1 /*
   2  * Copyright (c) 2002, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc_interface/collectedHeap.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/bytecodeInterpreter.hpp"
  30 #include "interpreter/bytecodeInterpreter.inline.hpp"
  31 #include "interpreter/bytecodeInterpreterProfiling.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/methodCounters.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "prims/jvmtiExport.hpp"
  39 #include "prims/jvmtiThreadState.hpp"
  40 #include "runtime/biasedLocking.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/threadCritical.hpp"
  46 #include "utilities/exceptions.hpp"
  47 #ifdef TARGET_OS_ARCH_linux_x86
  48 # include "orderAccess_linux_x86.inline.hpp"
  49 #endif
  50 #ifdef TARGET_OS_ARCH_linux_sparc
  51 # include "orderAccess_linux_sparc.inline.hpp"
  52 #endif
  53 #ifdef TARGET_OS_ARCH_linux_zero
  54 # include "orderAccess_linux_zero.inline.hpp"
  55 #endif
  56 #ifdef TARGET_OS_ARCH_solaris_x86
  57 # include "orderAccess_solaris_x86.inline.hpp"
  58 #endif
  59 #ifdef TARGET_OS_ARCH_solaris_sparc
  60 # include "orderAccess_solaris_sparc.inline.hpp"
  61 #endif
  62 #ifdef TARGET_OS_ARCH_windows_x86
  63 # include "orderAccess_windows_x86.inline.hpp"
  64 #endif
  65 #ifdef TARGET_OS_ARCH_linux_arm
  66 # include "orderAccess_linux_arm.inline.hpp"
  67 #endif
  68 #ifdef TARGET_OS_ARCH_linux_ppc
  69 # include "orderAccess_linux_ppc.inline.hpp"
  70 #endif
  71 #ifdef TARGET_OS_ARCH_aix_ppc
  72 # include "orderAccess_aix_ppc.inline.hpp"
  73 #endif
  74 #ifdef TARGET_OS_ARCH_bsd_x86
  75 # include "orderAccess_bsd_x86.inline.hpp"
  76 #endif
  77 #ifdef TARGET_OS_ARCH_bsd_zero
  78 # include "orderAccess_bsd_zero.inline.hpp"
  79 #endif
  80 
  81 
  82 // no precompiled headers
  83 #ifdef CC_INTERP
  84 
  85 /*
  86  * USELABELS - If using GCC, then use labels for the opcode dispatching
  87  * rather -then a switch statement. This improves performance because it
  88  * gives us the oportunity to have the instructions that calculate the
  89  * next opcode to jump to be intermixed with the rest of the instructions
  90  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  91  */
  92 #undef USELABELS
  93 #ifdef __GNUC__
  94 /*
  95    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  96    don't use the computed goto approach.
  97 */
  98 #ifndef ASSERT
  99 #define USELABELS
 100 #endif
 101 #endif
 102 
 103 #undef CASE
 104 #ifdef USELABELS
 105 #define CASE(opcode) opc ## opcode
 106 #define DEFAULT opc_default
 107 #else
 108 #define CASE(opcode) case Bytecodes:: opcode
 109 #define DEFAULT default
 110 #endif
 111 
 112 /*
 113  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
 114  * opcode before going back to the top of the while loop, rather then having
 115  * the top of the while loop handle it. This provides a better opportunity
 116  * for instruction scheduling. Some compilers just do this prefetch
 117  * automatically. Some actually end up with worse performance if you
 118  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
 119  */
 120 #undef PREFETCH_OPCCODE
 121 #define PREFETCH_OPCCODE
 122 
 123 /*
 124   Interpreter safepoint: it is expected that the interpreter will have no live
 125   handles of its own creation live at an interpreter safepoint. Therefore we
 126   run a HandleMarkCleaner and trash all handles allocated in the call chain
 127   since the JavaCalls::call_helper invocation that initiated the chain.
 128   There really shouldn't be any handles remaining to trash but this is cheap
 129   in relation to a safepoint.
 130 */
 131 #define SAFEPOINT                                                                 \
 132     if ( SafepointSynchronize::is_synchronizing()) {                              \
 133         {                                                                         \
 134           /* zap freed handles rather than GC'ing them */                         \
 135           HandleMarkCleaner __hmc(THREAD);                                        \
 136         }                                                                         \
 137         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
 138     }
 139 
 140 /*
 141  * VM_JAVA_ERROR - Macro for throwing a java exception from
 142  * the interpreter loop. Should really be a CALL_VM but there
 143  * is no entry point to do the transition to vm so we just
 144  * do it by hand here.
 145  */
 146 #define VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                             \
 147     DECACHE_STATE();                                                              \
 148     SET_LAST_JAVA_FRAME();                                                        \
 149     {                                                                             \
 150        InterpreterRuntime::note_a_trap(THREAD, istate->method(), BCI());          \
 151        ThreadInVMfromJava trans(THREAD);                                          \
 152        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
 153     }                                                                             \
 154     RESET_LAST_JAVA_FRAME();                                                      \
 155     CACHE_STATE();
 156 
 157 // Normal throw of a java error.
 158 #define VM_JAVA_ERROR(name, msg, note_a_trap)                                     \
 159     VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                                 \
 160     goto handle_exception;
 161 
 162 #ifdef PRODUCT
 163 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 164 #else
 165 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
 166 {                                                                                                    \
 167     BytecodeCounter::_counter_value++;                                                               \
 168     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
 169     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
 170     if (TraceBytecodes) {                                                                            \
 171       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
 172                                    topOfStack[Interpreter::expr_index_at(1)],   \
 173                                    topOfStack[Interpreter::expr_index_at(2)]),  \
 174                                    handle_exception);                      \
 175     }                                                                      \
 176 }
 177 #endif
 178 
 179 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 180 #ifdef VM_JVMTI
 181 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 182    incremented. JvmtiExport::at_single_stepping_point() may cause a
 183    breakpoint opcode to get inserted at the current PC to allow the
 184    debugger to coalesce single-step events.
 185 
 186    As a result if we call at_single_stepping_point() we refetch opcode
 187    to get the current opcode. This will override any other prefetching
 188    that might have occurred.
 189 */
 190 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
 191 {                                                                                \
 192       if (_jvmti_interp_events) {                                                \
 193         if (JvmtiExport::should_post_single_step()) {                            \
 194           DECACHE_STATE();                                                       \
 195           SET_LAST_JAVA_FRAME();                                                 \
 196           ThreadInVMfromJava trans(THREAD);                                      \
 197           JvmtiExport::at_single_stepping_point(THREAD,                          \
 198                                           istate->method(),                      \
 199                                           pc);                                   \
 200           RESET_LAST_JAVA_FRAME();                                               \
 201           CACHE_STATE();                                                         \
 202           if (THREAD->pop_frame_pending() &&                                     \
 203               !THREAD->pop_frame_in_process()) {                                 \
 204             goto handle_Pop_Frame;                                               \
 205           }                                                                      \
 206           if (THREAD->jvmti_thread_state() &&                                    \
 207               THREAD->jvmti_thread_state()->is_earlyret_pending()) {             \
 208             goto handle_Early_Return;                                            \
 209           }                                                                      \
 210           opcode = *pc;                                                          \
 211         }                                                                        \
 212       }                                                                          \
 213 }
 214 #else
 215 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 216 #endif
 217 
 218 /*
 219  * CONTINUE - Macro for executing the next opcode.
 220  */
 221 #undef CONTINUE
 222 #ifdef USELABELS
 223 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 224 // initialization (which is is the initialization of the table pointer...)
 225 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
 226 #define CONTINUE {                              \
 227         opcode = *pc;                           \
 228         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 229         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 230         DISPATCH(opcode);                       \
 231     }
 232 #else
 233 #ifdef PREFETCH_OPCCODE
 234 #define CONTINUE {                              \
 235         opcode = *pc;                           \
 236         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 237         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 238         continue;                               \
 239     }
 240 #else
 241 #define CONTINUE {                              \
 242         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 243         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 244         continue;                               \
 245     }
 246 #endif
 247 #endif
 248 
 249 
 250 #define UPDATE_PC(opsize) {pc += opsize; }
 251 /*
 252  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 253  */
 254 #undef UPDATE_PC_AND_TOS
 255 #define UPDATE_PC_AND_TOS(opsize, stack) \
 256     {pc += opsize; MORE_STACK(stack); }
 257 
 258 /*
 259  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 260  * and executing the next opcode. It's somewhat similar to the combination
 261  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 262  */
 263 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 264 #ifdef USELABELS
 265 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 266         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 267         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 268         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 269         DISPATCH(opcode);                                       \
 270     }
 271 
 272 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 273         pc += opsize; opcode = *pc;                             \
 274         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 275         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 276         DISPATCH(opcode);                                       \
 277     }
 278 #else
 279 #ifdef PREFETCH_OPCCODE
 280 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 281         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 282         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 283         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 284         goto do_continue;                                       \
 285     }
 286 
 287 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 288         pc += opsize; opcode = *pc;                             \
 289         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 290         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 291         goto do_continue;                                       \
 292     }
 293 #else
 294 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 295         pc += opsize; MORE_STACK(stack);                \
 296         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 297         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 298         goto do_continue;                               \
 299     }
 300 
 301 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 302         pc += opsize;                                   \
 303         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 304         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 305         goto do_continue;                               \
 306     }
 307 #endif /* PREFETCH_OPCCODE */
 308 #endif /* USELABELS */
 309 
 310 // About to call a new method, update the save the adjusted pc and return to frame manager
 311 #define UPDATE_PC_AND_RETURN(opsize)  \
 312    DECACHE_TOS();                     \
 313    istate->set_bcp(pc+opsize);        \
 314    return;
 315 
 316 
 317 #define METHOD istate->method()
 318 #define GET_METHOD_COUNTERS(res)    \
 319   res = METHOD->method_counters();  \
 320   if (res == NULL) {                \
 321     CALL_VM(res = InterpreterRuntime::build_method_counters(THREAD, METHOD), handle_exception); \
 322   }
 323 
 324 #define OSR_REQUEST(res, branch_pc) \
 325             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
 326 /*
 327  * For those opcodes that need to have a GC point on a backwards branch
 328  */
 329 
 330 // Backedge counting is kind of strange. The asm interpreter will increment
 331 // the backedge counter as a separate counter but it does it's comparisons
 332 // to the sum (scaled) of invocation counter and backedge count to make
 333 // a decision. Seems kind of odd to sum them together like that
 334 
 335 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
 336 
 337 
 338 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
 339     if ((skip) <= 0) {                                                                              \
 340       MethodCounters* mcs;                                                                          \
 341       GET_METHOD_COUNTERS(mcs);                                                                     \
 342       if (UseLoopCounter) {                                                                         \
 343         bool do_OSR = UseOnStackReplacement;                                                        \
 344         mcs->backedge_counter()->increment();                                                       \
 345         if (ProfileInterpreter) {                                                                   \
 346           BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);                                   \
 347           /* Check for overflow against MDO count. */                                               \
 348           do_OSR = do_OSR                                                                           \
 349             && (mdo_last_branch_taken_count >= (uint)InvocationCounter::InterpreterBackwardBranchLimit)\
 350             /* When ProfileInterpreter is on, the backedge_count comes     */                       \
 351             /* from the methodDataOop, which value does not get reset on   */                       \
 352             /* the call to frequency_counter_overflow(). To avoid          */                       \
 353             /* excessive calls to the overflow routine while the method is */                       \
 354             /* being compiled, add a second test to make sure the overflow */                       \
 355             /* function is called only once every overflow_frequency.      */                       \
 356             && (!(mdo_last_branch_taken_count & 1023));                                             \
 357         } else {                                                                                    \
 358           /* check for overflow of backedge counter */                                              \
 359           do_OSR = do_OSR                                                                           \
 360             && mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter());         \
 361         }                                                                                           \
 362         if (do_OSR) {                                                                               \
 363           nmethod* osr_nmethod;                                                                     \
 364           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
 365           if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
 366             intptr_t* buf;                                                                          \
 367             /* Call OSR migration with last java frame only, no checks. */                          \
 368             CALL_VM_NAKED_LJF(buf=SharedRuntime::OSR_migration_begin(THREAD));                      \
 369             istate->set_msg(do_osr);                                                                \
 370             istate->set_osr_buf((address)buf);                                                      \
 371             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
 372             return;                                                                                 \
 373           }                                                                                         \
 374         }                                                                                           \
 375       }  /* UseCompiler ... */                                                                      \
 376       SAFEPOINT;                                                                                    \
 377     }
 378 
 379 /*
 380  * For those opcodes that need to have a GC point on a backwards branch
 381  */
 382 
 383 /*
 384  * Macros for caching and flushing the interpreter state. Some local
 385  * variables need to be flushed out to the frame before we do certain
 386  * things (like pushing frames or becomming gc safe) and some need to
 387  * be recached later (like after popping a frame). We could use one
 388  * macro to cache or decache everything, but this would be less then
 389  * optimal because we don't always need to cache or decache everything
 390  * because some things we know are already cached or decached.
 391  */
 392 #undef DECACHE_TOS
 393 #undef CACHE_TOS
 394 #undef CACHE_PREV_TOS
 395 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 396 
 397 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 398 
 399 #undef DECACHE_PC
 400 #undef CACHE_PC
 401 #define DECACHE_PC()    istate->set_bcp(pc);
 402 #define CACHE_PC()      pc = istate->bcp();
 403 #define CACHE_CP()      cp = istate->constants();
 404 #define CACHE_LOCALS()  locals = istate->locals();
 405 #undef CACHE_FRAME
 406 #define CACHE_FRAME()
 407 
 408 // BCI() returns the current bytecode-index.
 409 #undef  BCI
 410 #define BCI()           ((int)(intptr_t)(pc - (intptr_t)istate->method()->code_base()))
 411 
 412 /*
 413  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 414  * passed is a null ref.
