 590   bool is_branch = n->is_MachBranch();
 591   if (is_branch) {
 592     MacroAssembler masm(&buf);
 593     masm.bind(fakeL);
 594     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 595     n->as_MachBranch()->label_set(&fakeL, 0);
 596   }
 597   n->emit(buf, this->regalloc());
 598   if (is_branch) // Restore label.
 599     n->as_MachBranch()->label_set(saveL, save_bnum);
 600 
 601   // End scratch_emit_size section.
 602   set_in_scratch_emit_size(false);
 603 
 604   return buf.insts_size();
 605 }
 606 
 607 
 608 // ============================================================================
 609 //------------------------------Compile standard-------------------------------
 610 debug_only( int Compile::_debug_idx = 100000; )
 611 
 612 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 613 // the continuation bci for on stack replacement.
 614 
 615 
 616 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 617                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 618                 : Phase(Compiler),
 619                   _env(ci_env),
 620                   _log(ci_env->log()),
 621                   _compile_id(ci_env->compile_id()),
 622                   _save_argument_registers(false),
 623                   _stub_name(NULL),
 624                   _stub_function(NULL),
 625                   _stub_entry_point(NULL),
 626                   _method(target),
 627                   _entry_bci(osr_bci),
 628                   _initial_gvn(NULL),
 629                   _for_igvn(NULL),
 630                   _warm_calls(NULL),
 631                   _subsume_loads(subsume_loads),
 632                   _do_escape_analysis(do_escape_analysis),
 633                   _eliminate_boxing(eliminate_boxing),
 634                   _failure_reason(NULL),
 635                   _code_buffer("Compile::Fill_buffer"),
 636                   _orig_pc_slot(0),
 637                   _orig_pc_slot_offset_in_bytes(0),
 638                   _has_method_handle_invokes(false),
 639                   _mach_constant_base_node(NULL),
 640                   _node_bundling_limit(0),
 641                   _node_bundling_base(NULL),
 642                   _java_calls(0),
 643                   _inner_loops(0),
 644                   _scratch_const_size(-1),
 645                   _in_scratch_emit_size(false),
 646                   _dead_node_list(comp_arena()),
 647                   _dead_node_count(0),
 648 #ifndef PRODUCT
 649                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 650                   _printer(IdealGraphPrinter::printer()),
 651 #endif
 652                   _congraph(NULL),
 653                   _late_inlines(comp_arena(), 2, 0, NULL),
 654                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 655                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 656                   _late_inlines_pos(0),
 657                   _number_of_mh_late_inlines(0),
 658                   _inlining_progress(false),
 659                   _inlining_incrementally(false),
 660                   _print_inlining_list(NULL),
 661                   _print_inlining_idx(0),
 662                   _preserve_jvm_state(0) {
 663   C = this;
 664 
 665   CompileWrapper cw(this);
 666 #ifndef PRODUCT
 667   if (TimeCompiler2) {
 668     tty->print(" ");
 669     target->holder()->name()->print();
 670     tty->print(".");
 671     target->print_short_name();
 672     tty->print("  ");
 673   }
 674   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 675   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 676   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 677   if (!print_opto_assembly) {
 678     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 679     if (print_assembly && !Disassembler::can_decode()) {
 680       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 681       print_opto_assembly = true;
 682     }
 683   }
 684   set_print_assembly(print_opto_assembly);
 685   set_parsed_irreducible_loop(false);
 686 #endif
 687   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 688   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 689 
 690   if (ProfileTraps) {
 691     // Make sure the method being compiled gets its own MDO,
 692     // so we can at least track the decompile_count().
 693     method()->ensure_method_data();
 694   }
 695 
 696   Init(::AliasLevel);
 697 
 698 
 699   print_compile_messages();
 700 
 701   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
 702     _ilt = InlineTree::build_inline_tree_root();
 703   else
 704     _ilt = NULL;
 705 
 706   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 707   assert(num_alias_types() >= AliasIdxRaw, "");
 708 
 709 #define MINIMUM_NODE_HASH  1023
 710   // Node list that Iterative GVN will start with
 711   Unique_Node_List for_igvn(comp_arena());
 712   set_for_igvn(&for_igvn);
 713 
 714   // GVN that will be run immediately on new nodes
 715   uint estimated_size = method()->code_size()*4+64;
 716   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 717   PhaseGVN gvn(node_arena(), estimated_size);
 718   set_initial_gvn(&gvn);
 719 
 720   if (print_inlining() || print_intrinsics()) {
 721     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
 722   }
 723   { // Scope for timing the parser
 724     TracePhase t3("parse", &_t_parser, true);
 725 
 726     // Put top into the hash table ASAP.
 727     initial_gvn()->transform_no_reclaim(top());
 728 
 729     // Set up tf(), start(), and find a CallGenerator.
 730     CallGenerator* cg = NULL;
 731     if (is_osr_compilation()) {
 732       const TypeTuple *domain = StartOSRNode::osr_domain();
 733       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 734       init_tf(TypeFunc::make(domain, range));
 735       StartNode* s = new (this) StartOSRNode(root(), domain);
 736       initial_gvn()->set_type_bottom(s);
 737       init_start(s);
 738       cg = CallGenerator::for_osr(method(), entry_bci());
 739     } else {
 740       // Normal case.
 741       init_tf(TypeFunc::make(method()));
 742       StartNode* s = new (this) StartNode(root(), tf()->domain());
 743       initial_gvn()->set_type_bottom(s);
 744       init_start(s);
 745       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 746         // With java.lang.ref.reference.get() we must go through the
 747         // intrinsic when G1 is enabled - even when get() is the root
 748         // method of the compile - so that, if necessary, the value in
 749         // the referent field of the reference object gets recorded by
 750         // the pre-barrier code.
 751         // Specifically, if G1 is enabled, the value in the referent
 752         // field is recorded by the G1 SATB pre barrier. This will
 753         // result in the referent being marked live and the reference
 754         // object removed from the list of discovered references during
 755         // reference processing.
 756         cg = find_intrinsic(method(), false);
 757       }
 758       if (cg == NULL) {
 759         float past_uses = method()->interpreter_invocation_count();
 760         float expected_uses = past_uses;
 761         cg = CallGenerator::for_inline(method(), expected_uses);
 762       }
 763     }
 764     if (failing())  return;
 765     if (cg == NULL) {
 766       record_method_not_compilable_all_tiers("cannot parse method");
 767       return;
 768     }
 769     JVMState* jvms = build_start_state(start(), tf());
 770     if ((jvms = cg->generate(jvms, NULL)) == NULL) {
 771       record_method_not_compilable("method parse failed");
 772       return;
 773     }
 774     GraphKit kit(jvms);
 775 
 776     if (!kit.stopped()) {
 777       // Accept return values, and transfer control we know not where.
 778       // This is done by a special, unique ReturnNode bound to root.
 779       return_values(kit.jvms());
 780     }
 781 
 782     if (kit.has_exceptions()) {
 783       // Any exceptions that escape from this call must be rethrown
 784       // to whatever caller is dynamically above us on the stack.
 785       // This is done by a special, unique RethrowNode bound to root.
 786       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 787     }
 788 
 789     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 790 
 791     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 792       inline_string_calls(true);
 793     }
 794 
 795     if (failing())  return;
 796 
 797     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 798 
 799     // Remove clutter produced by parsing.
 800     if (!failing()) {
 801       ResourceMark rm;
 802       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 803     }
 804   }
 805 
 806   // Note:  Large methods are capped off in do_one_bytecode().
 807   if (failing())  return;
 808 
 809   // After parsing, node notes are no longer automagic.
 810   // They must be propagated by register_new_node_with_optimizer(),
 811   // clone(), or the like.
 812   set_default_node_notes(NULL);
 813 
 814   for (;;) {
 815     int successes = Inline_Warm();
 816     if (failing())  return;
 817     if (successes == 0)  break;
 818   }
 819 
 820   // Drain the list.
 821   Finish_Warm();
 822 #ifndef PRODUCT
 823   if (_printer) {
 824     _printer->print_inlining(this);
 825   }
 826 #endif
 827 
 828   if (failing())  return;
 829   NOT_PRODUCT( verify_graph_edges(); )
 830 
 831   // Now optimize
 832   Optimize();
 833   if (failing())  return;
 834   NOT_PRODUCT( verify_graph_edges(); )
 835 
 836 #ifndef PRODUCT
 837   if (PrintIdeal) {
 838     ttyLocker ttyl;  // keep the following output all in one block
 839     // This output goes directly to the tty, not the compiler log.
 840     // To enable tools to match it up with the compilation activity,
 841     // be sure to tag this tty output with the compile ID.
 842     if (xtty != NULL) {
 843       xtty->head("ideal compile_id='%d'%s", compile_id(),
 844                  is_osr_compilation()    ? " compile_kind='osr'" :
 845                  "");
 846     }
 847     root()->dump(9999);
 848     if (xtty != NULL) {
 849       xtty->tail("ideal");
 850     }
 851   }
 852 #endif
 853 
 854   NOT_PRODUCT( verify_barriers(); )
 855   // Now that we know the size of all the monitors we can add a fixed slot
 856   // for the original deopt pc.
 857 
 858   _orig_pc_slot =  fixed_slots();
 859   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 860   set_fixed_slots(next_slot);
 861 
 862   // Now generate code
 863   Code_Gen();
 864   if (failing())  return;
 865 
 866   // Check if we want to skip execution of all compiled code.
 867   {
 868 #ifndef PRODUCT
 869     if (OptoNoExecute) {
 870       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 871       return;
 872     }
 873     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 874 #endif
 875 
 876     if (is_osr_compilation()) {
 877       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 878       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 879     } else {
 880       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 881       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 882     }
 883 
 884     env()->register_method(_method, _entry_bci,
 885                            &_code_offsets,
 886                            _orig_pc_slot_offset_in_bytes,
 887                            code_buffer(),
 888                            frame_size_in_words(), _oop_map_set,
 889                            &_handler_table, &_inc_table,
 890                            compiler,
 891                            env()->comp_level(),
 892                            has_unsafe_access(),
 893                            SharedRuntime::is_wide_vector(max_vector_size())
 894                            );
 895 
 896     if (log() != NULL) // Print code cache state into compiler log
 897       log()->code_cache_state();
 898   }
 899 }
 900 
 901 //------------------------------Compile----------------------------------------
 902 // Compile a runtime stub
 903 Compile::Compile( ciEnv* ci_env,
 904                   TypeFunc_generator generator,
 905                   address stub_function,
 906                   const char *stub_name,
 907                   int is_fancy_jump,
 908                   bool pass_tls,
 909                   bool save_arg_registers,
 910                   bool return_pc )
 911   : Phase(Compiler),
 912     _env(ci_env),
 913     _log(ci_env->log()),
 914     _compile_id(0),
 915     _save_argument_registers(save_arg_registers),
 916     _method(NULL),
 917     _stub_name(stub_name),
 918     _stub_function(stub_function),
 919     _stub_entry_point(NULL),
 920     _entry_bci(InvocationEntryBci),
 921     _initial_gvn(NULL),
 922     _for_igvn(NULL),
 923     _warm_calls(NULL),
 924     _orig_pc_slot(0),
 925     _orig_pc_slot_offset_in_bytes(0),
 926     _subsume_loads(true),
 927     _do_escape_analysis(false),
 928     _eliminate_boxing(false),
 929     _failure_reason(NULL),
 930     _code_buffer("Compile::Fill_buffer"),
 931     _has_method_handle_invokes(false),
 932     _mach_constant_base_node(NULL),
 933     _node_bundling_limit(0),
 934     _node_bundling_base(NULL),
 935     _java_calls(0),
 936     _inner_loops(0),
 937 #ifndef PRODUCT
 938     _trace_opto_output(TraceOptoOutput),
 939     _printer(NULL),
 940 #endif
 941     _dead_node_list(comp_arena()),
 942     _dead_node_count(0),
 943     _congraph(NULL),
 944     _number_of_mh_late_inlines(0),
 945     _inlining_progress(false),
 946     _inlining_incrementally(false),
 947     _print_inlining_list(NULL),
 948     _print_inlining_idx(0),
 949     _preserve_jvm_state(0) {
 950   C = this;
 951 
 952 #ifndef PRODUCT
 953   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 954   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 955   set_print_assembly(PrintFrameConverterAssembly);
 956   set_parsed_irreducible_loop(false);
 957 #endif
 958   CompileWrapper cw(this);
 959   Init(/*AliasLevel=*/ 0);
 960   init_tf((*generator)());
 961 
 962   {
 963     // The following is a dummy for the sake of GraphKit::gen_stub
 964     Unique_Node_List for_igvn(comp_arena());
 965     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 966     PhaseGVN gvn(Thread::current()->resource_area(),255);
 967     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 968     gvn.transform_no_reclaim(top());
 969 
 970     GraphKit kit;
 971     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 972   }
 973 
 974   NOT_PRODUCT( verify_graph_edges(); )
 975   Code_Gen();
 976   if (failing())  return;
 977 
 978 
 979   // Entry point will be accessed using compile->stub_entry_point();
 980   if (code_buffer() == NULL) {
 981     Matcher::soft_match_failure();
 982   } else {
 983     if (PrintAssembly && (WizardMode || Verbose))
 984       tty->print_cr("### Stub::%s", stub_name);
 985 
 986     if (!failing()) {
 987       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
 988 
 989       // Make the NMethod
 990       // For now we mark the frame as never safe for profile stackwalking
 991       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
 992                                                       code_buffer(),
 993                                                       CodeOffsets::frame_never_safe,
 994                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
 995                                                       frame_size_in_words(),
 996                                                       _oop_map_set,
 997                                                       save_arg_registers);
 998       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
 999 
1000       _stub_entry_point = rs->entry_point();
1001     }
1002   }
1003 }
1004 
1005 //------------------------------Init-------------------------------------------
1006 // Prepare for a single compilation
1007 void Compile::Init(int aliaslevel) {
1008   _unique  = 0;
1009   _regalloc = NULL;
1010 
1011   _tf      = NULL;  // filled in later
1012   _top     = NULL;  // cached later
1013   _matcher = NULL;  // filled in later
1014   _cfg     = NULL;  // filled in later
1015 
1016   set_24_bit_selection_and_mode(Use24BitFP, false);
1017 
1018   _node_note_array = NULL;
1019   _default_node_notes = NULL;
1020 
1021   _immutable_memory = NULL; // filled in at first inquiry
1022 
1023   // Globally visible Nodes
1024   // First set TOP to NULL to give safe behavior during creation of RootNode
1025   set_cached_top_node(NULL);
1026   set_root(new (this) RootNode());
1027   // Now that you have a Root to point to, create the real TOP
1028   set_cached_top_node( new (this) ConNode(Type::TOP) );
1029   set_recent_alloc(NULL, NULL);
1030 
1031   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1032   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1033   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1034   env()->set_dependencies(new Dependencies(env()));
1035 
1036   _fixed_slots = 0;
1037   set_has_split_ifs(false);
1038   set_has_loops(has_method() && method()->has_loops()); // first approximation
1039   set_has_stringbuilder(false);
1040   set_has_boxed_value(false);
1041   _trap_can_recompile = false;  // no traps emitted yet
1042   _major_progress = true; // start out assuming good things will happen
1043   set_has_unsafe_access(false);
1044   set_max_vector_size(0);
1045   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1046   set_decompile_count(0);
1047 
1048   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1049   set_num_loop_opts(LoopOptsCount);
1050   set_do_inlining(Inline);
1051   set_max_inline_size(MaxInlineSize);
1052   set_freq_inline_size(FreqInlineSize);
1053   set_do_scheduling(OptoScheduling);
1054   set_do_count_invocations(false);
1055   set_do_method_data_update(false);
1056 
1057   if (debug_info()->recording_non_safepoints()) {
1058     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1059                         (comp_arena(), 8, 0, NULL));
1060     set_default_node_notes(Node_Notes::make(this));
1061   }
1062 
1063   // // -- Initialize types before each compile --
1064   // // Update cached type information
1065   // if( _method && _method->constants() )
1066   //   Type::update_loaded_types(_method, _method->constants());
1067 
1068   // Init alias_type map.
