1 //
   2 // Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.
   3 // Copyright 2012, 2013 SAP AG. All rights reserved.
   4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5 //
   6 // This code is free software; you can redistribute it and/or modify it
   7 // under the terms of the GNU General Public License version 2 only, as
   8 // published by the Free Software Foundation.
   9 //
  10 // This code is distributed in the hope that it will be useful, but WITHOUT
  11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13 // version 2 for more details (a copy is included in the LICENSE file that
  14 // accompanied this code).
  15 //
  16 // You should have received a copy of the GNU General Public License version
  17 // 2 along with this work; if not, write to the Free Software Foundation,
  18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19 //
  20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21 // or visit www.oracle.com if you need additional information or have any
  22 // questions.
  23 //
  24 //
  25 
  26 //
  27 // PPC64 Architecture Description File
  28 //
  29 
  30 //----------REGISTER DEFINITION BLOCK------------------------------------------
  31 // This information is used by the matcher and the register allocator to
  32 // describe individual registers and classes of registers within the target
  33 // architecture.
  34 register %{
  35 //----------Architecture Description Register Definitions----------------------
  36 // General Registers
  37 // "reg_def"  name (register save type, C convention save type,
  38 //                  ideal register type, encoding);
  39 //
  40 // Register Save Types:
  41 //
  42 //   NS  = No-Save:     The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method, &
  44 //                      that they do not need to be saved at call sites.
  45 //
  46 //   SOC = Save-On-Call: The register allocator assumes that these registers
  47 //                      can be used without saving upon entry to the method,
  48 //                      but that they must be saved at call sites.
  49 //                      These are called "volatiles" on ppc.
  50 //
  51 //   SOE = Save-On-Entry: The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, but they do not need to be saved at call
  54 //                      sites.
  55 //                      These are called "nonvolatiles" on ppc.
  56 //
  57 //   AS  = Always-Save:   The register allocator assumes that these registers
  58 //                      must be saved before using them upon entry to the
  59 //                      method, & that they must be saved at call sites.
  60 //
  61 // Ideal Register Type is used to determine how to save & restore a
  62 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  63 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
  64 //
  65 // The encoding number is the actual bit-pattern placed into the opcodes.
  66 //
  67 // PPC64 register definitions, based on the 64-bit PowerPC ELF ABI
  68 // Supplement Version 1.7 as of 2003-10-29.
  69 //
  70 // For each 64-bit register we must define two registers: the register
  71 // itself, e.g. R3, and a corresponding virtual other (32-bit-)'half',
  72 // e.g. R3_H, which is needed by the allocator, but is not used
  73 // for stores, loads, etc.
  74 
  75 // ----------------------------
  76 // Integer/Long Registers
  77 // ----------------------------
  78 
  79   // PPC64 has 32 64-bit integer registers.
  80 
  81   // types: v = volatile, nv = non-volatile, s = system
  82   reg_def R0   ( SOC, SOC, Op_RegI,  0, R0->as_VMReg()         );  // v   used in prologs
  83   reg_def R0_H ( SOC, SOC, Op_RegI, 99, R0->as_VMReg()->next() );
  84   reg_def R1   ( NS,  NS,  Op_RegI,  1, R1->as_VMReg()         );  // s   SP
  85   reg_def R1_H ( NS,  NS,  Op_RegI, 99, R1->as_VMReg()->next() );
  86   reg_def R2   ( SOC, SOC, Op_RegI,  2, R2->as_VMReg()         );  // v   TOC
  87   reg_def R2_H ( SOC, SOC, Op_RegI, 99, R2->as_VMReg()->next() );
  88   reg_def R3   ( SOC, SOC, Op_RegI,  3, R3->as_VMReg()         );  // v   iarg1 & iret
  89   reg_def R3_H ( SOC, SOC, Op_RegI, 99, R3->as_VMReg()->next() );
  90   reg_def R4   ( SOC, SOC, Op_RegI,  4, R4->as_VMReg()         );  //     iarg2
  91   reg_def R4_H ( SOC, SOC, Op_RegI, 99, R4->as_VMReg()->next() );
  92   reg_def R5   ( SOC, SOC, Op_RegI,  5, R5->as_VMReg()         );  // v   iarg3
  93   reg_def R5_H ( SOC, SOC, Op_RegI, 99, R5->as_VMReg()->next() );
  94   reg_def R6   ( SOC, SOC, Op_RegI,  6, R6->as_VMReg()         );  // v   iarg4
  95   reg_def R6_H ( SOC, SOC, Op_RegI, 99, R6->as_VMReg()->next() );
  96   reg_def R7   ( SOC, SOC, Op_RegI,  7, R7->as_VMReg()         );  // v   iarg5
  97   reg_def R7_H ( SOC, SOC, Op_RegI, 99, R7->as_VMReg()->next() );
  98   reg_def R8   ( SOC, SOC, Op_RegI,  8, R8->as_VMReg()         );  // v   iarg6
  99   reg_def R8_H ( SOC, SOC, Op_RegI, 99, R8->as_VMReg()->next() );
 100   reg_def R9   ( SOC, SOC, Op_RegI,  9, R9->as_VMReg()         );  // v   iarg7
 101   reg_def R9_H ( SOC, SOC, Op_RegI, 99, R9->as_VMReg()->next() );
 102   reg_def R10  ( SOC, SOC, Op_RegI, 10, R10->as_VMReg()        );  // v   iarg8
 103   reg_def R10_H( SOC, SOC, Op_RegI, 99, R10->as_VMReg()->next());
 104   reg_def R11  ( SOC, SOC, Op_RegI, 11, R11->as_VMReg()        );  // v   ENV / scratch
 105   reg_def R11_H( SOC, SOC, Op_RegI, 99, R11->as_VMReg()->next());
 106   reg_def R12  ( SOC, SOC, Op_RegI, 12, R12->as_VMReg()        );  // v   scratch
 107   reg_def R12_H( SOC, SOC, Op_RegI, 99, R12->as_VMReg()->next());
 108   reg_def R13  ( NS,  NS,  Op_RegI, 13, R13->as_VMReg()        );  // s   system thread id
 109   reg_def R13_H( NS,  NS,  Op_RegI, 99, R13->as_VMReg()->next());
 110   reg_def R14  ( SOC, SOE, Op_RegI, 14, R14->as_VMReg()        );  // nv
 111   reg_def R14_H( SOC, SOE, Op_RegI, 99, R14->as_VMReg()->next());
 112   reg_def R15  ( SOC, SOE, Op_RegI, 15, R15->as_VMReg()        );  // nv
 113   reg_def R15_H( SOC, SOE, Op_RegI, 99, R15->as_VMReg()->next());
 114   reg_def R16  ( SOC, SOE, Op_RegI, 16, R16->as_VMReg()        );  // nv
 115   reg_def R16_H( SOC, SOE, Op_RegI, 99, R16->as_VMReg()->next());
 116   reg_def R17  ( SOC, SOE, Op_RegI, 17, R17->as_VMReg()        );  // nv
 117   reg_def R17_H( SOC, SOE, Op_RegI, 99, R17->as_VMReg()->next());
 118   reg_def R18  ( SOC, SOE, Op_RegI, 18, R18->as_VMReg()        );  // nv
 119   reg_def R18_H( SOC, SOE, Op_RegI, 99, R18->as_VMReg()->next());
 120   reg_def R19  ( SOC, SOE, Op_RegI, 19, R19->as_VMReg()        );  // nv
 121   reg_def R19_H( SOC, SOE, Op_RegI, 99, R19->as_VMReg()->next());
 122   reg_def R20  ( SOC, SOE, Op_RegI, 20, R20->as_VMReg()        );  // nv
 123   reg_def R20_H( SOC, SOE, Op_RegI, 99, R20->as_VMReg()->next());
 124   reg_def R21  ( SOC, SOE, Op_RegI, 21, R21->as_VMReg()        );  // nv
 125   reg_def R21_H( SOC, SOE, Op_RegI, 99, R21->as_VMReg()->next());
 126   reg_def R22  ( SOC, SOE, Op_RegI, 22, R22->as_VMReg()        );  // nv
 127   reg_def R22_H( SOC, SOE, Op_RegI, 99, R22->as_VMReg()->next());
 128   reg_def R23  ( SOC, SOE, Op_RegI, 23, R23->as_VMReg()        );  // nv
 129   reg_def R23_H( SOC, SOE, Op_RegI, 99, R23->as_VMReg()->next());
 130   reg_def R24  ( SOC, SOE, Op_RegI, 24, R24->as_VMReg()        );  // nv
 131   reg_def R24_H( SOC, SOE, Op_RegI, 99, R24->as_VMReg()->next());
 132   reg_def R25  ( SOC, SOE, Op_RegI, 25, R25->as_VMReg()        );  // nv
 133   reg_def R25_H( SOC, SOE, Op_RegI, 99, R25->as_VMReg()->next());
 134   reg_def R26  ( SOC, SOE, Op_RegI, 26, R26->as_VMReg()        );  // nv
 135   reg_def R26_H( SOC, SOE, Op_RegI, 99, R26->as_VMReg()->next());
 136   reg_def R27  ( SOC, SOE, Op_RegI, 27, R27->as_VMReg()        );  // nv
 137   reg_def R27_H( SOC, SOE, Op_RegI, 99, R27->as_VMReg()->next());
 138   reg_def R28  ( SOC, SOE, Op_RegI, 28, R28->as_VMReg()        );  // nv
 139   reg_def R28_H( SOC, SOE, Op_RegI, 99, R28->as_VMReg()->next());
 140   reg_def R29  ( SOC, SOE, Op_RegI, 29, R29->as_VMReg()        );  // nv
 141   reg_def R29_H( SOC, SOE, Op_RegI, 99, R29->as_VMReg()->next());
 142   reg_def R30  ( SOC, SOE, Op_RegI, 30, R30->as_VMReg()        );  // nv
 143   reg_def R30_H( SOC, SOE, Op_RegI, 99, R30->as_VMReg()->next());
 144   reg_def R31  ( SOC, SOE, Op_RegI, 31, R31->as_VMReg()        );  // nv
 145   reg_def R31_H( SOC, SOE, Op_RegI, 99, R31->as_VMReg()->next());
 146 
 147 
 148 // ----------------------------
 149 // Float/Double Registers
 150 // ----------------------------
 151 
 152   // Double Registers
 153   // The rules of ADL require that double registers be defined in pairs.
 154   // Each pair must be two 32-bit values, but not necessarily a pair of
 155   // single float registers. In each pair, ADLC-assigned register numbers
 156   // must be adjacent, with the lower number even. Finally, when the
 157   // CPU stores such a register pair to memory, the word associated with
 158   // the lower ADLC-assigned number must be stored to the lower address.
 159 
 160   // PPC64 has 32 64-bit floating-point registers. Each can store a single
 161   // or double precision floating-point value.
 162 
 163   // types: v = volatile, nv = non-volatile, s = system
 164   reg_def F0   ( SOC, SOC, Op_RegF,  0, F0->as_VMReg()         );  // v   scratch
 165   reg_def F0_H ( SOC, SOC, Op_RegF, 99, F0->as_VMReg()->next() );
 166   reg_def F1   ( SOC, SOC, Op_RegF,  1, F1->as_VMReg()         );  // v   farg1 & fret
 167   reg_def F1_H ( SOC, SOC, Op_RegF, 99, F1->as_VMReg()->next() );
 168   reg_def F2   ( SOC, SOC, Op_RegF,  2, F2->as_VMReg()         );  // v   farg2
 169   reg_def F2_H ( SOC, SOC, Op_RegF, 99, F2->as_VMReg()->next() );
 170   reg_def F3   ( SOC, SOC, Op_RegF,  3, F3->as_VMReg()         );  // v   farg3
 171   reg_def F3_H ( SOC, SOC, Op_RegF, 99, F3->as_VMReg()->next() );
 172   reg_def F4   ( SOC, SOC, Op_RegF,  4, F4->as_VMReg()         );  // v   farg4
 173   reg_def F4_H ( SOC, SOC, Op_RegF, 99, F4->as_VMReg()->next() );
 174   reg_def F5   ( SOC, SOC, Op_RegF,  5, F5->as_VMReg()         );  // v   farg5
 175   reg_def F5_H ( SOC, SOC, Op_RegF, 99, F5->as_VMReg()->next() );
 176   reg_def F6   ( SOC, SOC, Op_RegF,  6, F6->as_VMReg()         );  // v   farg6
 177   reg_def F6_H ( SOC, SOC, Op_RegF, 99, F6->as_VMReg()->next() );
 178   reg_def F7   ( SOC, SOC, Op_RegF,  7, F7->as_VMReg()         );  // v   farg7
 179   reg_def F7_H ( SOC, SOC, Op_RegF, 99, F7->as_VMReg()->next() );
 180   reg_def F8   ( SOC, SOC, Op_RegF,  8, F8->as_VMReg()         );  // v   farg8
 181   reg_def F8_H ( SOC, SOC, Op_RegF, 99, F8->as_VMReg()->next() );
 182   reg_def F9   ( SOC, SOC, Op_RegF,  9, F9->as_VMReg()         );  // v   farg9
 183   reg_def F9_H ( SOC, SOC, Op_RegF, 99, F9->as_VMReg()->next() );
 184   reg_def F10  ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()        );  // v   farg10
 185   reg_def F10_H( SOC, SOC, Op_RegF, 99, F10->as_VMReg()->next());
 186   reg_def F11  ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()        );  // v   farg11
 187   reg_def F11_H( SOC, SOC, Op_RegF, 99, F11->as_VMReg()->next());
 188   reg_def F12  ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()        );  // v   farg12
 189   reg_def F12_H( SOC, SOC, Op_RegF, 99, F12->as_VMReg()->next());
 190   reg_def F13  ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()        );  // v   farg13
 191   reg_def F13_H( SOC, SOC, Op_RegF, 99, F13->as_VMReg()->next());
 192   reg_def F14  ( SOC, SOE, Op_RegF, 14, F14->as_VMReg()        );  // nv
 193   reg_def F14_H( SOC, SOE, Op_RegF, 99, F14->as_VMReg()->next());
 194   reg_def F15  ( SOC, SOE, Op_RegF, 15, F15->as_VMReg()        );  // nv
 195   reg_def F15_H( SOC, SOE, Op_RegF, 99, F15->as_VMReg()->next());
 196   reg_def F16  ( SOC, SOE, Op_RegF, 16, F16->as_VMReg()        );  // nv
 197   reg_def F16_H( SOC, SOE, Op_RegF, 99, F16->as_VMReg()->next());
 198   reg_def F17  ( SOC, SOE, Op_RegF, 17, F17->as_VMReg()        );  // nv
 199   reg_def F17_H( SOC, SOE, Op_RegF, 99, F17->as_VMReg()->next());
 200   reg_def F18  ( SOC, SOE, Op_RegF, 18, F18->as_VMReg()        );  // nv
 201   reg_def F18_H( SOC, SOE, Op_RegF, 99, F18->as_VMReg()->next());
 202   reg_def F19  ( SOC, SOE, Op_RegF, 19, F19->as_VMReg()        );  // nv
 203   reg_def F19_H( SOC, SOE, Op_RegF, 99, F19->as_VMReg()->next());
 204   reg_def F20  ( SOC, SOE, Op_RegF, 20, F20->as_VMReg()        );  // nv
 205   reg_def F20_H( SOC, SOE, Op_RegF, 99, F20->as_VMReg()->next());
 206   reg_def F21  ( SOC, SOE, Op_RegF, 21, F21->as_VMReg()        );  // nv
 207   reg_def F21_H( SOC, SOE, Op_RegF, 99, F21->as_VMReg()->next());
 208   reg_def F22  ( SOC, SOE, Op_RegF, 22, F22->as_VMReg()        );  // nv
 209   reg_def F22_H( SOC, SOE, Op_RegF, 99, F22->as_VMReg()->next());
 210   reg_def F23  ( SOC, SOE, Op_RegF, 23, F23->as_VMReg()        );  // nv
 211   reg_def F23_H( SOC, SOE, Op_RegF, 99, F23->as_VMReg()->next());
 212   reg_def F24  ( SOC, SOE, Op_RegF, 24, F24->as_VMReg()        );  // nv
 213   reg_def F24_H( SOC, SOE, Op_RegF, 99, F24->as_VMReg()->next());
 214   reg_def F25  ( SOC, SOE, Op_RegF, 25, F25->as_VMReg()        );  // nv
 215   reg_def F25_H( SOC, SOE, Op_RegF, 99, F25->as_VMReg()->next());
 216   reg_def F26  ( SOC, SOE, Op_RegF, 26, F26->as_VMReg()        );  // nv
 217   reg_def F26_H( SOC, SOE, Op_RegF, 99, F26->as_VMReg()->next());
 218   reg_def F27  ( SOC, SOE, Op_RegF, 27, F27->as_VMReg()        );  // nv
 219   reg_def F27_H( SOC, SOE, Op_RegF, 99, F27->as_VMReg()->next());
 220   reg_def F28  ( SOC, SOE, Op_RegF, 28, F28->as_VMReg()        );  // nv
 221   reg_def F28_H( SOC, SOE, Op_RegF, 99, F28->as_VMReg()->next());
 222   reg_def F29  ( SOC, SOE, Op_RegF, 29, F29->as_VMReg()        );  // nv
 223   reg_def F29_H( SOC, SOE, Op_RegF, 99, F29->as_VMReg()->next());
 224   reg_def F30  ( SOC, SOE, Op_RegF, 30, F30->as_VMReg()        );  // nv
 225   reg_def F30_H( SOC, SOE, Op_RegF, 99, F30->as_VMReg()->next());
 226   reg_def F31  ( SOC, SOE, Op_RegF, 31, F31->as_VMReg()        );  // nv
 227   reg_def F31_H( SOC, SOE, Op_RegF, 99, F31->as_VMReg()->next());
 228 
 229 // ----------------------------
 230 // Special Registers
 231 // ----------------------------
 232 
 233 // Condition Codes Flag Registers
 234 
 235   // PPC64 has 8 condition code "registers" which are all contained
 236   // in the CR register.
 237 
 238   // types: v = volatile, nv = non-volatile, s = system
 239   reg_def CCR0(SOC, SOC, Op_RegFlags, 0, CCR0->as_VMReg());  // v
 240   reg_def CCR1(SOC, SOC, Op_RegFlags, 1, CCR1->as_VMReg());  // v
 241   reg_def CCR2(SOC, SOC, Op_RegFlags, 2, CCR2->as_VMReg());  // nv
 242   reg_def CCR3(SOC, SOC, Op_RegFlags, 3, CCR3->as_VMReg());  // nv
 243   reg_def CCR4(SOC, SOC, Op_RegFlags, 4, CCR4->as_VMReg());  // nv
 244   reg_def CCR5(SOC, SOC, Op_RegFlags, 5, CCR5->as_VMReg());  // v
 245   reg_def CCR6(SOC, SOC, Op_RegFlags, 6, CCR6->as_VMReg());  // v
 246   reg_def CCR7(SOC, SOC, Op_RegFlags, 7, CCR7->as_VMReg());  // v
 247 
 248   // Special registers of PPC64
 249 
 250   reg_def SR_XER(    SOC, SOC, Op_RegP, 0, SR_XER->as_VMReg());     // v
 251   reg_def SR_LR(     SOC, SOC, Op_RegP, 1, SR_LR->as_VMReg());      // v
 252   reg_def SR_CTR(    SOC, SOC, Op_RegP, 2, SR_CTR->as_VMReg());     // v
 253   reg_def SR_VRSAVE( SOC, SOC, Op_RegP, 3, SR_VRSAVE->as_VMReg());  // v
 254   reg_def SR_SPEFSCR(SOC, SOC, Op_RegP, 4, SR_SPEFSCR->as_VMReg()); // v
 255   reg_def SR_PPR(    SOC, SOC, Op_RegP, 5, SR_PPR->as_VMReg());     // v
 256 
 257 
 258 // ----------------------------
 259 // Specify priority of register selection within phases of register
 260 // allocation. Highest priority is first. A useful heuristic is to
 261 // give registers a low priority when they are required by machine
 262 // instructions, like EAX and EDX on I486, and choose no-save registers
 263 // before save-on-call, & save-on-call before save-on-entry. Registers
 264 // which participate in fixed calling sequences should come last.
 265 // Registers which are used as pairs must fall on an even boundary.
 266 
 267 // It's worth about 1% on SPEC geomean to get this right.
 268 
 269 // Chunk0, chunk1, and chunk2 form the MachRegisterNumbers enumeration
 270 // in adGlobals_ppc64.hpp which defines the <register>_num values, e.g.
 271 // R3_num. Therefore, R3_num may not be (and in reality is not)
 272 // the same as R3->encoding()! Furthermore, we cannot make any
 273 // assumptions on ordering, e.g. R3_num may be less than R2_num.
 274 // Additionally, the function
 275 //   static enum RC rc_class(OptoReg::Name reg )
 276 // maps a given <register>_num value to its chunk type (except for flags)
 277 // and its current implementation relies on chunk0 and chunk1 having a
 278 // size of 64 each.
 279 
 280 // If you change this allocation class, please have a look at the
 281 // default values for the parameters RoundRobinIntegerRegIntervalStart
 282 // and RoundRobinFloatRegIntervalStart
 283 
 284 alloc_class chunk0 (
 285   // Chunk0 contains *all* 64 integer registers halves.
 286 
 287   // "non-volatile" registers
 288   R14, R14_H,
 289   R15, R15_H,
 290   R17, R17_H,
 291   R18, R18_H,
 292   R19, R19_H,
 293   R20, R20_H,
 294   R21, R21_H,
 295   R22, R22_H,
 296   R23, R23_H,
 297   R24, R24_H,
 298   R25, R25_H,
 299   R26, R26_H,
 300   R27, R27_H,
 301   R28, R28_H,
 302   R29, R29_H,
 303   R30, R30_H,
 304   R31, R31_H,
 305 
 306   // scratch/special registers
 307   R11, R11_H,
 308   R12, R12_H,
 309 
 310   // argument registers
 311   R10, R10_H,
 312   R9,  R9_H,
 313   R8,  R8_H,
 314   R7,  R7_H,
 315   R6,  R6_H,
 316   R5,  R5_H,
 317   R4,  R4_H,
 318   R3,  R3_H,
 319 
 320   // special registers, not available for allocation
 321   R16, R16_H,     // R16_thread
 322   R13, R13_H,     // system thread id
 323   R2,  R2_H,      // may be used for TOC
 324   R1,  R1_H,      // SP
 325   R0,  R0_H       // R0 (scratch)
 326 );
 327 
 328 // If you change this allocation class, please have a look at the
 329 // default values for the parameters RoundRobinIntegerRegIntervalStart
 330 // and RoundRobinFloatRegIntervalStart
 331 
 332 alloc_class chunk1 (
 333   // Chunk1 contains *all* 64 floating-point registers halves.
 334 
 335   // scratch register
 336   F0,  F0_H,
 337 
 338   // argument registers
 339   F13, F13_H,
 340   F12, F12_H,
 341   F11, F11_H,
 342   F10, F10_H,
 343   F9,  F9_H,
 344   F8,  F8_H,
 345   F7,  F7_H,
 346   F6,  F6_H,
 347   F5,  F5_H,
 348   F4,  F4_H,
 349   F3,  F3_H,
 350   F2,  F2_H,
 351   F1,  F1_H,
 352 
 353   // non-volatile registers
 354   F14, F14_H,
 355   F15, F15_H,
 356   F16, F16_H,
 357   F17, F17_H,
 358   F18, F18_H,
 359   F19, F19_H,
 360   F20, F20_H,
 361   F21, F21_H,
 362   F22, F22_H,
 363   F23, F23_H,
 364   F24, F24_H,
 365   F25, F25_H,
 366   F26, F26_H,
 367   F27, F27_H,
 368   F28, F28_H,
 369   F29, F29_H,
 370   F30, F30_H,
 371   F31, F31_H
 372 );
 373 
 374 alloc_class chunk2 (
 375   // Chunk2 contains *all* 8 condition code registers.
 376 
 377   CCR0,
 378   CCR1,
 379   CCR2,
 380   CCR3,
 381   CCR4,
 382   CCR5,
 383   CCR6,
 384   CCR7
 385 );
 386 
 387 alloc_class chunk3 (
 388   // special registers
 389   // These registers are not allocated, but used for nodes generated by postalloc expand.
 390   SR_XER,
 391   SR_LR,
 392   SR_CTR,
 393   SR_VRSAVE,
 394   SR_SPEFSCR,
 395   SR_PPR
 396 );
 397 
 398 //-------Architecture Description Register Classes-----------------------
 399 
 400 // Several register classes are automatically defined based upon
 401 // information in this architecture description.
 402 
 403 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 404 // 2) reg_class compiler_method_oop_reg    ( as defined in frame section )
 405 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 406 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 407 //
 408 
 409 // ----------------------------
 410 // 32 Bit Register Classes
 411 // ----------------------------
 412 
 413 // We specify registers twice, once as read/write, and once read-only.
 414 // We use the read-only registers for source operands. With this, we
 415 // can include preset read only registers in this class, as a hard-coded
 416 // '0'-register. (We used to simulate this on ppc.)
 417 
 418 // 32 bit registers that can be read and written i.e. these registers
 419 // can be dest (or src) of normal instructions.
 420 reg_class bits32_reg_rw(
 421 /*R0*/              // R0
 422 /*R1*/              // SP
 423   R2,               // TOC
 424   R3,
 425   R4,
 426   R5,
 427   R6,
 428   R7,
 429   R8,
 430   R9,
 431   R10,
 432   R11,
 433   R12,
 434 /*R13*/             // system thread id
 435   R14,
 436   R15,
 437 /*R16*/             // R16_thread
 438   R17,
 439   R18,
 440   R19,
 441   R20,
 442   R21,
 443   R22,
 444   R23,
 445   R24,
 446   R25,
 447   R26,
 448   R27,
 449   R28,
 450 /*R29*/             // global TOC
 451 /*R30*/             // Narrow Oop Base
 452   R31
 453 );
 454 
 455 // 32 bit registers that can only be read i.e. these registers can
 456 // only be src of all instructions.
 457 reg_class bits32_reg_ro(
 458 /*R0*/              // R0
 459 /*R1*/              // SP
 460   R2                // TOC
 461   R3,
 462   R4,
 463   R5,
 464   R6,
 465   R7,
 466   R8,
 467   R9,
 468   R10,
 469   R11,
 470   R12,
 471 /*R13*/             // system thread id
 472   R14,
 473   R15,
 474 /*R16*/             // R16_thread
 475   R17,
 476   R18,
 477   R19,
 478   R20,
 479   R21,
 480   R22,
 481   R23,
 482   R24,
 483   R25,
 484   R26,
 485   R27,
 486   R28,
 487 /*R29*/
 488 /*R30*/             // Narrow Oop Base
 489   R31
 490 );
 491 
 492 // Complement-required-in-pipeline operands for narrow oops.
 493 reg_class bits32_reg_ro_not_complement (
 494 /*R0*/     // R0
 495   R1,      // SP
 496   R2,      // TOC
 497   R3,
 498   R4,
 499   R5,
 500   R6,
 501   R7,
 502   R8,
 503   R9,
 504   R10,
 505   R11,
 506   R12,
 507 /*R13,*/   // system thread id
 508   R14,
 509   R15,
 510   R16,    // R16_thread
 511   R17,
 512   R18,
 513   R19,
 514   R20,
 515   R21,
 516   R22,
 517 /*R23,
 518   R24,
 519   R25,
 520   R26,
 521   R27,
 522   R28,*/
 523 /*R29,*/ // TODO: let allocator handle TOC!!
 524 /*R30,*/
 525   R31
 526 );
 527 
 528 // Complement-required-in-pipeline operands for narrow oops.
 529 // See 64-bit declaration.
 530 reg_class bits32_reg_ro_complement (
 531   R23,
 532   R24,
 533   R25,
 534   R26,
 535   R27,
 536   R28
 537 );
 538 
 539 reg_class rscratch1_bits32_reg(R11);
 540 reg_class rscratch2_bits32_reg(R12);
 541 reg_class rarg1_bits32_reg(R3);
 542 reg_class rarg2_bits32_reg(R4);
 543 reg_class rarg3_bits32_reg(R5);
 544 reg_class rarg4_bits32_reg(R6);
 545 
 546 // ----------------------------
 547 // 64 Bit Register Classes
 548 // ----------------------------
 549 // 64-bit build means 64-bit pointers means hi/lo pairs
 550 
 551 reg_class rscratch1_bits64_reg(R11_H, R11);
 552 reg_class rscratch2_bits64_reg(R12_H, R12);
 553 reg_class rarg1_bits64_reg(R3_H, R3);
 554 reg_class rarg2_bits64_reg(R4_H, R4);
 555 reg_class rarg3_bits64_reg(R5_H, R5);
 556 reg_class rarg4_bits64_reg(R6_H, R6);
 557 // Thread register, 'written' by tlsLoadP, see there.
 558 reg_class thread_bits64_reg(R16_H, R16);
 559 
 560 reg_class r19_bits64_reg(R19_H, R19);
 561 
 562 // 64 bit registers that can be read and written i.e. these registers
 563 // can be dest (or src) of normal instructions.
 564 reg_class bits64_reg_rw(
 565 /*R0_H,  R0*/     // R0
 566 /*R1_H,  R1*/     // SP
 567   R2_H,  R2,      // TOC
 568   R3_H,  R3,
 569   R4_H,  R4,
 570   R5_H,  R5,
 571   R6_H,  R6,
 572   R7_H,  R7,
 573   R8_H,  R8,
 574   R9_H,  R9,
 575   R10_H, R10,
 576   R11_H, R11,
 577   R12_H, R12,
 578 /*R13_H, R13*/   // system thread id
 579   R14_H, R14,
 580   R15_H, R15,
 581 /*R16_H, R16*/   // R16_thread
 582   R17_H, R17,
 583   R18_H, R18,
 584   R19_H, R19,
 585   R20_H, R20,
 586   R21_H, R21,
 587   R22_H, R22,
 588   R23_H, R23,
 589   R24_H, R24,
 590   R25_H, R25,
 591   R26_H, R26,
 592   R27_H, R27,
 593   R28_H, R28,
 594 /*R29_H, R29*/
 595 /*R30_H, R30*/
 596   R31_H, R31
 597 );
 598 
 599 // 64 bit registers used excluding r2, r11 and r12
 600 // Used to hold the TOC to avoid collisions with expanded LeafCall which uses
 601 // r2, r11 and r12 internally.