 415  * On some architectures/platforms it should be possible to do this implicitly
 416  */
 417 #undef CHECK_NULL
 418 #define CHECK_NULL(obj_)                                                                       \
 419         if ((obj_) == NULL) {                                                                  \
 420           VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), "", note_nullCheck_trap); \
 421         }                                                                                      \
 422         VERIFY_OOP(obj_)
 423 
 424 #define VMdoubleConstZero() 0.0
 425 #define VMdoubleConstOne() 1.0
 426 #define VMlongConstZero() (max_jlong-max_jlong)
 427 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 428 
 429 /*
 430  * Alignment
 431  */
 432 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 433 
 434 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 435 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 436 
 437 // Reload interpreter state after calling the VM or a possible GC
 438 #define CACHE_STATE()   \
 439         CACHE_TOS();    \
 440         CACHE_PC();     \
 441         CACHE_CP();     \
 442         CACHE_LOCALS();
 443 
 444 // Call the VM with last java frame only.
 445 #define CALL_VM_NAKED_LJF(func)                                    \
 446         DECACHE_STATE();                                           \
 447         SET_LAST_JAVA_FRAME();                                     \
 448         func;                                                      \
 449         RESET_LAST_JAVA_FRAME();                                   \
 450         CACHE_STATE();
 451 
 452 // Call the VM. Don't check for pending exceptions.
 453 #define CALL_VM_NOCHECK(func)                                      \
 454         CALL_VM_NAKED_LJF(func)                                    \
 455         if (THREAD->pop_frame_pending() &&                         \
 456             !THREAD->pop_frame_in_process()) {                     \
 457           goto handle_Pop_Frame;                                   \
 458         }                                                          \
 459         if (THREAD->jvmti_thread_state() &&                        \
 460             THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
 461           goto handle_Early_Return;                                \
 462         }
 463 
 464 // Call the VM and check for pending exceptions
 465 #define CALL_VM(func, label) {                                     \
 466           CALL_VM_NOCHECK(func);                                   \
 467           if (THREAD->has_pending_exception()) goto label;         \
 468         }
 469 
 470 /*
 471  * BytecodeInterpreter::run(interpreterState istate)
 472  * BytecodeInterpreter::runWithChecks(interpreterState istate)
 473  *
 474  * The real deal. This is where byte codes actually get interpreted.
 475  * Basically it's a big while loop that iterates until we return from
 476  * the method passed in.
 477  *
 478  * The runWithChecks is used if JVMTI is enabled.
 479  *
 480  */
 481 #if defined(VM_JVMTI)
 482 void
 483 BytecodeInterpreter::runWithChecks(interpreterState istate) {
 484 #else
 485 void
 486 BytecodeInterpreter::run(interpreterState istate) {
 487 #endif
 488 
 489   // In order to simplify some tests based on switches set at runtime
 490   // we invoke the interpreter a single time after switches are enabled
 491   // and set simpler to to test variables rather than method calls or complex
 492   // boolean expressions.
 493 
 494   static int initialized = 0;
 495   static int checkit = 0;
 496   static intptr_t* c_addr = NULL;
 497   static intptr_t  c_value;
 498 
 499   if (checkit && *c_addr != c_value) {
 500     os::breakpoint();
 501   }
 502 #ifdef VM_JVMTI
 503   static bool _jvmti_interp_events = 0;
 504 #endif
 505 
 506   static int _compiling;  // (UseCompiler || CountCompiledCalls)
 507 
 508 #ifdef ASSERT
 509   if (istate->_msg != initialize) {
 510     // We have a problem here if we are running with a pre-hsx24 JDK (for example during bootstrap)
 511     // because in that case, EnableInvokeDynamic is true by default but will be later switched off
 512     // if java_lang_invoke_MethodHandle::compute_offsets() detects that the JDK only has the classes
 513     // for the old JSR292 implementation.
 514     // This leads to a situation where 'istate->_stack_limit' always accounts for
 515     // methodOopDesc::extra_stack_entries() because it is computed in
 516     // CppInterpreterGenerator::generate_compute_interpreter_state() which was generated while
 517     // EnableInvokeDynamic was still true. On the other hand, istate->_method->max_stack() doesn't
 518     // account for extra_stack_entries() anymore because at the time when it is called
 519     // EnableInvokeDynamic was already set to false.
 520     // So we have a second version of the assertion which handles the case where EnableInvokeDynamic was
 521     // switched off because of the wrong classes.
 522     if (EnableInvokeDynamic || FLAG_IS_CMDLINE(EnableInvokeDynamic)) {
 523       assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
 524     } else {
 525       const int extra_stack_entries = Method::extra_stack_entries_for_jsr292;
 526       assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + extra_stack_entries
 527                                                                                                + 1), "bad stack limit");
 528     }
 529 #ifndef SHARK
 530     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
 531 #endif // !SHARK
 532   }
 533   // Verify linkages.
 534   interpreterState l = istate;
 535   do {
 536     assert(l == l->_self_link, "bad link");
 537     l = l->_prev_link;
 538   } while (l != NULL);
 539   // Screwups with stack management usually cause us to overwrite istate
 540   // save a copy so we can verify it.
 541   interpreterState orig = istate;
 542 #endif
 543 
 544   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 545   register address          pc = istate->bcp();
 546   register jubyte opcode;
 547   register intptr_t*        locals = istate->locals();
 548   register ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
 549 #ifdef LOTS_OF_REGS
 550   register JavaThread*      THREAD = istate->thread();
 551 #else
 552 #undef THREAD
 553 #define THREAD istate->thread()
 554 #endif
 555 
 556 #ifdef USELABELS
 557   const static void* const opclabels_data[256] = {
 558 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
 559 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
 560 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
 561 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
 562 
 563 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
 564 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
 565 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
 566 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
 567 
 568 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
 569 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
 570 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
 571 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
 572 
 573 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
 574 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
 575 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
 576 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
 577 
 578 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
 579 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
 580 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
 581 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
 582 
 583 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
 584 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
 585 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
 586 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
 587 
 588 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
 589 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
 590 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
 591 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
 592 
 593 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
 594 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
 595 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
 596 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
 597 
 598 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
 599 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
 600 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
 601 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
 602 
 603 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
 604 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
 605 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
 606 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
 607 
 608 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
 609 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
 610 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
 611 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
 612 
 613 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
 614 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
 615 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
 616 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
 617 
 618 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
 619 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
 620 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
 621 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 622 
 623 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 624 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 625 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 626 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 627 
 628 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 629 /* 0xE4 */ &&opc_default,     &&opc_fast_aldc,      &&opc_fast_aldc_w,  &&opc_return_register_finalizer,
 630 /* 0xE8 */ &&opc_invokehandle,&&opc_default,        &&opc_default,      &&opc_default,
 631 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 632 
 633 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 634 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 635 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 636 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
 637   };
 638   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 639 #endif /* USELABELS */
 640 
 641 #ifdef ASSERT
 642   // this will trigger a VERIFY_OOP on entry
 643   if (istate->msg() != initialize && ! METHOD->is_static()) {
 644     oop rcvr = LOCALS_OBJECT(0);
 645     VERIFY_OOP(rcvr);
 646   }
 647 #endif
 648 // #define HACK
 649 #ifdef HACK
 650   bool interesting = false;
 651 #endif // HACK
 652 
 653   /* QQQ this should be a stack method so we don't know actual direction */
 654   guarantee(istate->msg() == initialize ||
 655          topOfStack >= istate->stack_limit() &&
 656          topOfStack < istate->stack_base(),
 657          "Stack top out of range");
 658 
 659 #ifdef CC_INTERP_PROFILE
 660   // MethodData's last branch taken count.
 661   uint mdo_last_branch_taken_count = 0;
 662 #else
 663   const uint mdo_last_branch_taken_count = 0;
 664 #endif
 665 
 666   switch (istate->msg()) {
 667     case initialize: {
 668       if (initialized++) ShouldNotReachHere(); // Only one initialize call.
 669       _compiling = (UseCompiler || CountCompiledCalls);
 670 #ifdef VM_JVMTI
 671       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
 672 #endif
 673       return;
 674     }
 675     break;
 676     case method_entry: {
 677       THREAD->set_do_not_unlock();
 678       // count invocations
 679       assert(initialized, "Interpreter not initialized");
 680       if (_compiling) {
 681         MethodCounters* mcs;
 682         GET_METHOD_COUNTERS(mcs);
 683         if (ProfileInterpreter) {
 684           METHOD->increment_interpreter_invocation_count(THREAD);
 685         }
 686         mcs->invocation_counter()->increment();
 687         if (mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter())) {
 688           CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
 689           // We no longer retry on a counter overflow.
 690         }
 691         // Get or create profile data. Check for pending (async) exceptions.
 692         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 693         SAFEPOINT;
 694       }
 695 
 696       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 697         // initialize
 698         os::breakpoint();
 699       }
 700 
 701 #ifdef HACK
 702       {
 703         ResourceMark rm;
 704         char *method_name = istate->method()->name_and_sig_as_C_string();
 705         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 706           tty->print_cr("entering: depth %d bci: %d",
 707                          (istate->_stack_base - istate->_stack),
 708                          istate->_bcp - istate->_method->code_base());
 709           interesting = true;
 710         }
 711       }
 712 #endif // HACK
 713 
 714       // Lock method if synchronized.
 715       if (METHOD->is_synchronized()) {
 716         // oop rcvr = locals[0].j.r;
 717         oop rcvr;
 718         if (METHOD->is_static()) {
 719           rcvr = METHOD->constants()->pool_holder()->java_mirror();
 720         } else {
 721           rcvr = LOCALS_OBJECT(0);
 722           VERIFY_OOP(rcvr);
 723         }
 724         // The initial monitor is ours for the taking.
 725         // Monitor not filled in frame manager any longer as this caused race condition with biased locking.
 726         BasicObjectLock* mon = &istate->monitor_base()[-1];
 727         mon->set_obj(rcvr);
 728         bool success = false;
 729         uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 730         markOop mark = rcvr->mark();
 731         intptr_t hash = (intptr_t) markOopDesc::no_hash;
 732         // Implies UseBiasedLocking.
 733         if (mark->has_bias_pattern()) {
 734           uintptr_t thread_ident;
 735           uintptr_t anticipated_bias_locking_value;
 736           thread_ident = (uintptr_t)istate->thread();
 737           anticipated_bias_locking_value =
 738             (((uintptr_t)rcvr->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 739             ~((uintptr_t) markOopDesc::age_mask_in_place);
 740 
 741           if (anticipated_bias_locking_value == 0) {
 742             // Already biased towards this thread, nothing to do.
 743             if (PrintBiasedLockingStatistics) {
 744               (* BiasedLocking::biased_lock_entry_count_addr())++;
 745             }
 746             success = true;
 747           } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 748             // Try to revoke bias.
 749             markOop header = rcvr->klass()->prototype_header();
 750             if (hash != markOopDesc::no_hash) {
 751               header = header->copy_set_hash(hash);
 752             }
 753             if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), mark) == mark) {
 754               if (PrintBiasedLockingStatistics)
 755                 (*BiasedLocking::revoked_lock_entry_count_addr())++;
 756             }
 757           } else if ((anticipated_bias_locking_value & epoch_mask_in_place) != 0) {
 758             // Try to rebias.
 759             markOop new_header = (markOop) ( (intptr_t) rcvr->klass()->prototype_header() | thread_ident);
 760             if (hash != markOopDesc::no_hash) {
 761               new_header = new_header->copy_set_hash(hash);
 762             }
 763             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), mark) == mark) {
 764               if (PrintBiasedLockingStatistics) {
 765                 (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 766               }
 767             } else {
 768               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 769             }
 770             success = true;
 771           } else {
 772             // Try to bias towards thread in case object is anonymously biased.
 773             markOop header = (markOop) ((uintptr_t) mark &
 774                                         ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 775                                          (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 776             if (hash != markOopDesc::no_hash) {
 777               header = header->copy_set_hash(hash);
 778             }
 779             markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 780             // Debugging hint.
 781             DEBUG_ONLY(mon->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 782             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), header) == header) {
 783               if (PrintBiasedLockingStatistics) {
 784                 (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 785               }
 786             } else {
 787               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 788             }
 789             success = true;
 790           }
 791         }
 792 
 793         // Traditional lightweight locking.
 794         if (!success) {
 795           markOop displaced = rcvr->mark()->set_unlocked();
 796           mon->lock()->set_displaced_header(displaced);
 797           bool call_vm = UseHeavyMonitors;
 798           if (call_vm || Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
 799             // Is it simple recursive case?
 800             if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 801               mon->lock()->set_displaced_header(NULL);
 802             } else {
 803               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 804             }
 805           }
 806         }
 807       }
 808       THREAD->clr_do_not_unlock();
 809 
 810       // Notify jvmti
 811 #ifdef VM_JVMTI
 812       if (_jvmti_interp_events) {
 813         // Whenever JVMTI puts a thread in interp_only_mode, method
 814         // entry/exit events are sent for that thread to track stack depth.
 815         if (THREAD->is_interp_only_mode()) {
 816           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 817                   handle_exception);
 818         }
 819       }
 820 #endif /* VM_JVMTI */
 821 
 822       goto run;
 823     }
 824 
 825     case popping_frame: {
 826       // returned from a java call to pop the frame, restart the call
 827       // clear the message so we don't confuse ourselves later
 828       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 829       istate->set_msg(no_request);
 830       if (_compiling) {
 831         // Set MDX back to the ProfileData of the invoke bytecode that will be
 832         // restarted.