1069   if (!_do_escape_analysis && aliaslevel == 3)
1070     aliaslevel = 2;  // No unique types without escape analysis
1071   _AliasLevel = aliaslevel;
1072   const int grow_ats = 16;
1073   _max_alias_types = grow_ats;
1074   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1075   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1076   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1077   {
1078     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1079   }
1080   // Initialize the first few types.
1081   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1082   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1083   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1084   _num_alias_types = AliasIdxRaw+1;
1085   // Zero out the alias type cache.
1086   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1087   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1088   probe_alias_cache(NULL)->_index = AliasIdxTop;
1089 
1090   _intrinsics = NULL;
1091   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1092   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1093   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1094   register_library_intrinsics();
1095 }
1096 
1097 //---------------------------init_start----------------------------------------
1098 // Install the StartNode on this compile object.
1099 void Compile::init_start(StartNode* s) {
1100   if (failing())
1101     return; // already failing
1102   assert(s == start(), "");
1103 }
1104 
1105 StartNode* Compile::start() const {
1106   assert(!failing(), "");
1107   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1108     Node* start = root()->fast_out(i);
1109     if( start->is_Start() )
1110       return start->as_Start();
1111   }
1112   ShouldNotReachHere();
1113   return NULL;
1114 }
1115 
1116 //-------------------------------immutable_memory-------------------------------------
1117 // Access immutable memory
1118 Node* Compile::immutable_memory() {
1119   if (_immutable_memory != NULL) {
1120     return _immutable_memory;
1121   }
1122   StartNode* s = start();
1123   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1124     Node *p = s->fast_out(i);
1125     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1126       _immutable_memory = p;
1127       return _immutable_memory;
1128     }
1129   }
1130   ShouldNotReachHere();
1131   return NULL;
1132 }
1133 
1134 //----------------------set_cached_top_node------------------------------------
1135 // Install the cached top node, and make sure Node::is_top works correctly.
1136 void Compile::set_cached_top_node(Node* tn) {
1137   if (tn != NULL)  verify_top(tn);
1138   Node* old_top = _top;
1139   _top = tn;
1140   // Calling Node::setup_is_top allows the nodes the chance to adjust
1141   // their _out arrays.
1142   if (_top != NULL)     _top->setup_is_top();
1143   if (old_top != NULL)  old_top->setup_is_top();
1144   assert(_top == NULL || top()->is_top(), "");
1145 }
1146 
1147 #ifdef ASSERT
1148 uint Compile::count_live_nodes_by_graph_walk() {
1149   Unique_Node_List useful(comp_arena());
1150   // Get useful node list by walking the graph.
1151   identify_useful_nodes(useful);
1152   return useful.size();
1153 }
1154 
1155 void Compile::print_missing_nodes() {
1156 
1157   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1158   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1159     return;
1160   }
1161 
1162   // This is an expensive function. It is executed only when the user
1163   // specifies VerifyIdealNodeCount option or otherwise knows the
1164   // additional work that needs to be done to identify reachable nodes
1165   // by walking the flow graph and find the missing ones using
1166   // _dead_node_list.
1167 
1168   Unique_Node_List useful(comp_arena());
1169   // Get useful node list by walking the graph.
1170   identify_useful_nodes(useful);
1171 
1172   uint l_nodes = C->live_nodes();
1173   uint l_nodes_by_walk = useful.size();
1174 
1175   if (l_nodes != l_nodes_by_walk) {
1176     if (_log != NULL) {
1177       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1178       _log->stamp();
1179       _log->end_head();
1180     }
1181     VectorSet& useful_member_set = useful.member_set();
1182     int last_idx = l_nodes_by_walk;
1183     for (int i = 0; i < last_idx; i++) {
1184       if (useful_member_set.test(i)) {
1185         if (_dead_node_list.test(i)) {
1186           if (_log != NULL) {
1187             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1188           }
1189           if (PrintIdealNodeCount) {
1190             // Print the log message to tty
1191               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1192               useful.at(i)->dump();
1193           }
1194         }
1195       }
1196       else if (! _dead_node_list.test(i)) {
1197         if (_log != NULL) {
1198           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1199         }
1200         if (PrintIdealNodeCount) {
1201           // Print the log message to tty
1202           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1203         }
1204       }
1205     }
1206     if (_log != NULL) {
1207       _log->tail("mismatched_nodes");
1208     }
1209   }
1210 }
1211 #endif
1212 
1213 #ifndef PRODUCT
1214 void Compile::verify_top(Node* tn) const {
1215   if (tn != NULL) {
1216     assert(tn->is_Con(), "top node must be a constant");
1217     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1218     assert(tn->in(0) != NULL, "must have live top node");
1219   }
1220 }
1221 #endif
1222 
1223 
1224 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1225 
1226 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1227   guarantee(arr != NULL, "");
1228   int num_blocks = arr->length();
1229   if (grow_by < num_blocks)  grow_by = num_blocks;
1230   int num_notes = grow_by * _node_notes_block_size;
1231   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1232   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1233   while (num_notes > 0) {
1234     arr->append(notes);
1235     notes     += _node_notes_block_size;
1236     num_notes -= _node_notes_block_size;
1237   }
1238   assert(num_notes == 0, "exact multiple, please");
1239 }
1240 
1241 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1242   if (source == NULL || dest == NULL)  return false;
1243 
1244   if (dest->is_Con())
1245     return false;               // Do not push debug info onto constants.
1246 
1247 #ifdef ASSERT
1248   // Leave a bread crumb trail pointing to the original node:
1249   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1250     dest->set_debug_orig(source);
1251   }
1252 #endif
1253 
1254   if (node_note_array() == NULL)
1255     return false;               // Not collecting any notes now.
1256 
1257   // This is a copy onto a pre-existing node, which may already have notes.
1258   // If both nodes have notes, do not overwrite any pre-existing notes.
1259   Node_Notes* source_notes = node_notes_at(source->_idx);
1260   if (source_notes == NULL || source_notes->is_clear())  return false;
1261   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1262   if (dest_notes == NULL || dest_notes->is_clear()) {
1263     return set_node_notes_at(dest->_idx, source_notes);
1264   }
1265 
1266   Node_Notes merged_notes = (*source_notes);
1267   // The order of operations here ensures that dest notes will win...
1268   merged_notes.update_from(dest_notes);
1269   return set_node_notes_at(dest->_idx, &merged_notes);
1270 }
1271 
1272 
1273 //--------------------------allow_range_check_smearing-------------------------
1274 // Gating condition for coalescing similar range checks.
1275 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1276 // single covering check that is at least as strong as any of them.
1277 // If the optimization succeeds, the simplified (strengthened) range check
1278 // will always succeed.  If it fails, we will deopt, and then give up
1279 // on the optimization.
1280 bool Compile::allow_range_check_smearing() const {
1281   // If this method has already thrown a range-check,
1282   // assume it was because we already tried range smearing
1283   // and it failed.
1284   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1285   return !already_trapped;
1286 }
1287 
1288 
1289 //------------------------------flatten_alias_type-----------------------------
1290 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1291   int offset = tj->offset();
1292   TypePtr::PTR ptr = tj->ptr();
1293 
1294   // Known instance (scalarizable allocation) alias only with itself.
1295   bool is_known_inst = tj->isa_oopptr() != NULL &&
1296                        tj->is_oopptr()->is_known_instance();
1297 
1298   // Process weird unsafe references.
1299   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1300     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1301     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1302     tj = TypeOopPtr::BOTTOM;
1303     ptr = tj->ptr();
1304     offset = tj->offset();
1305   }
1306 
1307   // Array pointers need some flattening
1308   const TypeAryPtr *ta = tj->isa_aryptr();
1309   if (ta && ta->is_stable()) {
1310     // Erase stability property for alias analysis.
1311     tj = ta = ta->cast_to_stable(false);
1312   }
1313   if( ta && is_known_inst ) {
1314     if ( offset != Type::OffsetBot &&
1315          offset > arrayOopDesc::length_offset_in_bytes() ) {
1316       offset = Type::OffsetBot; // Flatten constant access into array body only
1317       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1318     }
1319   } else if( ta && _AliasLevel >= 2 ) {
1320     // For arrays indexed by constant indices, we flatten the alias
1321     // space to include all of the array body.  Only the header, klass
1322     // and array length can be accessed un-aliased.
1323     if( offset != Type::OffsetBot ) {
1324       if( ta->const_oop() ) { // MethodData* or Method*
1325         offset = Type::OffsetBot;   // Flatten constant access into array body
1326         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1327       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1328         // range is OK as-is.
1329         tj = ta = TypeAryPtr::RANGE;
1330       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1331         tj = TypeInstPtr::KLASS; // all klass loads look alike
1332         ta = TypeAryPtr::RANGE; // generic ignored junk
1333         ptr = TypePtr::BotPTR;
1334       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1335         tj = TypeInstPtr::MARK;
1336         ta = TypeAryPtr::RANGE; // generic ignored junk
1337         ptr = TypePtr::BotPTR;
1338       } else {                  // Random constant offset into array body
1339         offset = Type::OffsetBot;   // Flatten constant access into array body
1340         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1341       }
1342     }
1343     // Arrays of fixed size alias with arrays of unknown size.
1344     if (ta->size() != TypeInt::POS) {
1345       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1346       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1347     }
1348     // Arrays of known objects become arrays of unknown objects.
1349     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1350       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1351       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1352     }
1353     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1354       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1355       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1356     }
1357     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1358     // cannot be distinguished by bytecode alone.
1359     if (ta->elem() == TypeInt::BOOL) {
1360       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1361       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1362       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1363     }
1364     // During the 2nd round of IterGVN, NotNull castings are removed.
1365     // Make sure the Bottom and NotNull variants alias the same.
1366     // Also, make sure exact and non-exact variants alias the same.
1367     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1368       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1369     }
1370   }
1371 
1372   // Oop pointers need some flattening
1373   const TypeInstPtr *to = tj->isa_instptr();
1374   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1375     ciInstanceKlass *k = to->klass()->as_instance_klass();
1376     if( ptr == TypePtr::Constant ) {
1377       if (to->klass() != ciEnv::current()->Class_klass() ||
1378           offset < k->size_helper() * wordSize) {
1379         // No constant oop pointers (such as Strings); they alias with
1380         // unknown strings.
1381         assert(!is_known_inst, "not scalarizable allocation");
1382         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1383       }
1384     } else if( is_known_inst ) {
1385       tj = to; // Keep NotNull and klass_is_exact for instance type
1386     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1387       // During the 2nd round of IterGVN, NotNull castings are removed.
1388       // Make sure the Bottom and NotNull variants alias the same.
1389       // Also, make sure exact and non-exact variants alias the same.
1390       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1391     }
1392     if (to->speculative() != NULL) {
1393       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1394     }
1395     // Canonicalize the holder of this field
1396     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1397       // First handle header references such as a LoadKlassNode, even if the
1398       // object's klass is unloaded at compile time (4965979).
1399       if (!is_known_inst) { // Do it only for non-instance types
1400         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1401       }
1402     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1403       // Static fields are in the space above the normal instance
1404       // fields in the java.lang.Class instance.
1405       if (to->klass() != ciEnv::current()->Class_klass()) {
1406         to = NULL;
1407         tj = TypeOopPtr::BOTTOM;
1408         offset = tj->offset();
1409       }
1410     } else {
1411       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1412       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1413         if( is_known_inst ) {
1414           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1415         } else {
1416           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1417         }
1418       }
1419     }
1420   }
1421 
1422   // Klass pointers to object array klasses need some flattening
1423   const TypeKlassPtr *tk = tj->isa_klassptr();
1424   if( tk ) {
1425     // If we are referencing a field within a Klass, we need
1426     // to assume the worst case of an Object.  Both exact and
1427     // inexact types must flatten to the same alias class so
1428     // use NotNull as the PTR.