 602 reg_class bits64_reg_leaf_call(
 603 /*R0_H,  R0*/     // R0
 604 /*R1_H,  R1*/     // SP
 605 /*R2_H,  R2*/     // TOC
 606   R3_H,  R3,
 607   R4_H,  R4,
 608   R5_H,  R5,
 609   R6_H,  R6,
 610   R7_H,  R7,
 611   R8_H,  R8,
 612   R9_H,  R9,
 613   R10_H, R10,
 614 /*R11_H, R11*/
 615 /*R12_H, R12*/
 616 /*R13_H, R13*/   // system thread id
 617   R14_H, R14,
 618   R15_H, R15,
 619 /*R16_H, R16*/   // R16_thread
 620   R17_H, R17,
 621   R18_H, R18,
 622   R19_H, R19,
 623   R20_H, R20,
 624   R21_H, R21,
 625   R22_H, R22,
 626   R23_H, R23,
 627   R24_H, R24,
 628   R25_H, R25,
 629   R26_H, R26,
 630   R27_H, R27,
 631   R28_H, R28,
 632 /*R29_H, R29*/
 633 /*R30_H, R30*/
 634   R31_H, R31
 635 );
 636 
 637 // Used to hold the TOC to avoid collisions with expanded DynamicCall
 638 // which uses r19 as inline cache internally and expanded LeafCall which uses
 639 // r2, r11 and r12 internally.
 640 reg_class bits64_constant_table_base(
 641 /*R0_H,  R0*/     // R0
 642 /*R1_H,  R1*/     // SP
 643 /*R2_H,  R2*/     // TOC
 644   R3_H,  R3,
 645   R4_H,  R4,
 646   R5_H,  R5,
 647   R6_H,  R6,
 648   R7_H,  R7,
 649   R8_H,  R8,
 650   R9_H,  R9,
 651   R10_H, R10,
 652 /*R11_H, R11*/
 653 /*R12_H, R12*/
 654 /*R13_H, R13*/   // system thread id
 655   R14_H, R14,
 656   R15_H, R15,
 657 /*R16_H, R16*/   // R16_thread
 658   R17_H, R17,
 659   R18_H, R18,
 660 /*R19_H, R19*/
 661   R20_H, R20,
 662   R21_H, R21,
 663   R22_H, R22,
 664   R23_H, R23,
 665   R24_H, R24,
 666   R25_H, R25,
 667   R26_H, R26,
 668   R27_H, R27,
 669   R28_H, R28,
 670 /*R29_H, R29*/
 671 /*R30_H, R30*/
 672   R31_H, R31
 673 );
 674 
 675 // 64 bit registers that can only be read i.e. these registers can
 676 // only be src of all instructions.
 677 reg_class bits64_reg_ro(
 678 /*R0_H,  R0*/     // R0
 679   R1_H,  R1,
 680   R2_H,  R2,       // TOC
 681   R3_H,  R3,
 682   R4_H,  R4,
 683   R5_H,  R5,
 684   R6_H,  R6,
 685   R7_H,  R7,
 686   R8_H,  R8,
 687   R9_H,  R9,
 688   R10_H, R10,
 689   R11_H, R11,
 690   R12_H, R12,
 691 /*R13_H, R13*/   // system thread id
 692   R14_H, R14,
 693   R15_H, R15,
 694   R16_H, R16,    // R16_thread
 695   R17_H, R17,
 696   R18_H, R18,
 697   R19_H, R19,
 698   R20_H, R20,
 699   R21_H, R21,
 700   R22_H, R22,
 701   R23_H, R23,
 702   R24_H, R24,
 703   R25_H, R25,
 704   R26_H, R26,
 705   R27_H, R27,
 706   R28_H, R28,
 707 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
 708 /*R30_H, R30,*/
 709   R31_H, R31
 710 );
 711 
 712 // Complement-required-in-pipeline operands.
 713 reg_class bits64_reg_ro_not_complement (
 714 /*R0_H,  R0*/     // R0
 715   R1_H,  R1,      // SP
 716   R2_H,  R2,      // TOC
 717   R3_H,  R3,
 718   R4_H,  R4,
 719   R5_H,  R5,
 720   R6_H,  R6,
 721   R7_H,  R7,
 722   R8_H,  R8,
 723   R9_H,  R9,
 724   R10_H, R10,
 725   R11_H, R11,
 726   R12_H, R12,
 727 /*R13_H, R13*/   // system thread id
 728   R14_H, R14,
 729   R15_H, R15,
 730   R16_H, R16,    // R16_thread
 731   R17_H, R17,
 732   R18_H, R18,
 733   R19_H, R19,
 734   R20_H, R20,
 735   R21_H, R21,
 736   R22_H, R22,
 737 /*R23_H, R23,
 738   R24_H, R24,
 739   R25_H, R25,
 740   R26_H, R26,
 741   R27_H, R27,
 742   R28_H, R28,*/
 743 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
 744 /*R30_H, R30,*/
 745   R31_H, R31
 746 );
 747 
 748 // Complement-required-in-pipeline operands.
 749 // This register mask is used for the trap instructions that implement
 750 // the null checks on AIX. The trap instruction first computes the
 751 // complement of the value it shall trap on. Because of this, the
 752 // instruction can not be scheduled in the same cycle as an other
 753 // instruction reading the normal value of the same register. So we
 754 // force the value to check into 'bits64_reg_ro_not_complement'
 755 // and then copy it to 'bits64_reg_ro_complement' for the trap.
 756 reg_class bits64_reg_ro_complement (
 757   R23_H, R23,
 758   R24_H, R24,
 759   R25_H, R25,
 760   R26_H, R26,
 761   R27_H, R27,
 762   R28_H, R28
 763 );
 764 
 765 
 766 // ----------------------------
 767 // Special Class for Condition Code Flags Register
 768 
 769 reg_class int_flags(
 770 /*CCR0*/             // scratch
 771 /*CCR1*/             // scratch
 772 /*CCR2*/             // nv!
 773 /*CCR3*/             // nv!
 774 /*CCR4*/             // nv!
 775   CCR5,
 776   CCR6,
 777   CCR7
 778 );
 779 
 780 reg_class int_flags_CR0(CCR0);
 781 reg_class int_flags_CR1(CCR1);
 782 reg_class int_flags_CR6(CCR6);
 783 reg_class ctr_reg(SR_CTR);
 784 
 785 // ----------------------------
 786 // Float Register Classes
 787 // ----------------------------
 788 
 789 reg_class flt_reg(
 790 /*F0*/              // scratch
 791   F1,
 792   F2,
 793   F3,
 794   F4,
 795   F5,
 796   F6,
 797   F7,
 798   F8,
 799   F9,
 800   F10,
 801   F11,
 802   F12,
 803   F13,
 804   F14,              // nv!
 805   F15,              // nv!
 806   F16,              // nv!
 807   F17,              // nv!
 808   F18,              // nv!
 809   F19,              // nv!
 810   F20,              // nv!
 811   F21,              // nv!
 812   F22,              // nv!
 813   F23,              // nv!
 814   F24,              // nv!
 815   F25,              // nv!
 816   F26,              // nv!
 817   F27,              // nv!
 818   F28,              // nv!
 819   F29,              // nv!
 820   F30,              // nv!
 821   F31               // nv!
 822 );
 823 
 824 // Double precision float registers have virtual `high halves' that
 825 // are needed by the allocator.
 826 reg_class dbl_reg(
 827 /*F0,  F0_H*/     // scratch
 828   F1,  F1_H,
 829   F2,  F2_H,
 830   F3,  F3_H,
 831   F4,  F4_H,
 832   F5,  F5_H,
 833   F6,  F6_H,
 834   F7,  F7_H,
 835   F8,  F8_H,
 836   F9,  F9_H,
 837   F10, F10_H,
 838   F11, F11_H,
 839   F12, F12_H,
 840   F13, F13_H,
 841   F14, F14_H,    // nv!
 842   F15, F15_H,    // nv!
 843   F16, F16_H,    // nv!
 844   F17, F17_H,    // nv!
 845   F18, F18_H,    // nv!
 846   F19, F19_H,    // nv!
 847   F20, F20_H,    // nv!
 848   F21, F21_H,    // nv!
 849   F22, F22_H,    // nv!
 850   F23, F23_H,    // nv!
 851   F24, F24_H,    // nv!
 852   F25, F25_H,    // nv!
 853   F26, F26_H,    // nv!
 854   F27, F27_H,    // nv!
 855   F28, F28_H,    // nv!
 856   F29, F29_H,    // nv!
 857   F30, F30_H,    // nv!
 858   F31, F31_H     // nv!
 859 );
 860 
 861  %}
 862 
 863 //----------DEFINITION BLOCK---------------------------------------------------
 864 // Define name --> value mappings to inform the ADLC of an integer valued name
 865 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 866 // Format:
 867 //        int_def  <name>         ( <int_value>, <expression>);
 868 // Generated Code in ad_<arch>.hpp
 869 //        #define  <name>   (<expression>)
 870 //        // value == <int_value>
 871 // Generated code in ad_<arch>.cpp adlc_verification()
 872 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 873 //
 874 definitions %{
 875   // The default cost (of an ALU instruction).
 876   int_def DEFAULT_COST_LOW        (     30,      30);
 877   int_def DEFAULT_COST            (    100,     100);
 878   int_def HUGE_COST               (1000000, 1000000);
 879 
 880   // Memory refs
 881   int_def MEMORY_REF_COST_LOW     (    200, DEFAULT_COST * 2);
 882   int_def MEMORY_REF_COST         (    300, DEFAULT_COST * 3);
 883 
 884   // Branches are even more expensive.
 885   int_def BRANCH_COST             (    900, DEFAULT_COST * 9);
 886   int_def CALL_COST               (   1300, DEFAULT_COST * 13);
 887 %}
 888 
 889 
 890 //----------SOURCE BLOCK-------------------------------------------------------
 891 // This is a block of C++ code which provides values, functions, and
 892 // definitions necessary in the rest of the architecture description.
 893 source_hpp %{
 894   // Returns true if Node n is followed by a MemBar node that 
 895   // will do an acquire. If so, this node must not do the acquire
 896   // operation.
 897   bool followed_by_acquire(const Node *n);
 898 %}
 899 
 900 source %{
 901 
 902 // Optimize load-acquire.
 903 //
 904 // Check if acquire is unnecessary due to following operation that does 
 905 // acquire anyways.
 906 // Walk the pattern:
 907 //
 908 //      n: Load.acq
 909 //           |
 910 //      MemBarAcquire
 911 //       |         |
 912 //  Proj(ctrl)  Proj(mem)
 913 //       |         |
 914 //   MemBarRelease/Volatile
 915 // 
 916 bool followed_by_acquire(const Node *load) {
 917   assert(load->is_Load(), "So far implemented only for loads.");
 918 
 919   // Find MemBarAcquire.
 920   const Node *mba = NULL;         
 921   for (DUIterator_Fast imax, i = load->fast_outs(imax); i < imax; i++) {
 922     const Node *out = load->fast_out(i);
 923     if (out->Opcode() == Op_MemBarAcquire) {
 924       if (out->in(0) == load) continue; // Skip control edge, membar should be found via precedence edge.
 925       mba = out;
 926       break;
 927     }
 928   }
 929   if (!mba) return false;
 930 
 931   // Find following MemBar node.
 932   //
 933   // The following node must be reachable by control AND memory 
 934   // edge to assure no other operations are in between the two nodes.
 935   //
 936   // So first get the Proj node, mem_proj, to use it to iterate forward.
 937   Node *mem_proj = NULL;
 938   for (DUIterator_Fast imax, i = mba->fast_outs(imax); i < imax; i++) {
 939     mem_proj = mba->fast_out(i);      // Throw out-of-bounds if proj not found
 940     assert(mem_proj->is_Proj(), "only projections here");
 941     ProjNode *proj = mem_proj->as_Proj();
 942     if (proj->_con == TypeFunc::Memory &&
 943         !Compile::current()->node_arena()->contains(mem_proj)) // Unmatched old-space only
 944       break;
 945   }
 946   assert(mem_proj->as_Proj()->_con == TypeFunc::Memory, "Graph broken");
 947 
 948   // Search MemBar behind Proj. If there are other memory operations
 949   // behind the Proj we lost.
 950   for (DUIterator_Fast jmax, j = mem_proj->fast_outs(jmax); j < jmax; j++) {
 951     Node *x = mem_proj->fast_out(j);
 952     // Proj might have an edge to a store or load node which precedes the membar.
 953     if (x->is_Mem()) return false;
 954 
 955     // On PPC64 release and volatile are implemented by an instruction
 956     // that also has acquire semantics. I.e. there is no need for an
 957     // acquire before these.
 958     int xop = x->Opcode();
 959     if (xop == Op_MemBarRelease || xop == Op_MemBarVolatile) {
 960       // Make sure we're not missing Call/Phi/MergeMem by checking
 961       // control edges. The control edge must directly lead back
 962       // to the MemBarAcquire
 963       Node *ctrl_proj = x->in(0);
 964       if (ctrl_proj->is_Proj() && ctrl_proj->in(0) == mba) {
 965         return true;
 966       }
 967     }
 968   }
 969 
 970   return false;
 971 }
 972 
 973 #define __ _masm.
 974 
 975 // Tertiary op of a LoadP or StoreP encoding.
 976 #define REGP_OP true
 977 
 978 // ****************************************************************************
 979 
 980 // REQUIRED FUNCTIONALITY
 981 
 982 // !!!!! Special hack to get all type of calls to specify the byte offset
 983 //       from the start of the call to the point where the return address
 984 //       will point.
 985 
 986 // PPC port: Removed use of lazy constant construct.
 987 
 988 int MachCallStaticJavaNode::ret_addr_offset() {
 989   // It's only a single branch-and-link instruction.
 990   return 4;
 991 }
 992 
 993 int MachCallDynamicJavaNode::ret_addr_offset() {
 994   // Offset is 4 with postalloc expanded calls (bl is one instruction). We use
 995   // postalloc expanded calls if we use inline caches and do not update method data.
 996   if (UseInlineCaches)
 997     return 4;
 998 
 999   int vtable_index = this->_vtable_index;
1000   if (vtable_index < 0) {
1001     // Must be invalid_vtable_index, not nonvirtual_vtable_index.
1002     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
1003     return 12;
1004   } else {
1005     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
1006     return 24;
1007   }
1008 }
1009 
1010 int MachCallRuntimeNode::ret_addr_offset() {
1011   return 40;
1012 }
1013 
1014 //=============================================================================
1015 
1016 // condition code conversions
1017 
1018 static int cc_to_boint(int cc) {
1019   return Assembler::bcondCRbiIs0 | (cc & 8);
1020 }
1021 
1022 static int cc_to_inverse_boint(int cc) {
1023   return Assembler::bcondCRbiIs0 | (8-(cc & 8));
1024 }
1025 
1026 static int cc_to_biint(int cc, int flags_reg) {
1027   return (flags_reg << 2) | (cc & 3);
1028 }
1029 
1030 //=============================================================================
1031 
1032 // Compute padding required for nodes which need alignment. The padding
1033 // is the number of bytes (not instructions) which will be inserted before
1034 // the instruction. The padding must match the size of a NOP instruction.
1035 
1036 int string_indexOf_imm1_charNode::compute_padding(int current_offset) const {
1037   return (3*4-current_offset)&31;
1038 }
1039 
1040 int string_indexOf_imm1Node::compute_padding(int current_offset) const {
1041   return (2*4-current_offset)&31;
1042 }
1043 
1044 int string_indexOf_immNode::compute_padding(int current_offset) const {
1045   return (3*4-current_offset)&31;
1046 }
1047 
1048 int string_indexOfNode::compute_padding(int current_offset) const {
1049   return (1*4-current_offset)&31;
1050 }
1051 
1052 int string_compareNode::compute_padding(int current_offset) const {
1053   return (4*4-current_offset)&31;
1054 }
1055 
1056 int string_equals_immNode::compute_padding(int current_offset) const {
1057   if (opnd_array(3)->constant() < 16) return 0; // Don't insert nops for short version (loop completely unrolled).
1058   return (2*4-current_offset)&31;
1059 }
1060 
1061 int string_equalsNode::compute_padding(int current_offset) const {
1062   return (7*4-current_offset)&31;
1063 }
1064 
1065 int inlineCallClearArrayNode::compute_padding(int current_offset) const {
1066   return (2*4-current_offset)&31;
1067 }
1068 
1069 //=============================================================================
1070 
1071 // Indicate if the safepoint node needs the polling page as an input.
1072 bool SafePointNode::needs_polling_address_input() {
1073   // The address is loaded from thread by a seperate node.
1074   return true;
1075 }
1076 
1077 //=============================================================================
1078 
1079 // Emit an interrupt that is caught by the debugger (for debugging compiler).
1080 void emit_break(CodeBuffer &cbuf) {
1081   MacroAssembler _masm(&cbuf);
1082   __ illtrap();
1083 }
1084 
1085 #ifndef PRODUCT
1086 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1087   st->print("BREAKPOINT");
1088 }
1089 #endif
1090 
1091 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1092   emit_break(cbuf);
1093 }
1094 
1095 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
1096   return MachNode::size(ra_);
1097 }
1098 
1099 //=============================================================================
1100 
1101 void emit_nop(CodeBuffer &cbuf) {
1102   MacroAssembler _masm(&cbuf);
1103   __ nop();
1104 }
1105 
1106 static inline void emit_long(CodeBuffer &cbuf, int value) {
1107   *((int*)(cbuf.insts_end())) = value;
1108   cbuf.set_insts_end(cbuf.insts_end() + BytesPerInstWord);
1109 }
1110 
1111 //=============================================================================
1112 
1113 // Emit a trampoline stub for a call to a target which is too far away.
1114 //
1115 // code sequences:
1116 //
1117 // call-site:
1118 //   branch-and-link to <destination> or <trampoline stub>
1119 //
1120 // Related trampoline stub for this call-site in the stub section:
1121 //   load the call target from the constant pool
1122 //   branch via CTR (LR/link still points to the call-site above)
1123 
1124 const uint trampoline_stub_size = 6 * BytesPerInstWord;
1125 
1126 void emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset) {
1127   // Start the stub.
1128   address stub = __ start_a_stub(Compile::MAX_stubs_size/2);
1129   if (stub == NULL) {
1130     Compile::current()->env()->record_out_of_memory_failure();
1131     return;
1132   }
1133 
1134   // For java_to_interp stubs we use R11_scratch1 as scratch register
1135   // and in call trampoline stubs we use R12_scratch2. This way we
1136   // can distinguish them (see is_NativeCallTrampolineStub_at()).
1137   Register reg_scratch = R12_scratch2;
1138 
1139   // Create a trampoline stub relocation which relates this trampoline stub
1140   // with the call instruction at insts_call_instruction_offset in the
1141   // instructions code-section.
1142   __ relocate(trampoline_stub_Relocation::spec(__ code()->insts()->start() + insts_call_instruction_offset));
1143   const int stub_start_offset = __ offset();
1144 
1145   // Now, create the trampoline stub's code:
1146   // - load the TOC
1147   // - load the call target from the constant pool
1148   // - call
1149   __ calculate_address_from_global_toc(reg_scratch, __ method_toc());
1150   __ ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, reg_scratch, false);
1151   __ mtctr(reg_scratch);
1152   __ bctr();
1153 
1154   const address stub_start_addr = __ addr_at(stub_start_offset);
1155 
1156   // FIXME: Assert that the trampoline stub can be identified and patched.
1157 
1158   // Assert that the encoded destination_toc_offset can be identified and that it is correct.
1159   assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
1160          "encoded offset into the constant pool must match");
1161   // Trampoline_stub_size should be good.
1162   assert((uint)(__ offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
1163   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
1164 
1165   // End the stub.
1166   __ end_a_stub();
1167 }
1168 
1169 // Size of trampoline stub, this doesn't need to be accurate but it must
1170 // be larger or equal to the real size of the stub.
1171 // Used for optimization in Compile::Shorten_branches.
1172 uint size_call_trampoline() {
1173   return trampoline_stub_size;
1174 }
1175 
1176 // Number of relocation entries needed by trampoline stub.
1177 // Used for optimization in Compile::Shorten_branches.
1178 uint reloc_call_trampoline() {
1179   return 5;
1180 }
1181 
1182 //=============================================================================
1183 
1184 // Emit an inline branch-and-link call and a related trampoline stub.
1185 //
1186 // code sequences:
1187 //
1188 // call-site:
1189 //   branch-and-link to <destination> or <trampoline stub>
1190 //
1191 // Related trampoline stub for this call-site in the stub section:
1192 //   load the call target from the constant pool
1193 //   branch via CTR (LR/link still points to the call-site above)
1194 //
1195 
1196 typedef struct {
1197   int insts_call_instruction_offset;
1198   int ret_addr_offset;
1199 } EmitCallOffsets;
1200 
1201 // Emit a branch-and-link instruction that branches to a trampoline.
1202 // - Remember the offset of the branch-and-link instruction.
1203 // - Add a relocation at the branch-and-link instruction.
1204 // - Emit a branch-and-link.
1205 // - Remember the return pc offset.
1206 EmitCallOffsets emit_call_with_trampoline_stub(MacroAssembler &_masm, address entry_point, relocInfo::relocType rtype) {
1207   EmitCallOffsets offsets = { -1, -1 };
1208   const int start_offset = __ offset();
1209   offsets.insts_call_instruction_offset = __ offset();
1210 
1211   // No entry point given, use the current pc.
1212   if (entry_point == NULL) entry_point = __ pc();
1213 
1214   if (!Compile::current()->in_scratch_emit_size()) {
1215     // Put the entry point as a constant into the constant pool.
1216     const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
1217     const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
1218 
1219     // Emit the trampoline stub which will be related to the branch-and-link below.
1220     emit_trampoline_stub(_masm, entry_point_toc_offset, offsets.insts_call_instruction_offset);
1221     __ relocate(rtype);
1222   }
1223 
1224   // Note: At this point we do not have the address of the trampoline
1225   // stub, and the entry point might be too far away for bl, so __ pc()
1226   // serves as dummy and the bl will be patched later.
1227   __ bl((address) __ pc());
1228 
1229   offsets.ret_addr_offset = __ offset() - start_offset;
1230 
1231   return offsets;
1232 }
1233 
1234 //=============================================================================
1235 
1236 // Factory for creating loadConL* nodes for large/small constant pool.
1237 
1238 static inline jlong replicate_immF(float con) {
1239   // Replicate float con 2 times and pack into vector.
1240   int val = *((int*)&con);
1241   jlong lval = val;
1242   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
1243   return lval;
1244 }
1245 
1246 //=============================================================================
1247 
1248 const RegMask& MachConstantBaseNode::_out_RegMask = BITS64_CONSTANT_TABLE_BASE_mask();
1249 int Compile::ConstantTable::calculate_table_base_offset() const {
1250   return 0;  // absolute addressing, no offset
1251 }
1252 
1253 bool MachConstantBaseNode::requires_postalloc_expand() const { return true; }
1254 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
1255   Compile *C = ra_->C;
1256 
1257   iRegPdstOper *op_dst = new (C) iRegPdstOper();
1258   MachNode *m1 = new (C) loadToc_hiNode();
1259   MachNode *m2 = new (C) loadToc_loNode();
1260 
1261   m1->add_req(NULL);
1262   m2->add_req(NULL, m1);
1263   m1->_opnds[0] = op_dst;
1264   m2->_opnds[0] = op_dst;
1265   m2->_opnds[1] = op_dst;
1266   ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
1267   ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
1268   nodes->push(m1);
1269   nodes->push(m2);
1270 }
1271 
1272 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1273   // Is postalloc expanded.
1274   ShouldNotReachHere();
1275 }
1276 
1277 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
1278   return 0;
1279 }
1280 
1281 #ifndef PRODUCT
1282 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1283   st->print("-- \t// MachConstantBaseNode (empty encoding)");
1284 }
1285 #endif
1286 
1287 //=============================================================================
1288 
1289 #ifndef PRODUCT
1290 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1291   Compile* C = ra_->C;
1292   const long framesize = C->frame_slots() << LogBytesPerInt;
1293 
1294   st->print("PROLOG\n\t");
1295   if (C->need_stack_bang(framesize)) {
1296     st->print("stack_overflow_check\n\t");
1297   }
1298 
1299   if (!false /* TODO: PPC port C->is_frameless_method()*/) {
1300     st->print("save return pc\n\t");
1301     st->print("push frame %d\n\t", -framesize);
1302   }
1303 }
1304 #endif
1305 
1306 // Macro used instead of the common __ to emulate the pipes of PPC.
1307 // Instead of e.g. __ ld(...) one hase to write ___(ld) ld(...) This enables the
1308 // micro scheduler to cope with "hand written" assembler like in the prolog. Though
1309 // still no scheduling of this code is possible, the micro scheduler is aware of the
1310 // code and can update its internal data. The following mechanism is used to achieve this:
1311 // The micro scheduler calls size() of each compound node during scheduling. size() does a
1312 // dummy emit and only during this dummy emit C->hb_scheduling() is not NULL.
1313 #if 0 // TODO: PPC port
1314 #define ___(op) if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
1315                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(ppc64Opcode_##op); \
1316                 _masm.
1317 #define ___stop if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
1318                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(archOpcode_none)
1319 #define ___advance if (UsePower6SchedulerPPC64 && C->hb_scheduling())                 \
1320                   C->hb_scheduling()->_pdScheduling->advance_offset
1321 #else
1322 #define ___(op) if (UsePower6SchedulerPPC64)                                          \
1323                   Unimplemented();                                                    \
1324                 _masm.
1325 #define ___stop if (UsePower6SchedulerPPC64)                                          \
1326                   Unimplemented()
1327 #define ___advance if (UsePower6SchedulerPPC64)                                       \
1328                   Unimplemented()
1329 #endif
1330 
1331 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1332   Compile* C = ra_->C;
1333   MacroAssembler _masm(&cbuf);
1334 
1335   const long framesize = ((long)C->frame_slots()) << LogBytesPerInt;
1336   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1337 
1338   const bool method_is_frameless      = false /* TODO: PPC port C->is_frameless_method()*/;
1339 
1340   const Register return_pc            = R20; // Must match return_addr() in frame section.
1341   const Register callers_sp           = R21;
1342   const Register push_frame_temp      = R22;
1343   const Register toc_temp             = R23;
1344   assert_different_registers(R11, return_pc, callers_sp, push_frame_temp, toc_temp);
1345 
1346   if (method_is_frameless) {
1347     // Add nop at beginning of all frameless methods to prevent any
1348     // oop instructions from getting overwritten by make_not_entrant
1349     // (patching attempt would fail).
1350     ___(nop) nop();
1351   } else {
1352     // Get return pc.
1353     ___(mflr) mflr(return_pc);
1354   }
1355 
1356   // Calls to C2R adapters often do not accept exceptional returns.
1357   // We require that their callers must bang for them. But be
1358   // careful, because some VM calls (such as call site linkage) can
1359   // use several kilobytes of stack. But the stack safety zone should
1360   // account for that. See bugs 4446381, 4468289, 4497237.
1361   if (C->need_stack_bang(framesize) && UseStackBanging) {
1362     // Unfortunately we cannot use the function provided in
1363     // assembler.cpp as we have to emulate the pipes. So I had to
1364     // insert the code of generate_stack_overflow_check(), see
1365     // assembler.cpp for some illuminative comments.
1366     const int page_size = os::vm_page_size();
1367     int bang_end = StackShadowPages*page_size;
1368 
1369     // This is how far the previous frame's stack banging extended.
1370     const int bang_end_safe = bang_end;
1371 
1372     if (framesize > page_size) {
1373       bang_end += framesize;
1374     }
1375 
1376     int bang_offset = bang_end_safe;
1377 
1378     while (bang_offset <= bang_end) {
1379       // Need at least one stack bang at end of shadow zone.
1380 
1381       // Again I had to copy code, this time from assembler_ppc64.cpp,
1382       // bang_stack_with_offset - see there for comments.
1383 
1384       // Stack grows down, caller passes positive offset.
1385       assert(bang_offset > 0, "must bang with positive offset");
1386 
1387       long stdoffset = -bang_offset;
1388 
1389       if (Assembler::is_simm(stdoffset, 16)) {
1390         // Signed 16 bit offset, a simple std is ok.
1391         if (UseLoadInstructionsForStackBangingPPC64) {
1392           ___(ld) ld(R0,  (int)(signed short)stdoffset, R1_SP);
1393         } else {
1394           ___(std) std(R0, (int)(signed short)stdoffset, R1_SP);
1395         }
1396       } else if (Assembler::is_simm(stdoffset, 31)) {
1397         // Use largeoffset calculations for addis & ld/std.
1398         const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
1399         const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
1400 
1401         Register tmp = R11;
1402         ___(addis) addis(tmp, R1_SP, hi);
1403         if (UseLoadInstructionsForStackBangingPPC64) {
1404           ___(ld) ld(R0, lo, tmp);
1405         } else {
1406           ___(std) std(R0, lo, tmp);
1407         }
1408       } else {
1409         ShouldNotReachHere();
1410       }
1411 
1412       bang_offset += page_size;
1413     }
1414     // R11 trashed
1415   } // C->need_stack_bang(framesize) && UseStackBanging
1416 
1417   unsigned int bytes = (unsigned int)framesize;
1418   long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
1419   ciMethod *currMethod = C -> method();
1420 
1421   // Optimized version for most common case.
1422   if (UsePower6SchedulerPPC64 &&
1423       !method_is_frameless && Assembler::is_simm((int)(-offset), 16) &&
1424       !(false /* ConstantsALot TODO: PPC port*/)) {
1425     ___(or) mr(callers_sp, R1_SP);
1426     ___(std) std(return_pc, _abi(lr), R1_SP);
1427     ___(stdu) stdu(R1_SP, -offset, R1_SP);
1428     return;
1429   }
1430 
1431   if (!method_is_frameless) {
1432     // Get callers sp.