 833         SET_MDX(NULL);
 834         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 835       }
 836       THREAD->clr_pop_frame_in_process();
 837       goto run;
 838     }
 839 
 840     case method_resume: {
 841       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 842         // resume
 843         os::breakpoint();
 844       }
 845 #ifdef HACK
 846       {
 847         ResourceMark rm;
 848         char *method_name = istate->method()->name_and_sig_as_C_string();
 849         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 850           tty->print_cr("resume: depth %d bci: %d",
 851                          (istate->_stack_base - istate->_stack) ,
 852                          istate->_bcp - istate->_method->code_base());
 853           interesting = true;
 854         }
 855       }
 856 #endif // HACK
 857       // returned from a java call, continue executing.
 858       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
 859         goto handle_Pop_Frame;
 860       }
 861       if (THREAD->jvmti_thread_state() &&
 862           THREAD->jvmti_thread_state()->is_earlyret_pending()) {
 863         goto handle_Early_Return;
 864       }
 865 
 866       if (THREAD->has_pending_exception()) goto handle_exception;
 867       // Update the pc by the saved amount of the invoke bytecode size
 868       UPDATE_PC(istate->bcp_advance());
 869 
 870       if (_compiling) {
 871         // Get or create profile data. Check for pending (async) exceptions.
 872         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 873       }
 874       goto run;
 875     }
 876 
 877     case deopt_resume2: {
 878       // Returned from an opcode that will reexecute. Deopt was
 879       // a result of a PopFrame request.
 880       //
 881 
 882       if (_compiling) {
 883         // Get or create profile data. Check for pending (async) exceptions.
 884         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 885       }
 886       goto run;
 887     }
 888 
 889     case deopt_resume: {
 890       // Returned from an opcode that has completed. The stack has
 891       // the result all we need to do is skip across the bytecode
 892       // and continue (assuming there is no exception pending)
 893       //
 894       // compute continuation length
 895       //
 896       // Note: it is possible to deopt at a return_register_finalizer opcode
 897       // because this requires entering the vm to do the registering. While the
 898       // opcode is complete we can't advance because there are no more opcodes
 899       // much like trying to deopt at a poll return. In that has we simply
 900       // get out of here
 901       //
 902       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
 903         // this will do the right thing even if an exception is pending.
 904         goto handle_return;
 905       }
 906       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
 907       if (THREAD->has_pending_exception()) goto handle_exception;
 908 
 909       if (_compiling) {
 910         // Get or create profile data. Check for pending (async) exceptions.
 911         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 912       }
 913       goto run;
 914     }
 915     case got_monitors: {
 916       // continue locking now that we have a monitor to use
 917       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 918       oop lockee = STACK_OBJECT(-1);
 919       VERIFY_OOP(lockee);
 920       // derefing's lockee ought to provoke implicit null check
 921       // find a free monitor
 922       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 923       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
 924       entry->set_obj(lockee);
 925       bool success = false;
 926       uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 927 
 928       markOop mark = lockee->mark();
 929       intptr_t hash = (intptr_t) markOopDesc::no_hash;
 930       // implies UseBiasedLocking
 931       if (mark->has_bias_pattern()) {
 932         uintptr_t thread_ident;
 933         uintptr_t anticipated_bias_locking_value;
 934         thread_ident = (uintptr_t)istate->thread();
 935         anticipated_bias_locking_value =
 936           (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 937           ~((uintptr_t) markOopDesc::age_mask_in_place);
 938 
 939         if  (anticipated_bias_locking_value == 0) {
 940           // already biased towards this thread, nothing to do
 941           if (PrintBiasedLockingStatistics) {
 942             (* BiasedLocking::biased_lock_entry_count_addr())++;
 943           }
 944           success = true;
 945         } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 946           // try revoke bias
 947           markOop header = lockee->klass()->prototype_header();
 948           if (hash != markOopDesc::no_hash) {
 949             header = header->copy_set_hash(hash);
 950           }
 951           if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
 952             if (PrintBiasedLockingStatistics) {
 953               (*BiasedLocking::revoked_lock_entry_count_addr())++;
 954             }
 955           }
 956         } else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
 957           // try rebias
 958           markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
 959           if (hash != markOopDesc::no_hash) {
 960                 new_header = new_header->copy_set_hash(hash);
 961           }
 962           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
 963             if (PrintBiasedLockingStatistics) {
 964               (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 965             }
 966           } else {
 967             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 968           }
 969           success = true;
 970         } else {
 971           // try to bias towards thread in case object is anonymously biased
 972           markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 973                                                           (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 974           if (hash != markOopDesc::no_hash) {
 975             header = header->copy_set_hash(hash);
 976           }
 977           markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 978           // debugging hint
 979           DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 980           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
 981             if (PrintBiasedLockingStatistics) {
 982               (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 983             }
 984           } else {
 985             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 986           }
 987           success = true;
 988         }
 989       }
 990 
 991       // traditional lightweight locking
 992       if (!success) {
 993         markOop displaced = lockee->mark()->set_unlocked();
 994         entry->lock()->set_displaced_header(displaced);
 995         bool call_vm = UseHeavyMonitors;
 996         if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
 997           // Is it simple recursive case?
 998           if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 999             entry->lock()->set_displaced_header(NULL);
1000           } else {
1001             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1002           }
1003         }
1004       }
1005       UPDATE_PC_AND_TOS(1, -1);
1006       goto run;
1007     }
1008     default: {
1009       fatal("Unexpected message from frame manager");
1010     }
1011   }
1012 
1013 run:
1014 
1015   DO_UPDATE_INSTRUCTION_COUNT(*pc)
1016   DEBUGGER_SINGLE_STEP_NOTIFY();
1017 #ifdef PREFETCH_OPCCODE
1018   opcode = *pc;  /* prefetch first opcode */
1019 #endif
1020 
1021 #ifndef USELABELS
1022   while (1)
1023 #endif
1024   {
1025 #ifndef PREFETCH_OPCCODE
1026       opcode = *pc;
1027 #endif
1028       // Seems like this happens twice per opcode. At worst this is only
1029       // need at entry to the loop.
1030       // DEBUGGER_SINGLE_STEP_NOTIFY();
1031       /* Using this labels avoids double breakpoints when quickening and
1032        * when returing from transition frames.
1033        */
1034   opcode_switch:
1035       assert(istate == orig, "Corrupted istate");
1036       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
1037       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
1038       assert(topOfStack < istate->stack_base(), "Stack underrun");
1039 
1040 #ifdef USELABELS
1041       DISPATCH(opcode);
1042 #else
1043       switch (opcode)
1044 #endif
1045       {
1046       CASE(_nop):
1047           UPDATE_PC_AND_CONTINUE(1);
1048 
1049           /* Push miscellaneous constants onto the stack. */
1050 
1051       CASE(_aconst_null):
1052           SET_STACK_OBJECT(NULL, 0);
1053           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1054 
1055 #undef  OPC_CONST_n
1056 #define OPC_CONST_n(opcode, const_type, value)                          \
1057       CASE(opcode):                                                     \
1058           SET_STACK_ ## const_type(value, 0);                           \
1059           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1060 
1061           OPC_CONST_n(_iconst_m1,   INT,       -1);
1062           OPC_CONST_n(_iconst_0,    INT,        0);
1063           OPC_CONST_n(_iconst_1,    INT,        1);
1064           OPC_CONST_n(_iconst_2,    INT,        2);
1065           OPC_CONST_n(_iconst_3,    INT,        3);
1066           OPC_CONST_n(_iconst_4,    INT,        4);
1067           OPC_CONST_n(_iconst_5,    INT,        5);
1068           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
1069           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
1070           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
1071 
1072 #undef  OPC_CONST2_n
1073 #define OPC_CONST2_n(opcname, value, key, kind)                         \
1074       CASE(_##opcname):                                                 \
1075       {                                                                 \
1076           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
1077           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1078       }
1079          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
1080          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
1081          OPC_CONST2_n(lconst_0, Zero, long, LONG);
1082          OPC_CONST2_n(lconst_1, One,  long, LONG);
1083 
1084          /* Load constant from constant pool: */
1085 
1086           /* Push a 1-byte signed integer value onto the stack. */
1087       CASE(_bipush):
1088           SET_STACK_INT((jbyte)(pc[1]), 0);
1089           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1090 
1091           /* Push a 2-byte signed integer constant onto the stack. */
1092       CASE(_sipush):
1093           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
1094           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1095 
1096           /* load from local variable */
1097 
1098       CASE(_aload):
1099           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
1100           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
1101           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1102 
1103       CASE(_iload):
1104       CASE(_fload):
1105           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1106           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1107 
1108       CASE(_lload):
1109           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
1110           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1111 
1112       CASE(_dload):
1113           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
1114           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1115 
1116 #undef  OPC_LOAD_n
1117 #define OPC_LOAD_n(num)                                                 \
1118       CASE(_aload_##num):                                               \
1119           VERIFY_OOP(LOCALS_OBJECT(num));                               \
1120           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
1121           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1122                                                                         \
1123       CASE(_iload_##num):                                               \
1124       CASE(_fload_##num):                                               \
1125           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
1126           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1127                                                                         \
1128       CASE(_lload_##num):                                               \
1129           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
1130           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1131       CASE(_dload_##num):                                               \
1132           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
1133           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1134 
1135           OPC_LOAD_n(0);
1136           OPC_LOAD_n(1);
1137           OPC_LOAD_n(2);
1138           OPC_LOAD_n(3);
1139 
1140           /* store to a local variable */
1141 
1142       CASE(_astore):
1143           astore(topOfStack, -1, locals, pc[1]);
1144           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1145 
1146       CASE(_istore):
1147       CASE(_fstore):
1148           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1149           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1150 
1151       CASE(_lstore):
1152           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1153           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1154 
1155       CASE(_dstore):
1156           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1157           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1158 
1159       CASE(_wide): {
1160           uint16_t reg = Bytes::get_Java_u2(pc + 2);
1161 
1162           opcode = pc[1];
1163 
1164           // Wide and it's sub-bytecode are counted as separate instructions. If we
1165           // don't account for this here, the bytecode trace skips the next bytecode.
1166           DO_UPDATE_INSTRUCTION_COUNT(opcode);
1167 
1168           switch(opcode) {
1169               case Bytecodes::_aload:
1170                   VERIFY_OOP(LOCALS_OBJECT(reg));
1171                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1172                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1173 
1174               case Bytecodes::_iload:
1175               case Bytecodes::_fload:
1176                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1177                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1178 
1179               case Bytecodes::_lload:
1180                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1181                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1182 
1183               case Bytecodes::_dload:
1184                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1185                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1186 
1187               case Bytecodes::_astore:
1188                   astore(topOfStack, -1, locals, reg);
1189                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1190 
1191               case Bytecodes::_istore:
1192               case Bytecodes::_fstore:
1193                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1194                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1195 
1196               case Bytecodes::_lstore:
1197                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1198                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1199 
1200               case Bytecodes::_dstore:
1201                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1202                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1203 
1204               case Bytecodes::_iinc: {
1205                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1206                   // Be nice to see what this generates.... QQQ
1207                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1208                   UPDATE_PC_AND_CONTINUE(6);
1209               }
1210               case Bytecodes::_ret:
1211                   // Profile ret.
1212                   BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(reg))));
1213                   // Now, update the pc.