1429     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1430 
1431       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1432                                    TypeKlassPtr::OBJECT->klass(),
1433                                    offset);
1434     }
1435 
1436     ciKlass* klass = tk->klass();
1437     if( klass->is_obj_array_klass() ) {
1438       ciKlass* k = TypeAryPtr::OOPS->klass();
1439       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1440         k = TypeInstPtr::BOTTOM->klass();
1441       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1442     }
1443 
1444     // Check for precise loads from the primary supertype array and force them
1445     // to the supertype cache alias index.  Check for generic array loads from
1446     // the primary supertype array and also force them to the supertype cache
1447     // alias index.  Since the same load can reach both, we need to merge
1448     // these 2 disparate memories into the same alias class.  Since the
1449     // primary supertype array is read-only, there's no chance of confusion
1450     // where we bypass an array load and an array store.
1451     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1452     if (offset == Type::OffsetBot ||
1453         (offset >= primary_supers_offset &&
1454          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1455         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1456       offset = in_bytes(Klass::secondary_super_cache_offset());
1457       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1458     }
1459   }
1460 
1461   // Flatten all Raw pointers together.
1462   if (tj->base() == Type::RawPtr)
1463     tj = TypeRawPtr::BOTTOM;
1464 
1465   if (tj->base() == Type::AnyPtr)
1466     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1467 
1468   // Flatten all to bottom for now
1469   switch( _AliasLevel ) {
1470   case 0:
1471     tj = TypePtr::BOTTOM;
1472     break;
1473   case 1:                       // Flatten to: oop, static, field or array
1474     switch (tj->base()) {
1475     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1476     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1477     case Type::AryPtr:   // do not distinguish arrays at all
1478     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1479     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1480     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1481     default: ShouldNotReachHere();
1482     }
1483     break;
1484   case 2:                       // No collapsing at level 2; keep all splits
1485   case 3:                       // No collapsing at level 3; keep all splits
1486     break;
1487   default:
1488     Unimplemented();
1489   }
1490 
1491   offset = tj->offset();
1492   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1493 
1494   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1495           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1496           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1497           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1498           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1499           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1500           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1501           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1502   assert( tj->ptr() != TypePtr::TopPTR &&
1503           tj->ptr() != TypePtr::AnyNull &&
1504           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1505 //    assert( tj->ptr() != TypePtr::Constant ||
1506 //            tj->base() == Type::RawPtr ||
1507 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1508 
1509   return tj;
1510 }
1511 
1512 void Compile::AliasType::Init(int i, const TypePtr* at) {
1513   _index = i;
1514   _adr_type = at;
1515   _field = NULL;
1516   _element = NULL;
1517   _is_rewritable = true; // default
1518   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1519   if (atoop != NULL && atoop->is_known_instance()) {
1520     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1521     _general_index = Compile::current()->get_alias_index(gt);
1522   } else {
1523     _general_index = 0;
1524   }
1525 }
1526 
1527 //---------------------------------print_on------------------------------------
1528 #ifndef PRODUCT
1529 void Compile::AliasType::print_on(outputStream* st) {
1530   if (index() < 10)
1531         st->print("@ <%d> ", index());
1532   else  st->print("@ <%d>",  index());
1533   st->print(is_rewritable() ? "   " : " RO");
1534   int offset = adr_type()->offset();
1535   if (offset == Type::OffsetBot)
1536         st->print(" +any");
1537   else  st->print(" +%-3d", offset);
1538   st->print(" in ");
1539   adr_type()->dump_on(st);
1540   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1541   if (field() != NULL && tjp) {
1542     if (tjp->klass()  != field()->holder() ||
1543         tjp->offset() != field()->offset_in_bytes()) {
1544       st->print(" != ");
1545       field()->print();
1546       st->print(" ***");
1547     }
1548   }
1549 }
1550 
1551 void print_alias_types() {
1552   Compile* C = Compile::current();
1553   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1554   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1555     C->alias_type(idx)->print_on(tty);
1556     tty->cr();
1557   }
1558 }
1559 #endif
1560 
1561 
1562 //----------------------------probe_alias_cache--------------------------------
1563 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1564   intptr_t key = (intptr_t) adr_type;
1565   key ^= key >> logAliasCacheSize;
1566   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1567 }
1568 
1569 
1570 //-----------------------------grow_alias_types--------------------------------
1571 void Compile::grow_alias_types() {
1572   const int old_ats  = _max_alias_types; // how many before?
1573   const int new_ats  = old_ats;          // how many more?
1574   const int grow_ats = old_ats+new_ats;  // how many now?
1575   _max_alias_types = grow_ats;
1576   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1577   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1578   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1579   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1580 }
1581 
1582 
1583 //--------------------------------find_alias_type------------------------------
1584 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1585   if (_AliasLevel == 0)
1586     return alias_type(AliasIdxBot);
1587 
1588   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1589   if (ace->_adr_type == adr_type) {
1590     return alias_type(ace->_index);
1591   }
1592 
1593   // Handle special cases.
1594   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1595   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1596 
1597   // Do it the slow way.
1598   const TypePtr* flat = flatten_alias_type(adr_type);
1599 
1600 #ifdef ASSERT
1601   assert(flat == flatten_alias_type(flat), "idempotent");
1602   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1603   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1604     const TypeOopPtr* foop = flat->is_oopptr();
1605     // Scalarizable allocations have exact klass always.
1606     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1607     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1608     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1609   }
1610   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1611 #endif
1612 
1613   int idx = AliasIdxTop;
1614   for (int i = 0; i < num_alias_types(); i++) {
1615     if (alias_type(i)->adr_type() == flat) {
1616       idx = i;
1617       break;
1618     }
1619   }
1620 
1621   if (idx == AliasIdxTop) {
1622     if (no_create)  return NULL;
1623     // Grow the array if necessary.
1624     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1625     // Add a new alias type.
1626     idx = _num_alias_types++;
1627     _alias_types[idx]->Init(idx, flat);
1628     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1629     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1630     if (flat->isa_instptr()) {
1631       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1632           && flat->is_instptr()->klass() == env()->Class_klass())
1633         alias_type(idx)->set_rewritable(false);
1634     }
1635     if (flat->isa_aryptr()) {
1636 #ifdef ASSERT
1637       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1638       // (T_BYTE has the weakest alignment and size restrictions...)
1639       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1640 #endif
1641       if (flat->offset() == TypePtr::OffsetBot) {
1642         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1643       }
1644     }
1645     if (flat->isa_klassptr()) {
1646       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1647         alias_type(idx)->set_rewritable(false);
1648       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1649         alias_type(idx)->set_rewritable(false);
1650       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1651         alias_type(idx)->set_rewritable(false);
1652       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1653         alias_type(idx)->set_rewritable(false);
1654     }
1655     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1656     // but the base pointer type is not distinctive enough to identify
1657     // references into JavaThread.)
1658 
1659     // Check for final fields.
1660     const TypeInstPtr* tinst = flat->isa_instptr();
1661     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1662       ciField* field;
1663       if (tinst->const_oop() != NULL &&
1664           tinst->klass() == ciEnv::current()->Class_klass() &&
1665           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1666         // static field
1667         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1668         field = k->get_field_by_offset(tinst->offset(), true);
1669       } else {
1670         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1671         field = k->get_field_by_offset(tinst->offset(), false);
1672       }
1673       assert(field == NULL ||
1674              original_field == NULL ||
1675              (field->holder() == original_field->holder() &&
1676               field->offset() == original_field->offset() &&
1677               field->is_static() == original_field->is_static()), "wrong field?");
1678       // Set field() and is_rewritable() attributes.
1679       if (field != NULL)  alias_type(idx)->set_field(field);
1680     }
1681   }
1682 
1683   // Fill the cache for next time.
1684   ace->_adr_type = adr_type;
1685   ace->_index    = idx;
1686   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1687 
1688   // Might as well try to fill the cache for the flattened version, too.
1689   AliasCacheEntry* face = probe_alias_cache(flat);
1690   if (face->_adr_type == NULL) {
1691     face->_adr_type = flat;
1692     face->_index    = idx;
1693     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1694   }
1695 
1696   return alias_type(idx);
1697 }
1698 
1699 
1700 Compile::AliasType* Compile::alias_type(ciField* field) {
1701   const TypeOopPtr* t;
1702   if (field->is_static())
1703     t = TypeInstPtr::make(field->holder()->java_mirror());
1704   else
1705     t = TypeOopPtr::make_from_klass_raw(field->holder());
1706   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1707   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1708   return atp;
1709 }
1710 
1711 
1712 //------------------------------have_alias_type--------------------------------
1713 bool Compile::have_alias_type(const TypePtr* adr_type) {
1714   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1715   if (ace->_adr_type == adr_type) {
1716     return true;
1717   }
1718 
1719   // Handle special cases.
1720   if (adr_type == NULL)             return true;
1721   if (adr_type == TypePtr::BOTTOM)  return true;
1722 
1723   return find_alias_type(adr_type, true, NULL) != NULL;
1724 }
1725 
1726 //-----------------------------must_alias--------------------------------------
1727 // True if all values of the given address type are in the given alias category.
1728 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1729   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1730   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1731   if (alias_idx == AliasIdxTop)         return false; // the empty category
1732   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1733 
1734   // the only remaining possible overlap is identity
1735   int adr_idx = get_alias_index(adr_type);
1736   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1737   assert(adr_idx == alias_idx ||
1738          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1739           && adr_type                       != TypeOopPtr::BOTTOM),
1740          "should not be testing for overlap with an unsafe pointer");
1741   return adr_idx == alias_idx;
1742 }
1743 
1744 //------------------------------can_alias--------------------------------------
1745 // True if any values of the given address type are in the given alias category.
1746 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1747   if (alias_idx == AliasIdxTop)         return false; // the empty category
1748   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1749   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1750   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1751 
1752   // the only remaining possible overlap is identity
1753   int adr_idx = get_alias_index(adr_type);
1754   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1755   return adr_idx == alias_idx;
1756 }
1757 
1758 
1759 
1760 //---------------------------pop_warm_call-------------------------------------
1761 WarmCallInfo* Compile::pop_warm_call() {
1762   WarmCallInfo* wci = _warm_calls;
1763   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1764   return wci;
1765 }
1766 
1767 //----------------------------Inline_Warm--------------------------------------
1768 int Compile::Inline_Warm() {
1769   // If there is room, try to inline some more warm call sites.
1770   // %%% Do a graph index compaction pass when we think we're out of space?
1771   if (!InlineWarmCalls)  return 0;
1772 
1773   int calls_made_hot = 0;
1774   int room_to_grow   = NodeCountInliningCutoff - unique();
1775   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1776   int amount_grown   = 0;
1777   WarmCallInfo* call;
1778   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1779     int est_size = (int)call->size();
1780     if (est_size > (room_to_grow - amount_grown)) {
1781       // This one won't fit anyway.  Get rid of it.
1782       call->make_cold();
1783       continue;
1784     }
1785     call->make_hot();
1786     calls_made_hot++;
1787     amount_grown   += est_size;
1788     amount_to_grow -= est_size;
1789   }
1790 
1791   if (calls_made_hot > 0)  set_major_progress();
1792   return calls_made_hot;
1793 }
1794 
1795 
1796 //----------------------------Finish_Warm--------------------------------------
1797 void Compile::Finish_Warm() {
1798   if (!InlineWarmCalls)  return;
1799   if (failing())  return;
1800   if (warm_calls() == NULL)  return;
1801 
1802   // Clean up loose ends, if we are out of space for inlining.
1803   WarmCallInfo* call;
1804   while ((call = pop_warm_call()) != NULL) {
1805     call->make_cold();
1806   }
1807 }
1808 
1809 //---------------------cleanup_loop_predicates-----------------------
1810 // Remove the opaque nodes that protect the predicates so that all unused
1811 // checks and uncommon_traps will be eliminated from the ideal graph
1812 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1813   if (predicate_count()==0) return;
1814   for (int i = predicate_count(); i > 0; i--) {
1815     Node * n = predicate_opaque1_node(i-1);
1816     assert(n->Opcode() == Op_Opaque1, "must be");
1817     igvn.replace_node(n, n->in(1));
1818   }
1819   assert(predicate_count()==0, "should be clean!");
1820 }
1821 
1822 // StringOpts and late inlining of string methods
1823 void Compile::inline_string_calls(bool parse_time) {
1824   {
1825     // remove useless nodes to make the usage analysis simpler
1826     ResourceMark rm;
1827     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1828   }
1829 
1830   {
1831     ResourceMark rm;
1832     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1833     PhaseStringOpts pso(initial_gvn(), for_igvn());
1834     print_method(PHASE_AFTER_STRINGOPTS, 3);
1835   }
1836 
1837   // now inline anything that we skipped the first time around
1838   if (!parse_time) {
1839     _late_inlines_pos = _late_inlines.length();
1840   }
1841 
1842   while (_string_late_inlines.length() > 0) {
1843     CallGenerator* cg = _string_late_inlines.pop();
1844     cg->do_late_inline();
1845     if (failing())  return;
1846   }
1847   _string_late_inlines.trunc_to(0);
1848 }
1849 
1850 // Late inlining of boxing methods
1851 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1852   if (_boxing_late_inlines.length() > 0) {
1853     assert(has_boxed_value(), "inconsistent");
1854 
1855     PhaseGVN* gvn = initial_gvn();
1856     set_inlining_incrementally(true);
1857 
1858     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1859     for_igvn()->clear();
1860     gvn->replace_with(&igvn);
1861 
1862     while (_boxing_late_inlines.length() > 0) {
1863       CallGenerator* cg = _boxing_late_inlines.pop();
1864       cg->do_late_inline();
1865       if (failing())  return;
1866     }
1867     _boxing_late_inlines.trunc_to(0);
1868 
1869     {
1870       ResourceMark rm;
1871       PhaseRemoveUseless pru(gvn, for_igvn());
1872     }
1873 
1874     igvn = PhaseIterGVN(gvn);
1875     igvn.optimize();
1876 
1877     set_inlining_progress(false);
1878     set_inlining_incrementally(false);
1879   }
1880 }
1881 
1882 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1883   assert(IncrementalInline, "incremental inlining should be on");
1884   PhaseGVN* gvn = initial_gvn();
1885 
1886   set_inlining_progress(false);
1887   for_igvn()->clear();
1888   gvn->replace_with(&igvn);
1889 
1890   int i = 0;
1891 
1892   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1893     CallGenerator* cg = _late_inlines.at(i);
1894     _late_inlines_pos = i+1;
1895     cg->do_late_inline();
1896     if (failing())  return;
1897   }
1898   int j = 0;
1899   for (; i < _late_inlines.length(); i++, j++) {
1900     _late_inlines.at_put(j, _late_inlines.at(i));
1901   }
1902   _late_inlines.trunc_to(j);
1903 
1904   {
1905     ResourceMark rm;
1906     PhaseRemoveUseless pru(gvn, for_igvn());
1907   }
1908 
1909   igvn = PhaseIterGVN(gvn);
1910 }
1911 
1912 // Perform incremental inlining until bound on number of live nodes is reached
1913 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1914   PhaseGVN* gvn = initial_gvn();
1915 
1916   set_inlining_incrementally(true);
1917   set_inlining_progress(true);
1918   uint low_live_nodes = 0;
1919 
1920   while(inlining_progress() && _late_inlines.length() > 0) {
1921 
1922     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1923       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1924         // PhaseIdealLoop is expensive so we only try it once we are
1925         // out of loop and we only try it again if the previous helped
1926         // got the number of nodes down significantly
1927         PhaseIdealLoop ideal_loop( igvn, false, true );
1928         if (failing())  return;
1929         low_live_nodes = live_nodes();
1930         _major_progress = true;
1931       }
1932 
1933       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1934         break;
1935       }
1936     }
1937 
1938     inline_incrementally_one(igvn);
1939 
1940     if (failing())  return;
1941 
1942     igvn.optimize();
1943 
1944     if (failing())  return;
1945   }
1946 
1947   assert( igvn._worklist.size() == 0, "should be done with igvn" );
1948 
1949   if (_string_late_inlines.length() > 0) {
1950     assert(has_stringbuilder(), "inconsistent");
1951     for_igvn()->clear();
1952     initial_gvn()->replace_with(&igvn);
1953 
1954     inline_string_calls(false);
1955 
1956     if (failing())  return;
1957 
1958     {
1959       ResourceMark rm;
1960       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1961     }
1962 
1963     igvn = PhaseIterGVN(gvn);
1964 
1965     igvn.optimize();
1966   }
1967 
1968   set_inlining_incrementally(false);
1969 }
1970 
1971 
1972 //------------------------------Optimize---------------------------------------
1973 // Given a graph, optimize it.