1433     ___(or) mr(callers_sp, R1_SP);
1434 
1435     // Push method's frame, modifies SP.
1436     assert(Assembler::is_uimm(framesize, 32U), "wrong type");
1437     // The ABI is already accounted for in 'framesize' via the
1438     // 'out_preserve' area.
1439     Register tmp = push_frame_temp;
1440     // Had to insert code of push_frame((unsigned int)framesize, push_frame_temp).
1441     if (Assembler::is_simm(-offset, 16)) {
1442       ___(stdu) stdu(R1_SP, -offset, R1_SP);
1443     } else {
1444       long x = -offset;
1445       // Had to insert load_const(tmp, -offset).
1446       ___(addis)  lis( tmp, (int)((signed short)(((x >> 32) & 0xffff0000) >> 16)));
1447       ___(ori)    ori( tmp, tmp, ((x >> 32) & 0x0000ffff));
1448       ___(rldicr) sldi(tmp, tmp, 32);
1449       ___(oris)   oris(tmp, tmp, (x & 0xffff0000) >> 16);
1450       ___(ori)    ori( tmp, tmp, (x & 0x0000ffff));
1451 
1452       ___(stdux) stdux(R1_SP, R1_SP, tmp);
1453     }
1454   }
1455 #if 0 // TODO: PPC port
1456   // For testing large constant pools, emit a lot of constants to constant pool.
1457   // "Randomize" const_size.
1458   if (ConstantsALot) {
1459     const int num_consts = const_size();
1460     for (int i = 0; i < num_consts; i++) {
1461       __ long_constant(0xB0B5B00BBABE);
1462     }
1463   }
1464 #endif
1465   if (!method_is_frameless) {
1466     // Save return pc.
1467     ___(std) std(return_pc, _abi(lr), callers_sp);
1468   }
1469 }
1470 #undef ___
1471 #undef ___stop
1472 #undef ___advance
1473 
1474 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1475   // Variable size. determine dynamically.
1476   return MachNode::size(ra_);
1477 }
1478 
1479 int MachPrologNode::reloc() const {
1480   // Return number of relocatable values contained in this instruction.
1481   return 1; // 1 reloc entry for load_const(toc).
1482 }
1483 
1484 //=============================================================================
1485 
1486 #ifndef PRODUCT
1487 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1488   Compile* C = ra_->C;
1489 
1490   st->print("EPILOG\n\t");
1491   st->print("restore return pc\n\t");
1492   st->print("pop frame\n\t");
1493 
1494   if (do_polling() && C->is_method_compilation()) {
1495     st->print("touch polling page\n\t");
1496   }
1497 }
1498 #endif
1499 
1500 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1501   Compile* C = ra_->C;
1502   MacroAssembler _masm(&cbuf);
1503 
1504   const long framesize = ((long)C->frame_slots()) << LogBytesPerInt;
1505   assert(framesize >= 0, "negative frame-size?");
1506 
1507   const bool method_needs_polling = do_polling() && C->is_method_compilation();
1508   const bool method_is_frameless  = false /* TODO: PPC port C->is_frameless_method()*/;
1509   const Register return_pc        = R11;
1510   const Register polling_page     = R12;
1511 
1512   if (!method_is_frameless) {
1513     // Restore return pc relative to callers' sp.
1514     __ ld(return_pc, ((int)framesize) + _abi(lr), R1_SP);
1515   }
1516 
1517   if (method_needs_polling) {
1518     if (LoadPollAddressFromThread) {
1519       // TODO: PPC port __ ld(polling_page, in_bytes(JavaThread::poll_address_offset()), R16_thread);
1520       Unimplemented();
1521     } else {
1522       __ load_const_optimized(polling_page, (long)(address) os::get_polling_page()); // TODO: PPC port: get_standard_polling_page()
1523     }
1524   }
1525 
1526   if (!method_is_frameless) {
1527     // Move return pc to LR.
1528     __ mtlr(return_pc);
1529     // Pop frame (fixed frame-size).
1530     __ addi(R1_SP, R1_SP, (int)framesize);
1531   }
1532 
1533   if (method_needs_polling) {
1534     // We need to mark the code position where the load from the safepoint
1535     // polling page was emitted as relocInfo::poll_return_type here.
1536     __ relocate(relocInfo::poll_return_type);
1537     __ load_from_polling_page(polling_page);
1538   }
1539 }
1540 
1541 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1542   // Variable size. Determine dynamically.
1543   return MachNode::size(ra_);
1544 }
1545 
1546 int MachEpilogNode::reloc() const {
1547   // Return number of relocatable values contained in this instruction.
1548   return 1; // 1 for load_from_polling_page.
1549 }
1550 
1551 const Pipeline * MachEpilogNode::pipeline() const {
1552   return MachNode::pipeline_class();
1553 }
1554 
1555 // This method seems to be obsolete. It is declared in machnode.hpp
1556 // and defined in all *.ad files, but it is never called. Should we
1557 // get rid of it?
1558 int MachEpilogNode::safepoint_offset() const {
1559   assert(do_polling(), "no return for this epilog node");
1560   return 0;
1561 }
1562 
1563 #if 0 // TODO: PPC port
1564 void MachLoadPollAddrLateNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1565   MacroAssembler _masm(&cbuf);
1566   if (LoadPollAddressFromThread) {
1567     _masm.ld(R11, in_bytes(JavaThread::poll_address_offset()), R16_thread);
1568   } else {
1569     _masm.nop();
1570   }
1571 }
1572 
1573 uint MachLoadPollAddrLateNode::size(PhaseRegAlloc* ra_) const {
1574   if (LoadPollAddressFromThread) {
1575     return 4;
1576   } else {
1577     return 4;
1578   }
1579 }
1580 
1581 #ifndef PRODUCT
1582 void MachLoadPollAddrLateNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1583   st->print_cr(" LD R11, PollAddressOffset, R16_thread \t// LoadPollAddressFromThread");
1584 }
1585 #endif
1586 
1587 const RegMask &MachLoadPollAddrLateNode::out_RegMask() const {
1588   return RSCRATCH1_BITS64_REG_mask();
1589 }
1590 #endif // PPC port
1591 
1592 // =============================================================================
1593 
1594 // Figure out which register class each belongs in: rc_int, rc_float or
1595 // rc_stack.
1596 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1597 
1598 static enum RC rc_class(OptoReg::Name reg) {
1599   // Return the register class for the given register. The given register
1600   // reg is a <register>_num value, which is an index into the MachRegisterNumbers
1601   // enumeration in adGlobals_ppc64.hpp.
1602 
1603   if (reg == OptoReg::Bad) return rc_bad;
1604 
1605   // We have 64 integer register halves, starting at index 0.
1606   if (reg < 64) return rc_int;
1607 
1608   // We have 64 floating-point register halves, starting at index 64.
1609   if (reg < 64+64) return rc_float;
1610 
1611   // Between float regs & stack are the flags regs.
1612   assert(OptoReg::is_stack(reg), "blow up if spilling flags");
1613 
1614   return rc_stack;
1615 }
1616 
1617 static int ld_st_helper(CodeBuffer *cbuf, const char *op_str, uint opcode, int reg, int offset,
1618                         bool do_print, Compile* C, outputStream *st) {
1619 
1620   assert(opcode == Assembler::LD_OPCODE   ||
1621          opcode == Assembler::STD_OPCODE  ||
1622          opcode == Assembler::LWZ_OPCODE  ||
1623          opcode == Assembler::STW_OPCODE  ||
1624          opcode == Assembler::LFD_OPCODE  ||
1625          opcode == Assembler::STFD_OPCODE ||
1626          opcode == Assembler::LFS_OPCODE  ||
1627          opcode == Assembler::STFS_OPCODE,
1628          "opcode not supported");
1629 
1630   if (cbuf) {
1631     int d =
1632       (Assembler::LD_OPCODE == opcode || Assembler::STD_OPCODE == opcode) ?
1633         Assembler::ds(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/)
1634       : Assembler::d1(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/); // Makes no difference in opt build.
1635     emit_long(*cbuf, opcode | Assembler::rt(Matcher::_regEncode[reg]) | d | Assembler::ra(R1_SP));
1636   }
1637 #ifndef PRODUCT
1638   else if (do_print) {
1639     st->print("%-7s %s, [R1_SP + #%d+%d] \t// spill copy",
1640               op_str,
1641               Matcher::regName[reg],
1642               offset, 0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/);
1643   }
1644 #endif
1645   return 4; // size
1646 }
1647 
1648 uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
1649   Compile* C = ra_->C;
1650 
1651   // Get registers to move.
1652   OptoReg::Name src_hi = ra_->get_reg_second(in(1));
1653   OptoReg::Name src_lo = ra_->get_reg_first(in(1));
1654   OptoReg::Name dst_hi = ra_->get_reg_second(this);
1655   OptoReg::Name dst_lo = ra_->get_reg_first(this);
1656 
1657   enum RC src_hi_rc = rc_class(src_hi);
1658   enum RC src_lo_rc = rc_class(src_lo);
1659   enum RC dst_hi_rc = rc_class(dst_hi);
1660   enum RC dst_lo_rc = rc_class(dst_lo);
1661 
1662   assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
1663   if (src_hi != OptoReg::Bad)
1664     assert((src_lo&1)==0 && src_lo+1==src_hi &&
1665            (dst_lo&1)==0 && dst_lo+1==dst_hi,
1666            "expected aligned-adjacent pairs");
1667   // Generate spill code!
1668   int size = 0;
1669 
1670   if (src_lo == dst_lo && src_hi == dst_hi)
1671     return size;            // Self copy, no move.
1672 
1673   // --------------------------------------
1674   // Memory->Memory Spill. Use R0 to hold the value.
1675   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
1676     int src_offset = ra_->reg2offset(src_lo);
1677     int dst_offset = ra_->reg2offset(dst_lo);
1678     if (src_hi != OptoReg::Bad) {
1679       assert(src_hi_rc==rc_stack && dst_hi_rc==rc_stack,
1680              "expected same type of move for high parts");
1681       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE,  R0_num, src_offset, !do_size, C, st);
1682       if (!cbuf && !do_size) st->print("\n\t");
1683       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, R0_num, dst_offset, !do_size, C, st);
1684     } else {
1685       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, R0_num, src_offset, !do_size, C, st);
1686       if (!cbuf && !do_size) st->print("\n\t");
1687       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, R0_num, dst_offset, !do_size, C, st);
1688     }
1689     return size;
1690   }
1691 
1692   // --------------------------------------
1693   // Check for float->int copy; requires a trip through memory.
1694   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
1695     Unimplemented();
1696   }
1697 
1698   // --------------------------------------
1699   // Check for integer reg-reg copy.
1700   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
1701       Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
1702       Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
1703       size = (Rsrc != Rdst) ? 4 : 0;
1704 
1705       if (cbuf) {
1706         MacroAssembler _masm(cbuf);
1707         if (size) {
1708           __ mr(Rdst, Rsrc);
1709         }
1710       }
1711 #ifndef PRODUCT
1712       else if (!do_size) {
1713         if (size) {
1714           st->print("%-7s %s, %s \t// spill copy", "MR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1715         } else {
1716           st->print("%-7s %s, %s \t// spill copy", "MR-NOP", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1717         }
1718       }
1719 #endif
1720       return size;
1721   }
1722 
1723   // Check for integer store.
1724   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
1725     int dst_offset = ra_->reg2offset(dst_lo);
1726     if (src_hi != OptoReg::Bad) {
1727       assert(src_hi_rc==rc_int && dst_hi_rc==rc_stack,
1728              "expected same type of move for high parts");
1729       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, src_lo, dst_offset, !do_size, C, st);
1730     } else {
1731       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, src_lo, dst_offset, !do_size, C, st);
1732     }
1733     return size;
1734   }
1735 
1736   // Check for integer load.
1737   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
1738     int src_offset = ra_->reg2offset(src_lo);
1739     if (src_hi != OptoReg::Bad) {
1740       assert(dst_hi_rc==rc_int && src_hi_rc==rc_stack,
1741              "expected same type of move for high parts");
1742       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE, dst_lo, src_offset, !do_size, C, st);
1743     } else {
1744       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, dst_lo, src_offset, !do_size, C, st);
1745     }
1746     return size;
1747   }
1748 
1749   // Check for float reg-reg copy.
1750   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
1751     if (cbuf) {
1752       MacroAssembler _masm(cbuf);
1753       FloatRegister Rsrc = as_FloatRegister(Matcher::_regEncode[src_lo]);
1754       FloatRegister Rdst = as_FloatRegister(Matcher::_regEncode[dst_lo]);
1755       __ fmr(Rdst, Rsrc);
1756     }
1757 #ifndef PRODUCT
1758     else if (!do_size) {
1759       st->print("%-7s %s, %s \t// spill copy", "FMR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1760     }
1761 #endif
1762     return 4;
1763   }
1764 
1765   // Check for float store.
1766   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
1767     int dst_offset = ra_->reg2offset(dst_lo);
1768     if (src_hi != OptoReg::Bad) {
1769       assert(src_hi_rc==rc_float && dst_hi_rc==rc_stack,
1770              "expected same type of move for high parts");
1771       size += ld_st_helper(cbuf, "STFD", Assembler::STFD_OPCODE, src_lo, dst_offset, !do_size, C, st);
1772     } else {
1773       size += ld_st_helper(cbuf, "STFS", Assembler::STFS_OPCODE, src_lo, dst_offset, !do_size, C, st);
1774     }
1775     return size;
1776   }
1777 
1778   // Check for float load.
1779   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
1780     int src_offset = ra_->reg2offset(src_lo);
1781     if (src_hi != OptoReg::Bad) {
1782       assert(dst_hi_rc==rc_float && src_hi_rc==rc_stack,
1783              "expected same type of move for high parts");
1784       size += ld_st_helper(cbuf, "LFD ", Assembler::LFD_OPCODE, dst_lo, src_offset, !do_size, C, st);
1785     } else {
1786       size += ld_st_helper(cbuf, "LFS ", Assembler::LFS_OPCODE, dst_lo, src_offset, !do_size, C, st);
1787     }
1788     return size;
1789   }
1790 
1791   // --------------------------------------------------------------------
1792   // Check for hi bits still needing moving. Only happens for misaligned
1793   // arguments to native calls.
1794   if (src_hi == dst_hi)
1795     return size;               // Self copy; no move.
1796 
1797   assert(src_hi_rc != rc_bad && dst_hi_rc != rc_bad, "src_hi & dst_hi cannot be Bad");
1798   ShouldNotReachHere(); // Unimplemented
1799   return 0;
1800 }
1801 
1802 #ifndef PRODUCT
1803 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1804   if (!ra_)
1805     st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
1806   else
1807     implementation(NULL, ra_, false, st);
1808 }
1809 #endif
1810 
1811 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1812   implementation(&cbuf, ra_, false, NULL);
1813 }
1814 
1815 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1816   return implementation(NULL, ra_, true, NULL);
1817 }
1818 
1819 #if 0 // TODO: PPC port
1820 ArchOpcode MachSpillCopyNode_archOpcode(MachSpillCopyNode *n, PhaseRegAlloc *ra_) {
1821 #ifndef PRODUCT
1822   if (ra_->node_regs_max_index() == 0) return archOpcode_undefined;
1823 #endif
1824   assert(ra_->node_regs_max_index() != 0, "");
1825 
1826   // Get registers to move.
1827   OptoReg::Name src_hi = ra_->get_reg_second(n->in(1));
1828   OptoReg::Name src_lo = ra_->get_reg_first(n->in(1));
1829   OptoReg::Name dst_hi = ra_->get_reg_second(n);
1830   OptoReg::Name dst_lo = ra_->get_reg_first(n);
1831 
1832   enum RC src_lo_rc = rc_class(src_lo);
1833   enum RC dst_lo_rc = rc_class(dst_lo);
1834 
1835   if (src_lo == dst_lo && src_hi == dst_hi)
1836     return ppc64Opcode_none;            // Self copy, no move.
1837 
1838   // --------------------------------------
1839   // Memory->Memory Spill. Use R0 to hold the value.
1840   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
1841     return ppc64Opcode_compound;
1842   }
1843 
1844   // --------------------------------------
1845   // Check for float->int copy; requires a trip through memory.
1846   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
1847     Unimplemented();
1848   }
1849 
1850   // --------------------------------------
1851   // Check for integer reg-reg copy.
1852   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
1853     Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
1854     Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
1855     if (Rsrc == Rdst) {
1856       return ppc64Opcode_none;
1857     } else {
1858       return ppc64Opcode_or;
1859     }
1860   }
1861 
1862   // Check for integer store.
1863   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
1864     if (src_hi != OptoReg::Bad) {
1865       return ppc64Opcode_std;
1866     } else {
1867       return ppc64Opcode_stw;
1868     }
1869   }
1870 
1871   // Check for integer load.
1872   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
1873     if (src_hi != OptoReg::Bad) {
1874       return ppc64Opcode_ld;
1875     } else {
1876       return ppc64Opcode_lwz;
1877     }
1878   }
1879 
1880   // Check for float reg-reg copy.
1881   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
1882     return ppc64Opcode_fmr;
1883   }
1884 
1885   // Check for float store.
1886   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
1887     if (src_hi != OptoReg::Bad) {
1888       return ppc64Opcode_stfd;
1889     } else {
1890       return ppc64Opcode_stfs;
1891     }
1892   }
1893 
1894   // Check for float load.
1895   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
1896     if (src_hi != OptoReg::Bad) {
1897       return ppc64Opcode_lfd;
1898     } else {
1899       return ppc64Opcode_lfs;
1900     }
1901   }
1902 
1903   // --------------------------------------------------------------------
1904   // Check for hi bits still needing moving. Only happens for misaligned
1905   // arguments to native calls.
1906   if (src_hi == dst_hi)
1907     return ppc64Opcode_none;               // Self copy; no move.
1908 
1909   ShouldNotReachHere();
1910   return ppc64Opcode_undefined;
1911 }
1912 #endif // PPC port
1913 
1914 #ifndef PRODUCT
1915 void MachNopNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1916   st->print("NOP \t// %d nops to pad for loops.", _count);
1917 }
1918 #endif
1919 
1920 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
1921   MacroAssembler _masm(&cbuf);
1922   // _count contains the number of nops needed for padding.
1923   for (int i = 0; i < _count; i++) {
1924     __ nop();
1925   }
1926 }
1927 
1928 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1929    return _count * 4;
1930 }
1931 
1932 #ifndef PRODUCT
1933 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1934   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1935   int reg = ra_->get_reg_first(this);
1936   st->print("ADDI %s, SP, %d \t// box node", Matcher::regName[reg], offset);
1937 }
1938 #endif
1939 
1940 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1941   MacroAssembler _masm(&cbuf);
1942 
1943   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1944   int reg    = ra_->get_encode(this);
1945 
1946   if (Assembler::is_simm(offset, 16)) {
1947     __ addi(as_Register(reg), R1, offset);
1948   } else {
1949     ShouldNotReachHere();
1950   }
1951 }
1952 
1953 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1954   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
1955   return 4;
1956 }
1957 
1958 #ifndef PRODUCT
1959 void MachUEPNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1960   st->print_cr("---- MachUEPNode ----");
1961   st->print_cr("...");
1962 }
1963 #endif
1964 
1965 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1966   // This is the unverified entry point.
1967   MacroAssembler _masm(&cbuf);
1968 
1969   // Inline_cache contains a klass.
1970   Register ic_klass       = as_Register(Matcher::inline_cache_reg_encode());
1971   Register receiver_klass = R0;  // tmp
1972 
1973   assert_different_registers(ic_klass, receiver_klass, R11_scratch1, R3_ARG1);
1974   assert(R11_scratch1 == R11, "need prologue scratch register");
1975 
1976   // Check for NULL argument if we don't have implicit null checks.
1977   if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
1978     if (TrapBasedNullChecks) {
1979       __ trap_null_check(R3_ARG1);
1980     } else {
1981       Label valid;
1982       __ cmpdi(CCR0, R3_ARG1, 0);
1983       __ bne_predict_taken(CCR0, valid);
1984       // We have a null argument, branch to ic_miss_stub.
1985       __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
1986                            relocInfo::runtime_call_type);
1987       __ bind(valid);
1988     }
1989   }
1990   // Assume argument is not NULL, load klass from receiver.
1991   __ load_klass(receiver_klass, R3_ARG1);
1992 
1993   if (TrapBasedICMissChecks) {
1994     __ trap_ic_miss_check(receiver_klass, ic_klass);
1995   } else {
1996     Label valid;
1997     __ cmpd(CCR0, receiver_klass, ic_klass);
1998     __ beq_predict_taken(CCR0, valid);
1999     // We have an unexpected klass, branch to ic_miss_stub.
2000     __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
2001                          relocInfo::runtime_call_type);
2002     __ bind(valid);
2003   }
2004 
2005   // Argument is valid and klass is as expected, continue.
2006 }
2007 
2008 #if 0 // TODO: PPC port
2009 // Optimize UEP code on z (save a load_const() call in main path).
2010 int MachUEPNode::ep_offset() {
2011   return 0;
2012 }
2013 #endif
2014 
2015 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
2016   // Variable size. Determine dynamically.
2017   return MachNode::size(ra_);
2018 }
2019 
2020 //=============================================================================
2021 
2022 uint size_exception_handler() {
2023   // The exception_handler is a b64_patchable.
2024   return MacroAssembler::b64_patchable_size;
2025 }
2026 
2027 uint size_deopt_handler() {
2028   // The deopt_handler is a bl64_patchable.
2029   return MacroAssembler::bl64_patchable_size;
2030 }
2031 
2032 int emit_exception_handler(CodeBuffer &cbuf) {
2033   MacroAssembler _masm(&cbuf);
2034 
2035   address base = __ start_a_stub(size_exception_handler());
2036   if (base == NULL) return 0; // CodeBuffer::expand failed
2037 
2038   int offset = __ offset();
2039   __ b64_patchable((address)OptoRuntime::exception_blob()->content_begin(),
2040                        relocInfo::runtime_call_type);
2041   assert(__ offset() - offset == (int)size_exception_handler(), "must be fixed size");
2042   __ end_a_stub();
2043 
2044   return offset;
2045 }
2046 
2047 // The deopt_handler is like the exception handler, but it calls to
2048 // the deoptimization blob instead of jumping to the exception blob.
2049 int emit_deopt_handler(CodeBuffer& cbuf) {
2050   MacroAssembler _masm(&cbuf);
2051 
2052   address base = __ start_a_stub(size_deopt_handler());
2053   if (base == NULL) return 0; // CodeBuffer::expand failed
2054 
2055   int offset = __ offset();
2056   __ bl64_patchable((address)SharedRuntime::deopt_blob()->unpack(),
2057                         relocInfo::runtime_call_type);
2058   assert(__ offset() - offset == (int) size_deopt_handler(), "must be fixed size");
2059   __ end_a_stub();
2060 
2061   return offset;
2062 }
2063 
2064 //=============================================================================
2065 
2066 // Use a frame slots bias for frameless methods if accessing the stack.
2067 static int frame_slots_bias(int reg_enc, PhaseRegAlloc* ra_) {
2068   if (as_Register(reg_enc) == R1_SP) {
2069     return 0; // TODO: PPC port ra_->C->frame_slots_sp_bias_in_bytes();
2070   }
2071   return 0;
2072 }
2073 
2074 const bool Matcher::match_rule_supported(int opcode) {
2075   if (!has_match_rule(opcode))
2076     return false;
2077 
2078   switch (opcode) {
2079   case Op_SqrtD:
2080     return VM_Version::has_fsqrt();
2081   case Op_CountLeadingZerosI:
2082   case Op_CountLeadingZerosL:
2083   case Op_CountTrailingZerosI:
2084   case Op_CountTrailingZerosL:
2085     if (!UseCountLeadingZerosInstructionsPPC64)
2086       return false;
2087     break;
2088 
2089   case Op_PopCountI:
2090   case Op_PopCountL:
2091     return (UsePopCountInstruction && VM_Version::has_popcntw());
2092 
2093   case Op_StrComp:
2094     return SpecialStringCompareTo;
2095   case Op_StrEquals:
2096     return SpecialStringEquals;
2097   case Op_StrIndexOf:
2098     return SpecialStringIndexOf;
2099   }
2100 
2101   return true;  // Per default match rules are supported.
2102 }
2103 
2104 int Matcher::regnum_to_fpu_offset(int regnum) {
2105   // No user for this method?
2106   Unimplemented();
2107   return 999;
2108 }
2109 
2110 const bool Matcher::convL2FSupported(void) {
2111   // fcfids can do the conversion (>= Power7).
2112   // fcfid + frsp showed rounding problem when result should be 0x3f800001.
2113   return VM_Version::has_fcfids(); // False means that conversion is done by runtime call.
2114 }
2115 
2116 // Vector width in bytes.
2117 const int Matcher::vector_width_in_bytes(BasicType bt) {
2118   assert(MaxVectorSize == 8, "");
2119   return 8;
2120 }
2121 
2122 // Vector ideal reg.
2123 const int Matcher::vector_ideal_reg(int size) {
2124   assert(MaxVectorSize == 8 && size == 8, "");
2125   return Op_RegL;
2126 }
2127 
2128 const int Matcher::vector_shift_count_ideal_reg(int size) {
2129   fatal("vector shift is not supported");
2130   return Node::NotAMachineReg;
2131 }
2132 
2133 // Limits on vector size (number of elements) loaded into vector.
2134 const int Matcher::max_vector_size(const BasicType bt) {
2135   assert(is_java_primitive(bt), "only primitive type vectors");
2136   return vector_width_in_bytes(bt)/type2aelembytes(bt);
2137 }
2138 
2139 const int Matcher::min_vector_size(const BasicType bt) {
2140   return max_vector_size(bt); // Same as max.
2141 }
2142 
2143 // PPC doesn't support misaligned vectors store/load.
2144 const bool Matcher::misaligned_vectors_ok() {
2145   return false;
2146 }
2147 
2148 // PPC AES support not yet implemented
2149 const bool Matcher::pass_original_key_for_aes() {
2150   return false;
2151 }
2152 
2153 // RETURNS: whether this branch offset is short enough that a short
2154 // branch can be used.
2155 //
2156 // If the platform does not provide any short branch variants, then
2157 // this method should return `false' for offset 0.
2158 //
2159 // `Compile::Fill_buffer' will decide on basis of this information
2160 // whether to do the pass `Compile::Shorten_branches' at all.
2161 //
2162 // And `Compile::Shorten_branches' will decide on basis of this
2163 // information whether to replace particular branch sites by short
2164 // ones.
2165 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
2166   // Is the offset within the range of a ppc64 pc relative branch?
2167   bool b;
2168 
2169   const int safety_zone = 3 * BytesPerInstWord;
2170   b = Assembler::is_simm((offset<0 ? offset-safety_zone : offset+safety_zone),
2171                          29 - 16 + 1 + 2);
2172   return b;
2173 }
2174 
2175 const bool Matcher::isSimpleConstant64(jlong value) {
2176   // Probably always true, even if a temp register is required.
2177   return true;
2178 }
2179 /* TODO: PPC port
2180 // Make a new machine dependent decode node (with its operands).
2181 MachTypeNode *Matcher::make_decode_node(Compile *C) {
2182   assert(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0,
2183          "This method is only implemented for unscaled cOops mode so far");
2184   MachTypeNode *decode = new (C) decodeN_unscaledNode();
2185   decode->set_opnd_array(0, new (C) iRegPdstOper());
2186   decode->set_opnd_array(1, new (C) iRegNsrcOper());
2187   return decode;
2188 }
2189 */
2190 // Threshold size for cleararray.
2191 const int Matcher::init_array_short_size = 8 * BytesPerLong;
2192 
2193 // false => size gets scaled to BytesPerLong, ok.
2194 const bool Matcher::init_array_count_is_in_bytes = false;
2195 
2196 // Use conditional move (CMOVL) on Power7.
2197 const int Matcher::long_cmove_cost() { return 0; } // this only makes long cmoves more expensive than int cmoves
2198 
2199 // Suppress CMOVF. Conditional move available (sort of) on PPC64 only from P7 onwards. Not exploited yet.
2200 // fsel doesn't accept a condition register as input, so this would be slightly different.
2201 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
2202 
2203 // Power6 requires postalloc expand (see block.cpp for description of postalloc expand).
2204 const bool Matcher::require_postalloc_expand = true;
2205 
2206 // Should the Matcher clone shifts on addressing modes, expecting them to
2207 // be subsumed into complex addressing expressions or compute them into
2208 // registers? True for Intel but false for most RISCs.
2209 const bool Matcher::clone_shift_expressions = false;
2210 
2211 // Do we need to mask the count passed to shift instructions or does
2212 // the cpu only look at the lower 5/6 bits anyway?
2213 // Off, as masks are generated in expand rules where required.
2214 // Constant shift counts are handled in Ideal phase.
2215 const bool Matcher::need_masked_shift_count = false;
2216 
2217 // This affects two different things:
2218 //  - how Decode nodes are matched
2219 //  - how ImplicitNullCheck opportunities are recognized
2220 // If true, the matcher will try to remove all Decodes and match them
2221 // (as operands) into nodes. NullChecks are not prepared to deal with
2222 // Decodes by final_graph_reshaping().
2223 // If false, final_graph_reshaping() forces the decode behind the Cmp
2224 // for a NullCheck. The matcher matches the Decode node into a register.
2225 // Implicit_null_check optimization moves the Decode along with the
2226 // memory operation back up before the NullCheck.
2227 bool Matcher::narrow_oop_use_complex_address() {
2228   // TODO: PPC port if (MatchDecodeNodes) return true;
2229   return false;
2230 }
2231 
2232 bool Matcher::narrow_klass_use_complex_address() {
2233   NOT_LP64(ShouldNotCallThis());
2234   assert(UseCompressedClassPointers, "only for compressed klass code");
2235   // TODO: PPC port if (MatchDecodeNodes) return true;
2236   return false;
2237 }
2238 
2239 // Is it better to copy float constants, or load them directly from memory?
2240 // Intel can load a float constant from a direct address, requiring no
2241 // extra registers. Most RISCs will have to materialize an address into a
2242 // register first, so they would do better to copy the constant from stack.