1214                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1215                   UPDATE_PC_AND_CONTINUE(0);
1216               default:
1217                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode", note_no_trap);
1218           }
1219       }
1220 
1221 
1222 #undef  OPC_STORE_n
1223 #define OPC_STORE_n(num)                                                \
1224       CASE(_astore_##num):                                              \
1225           astore(topOfStack, -1, locals, num);                          \
1226           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1227       CASE(_istore_##num):                                              \
1228       CASE(_fstore_##num):                                              \
1229           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1230           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1231 
1232           OPC_STORE_n(0);
1233           OPC_STORE_n(1);
1234           OPC_STORE_n(2);
1235           OPC_STORE_n(3);
1236 
1237 #undef  OPC_DSTORE_n
1238 #define OPC_DSTORE_n(num)                                               \
1239       CASE(_dstore_##num):                                              \
1240           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1241           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1242       CASE(_lstore_##num):                                              \
1243           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1244           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1245 
1246           OPC_DSTORE_n(0);
1247           OPC_DSTORE_n(1);
1248           OPC_DSTORE_n(2);
1249           OPC_DSTORE_n(3);
1250 
1251           /* stack pop, dup, and insert opcodes */
1252 
1253 
1254       CASE(_pop):                /* Discard the top item on the stack */
1255           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1256 
1257 
1258       CASE(_pop2):               /* Discard the top 2 items on the stack */
1259           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1260 
1261 
1262       CASE(_dup):               /* Duplicate the top item on the stack */
1263           dup(topOfStack);
1264           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1265 
1266       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1267           dup2(topOfStack);
1268           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1269 
1270       CASE(_dup_x1):    /* insert top word two down */
1271           dup_x1(topOfStack);
1272           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1273 
1274       CASE(_dup_x2):    /* insert top word three down  */
1275           dup_x2(topOfStack);
1276           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1277 
1278       CASE(_dup2_x1):   /* insert top 2 slots three down */
1279           dup2_x1(topOfStack);
1280           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1281 
1282       CASE(_dup2_x2):   /* insert top 2 slots four down */
1283           dup2_x2(topOfStack);
1284           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1285 
1286       CASE(_swap): {        /* swap top two elements on the stack */
1287           swap(topOfStack);
1288           UPDATE_PC_AND_CONTINUE(1);
1289       }
1290 
1291           /* Perform various binary integer operations */
1292 
1293 #undef  OPC_INT_BINARY
1294 #define OPC_INT_BINARY(opcname, opname, test)                           \
1295       CASE(_i##opcname):                                                \
1296           if (test && (STACK_INT(-1) == 0)) {                           \
1297               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1298                             "/ by zero", note_div0Check_trap);          \
1299           }                                                             \
1300           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1301                                       STACK_INT(-1)),                   \
1302                                       -2);                              \
1303           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1304       CASE(_l##opcname):                                                \
1305       {                                                                 \
1306           if (test) {                                                   \
1307             jlong l1 = STACK_LONG(-1);                                  \
1308             if (VMlongEqz(l1)) {                                        \
1309               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1310                             "/ by long zero", note_div0Check_trap);     \
1311             }                                                           \
1312           }                                                             \
1313           /* First long at (-1,-2) next long at (-3,-4) */              \
1314           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1315                                         STACK_LONG(-1)),                \
1316                                         -3);                            \
1317           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1318       }
1319 
1320       OPC_INT_BINARY(add, Add, 0);
1321       OPC_INT_BINARY(sub, Sub, 0);
1322       OPC_INT_BINARY(mul, Mul, 0);
1323       OPC_INT_BINARY(and, And, 0);
1324       OPC_INT_BINARY(or,  Or,  0);
1325       OPC_INT_BINARY(xor, Xor, 0);
1326       OPC_INT_BINARY(div, Div, 1);
1327       OPC_INT_BINARY(rem, Rem, 1);
1328 
1329 
1330       /* Perform various binary floating number operations */
1331       /* On some machine/platforms/compilers div zero check can be implicit */
1332 
1333 #undef  OPC_FLOAT_BINARY
1334 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1335       CASE(_d##opcname): {                                                 \
1336           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1337                                             STACK_DOUBLE(-1)),             \
1338                                             -3);                           \
1339           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1340       }                                                                    \
1341       CASE(_f##opcname):                                                   \
1342           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1343                                           STACK_FLOAT(-1)),                \
1344                                           -2);                             \
1345           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1346 
1347 
1348      OPC_FLOAT_BINARY(add, Add);
1349      OPC_FLOAT_BINARY(sub, Sub);
1350      OPC_FLOAT_BINARY(mul, Mul);
1351      OPC_FLOAT_BINARY(div, Div);
1352      OPC_FLOAT_BINARY(rem, Rem);
1353 
1354       /* Shift operations
1355        * Shift left int and long: ishl, lshl
1356        * Logical shift right int and long w/zero extension: iushr, lushr
1357        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1358        */
1359 
1360 #undef  OPC_SHIFT_BINARY
1361 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1362       CASE(_i##opcname):                                                \
1363          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1364                                      STACK_INT(-1)),                    \
1365                                      -2);                               \
1366          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1367       CASE(_l##opcname):                                                \
1368       {                                                                 \
1369          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1370                                        STACK_INT(-1)),                  \
1371                                        -2);                             \
1372          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1373       }
1374 
1375       OPC_SHIFT_BINARY(shl, Shl);
1376       OPC_SHIFT_BINARY(shr, Shr);
1377       OPC_SHIFT_BINARY(ushr, Ushr);
1378 
1379      /* Increment local variable by constant */
1380       CASE(_iinc):
1381       {
1382           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1383           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1384           UPDATE_PC_AND_CONTINUE(3);
1385       }
1386 
1387      /* negate the value on the top of the stack */
1388 
1389       CASE(_ineg):
1390          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1391          UPDATE_PC_AND_CONTINUE(1);
1392 
1393       CASE(_fneg):
1394          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1395          UPDATE_PC_AND_CONTINUE(1);
1396 
1397       CASE(_lneg):
1398       {
1399          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1400          UPDATE_PC_AND_CONTINUE(1);
1401       }
1402 
1403       CASE(_dneg):
1404       {
1405          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1406          UPDATE_PC_AND_CONTINUE(1);
1407       }
1408 
1409       /* Conversion operations */
1410 
1411       CASE(_i2f):       /* convert top of stack int to float */
1412          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1413          UPDATE_PC_AND_CONTINUE(1);
1414 
1415       CASE(_i2l):       /* convert top of stack int to long */
1416       {
1417           // this is ugly QQQ
1418           jlong r = VMint2Long(STACK_INT(-1));
1419           MORE_STACK(-1); // Pop
1420           SET_STACK_LONG(r, 1);
1421 
1422           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1423       }
1424 
1425       CASE(_i2d):       /* convert top of stack int to double */
1426       {
1427           // this is ugly QQQ (why cast to jlong?? )
1428           jdouble r = (jlong)STACK_INT(-1);
1429           MORE_STACK(-1); // Pop
1430           SET_STACK_DOUBLE(r, 1);
1431 
1432           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1433       }
1434 
1435       CASE(_l2i):       /* convert top of stack long to int */
1436       {
1437           jint r = VMlong2Int(STACK_LONG(-1));
1438           MORE_STACK(-2); // Pop
1439           SET_STACK_INT(r, 0);
1440           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1441       }
1442 
1443       CASE(_l2f):   /* convert top of stack long to float */
1444       {
1445           jlong r = STACK_LONG(-1);
1446           MORE_STACK(-2); // Pop
1447           SET_STACK_FLOAT(VMlong2Float(r), 0);
1448           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1449       }
1450 
1451       CASE(_l2d):       /* convert top of stack long to double */
1452       {
1453           jlong r = STACK_LONG(-1);
1454           MORE_STACK(-2); // Pop
1455           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1456           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1457       }
1458 
1459       CASE(_f2i):  /* Convert top of stack float to int */
1460           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1461           UPDATE_PC_AND_CONTINUE(1);
1462 
1463       CASE(_f2l):  /* convert top of stack float to long */
1464       {
1465           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1466           MORE_STACK(-1); // POP
1467           SET_STACK_LONG(r, 1);
1468           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1469       }
1470 
1471       CASE(_f2d):  /* convert top of stack float to double */
1472       {
1473           jfloat f;
1474           jdouble r;
1475           f = STACK_FLOAT(-1);
1476           r = (jdouble) f;
1477           MORE_STACK(-1); // POP
1478           SET_STACK_DOUBLE(r, 1);
1479           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1480       }
1481 
1482       CASE(_d2i): /* convert top of stack double to int */
1483       {
1484           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1485           MORE_STACK(-2);
1486           SET_STACK_INT(r1, 0);
1487           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1488       }
1489 
1490       CASE(_d2f): /* convert top of stack double to float */
1491       {
1492           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1493           MORE_STACK(-2);
1494           SET_STACK_FLOAT(r1, 0);
1495           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1496       }
1497 
1498       CASE(_d2l): /* convert top of stack double to long */
1499       {
1500           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1501           MORE_STACK(-2);
1502           SET_STACK_LONG(r1, 1);
1503           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1504       }
1505 
1506       CASE(_i2b):
1507           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1508           UPDATE_PC_AND_CONTINUE(1);
1509 
1510       CASE(_i2c):
1511           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1512           UPDATE_PC_AND_CONTINUE(1);
1513 
1514       CASE(_i2s):
1515           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1516           UPDATE_PC_AND_CONTINUE(1);
1517 
1518       /* comparison operators */
1519 
1520 
1521 #define COMPARISON_OP(name, comparison)                                      \
1522       CASE(_if_icmp##name): {                                                \
1523           const bool cmp = (STACK_INT(-2) comparison STACK_INT(-1));         \
1524           int skip = cmp                                                     \
1525                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1526           address branch_pc = pc;                                            \
1527           /* Profile branch. */                                              \
1528           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1529           UPDATE_PC_AND_TOS(skip, -2);                                       \
1530           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1531           CONTINUE;                                                          \
1532       }                                                                      \
1533       CASE(_if##name): {                                                     \
1534           const bool cmp = (STACK_INT(-1) comparison 0);                     \
1535           int skip = cmp                                                     \
1536                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1537           address branch_pc = pc;                                            \
1538           /* Profile branch. */                                              \
1539           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1540           UPDATE_PC_AND_TOS(skip, -1);                                       \
1541           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1542           CONTINUE;                                                          \
1543       }
1544 
1545 #define COMPARISON_OP2(name, comparison)                                     \
1546       COMPARISON_OP(name, comparison)                                        \
1547       CASE(_if_acmp##name): {                                                \
1548           const bool cmp = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1));   \
1549           int skip = cmp                                                     \
1550                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1551           address branch_pc = pc;                                            \
1552           /* Profile branch. */                                              \
1553           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1554           UPDATE_PC_AND_TOS(skip, -2);                                       \
1555           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1556           CONTINUE;                                                          \
1557       }
1558 
1559 #define NULL_COMPARISON_NOT_OP(name)                                         \
1560       CASE(_if##name): {                                                     \
1561           const bool cmp = (!(STACK_OBJECT(-1) == NULL));                    \
1562           int skip = cmp                                                     \
1563                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1564           address branch_pc = pc;                                            \
1565           /* Profile branch. */                                              \
1566           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1567           UPDATE_PC_AND_TOS(skip, -1);                                       \
1568           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1569           CONTINUE;                                                          \
1570       }
1571 
1572 #define NULL_COMPARISON_OP(name)                                             \
1573       CASE(_if##name): {                                                     \
1574           const bool cmp = ((STACK_OBJECT(-1) == NULL));                     \
1575           int skip = cmp                                                     \
1576                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1577           address branch_pc = pc;                                            \
1578           /* Profile branch. */                                              \
1579           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1580           UPDATE_PC_AND_TOS(skip, -1);                                       \
1581           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1582           CONTINUE;                                                          \
1583       }
1584       COMPARISON_OP(lt, <);
1585       COMPARISON_OP(gt, >);
1586       COMPARISON_OP(le, <=);
1587       COMPARISON_OP(ge, >=);
1588       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1589       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1590       NULL_COMPARISON_OP(null);
1591       NULL_COMPARISON_NOT_OP(nonnull);
1592 
1593       /* Goto pc at specified offset in switch table. */
1594 
1595       CASE(_tableswitch): {
1596           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1597           int32_t  key  = STACK_INT(-1);
1598           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1599           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1600           int32_t  skip;
1601           key -= low;
1602           if (((uint32_t) key > (uint32_t)(high - low))) {
1603             key = -1;
1604             skip = Bytes::get_Java_u4((address)&lpc[0]);
1605           } else {
1606             skip = Bytes::get_Java_u4((address)&lpc[key + 3]);
1607           }
1608           // Profile switch.
1609           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/key);
1610           // Does this really need a full backedge check (osr)?
1611           address branch_pc = pc;
1612           UPDATE_PC_AND_TOS(skip, -1);
1613           DO_BACKEDGE_CHECKS(skip, branch_pc);
1614           CONTINUE;
1615       }
1616 
1617       /* Goto pc whose table entry matches specified key. */
1618 
1619       CASE(_lookupswitch): {
1620           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1621           int32_t  key  = STACK_INT(-1);
1622           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1623           // Remember index.
1624           int      index = -1;
1625           int      newindex = 0;
1626           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1627           while (--npairs >= 0) {
1628             lpc += 2;
1629             if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1630               skip = Bytes::get_Java_u4((address)&lpc[1]);
1631               index = newindex;
1632               break;
1633             }
1634             newindex += 1;
1635           }
1636           // Profile switch.
1637           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/index);
1638           address branch_pc = pc;
1639           UPDATE_PC_AND_TOS(skip, -1);
1640           DO_BACKEDGE_CHECKS(skip, branch_pc);
1641           CONTINUE;
1642       }
1643 
1644       CASE(_fcmpl):
1645       CASE(_fcmpg):
1646       {
1647           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1648                                         STACK_FLOAT(-1),
1649                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1650                         -2);
1651           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1652       }
1653 
1654       CASE(_dcmpl):
1655       CASE(_dcmpg):
1656       {
1657           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1658                                   STACK_DOUBLE(-1),
1659                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1660           MORE_STACK(-4); // Pop
1661           SET_STACK_INT(r, 0);
1662           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1663       }
1664 
1665       CASE(_lcmp):
1666       {
1667           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1668           MORE_STACK(-4);
1669           SET_STACK_INT(r, 0);
1670           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1671       }
1672 
1673 
1674       /* Return from a method */
1675 
1676       CASE(_areturn):
1677       CASE(_ireturn):
1678       CASE(_freturn):
1679       {
1680           // Allow a safepoint before returning to frame manager.
1681           SAFEPOINT;
1682 
1683           goto handle_return;
1684       }
1685 
1686       CASE(_lreturn):
1687       CASE(_dreturn):
1688       {
1689           // Allow a safepoint before returning to frame manager.
1690           SAFEPOINT;
1691           goto handle_return;
1692       }
1693 
1694       CASE(_return_register_finalizer): {
1695 
1696           oop rcvr = LOCALS_OBJECT(0);
1697           VERIFY_OOP(rcvr);
1698           if (rcvr->klass()->has_finalizer()) {
1699             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1700           }
1701           goto handle_return;
1702       }
1703       CASE(_return): {
1704 
1705           // Allow a safepoint before returning to frame manager.