1974 void Compile::Optimize() {
1975   TracePhase t1("optimizer", &_t_optimizer, true);
1976 
1977 #ifndef PRODUCT
1978   if (env()->break_at_compile()) {
1979     BREAKPOINT;
1980   }
1981 
1982 #endif
1983 
1984   ResourceMark rm;
1985   int          loop_opts_cnt;
1986 
1987   NOT_PRODUCT( verify_graph_edges(); )
1988 
1989   print_method(PHASE_AFTER_PARSING);
1990 
1991  {
1992   // Iterative Global Value Numbering, including ideal transforms
1993   // Initialize IterGVN with types and values from parse-time GVN
1994   PhaseIterGVN igvn(initial_gvn());
1995   {
1996     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1997     igvn.optimize();
1998   }
1999 
2000   print_method(PHASE_ITER_GVN1, 2);
2001 
2002   if (failing())  return;
2003 
2004   {
2005     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2006     inline_incrementally(igvn);
2007   }
2008 
2009   print_method(PHASE_INCREMENTAL_INLINE, 2);
2010 
2011   if (failing())  return;
2012 
2013   if (eliminate_boxing()) {
2014     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2015     // Inline valueOf() methods now.
2016     inline_boxing_calls(igvn);
2017 
2018     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2019 
2020     if (failing())  return;
2021   }
2022 
2023   // Remove the speculative part of types and clean up the graph from
2024   // the extra CastPP nodes whose only purpose is to carry them. Do
2025   // that early so that optimizations are not disrupted by the extra
2026   // CastPP nodes.
2027   remove_speculative_types(igvn);
2028 
2029   // No more new expensive nodes will be added to the list from here
2030   // so keep only the actual candidates for optimizations.
2031   cleanup_expensive_nodes(igvn);
2032 
2033   // Perform escape analysis
2034   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2035     if (has_loops()) {
2036       // Cleanup graph (remove dead nodes).
2037       TracePhase t2("idealLoop", &_t_idealLoop, true);
2038       PhaseIdealLoop ideal_loop( igvn, false, true );
2039       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2040       if (failing())  return;
2041     }
2042     ConnectionGraph::do_analysis(this, &igvn);
2043 
2044     if (failing())  return;
2045 
2046     // Optimize out fields loads from scalar replaceable allocations.
2047     igvn.optimize();
2048     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2049 
2050     if (failing())  return;
2051 
2052     if (congraph() != NULL && macro_count() > 0) {
2053       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2054       PhaseMacroExpand mexp(igvn);
2055       mexp.eliminate_macro_nodes();
2056       igvn.set_delay_transform(false);
2057 
2058       igvn.optimize();
2059       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2060 
2061       if (failing())  return;
2062     }
2063   }
2064 
2065   // Loop transforms on the ideal graph.  Range Check Elimination,
2066   // peeling, unrolling, etc.
2067 
2068   // Set loop opts counter
2069   loop_opts_cnt = num_loop_opts();
2070   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2071     {
2072       TracePhase t2("idealLoop", &_t_idealLoop, true);
2073       PhaseIdealLoop ideal_loop( igvn, true );
2074       loop_opts_cnt--;
2075       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2076       if (failing())  return;
2077     }
2078     // Loop opts pass if partial peeling occurred in previous pass
2079     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2080       TracePhase t3("idealLoop", &_t_idealLoop, true);
2081       PhaseIdealLoop ideal_loop( igvn, false );
2082       loop_opts_cnt--;
2083       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2084       if (failing())  return;
2085     }
2086     // Loop opts pass for loop-unrolling before CCP
2087     if(major_progress() && (loop_opts_cnt > 0)) {
2088       TracePhase t4("idealLoop", &_t_idealLoop, true);
2089       PhaseIdealLoop ideal_loop( igvn, false );
2090       loop_opts_cnt--;
2091       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2092     }
2093     if (!failing()) {
2094       // Verify that last round of loop opts produced a valid graph
2095       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2096       PhaseIdealLoop::verify(igvn);
2097     }
2098   }
2099   if (failing())  return;
2100 
2101   // Conditional Constant Propagation;
2102   PhaseCCP ccp( &igvn );
2103   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2104   {
2105     TracePhase t2("ccp", &_t_ccp, true);
2106     ccp.do_transform();
2107   }
2108   print_method(PHASE_CPP1, 2);
2109 
2110   assert( true, "Break here to ccp.dump_old2new_map()");
2111 
2112   // Iterative Global Value Numbering, including ideal transforms
2113   {
2114     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2115     igvn = ccp;
2116     igvn.optimize();
2117   }
2118 
2119   print_method(PHASE_ITER_GVN2, 2);
2120 
2121   if (failing())  return;
2122 
2123   // Loop transforms on the ideal graph.  Range Check Elimination,
2124   // peeling, unrolling, etc.
2125   if(loop_opts_cnt > 0) {
2126     debug_only( int cnt = 0; );
2127     while(major_progress() && (loop_opts_cnt > 0)) {
2128       TracePhase t2("idealLoop", &_t_idealLoop, true);
2129       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2130       PhaseIdealLoop ideal_loop( igvn, true);
2131       loop_opts_cnt--;
2132       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2133       if (failing())  return;
2134     }
2135   }
2136 
2137   {
2138     // Verify that all previous optimizations produced a valid graph
2139     // at least to this point, even if no loop optimizations were done.
2140     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2141     PhaseIdealLoop::verify(igvn);
2142   }
2143 
2144   {
2145     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2146     PhaseMacroExpand  mex(igvn);
2147     if (mex.expand_macro_nodes()) {
2148       assert(failing(), "must bail out w/ explicit message");
2149       return;
2150     }
2151   }
2152 
2153  } // (End scope of igvn; run destructor if necessary for asserts.)
2154 
2155   dump_inlining();
2156   // A method with only infinite loops has no edges entering loops from root
2157   {
2158     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2159     if (final_graph_reshaping()) {
2160       assert(failing(), "must bail out w/ explicit message");
2161       return;
2162     }
2163   }
2164 
2165   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2166 }
2167 
2168 
2169 //------------------------------Code_Gen---------------------------------------
2170 // Given a graph, generate code for it
2171 void Compile::Code_Gen() {
2172   if (failing()) {
2173     return;
2174   }
2175 
2176   // Perform instruction selection.  You might think we could reclaim Matcher
2177   // memory PDQ, but actually the Matcher is used in generating spill code.
2178   // Internals of the Matcher (including some VectorSets) must remain live
2179   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2180   // set a bit in reclaimed memory.
2181 
2182   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2183   // nodes.  Mapping is only valid at the root of each matched subtree.
2184   NOT_PRODUCT( verify_graph_edges(); )
2185 
2186   Matcher matcher;
2187   _matcher = &matcher;
2188   {
2189     TracePhase t2("matcher", &_t_matcher, true);
2190     matcher.match();
2191   }
2192   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2193   // nodes.  Mapping is only valid at the root of each matched subtree.
2194   NOT_PRODUCT( verify_graph_edges(); )
2195 
2196   // If you have too many nodes, or if matching has failed, bail out
2197   check_node_count(0, "out of nodes matching instructions");
2198   if (failing()) {
2199     return;
2200   }
2201 
2202   // Build a proper-looking CFG
2203   PhaseCFG cfg(node_arena(), root(), matcher);
2204   _cfg = &cfg;
2205   {
2206     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2207     bool success = cfg.do_global_code_motion();
2208     if (!success) {
2209       return;
2210     }
2211 
2212     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2213     NOT_PRODUCT( verify_graph_edges(); )
2214     debug_only( cfg.verify(); )
2215   }
2216 
2217   PhaseChaitin regalloc(unique(), cfg, matcher);
2218   _regalloc = &regalloc;
2219   {
2220     TracePhase t2("regalloc", &_t_registerAllocation, true);
2221     // Perform register allocation.  After Chaitin, use-def chains are
2222     // no longer accurate (at spill code) and so must be ignored.
2223     // Node->LRG->reg mappings are still accurate.
2224     _regalloc->Register_Allocate();
2225 
2226     // Bail out if the allocator builds too many nodes
2227     if (failing()) {
2228       return;
2229     }
2230   }
2231 
2232   // Prior to register allocation we kept empty basic blocks in case the
2233   // the allocator needed a place to spill.  After register allocation we
2234   // are not adding any new instructions.  If any basic block is empty, we
2235   // can now safely remove it.
2236   {
2237     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2238     cfg.remove_empty_blocks();
2239     if (do_freq_based_layout()) {
2240       PhaseBlockLayout layout(cfg);
2241     } else {
2242       cfg.set_loop_alignment();
2243     }
2244     cfg.fixup_flow();
2245   }
2246 
2247   // Apply peephole optimizations
2248   if( OptoPeephole ) {
2249     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2250     PhasePeephole peep( _regalloc, cfg);
2251     peep.do_transform();
2252   }
2253 
2254   // Do late expand if CPU requires this.
2255   if (Matcher::require_postalloc_expand) {
2256     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2257     cfg.postalloc_expand(_regalloc);
2258   }
2259 
2260   // Convert Nodes to instruction bits in a buffer
2261   {
2262     // %%%% workspace merge brought two timers together for one job
2263     TracePhase t2a("output", &_t_output, true);
2264     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2265     Output();
2266   }
2267 
2268   print_method(PHASE_FINAL_CODE);
2269 
2270   // He's dead, Jim.
2271   _cfg     = (PhaseCFG*)0xdeadbeef;
2272   _regalloc = (PhaseChaitin*)0xdeadbeef;
2273 }
2274 
2275 
2276 //------------------------------dump_asm---------------------------------------
2277 // Dump formatted assembly
2278 #ifndef PRODUCT
2279 void Compile::dump_asm(int *pcs, uint pc_limit) {
2280   bool cut_short = false;
2281   tty->print_cr("#");
2282   tty->print("#  ");  _tf->dump();  tty->cr();
2283   tty->print_cr("#");
2284 
2285   // For all blocks
2286   int pc = 0x0;                 // Program counter
2287   char starts_bundle = ' ';
2288   _regalloc->dump_frame();
2289 
2290   Node *n = NULL;
2291   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2292     if (VMThread::should_terminate()) {
2293       cut_short = true;
2294       break;
2295     }
2296     Block* block = _cfg->get_block(i);
2297     if (block->is_connector() && !Verbose) {
2298       continue;
2299     }
2300     n = block->head();
2301     if (pcs && n->_idx < pc_limit) {
2302       tty->print("%3.3x   ", pcs[n->_idx]);
2303     } else {
2304       tty->print("      ");
2305     }
2306     block->dump_head(_cfg);
2307     if (block->is_connector()) {
2308       tty->print_cr("        # Empty connector block");
2309     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2310       tty->print_cr("        # Block is sole successor of call");
2311     }
2312 
2313     // For all instructions
2314     Node *delay = NULL;
2315     for (uint j = 0; j < block->number_of_nodes(); j++) {
2316       if (VMThread::should_terminate()) {
2317         cut_short = true;
2318         break;
2319       }
2320       n = block->get_node(j);
2321       if (valid_bundle_info(n)) {
2322         Bundle* bundle = node_bundling(n);
2323         if (bundle->used_in_unconditional_delay()) {
2324           delay = n;
2325           continue;
2326         }
2327         if (bundle->starts_bundle()) {
2328           starts_bundle = '+';
2329         }
2330       }
2331 
2332       if (WizardMode) {
2333         n->dump();
2334       }
2335 
2336       if( !n->is_Region() &&    // Dont print in the Assembly
2337           !n->is_Phi() &&       // a few noisely useless nodes
2338           !n->is_Proj() &&
2339           !n->is_MachTemp() &&
2340           !n->is_SafePointScalarObject() &&
2341           !n->is_Catch() &&     // Would be nice to print exception table targets
2342           !n->is_MergeMem() &&  // Not very interesting
2343           !n->is_top() &&       // Debug info table constants
2344           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2345           ) {
2346         if (pcs && n->_idx < pc_limit)
2347           tty->print("%3.3x", pcs[n->_idx]);
2348         else
2349           tty->print("   ");
2350         tty->print(" %c ", starts_bundle);
2351         starts_bundle = ' ';
2352         tty->print("\t");
2353         n->format(_regalloc, tty);
2354         tty->cr();
2355       }
2356 
2357       // If we have an instruction with a delay slot, and have seen a delay,
2358       // then back up and print it
2359       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2360         assert(delay != NULL, "no unconditional delay instruction");
2361         if (WizardMode) delay->dump();
2362 
2363         if (node_bundling(delay)->starts_bundle())
2364           starts_bundle = '+';
2365         if (pcs && n->_idx < pc_limit)
2366           tty->print("%3.3x", pcs[n->_idx]);
2367         else
2368           tty->print("   ");
2369         tty->print(" %c ", starts_bundle);
2370         starts_bundle = ' ';
2371         tty->print("\t");
2372         delay->format(_regalloc, tty);
2373         tty->print_cr("");
2374         delay = NULL;
2375       }
2376 
2377       // Dump the exception table as well
2378       if( n->is_Catch() && (Verbose || WizardMode) ) {
2379         // Print the exception table for this offset
2380         _handler_table.print_subtable_for(pc);
2381       }
2382     }
2383 
2384     if (pcs && n->_idx < pc_limit)
2385       tty->print_cr("%3.3x", pcs[n->_idx]);
2386     else
2387       tty->print_cr("");
2388 
2389     assert(cut_short || delay == NULL, "no unconditional delay branch");
2390 
2391   } // End of per-block dump
2392   tty->print_cr("");
2393 
2394   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2395 }
2396 #endif
2397 
2398 //------------------------------Final_Reshape_Counts---------------------------
2399 // This class defines counters to help identify when a method
2400 // may/must be executed using hardware with only 24-bit precision.