2243 const bool Matcher::rematerialize_float_constants = false;
2244 
2245 // If CPU can load and store mis-aligned doubles directly then no fixup is
2246 // needed. Else we split the double into 2 integer pieces and move it
2247 // piece-by-piece. Only happens when passing doubles into C code as the
2248 // Java calling convention forces doubles to be aligned.
2249 const bool Matcher::misaligned_doubles_ok = true;
2250 
2251 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
2252  Unimplemented();
2253 }
2254 
2255 // Advertise here if the CPU requires explicit rounding operations
2256 // to implement the UseStrictFP mode.
2257 const bool Matcher::strict_fp_requires_explicit_rounding = false;
2258 
2259 // Do floats take an entire double register or just half?
2260 //
2261 // A float occupies a ppc64 double register. For the allocator, a
2262 // ppc64 double register appears as a pair of float registers.
2263 bool Matcher::float_in_double() { return true; }
2264 
2265 // Do ints take an entire long register or just half?
2266 // The relevant question is how the int is callee-saved:
2267 // the whole long is written but de-opt'ing will have to extract
2268 // the relevant 32 bits.
2269 const bool Matcher::int_in_long = true;
2270 
2271 // Constants for c2c and c calling conventions.
2272 
2273 const MachRegisterNumbers iarg_reg[8] = {
2274   R3_num, R4_num, R5_num, R6_num,
2275   R7_num, R8_num, R9_num, R10_num
2276 };
2277 
2278 const MachRegisterNumbers farg_reg[13] = {
2279   F1_num, F2_num, F3_num, F4_num,
2280   F5_num, F6_num, F7_num, F8_num,
2281   F9_num, F10_num, F11_num, F12_num,
2282   F13_num
2283 };
2284 
2285 const int num_iarg_registers = sizeof(iarg_reg) / sizeof(iarg_reg[0]);
2286 
2287 const int num_farg_registers = sizeof(farg_reg) / sizeof(farg_reg[0]);
2288 
2289 // Return whether or not this register is ever used as an argument. This
2290 // function is used on startup to build the trampoline stubs in generateOptoStub.
2291 // Registers not mentioned will be killed by the VM call in the trampoline, and
2292 // arguments in those registers not be available to the callee.
2293 bool Matcher::can_be_java_arg(int reg) {
2294   // We return true for all registers contained in iarg_reg[] and
2295   // farg_reg[] and their virtual halves.
2296   // We must include the virtual halves in order to get STDs and LDs
2297   // instead of STWs and LWs in the trampoline stubs.
2298 
2299   if (   reg == R3_num  || reg == R3_H_num
2300       || reg == R4_num  || reg == R4_H_num
2301       || reg == R5_num  || reg == R5_H_num
2302       || reg == R6_num  || reg == R6_H_num
2303       || reg == R7_num  || reg == R7_H_num
2304       || reg == R8_num  || reg == R8_H_num
2305       || reg == R9_num  || reg == R9_H_num
2306       || reg == R10_num || reg == R10_H_num)
2307     return true;
2308 
2309   if (   reg == F1_num  || reg == F1_H_num
2310       || reg == F2_num  || reg == F2_H_num
2311       || reg == F3_num  || reg == F3_H_num
2312       || reg == F4_num  || reg == F4_H_num
2313       || reg == F5_num  || reg == F5_H_num
2314       || reg == F6_num  || reg == F6_H_num
2315       || reg == F7_num  || reg == F7_H_num
2316       || reg == F8_num  || reg == F8_H_num
2317       || reg == F9_num  || reg == F9_H_num
2318       || reg == F10_num || reg == F10_H_num
2319       || reg == F11_num || reg == F11_H_num
2320       || reg == F12_num || reg == F12_H_num
2321       || reg == F13_num || reg == F13_H_num)
2322     return true;
2323 
2324   return false;
2325 }
2326 
2327 bool Matcher::is_spillable_arg(int reg) {
2328   return can_be_java_arg(reg);
2329 }
2330 
2331 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
2332   return false;
2333 }
2334 
2335 // Register for DIVI projection of divmodI.
2336 RegMask Matcher::divI_proj_mask() {
2337   ShouldNotReachHere();
2338   return RegMask();
2339 }
2340 
2341 // Register for MODI projection of divmodI.
2342 RegMask Matcher::modI_proj_mask() {
2343   ShouldNotReachHere();
2344   return RegMask();
2345 }
2346 
2347 // Register for DIVL projection of divmodL.
2348 RegMask Matcher::divL_proj_mask() {
2349   ShouldNotReachHere();
2350   return RegMask();
2351 }
2352 
2353 // Register for MODL projection of divmodL.
2354 RegMask Matcher::modL_proj_mask() {
2355   ShouldNotReachHere();
2356   return RegMask();
2357 }
2358 
2359 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2360   return RegMask();
2361 }
2362 
2363 %}
2364 
2365 //----------ENCODING BLOCK-----------------------------------------------------
2366 // This block specifies the encoding classes used by the compiler to output
2367 // byte streams. Encoding classes are parameterized macros used by
2368 // Machine Instruction Nodes in order to generate the bit encoding of the
2369 // instruction. Operands specify their base encoding interface with the
2370 // interface keyword. There are currently supported four interfaces,
2371 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
2372 // operand to generate a function which returns its register number when
2373 // queried. CONST_INTER causes an operand to generate a function which
2374 // returns the value of the constant when queried. MEMORY_INTER causes an
2375 // operand to generate four functions which return the Base Register, the
2376 // Index Register, the Scale Value, and the Offset Value of the operand when
2377 // queried. COND_INTER causes an operand to generate six functions which
2378 // return the encoding code (ie - encoding bits for the instruction)
2379 // associated with each basic boolean condition for a conditional instruction.
2380 //
2381 // Instructions specify two basic values for encoding. Again, a function
2382 // is available to check if the constant displacement is an oop. They use the
2383 // ins_encode keyword to specify their encoding classes (which must be
2384 // a sequence of enc_class names, and their parameters, specified in
2385 // the encoding block), and they use the
2386 // opcode keyword to specify, in order, their primary, secondary, and
2387 // tertiary opcode. Only the opcode sections which a particular instruction
2388 // needs for encoding need to be specified.
2389 encode %{
2390   enc_class enc_unimplemented %{
2391     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2392     MacroAssembler _masm(&cbuf);
2393     __ unimplemented("Unimplemented mach node encoding in AD file.", 13);
2394   %}
2395 
2396   enc_class enc_untested %{
2397 #ifdef ASSERT
2398     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2399     MacroAssembler _masm(&cbuf);
2400     __ untested("Untested mach node encoding in AD file.");
2401 #else
2402     // TODO: PPC port $archOpcode(ppc64Opcode_none);
2403 #endif
2404   %}
2405 
2406   enc_class enc_lbz(iRegIdst dst, memory mem) %{
2407     // TODO: PPC port $archOpcode(ppc64Opcode_lbz);
2408     MacroAssembler _masm(&cbuf);
2409     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2410     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
2411   %}
2412 
2413   // Load acquire.
2414   enc_class enc_lbz_ac(iRegIdst dst, memory mem) %{
2415     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2416     MacroAssembler _masm(&cbuf);
2417     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2418     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
2419     __ twi_0($dst$$Register);
2420     __ isync();
2421   %}
2422 
2423   enc_class enc_lhz(iRegIdst dst, memory mem) %{
2424     // TODO: PPC port $archOpcode(ppc64Opcode_lhz);
2425 
2426     MacroAssembler _masm(&cbuf);
2427     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2428     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
2429   %}
2430 
2431   // Load acquire.
2432   enc_class enc_lhz_ac(iRegIdst dst, memory mem) %{
2433     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2434 
2435     MacroAssembler _masm(&cbuf);
2436     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2437     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
2438     __ twi_0($dst$$Register);
2439     __ isync();
2440   %}
2441 
2442   enc_class enc_lwz(iRegIdst dst, memory mem) %{
2443     // TODO: PPC port $archOpcode(ppc64Opcode_lwz);
2444 
2445     MacroAssembler _masm(&cbuf);
2446     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2447     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
2448   %}
2449 
2450   // Load acquire.
2451   enc_class enc_lwz_ac(iRegIdst dst, memory mem) %{
2452     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2453 
2454     MacroAssembler _masm(&cbuf);
2455     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2456     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
2457     __ twi_0($dst$$Register);
2458     __ isync();
2459   %}
2460 
2461   enc_class enc_ld(iRegLdst dst, memoryAlg4 mem) %{
2462     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2463     MacroAssembler _masm(&cbuf);
2464     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2465     // Operand 'ds' requires 4-alignment.
2466     assert((Idisp & 0x3) == 0, "unaligned offset");
2467     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
2468   %}
2469 
2470   // Load acquire.
2471   enc_class enc_ld_ac(iRegLdst dst, memoryAlg4 mem) %{
2472     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2473     MacroAssembler _masm(&cbuf);
2474     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2475     // Operand 'ds' requires 4-alignment.
2476     assert((Idisp & 0x3) == 0, "unaligned offset");
2477     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
2478     __ twi_0($dst$$Register);
2479     __ isync();
2480   %}
2481 
2482   enc_class enc_lfd(RegF dst, memory mem) %{
2483     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
2484     MacroAssembler _masm(&cbuf);
2485     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2486     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
2487   %}
2488 
2489   enc_class enc_load_long_constL(iRegLdst dst, immL src, iRegLdst toc) %{
2490     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2491 
2492     MacroAssembler _masm(&cbuf);
2493     int toc_offset = 0;
2494 
2495     if (!ra_->C->in_scratch_emit_size()) {
2496       address const_toc_addr;
2497       // Create a non-oop constant, no relocation needed.
2498       // If it is an IC, it has a virtual_call_Relocation.
2499       const_toc_addr = __ long_constant((jlong)$src$$constant);
2500 
2501       // Get the constant's TOC offset.
2502       toc_offset = __ offset_to_method_toc(const_toc_addr);
2503 
2504       // Keep the current instruction offset in mind.
2505       ((loadConLNode*)this)->_cbuf_insts_offset = __ offset();
2506     }
2507 
2508     __ ld($dst$$Register, toc_offset, $toc$$Register);
2509   %}
2510 
2511   enc_class enc_load_long_constL_hi(iRegLdst dst, iRegLdst toc, immL src) %{
2512     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
2513 
2514     MacroAssembler _masm(&cbuf);
2515 
2516     if (!ra_->C->in_scratch_emit_size()) {
2517       address const_toc_addr;
2518       // Create a non-oop constant, no relocation needed.
2519       // If it is an IC, it has a virtual_call_Relocation.
2520       const_toc_addr = __ long_constant((jlong)$src$$constant);
2521 
2522       // Get the constant's TOC offset.
2523       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
2524       // Store the toc offset of the constant.
2525       ((loadConL_hiNode*)this)->_const_toc_offset = toc_offset;
2526 
2527       // Also keep the current instruction offset in mind.
2528       ((loadConL_hiNode*)this)->_cbuf_insts_offset = __ offset();
2529     }
2530 
2531     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
2532   %}
2533 
2534 %} // encode
2535 
2536 source %{
2537 
2538 typedef struct {
2539   loadConL_hiNode *_large_hi;
2540   loadConL_loNode *_large_lo;
2541   loadConLNode    *_small;
2542   MachNode        *_last;
2543 } loadConLNodesTuple;
2544 
2545 loadConLNodesTuple loadConLNodesTuple_create(Compile *C, PhaseRegAlloc *ra_, Node *toc, immLOper *immSrc,
2546                                              OptoReg::Name reg_second, OptoReg::Name reg_first) {
2547   loadConLNodesTuple nodes;
2548 
2549   const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2550   if (large_constant_pool) {
2551     // Create new nodes.
2552     loadConL_hiNode *m1 = new (C) loadConL_hiNode();
2553     loadConL_loNode *m2 = new (C) loadConL_loNode();
2554 
2555     // inputs for new nodes
2556     m1->add_req(NULL, toc);
2557     m2->add_req(NULL, m1);
2558 
2559     // operands for new nodes
2560     m1->_opnds[0] = new (C) iRegLdstOper(); // dst
2561     m1->_opnds[1] = immSrc;                 // src
2562     m1->_opnds[2] = new (C) iRegPdstOper(); // toc
2563     m2->_opnds[0] = new (C) iRegLdstOper(); // dst
2564     m2->_opnds[1] = immSrc;                 // src
2565     m2->_opnds[2] = new (C) iRegLdstOper(); // base
2566 
2567     // Initialize ins_attrib TOC fields.
2568     m1->_const_toc_offset = -1;
2569     m2->_const_toc_offset_hi_node = m1;
2570 
2571     // Initialize ins_attrib instruction offset.
2572     m1->_cbuf_insts_offset = -1;
2573 
2574     // register allocation for new nodes
2575     ra_->set_pair(m1->_idx, reg_second, reg_first);
2576     ra_->set_pair(m2->_idx, reg_second, reg_first);
2577 
2578     // Create result.
2579     nodes._large_hi = m1;
2580     nodes._large_lo = m2;
2581     nodes._small = NULL;
2582     nodes._last = nodes._large_lo;
2583     assert(m2->bottom_type()->isa_long(), "must be long");
2584   } else {
2585     loadConLNode *m2 = new (C) loadConLNode();
2586 
2587     // inputs for new nodes
2588     m2->add_req(NULL, toc);
2589 
2590     // operands for new nodes
2591     m2->_opnds[0] = new (C) iRegLdstOper(); // dst
2592     m2->_opnds[1] = immSrc;                 // src
2593     m2->_opnds[2] = new (C) iRegPdstOper(); // toc
2594 
2595     // Initialize ins_attrib instruction offset.
2596     m2->_cbuf_insts_offset = -1;
2597 
2598     // register allocation for new nodes
2599     ra_->set_pair(m2->_idx, reg_second, reg_first);
2600 
2601     // Create result.
2602     nodes._large_hi = NULL;
2603     nodes._large_lo = NULL;
2604     nodes._small = m2;
2605     nodes._last = nodes._small;
2606     assert(m2->bottom_type()->isa_long(), "must be long");
2607   }
2608 
2609   return nodes;
2610 }
2611 
2612 %} // source
2613 
2614 encode %{
2615   // Postalloc expand emitter for loading a long constant from the method's TOC.
2616   // Enc_class needed as consttanttablebase is not supported by postalloc
2617   // expand.
2618   enc_class postalloc_expand_load_long_constant(iRegLdst dst, immL src, iRegLdst toc) %{
2619     // Create new nodes.
2620     loadConLNodesTuple loadConLNodes =
2621       loadConLNodesTuple_create(C, ra_, n_toc, op_src,
2622                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
2623 
2624     // Push new nodes.
2625     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
2626     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
2627 
2628     // some asserts
2629     assert(nodes->length() >= 1, "must have created at least 1 node");
2630     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
2631   %}
2632 
2633   enc_class enc_load_long_constP(iRegLdst dst, immP src, iRegLdst toc) %{
2634     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2635 
2636     MacroAssembler _masm(&cbuf);
2637     int toc_offset = 0;
2638 
2639     if (!ra_->C->in_scratch_emit_size()) {
2640       intptr_t val = $src$$constant;
2641       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
2642       address const_toc_addr;
2643       if (constant_reloc == relocInfo::oop_type) {
2644         // Create an oop constant and a corresponding relocation.
2645         AddressLiteral a = __ allocate_oop_address((jobject)val);
2646         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2647         __ relocate(a.rspec());
2648       } else if (constant_reloc == relocInfo::metadata_type) {
2649         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
2650         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2651         __ relocate(a.rspec());
2652       } else {
2653         // Create a non-oop constant, no relocation needed.
2654         const_toc_addr = __ long_constant((jlong)$src$$constant);
2655       }
2656 
2657       // Get the constant's TOC offset.
2658       toc_offset = __ offset_to_method_toc(const_toc_addr);
2659     }
2660 
2661     __ ld($dst$$Register, toc_offset, $toc$$Register);
2662   %}
2663 
2664   enc_class enc_load_long_constP_hi(iRegLdst dst, immP src, iRegLdst toc) %{
2665     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
2666 
2667     MacroAssembler _masm(&cbuf);
2668     if (!ra_->C->in_scratch_emit_size()) {
2669       intptr_t val = $src$$constant;
2670       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
2671       address const_toc_addr;
2672       if (constant_reloc == relocInfo::oop_type) {
2673         // Create an oop constant and a corresponding relocation.
2674         AddressLiteral a = __ allocate_oop_address((jobject)val);
2675         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2676         __ relocate(a.rspec());
2677       } else if (constant_reloc == relocInfo::metadata_type) {
2678         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
2679         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2680         __ relocate(a.rspec());
2681       } else {  // non-oop pointers, e.g. card mark base, heap top
2682         // Create a non-oop constant, no relocation needed.
2683         const_toc_addr = __ long_constant((jlong)$src$$constant);
2684       }
2685 
2686       // Get the constant's TOC offset.
2687       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
2688       // Store the toc offset of the constant.
2689       ((loadConP_hiNode*)this)->_const_toc_offset = toc_offset;
2690     }
2691 
2692     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
2693   %}
2694 
2695   // Postalloc expand emitter for loading a ptr constant from the method's TOC.
2696   // Enc_class needed as consttanttablebase is not supported by postalloc
2697   // expand.
2698   enc_class postalloc_expand_load_ptr_constant(iRegPdst dst, immP src, iRegLdst toc) %{
2699     const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2700     if (large_constant_pool) {
2701       // Create new nodes.
2702       loadConP_hiNode *m1 = new (C) loadConP_hiNode();
2703       loadConP_loNode *m2 = new (C) loadConP_loNode();
2704 
2705       // inputs for new nodes
2706       m1->add_req(NULL, n_toc);
2707       m2->add_req(NULL, m1);
2708       
2709       // operands for new nodes
2710       m1->_opnds[0] = new (C) iRegPdstOper(); // dst
2711       m1->_opnds[1] = op_src;                 // src
2712       m1->_opnds[2] = new (C) iRegPdstOper(); // toc
2713       m2->_opnds[0] = new (C) iRegPdstOper(); // dst
2714       m2->_opnds[1] = op_src;                 // src
2715       m2->_opnds[2] = new (C) iRegLdstOper(); // base
2716       
2717       // Initialize ins_attrib TOC fields.
2718       m1->_const_toc_offset = -1;
2719       m2->_const_toc_offset_hi_node = m1;
2720       
2721       // Register allocation for new nodes.
2722       ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2723       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2724       
2725       nodes->push(m1);
2726       nodes->push(m2);
2727       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
2728     } else {
2729       loadConPNode *m2 = new (C) loadConPNode();
2730       
2731       // inputs for new nodes
2732       m2->add_req(NULL, n_toc);
2733       
2734       // operands for new nodes
2735       m2->_opnds[0] = new (C) iRegPdstOper(); // dst
2736       m2->_opnds[1] = op_src;                 // src
2737       m2->_opnds[2] = new (C) iRegPdstOper(); // toc
2738       
2739       // Register allocation for new nodes.
2740       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2741 
2742       nodes->push(m2);
2743       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
2744     }
2745   %}
2746 
2747   // Enc_class needed as consttanttablebase is not supported by postalloc
2748   // expand.
2749   enc_class postalloc_expand_load_float_constant(regF dst, immF src, iRegLdst toc) %{
2750     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2751 
2752     MachNode *m2;
2753     if (large_constant_pool) {
2754       m2 = new (C) loadConFCompNode();
2755     } else {
2756       m2 = new (C) loadConFNode();
2757     }
2758     // inputs for new nodes
2759     m2->add_req(NULL, n_toc);
2760 
2761     // operands for new nodes
2762     m2->_opnds[0] = op_dst;
2763     m2->_opnds[1] = op_src;
2764     m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
2765 
2766     // register allocation for new nodes
2767     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2768     nodes->push(m2);
2769   %}
2770 
2771   // Enc_class needed as consttanttablebase is not supported by postalloc
2772   // expand.
2773   enc_class postalloc_expand_load_double_constant(regD dst, immD src, iRegLdst toc) %{
2774     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2775 
2776     MachNode *m2;
2777     if (large_constant_pool) {
2778       m2 = new (C) loadConDCompNode();
2779     } else {
2780       m2 = new (C) loadConDNode();
2781     }
2782     // inputs for new nodes
2783     m2->add_req(NULL, n_toc);
2784 
2785     // operands for new nodes
2786     m2->_opnds[0] = op_dst;
2787     m2->_opnds[1] = op_src;
2788     m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
2789 
2790     // register allocation for new nodes
2791     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2792     nodes->push(m2);
2793   %}
2794 
2795   enc_class enc_stw(iRegIsrc src, memory mem) %{
2796     // TODO: PPC port $archOpcode(ppc64Opcode_stw);
2797     MacroAssembler _masm(&cbuf);
2798     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2799     __ stw($src$$Register, Idisp, $mem$$base$$Register);
2800   %}
2801 
2802   enc_class enc_std(iRegIsrc src, memoryAlg4 mem) %{
2803     // TODO: PPC port $archOpcode(ppc64Opcode_std);
2804     MacroAssembler _masm(&cbuf);
2805     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2806     // Operand 'ds' requires 4-alignment.
2807     assert((Idisp & 0x3) == 0, "unaligned offset");
2808     __ std($src$$Register, Idisp, $mem$$base$$Register);
2809   %}
2810 
2811   enc_class enc_stfs(RegF src, memory mem) %{
2812     // TODO: PPC port $archOpcode(ppc64Opcode_stfs);
2813     MacroAssembler _masm(&cbuf);
2814     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2815     __ stfs($src$$FloatRegister, Idisp, $mem$$base$$Register);
2816   %}
2817 
2818   enc_class enc_stfd(RegF src, memory mem) %{
2819     // TODO: PPC port $archOpcode(ppc64Opcode_stfd);
2820     MacroAssembler _masm(&cbuf);
2821     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2822     __ stfd($src$$FloatRegister, Idisp, $mem$$base$$Register);
2823   %}
2824 
2825   // Use release_store for card-marking to ensure that previous
2826   // oop-stores are visible before the card-mark change.
2827   enc_class enc_cms_card_mark(memory mem, iRegLdst releaseFieldAddr) %{
2828     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2829     // FIXME: Implement this as a cmove and use a fixed condition code
2830     // register which is written on every transition to compiled code,
2831     // e.g. in call-stub and when returning from runtime stubs.
2832     //
2833     // Proposed code sequence for the cmove implementation:
2834     //
2835     // Label skip_release;
2836     // __ beq(CCRfixed, skip_release);
2837     // __ release();
2838     // __ bind(skip_release);
2839     // __ stb(card mark);
2840 
2841     MacroAssembler _masm(&cbuf);
2842     Label skip_storestore;
2843 
2844 #if 0 // TODO: PPC port
2845     // Check CMSCollectorCardTableModRefBSExt::_requires_release and do the
2846     // StoreStore barrier conditionally.
2847     __ lwz(R0, 0, $releaseFieldAddr$$Register);
2848     __ cmpwi(CCR0, R0, 0);
2849     __ beq_predict_taken(CCR0, skip_storestore);
2850 #endif
2851     __ li(R0, 0);
2852     __ membar(Assembler::StoreStore);
2853 #if 0 // TODO: PPC port
2854     __ bind(skip_storestore);
2855 #endif
2856 
2857     // Do the store.
2858     if ($mem$$index == 0) {
2859       __ stb(R0, $mem$$disp, $mem$$base$$Register);
2860     } else {
2861       assert(0 == $mem$$disp, "no displacement possible with indexed load/stores on ppc");
2862       __ stbx(R0, $mem$$base$$Register, $mem$$index$$Register);
2863     }
2864   %}
2865 
2866   enc_class postalloc_expand_encode_oop(iRegNdst dst, iRegPdst src, flagsReg crx) %{
2867 
2868     if (VM_Version::has_isel()) {
2869       // use isel instruction with Power 7
2870       cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
2871       encodeP_subNode    *n_sub_base = new (C) encodeP_subNode();
2872       encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
2873       cond_set_0_oopNode *n_cond_set = new (C) cond_set_0_oopNode();
2874 
2875       n_compare->add_req(n_region, n_src);
2876       n_compare->_opnds[0] = op_crx;
2877       n_compare->_opnds[1] = op_src;
2878       n_compare->_opnds[2] = new (C) immL16Oper(0);
2879 
2880       n_sub_base->add_req(n_region, n_src);
2881       n_sub_base->_opnds[0] = op_dst;
2882       n_sub_base->_opnds[1] = op_src;
2883       n_sub_base->_bottom_type = _bottom_type;
2884 
2885       n_shift->add_req(n_region, n_sub_base);
2886       n_shift->_opnds[0] = op_dst;
2887       n_shift->_opnds[1] = op_dst;
2888       n_shift->_bottom_type = _bottom_type;
2889 
2890       n_cond_set->add_req(n_region, n_compare, n_shift);
2891       n_cond_set->_opnds[0] = op_dst;
2892       n_cond_set->_opnds[1] = op_crx;
2893       n_cond_set->_opnds[2] = op_dst;
2894       n_cond_set->_bottom_type = _bottom_type;
2895 
2896       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
2897       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2898       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2899       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2900 
2901       nodes->push(n_compare);
2902       nodes->push(n_sub_base);
2903       nodes->push(n_shift);
2904       nodes->push(n_cond_set);
2905 
2906     } else {
2907       // before Power 7
2908       moveRegNode        *n_move     = new (C) moveRegNode();
2909       cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
2910       encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
2911       cond_sub_baseNode  *n_sub_base = new (C) cond_sub_baseNode();
2912 
2913       n_move->add_req(n_region, n_src);
2914       n_move->_opnds[0] = op_dst;
2915       n_move->_opnds[1] = op_src;
2916       ra_->set_oop(n_move, true); // Until here, 'n_move' still produces an oop.
2917 
2918       n_compare->add_req(n_region, n_src);
2919       n_compare->add_prec(n_move);
2920 
2921       n_compare->_opnds[0] = op_crx;
2922       n_compare->_opnds[1] = op_src;
2923       n_compare->_opnds[2] = new (C) immL16Oper(0);
2924 
2925       n_sub_base->add_req(n_region, n_compare, n_src);
2926       n_sub_base->_opnds[0] = op_dst;
2927       n_sub_base->_opnds[1] = op_crx;
2928       n_sub_base->_opnds[2] = op_src;
2929       n_sub_base->_bottom_type = _bottom_type;
2930    
2931       n_shift->add_req(n_region, n_sub_base);
2932       n_shift->_opnds[0] = op_dst;
2933       n_shift->_opnds[1] = op_dst;
2934       n_shift->_bottom_type = _bottom_type;
2935    
2936       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2937       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
2938       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2939       ra_->set_pair(n_move->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2940    
2941       nodes->push(n_move);
2942       nodes->push(n_compare);
2943       nodes->push(n_sub_base);
2944       nodes->push(n_shift);
2945     }
2946 
2947     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
2948   %}
2949 
2950   enc_class postalloc_expand_encode_oop_not_null(iRegNdst dst, iRegPdst src) %{
2951 
2952     encodeP_subNode *n1 = new (C) encodeP_subNode();
2953     n1->add_req(n_region, n_src);
2954     n1->_opnds[0] = op_dst;
2955     n1->_opnds[1] = op_src;
2956     n1->_bottom_type = _bottom_type;
2957 
2958     encodeP_shiftNode *n2 = new (C) encodeP_shiftNode();
2959     n2->add_req(n_region, n1);
2960     n2->_opnds[0] = op_dst;
2961     n2->_opnds[1] = op_dst;
2962     n2->_bottom_type = _bottom_type;
2963     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2964     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2965 
2966     nodes->push(n1);
2967     nodes->push(n2);
2968     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
2969   %}
2970 
2971   enc_class postalloc_expand_decode_oop(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
2972     decodeN_shiftNode *n_shift    = new (C) decodeN_shiftNode();
2973     cmpN_reg_imm0Node *n_compare  = new (C) cmpN_reg_imm0Node();
2974 
2975     n_compare->add_req(n_region, n_src);
2976     n_compare->_opnds[0] = op_crx;
2977     n_compare->_opnds[1] = op_src;
2978     n_compare->_opnds[2] = new (C) immN_0Oper(TypeNarrowOop::NULL_PTR);
2979 
2980     n_shift->add_req(n_region, n_src);
2981     n_shift->_opnds[0] = op_dst;
2982     n_shift->_opnds[1] = op_src;
2983     n_shift->_bottom_type = _bottom_type;
2984 
2985     if (VM_Version::has_isel()) {
2986       // use isel instruction with Power 7
2987 
2988       decodeN_addNode *n_add_base = new (C) decodeN_addNode();
2989       n_add_base->add_req(n_region, n_shift);
2990       n_add_base->_opnds[0] = op_dst;
2991       n_add_base->_opnds[1] = op_dst;
2992       n_add_base->_bottom_type = _bottom_type;
2993 
2994       cond_set_0_ptrNode *n_cond_set = new (C) cond_set_0_ptrNode();
2995       n_cond_set->add_req(n_region, n_compare, n_add_base);
2996       n_cond_set->_opnds[0] = op_dst;
2997       n_cond_set->_opnds[1] = op_crx;
2998       n_cond_set->_opnds[2] = op_dst;
2999       n_cond_set->_bottom_type = _bottom_type;
3000 
3001       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
3002       ra_->set_oop(n_cond_set, true);
3003 
3004       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3005       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
3006       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3007       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3008 
3009       nodes->push(n_compare);
3010       nodes->push(n_shift);
3011       nodes->push(n_add_base);
3012       nodes->push(n_cond_set);
3013 
3014     } else {
3015       // before Power 7
3016       cond_add_baseNode *n_add_base = new (C) cond_add_baseNode();
3017      
3018       n_add_base->add_req(n_region, n_compare, n_shift);
3019       n_add_base->_opnds[0] = op_dst;
3020       n_add_base->_opnds[1] = op_crx;
3021       n_add_base->_opnds[2] = op_dst;
3022       n_add_base->_bottom_type = _bottom_type;
3023      
3024       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
3025       ra_->set_oop(n_add_base, true);
3026      
3027       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3028       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
3029       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3030      
3031       nodes->push(n_compare);
3032       nodes->push(n_shift);
3033       nodes->push(n_add_base);
3034     }
3035   %}
3036 
3037   enc_class postalloc_expand_decode_oop_not_null(iRegPdst dst, iRegNsrc src) %{
3038     decodeN_shiftNode *n1 = new (C) decodeN_shiftNode();
3039     n1->add_req(n_region, n_src);
3040     n1->_opnds[0] = op_dst;
3041     n1->_opnds[1] = op_src;
3042     n1->_bottom_type = _bottom_type;
3043 
3044     decodeN_addNode *n2 = new (C) decodeN_addNode();
3045     n2->add_req(n_region, n1);
3046     n2->_opnds[0] = op_dst;
3047     n2->_opnds[1] = op_dst;
3048     n2->_bottom_type = _bottom_type;
3049     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3050     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3051 
3052     assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
3053     ra_->set_oop(n2, true);
3054 
3055     nodes->push(n1);
3056     nodes->push(n2);
3057   %}
3058 
3059   enc_class enc_cmove_reg(iRegIdst dst, flagsReg crx, iRegIsrc src, cmpOp cmp) %{
3060     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3061 
3062     MacroAssembler _masm(&cbuf);
3063     int cc        = $cmp$$cmpcode;
3064     int flags_reg = $crx$$reg;
3065     Label done;
3066     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3067     // Branch if not (cmp crx).