1706           SAFEPOINT;
1707           goto handle_return;
1708       }
1709 
1710       /* Array access byte-codes */
1711 
1712       /* Every array access byte-code starts out like this */
1713 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1714 #define ARRAY_INTRO(arrayOff)                                                  \
1715       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1716       jint     index  = STACK_INT(arrayOff + 1);                               \
1717       char message[jintAsStringSize];                                          \
1718       CHECK_NULL(arrObj);                                                      \
1719       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1720           sprintf(message, "%d", index);                                       \
1721           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1722                         message, note_rangeCheck_trap);                        \
1723       }
1724 
1725       /* 32-bit loads. These handle conversion from < 32-bit types */
1726 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1727       {                                                                               \
1728           ARRAY_INTRO(-2);                                                            \
1729           (void)extra;                                                                \
1730           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1731                            -2);                                                       \
1732           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1733       }
1734 
1735       /* 64-bit loads */
1736 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1737       {                                                                                    \
1738           ARRAY_INTRO(-2);                                                                 \
1739           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1740           (void)extra;                                                                     \
1741           UPDATE_PC_AND_CONTINUE(1);                                                       \
1742       }
1743 
1744       CASE(_iaload):
1745           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1746       CASE(_faload):
1747           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1748       CASE(_aaload): {
1749           ARRAY_INTRO(-2);
1750           SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1751           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1752       }
1753       CASE(_baload):
1754           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1755       CASE(_caload):
1756           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1757       CASE(_saload):
1758           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1759       CASE(_laload):
1760           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1761       CASE(_daload):
1762           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1763 
1764       /* 32-bit stores. These handle conversion to < 32-bit types */
1765 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1766       {                                                                              \
1767           ARRAY_INTRO(-3);                                                           \
1768           (void)extra;                                                               \
1769           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1770           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1771       }
1772 
1773       /* 64-bit stores */
1774 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1775       {                                                                              \
1776           ARRAY_INTRO(-4);                                                           \
1777           (void)extra;                                                               \
1778           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1779           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1780       }
1781 
1782       CASE(_iastore):
1783           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1784       CASE(_fastore):
1785           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1786       /*
1787        * This one looks different because of the assignability check
1788        */
1789       CASE(_aastore): {
1790           oop rhsObject = STACK_OBJECT(-1);
1791           VERIFY_OOP(rhsObject);
1792           ARRAY_INTRO( -3);
1793           // arrObj, index are set
1794           if (rhsObject != NULL) {
1795             /* Check assignability of rhsObject into arrObj */
1796             Klass* rhsKlass = rhsObject->klass(); // EBX (subclass)
1797             Klass* elemKlass = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1798             //
1799             // Check for compatibilty. This check must not GC!!
1800             // Seems way more expensive now that we must dispatch
1801             //
1802             if (rhsKlass != elemKlass && !rhsKlass->is_subtype_of(elemKlass)) { // ebx->is...
1803               // Decrement counter if subtype check failed.
1804               BI_PROFILE_SUBTYPECHECK_FAILED(rhsKlass);
1805               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "", note_arrayCheck_trap);
1806             }
1807             // Profile checkcast with null_seen and receiver.
1808             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, rhsKlass);
1809           } else {
1810             // Profile checkcast with null_seen and receiver.
1811             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
1812           }
1813           ((objArrayOop) arrObj)->obj_at_put(index, rhsObject);
1814           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1815       }
1816       CASE(_bastore):
1817           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1818       CASE(_castore):
1819           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1820       CASE(_sastore):
1821           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1822       CASE(_lastore):
1823           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1824       CASE(_dastore):
1825           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1826 
1827       CASE(_arraylength):
1828       {
1829           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1830           CHECK_NULL(ary);
1831           SET_STACK_INT(ary->length(), -1);
1832           UPDATE_PC_AND_CONTINUE(1);
1833       }
1834 
1835       /* monitorenter and monitorexit for locking/unlocking an object */
1836 
1837       CASE(_monitorenter): {
1838         oop lockee = STACK_OBJECT(-1);
1839         // derefing's lockee ought to provoke implicit null check
1840         CHECK_NULL(lockee);
1841         // find a free monitor or one already allocated for this object
1842         // if we find a matching object then we need a new monitor
1843         // since this is recursive enter
1844         BasicObjectLock* limit = istate->monitor_base();
1845         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1846         BasicObjectLock* entry = NULL;
1847         while (most_recent != limit ) {
1848           if (most_recent->obj() == NULL) entry = most_recent;
1849           else if (most_recent->obj() == lockee) break;
1850           most_recent++;
1851         }
1852         if (entry != NULL) {
1853           entry->set_obj(lockee);
1854           int success = false;
1855           uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
1856 
1857           markOop mark = lockee->mark();
1858           intptr_t hash = (intptr_t) markOopDesc::no_hash;
1859           // implies UseBiasedLocking
1860           if (mark->has_bias_pattern()) {
1861             uintptr_t thread_ident;
1862             uintptr_t anticipated_bias_locking_value;
1863             thread_ident = (uintptr_t)istate->thread();
1864             anticipated_bias_locking_value =
1865               (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
1866               ~((uintptr_t) markOopDesc::age_mask_in_place);
1867 
1868             if  (anticipated_bias_locking_value == 0) {
1869               // already biased towards this thread, nothing to do
1870               if (PrintBiasedLockingStatistics) {
1871                 (* BiasedLocking::biased_lock_entry_count_addr())++;
1872               }
1873               success = true;
1874             }
1875             else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
1876               // try revoke bias
1877               markOop header = lockee->klass()->prototype_header();
1878               if (hash != markOopDesc::no_hash) {
1879                 header = header->copy_set_hash(hash);
1880               }
1881               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
1882                 if (PrintBiasedLockingStatistics)
1883                   (*BiasedLocking::revoked_lock_entry_count_addr())++;
1884               }
1885             }
1886             else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
1887               // try rebias
1888               markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
1889               if (hash != markOopDesc::no_hash) {
1890                 new_header = new_header->copy_set_hash(hash);
1891               }
1892               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
1893                 if (PrintBiasedLockingStatistics)
1894                   (* BiasedLocking::rebiased_lock_entry_count_addr())++;
1895               }
1896               else {
1897                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1898               }
1899               success = true;
1900             }
1901             else {
1902               // try to bias towards thread in case object is anonymously biased
1903               markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
1904                                                               (uintptr_t)markOopDesc::age_mask_in_place |
1905                                                               epoch_mask_in_place));
1906               if (hash != markOopDesc::no_hash) {
1907                 header = header->copy_set_hash(hash);
1908               }
1909               markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
1910               // debugging hint
1911               DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
1912               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
1913                 if (PrintBiasedLockingStatistics)
1914                   (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
1915               }
1916               else {
1917                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1918               }
1919               success = true;
1920             }
1921           }
1922 
1923           // traditional lightweight locking
1924           if (!success) {
1925             markOop displaced = lockee->mark()->set_unlocked();
1926             entry->lock()->set_displaced_header(displaced);
1927             bool call_vm = UseHeavyMonitors;
1928             if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1929               // Is it simple recursive case?
1930               if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1931                 entry->lock()->set_displaced_header(NULL);
1932               } else {
1933                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1934               }
1935             }
1936           }
1937           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1938         } else {
1939           istate->set_msg(more_monitors);
1940           UPDATE_PC_AND_RETURN(0); // Re-execute
1941         }
1942       }
1943 
1944       CASE(_monitorexit): {
1945         oop lockee = STACK_OBJECT(-1);
1946         CHECK_NULL(lockee);
1947         // derefing's lockee ought to provoke implicit null check
1948         // find our monitor slot
1949         BasicObjectLock* limit = istate->monitor_base();
1950         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1951         while (most_recent != limit ) {
1952           if ((most_recent)->obj() == lockee) {
1953             BasicLock* lock = most_recent->lock();
1954             markOop header = lock->displaced_header();
1955             most_recent->set_obj(NULL);
1956             if (!lockee->mark()->has_bias_pattern()) {
1957               bool call_vm = UseHeavyMonitors;
1958               // If it isn't recursive we either must swap old header or call the runtime
1959               if (header != NULL || call_vm) {
1960                 if (call_vm || Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1961                   // restore object for the slow case
1962                   most_recent->set_obj(lockee);
1963                   CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1964                 }
1965               }
1966             }
1967             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1968           }
1969           most_recent++;
1970         }
1971         // Need to throw illegal monitor state exception
1972         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1973         ShouldNotReachHere();
1974       }
1975 
1976       /* All of the non-quick opcodes. */
1977 
1978       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1979        *  constant pool index in the instruction.
1980        */
1981       CASE(_getfield):
1982       CASE(_getstatic):
1983         {
1984           u2 index;
1985           ConstantPoolCacheEntry* cache;
1986           index = Bytes::get_native_u2(pc+1);
1987 
1988           // QQQ Need to make this as inlined as possible. Probably need to
1989           // split all the bytecode cases out so c++ compiler has a chance
1990           // for constant prop to fold everything possible away.
1991 
1992           cache = cp->entry_at(index);
1993           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1994             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1995                     handle_exception);
1996             cache = cp->entry_at(index);
1997           }
1998 
1999 #ifdef VM_JVMTI
2000           if (_jvmti_interp_events) {
2001             int *count_addr;
2002             oop obj;
2003             // Check to see if a field modification watch has been set
2004             // before we take the time to call into the VM.
2005             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
2006             if ( *count_addr > 0 ) {
2007               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
2008                 obj = (oop)NULL;
2009               } else {
2010                 obj = (oop) STACK_OBJECT(-1);
2011                 VERIFY_OOP(obj);
2012               }
2013               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
2014                                           obj,
2015                                           cache),
2016                                           handle_exception);
2017             }
2018           }
2019 #endif /* VM_JVMTI */
2020 
2021           oop obj;
2022           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
2023             Klass* k = cache->f1_as_klass();
2024             obj = k->java_mirror();
2025             MORE_STACK(1);  // Assume single slot push
2026           } else {
2027             obj = (oop) STACK_OBJECT(-1);
2028             CHECK_NULL(obj);
2029           }
2030 
2031           //
2032           // Now store the result on the stack
2033           //
2034           TosState tos_type = cache->flag_state();
2035           int field_offset = cache->f2_as_index();
2036           if (cache->is_volatile()) {
2037             if (tos_type == atos) {
2038               VERIFY_OOP(obj->obj_field_acquire(field_offset));
2039               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
2040             } else if (tos_type == itos) {
2041               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
2042             } else if (tos_type == ltos) {
2043               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
2044               MORE_STACK(1);
2045             } else if (tos_type == btos) {
2046               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
2047             } else if (tos_type == ctos) {
2048               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
2049             } else if (tos_type == stos) {
2050               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
2051             } else if (tos_type == ftos) {
2052               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
2053             } else {
2054               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
2055               MORE_STACK(1);
2056             }
2057           } else {
2058             if (tos_type == atos) {
2059               VERIFY_OOP(obj->obj_field(field_offset));
2060               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
2061             } else if (tos_type == itos) {
2062               SET_STACK_INT(obj->int_field(field_offset), -1);
2063             } else if (tos_type == ltos) {
2064               SET_STACK_LONG(obj->long_field(field_offset), 0);
2065               MORE_STACK(1);
2066             } else if (tos_type == btos) {
2067               SET_STACK_INT(obj->byte_field(field_offset), -1);
2068             } else if (tos_type == ctos) {
2069               SET_STACK_INT(obj->char_field(field_offset), -1);
2070             } else if (tos_type == stos) {
2071               SET_STACK_INT(obj->short_field(field_offset), -1);
2072             } else if (tos_type == ftos) {
2073               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
2074             } else {
2075               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
2076               MORE_STACK(1);
2077             }
2078           }
2079 
2080           UPDATE_PC_AND_CONTINUE(3);
2081          }
2082 
2083       CASE(_putfield):
2084       CASE(_putstatic):
2085         {
2086           u2 index = Bytes::get_native_u2(pc+1);
2087           ConstantPoolCacheEntry* cache = cp->entry_at(index);
2088           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2089             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
2090                     handle_exception);
2091             cache = cp->entry_at(index);
2092           }
2093 
2094 #ifdef VM_JVMTI
2095           if (_jvmti_interp_events) {
2096             int *count_addr;
2097             oop obj;
2098             // Check to see if a field modification watch has been set
2099             // before we take the time to call into the VM.
2100             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
2101             if ( *count_addr > 0 ) {
2102               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2103                 obj = (oop)NULL;
2104               }
2105               else {
2106                 if (cache->is_long() || cache->is_double()) {
2107                   obj = (oop) STACK_OBJECT(-3);
2108                 } else {
2109                   obj = (oop) STACK_OBJECT(-2);
2110                 }
2111                 VERIFY_OOP(obj);
2112               }
2113 
2114               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
2115                                           obj,
2116                                           cache,
2117                                           (jvalue *)STACK_SLOT(-1)),
2118                                           handle_exception);
2119             }
2120           }
2121 #endif /* VM_JVMTI */
2122 
2123           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2124           // out so c++ compiler has a chance for constant prop to fold everything possible away.
2125 
2126           oop obj;
2127           int count;
2128           TosState tos_type = cache->flag_state();
2129 
2130           count = -1;
2131           if (tos_type == ltos || tos_type == dtos) {
2132             --count;
2133           }
2134           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2135             Klass* k = cache->f1_as_klass();
2136             obj = k->java_mirror();
2137           } else {
2138             --count;
2139             obj = (oop) STACK_OBJECT(count);
2140             CHECK_NULL(obj);
2141           }
2142 
2143           //
2144           // Now store the result
2145           //
2146           int field_offset = cache->f2_as_index();
2147           if (cache->is_volatile()) {
2148             if (tos_type == itos) {
2149               obj->release_int_field_put(field_offset, STACK_INT(-1));
2150             } else if (tos_type == atos) {
2151               VERIFY_OOP(STACK_OBJECT(-1));
2152               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
2153             } else if (tos_type == btos) {
2154               obj->release_byte_field_put(field_offset, STACK_INT(-1));
2155             } else if (tos_type == ltos) {
2156               obj->release_long_field_put(field_offset, STACK_LONG(-1));
2157             } else if (tos_type == ctos) {
2158               obj->release_char_field_put(field_offset, STACK_INT(-1));
2159             } else if (tos_type == stos) {
2160               obj->release_short_field_put(field_offset, STACK_INT(-1));
2161             } else if (tos_type == ftos) {
2162               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
2163             } else {
2164               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
2165             }
2166             OrderAccess::storeload();
2167           } else {
2168             if (tos_type == itos) {
2169               obj->int_field_put(field_offset, STACK_INT(-1));
2170             } else if (tos_type == atos) {
2171               VERIFY_OOP(STACK_OBJECT(-1));
2172               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2173             } else if (tos_type == btos) {
2174               obj->byte_field_put(field_offset, STACK_INT(-1));
2175             } else if (tos_type == ltos) {
2176               obj->long_field_put(field_offset, STACK_LONG(-1));
2177             } else if (tos_type == ctos) {
2178               obj->char_field_put(field_offset, STACK_INT(-1));
2179             } else if (tos_type == stos) {
2180               obj->short_field_put(field_offset, STACK_INT(-1));
2181             } else if (tos_type == ftos) {
2182               obj->float_field_put(field_offset, STACK_FLOAT(-1));
2183             } else {
2184               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2185             }
2186           }
2187 
2188           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
2189         }
2190 
2191       CASE(_new): {
2192         u2 index = Bytes::get_Java_u2(pc+1);
2193         ConstantPool* constants = istate->method()->constants();
2194         if (!constants->tag_at(index).is_unresolved_klass()) {
2195           // Make sure klass is initialized and doesn't have a finalizer
2196           Klass* entry = constants->slot_at(index).get_klass();
2197           assert(entry->is_klass(), "Should be resolved klass");
2198           Klass* k_entry = (Klass*) entry;
2199           assert(k_entry->oop_is_instance(), "Should be InstanceKlass");
2200           InstanceKlass* ik = (InstanceKlass*) k_entry;
2201           if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
2202             size_t obj_size = ik->size_helper();
2203             oop result = NULL;
2204             // If the TLAB isn't pre-zeroed then we'll have to do it
2205             bool need_zero = !ZeroTLAB;
2206             if (UseTLAB) {
2207               result = (oop) THREAD->tlab().allocate(obj_size);
2208             }
2209             // Disable non-TLAB-based fast-path, because profiling requires that all
2210             // allocations go through InterpreterRuntime::_new() if THREAD->tlab().allocate
2211             // returns NULL.