2401 struct Final_Reshape_Counts : public StackObj {
2402   int  _call_count;             // count non-inlined 'common' calls
2403   int  _float_count;            // count float ops requiring 24-bit precision
2404   int  _double_count;           // count double ops requiring more precision
2405   int  _java_call_count;        // count non-inlined 'java' calls
2406   int  _inner_loop_count;       // count loops which need alignment
2407   VectorSet _visited;           // Visitation flags
2408   Node_List _tests;             // Set of IfNodes & PCTableNodes
2409 
2410   Final_Reshape_Counts() :
2411     _call_count(0), _float_count(0), _double_count(0),
2412     _java_call_count(0), _inner_loop_count(0),
2413     _visited( Thread::current()->resource_area() ) { }
2414 
2415   void inc_call_count  () { _call_count  ++; }
2416   void inc_float_count () { _float_count ++; }
2417   void inc_double_count() { _double_count++; }
2418   void inc_java_call_count() { _java_call_count++; }
2419   void inc_inner_loop_count() { _inner_loop_count++; }
2420 
2421   int  get_call_count  () const { return _call_count  ; }
2422   int  get_float_count () const { return _float_count ; }
2423   int  get_double_count() const { return _double_count; }
2424   int  get_java_call_count() const { return _java_call_count; }
2425   int  get_inner_loop_count() const { return _inner_loop_count; }
2426 };
2427 
2428 #ifdef ASSERT
2429 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2430   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2431   // Make sure the offset goes inside the instance layout.
2432   return k->contains_field_offset(tp->offset());
2433   // Note that OffsetBot and OffsetTop are very negative.
2434 }
2435 #endif
2436 
2437 // Eliminate trivially redundant StoreCMs and accumulate their
2438 // precedence edges.
2439 void Compile::eliminate_redundant_card_marks(Node* n) {
2440   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2441   if (n->in(MemNode::Address)->outcnt() > 1) {
2442     // There are multiple users of the same address so it might be
2443     // possible to eliminate some of the StoreCMs
2444     Node* mem = n->in(MemNode::Memory);
2445     Node* adr = n->in(MemNode::Address);
2446     Node* val = n->in(MemNode::ValueIn);
2447     Node* prev = n;
2448     bool done = false;
2449     // Walk the chain of StoreCMs eliminating ones that match.  As
2450     // long as it's a chain of single users then the optimization is
2451     // safe.  Eliminating partially redundant StoreCMs would require
2452     // cloning copies down the other paths.
2453     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2454       if (adr == mem->in(MemNode::Address) &&
2455           val == mem->in(MemNode::ValueIn)) {
2456         // redundant StoreCM
2457         if (mem->req() > MemNode::OopStore) {
2458           // Hasn't been processed by this code yet.
2459           n->add_prec(mem->in(MemNode::OopStore));
2460         } else {
2461           // Already converted to precedence edge
2462           for (uint i = mem->req(); i < mem->len(); i++) {
2463             // Accumulate any precedence edges
2464             if (mem->in(i) != NULL) {
2465               n->add_prec(mem->in(i));
2466             }
2467           }
2468           // Everything above this point has been processed.
2469           done = true;
2470         }
2471         // Eliminate the previous StoreCM
2472         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2473         assert(mem->outcnt() == 0, "should be dead");
2474         mem->disconnect_inputs(NULL, this);
2475       } else {
2476         prev = mem;
2477       }
2478       mem = prev->in(MemNode::Memory);
2479     }
2480   }
2481 }
2482 
2483 //------------------------------final_graph_reshaping_impl----------------------
2484 // Implement items 1-5 from final_graph_reshaping below.
2485 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2486 
2487   if ( n->outcnt() == 0 ) return; // dead node
2488   uint nop = n->Opcode();
2489 
2490   // Check for 2-input instruction with "last use" on right input.
2491   // Swap to left input.  Implements item (2).
2492   if( n->req() == 3 &&          // two-input instruction
2493       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2494       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2495       n->in(2)->outcnt() == 1 &&// right use IS a last use
2496       !n->in(2)->is_Con() ) {   // right use is not a constant
2497     // Check for commutative opcode
2498     switch( nop ) {
2499     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2500     case Op_MaxI:  case Op_MinI:
2501     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2502     case Op_AndL:  case Op_XorL:  case Op_OrL:
2503     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2504       // Move "last use" input to left by swapping inputs
2505       n->swap_edges(1, 2);
2506       break;
2507     }
2508     default:
2509       break;
2510     }
2511   }
2512 
2513 #ifdef ASSERT
2514   if( n->is_Mem() ) {
2515     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2516     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2517             // oop will be recorded in oop map if load crosses safepoint
2518             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2519                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2520             "raw memory operations should have control edge");
2521   }
2522 #endif
2523   // Count FPU ops and common calls, implements item (3)
2524   switch( nop ) {
2525   // Count all float operations that may use FPU
2526   case Op_AddF:
2527   case Op_SubF:
2528   case Op_MulF:
2529   case Op_DivF:
2530   case Op_NegF:
2531   case Op_ModF:
2532   case Op_ConvI2F:
2533   case Op_ConF:
2534   case Op_CmpF:
2535   case Op_CmpF3:
2536   // case Op_ConvL2F: // longs are split into 32-bit halves
2537     frc.inc_float_count();
2538     break;
2539 
2540   case Op_ConvF2D:
2541   case Op_ConvD2F:
2542     frc.inc_float_count();
2543     frc.inc_double_count();
2544     break;
2545 
2546   // Count all double operations that may use FPU
2547   case Op_AddD:
2548   case Op_SubD:
2549   case Op_MulD:
2550   case Op_DivD:
2551   case Op_NegD:
2552   case Op_ModD:
2553   case Op_ConvI2D:
2554   case Op_ConvD2I:
2555   // case Op_ConvL2D: // handled by leaf call
2556   // case Op_ConvD2L: // handled by leaf call
2557   case Op_ConD:
2558   case Op_CmpD:
2559   case Op_CmpD3:
2560     frc.inc_double_count();
2561     break;
2562   case Op_Opaque1:              // Remove Opaque Nodes before matching
2563   case Op_Opaque2:              // Remove Opaque Nodes before matching
2564     n->subsume_by(n->in(1), this);
2565     break;
2566   case Op_CallStaticJava:
2567   case Op_CallJava:
2568   case Op_CallDynamicJava:
2569     frc.inc_java_call_count(); // Count java call site;
2570   case Op_CallRuntime:
2571   case Op_CallLeaf:
2572   case Op_CallLeafNoFP: {
2573     assert( n->is_Call(), "" );
2574     CallNode *call = n->as_Call();
2575     // Count call sites where the FP mode bit would have to be flipped.
2576     // Do not count uncommon runtime calls:
2577     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2578     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2579     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2580       frc.inc_call_count();   // Count the call site
2581     } else {                  // See if uncommon argument is shared
2582       Node *n = call->in(TypeFunc::Parms);
2583       int nop = n->Opcode();
2584       // Clone shared simple arguments to uncommon calls, item (1).
2585       if( n->outcnt() > 1 &&
2586           !n->is_Proj() &&
2587           nop != Op_CreateEx &&
2588           nop != Op_CheckCastPP &&
2589           nop != Op_DecodeN &&
2590           nop != Op_DecodeNKlass &&
2591           !n->is_Mem() ) {
2592         Node *x = n->clone();
2593         call->set_req( TypeFunc::Parms, x );
2594       }
2595     }
2596     break;
2597   }
2598 
2599   case Op_StoreD:
2600   case Op_LoadD:
2601   case Op_LoadD_unaligned:
2602     frc.inc_double_count();
2603     goto handle_mem;
2604   case Op_StoreF:
2605   case Op_LoadF:
2606     frc.inc_float_count();
2607     goto handle_mem;
2608 
2609   case Op_StoreCM:
2610     {
2611       // Convert OopStore dependence into precedence edge
2612       Node* prec = n->in(MemNode::OopStore);
2613       n->del_req(MemNode::OopStore);
2614       n->add_prec(prec);
2615       eliminate_redundant_card_marks(n);
2616     }
2617 
2618     // fall through
2619 
2620   case Op_StoreB:
2621   case Op_StoreC:
2622   case Op_StorePConditional:
2623   case Op_StoreI:
2624   case Op_StoreL:
2625   case Op_StoreIConditional:
2626   case Op_StoreLConditional:
2627   case Op_CompareAndSwapI:
2628   case Op_CompareAndSwapL:
2629   case Op_CompareAndSwapP:
2630   case Op_CompareAndSwapN:
2631   case Op_GetAndAddI:
2632   case Op_GetAndAddL:
2633   case Op_GetAndSetI:
2634   case Op_GetAndSetL:
2635   case Op_GetAndSetP:
2636   case Op_GetAndSetN:
2637   case Op_StoreP:
2638   case Op_StoreN:
2639   case Op_StoreNKlass:
2640   case Op_LoadB:
2641   case Op_LoadUB:
2642   case Op_LoadUS:
2643   case Op_LoadI:
2644   case Op_LoadKlass:
2645   case Op_LoadNKlass:
2646   case Op_LoadL:
2647   case Op_LoadL_unaligned:
2648   case Op_LoadPLocked:
2649   case Op_LoadP:
2650   case Op_LoadN:
2651   case Op_LoadRange:
2652   case Op_LoadS: {
2653   handle_mem:
2654 #ifdef ASSERT
2655     if( VerifyOptoOopOffsets ) {
2656       assert( n->is_Mem(), "" );
2657       MemNode *mem  = (MemNode*)n;
2658       // Check to see if address types have grounded out somehow.
2659       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2660       assert( !tp || oop_offset_is_sane(tp), "" );
2661     }
2662 #endif
2663     break;
2664   }
2665 
2666   case Op_AddP: {               // Assert sane base pointers
2667     Node *addp = n->in(AddPNode::Address);
2668     assert( !addp->is_AddP() ||
2669             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2670             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2671             "Base pointers must match" );
2672 #ifdef _LP64
2673     if ((UseCompressedOops || UseCompressedClassPointers) &&
2674         addp->Opcode() == Op_ConP &&
2675         addp == n->in(AddPNode::Base) &&
2676         n->in(AddPNode::Offset)->is_Con()) {
2677       // Use addressing with narrow klass to load with offset on x86.
2678       // On sparc loading 32-bits constant and decoding it have less
2679       // instructions (4) then load 64-bits constant (7).
2680       // Do this transformation here since IGVN will convert ConN back to ConP.
2681       const Type* t = addp->bottom_type();
2682       if (t->isa_oopptr() || t->isa_klassptr()) {
2683         Node* nn = NULL;
2684 
2685         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2686 
2687         // Look for existing ConN node of the same exact type.
2688         Node* r  = root();
2689         uint cnt = r->outcnt();
2690         for (uint i = 0; i < cnt; i++) {
2691           Node* m = r->raw_out(i);
2692           if (m!= NULL && m->Opcode() == op &&
2693               m->bottom_type()->make_ptr() == t) {
2694             nn = m;
2695             break;
2696           }
2697         }
2698         if (nn != NULL) {
2699           // Decode a narrow oop to match address
2700           // [R12 + narrow_oop_reg<<3 + offset]
2701           if (t->isa_oopptr()) {
2702             nn = new (this) DecodeNNode(nn, t);
2703           } else {
2704             nn = new (this) DecodeNKlassNode(nn, t);
2705           }
2706           n->set_req(AddPNode::Base, nn);
2707           n->set_req(AddPNode::Address, nn);
2708           if (addp->outcnt() == 0) {
2709             addp->disconnect_inputs(NULL, this);
2710           }
2711         }
2712       }
2713     }
2714 #endif
2715     break;
2716   }
2717 
2718 #ifdef _LP64
2719   case Op_CastPP:
2720     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2721       Node* in1 = n->in(1);
2722       const Type* t = n->bottom_type();
2723       Node* new_in1 = in1->clone();
2724       new_in1->as_DecodeN()->set_type(t);
2725 
2726       if (!Matcher::narrow_oop_use_complex_address()) {
2727         //
2728         // x86, ARM and friends can handle 2 adds in addressing mode
2729         // and Matcher can fold a DecodeN node into address by using
2730         // a narrow oop directly and do implicit NULL check in address:
2731         //
2732         // [R12 + narrow_oop_reg<<3 + offset]
2733         // NullCheck narrow_oop_reg
2734         //
2735         // On other platforms (Sparc) we have to keep new DecodeN node and
2736         // use it to do implicit NULL check in address:
2737         //
2738         // decode_not_null narrow_oop_reg, base_reg
2739         // [base_reg + offset]
2740         // NullCheck base_reg
2741         //
2742         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2743         // to keep the information to which NULL check the new DecodeN node
2744         // corresponds to use it as value in implicit_null_check().