3068     __ bc(cc_to_inverse_boint(cc), cc_to_biint(cc, flags_reg), done);
3069     __ mr($dst$$Register, $src$$Register);
3070     // TODO PPC port __ endgroup_if_needed(_size == 12);
3071     __ bind(done);
3072   %}
3073 
3074   enc_class enc_cmove_imm(iRegIdst dst, flagsReg crx, immI16 src, cmpOp cmp) %{
3075     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3076 
3077     MacroAssembler _masm(&cbuf);
3078     Label done;
3079     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3080     // Branch if not (cmp crx).
3081     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
3082     __ li($dst$$Register, $src$$constant);
3083     // TODO PPC port __ endgroup_if_needed(_size == 12);
3084     __ bind(done);
3085   %}
3086 
3087   // New atomics.
3088   enc_class enc_GetAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
3089     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3090 
3091     MacroAssembler _masm(&cbuf);
3092     Register Rtmp   = R0;
3093     Register Rres   = $res$$Register;
3094     Register Rsrc   = $src$$Register;
3095     Register Rptr   = $mem_ptr$$Register;
3096     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3097     Register Rold   = RegCollision ? Rtmp : Rres;
3098 
3099     Label Lretry;
3100     __ bind(Lretry);
3101     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3102     __ add(Rtmp, Rsrc, Rold);
3103     __ stwcx_(Rtmp, Rptr);
3104     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3105       __ bne_predict_not_taken(CCR0, Lretry);
3106     } else {
3107       __ bne(                  CCR0, Lretry);
3108     }
3109     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
3110     __ fence();
3111   %}
3112 
3113   enc_class enc_GetAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
3114     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3115 
3116     MacroAssembler _masm(&cbuf);
3117     Register Rtmp   = R0;
3118     Register Rres   = $res$$Register;
3119     Register Rsrc   = $src$$Register;
3120     Register Rptr   = $mem_ptr$$Register;
3121     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3122     Register Rold   = RegCollision ? Rtmp : Rres;
3123 
3124     Label Lretry;
3125     __ bind(Lretry);
3126     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3127     __ add(Rtmp, Rsrc, Rold);
3128     __ stdcx_(Rtmp, Rptr);
3129     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3130       __ bne_predict_not_taken(CCR0, Lretry);
3131     } else {
3132       __ bne(                  CCR0, Lretry);
3133     }
3134     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
3135     __ fence();
3136   %}
3137 
3138   enc_class enc_GetAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
3139     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3140 
3141     MacroAssembler _masm(&cbuf);
3142     Register Rtmp   = R0;
3143     Register Rres   = $res$$Register;
3144     Register Rsrc   = $src$$Register;
3145     Register Rptr   = $mem_ptr$$Register;
3146     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3147     Register Rold   = RegCollision ? Rtmp : Rres;
3148 
3149     Label Lretry;
3150     __ bind(Lretry);
3151     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3152     __ stwcx_(Rsrc, Rptr);
3153     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3154       __ bne_predict_not_taken(CCR0, Lretry);
3155     } else {
3156       __ bne(                  CCR0, Lretry);
3157     }
3158     if (RegCollision) __ mr(Rres, Rtmp);
3159     __ fence();
3160   %}
3161 
3162   enc_class enc_GetAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
3163     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3164 
3165     MacroAssembler _masm(&cbuf);
3166     Register Rtmp   = R0;
3167     Register Rres   = $res$$Register;
3168     Register Rsrc   = $src$$Register;
3169     Register Rptr   = $mem_ptr$$Register;
3170     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3171     Register Rold   = RegCollision ? Rtmp : Rres;
3172 
3173     Label Lretry;
3174     __ bind(Lretry);
3175     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3176     __ stdcx_(Rsrc, Rptr);
3177     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3178       __ bne_predict_not_taken(CCR0, Lretry);
3179     } else {
3180       __ bne(                  CCR0, Lretry);
3181     }
3182     if (RegCollision) __ mr(Rres, Rtmp);
3183     __ fence();
3184   %}
3185 
3186   // This enc_class is needed so that scheduler gets proper
3187   // input mapping for latency computation.
3188   enc_class enc_andc(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
3189     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
3190     MacroAssembler _masm(&cbuf);
3191     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
3192   %}
3193 
3194   enc_class enc_convI2B_regI__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
3195     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3196 
3197     MacroAssembler _masm(&cbuf);
3198 
3199     Label done;
3200     __ cmpwi($crx$$CondRegister, $src$$Register, 0);
3201     __ li($dst$$Register, $zero$$constant);
3202     __ beq($crx$$CondRegister, done);
3203     __ li($dst$$Register, $notzero$$constant);
3204     __ bind(done);
3205   %}
3206 
3207   enc_class enc_convP2B_regP__cmove(iRegIdst dst, iRegPsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
3208     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3209 
3210     MacroAssembler _masm(&cbuf);
3211 
3212     Label done;
3213     __ cmpdi($crx$$CondRegister, $src$$Register, 0);
3214     __ li($dst$$Register, $zero$$constant);
3215     __ beq($crx$$CondRegister, done);
3216     __ li($dst$$Register, $notzero$$constant);
3217     __ bind(done);
3218   %}
3219 
3220   enc_class enc_cmove_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL mem ) %{
3221     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3222 
3223     MacroAssembler _masm(&cbuf);
3224     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
3225     Label done;
3226     __ bso($crx$$CondRegister, done);
3227     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
3228     // TODO PPC port __ endgroup_if_needed(_size == 12);
3229     __ bind(done);
3230   %}
3231 
3232   enc_class enc_bc(flagsReg crx, cmpOp cmp, Label lbl) %{
3233     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3234 
3235     MacroAssembler _masm(&cbuf);
3236     Label d;   // dummy
3237     __ bind(d);
3238     Label* p = ($lbl$$label);
3239     // `p' is `NULL' when this encoding class is used only to
3240     // determine the size of the encoded instruction.
3241     Label& l = (NULL == p)? d : *(p);
3242     int cc = $cmp$$cmpcode;
3243     int flags_reg = $crx$$reg;
3244     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3245     int bhint = Assembler::bhintNoHint;
3246 
3247     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3248       if (_prob <= PROB_NEVER) {
3249         bhint = Assembler::bhintIsNotTaken;
3250       } else if (_prob >= PROB_ALWAYS) {
3251         bhint = Assembler::bhintIsTaken;
3252       }
3253     }
3254 
3255     __ bc(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3256           cc_to_biint(cc, flags_reg),
3257           l);
3258   %}
3259 
3260   enc_class enc_bc_far(flagsReg crx, cmpOp cmp, Label lbl) %{
3261     // The scheduler doesn't know about branch shortening, so we set the opcode
3262     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
3263     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3264 
3265     MacroAssembler _masm(&cbuf);
3266     Label d;    // dummy
3267     __ bind(d);
3268     Label* p = ($lbl$$label);
3269     // `p' is `NULL' when this encoding class is used only to
3270     // determine the size of the encoded instruction.
3271     Label& l = (NULL == p)? d : *(p);
3272     int cc = $cmp$$cmpcode;
3273     int flags_reg = $crx$$reg;
3274     int bhint = Assembler::bhintNoHint;
3275 
3276     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3277       if (_prob <= PROB_NEVER) {
3278         bhint = Assembler::bhintIsNotTaken;
3279       } else if (_prob >= PROB_ALWAYS) {
3280         bhint = Assembler::bhintIsTaken;
3281       }
3282     }
3283 
3284     // Tell the conditional far branch to optimize itself when being relocated.
3285     __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3286                   cc_to_biint(cc, flags_reg),
3287                   l,
3288                   MacroAssembler::bc_far_optimize_on_relocate);
3289   %}
3290 
3291   // Branch used with Power6 scheduling (can be shortened without changing the node).
3292   enc_class enc_bc_short_far(flagsReg crx, cmpOp cmp, Label lbl) %{
3293     // The scheduler doesn't know about branch shortening, so we set the opcode
3294     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
3295     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3296 
3297     MacroAssembler _masm(&cbuf);
3298     Label d;   // dummy
3299     __ bind(d);
3300     Label* p = ($lbl$$label);
3301     // `p' is `NULL' when this encoding class is used only to
3302     // determine the size of the encoded instruction.
3303     Label& l = (NULL == p)? d : *(p);
3304     int cc = $cmp$$cmpcode;
3305     int flags_reg = $crx$$reg;
3306     int bhint = Assembler::bhintNoHint;
3307 
3308     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3309       if (_prob <= PROB_NEVER) {
3310         bhint = Assembler::bhintIsNotTaken;
3311       } else if (_prob >= PROB_ALWAYS) {
3312         bhint = Assembler::bhintIsTaken;
3313       }
3314     }
3315 
3316 #if 0 // TODO: PPC port
3317     if (_size == 8) {
3318       // Tell the conditional far branch to optimize itself when being relocated.
3319       __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3320                     cc_to_biint(cc, flags_reg),
3321                     l,
3322                     MacroAssembler::bc_far_optimize_on_relocate);
3323     } else {
3324       __ bc    (Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3325                     cc_to_biint(cc, flags_reg),
3326                     l);
3327     }
3328 #endif
3329     Unimplemented();
3330   %}
3331 
3332   // Postalloc expand emitter for loading a replicatef float constant from
3333   // the method's TOC.
3334   // Enc_class needed as consttanttablebase is not supported by postalloc
3335   // expand.
3336   enc_class postalloc_expand_load_replF_constant(iRegLdst dst, immF src, iRegLdst toc) %{
3337     // Create new nodes.
3338 
3339     // Make an operand with the bit pattern to load as float.
3340     immLOper *op_repl = new (C) immLOper((jlong)replicate_immF(op_src->constantF()));
3341 
3342     loadConLNodesTuple loadConLNodes =
3343       loadConLNodesTuple_create(C, ra_, n_toc, op_repl,
3344                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
3345 
3346     // Push new nodes.
3347     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
3348     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
3349 
3350     assert(nodes->length() >= 1, "must have created at least 1 node");
3351     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
3352   %}
3353 
3354   // This enc_class is needed so that scheduler gets proper
3355   // input mapping for latency computation.
3356   enc_class enc_poll(immI dst, iRegLdst poll) %{
3357     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
3358     // Fake operand dst needed for PPC scheduler.
3359     assert($dst$$constant == 0x0, "dst must be 0x0");
3360 
3361     MacroAssembler _masm(&cbuf);
3362     // Mark the code position where the load from the safepoint
3363     // polling page was emitted as relocInfo::poll_type.
3364     __ relocate(relocInfo::poll_type);
3365     __ load_from_polling_page($poll$$Register);
3366   %}
3367 
3368   // A Java static call or a runtime call.
3369   //
3370   // Branch-and-link relative to a trampoline.
3371   // The trampoline loads the target address and does a long branch to there.
3372   // In case we call java, the trampoline branches to a interpreter_stub
3373   // which loads the inline cache and the real call target from the constant pool.
3374   //
3375   // This basically looks like this:
3376   //
3377   // >>>> consts      -+  -+
3378   //                   |   |- offset1
3379   // [call target1]    | <-+
3380   // [IC cache]        |- offset2
3381   // [call target2] <--+
3382   //
3383   // <<<< consts
3384   // >>>> insts
3385   //
3386   // bl offset16               -+  -+             ??? // How many bits available?
3387   //                            |   |
3388   // <<<< insts                 |   |
3389   // >>>> stubs                 |   |
3390   //                            |   |- trampoline_stub_Reloc
3391   // trampoline stub:           | <-+
3392   //   r2 = toc                 |
3393   //   r2 = [r2 + offset1]      |       // Load call target1 from const section
3394   //   mtctr r2                 |
3395   //   bctr                     |- static_stub_Reloc
3396   // comp_to_interp_stub:   <---+
3397   //   r1 = toc
3398   //   ICreg = [r1 + IC_offset]         // Load IC from const section
3399   //   r1    = [r1 + offset2]           // Load call target2 from const section
3400   //   mtctr r1
3401   //   bctr
3402   //
3403   // <<<< stubs
3404   //
3405   // The call instruction in the code either
3406   // - Branches directly to a compiled method if the offset is encodable in instruction.
3407   // - Branches to the trampoline stub if the offset to the compiled method is not encodable.
3408   // - Branches to the compiled_to_interp stub if the target is interpreted.
3409   //
3410   // Further there are three relocations from the loads to the constants in
3411   // the constant section.
3412   //
3413   // Usage of r1 and r2 in the stubs allows to distinguish them.
3414   enc_class enc_java_static_call(method meth) %{
3415     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
3416 
3417     MacroAssembler _masm(&cbuf);
3418     address entry_point = (address)$meth$$method;
3419 
3420     if (!_method) {
3421       // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
3422       emit_call_with_trampoline_stub(_masm, entry_point, relocInfo::runtime_call_type);
3423     } else {
3424       // Remember the offset not the address.
3425       const int start_offset = __ offset();
3426       // The trampoline stub.
3427       if (!Compile::current()->in_scratch_emit_size()) {
3428         // No entry point given, use the current pc.
3429         // Make sure branch fits into
3430         if (entry_point == 0) entry_point = __ pc();
3431 
3432         // Put the entry point as a constant into the constant pool.
3433         const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
3434         const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
3435 
3436         // Emit the trampoline stub which will be related to the branch-and-link below.
3437         emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
3438         __ relocate(_optimized_virtual ?
3439                     relocInfo::opt_virtual_call_type : relocInfo::static_call_type);
3440       }
3441 
3442       // The real call.
3443       // Note: At this point we do not have the address of the trampoline
3444       // stub, and the entry point might be too far away for bl, so __ pc()
3445       // serves as dummy and the bl will be patched later.
3446       cbuf.set_insts_mark();
3447       __ bl(__ pc());  // Emits a relocation.
3448 
3449       // The stub for call to interpreter.
3450       CompiledStaticCall::emit_to_interp_stub(cbuf);
3451     }
3452   %}
3453 
3454   // Emit a method handle call.
3455   //
3456   // Method handle calls from compiled to compiled are going thru a
3457   // c2i -> i2c adapter, extending the frame for their arguments. The
3458   // caller however, returns directly to the compiled callee, that has
3459   // to cope with the extended frame. We restore the original frame by
3460   // loading the callers sp and adding the calculated framesize.
3461   enc_class enc_java_handle_call(method meth) %{
3462     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3463 
3464     MacroAssembler _masm(&cbuf);
3465     address entry_point = (address)$meth$$method;
3466 
3467     // Remember the offset not the address.
3468     const int start_offset = __ offset();
3469     // The trampoline stub.
3470     if (!ra_->C->in_scratch_emit_size()) {
3471       // No entry point given, use the current pc.
3472       // Make sure branch fits into
3473       if (entry_point == 0) entry_point = __ pc();
3474 
3475       // Put the entry point as a constant into the constant pool.
3476       const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
3477       const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
3478 
3479       // Emit the trampoline stub which will be related to the branch-and-link below.
3480       emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
3481       assert(_optimized_virtual, "methodHandle call should be a virtual call");
3482       __ relocate(relocInfo::opt_virtual_call_type);
3483     }
3484 
3485     // The real call.
3486     // Note: At this point we do not have the address of the trampoline
3487     // stub, and the entry point might be too far away for bl, so __ pc()
3488     // serves as dummy and the bl will be patched later.
3489     cbuf.set_insts_mark();
3490     __ bl(__ pc());  // Emits a relocation.
3491 
3492     assert(_method, "execute next statement conditionally");
3493     // The stub for call to interpreter.
3494     CompiledStaticCall::emit_to_interp_stub(cbuf);
3495 
3496     // Restore original sp.
3497     __ ld(R11_scratch1, 0, R1_SP); // Load caller sp.
3498     const long framesize = ra_->C->frame_slots() << LogBytesPerInt;
3499     unsigned int bytes = (unsigned int)framesize;
3500     long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
3501     if (Assembler::is_simm(-offset, 16)) {
3502       __ addi(R1_SP, R11_scratch1, -offset);
3503     } else {
3504       __ load_const_optimized(R12_scratch2, -offset);
3505       __ add(R1_SP, R11_scratch1, R12_scratch2);
3506     }
3507 #ifdef ASSERT
3508   __ ld(R12_scratch2, 0, R1_SP); // Load from unextended_sp.
3509   __ cmpd(CCR0, R11_scratch1, R12_scratch2);
3510   __ asm_assert_eq("backlink changed", 0x8000);
3511 #endif
3512     // If fails should store backlink before unextending.
3513 
3514     if (ra_->C->env()->failing()) {
3515       return;
3516     }
3517   %}
3518 
3519   // Second node of expanded dynamic call - the call.
3520   enc_class enc_java_dynamic_call_sched(method meth) %{
3521     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
3522 
3523     MacroAssembler _masm(&cbuf);
3524 
3525     if (!ra_->C->in_scratch_emit_size()) {
3526       // Create a call trampoline stub for the given method.
3527       const address entry_point = !($meth$$method) ? 0 : (address)$meth$$method;
3528       const address entry_point_const = __ address_constant(entry_point, RelocationHolder::none);
3529       const int entry_point_const_toc_offset = __ offset_to_method_toc(entry_point_const);
3530       emit_trampoline_stub(_masm, entry_point_const_toc_offset, __ offset());
3531 
3532       if (ra_->C->env()->failing())
3533         return;
3534 
3535       // Build relocation at call site with ic position as data.
3536       assert((_load_ic_hi_node != NULL && _load_ic_node == NULL) ||
3537              (_load_ic_hi_node == NULL && _load_ic_node != NULL),
3538              "must have one, but can't have both");
3539       assert((_load_ic_hi_node != NULL && _load_ic_hi_node->_cbuf_insts_offset != -1) ||
3540              (_load_ic_node != NULL    && _load_ic_node->_cbuf_insts_offset != -1),
3541              "must contain instruction offset");
3542       const int virtual_call_oop_addr_offset = _load_ic_hi_node != NULL
3543         ? _load_ic_hi_node->_cbuf_insts_offset
3544         : _load_ic_node->_cbuf_insts_offset;
3545       const address virtual_call_oop_addr = __ addr_at(virtual_call_oop_addr_offset);
3546       assert(MacroAssembler::is_load_const_from_method_toc_at(virtual_call_oop_addr),
3547              "should be load from TOC");
3548 
3549       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
3550     }
3551 
3552     // At this point I do not have the address of the trampoline stub,
3553     // and the entry point might be too far away for bl. Pc() serves
3554     // as dummy and bl will be patched later.
3555     __ bl((address) __ pc());
3556   %}
3557 
3558   // postalloc expand emitter for virtual calls.
3559   enc_class postalloc_expand_java_dynamic_call_sched(method meth, iRegLdst toc) %{
3560 
3561     // Create the nodes for loading the IC from the TOC.
3562     loadConLNodesTuple loadConLNodes_IC =
3563       loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong)Universe::non_oop_word()),
3564                                 OptoReg::Name(R19_H_num), OptoReg::Name(R19_num));
3565 
3566     // Create the call node.
3567     CallDynamicJavaDirectSchedNode *call = new (C) CallDynamicJavaDirectSchedNode();
3568     call->_method_handle_invoke = _method_handle_invoke;
3569     call->_vtable_index      = _vtable_index;
3570     call->_method            = _method;
3571     call->_bci               = _bci;
3572     call->_optimized_virtual = _optimized_virtual;
3573     call->_tf                = _tf;
3574     call->_entry_point       = _entry_point;
3575     call->_cnt               = _cnt;
3576     call->_argsize           = _argsize;
3577     call->_oop_map           = _oop_map;
3578     call->_jvms              = _jvms;
3579     call->_jvmadj            = _jvmadj;
3580     call->_in_rms            = _in_rms;
3581     call->_nesting           = _nesting;
3582 
3583     // New call needs all inputs of old call.
3584     // Req...
3585     for (uint i = 0; i < req(); ++i) {
3586       // The expanded node does not need toc any more.
3587       // Add the inline cache constant here instead.  This expresses the 
3588       // register of the inline cache must be live at the call.
3589       // Else we would have to adapt JVMState by -1.
3590       if (i == mach_constant_base_node_input()) {
3591         call->add_req(loadConLNodes_IC._last);        
3592       } else {
3593         call->add_req(in(i));
3594       }
3595     }
3596     // ...as well as prec
3597     for (uint i = req(); i < len(); ++i) {
3598       call->add_prec(in(i));
3599     }
3600 
3601     // Remember nodes loading the inline cache into r19.
3602     call->_load_ic_hi_node = loadConLNodes_IC._large_hi;
3603     call->_load_ic_node    = loadConLNodes_IC._small;
3604 
3605     // Operands for new nodes.
3606     call->_opnds[0] = _opnds[0];
3607     call->_opnds[1] = _opnds[1];
3608 
3609     // Only the inline cache is associated with a register.
3610     assert(Matcher::inline_cache_reg() == OptoReg::Name(R19_num), "ic reg should be R19");
3611 
3612     // Push new nodes.
3613     if (loadConLNodes_IC._large_hi) nodes->push(loadConLNodes_IC._large_hi);
3614     if (loadConLNodes_IC._last)     nodes->push(loadConLNodes_IC._last);
3615     nodes->push(call);
3616   %}
3617 
3618   // Compound version of call dynamic
3619   enc_class enc_java_dynamic_call(method meth, iRegLdst toc) %{
3620     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3621     MacroAssembler _masm(&cbuf);
3622     int start_offset = __ offset();
3623 
3624     Register Rtoc = (ra_) ? $constanttablebase : R2_TOC;
3625 #if 0
3626     if (_vtable_index < 0) {
3627       // Must be invalid_vtable_index, not nonvirtual_vtable_index.
3628       assert(_vtable_index == Method::invalid_vtable_index, "correct sentinel value");
3629       Register ic_reg = as_Register(Matcher::inline_cache_reg_encode());
3630       AddressLiteral meta = __ allocate_metadata_address((Metadata *)Universe::non_oop_word());
3631 
3632       address virtual_call_meta_addr = __ pc();
3633       __ load_const_from_method_toc(ic_reg, meta, Rtoc);
3634       // CALL to fixup routine.  Fixup routine uses ScopeDesc info
3635       // to determine who we intended to call.
3636       __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
3637       emit_call_with_trampoline_stub(_masm, (address)$meth$$method, relocInfo::none);
3638       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
3639              "Fix constant in ret_addr_offset()");
3640     } else {
3641       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
3642       // Go thru the vtable. Get receiver klass. Receiver already
3643       // checked for non-null. If we'll go thru a C2I adapter, the
3644       // interpreter expects method in R19_method.
3645 
3646       __ load_klass(R11_scratch1, R3);
3647 
3648       int entry_offset = InstanceKlass::vtable_start_offset() + _vtable_index * vtableEntry::size();
3649       int v_off = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
3650       __ li(R19_method, v_off);
3651       __ ldx(R19_method/*method oop*/, R19_method/*method offset*/, R11_scratch1/*class*/);
3652       // NOTE: for vtable dispatches, the vtable entry will never be
3653       // null. However it may very well end up in handle_wrong_method
3654       // if the method is abstract for the particular class.
3655       __ ld(R11_scratch1, in_bytes(Method::from_compiled_offset()), R19_method);
3656       // Call target. Either compiled code or C2I adapter.
3657       __ mtctr(R11_scratch1);
3658       __ bctrl();
3659       if (((MachCallDynamicJavaNode*)this)->ret_addr_offset() != __ offset() - start_offset) {
3660         tty->print(" %d, %d\n", ((MachCallDynamicJavaNode*)this)->ret_addr_offset(),__ offset() - start_offset);
3661       }
3662       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
3663              "Fix constant in ret_addr_offset()");
3664     }
3665 #endif
3666     guarantee(0, "Fix handling of toc edge: messes up derived/base pairs.");
3667     Unimplemented();  // ret_addr_offset not yet fixed. Depends on compressed oops (load klass!).
3668   %}
3669 
3670   // a runtime call
3671   enc_class enc_java_to_runtime_call (method meth) %{
3672     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3673 
3674     MacroAssembler _masm(&cbuf);
3675     const address start_pc = __ pc();
3676 
3677     // The function we're going to call.
3678     FunctionDescriptor fdtemp;
3679     const FunctionDescriptor* fd = !($meth$$method) ? &fdtemp : (FunctionDescriptor*)$meth$$method;
3680 
3681     Register Rtoc = R12_scratch2;
3682     // Calculate the method's TOC.
3683     __ calculate_address_from_global_toc(Rtoc, __ method_toc());
3684     // Put entry, env, toc into the constant pool, this needs up to 3 constant
3685     // pool entries; call_c_using_toc will optimize the call.
3686     __ call_c_using_toc(fd, relocInfo::runtime_call_type, Rtoc);
3687 
3688     // Check the ret_addr_offset.
3689     assert(((MachCallRuntimeNode*)this)->ret_addr_offset() ==  __ last_calls_return_pc() - start_pc,
3690            "Fix constant in ret_addr_offset()");
3691   %}
3692 
3693   // Move to ctr for leaf call.
3694   // This enc_class is needed so that scheduler gets proper
3695   // input mapping for latency computation.
3696   enc_class enc_leaf_call_mtctr(iRegLsrc src) %{
3697     // TODO: PPC port $archOpcode(ppc64Opcode_mtctr);
3698     MacroAssembler _masm(&cbuf);
3699     __ mtctr($src$$Register);
3700   %}
3701 
3702   // postalloc expand emitter for runtime leaf calls.
3703   enc_class postalloc_expand_java_to_runtime_call(method meth, iRegLdst toc) %{
3704     // Get the struct that describes the function we are about to call.
3705     FunctionDescriptor* fd = (FunctionDescriptor*) this->entry_point();
3706     assert(fd, "need fd here");
3707     // new nodes
3708     loadConLNodesTuple loadConLNodes_Entry;
3709     loadConLNodesTuple loadConLNodes_Env;
3710     loadConLNodesTuple loadConLNodes_Toc;
3711     MachNode         *mtctr = NULL;
3712     MachCallLeafNode *call  = NULL;
3713 
3714     // Create nodes and operands for loading the entry point.
3715     loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->entry()),
3716                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
3717 
3718 
3719     // Create nodes and operands for loading the env pointer.
3720     if (fd->env() != NULL) {
3721       loadConLNodes_Env = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->env()),
3722                                                     OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
3723     } else {
3724       loadConLNodes_Env._large_hi = NULL;
3725       loadConLNodes_Env._large_lo = NULL;
3726       loadConLNodes_Env._small    = NULL;
3727       loadConLNodes_Env._last = new (C) loadConL16Node();
3728       loadConLNodes_Env._last->_opnds[0] = new (C) iRegLdstOper();
3729       loadConLNodes_Env._last->_opnds[1] = new (C) immL16Oper(0);
3730       ra_->set_pair(loadConLNodes_Env._last->_idx, OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
3731     }
3732 
3733     // Create nodes and operands for loading the Toc point.
3734     loadConLNodes_Toc = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->toc()),
3735                                                   OptoReg::Name(R2_H_num), OptoReg::Name(R2_num));
3736     // mtctr node
3737     mtctr = new (C) CallLeafDirect_mtctrNode();
3738 
3739     assert(loadConLNodes_Entry._last != NULL, "entry must exist");
3740     mtctr->add_req(0, loadConLNodes_Entry._last);
3741 
3742     mtctr->_opnds[0] = new (C) iRegLdstOper();
3743     mtctr->_opnds[1] = new (C) iRegLdstOper();
3744 
3745     // call node
3746     call = new (C) CallLeafDirectNode();
3747 
3748     call->_opnds[0] = _opnds[0];
3749     call->_opnds[1] = new (C) methodOper((intptr_t) fd->entry()); // may get set later
3750 
3751     // Make the new call node look like the old one.
3752     call->_name        = _name;
3753     call->_tf          = _tf;
3754     call->_entry_point = _entry_point;
3755     call->_cnt         = _cnt;
3756     call->_argsize     = _argsize;
3757     call->_oop_map     = _oop_map;
3758     guarantee(!_jvms, "You must clone the jvms and adapt the offsets by fix_jvms().");
3759     call->_jvms        = NULL;
3760     call->_jvmadj      = _jvmadj;
3761     call->_in_rms      = _in_rms;
3762     call->_nesting     = _nesting;
3763 
3764 
3765     // New call needs all inputs of old call.
3766     // Req...
3767     for (uint i = 0; i < req(); ++i) {
3768       if (i != mach_constant_base_node_input()) {
3769         call->add_req(in(i));
3770       }
3771     }
3772 
3773     // These must be reqired edges, as the registers are live up to
3774     // the call. Else the constants are handled as kills.
3775     call->add_req(mtctr);
3776     call->add_req(loadConLNodes_Env._last);
3777     call->add_req(loadConLNodes_Toc._last);
3778 
3779     // ...as well as prec
3780     for (uint i = req(); i < len(); ++i) {
3781       call->add_prec(in(i));
3782     }
3783 
3784     // registers
3785     ra_->set1(mtctr->_idx, OptoReg::Name(SR_CTR_num));
3786 
3787     // Insert the new nodes.