2212 #ifndef CC_INTERP_PROFILE
2213             if (result == NULL) {
2214               need_zero = true;
2215               // Try allocate in shared eden
2216             retry:
2217               HeapWord* compare_to = *Universe::heap()->top_addr();
2218               HeapWord* new_top = compare_to + obj_size;
2219               if (new_top <= *Universe::heap()->end_addr()) {
2220                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
2221                   goto retry;
2222                 }
2223                 result = (oop) compare_to;
2224               }
2225             }
2226 #endif
2227             if (result != NULL) {
2228               // Initialize object (if nonzero size and need) and then the header
2229               if (need_zero ) {
2230                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
2231                 obj_size -= sizeof(oopDesc) / oopSize;
2232                 if (obj_size > 0 ) {
2233                   memset(to_zero, 0, obj_size * HeapWordSize);
2234                 }
2235               }
2236               if (UseBiasedLocking) {
2237                 result->set_mark(ik->prototype_header());
2238               } else {
2239                 result->set_mark(markOopDesc::prototype());
2240               }
2241               result->set_klass_gap(0);
2242               result->set_klass(k_entry);
2243               SET_STACK_OBJECT(result, 0);
2244               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2245             }
2246           }
2247         }
2248         // Slow case allocation
2249         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2250                 handle_exception);
2251         SET_STACK_OBJECT(THREAD->vm_result(), 0);
2252         THREAD->set_vm_result(NULL);
2253         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2254       }
2255       CASE(_anewarray): {
2256         u2 index = Bytes::get_Java_u2(pc+1);
2257         jint size = STACK_INT(-1);
2258         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2259                 handle_exception);
2260         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2261         THREAD->set_vm_result(NULL);
2262         UPDATE_PC_AND_CONTINUE(3);
2263       }
2264       CASE(_multianewarray): {
2265         jint dims = *(pc+3);
2266         jint size = STACK_INT(-1);
2267         // stack grows down, dimensions are up!
2268         jint *dimarray =
2269                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2270                                       Interpreter::stackElementWords-1];
2271         //adjust pointer to start of stack element
2272         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2273                 handle_exception);
2274         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2275         THREAD->set_vm_result(NULL);
2276         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2277       }
2278       CASE(_checkcast):
2279           if (STACK_OBJECT(-1) != NULL) {
2280             VERIFY_OOP(STACK_OBJECT(-1));
2281             u2 index = Bytes::get_Java_u2(pc+1);
2282             // Constant pool may have actual klass or unresolved klass. If it is
2283             // unresolved we must resolve it.
2284             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2285               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2286             }
2287             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2288             Klass* objKlass = STACK_OBJECT(-1)->klass(); // ebx
2289             //
2290             // Check for compatibilty. This check must not GC!!
2291             // Seems way more expensive now that we must dispatch.
2292             //
2293             if (objKlass != klassOf && !objKlass->is_subtype_of(klassOf)) {
2294               // Decrement counter at checkcast.
2295               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2296               ResourceMark rm(THREAD);
2297               const char* objName = objKlass->external_name();
2298               const char* klassName = klassOf->external_name();
2299               char* message = SharedRuntime::generate_class_cast_message(
2300                 objName, klassName);
2301               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message, note_classCheck_trap);
2302             }
2303             // Profile checkcast with null_seen and receiver.
2304             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, objKlass);
2305           } else {
2306             // Profile checkcast with null_seen and receiver.
2307             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
2308           }
2309           UPDATE_PC_AND_CONTINUE(3);
2310 
2311       CASE(_instanceof):
2312           if (STACK_OBJECT(-1) == NULL) {
2313             SET_STACK_INT(0, -1);
2314             // Profile instanceof with null_seen and receiver.
2315             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/true, NULL);
2316           } else {
2317             VERIFY_OOP(STACK_OBJECT(-1));
2318             u2 index = Bytes::get_Java_u2(pc+1);
2319             // Constant pool may have actual klass or unresolved klass. If it is
2320             // unresolved we must resolve it.
2321             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2322               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2323             }
2324             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2325             Klass* objKlass = STACK_OBJECT(-1)->klass();
2326             //
2327             // Check for compatibilty. This check must not GC!!
2328             // Seems way more expensive now that we must dispatch.
2329             //
2330             if ( objKlass == klassOf || objKlass->is_subtype_of(klassOf)) {
2331               SET_STACK_INT(1, -1);
2332             } else {
2333               SET_STACK_INT(0, -1);
2334               // Decrement counter at checkcast.
2335               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2336             }
2337             // Profile instanceof with null_seen and receiver.
2338             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/false, objKlass);
2339           }
2340           UPDATE_PC_AND_CONTINUE(3);
2341 
2342       CASE(_ldc_w):
2343       CASE(_ldc):
2344         {
2345           u2 index;
2346           bool wide = false;
2347           int incr = 2; // frequent case
2348           if (opcode == Bytecodes::_ldc) {
2349             index = pc[1];
2350           } else {
2351             index = Bytes::get_Java_u2(pc+1);
2352             incr = 3;
2353             wide = true;
2354           }
2355 
2356           ConstantPool* constants = METHOD->constants();
2357           switch (constants->tag_at(index).value()) {
2358           case JVM_CONSTANT_Integer:
2359             SET_STACK_INT(constants->int_at(index), 0);
2360             break;
2361 
2362           case JVM_CONSTANT_Float:
2363             SET_STACK_FLOAT(constants->float_at(index), 0);
2364             break;
2365 
2366           case JVM_CONSTANT_String:
2367             {
2368               oop result = constants->resolved_references()->obj_at(index);
2369               if (result == NULL) {
2370                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2371                 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2372                 THREAD->set_vm_result(NULL);
2373               } else {
2374                 VERIFY_OOP(result);
2375                 SET_STACK_OBJECT(result, 0);
2376               }
2377             break;
2378             }
2379 
2380           case JVM_CONSTANT_Class:
2381             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2382             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2383             break;
2384 
2385           case JVM_CONSTANT_UnresolvedClass:
2386           case JVM_CONSTANT_UnresolvedClassInError:
2387             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2388             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2389             THREAD->set_vm_result(NULL);
2390             break;
2391 
2392           default:  ShouldNotReachHere();
2393           }
2394           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2395         }
2396 
2397       CASE(_ldc2_w):
2398         {
2399           u2 index = Bytes::get_Java_u2(pc+1);
2400 
2401           ConstantPool* constants = METHOD->constants();
2402           switch (constants->tag_at(index).value()) {
2403 
2404           case JVM_CONSTANT_Long:
2405              SET_STACK_LONG(constants->long_at(index), 1);
2406             break;
2407 
2408           case JVM_CONSTANT_Double:
2409              SET_STACK_DOUBLE(constants->double_at(index), 1);
2410             break;
2411           default:  ShouldNotReachHere();
2412           }
2413           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2414         }
2415 
2416       CASE(_fast_aldc_w):
2417       CASE(_fast_aldc): {
2418         u2 index;
2419         int incr;
2420         if (opcode == Bytecodes::_fast_aldc) {
2421           index = pc[1];
2422           incr = 2;
2423         } else {
2424           index = Bytes::get_native_u2(pc+1);
2425           incr = 3;
2426         }
2427 
2428         // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2429         // This kind of CP cache entry does not need to match the flags byte, because
2430         // there is a 1-1 relation between bytecode type and CP entry type.
2431         ConstantPool* constants = METHOD->constants();
2432         oop result = constants->resolved_references()->obj_at(index);
2433         if (result == NULL) {
2434           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2435                   handle_exception);
2436           result = THREAD->vm_result();
2437         }
2438 
2439         VERIFY_OOP(result);
2440         SET_STACK_OBJECT(result, 0);
2441         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2442       }
2443 
2444       CASE(_invokedynamic): {
2445 
2446         if (!EnableInvokeDynamic) {
2447           // We should not encounter this bytecode if !EnableInvokeDynamic.
2448           // The verifier will stop it.  However, if we get past the verifier,
2449           // this will stop the thread in a reasonable way, without crashing the JVM.
2450           CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeError(THREAD),
2451                   handle_exception);
2452           ShouldNotReachHere();
2453         }
2454 
2455         u4 index = Bytes::get_native_u4(pc+1);
2456         ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2457 
2458         // We are resolved if the resolved_references field contains a non-null object (CallSite, etc.)
2459         // This kind of CP cache entry does not need to match the flags byte, because
2460         // there is a 1-1 relation between bytecode type and CP entry type.
2461         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2462           CALL_VM(InterpreterRuntime::resolve_invokedynamic(THREAD),
2463                   handle_exception);
2464           cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2465         }
2466 
2467         Method* method = cache->f1_as_method();
2468         if (VerifyOops) method->verify();
2469 
2470         if (cache->has_appendix()) {
2471           ConstantPool* constants = METHOD->constants();
2472           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2473           MORE_STACK(1);
2474         }
2475 
2476         istate->set_msg(call_method);
2477         istate->set_callee(method);
2478         istate->set_callee_entry_point(method->from_interpreted_entry());
2479         istate->set_bcp_advance(5);
2480 
2481         // Invokedynamic has got a call counter, just like an invokestatic -> increment!
2482         BI_PROFILE_UPDATE_CALL();
2483 
2484         UPDATE_PC_AND_RETURN(0); // I'll be back...
2485       }
2486 
2487       CASE(_invokehandle): {
2488 
2489         if (!EnableInvokeDynamic) {
2490           ShouldNotReachHere();
2491         }
2492 
2493         u2 index = Bytes::get_native_u2(pc+1);
2494         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2495 
2496         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2497           CALL_VM(InterpreterRuntime::resolve_invokehandle(THREAD),
2498                   handle_exception);
2499           cache = cp->entry_at(index);
2500         }
2501 
2502         Method* method = cache->f1_as_method();
2503         if (VerifyOops) method->verify();
2504 
2505         if (cache->has_appendix()) {
2506           ConstantPool* constants = METHOD->constants();
2507           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2508           MORE_STACK(1);
2509         }
2510 
2511         istate->set_msg(call_method);
2512         istate->set_callee(method);
2513         istate->set_callee_entry_point(method->from_interpreted_entry());
2514         istate->set_bcp_advance(3);
2515 
2516         // Invokehandle has got a call counter, just like a final call -> increment!
2517         BI_PROFILE_UPDATE_FINALCALL();
2518 
2519         UPDATE_PC_AND_RETURN(0); // I'll be back...
2520       }
2521 
2522       CASE(_invokeinterface): {
2523         u2 index = Bytes::get_native_u2(pc+1);
2524 
2525         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2526         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2527 
2528         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2529         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2530           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2531                   handle_exception);
2532           cache = cp->entry_at(index);
2533         }
2534 
2535         istate->set_msg(call_method);
2536 
2537         // Special case of invokeinterface called for virtual method of
2538         // java.lang.Object.  See cpCacheOop.cpp for details.
2539         // This code isn't produced by javac, but could be produced by
2540         // another compliant java compiler.
2541         if (cache->is_forced_virtual()) {
2542           Method* callee;
2543           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2544           if (cache->is_vfinal()) {
2545             callee = cache->f2_as_vfinal_method();
2546             // Profile 'special case of invokeinterface' final call.
2547             BI_PROFILE_UPDATE_FINALCALL();
2548           } else {
2549             // Get receiver.
2550             int parms = cache->parameter_size();
2551             // Same comments as invokevirtual apply here.
2552             oop rcvr = STACK_OBJECT(-parms);
2553             VERIFY_OOP(rcvr);
2554             InstanceKlass* rcvrKlass = (InstanceKlass*)rcvr->klass();
2555             callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2556             // Profile 'special case of invokeinterface' virtual call.
2557             BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2558           }
2559           istate->set_callee(callee);
2560           istate->set_callee_entry_point(callee->from_interpreted_entry());
2561 #ifdef VM_JVMTI
2562           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2563             istate->set_callee_entry_point(callee->interpreter_entry());
2564           }
2565 #endif /* VM_JVMTI */
2566           istate->set_bcp_advance(5);
2567           UPDATE_PC_AND_RETURN(0); // I'll be back...
2568         }
2569 
2570         // this could definitely be cleaned up QQQ
2571         Method* callee;
2572         Klass* iclass = cache->f1_as_klass();
2573         // InstanceKlass* interface = (InstanceKlass*) iclass;
2574         // get receiver
2575         int parms = cache->parameter_size();
2576         oop rcvr = STACK_OBJECT(-parms);
2577         CHECK_NULL(rcvr);
2578         InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2579         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2580         int i;
2581         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2582           if (ki->interface_klass() == iclass) break;
2583         }
2584         // If the interface isn't found, this class doesn't implement this
2585         // interface.  The link resolver checks this but only for the first
2586         // time this interface is called.