2745         //
2746         new_in1->set_req(0, n->in(0));
2747       }
2748 
2749       n->subsume_by(new_in1, this);
2750       if (in1->outcnt() == 0) {
2751         in1->disconnect_inputs(NULL, this);
2752       }
2753     }
2754     break;
2755 
2756   case Op_CmpP:
2757     // Do this transformation here to preserve CmpPNode::sub() and
2758     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2759     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2760       Node* in1 = n->in(1);
2761       Node* in2 = n->in(2);
2762       if (!in1->is_DecodeNarrowPtr()) {
2763         in2 = in1;
2764         in1 = n->in(2);
2765       }
2766       assert(in1->is_DecodeNarrowPtr(), "sanity");
2767 
2768       Node* new_in2 = NULL;
2769       if (in2->is_DecodeNarrowPtr()) {
2770         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2771         new_in2 = in2->in(1);
2772       } else if (in2->Opcode() == Op_ConP) {
2773         const Type* t = in2->bottom_type();
2774         if (t == TypePtr::NULL_PTR) {
2775           assert(in1->is_DecodeN(), "compare klass to null?");
2776           // Don't convert CmpP null check into CmpN if compressed
2777           // oops implicit null check is not generated.
2778           // This will allow to generate normal oop implicit null check.
2779           if (Matcher::gen_narrow_oop_implicit_null_checks())
2780             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2781           //
2782           // This transformation together with CastPP transformation above
2783           // will generated code for implicit NULL checks for compressed oops.
2784           //
2785           // The original code after Optimize()
2786           //
2787           //    LoadN memory, narrow_oop_reg
2788           //    decode narrow_oop_reg, base_reg
2789           //    CmpP base_reg, NULL
2790           //    CastPP base_reg // NotNull
2791           //    Load [base_reg + offset], val_reg
2792           //
2793           // after these transformations will be
2794           //
2795           //    LoadN memory, narrow_oop_reg
2796           //    CmpN narrow_oop_reg, NULL
2797           //    decode_not_null narrow_oop_reg, base_reg
2798           //    Load [base_reg + offset], val_reg
2799           //
2800           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2801           // since narrow oops can be used in debug info now (see the code in
2802           // final_graph_reshaping_walk()).
2803           //
2804           // At the end the code will be matched to
2805           // on x86:
2806           //
2807           //    Load_narrow_oop memory, narrow_oop_reg
2808           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2809           //    NullCheck narrow_oop_reg
2810           //
2811           // and on sparc:
2812           //
2813           //    Load_narrow_oop memory, narrow_oop_reg
2814           //    decode_not_null narrow_oop_reg, base_reg
2815           //    Load [base_reg + offset], val_reg
2816           //    NullCheck base_reg
2817           //
2818         } else if (t->isa_oopptr()) {
2819           new_in2 = ConNode::make(this, t->make_narrowoop());
2820         } else if (t->isa_klassptr()) {
2821           new_in2 = ConNode::make(this, t->make_narrowklass());
2822         }
2823       }
2824       if (new_in2 != NULL) {
2825         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2826         n->subsume_by(cmpN, this);
2827         if (in1->outcnt() == 0) {
2828           in1->disconnect_inputs(NULL, this);
2829         }
2830         if (in2->outcnt() == 0) {
2831           in2->disconnect_inputs(NULL, this);
2832         }
2833       }
2834     }
2835     break;
2836 
2837   case Op_DecodeN:
2838   case Op_DecodeNKlass:
2839     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2840     // DecodeN could be pinned when it can't be fold into
2841     // an address expression, see the code for Op_CastPP above.
2842     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2843     break;
2844 
2845   case Op_EncodeP:
2846   case Op_EncodePKlass: {
2847     Node* in1 = n->in(1);
2848     if (in1->is_DecodeNarrowPtr()) {
2849       n->subsume_by(in1->in(1), this);
2850     } else if (in1->Opcode() == Op_ConP) {
2851       const Type* t = in1->bottom_type();
2852       if (t == TypePtr::NULL_PTR) {
2853         assert(t->isa_oopptr(), "null klass?");
2854         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2855       } else if (t->isa_oopptr()) {
2856         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2857       } else if (t->isa_klassptr()) {
2858         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2859       }
2860     }
2861     if (in1->outcnt() == 0) {
2862       in1->disconnect_inputs(NULL, this);
2863     }
2864     break;
2865   }
2866 
2867   case Op_Proj: {
2868     if (OptimizeStringConcat) {
2869       ProjNode* p = n->as_Proj();
2870       if (p->_is_io_use) {
2871         // Separate projections were used for the exception path which
2872         // are normally removed by a late inline.  If it wasn't inlined
2873         // then they will hang around and should just be replaced with
2874         // the original one.
2875         Node* proj = NULL;
2876         // Replace with just one
2877         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2878           Node *use = i.get();
2879           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2880             proj = use;
2881             break;
2882           }
2883         }
2884         assert(proj != NULL, "must be found");
2885         p->subsume_by(proj, this);
2886       }
2887     }
2888     break;
2889   }
2890 
2891   case Op_Phi:
2892     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2893       // The EncodeP optimization may create Phi with the same edges
2894       // for all paths. It is not handled well by Register Allocator.
2895       Node* unique_in = n->in(1);
2896       assert(unique_in != NULL, "");
2897       uint cnt = n->req();
2898       for (uint i = 2; i < cnt; i++) {
2899         Node* m = n->in(i);
2900         assert(m != NULL, "");
2901         if (unique_in != m)
2902           unique_in = NULL;
2903       }
2904       if (unique_in != NULL) {
2905         n->subsume_by(unique_in, this);
2906       }
2907     }
2908     break;
2909 
2910 #endif
2911 
2912   case Op_ModI:
2913     if (UseDivMod) {
2914       // Check if a%b and a/b both exist
2915       Node* d = n->find_similar(Op_DivI);
2916       if (d) {
2917         // Replace them with a fused divmod if supported
2918         if (Matcher::has_match_rule(Op_DivModI)) {
2919           DivModINode* divmod = DivModINode::make(this, n);
2920           d->subsume_by(divmod->div_proj(), this);
2921           n->subsume_by(divmod->mod_proj(), this);
2922         } else {
2923           // replace a%b with a-((a/b)*b)
2924           Node* mult = new (this) MulINode(d, d->in(2));
2925           Node* sub  = new (this) SubINode(d->in(1), mult);
2926           n->subsume_by(sub, this);
2927         }
2928       }
2929     }
2930     break;
2931 
2932   case Op_ModL:
2933     if (UseDivMod) {
2934       // Check if a%b and a/b both exist
2935       Node* d = n->find_similar(Op_DivL);
2936       if (d) {
2937         // Replace them with a fused divmod if supported
2938         if (Matcher::has_match_rule(Op_DivModL)) {
2939           DivModLNode* divmod = DivModLNode::make(this, n);
2940           d->subsume_by(divmod->div_proj(), this);
2941           n->subsume_by(divmod->mod_proj(), this);
2942         } else {
2943           // replace a%b with a-((a/b)*b)
2944           Node* mult = new (this) MulLNode(d, d->in(2));
2945           Node* sub  = new (this) SubLNode(d->in(1), mult);
2946           n->subsume_by(sub, this);
2947         }
2948       }
2949     }
2950     break;
2951 
2952   case Op_LoadVector:
2953   case Op_StoreVector:
2954     break;
2955 
2956   case Op_PackB:
2957   case Op_PackS:
2958   case Op_PackI:
2959   case Op_PackF:
2960   case Op_PackL:
2961   case Op_PackD:
2962     if (n->req()-1 > 2) {
2963       // Replace many operand PackNodes with a binary tree for matching
2964       PackNode* p = (PackNode*) n;
2965       Node* btp = p->binary_tree_pack(this, 1, n->req());
2966       n->subsume_by(btp, this);
2967     }
2968     break;
2969   case Op_Loop:
2970   case Op_CountedLoop:
2971     if (n->as_Loop()->is_inner_loop()) {
2972       frc.inc_inner_loop_count();
2973     }
2974     break;
2975   case Op_LShiftI:
2976   case Op_RShiftI:
2977   case Op_URShiftI:
2978   case Op_LShiftL:
2979   case Op_RShiftL:
2980   case Op_URShiftL:
2981     if (Matcher::need_masked_shift_count) {
2982       // The cpu's shift instructions don't restrict the count to the
2983       // lower 5/6 bits. We need to do the masking ourselves.
2984       Node* in2 = n->in(2);
2985       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2986       const TypeInt* t = in2->find_int_type();
2987       if (t != NULL && t->is_con()) {
2988         juint shift = t->get_con();
2989         if (shift > mask) { // Unsigned cmp
2990           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
2991         }
2992       } else {
2993         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2994           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
2995           n->set_req(2, shift);
2996         }
2997       }
2998       if (in2->outcnt() == 0) { // Remove dead node
2999         in2->disconnect_inputs(NULL, this);
3000       }
3001     }
3002     break;
3003   case Op_MemBarStoreStore:
3004   case Op_MemBarRelease:
3005     // Break the link with AllocateNode: it is no longer useful and
3006     // confuses register allocation.
3007     if (n->req() > MemBarNode::Precedent) {
3008       n->set_req(MemBarNode::Precedent, top());
3009     }
3010     break;
3011     // Must set a control edge on all nodes that produce a FlagsProj
3012     // so they can't escape the block that consumes the flags.
3013     // Must also set the non throwing branch as the control
3014     // for all nodes that depends on the result. Unless the node
3015     // already have a control that isn't the control of the
3016     // flag producer
3017   case Op_FlagsProj:
3018     {
3019       MathExactNode* math = (MathExactNode*)  n->in(0);
3020       Node* ctrl = math->control_node();
3021       Node* non_throwing = math->non_throwing_branch();
3022       math->set_req(0, ctrl);
3023 
3024       Node* result = math->result_node();
3025       if (result != NULL) {
3026         for (DUIterator_Fast jmax, j = result->fast_outs(jmax); j < jmax; j++) {
3027           Node* out = result->fast_out(j);
3028           // Phi nodes shouldn't be moved. They would only match below if they
3029           // had the same control as the MathExactNode. The only time that
3030           // would happen is if the Phi is also an input to the MathExact
3031           //
3032           // Cmp nodes shouldn't have control set at all.
3033           if (out->is_Phi() ||
3034               out->is_Cmp()) {
3035             continue;
3036           }
3037 
3038           if (out->in(0) == NULL) {
3039             out->set_req(0, non_throwing);
3040           } else if (out->in(0) == ctrl) {
3041             out->set_req(0, non_throwing);
3042           }
3043         }
3044       }
3045     }
3046     break;
3047   default:
3048     assert( !n->is_Call(), "" );
3049     assert( !n->is_Mem(), "" );
3050     break;
3051   }
3052 
3053   // Collect CFG split points
3054   if (n->is_MultiBranch())
3055     frc._tests.push(n);
3056 }
3057 
3058 //------------------------------final_graph_reshaping_walk---------------------
3059 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3060 // requires that the walk visits a node's inputs before visiting the node.
3061 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3062   ResourceArea *area = Thread::current()->resource_area();
3063   Unique_Node_List sfpt(area);
3064 
3065   frc._visited.set(root->_idx); // first, mark node as visited
3066   uint cnt = root->req();
3067   Node *n = root;
3068   uint  i = 0;
3069   while (true) {
3070     if (i < cnt) {
3071       // Place all non-visited non-null inputs onto stack
3072       Node* m = n->in(i);
3073       ++i;
3074       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3075         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
3076           sfpt.push(m);
3077         cnt = m->req();
3078         nstack.push(n, i); // put on stack parent and next input's index
3079         n = m;
3080         i = 0;
3081       }
3082     } else {
3083       // Now do post-visit work
3084       final_graph_reshaping_impl( n, frc );
3085       if (nstack.is_empty())
3086         break;             // finished
3087       n = nstack.node();   // Get node from stack
3088       cnt = n->req();
3089       i = nstack.index();
3090       nstack.pop();        // Shift to the next node on stack
3091     }
3092   }
3093 
3094   // Skip next transformation if compressed oops are not used.
3095   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3096       (!UseCompressedOops && !UseCompressedClassPointers))
3097     return;
3098 
3099   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3100   // It could be done for an uncommon traps or any safepoints/calls
3101   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3102   while (sfpt.size() > 0) {
3103     n = sfpt.pop();
3104     JVMState *jvms = n->as_SafePoint()->jvms();
3105     assert(jvms != NULL, "sanity");
3106     int start = jvms->debug_start();
3107     int end   = n->req();
3108     bool is_uncommon = (n->is_CallStaticJava() &&
3109                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3110     for (int j = start; j < end; j++) {
3111       Node* in = n->in(j);
3112       if (in->is_DecodeNarrowPtr()) {
3113         bool safe_to_skip = true;
3114         if (!is_uncommon ) {
3115           // Is it safe to skip?
3116           for (uint i = 0; i < in->outcnt(); i++) {
3117             Node* u = in->raw_out(i);
3118             if (!u->is_SafePoint() ||
3119                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3120               safe_to_skip = false;
3121             }
3122           }
3123         }
3124         if (safe_to_skip) {
3125           n->set_req(j, in->in(1));
3126         }
3127         if (in->outcnt() == 0) {
3128           in->disconnect_inputs(NULL, this);
3129         }
3130       }
3131     }
3132   }
3133 }
3134 
3135 //------------------------------final_graph_reshaping--------------------------
3136 // Final Graph Reshaping.