3788     if (loadConLNodes_Entry._large_hi) nodes->push(loadConLNodes_Entry._large_hi);
3789     if (loadConLNodes_Entry._last)     nodes->push(loadConLNodes_Entry._last);
3790     if (loadConLNodes_Env._large_hi)   nodes->push(loadConLNodes_Env._large_hi);
3791     if (loadConLNodes_Env._last)       nodes->push(loadConLNodes_Env._last);
3792     if (loadConLNodes_Toc._large_hi)   nodes->push(loadConLNodes_Toc._large_hi);
3793     if (loadConLNodes_Toc._last)       nodes->push(loadConLNodes_Toc._last);
3794     nodes->push(mtctr);
3795     nodes->push(call);
3796   %}
3797 %}
3798 
3799 //----------FRAME--------------------------------------------------------------
3800 // Definition of frame structure and management information.
3801 
3802 frame %{
3803   // What direction does stack grow in (assumed to be same for native & Java).
3804   stack_direction(TOWARDS_LOW);
3805 
3806   // These two registers define part of the calling convention between
3807   // compiled code and the interpreter.
3808 
3809   // Inline Cache Register or method for I2C.
3810   inline_cache_reg(R19); // R19_method
3811 
3812   // Method Oop Register when calling interpreter.
3813   interpreter_method_oop_reg(R19); // R19_method
3814 
3815   // Optional: name the operand used by cisc-spilling to access
3816   // [stack_pointer + offset].
3817   cisc_spilling_operand_name(indOffset);
3818 
3819   // Number of stack slots consumed by a Monitor enter.
3820   sync_stack_slots((frame::jit_monitor_size / VMRegImpl::stack_slot_size));
3821 
3822   // Compiled code's Frame Pointer.
3823   frame_pointer(R1); // R1_SP
3824 
3825   // Interpreter stores its frame pointer in a register which is
3826   // stored to the stack by I2CAdaptors. I2CAdaptors convert from
3827   // interpreted java to compiled java.
3828   //
3829   // R14_state holds pointer to caller's cInterpreter.
3830   interpreter_frame_pointer(R14); // R14_state
3831 
3832   stack_alignment(frame::alignment_in_bytes);
3833 
3834   in_preserve_stack_slots((frame::jit_in_preserve_size / VMRegImpl::stack_slot_size));
3835 
3836   // Number of outgoing stack slots killed above the
3837   // out_preserve_stack_slots for calls to C. Supports the var-args
3838   // backing area for register parms.
3839   //
3840   varargs_C_out_slots_killed(((frame::abi_112_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size));
3841 
3842   // The after-PROLOG location of the return address. Location of
3843   // return address specifies a type (REG or STACK) and a number
3844   // representing the register number (i.e. - use a register name) or
3845   // stack slot.
3846   //
3847   // A: Link register is stored in stack slot ...
3848   // M:  ... but it's in the caller's frame according to PPC-64 ABI.
3849   // J: Therefore, we make sure that the link register is also in R11_scratch1
3850   //    at the end of the prolog.
3851   // B: We use R20, now.
3852   //return_addr(REG R20);
3853 
3854   // G: After reading the comments made by all the luminaries on their
3855   //    failure to tell the compiler where the return address really is,
3856   //    I hardly dare to try myself.  However, I'm convinced it's in slot
3857   //    4 what apparently works and saves us some spills.
3858   return_addr(STACK 4);
3859 
3860   // This is the body of the function
3861   //
3862   // void Matcher::calling_convention(OptoRegPair* sig, // array of ideal regs
3863   //                                  uint length,      // length of array
3864   //                                  bool is_outgoing)
3865   //
3866   // The `sig' array is to be updated. sig[j] represents the location
3867   // of the j-th argument, either a register or a stack slot.
3868 
3869   // Comment taken from i486.ad:
3870   // Body of function which returns an integer array locating
3871   // arguments either in registers or in stack slots. Passed an array
3872   // of ideal registers called "sig" and a "length" count. Stack-slot
3873   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3874   // arguments for a CALLEE. Incoming stack arguments are
3875   // automatically biased by the preserve_stack_slots field above.
3876   calling_convention %{
3877     // No difference between ingoing/outgoing. Just pass false.
3878     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
3879   %}
3880 
3881   // Comment taken from i486.ad:
3882   // Body of function which returns an integer array locating
3883   // arguments either in registers or in stack slots. Passed an array
3884   // of ideal registers called "sig" and a "length" count. Stack-slot
3885   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3886   // arguments for a CALLEE. Incoming stack arguments are
3887   // automatically biased by the preserve_stack_slots field above.
3888   c_calling_convention %{
3889     // This is obviously always outgoing.
3890     // C argument in register AND stack slot.
3891     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3892   %}
3893 
3894   // Location of native (C/C++) and interpreter return values. This
3895   // is specified to be the same as Java. In the 32-bit VM, long
3896   // values are actually returned from native calls in O0:O1 and
3897   // returned to the interpreter in I0:I1. The copying to and from
3898   // the register pairs is done by the appropriate call and epilog
3899   // opcodes. This simplifies the register allocator.
3900   c_return_value %{
3901     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
3902             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
3903             "only return normal values");
3904     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
3905     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
3906     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
3907     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
3908   %}
3909 
3910   // Location of compiled Java return values.  Same as C
3911   return_value %{
3912     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
3913             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
3914             "only return normal values");
3915     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
3916     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
3917     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
3918     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
3919   %}
3920 %}
3921 
3922 
3923 //----------ATTRIBUTES---------------------------------------------------------
3924 
3925 //----------Operand Attributes-------------------------------------------------
3926 op_attrib op_cost(1);          // Required cost attribute.
3927 
3928 //----------Instruction Attributes---------------------------------------------
3929 
3930 // Cost attribute. required.
3931 ins_attrib ins_cost(DEFAULT_COST);
3932 
3933 // Is this instruction a non-matching short branch variant of some
3934 // long branch? Not required.
3935 ins_attrib ins_short_branch(0);
3936 
3937 ins_attrib ins_is_TrapBasedCheckNode(true);
3938 
3939 // Number of constants.
3940 // This instruction uses the given number of constants
3941 // (optional attribute).
3942 // This is needed to determine in time whether the constant pool will
3943 // exceed 4000 entries. Before postalloc_expand the overall number of constants
3944 // is determined. It's also used to compute the constant pool size
3945 // in Output().
3946 ins_attrib ins_num_consts(0);
3947 
3948 // Required alignment attribute (must be a power of 2) specifies the
3949 // alignment that some part of the instruction (not necessarily the
3950 // start) requires. If > 1, a compute_padding() function must be
3951 // provided for the instruction.
3952 ins_attrib ins_alignment(1);
3953 
3954 // Enforce/prohibit rematerializations.
3955 // - If an instruction is attributed with 'ins_cannot_rematerialize(true)'
3956 //   then rematerialization of that instruction is prohibited and the
3957 //   instruction's value will be spilled if necessary.
3958 //   Causes that MachNode::rematerialize() returns false.
3959 // - If an instruction is attributed with 'ins_should_rematerialize(true)'
3960 //   then rematerialization should be enforced and a copy of the instruction
3961 //   should be inserted if possible; rematerialization is not guaranteed.
3962 //   Note: this may result in rematerializations in front of every use.
3963 //   Causes that MachNode::rematerialize() can return true.
3964 // (optional attribute)
3965 ins_attrib ins_cannot_rematerialize(false);
3966 ins_attrib ins_should_rematerialize(false);
3967 
3968 // Instruction has variable size depending on alignment.
3969 ins_attrib ins_variable_size_depending_on_alignment(false);
3970 
3971 // Instruction is a nop.
3972 ins_attrib ins_is_nop(false);
3973 
3974 // Instruction is mapped to a MachIfFastLock node (instead of MachFastLock).
3975 ins_attrib ins_use_mach_if_fast_lock_node(false);
3976 
3977 // Field for the toc offset of a constant.
3978 //
3979 // This is needed if the toc offset is not encodable as an immediate in
3980 // the PPC load instruction. If so, the upper (hi) bits of the offset are
3981 // added to the toc, and from this a load with immediate is performed.
3982 // With postalloc expand, we get two nodes that require the same offset
3983 // but which don't know about each other. The offset is only known
3984 // when the constant is added to the constant pool during emitting.
3985 // It is generated in the 'hi'-node adding the upper bits, and saved
3986 // in this node.  The 'lo'-node has a link to the 'hi'-node and reads
3987 // the offset from there when it gets encoded.
3988 ins_attrib ins_field_const_toc_offset(0);
3989 ins_attrib ins_field_const_toc_offset_hi_node(0);
3990 
3991 // A field that can hold the instructions offset in the code buffer.
3992 // Set in the nodes emitter.
3993 ins_attrib ins_field_cbuf_insts_offset(-1);
3994 
3995 // Fields for referencing a call's load-IC-node.
3996 // If the toc offset can not be encoded as an immediate in a load, we
3997 // use two nodes.
3998 ins_attrib ins_field_load_ic_hi_node(0);
3999 ins_attrib ins_field_load_ic_node(0);
4000 
4001 //----------OPERANDS-----------------------------------------------------------
4002 // Operand definitions must precede instruction definitions for correct
4003 // parsing in the ADLC because operands constitute user defined types
4004 // which are used in instruction definitions.
4005 //
4006 // Formats are generated automatically for constants and base registers.
4007 
4008 //----------Simple Operands----------------------------------------------------
4009 // Immediate Operands
4010 
4011 // Integer Immediate: 32-bit
4012 operand immI() %{
4013   match(ConI);
4014   op_cost(40);
4015   format %{ %}
4016   interface(CONST_INTER);
4017 %}
4018 
4019 operand immI8() %{
4020   predicate(Assembler::is_simm(n->get_int(), 8));
4021   op_cost(0);
4022   match(ConI);
4023   format %{ %}
4024   interface(CONST_INTER);
4025 %}
4026 
4027 // Integer Immediate: 16-bit
4028 operand immI16() %{
4029   predicate(Assembler::is_simm(n->get_int(), 16));
4030   op_cost(0);
4031   match(ConI);
4032   format %{ %}
4033   interface(CONST_INTER);
4034 %}
4035 
4036 // Integer Immediate: 32-bit, where lowest 16 bits are 0x0000.
4037 operand immIhi16() %{
4038   predicate(((n->get_int() & 0xffff0000) != 0) && ((n->get_int() & 0xffff) == 0));
4039   match(ConI);
4040   op_cost(0);
4041   format %{ %}
4042   interface(CONST_INTER);
4043 %}
4044 
4045 operand immInegpow2() %{
4046   predicate(is_power_of_2_long((jlong) (julong) (juint) (-(n->get_int()))));
4047   match(ConI);
4048   op_cost(0);
4049   format %{ %}
4050   interface(CONST_INTER);
4051 %}
4052 
4053 operand immIpow2minus1() %{
4054   predicate(is_power_of_2_long((((jlong) (n->get_int()))+1)));
4055   match(ConI);
4056   op_cost(0);
4057   format %{ %}
4058   interface(CONST_INTER);
4059 %}
4060 
4061 operand immIpowerOf2() %{
4062   predicate(is_power_of_2_long((((jlong) (julong) (juint) (n->get_int())))));
4063   match(ConI);
4064   op_cost(0);
4065   format %{ %}
4066   interface(CONST_INTER);
4067 %}
4068 
4069 // Unsigned Integer Immediate: the values 0-31
4070 operand uimmI5() %{
4071   predicate(Assembler::is_uimm(n->get_int(), 5));
4072   match(ConI);
4073   op_cost(0);
4074   format %{ %}
4075   interface(CONST_INTER);
4076 %}
4077 
4078 // Unsigned Integer Immediate: 6-bit
4079 operand uimmI6() %{
4080   predicate(Assembler::is_uimm(n->get_int(), 6));
4081   match(ConI);
4082   op_cost(0);
4083   format %{ %}
4084   interface(CONST_INTER);
4085 %}
4086 
4087 // Unsigned Integer Immediate:  6-bit int, greater than 32
4088 operand uimmI6_ge32() %{
4089   predicate(Assembler::is_uimm(n->get_int(), 6) && n->get_int() >= 32);
4090   match(ConI);
4091   op_cost(0);
4092   format %{ %}
4093   interface(CONST_INTER);
4094 %}
4095 
4096 // Unsigned Integer Immediate: 15-bit
4097 operand uimmI15() %{
4098   predicate(Assembler::is_uimm(n->get_int(), 15));
4099   match(ConI);
4100   op_cost(0);
4101   format %{ %}
4102   interface(CONST_INTER);
4103 %}
4104 
4105 // Unsigned Integer Immediate: 16-bit
4106 operand uimmI16() %{
4107   predicate(Assembler::is_uimm(n->get_int(), 16));
4108   match(ConI);
4109   op_cost(0);
4110   format %{ %}
4111   interface(CONST_INTER);
4112 %}
4113 
4114 // constant 'int 0'.
4115 operand immI_0() %{
4116   predicate(n->get_int() == 0);
4117   match(ConI);
4118   op_cost(0);
4119   format %{ %}
4120   interface(CONST_INTER);
4121 %}
4122 
4123 // constant 'int 1'.
4124 operand immI_1() %{
4125   predicate(n->get_int() == 1);
4126   match(ConI);
4127   op_cost(0);
4128   format %{ %}
4129   interface(CONST_INTER);
4130 %}
4131 
4132 // constant 'int -1'.
4133 operand immI_minus1() %{
4134   predicate(n->get_int() == -1);
4135   match(ConI);
4136   op_cost(0);
4137   format %{ %}
4138   interface(CONST_INTER);
4139 %}
4140 
4141 // int value 16.
4142 operand immI_16() %{
4143   predicate(n->get_int() == 16);
4144   match(ConI);
4145   op_cost(0);
4146   format %{ %}
4147   interface(CONST_INTER);
4148 %}
4149 
4150 // int value 24.
4151 operand immI_24() %{
4152   predicate(n->get_int() == 24);
4153   match(ConI);
4154   op_cost(0);
4155   format %{ %}
4156   interface(CONST_INTER);
4157 %}
4158 
4159 // Compressed oops constants
4160 // Pointer Immediate
4161 operand immN() %{
4162   match(ConN);
4163 
4164   op_cost(10);
4165   format %{ %}
4166   interface(CONST_INTER);
4167 %}
4168 
4169 // NULL Pointer Immediate
4170 operand immN_0() %{
4171   predicate(n->get_narrowcon() == 0);
4172   match(ConN);
4173 
4174   op_cost(0);
4175   format %{ %}
4176   interface(CONST_INTER);
4177 %}
4178 
4179 // Compressed klass constants
4180 operand immNKlass() %{
4181   match(ConNKlass);
4182 
4183   op_cost(0);
4184   format %{ %}
4185   interface(CONST_INTER);
4186 %}
4187 
4188 // This operand can be used to avoid matching of an instruct
4189 // with chain rule.
4190 operand immNKlass_NM() %{
4191   match(ConNKlass);
4192   predicate(false);
4193   op_cost(0);
4194   format %{ %}
4195   interface(CONST_INTER);
4196 %}
4197 
4198 // Pointer Immediate: 64-bit
4199 operand immP() %{
4200   match(ConP);
4201   op_cost(0);
4202   format %{ %}
4203   interface(CONST_INTER);
4204 %}
4205 
4206 // Operand to avoid match of loadConP.
4207 // This operand can be used to avoid matching of an instruct
4208 // with chain rule.
4209 operand immP_NM() %{
4210   match(ConP);
4211   predicate(false);
4212   op_cost(0);
4213   format %{ %}
4214   interface(CONST_INTER);
4215 %}
4216 
4217 // costant 'pointer 0'.
4218 operand immP_0() %{
4219   predicate(n->get_ptr() == 0);
4220   match(ConP);
4221   op_cost(0);
4222   format %{ %}
4223   interface(CONST_INTER);
4224 %}
4225 
4226 // pointer 0x0 or 0x1
4227 operand immP_0or1() %{
4228   predicate((n->get_ptr() == 0) || (n->get_ptr() == 1));
4229   match(ConP);
4230   op_cost(0);
4231   format %{ %}
4232   interface(CONST_INTER);
4233 %}
4234 
4235 operand immL() %{
4236   match(ConL);
4237   op_cost(40);
4238   format %{ %}
4239   interface(CONST_INTER);
4240 %}
4241 
4242 // Long Immediate: 16-bit
4243 operand immL16() %{
4244   predicate(Assembler::is_simm(n->get_long(), 16));
4245   match(ConL);
4246   op_cost(0);
4247   format %{ %}
4248   interface(CONST_INTER);
4249 %}
4250 
4251 // Long Immediate: 16-bit, 4-aligned
4252 operand immL16Alg4() %{
4253   predicate(Assembler::is_simm(n->get_long(), 16) && ((n->get_long() & 0x3) == 0));
4254   match(ConL);
4255   op_cost(0);
4256   format %{ %}
4257   interface(CONST_INTER);
4258 %}
4259 
4260 // Long Immediate: 32-bit, where lowest 16 bits are 0x0000.
4261 operand immL32hi16() %{
4262   predicate(Assembler::is_simm(n->get_long(), 32) && ((n->get_long() & 0xffffL) == 0L));
4263   match(ConL);
4264   op_cost(0);
4265   format %{ %}
4266   interface(CONST_INTER);
4267 %}
4268 
4269 // Long Immediate: 32-bit
4270 operand immL32() %{
4271   predicate(Assembler::is_simm(n->get_long(), 32));
4272   match(ConL);
4273   op_cost(0);
4274   format %{ %}
4275   interface(CONST_INTER);
4276 %}
4277 
4278 // Long Immediate: 64-bit, where highest 16 bits are not 0x0000.
4279 operand immLhighest16() %{
4280   predicate((n->get_long() & 0xffff000000000000L) != 0L && (n->get_long() & 0x0000ffffffffffffL) == 0L);
4281   match(ConL);
4282   op_cost(0);
4283   format %{ %}
4284   interface(CONST_INTER);
4285 %}
4286 
4287 operand immLnegpow2() %{
4288   predicate(is_power_of_2_long((jlong)-(n->get_long())));
4289   match(ConL);
4290   op_cost(0);
4291   format %{ %}
4292   interface(CONST_INTER);
4293 %}
4294 
4295 operand immLpow2minus1() %{
4296   predicate(is_power_of_2_long((((jlong) (n->get_long()))+1)) &&
4297             (n->get_long() != (jlong)0xffffffffffffffffL));
4298   match(ConL);
4299   op_cost(0);
4300   format %{ %}
4301   interface(CONST_INTER);
4302 %}
4303 
4304 // constant 'long 0'.
4305 operand immL_0() %{
4306   predicate(n->get_long() == 0L);
4307   match(ConL);
4308   op_cost(0);
4309   format %{ %}
4310   interface(CONST_INTER);
4311 %}
4312 
4313 // constat ' long -1'.
4314 operand immL_minus1() %{
4315   predicate(n->get_long() == -1L);
4316   match(ConL);
4317   op_cost(0);
4318   format %{ %}
4319   interface(CONST_INTER);
4320 %}
4321 
4322 // Long Immediate: low 32-bit mask
4323 operand immL_32bits() %{
4324   predicate(n->get_long() == 0xFFFFFFFFL);
4325   match(ConL);
4326   op_cost(0);
4327   format %{ %}
4328   interface(CONST_INTER);
4329 %}
4330 
4331 // Unsigned Long Immediate: 16-bit
4332 operand uimmL16() %{
4333   predicate(Assembler::is_uimm(n->get_long(), 16));
4334   match(ConL);
4335   op_cost(0);
4336   format %{ %}
4337   interface(CONST_INTER);
4338 %}
4339 
4340 // Float Immediate
4341 operand immF() %{
4342   match(ConF);
4343   op_cost(40);
4344   format %{ %}
4345   interface(CONST_INTER);
4346 %}
4347 
4348 // constant 'float +0.0'.
4349 operand immF_0() %{
4350   predicate((n->getf() == 0) &&
4351             (fpclassify(n->getf()) == FP_ZERO) && (signbit(n->getf()) == 0));
4352   match(ConF);
4353   op_cost(0);
4354   format %{ %}
4355   interface(CONST_INTER);
4356 %}
4357 
4358 // Double Immediate
4359 operand immD() %{
4360   match(ConD);
4361   op_cost(40);
4362   format %{ %}
4363   interface(CONST_INTER);
4364 %}
4365 
4366 // Integer Register Operands
4367 // Integer Destination Register
4368 // See definition of reg_class bits32_reg_rw.
4369 operand iRegIdst() %{
4370   constraint(ALLOC_IN_RC(bits32_reg_rw));
4371   match(RegI);
4372   match(rscratch1RegI);
4373   match(rscratch2RegI);
4374   match(rarg1RegI);
4375   match(rarg2RegI);
4376   match(rarg3RegI);
4377   match(rarg4RegI);
4378   format %{ %}
4379   interface(REG_INTER);
4380 %}
4381 
4382 // Integer Source Register
4383 // See definition of reg_class bits32_reg_ro.
4384 operand iRegIsrc() %{
4385   constraint(ALLOC_IN_RC(bits32_reg_ro));
4386   match(RegI);
4387   match(rscratch1RegI);
4388   match(rscratch2RegI);
4389   match(rarg1RegI);
4390   match(rarg2RegI);
4391   match(rarg3RegI);
4392   match(rarg4RegI);
4393   format %{ %}
4394   interface(REG_INTER);
4395 %}
4396 
4397 operand rscratch1RegI() %{
4398   constraint(ALLOC_IN_RC(rscratch1_bits32_reg));
4399   match(iRegIdst);
4400   format %{ %}
4401   interface(REG_INTER);
4402 %}
4403 
4404 operand rscratch2RegI() %{
4405   constraint(ALLOC_IN_RC(rscratch2_bits32_reg));
4406   match(iRegIdst);
4407   format %{ %}
4408   interface(REG_INTER);
4409 %}
4410 
4411 operand rarg1RegI() %{
4412   constraint(ALLOC_IN_RC(rarg1_bits32_reg));
4413   match(iRegIdst);
4414   format %{ %}
4415   interface(REG_INTER);
4416 %}
4417 
4418 operand rarg2RegI() %{
4419   constraint(ALLOC_IN_RC(rarg2_bits32_reg));
4420   match(iRegIdst);
4421   format %{ %}
4422   interface(REG_INTER);
4423 %}
4424 
4425 operand rarg3RegI() %{
4426   constraint(ALLOC_IN_RC(rarg3_bits32_reg));
4427   match(iRegIdst);
4428   format %{ %}
4429   interface(REG_INTER);
4430 %}
4431 
4432 operand rarg4RegI() %{
4433   constraint(ALLOC_IN_RC(rarg4_bits32_reg));
4434   match(iRegIdst);
4435   format %{ %}
4436   interface(REG_INTER);
4437 %}
4438 
4439 operand rarg1RegL() %{
4440   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
4441   match(iRegLdst);
4442   format %{ %}
4443   interface(REG_INTER);
4444 %}
4445 
4446 operand rarg2RegL() %{
4447   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
4448   match(iRegLdst);
4449   format %{ %}
4450   interface(REG_INTER);
4451 %}
4452 
4453 operand rarg3RegL() %{
4454   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
4455   match(iRegLdst);
4456   format %{ %}
4457   interface(REG_INTER);
4458 %}
4459 
4460 operand rarg4RegL() %{
4461   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
4462   match(iRegLdst);
4463   format %{ %}
4464   interface(REG_INTER);
4465 %}
4466 
4467 // Pointer Destination Register
4468 // See definition of reg_class bits64_reg_rw.
4469 operand iRegPdst() %{
4470   constraint(ALLOC_IN_RC(bits64_reg_rw));
4471   match(RegP);
4472   match(rscratch1RegP);
4473   match(rscratch2RegP);
4474   match(rarg1RegP);
4475   match(rarg2RegP);
4476   match(rarg3RegP);
4477   match(rarg4RegP);
4478   format %{ %}
4479   interface(REG_INTER);
4480 %}
4481 
4482 // Pointer Destination Register
4483 // Operand not using r11 and r12 (killed in epilog).
4484 operand iRegPdstNoScratch() %{
4485   constraint(ALLOC_IN_RC(bits64_reg_leaf_call));
4486   match(RegP);
4487   match(rarg1RegP);
4488   match(rarg2RegP);
4489   match(rarg3RegP);
4490   match(rarg4RegP);
4491   format %{ %}
4492   interface(REG_INTER);
4493 %}
4494 
4495 // Pointer Source Register
4496 // See definition of reg_class bits64_reg_ro.
4497 operand iRegPsrc() %{
4498   constraint(ALLOC_IN_RC(bits64_reg_ro));
4499   match(RegP);
4500   match(iRegPdst);
4501   match(rscratch1RegP);
4502   match(rscratch2RegP);
4503   match(rarg1RegP);
4504   match(rarg2RegP);
4505   match(rarg3RegP);
4506   match(rarg4RegP);
4507   match(threadRegP);
4508   format %{ %}
4509   interface(REG_INTER);
4510 %}
4511 
4512 // Thread operand.
4513 operand threadRegP() %{
4514   constraint(ALLOC_IN_RC(thread_bits64_reg));
4515   match(iRegPdst);
4516   format %{ "R16" %}
4517   interface(REG_INTER);
4518 %}
4519 
4520 operand rscratch1RegP() %{
4521   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
4522   match(iRegPdst);
4523   format %{ "R11" %}
4524   interface(REG_INTER);
4525 %}
4526 
4527 operand rscratch2RegP() %{
4528   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
4529   match(iRegPdst);
4530   format %{ %}
4531   interface(REG_INTER);
4532 %}
4533 
4534 operand rarg1RegP() %{
4535   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
4536   match(iRegPdst);
4537   format %{ %}
4538   interface(REG_INTER);
4539 %}
4540 
4541 operand rarg2RegP() %{
4542   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
4543   match(iRegPdst);
4544   format %{ %}
4545   interface(REG_INTER);
4546 %}
4547 
4548 operand rarg3RegP() %{
4549   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
4550   match(iRegPdst);
4551   format %{ %}
4552   interface(REG_INTER);
4553 %}
4554 
4555 operand rarg4RegP() %{
4556   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
4557   match(iRegPdst);
4558   format %{ %}
4559   interface(REG_INTER);
4560 %}
4561 
4562 operand iRegNsrc() %{
4563   constraint(ALLOC_IN_RC(bits32_reg_ro));
4564   match(RegN);
4565   match(iRegNdst);
4566 
4567   format %{ %}
4568   interface(REG_INTER);
4569 %}
4570 
4571 operand iRegNdst() %{
4572   constraint(ALLOC_IN_RC(bits32_reg_rw));
4573   match(RegN);
4574 
4575   format %{ %}
4576   interface(REG_INTER);
4577 %}
4578 
4579 // Long Destination Register
4580 // See definition of reg_class bits64_reg_rw.
4581 operand iRegLdst() %{
4582   constraint(ALLOC_IN_RC(bits64_reg_rw));
4583   match(RegL);
4584   match(rscratch1RegL);
4585   match(rscratch2RegL);
4586   format %{ %}
4587   interface(REG_INTER);
4588 %}
4589 
4590 // Long Source Register
4591 // See definition of reg_class bits64_reg_ro.
4592 operand iRegLsrc() %{
4593   constraint(ALLOC_IN_RC(bits64_reg_ro));
4594   match(RegL);
4595   match(iRegLdst);
4596   match(rscratch1RegL);
4597   match(rscratch2RegL);
4598   format %{ %}
4599   interface(REG_INTER);
4600 %}
4601 
4602 // Special operand for ConvL2I.
4603 operand iRegL2Isrc(iRegLsrc reg) %{
4604   constraint(ALLOC_IN_RC(bits64_reg_ro));
4605   match(ConvL2I reg);
4606   format %{ "ConvL2I($reg)" %}
4607   interface(REG_INTER)
4608 %}
4609 
4610 operand rscratch1RegL() %{
4611   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
4612   match(RegL);
4613   format %{ %}
4614   interface(REG_INTER);
4615 %}
4616 
4617 operand rscratch2RegL() %{
4618   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
4619   match(RegL);
4620   format %{ %}
4621   interface(REG_INTER);
4622 %}
4623 
4624 // Condition Code Flag Registers
4625 operand flagsReg() %{
4626   constraint(ALLOC_IN_RC(int_flags));
4627   match(RegFlags);
4628   format %{ %}
4629   interface(REG_INTER);
4630 %}
4631 
4632 // Condition Code Flag Register CR0
4633 operand flagsRegCR0() %{
4634   constraint(ALLOC_IN_RC(int_flags_CR0));
4635   match(RegFlags);
4636   format %{ "CR0" %}
4637   interface(REG_INTER);
4638 %}
4639 
4640 operand flagsRegCR1() %{
4641   constraint(ALLOC_IN_RC(int_flags_CR1));
4642   match(RegFlags);
4643   format %{ "CR1" %}
4644   interface(REG_INTER);
4645 %}
4646 
4647 operand flagsRegCR6() %{
4648   constraint(ALLOC_IN_RC(int_flags_CR6));
4649   match(RegFlags);
4650   format %{ "CR6" %}
4651   interface(REG_INTER);
4652 %}
4653 
4654 operand regCTR() %{
4655   constraint(ALLOC_IN_RC(ctr_reg));
4656   // RegFlags should work. Introducing a RegSpecial type would cause a
4657   // lot of changes.
4658   match(RegFlags);
4659   format %{"SR_CTR" %}
4660   interface(REG_INTER);
4661 %}
4662 
4663 operand regD() %{
4664   constraint(ALLOC_IN_RC(dbl_reg));
4665   match(RegD);
4666   format %{ %}
4667   interface(REG_INTER);
4668 %}
4669 
4670 operand regF() %{
4671   constraint(ALLOC_IN_RC(flt_reg));
4672   match(RegF);
4673   format %{ %}
4674   interface(REG_INTER);
4675 %}
4676 
4677 // Special Registers
4678 
4679 // Method Register
4680 operand inline_cache_regP(iRegPdst reg) %{
4681   constraint(ALLOC_IN_RC(r19_bits64_reg)); // inline_cache_reg
4682   match(reg);
4683   format %{ %}
4684   interface(REG_INTER);
4685 %}
4686 
4687 operand compiler_method_oop_regP(iRegPdst reg) %{
4688   constraint(ALLOC_IN_RC(rscratch1_bits64_reg)); // compiler_method_oop_reg
4689   match(reg);
4690   format %{ %}
4691   interface(REG_INTER);
4692 %}
4693 
4694 operand interpreter_method_oop_regP(iRegPdst reg) %{
4695   constraint(ALLOC_IN_RC(r19_bits64_reg)); // interpreter_method_oop_reg
4696   match(reg);
4697   format %{ %}
4698   interface(REG_INTER);
4699 %}
4700 
4701 // Operands to remove register moves in unscaled mode.