2587         if (i == int2->itable_length()) {
2588           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "", note_no_trap);
2589         }
2590         int mindex = cache->f2_as_index();
2591         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2592         callee = im[mindex].method();
2593         if (callee == NULL) {
2594           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "", note_no_trap);
2595         }
2596 
2597         // Profile virtual call.
2598         BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2599 
2600         istate->set_callee(callee);
2601         istate->set_callee_entry_point(callee->from_interpreted_entry());
2602 #ifdef VM_JVMTI
2603         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2604           istate->set_callee_entry_point(callee->interpreter_entry());
2605         }
2606 #endif /* VM_JVMTI */
2607         istate->set_bcp_advance(5);
2608         UPDATE_PC_AND_RETURN(0); // I'll be back...
2609       }
2610 
2611       CASE(_invokevirtual):
2612       CASE(_invokespecial):
2613       CASE(_invokestatic): {
2614         u2 index = Bytes::get_native_u2(pc+1);
2615 
2616         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2617         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2618         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2619 
2620         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2621           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2622                   handle_exception);
2623           cache = cp->entry_at(index);
2624         }
2625 
2626         istate->set_msg(call_method);
2627         {
2628           Method* callee;
2629           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2630             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2631             if (cache->is_vfinal()) {
2632               callee = cache->f2_as_vfinal_method();
2633               // Profile final call.
2634               BI_PROFILE_UPDATE_FINALCALL();
2635             } else {
2636               // get receiver
2637               int parms = cache->parameter_size();
2638               // this works but needs a resourcemark and seems to create a vtable on every call:
2639               // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2640               //
2641               // this fails with an assert
2642               // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2643               // but this works
2644               oop rcvr = STACK_OBJECT(-parms);
2645               VERIFY_OOP(rcvr);
2646               InstanceKlass* rcvrKlass = (InstanceKlass*)rcvr->klass();
2647               /*
2648                 Executing this code in java.lang.String:
2649                     public String(char value[]) {
2650                           this.count = value.length;
2651                           this.value = (char[])value.clone();
2652                      }
2653 
2654                  a find on rcvr->klass() reports:
2655                  {type array char}{type array class}
2656                   - klass: {other class}
2657 
2658                   but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2659                   because rcvr->klass()->oop_is_instance() == 0
2660                   However it seems to have a vtable in the right location. Huh?
2661 
2662               */
2663               callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2664               // Profile virtual call.
2665               BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2666             }
2667           } else {
2668             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2669               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2670             }
2671             callee = cache->f1_as_method();
2672 
2673             // Profile call.
2674             BI_PROFILE_UPDATE_CALL();
2675           }
2676 
2677           istate->set_callee(callee);
2678           istate->set_callee_entry_point(callee->from_interpreted_entry());
2679 #ifdef VM_JVMTI
2680           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2681             istate->set_callee_entry_point(callee->interpreter_entry());
2682           }
2683 #endif /* VM_JVMTI */
2684           istate->set_bcp_advance(3);
2685           UPDATE_PC_AND_RETURN(0); // I'll be back...
2686         }
2687       }
2688 
2689       /* Allocate memory for a new java object. */
2690 
2691       CASE(_newarray): {
2692         BasicType atype = (BasicType) *(pc+1);
2693         jint size = STACK_INT(-1);
2694         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2695                 handle_exception);
2696         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2697         THREAD->set_vm_result(NULL);
2698 
2699         UPDATE_PC_AND_CONTINUE(2);
2700       }
2701 
2702       /* Throw an exception. */
2703 
2704       CASE(_athrow): {
2705           oop except_oop = STACK_OBJECT(-1);
2706           CHECK_NULL(except_oop);
2707           // set pending_exception so we use common code
2708           THREAD->set_pending_exception(except_oop, NULL, 0);
2709           goto handle_exception;
2710       }
2711 
2712       /* goto and jsr. They are exactly the same except jsr pushes
2713        * the address of the next instruction first.
2714        */
2715 
2716       CASE(_jsr): {
2717           /* push bytecode index on stack */
2718           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2719           MORE_STACK(1);
2720           /* FALL THROUGH */
2721       }
2722 
2723       CASE(_goto):
2724       {
2725           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2726           // Profile jump.
2727           BI_PROFILE_UPDATE_JUMP();
2728           address branch_pc = pc;
2729           UPDATE_PC(offset);
2730           DO_BACKEDGE_CHECKS(offset, branch_pc);
2731           CONTINUE;
2732       }
2733 
2734       CASE(_jsr_w): {
2735           /* push return address on the stack */
2736           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2737           MORE_STACK(1);
2738           /* FALL THROUGH */
2739       }
2740 
2741       CASE(_goto_w):
2742       {
2743           int32_t offset = Bytes::get_Java_u4(pc + 1);
2744           // Profile jump.
2745           BI_PROFILE_UPDATE_JUMP();
2746           address branch_pc = pc;
2747           UPDATE_PC(offset);
2748           DO_BACKEDGE_CHECKS(offset, branch_pc);
2749           CONTINUE;
2750       }
2751 
2752       /* return from a jsr or jsr_w */
2753 
2754       CASE(_ret): {
2755           // Profile ret.
2756           BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(pc[1]))));
2757           // Now, update the pc.
2758           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2759           UPDATE_PC_AND_CONTINUE(0);
2760       }
2761 
2762       /* debugger breakpoint */
2763 
2764       CASE(_breakpoint): {
2765           Bytecodes::Code original_bytecode;
2766           DECACHE_STATE();
2767           SET_LAST_JAVA_FRAME();
2768           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2769                               METHOD, pc);
2770           RESET_LAST_JAVA_FRAME();
2771           CACHE_STATE();
2772           if (THREAD->has_pending_exception()) goto handle_exception;
2773             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2774                                                     handle_exception);
2775 
2776           opcode = (jubyte)original_bytecode;
2777           goto opcode_switch;
2778       }
2779 
2780       DEFAULT:
2781           fatal(err_msg("Unimplemented opcode %d = %s", opcode,
2782                         Bytecodes::name((Bytecodes::Code)opcode)));
2783           goto finish;
2784 
2785       } /* switch(opc) */
2786 
2787 
2788 #ifdef USELABELS
2789     check_for_exception:
2790 #endif
2791     {
2792       if (!THREAD->has_pending_exception()) {
2793         CONTINUE;
2794       }
2795       /* We will be gcsafe soon, so flush our state. */
2796       DECACHE_PC();
2797       goto handle_exception;
2798     }
2799   do_continue: ;
2800 
2801   } /* while (1) interpreter loop */
2802 
2803 
2804   // An exception exists in the thread state see whether this activation can handle it
2805   handle_exception: {
2806 
2807     HandleMarkCleaner __hmc(THREAD);
2808     Handle except_oop(THREAD, THREAD->pending_exception());
2809     // Prevent any subsequent HandleMarkCleaner in the VM
2810     // from freeing the except_oop handle.
2811     HandleMark __hm(THREAD);
2812 
2813     THREAD->clear_pending_exception();
2814     assert(except_oop(), "No exception to process");
2815     intptr_t continuation_bci;
2816     // expression stack is emptied
2817     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2818     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2819             handle_exception);
2820 
2821     except_oop = THREAD->vm_result();
2822     THREAD->set_vm_result(NULL);
2823     if (continuation_bci >= 0) {
2824       // Place exception on top of stack
2825       SET_STACK_OBJECT(except_oop(), 0);
2826       MORE_STACK(1);
2827       pc = METHOD->code_base() + continuation_bci;
2828       if (TraceExceptions) {
2829         ttyLocker ttyl;
2830         ResourceMark rm;
2831         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), (void*)except_oop());
2832         tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2833         tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2834                       istate->bcp() - (intptr_t)METHOD->code_base(),
2835                       continuation_bci, THREAD);
2836       }
2837       // for AbortVMOnException flag
2838       NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2839 
2840       // Update profiling data.
2841       BI_PROFILE_ALIGN_TO_CURRENT_BCI();
2842       goto run;
2843     }
2844     if (TraceExceptions) {
2845       ttyLocker ttyl;
2846       ResourceMark rm;
2847       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), (void*)except_oop());
2848       tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2849       tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
2850                     istate->bcp() - (intptr_t)METHOD->code_base(),
2851                     THREAD);
2852     }
2853     // for AbortVMOnException flag
2854     NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2855     // No handler in this activation, unwind and try again
2856     THREAD->set_pending_exception(except_oop(), NULL, 0);
2857     goto handle_return;
2858   }  // handle_exception:
2859 
2860   // Return from an interpreter invocation with the result of the interpretation
2861   // on the top of the Java Stack (or a pending exception)
2862 
2863   handle_Pop_Frame: {
2864 
2865     // We don't really do anything special here except we must be aware
2866     // that we can get here without ever locking the method (if sync).
2867     // Also we skip the notification of the exit.
2868 
2869     istate->set_msg(popping_frame);
2870     // Clear pending so while the pop is in process
2871     // we don't start another one if a call_vm is done.
2872     THREAD->clr_pop_frame_pending();
2873     // Let interpreter (only) see the we're in the process of popping a frame
2874     THREAD->set_pop_frame_in_process();
2875 
2876     goto handle_return;
2877 
2878   } // handle_Pop_Frame
2879 
2880   // ForceEarlyReturn ends a method, and returns to the caller with a return value
2881   // given by the invoker of the early return.
2882   handle_Early_Return: {
2883 
2884     istate->set_msg(early_return);
2885 
2886     // Clear expression stack.
2887     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2888 
2889     JvmtiThreadState *ts = THREAD->jvmti_thread_state();
2890 
2891     // Push the value to be returned.
2892     switch (istate->method()->result_type()) {
2893       case T_BOOLEAN:
2894       case T_SHORT:
2895       case T_BYTE:
2896       case T_CHAR:
2897       case T_INT:
2898         SET_STACK_INT(ts->earlyret_value().i, 0);
2899         MORE_STACK(1);
2900         break;
2901       case T_LONG:
2902         SET_STACK_LONG(ts->earlyret_value().j, 1);
2903         MORE_STACK(2);
2904         break;
2905       case T_FLOAT:
2906         SET_STACK_FLOAT(ts->earlyret_value().f, 0);
2907         MORE_STACK(1);
2908         break;
2909       case T_DOUBLE:
2910         SET_STACK_DOUBLE(ts->earlyret_value().d, 1);
2911         MORE_STACK(2);
2912         break;
2913       case T_ARRAY:
2914       case T_OBJECT:
2915         SET_STACK_OBJECT(ts->earlyret_oop(), 0);
2916         MORE_STACK(1);
2917         break;
2918     }
2919 
2920     ts->clr_earlyret_value();
2921     ts->set_earlyret_oop(NULL);
2922     ts->clr_earlyret_pending();
2923 
2924     // Fall through to handle_return.
2925 
2926   } // handle_Early_Return
2927 
2928   handle_return: {
2929     DECACHE_STATE();
2930 
2931     bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return;
2932     bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame;
2933     Handle original_exception(THREAD, THREAD->pending_exception());
2934     Handle illegal_state_oop(THREAD, NULL);
2935 
2936     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2937     // in any following VM entries from freeing our live handles, but illegal_state_oop
2938     // isn't really allocated yet and so doesn't become live until later and
2939     // in unpredicatable places. Instead we must protect the places where we enter the
2940     // VM. It would be much simpler (and safer) if we could allocate a real handle with
2941     // a NULL oop in it and then overwrite the oop later as needed. This isn't
2942     // unfortunately isn't possible.
2943 
2944     THREAD->clear_pending_exception();
2945 
2946     //
2947     // As far as we are concerned we have returned. If we have a pending exception
2948     // that will be returned as this invocation's result. However if we get any
2949     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2950     // will be our final result (i.e. monitor exception trumps a pending exception).
2951     //
2952 
2953     // If we never locked the method (or really passed the point where we would have),
2954     // there is no need to unlock it (or look for other monitors), since that
2955     // could not have happened.
2956 
2957     if (THREAD->do_not_unlock()) {
2958 
2959       // Never locked, reset the flag now because obviously any caller must
2960       // have passed their point of locking for us to have gotten here.
2961 
2962       THREAD->clr_do_not_unlock();
2963     } else {
2964       // At this point we consider that we have returned. We now check that the
2965       // locks were properly block structured. If we find that they were not
2966       // used properly we will return with an illegal monitor exception.
2967       // The exception is checked by the caller not the callee since this
2968       // checking is considered to be part of the invocation and therefore
2969       // in the callers scope (JVM spec 8.13).
2970       //
2971       // Another weird thing to watch for is if the method was locked
2972       // recursively and then not exited properly. This means we must
2973       // examine all the entries in reverse time(and stack) order and
2974       // unlock as we find them. If we find the method monitor before
2975       // we are at the initial entry then we should throw an exception.