3137 //
3138 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3139 //     and not commoned up and forced early.  Must come after regular
3140 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3141 //     inputs to Loop Phis; these will be split by the allocator anyways.
3142 //     Remove Opaque nodes.
3143 // (2) Move last-uses by commutative operations to the left input to encourage
3144 //     Intel update-in-place two-address operations and better register usage
3145 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3146 //     calls canonicalizing them back.
3147 // (3) Count the number of double-precision FP ops, single-precision FP ops
3148 //     and call sites.  On Intel, we can get correct rounding either by
3149 //     forcing singles to memory (requires extra stores and loads after each
3150 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3151 //     clearing the mode bit around call sites).  The mode bit is only used
3152 //     if the relative frequency of single FP ops to calls is low enough.
3153 //     This is a key transform for SPEC mpeg_audio.
3154 // (4) Detect infinite loops; blobs of code reachable from above but not
3155 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3156 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3157 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3158 //     Detection is by looking for IfNodes where only 1 projection is
3159 //     reachable from below or CatchNodes missing some targets.
3160 // (5) Assert for insane oop offsets in debug mode.
3161 
3162 bool Compile::final_graph_reshaping() {
3163   // an infinite loop may have been eliminated by the optimizer,
3164   // in which case the graph will be empty.
3165   if (root()->req() == 1) {
3166     record_method_not_compilable("trivial infinite loop");
3167     return true;
3168   }
3169 
3170   // Expensive nodes have their control input set to prevent the GVN
3171   // from freely commoning them. There's no GVN beyond this point so
3172   // no need to keep the control input. We want the expensive nodes to
3173   // be freely moved to the least frequent code path by gcm.
3174   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3175   for (int i = 0; i < expensive_count(); i++) {
3176     _expensive_nodes->at(i)->set_req(0, NULL);
3177   }
3178 
3179   Final_Reshape_Counts frc;
3180 
3181   // Visit everybody reachable!
3182   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3183   Node_Stack nstack(unique() >> 1);
3184   final_graph_reshaping_walk(nstack, root(), frc);
3185 
3186   // Check for unreachable (from below) code (i.e., infinite loops).
3187   for( uint i = 0; i < frc._tests.size(); i++ ) {
3188     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3189     // Get number of CFG targets.
3190     // Note that PCTables include exception targets after calls.
3191     uint required_outcnt = n->required_outcnt();
3192     if (n->outcnt() != required_outcnt) {
3193       // Check for a few special cases.  Rethrow Nodes never take the
3194       // 'fall-thru' path, so expected kids is 1 less.
3195       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3196         if (n->in(0)->in(0)->is_Call()) {
3197           CallNode *call = n->in(0)->in(0)->as_Call();
3198           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3199             required_outcnt--;      // Rethrow always has 1 less kid
3200           } else if (call->req() > TypeFunc::Parms &&
3201                      call->is_CallDynamicJava()) {
3202             // Check for null receiver. In such case, the optimizer has
3203             // detected that the virtual call will always result in a null
3204             // pointer exception. The fall-through projection of this CatchNode
3205             // will not be populated.
3206             Node *arg0 = call->in(TypeFunc::Parms);
3207             if (arg0->is_Type() &&
3208                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3209               required_outcnt--;
3210             }
3211           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3212                      call->req() > TypeFunc::Parms+1 &&
3213                      call->is_CallStaticJava()) {
3214             // Check for negative array length. In such case, the optimizer has
3215             // detected that the allocation attempt will always result in an
3216             // exception. There is no fall-through projection of this CatchNode .
3217             Node *arg1 = call->in(TypeFunc::Parms+1);
3218             if (arg1->is_Type() &&
3219                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3220               required_outcnt--;
3221             }
3222           }
3223         }
3224       }
3225       // Recheck with a better notion of 'required_outcnt'
3226       if (n->outcnt() != required_outcnt) {
3227         record_method_not_compilable("malformed control flow");
3228         return true;            // Not all targets reachable!
3229       }
3230     }
3231     // Check that I actually visited all kids.  Unreached kids
3232     // must be infinite loops.
3233     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3234       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3235         record_method_not_compilable("infinite loop");
3236         return true;            // Found unvisited kid; must be unreach
3237       }
3238   }
3239 
3240   // If original bytecodes contained a mixture of floats and doubles
3241   // check if the optimizer has made it homogenous, item (3).
3242   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3243       frc.get_float_count() > 32 &&
3244       frc.get_double_count() == 0 &&
3245       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3246     set_24_bit_selection_and_mode( false,  true );
3247   }
3248 
3249   set_java_calls(frc.get_java_call_count());
3250   set_inner_loops(frc.get_inner_loop_count());
3251 
3252   // No infinite loops, no reason to bail out.
3253   return false;
3254 }
3255 
3256 //-----------------------------too_many_traps----------------------------------
3257 // Report if there are too many traps at the current method and bci.
3258 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3259 bool Compile::too_many_traps(ciMethod* method,
3260                              int bci,
3261                              Deoptimization::DeoptReason reason) {
3262   ciMethodData* md = method->method_data();
3263   if (md->is_empty()) {
3264     // Assume the trap has not occurred, or that it occurred only
3265     // because of a transient condition during start-up in the interpreter.
3266     return false;
3267   }
3268   if (md->has_trap_at(bci, reason) != 0) {
3269     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3270     // Also, if there are multiple reasons, or if there is no per-BCI record,
3271     // assume the worst.
3272     if (log())
3273       log()->elem("observe trap='%s' count='%d'",
3274                   Deoptimization::trap_reason_name(reason),
3275                   md->trap_count(reason));
3276     return true;
3277   } else {
3278     // Ignore method/bci and see if there have been too many globally.
3279     return too_many_traps(reason, md);
3280   }
3281 }
3282 
3283 // Less-accurate variant which does not require a method and bci.
3284 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3285                              ciMethodData* logmd) {
3286  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
3287     // Too many traps globally.
3288     // Note that we use cumulative trap_count, not just md->trap_count.
3289     if (log()) {
3290       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3291       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3292                   Deoptimization::trap_reason_name(reason),
3293                   mcount, trap_count(reason));
3294     }
3295     return true;
3296   } else {
3297     // The coast is clear.
3298     return false;
3299   }
3300 }
3301 
3302 //--------------------------too_many_recompiles--------------------------------
3303 // Report if there are too many recompiles at the current method and bci.
3304 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3305 // Is not eager to return true, since this will cause the compiler to use
3306 // Action_none for a trap point, to avoid too many recompilations.
3307 bool Compile::too_many_recompiles(ciMethod* method,
3308                                   int bci,
3309                                   Deoptimization::DeoptReason reason) {
3310   ciMethodData* md = method->method_data();
3311   if (md->is_empty()) {
3312     // Assume the trap has not occurred, or that it occurred only
3313     // because of a transient condition during start-up in the interpreter.
3314     return false;
3315   }
3316   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3317   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3318   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3319   Deoptimization::DeoptReason per_bc_reason
3320     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3321   if ((per_bc_reason == Deoptimization::Reason_none
3322        || md->has_trap_at(bci, reason) != 0)
3323       // The trap frequency measure we care about is the recompile count:
3324       && md->trap_recompiled_at(bci)
3325       && md->overflow_recompile_count() >= bc_cutoff) {
3326     // Do not emit a trap here if it has already caused recompilations.
3327     // Also, if there are multiple reasons, or if there is no per-BCI record,
3328     // assume the worst.
3329     if (log())
3330       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3331                   Deoptimization::trap_reason_name(reason),
3332                   md->trap_count(reason),
3333                   md->overflow_recompile_count());
3334     return true;
3335   } else if (trap_count(reason) != 0
3336              && decompile_count() >= m_cutoff) {
3337     // Too many recompiles globally, and we have seen this sort of trap.
3338     // Use cumulative decompile_count, not just md->decompile_count.
3339     if (log())
3340       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3341                   Deoptimization::trap_reason_name(reason),
3342                   md->trap_count(reason), trap_count(reason),
3343                   md->decompile_count(), decompile_count());
3344     return true;
3345   } else {
3346     // The coast is clear.
3347     return false;
3348   }
3349 }
3350 
3351 
3352 #ifndef PRODUCT
3353 //------------------------------verify_graph_edges---------------------------
3354 // Walk the Graph and verify that there is a one-to-one correspondence
3355 // between Use-Def edges and Def-Use edges in the graph.
3356 void Compile::verify_graph_edges(bool no_dead_code) {
3357   if (VerifyGraphEdges) {
3358     ResourceArea *area = Thread::current()->resource_area();
3359     Unique_Node_List visited(area);
3360     // Call recursive graph walk to check edges
3361     _root->verify_edges(visited);
3362     if (no_dead_code) {
3363       // Now make sure that no visited node is used by an unvisited node.
3364       bool dead_nodes = 0;
3365       Unique_Node_List checked(area);
3366       while (visited.size() > 0) {
3367         Node* n = visited.pop();
3368         checked.push(n);
3369         for (uint i = 0; i < n->outcnt(); i++) {
3370           Node* use = n->raw_out(i);
3371           if (checked.member(use))  continue;  // already checked
3372           if (visited.member(use))  continue;  // already in the graph
3373           if (use->is_Con())        continue;  // a dead ConNode is OK
3374           // At this point, we have found a dead node which is DU-reachable.
3375           if (dead_nodes++ == 0)
3376             tty->print_cr("*** Dead nodes reachable via DU edges:");
3377           use->dump(2);
3378           tty->print_cr("---");
3379           checked.push(use);  // No repeats; pretend it is now checked.
3380         }
3381       }
3382       assert(dead_nodes == 0, "using nodes must be reachable from root");
3383     }
3384   }
3385 }
3386 
3387 // Verify GC barriers consistency
3388 // Currently supported:
3389 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3390 void Compile::verify_barriers() {
3391   if (UseG1GC) {
3392     // Verify G1 pre-barriers
3393     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3394 
3395     ResourceArea *area = Thread::current()->resource_area();
3396     Unique_Node_List visited(area);
3397     Node_List worklist(area);
3398     // We're going to walk control flow backwards starting from the Root
3399     worklist.push(_root);
3400     while (worklist.size() > 0) {
3401       Node* x = worklist.pop();
3402       if (x == NULL || x == top()) continue;
3403       if (visited.member(x)) {
3404         continue;
3405       } else {
3406         visited.push(x);
3407       }
3408 
3409       if (x->is_Region()) {
3410         for (uint i = 1; i < x->req(); i++) {
3411           worklist.push(x->in(i));
3412         }
3413       } else {
3414         worklist.push(x->in(0));
3415         // We are looking for the pattern:
3416         //                            /->ThreadLocal
3417         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3418         //              \->ConI(0)
3419         // We want to verify that the If and the LoadB have the same control
3420         // See GraphKit::g1_write_barrier_pre()
3421         if (x->is_If()) {
3422           IfNode *iff = x->as_If();
3423           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3424             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3425             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3426                 && cmp->in(1)->is_Load()) {
3427               LoadNode* load = cmp->in(1)->as_Load();
3428               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3429                   && load->in(2)->in(3)->is_Con()
3430                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3431 
3432                 Node* if_ctrl = iff->in(0);
3433                 Node* load_ctrl = load->in(0);
3434 
3435                 if (if_ctrl != load_ctrl) {
3436                   // Skip possible CProj->NeverBranch in infinite loops
3437                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3438                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3439                     if_ctrl = if_ctrl->in(0)->in(0);
3440                   }
3441                 }
3442                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3443               }
3444             }
3445           }
3446         }
3447       }
3448     }
3449   }
3450 }
3451 
3452 #endif
3453 
3454 // The Compile object keeps track of failure reasons separately from the ciEnv.
3455 // This is required because there is not quite a 1-1 relation between the
3456 // ciEnv and its compilation task and the Compile object.  Note that one
3457 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3458 // to backtrack and retry without subsuming loads.  Other than this backtracking
3459 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3460 // by the logic in C2Compiler.
3461 void Compile::record_failure(const char* reason) {
3462   if (log() != NULL) {
3463     log()->elem("failure reason='%s' phase='compile'", reason);
3464   }
3465   if (_failure_reason == NULL) {
3466     // Record the first failure reason.
3467     _failure_reason = reason;
3468   }
3469 
3470   EventCompilerFailure event;
3471   if (event.should_commit()) {
3472     event.set_compileID(Compile::compile_id());
3473     event.set_failure(reason);
3474     event.commit();
3475   }
3476 
3477   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3478     C->print_method(PHASE_FAILURE);
3479   }
3480   _root = NULL;  // flush the graph, too
3481 }
3482 
3483 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3484   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3485     _phase_name(name), _dolog(dolog)
3486 {
3487   if (dolog) {
3488     C = Compile::current();
3489     _log = C->log();
3490   } else {
3491     C = NULL;
3492     _log = NULL;
3493   }
3494   if (_log != NULL) {
3495     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3496     _log->stamp();
3497     _log->end_head();
3498   }
3499 }
3500 
3501 Compile::TracePhase::~TracePhase() {
3502 
3503   C = Compile::current();
3504   if (_dolog) {
3505     _log = C->log();
3506   } else {
3507     _log = NULL;
3508   }
3509 
3510 #ifdef ASSERT
3511   if (PrintIdealNodeCount) {
3512     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3513                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3514   }
3515 
3516   if (VerifyIdealNodeCount) {
3517     Compile::current()->print_missing_nodes();
3518   }
3519 #endif
3520 
3521   if (_log != NULL) {
3522     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3523   }
3524 }
3525 
3526 //=============================================================================
3527 // Two Constant's are equal when the type and the value are equal.
3528 bool Compile::Constant::operator==(const Constant& other) {
3529   if (type()          != other.type()         )  return false;
3530   if (can_be_reused() != other.can_be_reused())  return false;
3531   // For floating point values we compare the bit pattern.