4702 // Match read/write registers with an EncodeP node if neither shift nor add are required.
4703 operand iRegP2N(iRegPsrc reg) %{
4704   predicate(false /* TODO: PPC port MatchDecodeNodes*/&& Universe::narrow_oop_shift() == 0);
4705   constraint(ALLOC_IN_RC(bits64_reg_ro));
4706   match(EncodeP reg);
4707   format %{ "$reg" %}
4708   interface(REG_INTER)
4709 %}
4710 
4711 operand iRegN2P(iRegNsrc reg) %{
4712   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4713   constraint(ALLOC_IN_RC(bits32_reg_ro));
4714   match(DecodeN reg);
4715   match(DecodeNKlass reg);
4716   format %{ "$reg" %}
4717   interface(REG_INTER)
4718 %}
4719 
4720 //----------Complex Operands---------------------------------------------------
4721 // Indirect Memory Reference
4722 operand indirect(iRegPsrc reg) %{
4723   constraint(ALLOC_IN_RC(bits64_reg_ro));
4724   match(reg);
4725   op_cost(100);
4726   format %{ "[$reg]" %}
4727   interface(MEMORY_INTER) %{
4728     base($reg);
4729     index(0x0);
4730     scale(0x0);
4731     disp(0x0);
4732   %}
4733 %}
4734 
4735 // Indirect with Offset
4736 operand indOffset16(iRegPsrc reg, immL16 offset) %{
4737   constraint(ALLOC_IN_RC(bits64_reg_ro));
4738   match(AddP reg offset);
4739   op_cost(100);
4740   format %{ "[$reg + $offset]" %}
4741   interface(MEMORY_INTER) %{
4742     base($reg);
4743     index(0x0);
4744     scale(0x0);
4745     disp($offset);
4746   %}
4747 %}
4748 
4749 // Indirect with 4-aligned Offset
4750 operand indOffset16Alg4(iRegPsrc reg, immL16Alg4 offset) %{
4751   constraint(ALLOC_IN_RC(bits64_reg_ro));
4752   match(AddP reg offset);
4753   op_cost(100);
4754   format %{ "[$reg + $offset]" %}
4755   interface(MEMORY_INTER) %{
4756     base($reg);
4757     index(0x0);
4758     scale(0x0);
4759     disp($offset);
4760   %}
4761 %}
4762 
4763 //----------Complex Operands for Compressed OOPs-------------------------------
4764 // Compressed OOPs with narrow_oop_shift == 0.
4765 
4766 // Indirect Memory Reference, compressed OOP
4767 operand indirectNarrow(iRegNsrc reg) %{
4768   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4769   constraint(ALLOC_IN_RC(bits64_reg_ro));
4770   match(DecodeN reg);
4771   match(DecodeNKlass reg);
4772   op_cost(100);
4773   format %{ "[$reg]" %}
4774   interface(MEMORY_INTER) %{
4775     base($reg);
4776     index(0x0);
4777     scale(0x0);
4778     disp(0x0);
4779   %}
4780 %}
4781 
4782 // Indirect with Offset, compressed OOP
4783 operand indOffset16Narrow(iRegNsrc reg, immL16 offset) %{
4784   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4785   constraint(ALLOC_IN_RC(bits64_reg_ro));
4786   match(AddP (DecodeN reg) offset);
4787   match(AddP (DecodeNKlass reg) offset);
4788   op_cost(100);
4789   format %{ "[$reg + $offset]" %}
4790   interface(MEMORY_INTER) %{
4791     base($reg);
4792     index(0x0);
4793     scale(0x0);
4794     disp($offset);
4795   %}
4796 %}
4797 
4798 // Indirect with 4-aligned Offset, compressed OOP
4799 operand indOffset16NarrowAlg4(iRegNsrc reg, immL16Alg4 offset) %{
4800   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4801   constraint(ALLOC_IN_RC(bits64_reg_ro));
4802   match(AddP (DecodeN reg) offset);
4803   match(AddP (DecodeNKlass reg) offset);
4804   op_cost(100);
4805   format %{ "[$reg + $offset]" %}
4806   interface(MEMORY_INTER) %{
4807     base($reg);
4808     index(0x0);
4809     scale(0x0);
4810     disp($offset);
4811   %}
4812 %}
4813 
4814 //----------Special Memory Operands--------------------------------------------
4815 // Stack Slot Operand
4816 //
4817 // This operand is used for loading and storing temporary values on
4818 // the stack where a match requires a value to flow through memory.
4819 operand stackSlotI(sRegI reg) %{
4820   constraint(ALLOC_IN_RC(stack_slots));
4821   op_cost(100);
4822   //match(RegI);
4823   format %{ "[sp+$reg]" %}
4824   interface(MEMORY_INTER) %{
4825     base(0x1);   // R1_SP
4826     index(0x0);
4827     scale(0x0);
4828     disp($reg);  // Stack Offset
4829   %}
4830 %}
4831 
4832 operand stackSlotL(sRegL reg) %{
4833   constraint(ALLOC_IN_RC(stack_slots));
4834   op_cost(100);
4835   //match(RegL);
4836   format %{ "[sp+$reg]" %}
4837   interface(MEMORY_INTER) %{
4838     base(0x1);   // R1_SP
4839     index(0x0);
4840     scale(0x0);
4841     disp($reg);  // Stack Offset
4842   %}
4843 %}
4844 
4845 operand stackSlotP(sRegP reg) %{
4846   constraint(ALLOC_IN_RC(stack_slots));
4847   op_cost(100);
4848   //match(RegP);
4849   format %{ "[sp+$reg]" %}
4850   interface(MEMORY_INTER) %{
4851     base(0x1);   // R1_SP
4852     index(0x0);
4853     scale(0x0);
4854     disp($reg);  // Stack Offset
4855   %}
4856 %}
4857 
4858 operand stackSlotF(sRegF reg) %{
4859   constraint(ALLOC_IN_RC(stack_slots));
4860   op_cost(100);
4861   //match(RegF);
4862   format %{ "[sp+$reg]" %}
4863   interface(MEMORY_INTER) %{
4864     base(0x1);   // R1_SP
4865     index(0x0);
4866     scale(0x0);
4867     disp($reg);  // Stack Offset
4868   %}
4869 %}
4870 
4871 operand stackSlotD(sRegD reg) %{
4872   constraint(ALLOC_IN_RC(stack_slots));
4873   op_cost(100);
4874   //match(RegD);
4875   format %{ "[sp+$reg]" %}
4876   interface(MEMORY_INTER) %{
4877     base(0x1);   // R1_SP
4878     index(0x0);
4879     scale(0x0);
4880     disp($reg);  // Stack Offset
4881   %}
4882 %}
4883 
4884 // Operands for expressing Control Flow
4885 // NOTE: Label is a predefined operand which should not be redefined in
4886 //       the AD file. It is generically handled within the ADLC.
4887 
4888 //----------Conditional Branch Operands----------------------------------------
4889 // Comparison Op
4890 //
4891 // This is the operation of the comparison, and is limited to the
4892 // following set of codes: L (<), LE (<=), G (>), GE (>=), E (==), NE
4893 // (!=).
4894 //
4895 // Other attributes of the comparison, such as unsignedness, are specified
4896 // by the comparison instruction that sets a condition code flags register.
4897 // That result is represented by a flags operand whose subtype is appropriate
4898 // to the unsignedness (etc.) of the comparison.
4899 //
4900 // Later, the instruction which matches both the Comparison Op (a Bool) and
4901 // the flags (produced by the Cmp) specifies the coding of the comparison op
4902 // by matching a specific subtype of Bool operand below.
4903 
4904 // When used for floating point comparisons: unordered same as less.
4905 operand cmpOp() %{
4906   match(Bool);
4907   format %{ "" %}
4908   interface(COND_INTER) %{
4909                            // BO only encodes bit 4 of bcondCRbiIsX, as bits 1-3 are always '100'.
4910                            //           BO          &  BI
4911     equal(0xA);            // 10 10:   bcondCRbiIs1 & Condition::equal
4912     not_equal(0x2);        // 00 10:   bcondCRbiIs0 & Condition::equal
4913     less(0x8);             // 10 00:   bcondCRbiIs1 & Condition::less
4914     greater_equal(0x0);    // 00 00:   bcondCRbiIs0 & Condition::less
4915     less_equal(0x1);       // 00 01:   bcondCRbiIs0 & Condition::greater
4916     greater(0x9);          // 10 01:   bcondCRbiIs1 & Condition::greater
4917     overflow(0xB);         // 10 11:   bcondCRbiIs1 & Condition::summary_overflow
4918     no_overflow(0x3);      // 00 11:   bcondCRbiIs0 & Condition::summary_overflow
4919   %}
4920 %}
4921 
4922 //----------OPERAND CLASSES----------------------------------------------------
4923 // Operand Classes are groups of operands that are used to simplify
4924 // instruction definitions by not requiring the AD writer to specify
4925 // seperate instructions for every form of operand when the
4926 // instruction accepts multiple operand types with the same basic
4927 // encoding and format. The classic case of this is memory operands.
4928 // Indirect is not included since its use is limited to Compare & Swap.
4929 
4930 opclass memory(indirect, indOffset16 /*, indIndex, tlsReference*/, indirectNarrow, indOffset16Narrow);
4931 // Memory operand where offsets are 4-aligned. Required for ld, std.
4932 opclass memoryAlg4(indirect, indOffset16Alg4, indirectNarrow, indOffset16NarrowAlg4);
4933 opclass indirectMemory(indirect, indirectNarrow);
4934 
4935 // Special opclass for I and ConvL2I.
4936 opclass iRegIsrc_iRegL2Isrc(iRegIsrc, iRegL2Isrc);
4937 
4938 // Operand classes to match encode and decode. iRegN_P2N is only used
4939 // for storeN. I have never seen an encode node elsewhere.
4940 opclass iRegN_P2N(iRegNsrc, iRegP2N);
4941 opclass iRegP_N2P(iRegPsrc, iRegN2P);
4942 
4943 //----------PIPELINE-----------------------------------------------------------
4944 
4945 pipeline %{
4946 
4947 // See J.M.Tendler et al. "Power4 system microarchitecture", IBM
4948 // J. Res. & Dev., No. 1, Jan. 2002.
4949 
4950 //----------ATTRIBUTES---------------------------------------------------------
4951 attributes %{
4952 
4953   // Power4 instructions are of fixed length.
4954   fixed_size_instructions;
4955 
4956   // TODO: if `bundle' means number of instructions fetched
4957   // per cycle, this is 8. If `bundle' means Power4 `group', that is
4958   // max instructions issued per cycle, this is 5.
4959   max_instructions_per_bundle = 8;
4960 
4961   // A Power4 instruction is 4 bytes long.
4962   instruction_unit_size = 4;
4963 
4964   // The Power4 processor fetches 64 bytes...
4965   instruction_fetch_unit_size = 64;
4966 
4967   // ...in one line
4968   instruction_fetch_units = 1
4969 
4970   // Unused, list one so that array generated by adlc is not empty.
4971   // Aix compiler chokes if _nop_count = 0.
4972   nops(fxNop);
4973 %}
4974 
4975 //----------RESOURCES----------------------------------------------------------
4976 // Resources are the functional units available to the machine
4977 resources(
4978    PPC_BR,         // branch unit
4979    PPC_CR,         // condition unit
4980    PPC_FX1,        // integer arithmetic unit 1
4981    PPC_FX2,        // integer arithmetic unit 2
4982    PPC_LDST1,      // load/store unit 1
4983    PPC_LDST2,      // load/store unit 2
4984    PPC_FP1,        // float arithmetic unit 1
4985    PPC_FP2,        // float arithmetic unit 2
4986    PPC_LDST = PPC_LDST1 | PPC_LDST2,
4987    PPC_FX = PPC_FX1 | PPC_FX2,
4988    PPC_FP = PPC_FP1 | PPC_FP2
4989  );
4990 
4991 //----------PIPELINE DESCRIPTION-----------------------------------------------
4992 // Pipeline Description specifies the stages in the machine's pipeline
4993 pipe_desc(
4994    // Power4 longest pipeline path
4995    PPC_IF,   // instruction fetch
4996    PPC_IC,
4997    //PPC_BP, // branch prediction
4998    PPC_D0,   // decode
4999    PPC_D1,   // decode
5000    PPC_D2,   // decode
5001    PPC_D3,   // decode
5002    PPC_Xfer1,
5003    PPC_GD,   // group definition
5004    PPC_MP,   // map
5005    PPC_ISS,  // issue
5006    PPC_RF,   // resource fetch
5007    PPC_EX1,  // execute (all units)
5008    PPC_EX2,  // execute (FP, LDST)
5009    PPC_EX3,  // execute (FP, LDST)
5010    PPC_EX4,  // execute (FP)
5011    PPC_EX5,  // execute (FP)
5012    PPC_EX6,  // execute (FP)
5013    PPC_WB,   // write back
5014    PPC_Xfer2,
5015    PPC_CP
5016  );
5017 
5018 //----------PIPELINE CLASSES---------------------------------------------------
5019 // Pipeline Classes describe the stages in which input and output are
5020 // referenced by the hardware pipeline.
5021 
5022 // Simple pipeline classes.
5023 
5024 // Default pipeline class.
5025 pipe_class pipe_class_default() %{
5026   single_instruction;
5027   fixed_latency(2);
5028 %}
5029 
5030 // Pipeline class for empty instructions.
5031 pipe_class pipe_class_empty() %{
5032   single_instruction;
5033   fixed_latency(0);
5034 %}
5035 
5036 // Pipeline class for compares.
5037 pipe_class pipe_class_compare() %{
5038   single_instruction;
5039   fixed_latency(16);
5040 %}
5041 
5042 // Pipeline class for traps.
5043 pipe_class pipe_class_trap() %{
5044   single_instruction;
5045   fixed_latency(100);
5046 %}
5047 
5048 // Pipeline class for memory operations.
5049 pipe_class pipe_class_memory() %{
5050   single_instruction;
5051   fixed_latency(16);
5052 %}
5053 
5054 // Pipeline class for call.
5055 pipe_class pipe_class_call() %{
5056   single_instruction;
5057   fixed_latency(100);
5058 %}
5059 
5060 // Define the class for the Nop node.
5061 define %{
5062    MachNop = pipe_class_default;
5063 %}
5064 
5065 %}
5066 
5067 //----------INSTRUCTIONS-------------------------------------------------------
5068 
5069 // Naming of instructions:
5070 //   opA_operB / opA_operB_operC:
5071 //     Operation 'op' with one or two source operands 'oper'. Result
5072 //     type is A, source operand types are B and C.
5073 //     Iff A == B == C, B and C are left out.
5074 //
5075 // The instructions are ordered according to the following scheme:
5076 //  - loads
5077 //  - load constants
5078 //  - prefetch
5079 //  - store
5080 //  - encode/decode
5081 //  - membar
5082 //  - conditional moves
5083 //  - compare & swap
5084 //  - arithmetic and logic operations
5085 //    * int: Add, Sub, Mul, Div, Mod
5086 //    * int: lShift, arShift, urShift, rot
5087 //    * float: Add, Sub, Mul, Div
5088 //    * and, or, xor ...
5089 //  - register moves: float <-> int, reg <-> stack, repl
5090 //  - cast (high level type cast, XtoP, castPP, castII, not_null etc.
5091 //  - conv (low level type cast requiring bit changes (sign extend etc)
5092 //  - compares, range & zero checks.
5093 //  - branches
5094 //  - complex operations, intrinsics, min, max, replicate
5095 //  - lock
5096 //  - Calls
5097 //
5098 // If there are similar instructions with different types they are sorted:
5099 // int before float
5100 // small before big
5101 // signed before unsigned
5102 // e.g., loadS before loadUS before loadI before loadF.
5103 
5104 
5105 //----------Load/Store Instructions--------------------------------------------
5106 
5107 //----------Load Instructions--------------------------------------------------
5108 
5109 // Converts byte to int.
5110 // As convB2I_reg, but without match rule.  The match rule of convB2I_reg
5111 // reuses the 'amount' operand, but adlc expects that operand specification
5112 // and operands in match rule are equivalent.
5113 instruct convB2I_reg_2(iRegIdst dst, iRegIsrc src) %{
5114   effect(DEF dst, USE src);
5115   format %{ "EXTSB   $dst, $src \t// byte->int" %}
5116   size(4);
5117   ins_encode %{
5118     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
5119     __ extsb($dst$$Register, $src$$Register);
5120   %}
5121   ins_pipe(pipe_class_default);
5122 %}
5123 
5124 instruct loadUB_indirect(iRegIdst dst, indirectMemory mem) %{
5125   // match-rule, false predicate
5126   match(Set dst (LoadB mem));
5127   predicate(false);
5128 
5129   format %{ "LBZ     $dst, $mem" %}
5130   size(4);
5131   ins_encode( enc_lbz(dst, mem) );
5132   ins_pipe(pipe_class_memory);
5133 %}
5134 
5135 instruct loadUB_indirect_ac(iRegIdst dst, indirectMemory mem) %{
5136   // match-rule, false predicate
5137   match(Set dst (LoadB mem));
5138   predicate(false);
5139 
5140   format %{ "LBZ     $dst, $mem\n\t"
5141             "TWI     $dst\n\t"
5142             "ISYNC" %}
5143   size(12);
5144   ins_encode( enc_lbz_ac(dst, mem) );
5145   ins_pipe(pipe_class_memory);
5146 %}
5147 
5148 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
5149 instruct loadB_indirect_Ex(iRegIdst dst, indirectMemory mem) %{
5150   match(Set dst (LoadB mem));
5151   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5152   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5153   expand %{
5154     iRegIdst tmp;
5155     loadUB_indirect(tmp, mem);
5156     convB2I_reg_2(dst, tmp);
5157   %}
5158 %}
5159 
5160 instruct loadB_indirect_ac_Ex(iRegIdst dst, indirectMemory mem) %{
5161   match(Set dst (LoadB mem));
5162   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
5163   expand %{
5164     iRegIdst tmp;
5165     loadUB_indirect_ac(tmp, mem);
5166     convB2I_reg_2(dst, tmp);
5167   %}
5168 %}
5169 
5170 instruct loadUB_indOffset16(iRegIdst dst, indOffset16 mem) %{
5171   // match-rule, false predicate
5172   match(Set dst (LoadB mem));
5173   predicate(false);
5174 
5175   format %{ "LBZ     $dst, $mem" %}
5176   size(4);
5177   ins_encode( enc_lbz(dst, mem) );
5178   ins_pipe(pipe_class_memory);
5179 %}
5180 
5181 instruct loadUB_indOffset16_ac(iRegIdst dst, indOffset16 mem) %{
5182   // match-rule, false predicate
5183   match(Set dst (LoadB mem));
5184   predicate(false);
5185 
5186   format %{ "LBZ     $dst, $mem\n\t"
5187             "TWI     $dst\n\t"
5188             "ISYNC" %}
5189   size(12);
5190   ins_encode( enc_lbz_ac(dst, mem) );
5191   ins_pipe(pipe_class_memory);
5192 %}
5193 
5194 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
5195 instruct loadB_indOffset16_Ex(iRegIdst dst, indOffset16 mem) %{
5196   match(Set dst (LoadB mem));
5197   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5198   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5199 
5200   expand %{
5201     iRegIdst tmp;
5202     loadUB_indOffset16(tmp, mem);
5203     convB2I_reg_2(dst, tmp);
5204   %}
5205 %}
5206 
5207 instruct loadB_indOffset16_ac_Ex(iRegIdst dst, indOffset16 mem) %{
5208   match(Set dst (LoadB mem));
5209   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
5210 
5211   expand %{
5212     iRegIdst tmp;
5213     loadUB_indOffset16_ac(tmp, mem);
5214     convB2I_reg_2(dst, tmp);
5215   %}
5216 %}
5217 
5218 // Load Unsigned Byte (8bit UNsigned) into an int reg.
5219 instruct loadUB(iRegIdst dst, memory mem) %{
5220   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5221   match(Set dst (LoadUB mem));
5222   ins_cost(MEMORY_REF_COST);
5223 
5224   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int" %}
5225   size(4);
5226   ins_encode( enc_lbz(dst, mem) );
5227   ins_pipe(pipe_class_memory);
5228 %}
5229 
5230 // Load  Unsigned Byte (8bit UNsigned) acquire.
5231 instruct loadUB_ac(iRegIdst dst, memory mem) %{
5232   match(Set dst (LoadUB mem));
5233   ins_cost(3*MEMORY_REF_COST);
5234 
5235   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int, acquire\n\t"
5236             "TWI     $dst\n\t"
5237             "ISYNC" %}
5238   size(12);
5239   ins_encode( enc_lbz_ac(dst, mem) );
5240   ins_pipe(pipe_class_memory);
5241 %}
5242 
5243 // Load Unsigned Byte (8bit UNsigned) into a Long Register.
5244 instruct loadUB2L(iRegLdst dst, memory mem) %{
5245   match(Set dst (ConvI2L (LoadUB mem)));
5246   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
5247   ins_cost(MEMORY_REF_COST);
5248 
5249   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long" %}
5250   size(4);
5251   ins_encode( enc_lbz(dst, mem) );
5252   ins_pipe(pipe_class_memory);
5253 %}
5254 
5255 instruct loadUB2L_ac(iRegLdst dst, memory mem) %{
5256   match(Set dst (ConvI2L (LoadUB mem)));
5257   ins_cost(3*MEMORY_REF_COST);
5258 
5259   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long, acquire\n\t"
5260             "TWI     $dst\n\t"
5261             "ISYNC" %}
5262   size(12);
5263   ins_encode( enc_lbz_ac(dst, mem) );
5264   ins_pipe(pipe_class_memory);
5265 %}
5266 
5267 // Load Short (16bit signed)
5268 instruct loadS(iRegIdst dst, memory mem) %{
5269   match(Set dst (LoadS mem));
5270   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5271   ins_cost(MEMORY_REF_COST);
5272 
5273   format %{ "LHA     $dst, $mem" %}
5274   size(4);
5275   ins_encode %{
5276     // TODO: PPC port $archOpcode(ppc64Opcode_lha);
5277     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5278     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
5279   %}
5280   ins_pipe(pipe_class_memory);
5281 %}
5282 
5283 // Load Short (16bit signed) acquire.
5284 instruct loadS_ac(iRegIdst dst, memory mem) %{
5285   match(Set dst (LoadS mem));
5286   ins_cost(3*MEMORY_REF_COST);
5287 
5288   format %{ "LHA     $dst, $mem\t acquire\n\t"
5289             "TWI     $dst\n\t"
5290             "ISYNC" %}
5291   size(12);
5292   ins_encode %{
5293     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5294     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5295     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
5296     __ twi_0($dst$$Register);
5297     __ isync();
5298   %}
5299   ins_pipe(pipe_class_memory);
5300 %}
5301 
5302 // Load Char (16bit unsigned)
5303 instruct loadUS(iRegIdst dst, memory mem) %{
5304   match(Set dst (LoadUS mem));
5305   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5306   ins_cost(MEMORY_REF_COST);
5307 
5308   format %{ "LHZ     $dst, $mem" %}
5309   size(4);
5310   ins_encode( enc_lhz(dst, mem) );
5311   ins_pipe(pipe_class_memory);
5312 %}
5313 
5314 // Load Char (16bit unsigned) acquire.
5315 instruct loadUS_ac(iRegIdst dst, memory mem) %{
5316   match(Set dst (LoadUS mem));
5317   ins_cost(3*MEMORY_REF_COST);
5318 
5319   format %{ "LHZ     $dst, $mem \t// acquire\n\t"
5320             "TWI     $dst\n\t"
5321             "ISYNC" %}
5322   size(12);
5323   ins_encode( enc_lhz_ac(dst, mem) );
5324   ins_pipe(pipe_class_memory);
5325 %}
5326 
5327 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register.
5328 instruct loadUS2L(iRegLdst dst, memory mem) %{
5329   match(Set dst (ConvI2L (LoadUS mem)));
5330   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
5331   ins_cost(MEMORY_REF_COST);
5332 
5333   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long" %}
5334   size(4);
5335   ins_encode( enc_lhz(dst, mem) );
5336   ins_pipe(pipe_class_memory);
5337 %}
5338 
5339 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register acquire.
5340 instruct loadUS2L_ac(iRegLdst dst, memory mem) %{
5341   match(Set dst (ConvI2L (LoadUS mem)));
5342   ins_cost(3*MEMORY_REF_COST);
5343 
5344   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long, acquire\n\t"
5345             "TWI     $dst\n\t"
5346             "ISYNC" %}
5347   size(12);
5348   ins_encode( enc_lhz_ac(dst, mem) );
5349   ins_pipe(pipe_class_memory);
5350 %}
5351 
5352 // Load Integer.
5353 instruct loadI(iRegIdst dst, memory mem) %{
5354   match(Set dst (LoadI mem));
5355   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5356   ins_cost(MEMORY_REF_COST);
5357 
5358   format %{ "LWZ     $dst, $mem" %}
5359   size(4);
5360   ins_encode( enc_lwz(dst, mem) );
5361   ins_pipe(pipe_class_memory);
5362 %}
5363 
5364 // Load Integer acquire.
5365 instruct loadI_ac(iRegIdst dst, memory mem) %{
5366   match(Set dst (LoadI mem));
5367   ins_cost(3*MEMORY_REF_COST);
5368 
5369   format %{ "LWZ     $dst, $mem \t// load acquire\n\t"
5370             "TWI     $dst\n\t"
5371             "ISYNC" %}
5372   size(12);
5373   ins_encode( enc_lwz_ac(dst, mem) );
5374   ins_pipe(pipe_class_memory);
5375 %}
5376 
5377 // Match loading integer and casting it to unsigned int in 
5378 // long register.
5379 // LoadI + ConvI2L + AndL 0xffffffff.
5380 instruct loadUI2L(iRegLdst dst, memory mem, immL_32bits mask) %{
5381   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5382   predicate(_kids[0]->_kids[0]->_leaf->as_Load()->is_unordered());
5383   ins_cost(MEMORY_REF_COST);
5384 
5385   format %{ "LWZ     $dst, $mem \t// zero-extend to long" %}
5386   size(4);
5387   ins_encode( enc_lwz(dst, mem) );
5388   ins_pipe(pipe_class_memory);
5389 %}
5390 
5391 // Match loading integer and casting it to long.
5392 instruct loadI2L(iRegLdst dst, memory mem) %{
5393   match(Set dst (ConvI2L (LoadI mem)));
5394   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
5395   ins_cost(MEMORY_REF_COST);
5396 
5397   format %{ "LWA     $dst, $mem \t// loadI2L" %}
5398   size(4);
5399   ins_encode %{
5400     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
5401     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5402     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
5403   %}
5404   ins_pipe(pipe_class_memory);
5405 %}
5406 
5407 // Match loading integer and casting it to long - acquire.
5408 instruct loadI2L_ac(iRegLdst dst, memory mem) %{
5409   match(Set dst (ConvI2L (LoadI mem)));
5410   ins_cost(3*MEMORY_REF_COST);
5411 
5412   format %{ "LWA     $dst, $mem \t// loadI2L acquire"
5413             "TWI     $dst\n\t"
5414             "ISYNC" %}
5415   size(12);
5416   ins_encode %{
5417     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
5418     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5419     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
5420     __ twi_0($dst$$Register);
5421     __ isync();
5422   %}
5423   ins_pipe(pipe_class_memory);
5424 %}
5425 
5426 // Load Long - aligned
5427 instruct loadL(iRegLdst dst, memoryAlg4 mem) %{
5428   match(Set dst (LoadL mem));
5429   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5430   ins_cost(MEMORY_REF_COST);
5431 
5432   format %{ "LD      $dst, $mem \t// long" %}
5433   size(4);
5434   ins_encode( enc_ld(dst, mem) );
5435   ins_pipe(pipe_class_memory);
5436 %}
5437 
5438 // Load Long - aligned acquire.
5439 instruct loadL_ac(iRegLdst dst, memoryAlg4 mem) %{
5440   match(Set dst (LoadL mem));
5441   ins_cost(3*MEMORY_REF_COST);
5442 
5443   format %{ "LD      $dst, $mem \t// long acquire\n\t"
5444             "TWI     $dst\n\t"
5445             "ISYNC" %}
5446   size(12);
5447   ins_encode( enc_ld_ac(dst, mem) );
5448   ins_pipe(pipe_class_memory);
5449 %}
5450 
5451 // Load Long - UNaligned
5452 instruct loadL_unaligned(iRegLdst dst, memoryAlg4 mem) %{
5453   match(Set dst (LoadL_unaligned mem));
5454   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
5455   ins_cost(MEMORY_REF_COST);
5456 
5457   format %{ "LD      $dst, $mem \t// unaligned long" %}
5458   size(4);
5459   ins_encode( enc_ld(dst, mem) );
5460   ins_pipe(pipe_class_memory);
5461 %}
5462 
5463 // Load nodes for superwords
5464 
5465 // Load Aligned Packed Byte
5466 instruct loadV8(iRegLdst dst, memoryAlg4 mem) %{
5467   predicate(n->as_LoadVector()->memory_size() == 8);
5468   match(Set dst (LoadVector mem));
5469   ins_cost(MEMORY_REF_COST);
5470 
5471   format %{ "LD      $dst, $mem \t// load 8-byte Vector" %}
5472   size(4);
5473   ins_encode( enc_ld(dst, mem) );
5474   ins_pipe(pipe_class_memory);
5475 %}
5476 
5477 // Load Range, range = array length (=jint)
5478 instruct loadRange(iRegIdst dst, memory mem) %{
5479   match(Set dst (LoadRange mem));
5480   ins_cost(MEMORY_REF_COST);
5481 
5482   format %{ "LWZ     $dst, $mem \t// range" %}
5483   size(4);
5484   ins_encode( enc_lwz(dst, mem) );
5485   ins_pipe(pipe_class_memory);
5486 %}
5487 
5488 // Load Compressed Pointer
5489 instruct loadN(iRegNdst dst, memory mem) %{
5490   match(Set dst (LoadN mem));
5491   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5492   ins_cost(MEMORY_REF_COST);
5493 
5494   format %{ "LWZ     $dst, $mem \t// load compressed ptr" %}
5495   size(4);
5496   ins_encode( enc_lwz(dst, mem) );
5497   ins_pipe(pipe_class_memory);
5498 %}
5499 
5500 // Load Compressed Pointer acquire.