2976       // It is not clear the template based interpreter does this
2977       // correctly
2978 
2979       BasicObjectLock* base = istate->monitor_base();
2980       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2981       bool method_unlock_needed = METHOD->is_synchronized();
2982       // We know the initial monitor was used for the method don't check that
2983       // slot in the loop
2984       if (method_unlock_needed) base--;
2985 
2986       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2987       while (end < base) {
2988         oop lockee = end->obj();
2989         if (lockee != NULL) {
2990           BasicLock* lock = end->lock();
2991           markOop header = lock->displaced_header();
2992           end->set_obj(NULL);
2993 
2994           if (!lockee->mark()->has_bias_pattern()) {
2995             // If it isn't recursive we either must swap old header or call the runtime
2996             if (header != NULL) {
2997               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2998                 // restore object for the slow case
2999                 end->set_obj(lockee);
3000                 {
3001                   // Prevent any HandleMarkCleaner from freeing our live handles
3002                   HandleMark __hm(THREAD);
3003                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
3004                 }
3005               }
3006             }
3007           }
3008           // One error is plenty
3009           if (illegal_state_oop() == NULL && !suppress_error) {
3010             {
3011               // Prevent any HandleMarkCleaner from freeing our live handles
3012               HandleMark __hm(THREAD);
3013               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3014             }
3015             assert(THREAD->has_pending_exception(), "Lost our exception!");
3016             illegal_state_oop = THREAD->pending_exception();
3017             THREAD->clear_pending_exception();
3018           }
3019         }
3020         end++;
3021       }
3022       // Unlock the method if needed
3023       if (method_unlock_needed) {
3024         if (base->obj() == NULL) {
3025           // The method is already unlocked this is not good.
3026           if (illegal_state_oop() == NULL && !suppress_error) {
3027             {
3028               // Prevent any HandleMarkCleaner from freeing our live handles
3029               HandleMark __hm(THREAD);
3030               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3031             }
3032             assert(THREAD->has_pending_exception(), "Lost our exception!");
3033             illegal_state_oop = THREAD->pending_exception();
3034             THREAD->clear_pending_exception();
3035           }
3036         } else {
3037           //
3038           // The initial monitor is always used for the method
3039           // However if that slot is no longer the oop for the method it was unlocked
3040           // and reused by something that wasn't unlocked!
3041           //
3042           // deopt can come in with rcvr dead because c2 knows
3043           // its value is preserved in the monitor. So we can't use locals[0] at all
3044           // and must use first monitor slot.
3045           //
3046           oop rcvr = base->obj();
3047           if (rcvr == NULL) {
3048             if (!suppress_error) {
3049               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "", note_nullCheck_trap);
3050               illegal_state_oop = THREAD->pending_exception();
3051               THREAD->clear_pending_exception();
3052             }
3053           } else if (UseHeavyMonitors) {
3054             {
3055               // Prevent any HandleMarkCleaner from freeing our live handles.
3056               HandleMark __hm(THREAD);
3057               CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3058             }
3059             if (THREAD->has_pending_exception()) {
3060               if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
3061               THREAD->clear_pending_exception();
3062             }
3063           } else {
3064             BasicLock* lock = base->lock();
3065             markOop header = lock->displaced_header();
3066             base->set_obj(NULL);
3067 
3068             if (!rcvr->mark()->has_bias_pattern()) {
3069               base->set_obj(NULL);
3070               // If it isn't recursive we either must swap old header or call the runtime
3071               if (header != NULL) {
3072                 if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
3073                   // restore object for the slow case
3074                   base->set_obj(rcvr);
3075                   {
3076                     // Prevent any HandleMarkCleaner from freeing our live handles
3077                     HandleMark __hm(THREAD);
3078                     CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3079                   }
3080                   if (THREAD->has_pending_exception()) {
3081                     if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
3082                     THREAD->clear_pending_exception();
3083                   }
3084                 }
3085               }
3086             }
3087           }
3088         }
3089       }
3090     }
3091     // Clear the do_not_unlock flag now.
3092     THREAD->clr_do_not_unlock();
3093 
3094     //
3095     // Notify jvmti/jvmdi
3096     //
3097     // NOTE: we do not notify a method_exit if we have a pending exception,
3098     // including an exception we generate for unlocking checks.  In the former
3099     // case, JVMDI has already been notified by our call for the exception handler
3100     // and in both cases as far as JVMDI is concerned we have already returned.
3101     // If we notify it again JVMDI will be all confused about how many frames
3102     // are still on the stack (4340444).
3103     //
3104     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
3105     // method_exit events whenever we leave an activation unless it was done
3106     // for popframe. This is nothing like jvmdi. However we are passing the
3107     // tests at the moment (apparently because they are jvmdi based) so rather
3108     // than change this code and possibly fail tests we will leave it alone
3109     // (with this note) in anticipation of changing the vm and the tests
3110     // simultaneously.
3111 
3112 
3113     //
3114     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
3115 
3116 
3117 
3118 #ifdef VM_JVMTI
3119       if (_jvmti_interp_events) {
3120         // Whenever JVMTI puts a thread in interp_only_mode, method
3121         // entry/exit events are sent for that thread to track stack depth.
3122         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
3123           {
3124             // Prevent any HandleMarkCleaner from freeing our live handles
3125             HandleMark __hm(THREAD);
3126             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
3127           }
3128         }
3129       }
3130 #endif /* VM_JVMTI */
3131 
3132     //
3133     // See if we are returning any exception
3134     // A pending exception that was pending prior to a possible popping frame
3135     // overrides the popping frame.
3136     //
3137     assert(!suppress_error || (suppress_error && illegal_state_oop() == NULL), "Error was not suppressed");
3138     if (illegal_state_oop() != NULL || original_exception() != NULL) {
3139       // Inform the frame manager we have no result.
3140       istate->set_msg(throwing_exception);
3141       if (illegal_state_oop() != NULL)
3142         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
3143       else
3144         THREAD->set_pending_exception(original_exception(), NULL, 0);
3145       UPDATE_PC_AND_RETURN(0);
3146     }
3147 
3148     if (istate->msg() == popping_frame) {
3149       // Make it simpler on the assembly code and set the message for the frame pop.
3150       // returns
3151       if (istate->prev() == NULL) {
3152         // We must be returning to a deoptimized frame (because popframe only happens between
3153         // two interpreted frames). We need to save the current arguments in C heap so that
3154         // the deoptimized frame when it restarts can copy the arguments to its expression
3155         // stack and re-execute the call. We also have to notify deoptimization that this
3156         // has occurred and to pick the preserved args copy them to the deoptimized frame's
3157         // java expression stack. Yuck.
3158         //
3159         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3160                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3161         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3162       }
3163     } else {
3164       istate->set_msg(return_from_method);
3165     }
3166 
3167     // Normal return
3168     // Advance the pc and return to frame manager
3169     UPDATE_PC_AND_RETURN(1);
3170   } /* handle_return: */
3171 
3172 // This is really a fatal error return
3173 
3174 finish:
3175   DECACHE_TOS();
3176   DECACHE_PC();
3177 
3178   return;
3179 }
3180 
3181 /*
3182  * All the code following this point is only produced once and is not present
3183  * in the JVMTI version of the interpreter
3184 */
3185 
3186 #ifndef VM_JVMTI
3187 
3188 // This constructor should only be used to contruct the object to signal
3189 // interpreter initialization. All other instances should be created by
3190 // the frame manager.
3191 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3192   if (msg != initialize) ShouldNotReachHere();
3193   _msg = msg;
3194   _self_link = this;
3195   _prev_link = NULL;
3196 }
3197 
3198 // Inline static functions for Java Stack and Local manipulation
3199 
3200 // The implementations are platform dependent. We have to worry about alignment
3201 // issues on some machines which can change on the same platform depending on
3202 // whether it is an LP64 machine also.
3203 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
3204   return (address) tos[Interpreter::expr_index_at(-offset)];
3205 }
3206 
3207 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
3208   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
3209 }
3210 
3211 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
3212   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
3213 }
3214 
3215 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
3216   return cast_to_oop(tos [Interpreter::expr_index_at(-offset)]);
3217 }
3218 
3219 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
3220   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
3221 }
3222 
3223 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
3224   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
3225 }
3226 
3227 // only used for value types
3228 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
3229                                                         int offset) {
3230   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3231 }
3232 
3233 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
3234                                                        int offset) {
3235   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3236 }
3237 
3238 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
3239                                                          int offset) {
3240   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3241 }
3242 
3243 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
3244                                                           int offset) {
3245   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3246 }
3247 
3248 // needs to be platform dep for the 32 bit platforms.
3249 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
3250                                                           int offset) {
3251   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
3252 }
3253 
3254 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
3255                                               address addr, int offset) {
3256   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
3257                         ((VMJavaVal64*)addr)->d);
3258 }
3259 
3260 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
3261                                                         int offset) {
3262   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3263   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
3264 }
3265 
3266 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
3267                                             address addr, int offset) {
3268   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3269   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
3270                         ((VMJavaVal64*)addr)->l;
3271 }
3272 
3273 // Locals
3274 
3275 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
3276   return (address)locals[Interpreter::local_index_at(-offset)];
3277 }
3278 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
3279   return (jint)locals[Interpreter::local_index_at(-offset)];
3280 }
3281 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
3282   return (jfloat)locals[Interpreter::local_index_at(-offset)];
3283 }
3284 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
3285   return cast_to_oop(locals[Interpreter::local_index_at(-offset)]);
3286 }
3287 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
3288   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
3289 }
3290 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
3291   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
3292 }
3293 
3294 // Returns the address of locals value.
3295 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
3296   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3297 }
3298 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
3299   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3300 }
3301 
3302 // Used for local value or returnAddress
3303 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
3304                                    address value, int offset) {
3305   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
3306 }
3307 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
3308                                    jint value, int offset) {
3309   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
3310 }
3311 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
3312                                    jfloat value, int offset) {
3313   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
3314 }
3315 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
3316                                    oop value, int offset) {
3317   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
3318 }
3319 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
3320                                    jdouble value, int offset) {
3321   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
3322 }
3323 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
3324                                    jlong value, int offset) {
3325   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
3326 }
3327 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
3328                                    address addr, int offset) {
3329   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
3330 }
3331 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
3332                                    address addr, int offset) {
3333   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
3334 }
3335 
3336 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
3337                           intptr_t* locals, int locals_offset) {
3338   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3339   locals[Interpreter::local_index_at(-locals_offset)] = value;
3340 }
3341 
3342 
3343 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3344                                    int to_offset) {
3345   tos[Interpreter::expr_index_at(-to_offset)] =
3346                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3347 }
3348 
3349 void BytecodeInterpreter::dup(intptr_t *tos) {
3350   copy_stack_slot(tos, -1, 0);
3351 }
3352 void BytecodeInterpreter::dup2(intptr_t *tos) {
3353   copy_stack_slot(tos, -2, 0);
3354   copy_stack_slot(tos, -1, 1);
3355 }
3356 
3357 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3358   /* insert top word two down */
3359   copy_stack_slot(tos, -1, 0);
3360   copy_stack_slot(tos, -2, -1);
3361   copy_stack_slot(tos, 0, -2);
3362 }
3363 
3364 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3365   /* insert top word three down  */
3366   copy_stack_slot(tos, -1, 0);
3367   copy_stack_slot(tos, -2, -1);
3368   copy_stack_slot(tos, -3, -2);
3369   copy_stack_slot(tos, 0, -3);
3370 }
3371 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3372   /* insert top 2 slots three down */
3373   copy_stack_slot(tos, -1, 1);
3374   copy_stack_slot(tos, -2, 0);
3375   copy_stack_slot(tos, -3, -1);
3376   copy_stack_slot(tos, 1, -2);
3377   copy_stack_slot(tos, 0, -3);
3378 }
3379 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3380   /* insert top 2 slots four down */
3381   copy_stack_slot(tos, -1, 1);
3382   copy_stack_slot(tos, -2, 0);
3383   copy_stack_slot(tos, -3, -1);
3384   copy_stack_slot(tos, -4, -2);
3385   copy_stack_slot(tos, 1, -3);
3386   copy_stack_slot(tos, 0, -4);
3387 }
3388 
3389 
3390 void BytecodeInterpreter::swap(intptr_t *tos) {
3391   // swap top two elements
3392   intptr_t val = tos[Interpreter::expr_index_at(1)];
3393   // Copy -2 entry to -1
3394   copy_stack_slot(tos, -2, -1);
3395   // Store saved -1 entry into -2
3396   tos[Interpreter::expr_index_at(2)] = val;
3397 }
3398 // --------------------------------------------------------------------------------
3399 // Non-product code
3400 #ifndef PRODUCT
3401 
3402 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3403   switch (msg) {
3404      case BytecodeInterpreter::no_request:  return("no_request");
3405      case BytecodeInterpreter::initialize:  return("initialize");
3406      // status message to C++ interpreter
3407      case BytecodeInterpreter::method_entry:  return("method_entry");
3408      case BytecodeInterpreter::method_resume:  return("method_resume");
3409      case BytecodeInterpreter::got_monitors:  return("got_monitors");
3410      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3411      // requests to frame manager from C++ interpreter
3412      case BytecodeInterpreter::call_method:  return("call_method");
3413      case BytecodeInterpreter::return_from_method:  return("return_from_method");
3414      case BytecodeInterpreter::more_monitors:  return("more_monitors");
3415      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3416      case BytecodeInterpreter::popping_frame:  return("popping_frame");
3417      case BytecodeInterpreter::do_osr:  return("do_osr");
3418      // deopt
3419      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3420      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3421      default: return("BAD MSG");
3422   }
3423 }
3424 void
3425 BytecodeInterpreter::print() {
3426   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3427   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3428   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3429   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3430   {
3431     ResourceMark rm;
3432     char *method_name = _method->name_and_sig_as_C_string();
3433     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3434   }
3435   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3436   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3437   tty->print_cr("msg: %s", C_msg(this->_msg));
3438   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3439   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3440   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3441   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3442   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3443   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3444   tty->print_cr("native_mirror: " INTPTR_FORMAT, (void*) this->_oop_temp);
3445   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3446   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3447   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3448 #ifdef SPARC
3449   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3450   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3451   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3452   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3453 #endif
3454 #if !defined(ZERO)
3455   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3456 #endif // !ZERO
3457   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3458 }
3459 
3460 extern "C" {
3461   void PI(uintptr_t arg) {
3462     ((BytecodeInterpreter*)arg)->print();
3463   }
3464 }
3465 #endif // PRODUCT
3466 
3467 #endif // JVMTI
3468 #endif // CC_INTERP