3532   switch (type()) {
3533   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3534   case T_LONG:
3535   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3536   case T_OBJECT:
3537   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3538   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3539   case T_METADATA: return (_v._metadata == other._v._metadata);
3540   default: ShouldNotReachHere();
3541   }
3542   return false;
3543 }
3544 
3545 static int type_to_size_in_bytes(BasicType t) {
3546   switch (t) {
3547   case T_LONG:    return sizeof(jlong  );
3548   case T_FLOAT:   return sizeof(jfloat );
3549   case T_DOUBLE:  return sizeof(jdouble);
3550   case T_METADATA: return sizeof(Metadata*);
3551     // We use T_VOID as marker for jump-table entries (labels) which
3552     // need an internal word relocation.
3553   case T_VOID:
3554   case T_ADDRESS:
3555   case T_OBJECT:  return sizeof(jobject);
3556   }
3557 
3558   ShouldNotReachHere();
3559   return -1;
3560 }
3561 
3562 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3563   // sort descending
3564   if (a->freq() > b->freq())  return -1;
3565   if (a->freq() < b->freq())  return  1;
3566   return 0;
3567 }
3568 
3569 void Compile::ConstantTable::calculate_offsets_and_size() {
3570   // First, sort the array by frequencies.
3571   _constants.sort(qsort_comparator);
3572 
3573 #ifdef ASSERT
3574   // Make sure all jump-table entries were sorted to the end of the
3575   // array (they have a negative frequency).
3576   bool found_void = false;
3577   for (int i = 0; i < _constants.length(); i++) {
3578     Constant con = _constants.at(i);
3579     if (con.type() == T_VOID)
3580       found_void = true;  // jump-tables
3581     else
3582       assert(!found_void, "wrong sorting");
3583   }
3584 #endif
3585 
3586   int offset = 0;
3587   for (int i = 0; i < _constants.length(); i++) {
3588     Constant* con = _constants.adr_at(i);
3589 
3590     // Align offset for type.
3591     int typesize = type_to_size_in_bytes(con->type());
3592     offset = align_size_up(offset, typesize);
3593     con->set_offset(offset);   // set constant's offset
3594 
3595     if (con->type() == T_VOID) {
3596       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3597       offset = offset + typesize * n->outcnt();  // expand jump-table
3598     } else {
3599       offset = offset + typesize;
3600     }
3601   }
3602 
3603   // Align size up to the next section start (which is insts; see
3604   // CodeBuffer::align_at_start).
3605   assert(_size == -1, "already set?");
3606   _size = align_size_up(offset, CodeEntryAlignment);
3607 }
3608 
3609 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3610   MacroAssembler _masm(&cb);
3611   for (int i = 0; i < _constants.length(); i++) {
3612     Constant con = _constants.at(i);
3613     address constant_addr;
3614     switch (con.type()) {
3615     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3616     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3617     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3618     case T_OBJECT: {
3619       jobject obj = con.get_jobject();
3620       int oop_index = _masm.oop_recorder()->find_index(obj);
3621       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3622       break;
3623     }
3624     case T_ADDRESS: {
3625       address addr = (address) con.get_jobject();
3626       constant_addr = _masm.address_constant(addr);
3627       break;
3628     }
3629     // We use T_VOID as marker for jump-table entries (labels) which
3630     // need an internal word relocation.
3631     case T_VOID: {
3632       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3633       // Fill the jump-table with a dummy word.  The real value is
3634       // filled in later in fill_jump_table.
3635       address dummy = (address) n;
3636       constant_addr = _masm.address_constant(dummy);
3637       // Expand jump-table
3638       for (uint i = 1; i < n->outcnt(); i++) {
3639         address temp_addr = _masm.address_constant(dummy + i);
3640         assert(temp_addr, "consts section too small");
3641       }
3642       break;
3643     }
3644     case T_METADATA: {
3645       Metadata* obj = con.get_metadata();
3646       int metadata_index = _masm.oop_recorder()->find_index(obj);
3647       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3648       break;
3649     }
3650     default: ShouldNotReachHere();
3651     }
3652     assert(constant_addr, "consts section too small");
3653     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3654   }
3655 }
3656 
3657 int Compile::ConstantTable::find_offset(Constant& con) const {
3658   int idx = _constants.find(con);
3659   assert(idx != -1, "constant must be in constant table");
3660   int offset = _constants.at(idx).offset();
3661   assert(offset != -1, "constant table not emitted yet?");
3662   return offset;
3663 }
3664 
3665 void Compile::ConstantTable::add(Constant& con) {
3666   if (con.can_be_reused()) {
3667     int idx = _constants.find(con);
3668     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3669       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3670       return;
3671     }
3672   }
3673   (void) _constants.append(con);
3674 }
3675 
3676 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3677   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3678   Constant con(type, value, b->_freq);
3679   add(con);
3680   return con;
3681 }
3682 
3683 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3684   Constant con(metadata);
3685   add(con);
3686   return con;
3687 }
3688 
3689 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3690   jvalue value;
3691   BasicType type = oper->type()->basic_type();
3692   switch (type) {
3693   case T_LONG:    value.j = oper->constantL(); break;
3694   case T_FLOAT:   value.f = oper->constantF(); break;
3695   case T_DOUBLE:  value.d = oper->constantD(); break;
3696   case T_OBJECT:
3697   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3698   case T_METADATA: return add((Metadata*)oper->constant()); break;
3699   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3700   }
3701   return add(n, type, value);
3702 }
3703 
3704 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3705   jvalue value;
3706   // We can use the node pointer here to identify the right jump-table
3707   // as this method is called from Compile::Fill_buffer right before
3708   // the MachNodes are emitted and the jump-table is filled (means the
3709   // MachNode pointers do not change anymore).
3710   value.l = (jobject) n;
3711   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3712   add(con);
3713   return con;
3714 }
3715 
3716 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3717   // If called from Compile::scratch_emit_size do nothing.
3718   if (Compile::current()->in_scratch_emit_size())  return;
3719 
3720   assert(labels.is_nonempty(), "must be");
3721   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3722 
3723   // Since MachConstantNode::constant_offset() also contains
3724   // table_base_offset() we need to subtract the table_base_offset()
3725   // to get the plain offset into the constant table.
3726   int offset = n->constant_offset() - table_base_offset();
3727 
3728   MacroAssembler _masm(&cb);
3729   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3730 
3731   for (uint i = 0; i < n->outcnt(); i++) {
3732     address* constant_addr = &jump_table_base[i];
3733     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
3734     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3735     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3736   }
3737 }
3738 
3739 void Compile::dump_inlining() {
3740   if (print_inlining() || print_intrinsics()) {
3741     // Print inlining message for candidates that we couldn't inline
3742     // for lack of space or non constant receiver
3743     for (int i = 0; i < _late_inlines.length(); i++) {
3744       CallGenerator* cg = _late_inlines.at(i);
3745       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3746     }
3747     Unique_Node_List useful;
3748     useful.push(root());
3749     for (uint next = 0; next < useful.size(); ++next) {
3750       Node* n  = useful.at(next);
3751       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3752         CallNode* call = n->as_Call();
3753         CallGenerator* cg = call->generator();
3754         cg->print_inlining_late("receiver not constant");
3755       }
3756       uint max = n->len();
3757       for ( uint i = 0; i < max; ++i ) {
3758         Node *m = n->in(i);
3759         if ( m == NULL ) continue;
3760         useful.push(m);
3761       }
3762     }
3763     for (int i = 0; i < _print_inlining_list->length(); i++) {
3764       tty->print(_print_inlining_list->adr_at(i)->ss()->as_string());
3765     }
3766   }
3767 }
3768 
3769 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3770   if (n1->Opcode() < n2->Opcode())      return -1;
3771   else if (n1->Opcode() > n2->Opcode()) return 1;
3772 
3773   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3774   for (uint i = 1; i < n1->req(); i++) {
3775     if (n1->in(i) < n2->in(i))      return -1;
3776     else if (n1->in(i) > n2->in(i)) return 1;
3777   }
3778 
3779   return 0;
3780 }
3781 
3782 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3783   Node* n1 = *n1p;
3784   Node* n2 = *n2p;
3785 
3786   return cmp_expensive_nodes(n1, n2);
3787 }
3788 
3789 void Compile::sort_expensive_nodes() {
3790   if (!expensive_nodes_sorted()) {
3791     _expensive_nodes->sort(cmp_expensive_nodes);
3792   }
3793 }
3794 
3795 bool Compile::expensive_nodes_sorted() const {
3796   for (int i = 1; i < _expensive_nodes->length(); i++) {
3797     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3798       return false;
3799     }
3800   }
3801   return true;
3802 }
3803 
3804 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3805   if (_expensive_nodes->length() == 0) {
3806     return false;
3807   }
3808 
3809   assert(OptimizeExpensiveOps, "optimization off?");
3810 
3811   // Take this opportunity to remove dead nodes from the list
3812   int j = 0;
3813   for (int i = 0; i < _expensive_nodes->length(); i++) {
3814     Node* n = _expensive_nodes->at(i);
3815     if (!n->is_unreachable(igvn)) {
3816       assert(n->is_expensive(), "should be expensive");
3817       _expensive_nodes->at_put(j, n);
3818       j++;
3819     }
3820   }
3821   _expensive_nodes->trunc_to(j);
3822 
3823   // Then sort the list so that similar nodes are next to each other
3824   // and check for at least two nodes of identical kind with same data
3825   // inputs.
3826   sort_expensive_nodes();
3827 
3828   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3829     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3830       return true;
3831     }
3832   }
3833 
3834   return false;
3835 }
3836 
3837 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3838   if (_expensive_nodes->length() == 0) {
3839     return;
3840   }
3841 
3842   assert(OptimizeExpensiveOps, "optimization off?");
3843 
3844   // Sort to bring similar nodes next to each other and clear the
3845   // control input of nodes for which there's only a single copy.
3846   sort_expensive_nodes();
3847 
3848   int j = 0;
3849   int identical = 0;
3850   int i = 0;
3851   for (; i < _expensive_nodes->length()-1; i++) {
3852     assert(j <= i, "can't write beyond current index");
3853     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3854       identical++;
3855       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3856       continue;
3857     }
3858     if (identical > 0) {
3859       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3860       identical = 0;
3861     } else {
3862       Node* n = _expensive_nodes->at(i);
3863       igvn.hash_delete(n);
3864       n->set_req(0, NULL);
3865       igvn.hash_insert(n);
3866     }
3867   }
3868   if (identical > 0) {
3869     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3870   } else if (_expensive_nodes->length() >= 1) {
3871     Node* n = _expensive_nodes->at(i);
3872     igvn.hash_delete(n);
3873     n->set_req(0, NULL);
3874     igvn.hash_insert(n);
3875   }
3876   _expensive_nodes->trunc_to(j);
3877 }
3878 
3879 void Compile::add_expensive_node(Node * n) {
3880   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
3881   assert(n->is_expensive(), "expensive nodes with non-null control here only");
3882   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
3883   if (OptimizeExpensiveOps) {
3884     _expensive_nodes->append(n);
3885   } else {
3886     // Clear control input and let IGVN optimize expensive nodes if
3887     // OptimizeExpensiveOps is off.
3888     n->set_req(0, NULL);
3889   }
3890 }
3891 
3892 /**
3893  * Remove the speculative part of types and clean up the graph
3894  */
3895 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
3896   if (UseTypeSpeculation) {
3897     Unique_Node_List worklist;
3898     worklist.push(root());
3899     int modified = 0;
3900     // Go over all type nodes that carry a speculative type, drop the
3901     // speculative part of the type and enqueue the node for an igvn
3902     // which may optimize it out.
3903     for (uint next = 0; next < worklist.size(); ++next) {
3904       Node *n  = worklist.at(next);
3905       if (n->is_Type() && n->as_Type()->type()->isa_oopptr() != NULL &&
3906           n->as_Type()->type()->is_oopptr()->speculative() != NULL) {
3907         TypeNode* tn = n->as_Type();
3908         const TypeOopPtr* t = tn->type()->is_oopptr();
3909         bool in_hash = igvn.hash_delete(n);
3910         assert(in_hash, "node should be in igvn hash table");
3911         tn->set_type(t->remove_speculative());
3912         igvn.hash_insert(n);
3913         igvn._worklist.push(n); // give it a chance to go away
3914         modified++;
3915       }
3916       uint max = n->len();
3917       for( uint i = 0; i < max; ++i ) {
3918         Node *m = n->in(i);
3919         if (not_a_node(m))  continue;
3920         worklist.push(m);
3921       }
3922     }
3923     // Drop the speculative part of all types in the igvn's type table
3924     igvn.remove_speculative_types();
3925     if (modified > 0) {
3926       igvn.optimize();
3927     }
3928   }
3929 }
3930 
3931 // Auxiliary method to support randomized stressing/fuzzing.
3932 //
3933 // This method can be called the arbitrary number of times, with current count
3934 // as the argument. The logic allows selecting a single candidate from the
3935 // running list of candidates as follows:
3936 //    int count = 0;
3937 //    Cand* selected = null;
3938 //    while(cand = cand->next()) {
3939 //      if (randomized_select(++count)) {
3940 //        selected = cand;
3941 //      }
3942 //    }
3943 //
3944 // Including count equalizes the chances any candidate is "selected".
3945 // This is useful when we don't have the complete list of candidates to choose
3946 // from uniformly. In this case, we need to adjust the randomicity of the
3947 // selection, or else we will end up biasing the selection towards the latter
3948 // candidates.
3949 //
3950 // Quick back-envelope calculation shows that for the list of n candidates
3951 // the equal probability for the candidate to persist as "best" can be
3952 // achieved by replacing it with "next" k-th candidate with the probability
3953 // of 1/k. It can be easily shown that by the end of the run, the
3954 // probability for any candidate is converged to 1/n, thus giving the
3955 // uniform distribution among all the candidates.
3956 //
3957 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
3958 #define RANDOMIZED_DOMAIN_POW 29
3959 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
3960 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
3961 bool Compile::randomized_select(int count) {
3962   assert(count > 0, "only positive");
3963   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
3964 }