5501 instruct loadN_ac(iRegNdst dst, memory mem) %{
5502   match(Set dst (LoadN mem));
5503   ins_cost(3*MEMORY_REF_COST);
5504 
5505   format %{ "LWZ     $dst, $mem \t// load acquire compressed ptr\n\t"
5506             "TWI     $dst\n\t"
5507             "ISYNC" %}
5508   size(12);
5509   ins_encode( enc_lwz_ac(dst, mem) );
5510   ins_pipe(pipe_class_memory);
5511 %}
5512 
5513 // Load Compressed Pointer and decode it if narrow_oop_shift == 0.
5514 instruct loadN2P_unscaled(iRegPdst dst, memory mem) %{
5515   match(Set dst (DecodeN (LoadN mem)));
5516   predicate(_kids[0]->_leaf->as_Load()->is_unordered() && Universe::narrow_oop_shift() == 0);
5517   ins_cost(MEMORY_REF_COST);
5518 
5519   format %{ "LWZ     $dst, $mem \t// DecodeN (unscaled)" %}
5520   size(4);
5521   ins_encode( enc_lwz(dst, mem) );
5522   ins_pipe(pipe_class_memory);
5523 %}
5524 
5525 // Load Pointer
5526 instruct loadP(iRegPdst dst, memoryAlg4 mem) %{
5527   match(Set dst (LoadP mem));
5528   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5529   ins_cost(MEMORY_REF_COST);
5530 
5531   format %{ "LD      $dst, $mem \t// ptr" %}
5532   size(4);
5533   ins_encode( enc_ld(dst, mem) );
5534   ins_pipe(pipe_class_memory);
5535 %}
5536 
5537 // Load Pointer acquire.
5538 instruct loadP_ac(iRegPdst dst, memoryAlg4 mem) %{
5539   match(Set dst (LoadP mem));
5540   ins_cost(3*MEMORY_REF_COST);
5541 
5542   format %{ "LD      $dst, $mem \t// ptr acquire\n\t"
5543             "TWI     $dst\n\t"
5544             "ISYNC" %}
5545   size(12);
5546   ins_encode( enc_ld_ac(dst, mem) );
5547   ins_pipe(pipe_class_memory);
5548 %}
5549 
5550 // LoadP + CastP2L
5551 instruct loadP2X(iRegLdst dst, memoryAlg4 mem) %{
5552   match(Set dst (CastP2X (LoadP mem)));
5553   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
5554   ins_cost(MEMORY_REF_COST);
5555 
5556   format %{ "LD      $dst, $mem \t// ptr + p2x" %}
5557   size(4);
5558   ins_encode( enc_ld(dst, mem) );
5559   ins_pipe(pipe_class_memory);
5560 %}
5561 
5562 // Load compressed klass pointer.
5563 instruct loadNKlass(iRegNdst dst, memory mem) %{
5564   match(Set dst (LoadNKlass mem));
5565   ins_cost(MEMORY_REF_COST);
5566 
5567   format %{ "LWZ     $dst, $mem \t// compressed klass ptr" %}
5568   size(4);
5569   ins_encode( enc_lwz(dst, mem) );
5570   ins_pipe(pipe_class_memory);
5571 %}
5572 
5573 //// Load compressed klass and decode it if narrow_klass_shift == 0.
5574 //// TODO: will narrow_klass_shift ever be 0?
5575 //instruct decodeNKlass2Klass(iRegPdst dst, memory mem) %{
5576 //  match(Set dst (DecodeNKlass (LoadNKlass mem)));
5577 //  predicate(false /* TODO: PPC port Universe::narrow_klass_shift() == 0*);
5578 //  ins_cost(MEMORY_REF_COST);
5579 //
5580 //  format %{ "LWZ     $dst, $mem \t// DecodeNKlass (unscaled)" %}
5581 //  size(4);
5582 //  ins_encode( enc_lwz(dst, mem) );
5583 //  ins_pipe(pipe_class_memory);
5584 //%}
5585 
5586 // Load Klass Pointer
5587 instruct loadKlass(iRegPdst dst, memoryAlg4 mem) %{
5588   match(Set dst (LoadKlass mem));
5589   ins_cost(MEMORY_REF_COST);
5590 
5591   format %{ "LD      $dst, $mem \t// klass ptr" %}
5592   size(4);
5593   ins_encode( enc_ld(dst, mem) );
5594   ins_pipe(pipe_class_memory);
5595 %}
5596 
5597 // Load Float
5598 instruct loadF(regF dst, memory mem) %{
5599   match(Set dst (LoadF mem));
5600   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5601   ins_cost(MEMORY_REF_COST);
5602 
5603   format %{ "LFS     $dst, $mem" %}
5604   size(4);
5605   ins_encode %{
5606     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
5607     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5608     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5609   %}
5610   ins_pipe(pipe_class_memory);
5611 %}
5612 
5613 // Load Float acquire.
5614 instruct loadF_ac(regF dst, memory mem) %{
5615   match(Set dst (LoadF mem));
5616   ins_cost(3*MEMORY_REF_COST);
5617 
5618   format %{ "LFS     $dst, $mem \t// acquire\n\t"
5619             "FCMPU   cr0, $dst, $dst\n\t"
5620             "BNE     cr0, next\n"
5621             "next:\n\t"
5622             "ISYNC" %}
5623   size(16);
5624   ins_encode %{
5625     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5626     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5627     Label next;
5628     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5629     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
5630     __ bne(CCR0, next);
5631     __ bind(next);
5632     __ isync();
5633   %}
5634   ins_pipe(pipe_class_memory);
5635 %}
5636 
5637 // Load Double - aligned
5638 instruct loadD(regD dst, memory mem) %{
5639   match(Set dst (LoadD mem));
5640   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5641   ins_cost(MEMORY_REF_COST);
5642 
5643   format %{ "LFD     $dst, $mem" %}
5644   size(4);
5645   ins_encode( enc_lfd(dst, mem) );
5646   ins_pipe(pipe_class_memory);
5647 %}
5648 
5649 // Load Double - aligned acquire.
5650 instruct loadD_ac(regD dst, memory mem) %{
5651   match(Set dst (LoadD mem));
5652   ins_cost(3*MEMORY_REF_COST);
5653 
5654   format %{ "LFD     $dst, $mem \t// acquire\n\t"
5655             "FCMPU   cr0, $dst, $dst\n\t"
5656             "BNE     cr0, next\n"
5657             "next:\n\t"
5658             "ISYNC" %}
5659   size(16);
5660   ins_encode %{
5661     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5662     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5663     Label next;
5664     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5665     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
5666     __ bne(CCR0, next);
5667     __ bind(next);
5668     __ isync();
5669   %}
5670   ins_pipe(pipe_class_memory);
5671 %}
5672 
5673 // Load Double - UNaligned
5674 instruct loadD_unaligned(regD dst, memory mem) %{
5675   match(Set dst (LoadD_unaligned mem));
5676   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
5677   ins_cost(MEMORY_REF_COST);
5678 
5679   format %{ "LFD     $dst, $mem" %}
5680   size(4);
5681   ins_encode( enc_lfd(dst, mem) );
5682   ins_pipe(pipe_class_memory);
5683 %}
5684 
5685 //----------Constants--------------------------------------------------------
5686 
5687 // Load MachConstantTableBase: add hi offset to global toc.
5688 // TODO: Handle hidden register r29 in bundler!
5689 instruct loadToc_hi(iRegLdst dst) %{
5690   effect(DEF dst);
5691   ins_cost(DEFAULT_COST);
5692 
5693   format %{ "ADDIS   $dst, R29, DISP.hi \t// load TOC hi" %}
5694   size(4);
5695   ins_encode %{
5696     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5697     __ calculate_address_from_global_toc_hi16only($dst$$Register, __ method_toc());
5698   %}
5699   ins_pipe(pipe_class_default);
5700 %}
5701 
5702 // Load MachConstantTableBase: add lo offset to global toc.
5703 instruct loadToc_lo(iRegLdst dst, iRegLdst src) %{
5704   effect(DEF dst, USE src);
5705   ins_cost(DEFAULT_COST);
5706 
5707   format %{ "ADDI    $dst, $src, DISP.lo \t// load TOC lo" %}
5708   size(4);
5709   ins_encode %{
5710     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5711     __ calculate_address_from_global_toc_lo16only($dst$$Register, __ method_toc());
5712   %}
5713   ins_pipe(pipe_class_default);
5714 %}
5715 
5716 // Load 16-bit integer constant 0xssss????
5717 instruct loadConI16(iRegIdst dst, immI16 src) %{
5718   match(Set dst src);
5719 
5720   format %{ "LI      $dst, $src" %}
5721   size(4);
5722   ins_encode %{
5723     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5724     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
5725   %}
5726   ins_pipe(pipe_class_default);
5727 %}
5728 
5729 // Load integer constant 0x????0000
5730 instruct loadConIhi16(iRegIdst dst, immIhi16 src) %{
5731   match(Set dst src);
5732   ins_cost(DEFAULT_COST);
5733 
5734   format %{ "LIS     $dst, $src.hi" %}
5735   size(4);
5736   ins_encode %{
5737     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5738     // Lis sign extends 16-bit src then shifts it 16 bit to the left.
5739     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
5740   %}
5741   ins_pipe(pipe_class_default);
5742 %}
5743 
5744 // Part 2 of loading 32 bit constant: hi16 is is src1 (properly shifted
5745 // and sign extended), this adds the low 16 bits.
5746 instruct loadConI32_lo16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
5747   // no match-rule, false predicate
5748   effect(DEF dst, USE src1, USE src2);
5749   predicate(false);
5750 
5751   format %{ "ORI     $dst, $src1.hi, $src2.lo" %}
5752   size(4);
5753   ins_encode %{
5754     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5755     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
5756   %}
5757   ins_pipe(pipe_class_default);
5758 %}
5759 
5760 instruct loadConI_Ex(iRegIdst dst, immI src) %{
5761   match(Set dst src);
5762   ins_cost(DEFAULT_COST*2);
5763 
5764   expand %{
5765     // Would like to use $src$$constant.
5766     immI16 srcLo %{ _opnds[1]->constant() %}
5767     // srcHi can be 0000 if srcLo sign-extends to a negative number.
5768     immIhi16 srcHi %{ _opnds[1]->constant() %}
5769     iRegIdst tmpI;
5770     loadConIhi16(tmpI, srcHi);
5771     loadConI32_lo16(dst, tmpI, srcLo);
5772   %}
5773 %}
5774 
5775 // No constant pool entries required.
5776 instruct loadConL16(iRegLdst dst, immL16 src) %{
5777   match(Set dst src);
5778 
5779   format %{ "LI      $dst, $src \t// long" %}
5780   size(4);
5781   ins_encode %{
5782     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5783     __ li($dst$$Register, (int)((short) ($src$$constant & 0xFFFF)));
5784   %}
5785   ins_pipe(pipe_class_default);
5786 %}
5787 
5788 // Load long constant 0xssssssss????0000
5789 instruct loadConL32hi16(iRegLdst dst, immL32hi16 src) %{
5790   match(Set dst src);
5791   ins_cost(DEFAULT_COST);
5792 
5793   format %{ "LIS     $dst, $src.hi \t// long" %}
5794   size(4);
5795   ins_encode %{
5796     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5797     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
5798   %}
5799   ins_pipe(pipe_class_default);
5800 %}
5801 
5802 // To load a 32 bit constant: merge lower 16 bits into already loaded
5803 // high 16 bits.
5804 instruct loadConL32_lo16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
5805   // no match-rule, false predicate
5806   effect(DEF dst, USE src1, USE src2);
5807   predicate(false);
5808 
5809   format %{ "ORI     $dst, $src1, $src2.lo" %}
5810   size(4);
5811   ins_encode %{
5812     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5813     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
5814   %}
5815   ins_pipe(pipe_class_default);
5816 %}
5817 
5818 // Load 32-bit long constant
5819 instruct loadConL32_Ex(iRegLdst dst, immL32 src) %{
5820   match(Set dst src);
5821   ins_cost(DEFAULT_COST*2);
5822 
5823   expand %{
5824     // Would like to use $src$$constant.
5825     immL16     srcLo %{ _opnds[1]->constant() /*& 0x0000FFFFL */%}
5826     // srcHi can be 0000 if srcLo sign-extends to a negative number.
5827     immL32hi16 srcHi %{ _opnds[1]->constant() /*& 0xFFFF0000L */%}
5828     iRegLdst tmpL;
5829     loadConL32hi16(tmpL, srcHi);
5830     loadConL32_lo16(dst, tmpL, srcLo);
5831   %}
5832 %}
5833 
5834 // Load long constant 0x????000000000000.
5835 instruct loadConLhighest16_Ex(iRegLdst dst, immLhighest16 src) %{
5836   match(Set dst src);
5837   ins_cost(DEFAULT_COST);
5838 
5839   expand %{
5840     immL32hi16 srcHi %{ _opnds[1]->constant() >> 32 /*& 0xFFFF0000L */%}
5841     immI shift32 %{ 32 %}
5842     iRegLdst tmpL;
5843     loadConL32hi16(tmpL, srcHi);
5844     lshiftL_regL_immI(dst, tmpL, shift32);
5845   %}
5846 %}
5847 
5848 // Expand node for constant pool load: small offset.
5849 instruct loadConL(iRegLdst dst, immL src, iRegLdst toc) %{
5850   effect(DEF dst, USE src, USE toc);
5851   ins_cost(MEMORY_REF_COST);
5852 
5853   ins_num_consts(1);
5854   // Needed so that CallDynamicJavaDirect can compute the address of this
5855   // instruction for relocation.
5856   ins_field_cbuf_insts_offset(int);
5857 
5858   format %{ "LD      $dst, offset, $toc \t// load long $src from TOC" %}
5859   size(4);
5860   ins_encode( enc_load_long_constL(dst, src, toc) );
5861   ins_pipe(pipe_class_memory);
5862 %}
5863 
5864 // Expand node for constant pool load: large offset.
5865 instruct loadConL_hi(iRegLdst dst, immL src, iRegLdst toc) %{
5866   effect(DEF dst, USE src, USE toc);
5867   predicate(false);
5868 
5869   ins_num_consts(1);
5870   ins_field_const_toc_offset(int);
5871   // Needed so that CallDynamicJavaDirect can compute the address of this
5872   // instruction for relocation.
5873   ins_field_cbuf_insts_offset(int);
5874 
5875   format %{ "ADDIS   $dst, $toc, offset \t// load long $src from TOC (hi)" %}
5876   size(4);
5877   ins_encode( enc_load_long_constL_hi(dst, toc, src) );
5878   ins_pipe(pipe_class_default);
5879 %}
5880 
5881 // Expand node for constant pool load: large offset.
5882 // No constant pool entries required.
5883 instruct loadConL_lo(iRegLdst dst, immL src, iRegLdst base) %{
5884   effect(DEF dst, USE src, USE base);
5885   predicate(false);
5886 
5887   ins_field_const_toc_offset_hi_node(loadConL_hiNode*);
5888 
5889   format %{ "LD      $dst, offset, $base \t// load long $src from TOC (lo)" %}
5890   size(4);
5891   ins_encode %{
5892     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
5893     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
5894     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
5895   %}
5896   ins_pipe(pipe_class_memory);
5897 %}
5898 
5899 // Load long constant from constant table. Expand in case of
5900 // offset > 16 bit is needed.
5901 // Adlc adds toc node MachConstantTableBase.
5902 instruct loadConL_Ex(iRegLdst dst, immL src) %{
5903   match(Set dst src);
5904   ins_cost(MEMORY_REF_COST);
5905 
5906   format %{ "LD      $dst, offset, $constanttablebase\t// load long $src from table, postalloc expanded" %}
5907   // We can not inline the enc_class for the expand as that does not support constanttablebase.
5908   postalloc_expand( postalloc_expand_load_long_constant(dst, src, constanttablebase) );
5909 %}
5910 
5911 // Load NULL as compressed oop.
5912 instruct loadConN0(iRegNdst dst, immN_0 src) %{
5913   match(Set dst src);
5914   ins_cost(DEFAULT_COST);
5915 
5916   format %{ "LI      $dst, $src \t// compressed ptr" %}
5917   size(4);
5918   ins_encode %{
5919     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5920     __ li($dst$$Register, 0);
5921   %}
5922   ins_pipe(pipe_class_default);
5923 %}
5924 
5925 // Load hi part of compressed oop constant.
5926 instruct loadConN_hi(iRegNdst dst, immN src) %{
5927   effect(DEF dst, USE src);
5928   ins_cost(DEFAULT_COST);
5929 
5930   format %{ "LIS     $dst, $src \t// narrow oop hi" %}
5931   size(4);
5932   ins_encode %{
5933     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5934     __ lis($dst$$Register, (int)(short)(($src$$constant >> 16) & 0xffff));
5935   %}
5936   ins_pipe(pipe_class_default);
5937 %}
5938 
5939 // Add lo part of compressed oop constant to already loaded hi part.
5940 instruct loadConN_lo(iRegNdst dst, iRegNsrc src1, immN src2) %{
5941   effect(DEF dst, USE src1, USE src2);
5942   ins_cost(DEFAULT_COST);
5943 
5944   format %{ "ORI     $dst, $src1, $src2 \t// narrow oop lo" %}
5945   size(4);
5946   ins_encode %{
5947     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5948     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
5949     int oop_index = __ oop_recorder()->find_index((jobject)$src2$$constant);
5950     RelocationHolder rspec = oop_Relocation::spec(oop_index);
5951     __ relocate(rspec, 1);
5952     __ ori($dst$$Register, $src1$$Register, $src2$$constant & 0xffff);
5953   %}
5954   ins_pipe(pipe_class_default);
5955 %}
5956 
5957 // Needed to postalloc expand loadConN: ConN is loaded as ConI
5958 // leaving the upper 32 bits with sign-extension bits.
5959 // This clears these bits: dst = src & 0xFFFFFFFF.
5960 // TODO: Eventually call this maskN_regN_FFFFFFFF.
5961 instruct clearMs32b(iRegNdst dst, iRegNsrc src) %{
5962   effect(DEF dst, USE src);
5963   predicate(false);
5964 
5965   format %{ "MASK    $dst, $src, 0xFFFFFFFF" %} // mask
5966   size(4);
5967   ins_encode %{
5968     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
5969     __ clrldi($dst$$Register, $src$$Register, 0x20);
5970   %}
5971   ins_pipe(pipe_class_default);
5972 %}
5973 
5974 // Loading ConN must be postalloc expanded so that edges between
5975 // the nodes are safe. They may not interfere with a safepoint.
5976 // GL TODO: This needs three instructions: better put this into the constant pool.
5977 instruct loadConN_Ex(iRegNdst dst, immN src) %{
5978   match(Set dst src);
5979   ins_cost(DEFAULT_COST*2);
5980 
5981   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
5982   postalloc_expand %{
5983     MachNode *m1 = new (C) loadConN_hiNode();
5984     MachNode *m2 = new (C) loadConN_loNode();
5985     MachNode *m3 = new (C) clearMs32bNode();
5986     m1->add_req(NULL);
5987     m2->add_req(NULL, m1);
5988     m3->add_req(NULL, m2);
5989     m1->_opnds[0] = op_dst;
5990     m1->_opnds[1] = op_src;
5991     m2->_opnds[0] = op_dst;
5992     m2->_opnds[1] = op_dst;
5993     m2->_opnds[2] = op_src;
5994     m3->_opnds[0] = op_dst;
5995     m3->_opnds[1] = op_dst;
5996     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
5997     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
5998     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
5999     nodes->push(m1);
6000     nodes->push(m2);
6001     nodes->push(m3);
6002   %}
6003 %}
6004 
6005 instruct loadConNKlass_hi(iRegNdst dst, immNKlass src) %{
6006   effect(DEF dst, USE src);
6007   ins_cost(DEFAULT_COST);
6008 
6009   format %{ "LIS     $dst, $src \t// narrow oop hi" %}
6010   size(4);
6011   ins_encode %{
6012     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
6013     intptr_t Csrc = Klass::encode_klass((Klass *)$src$$constant);
6014     __ lis($dst$$Register, (int)(short)((Csrc >> 16) & 0xffff));
6015   %}
6016   ins_pipe(pipe_class_default);
6017 %}
6018 
6019 // This needs a match rule so that build_oop_map knows this is 
6020 // not a narrow oop.
6021 instruct loadConNKlass_lo(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
6022   match(Set dst src1);
6023   effect(TEMP src2);
6024   ins_cost(DEFAULT_COST);
6025 
6026   format %{ "ADDI    $dst, $src1, $src2 \t// narrow oop lo" %}
6027   size(4);
6028   ins_encode %{
6029     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
6030     intptr_t Csrc = Klass::encode_klass((Klass *)$src1$$constant);
6031     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
6032     int klass_index = __ oop_recorder()->find_index((Klass *)$src1$$constant);
6033     RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6034 
6035     __ relocate(rspec, 1);
6036     __ ori($dst$$Register, $src2$$Register, Csrc & 0xffff);
6037   %}
6038   ins_pipe(pipe_class_default);
6039 %}
6040 
6041 // Loading ConNKlass must be postalloc expanded so that edges between
6042 // the nodes are safe. They may not interfere with a safepoint.
6043 instruct loadConNKlass_Ex(iRegNdst dst, immNKlass src) %{
6044   match(Set dst src);
6045   ins_cost(DEFAULT_COST*2);
6046 
6047   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
6048   postalloc_expand %{
6049     // Load high bits into register. Sign extended.
6050     MachNode *m1 = new (C) loadConNKlass_hiNode();
6051     m1->add_req(NULL);
6052     m1->_opnds[0] = op_dst;
6053     m1->_opnds[1] = op_src;
6054     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6055     nodes->push(m1);
6056 
6057     MachNode *m2 = m1;
6058     if (!Assembler::is_uimm((jlong)Klass::encode_klass((Klass *)op_src->constant()), 31)) {
6059       // Value might be 1-extended. Mask out these bits.
6060       m2 = new (C) clearMs32bNode();
6061       m2->add_req(NULL, m1);
6062       m2->_opnds[0] = op_dst;
6063       m2->_opnds[1] = op_dst;
6064       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6065       nodes->push(m2);
6066     }
6067 
6068     MachNode *m3 = new (C) loadConNKlass_loNode();
6069     m3->add_req(NULL, m2);
6070     m3->_opnds[0] = op_dst;
6071     m3->_opnds[1] = op_src;
6072     m3->_opnds[2] = op_dst;
6073     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6074     nodes->push(m3);
6075   %}
6076 %}
6077 
6078 // 0x1 is used in object initialization (initial object header).
6079 // No constant pool entries required.
6080 instruct loadConP0or1(iRegPdst dst, immP_0or1 src) %{
6081   match(Set dst src);
6082 
6083   format %{ "LI      $dst, $src \t// ptr" %}
6084   size(4);
6085   ins_encode %{
6086     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
6087     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
6088   %}
6089   ins_pipe(pipe_class_default);
6090 %}
6091 
6092 // Expand node for constant pool load: small offset.
6093 // The match rule is needed to generate the correct bottom_type(),
6094 // however this node should never match. The use of predicate is not
6095 // possible since ADLC forbids predicates for chain rules. The higher
6096 // costs do not prevent matching in this case. For that reason the
6097 // operand immP_NM with predicate(false) is used.
6098 instruct loadConP(iRegPdst dst, immP_NM src, iRegLdst toc) %{
6099   match(Set dst src);
6100   effect(TEMP toc);
6101 
6102   ins_num_consts(1);
6103 
6104   format %{ "LD      $dst, offset, $toc \t// load ptr $src from TOC" %}
6105   size(4);
6106   ins_encode( enc_load_long_constP(dst, src, toc) );
6107   ins_pipe(pipe_class_memory);
6108 %}
6109 
6110 // Expand node for constant pool load: large offset.
6111 instruct loadConP_hi(iRegPdst dst, immP_NM src, iRegLdst toc) %{
6112   effect(DEF dst, USE src, USE toc);
6113   predicate(false);
6114 
6115   ins_num_consts(1);
6116   ins_field_const_toc_offset(int);
6117 
6118   format %{ "ADDIS   $dst, $toc, offset \t// load ptr $src from TOC (hi)" %}
6119   size(4);
6120   ins_encode( enc_load_long_constP_hi(dst, src, toc) );
6121   ins_pipe(pipe_class_default);
6122 %}
6123 
6124 // Expand node for constant pool load: large offset.
6125 instruct loadConP_lo(iRegPdst dst, immP_NM src, iRegLdst base) %{
6126   match(Set dst src);
6127   effect(TEMP base);
6128 
6129   ins_field_const_toc_offset_hi_node(loadConP_hiNode*);
6130 
6131   format %{ "LD      $dst, offset, $base \t// load ptr $src from TOC (lo)" %}
6132   size(4);
6133   ins_encode %{
6134     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
6135     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
6136     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
6137   %}
6138   ins_pipe(pipe_class_memory);
6139 %}
6140 
6141 // Load pointer constant from constant table. Expand in case an
6142 // offset > 16 bit is needed.
6143 // Adlc adds toc node MachConstantTableBase.
6144 instruct loadConP_Ex(iRegPdst dst, immP src) %{
6145   match(Set dst src);
6146   ins_cost(MEMORY_REF_COST);
6147 
6148   // This rule does not use "expand" because then
6149   // the result type is not known to be an Oop.  An ADLC
6150   // enhancement will be needed to make that work - not worth it!
6151 
6152   // If this instruction rematerializes, it prolongs the live range
6153   // of the toc node, causing illegal graphs.
6154   // assert(edge_from_to(_reg_node[reg_lo],def)) fails in verify_good_schedule().
6155   ins_cannot_rematerialize(true);
6156 
6157   format %{ "LD    $dst, offset, $constanttablebase \t//  load ptr $src from table, postalloc expanded" %}
6158   postalloc_expand( postalloc_expand_load_ptr_constant(dst, src, constanttablebase) );
6159 %}
6160 
6161 // Expand node for constant pool load: small offset.
6162 instruct loadConF(regF dst, immF src, iRegLdst toc) %{
6163   effect(DEF dst, USE src, USE toc);
6164   ins_cost(MEMORY_REF_COST);
6165 
6166   ins_num_consts(1);
6167 
6168   format %{ "LFS     $dst, offset, $toc \t// load float $src from TOC" %}
6169   size(4);
6170   ins_encode %{
6171     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
6172     address float_address = __ float_constant($src$$constant);
6173     __ lfs($dst$$FloatRegister, __ offset_to_method_toc(float_address), $toc$$Register);
6174   %}
6175   ins_pipe(pipe_class_memory);
6176 %}
6177 
6178 // Expand node for constant pool load: large offset.
6179 instruct loadConFComp(regF dst, immF src, iRegLdst toc) %{
6180   effect(DEF dst, USE src, USE toc);
6181   ins_cost(MEMORY_REF_COST);
6182 
6183   ins_num_consts(1);
6184 
6185   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
6186             "LFS     $dst, offset_lo, $toc \t// load float $src from TOC (hi/lo)\n\t"
6187             "ADDIS   $toc, $toc, -offset_hi"%}
6188   size(12);
6189   ins_encode %{
6190     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6191     FloatRegister Rdst    = $dst$$FloatRegister;
6192     Register Rtoc         = $toc$$Register;
6193     address float_address = __ float_constant($src$$constant);
6194     int offset            = __ offset_to_method_toc(float_address);
6195     int hi = (offset + (1<<15))>>16;
6196     int lo = offset - hi * (1<<16);
6197 
6198     __ addis(Rtoc, Rtoc, hi);
6199     __ lfs(Rdst, lo, Rtoc);
6200     __ addis(Rtoc, Rtoc, -hi);
6201   %}
6202   ins_pipe(pipe_class_memory);
6203 %}
6204 
6205 // Adlc adds toc node MachConstantTableBase.
6206 instruct loadConF_Ex(regF dst, immF src) %{
6207   match(Set dst src);
6208   ins_cost(MEMORY_REF_COST);
6209 
6210   // See loadConP.
6211   ins_cannot_rematerialize(true);
6212 
6213   format %{ "LFS     $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
6214   postalloc_expand( postalloc_expand_load_float_constant(dst, src, constanttablebase) );
6215 %}
6216 
6217 // Expand node for constant pool load: small offset.
6218 instruct loadConD(regD dst, immD src, iRegLdst toc) %{
6219   effect(DEF dst, USE src, USE toc);
6220   ins_cost(MEMORY_REF_COST);
6221 
6222   ins_num_consts(1);
6223 
6224   format %{ "LFD     $dst, offset, $toc \t// load double $src from TOC" %}
6225   size(4);
6226   ins_encode %{
6227     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
6228     int offset =  __ offset_to_method_toc(__ double_constant($src$$constant));
6229     __ lfd($dst$$FloatRegister, offset, $toc$$Register);
6230   %}
6231   ins_pipe(pipe_class_memory);
6232 %}
6233 
6234 // Expand node for constant pool load: large offset.
6235 instruct loadConDComp(regD dst, immD src, iRegLdst toc) %{
6236   effect(DEF dst, USE src, USE toc);
6237   ins_cost(MEMORY_REF_COST);
6238 
6239   ins_num_consts(1);
6240 
6241   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
6242             "LFD     $dst, offset_lo, $toc \t// load double $src from TOC (hi/lo)\n\t"
6243             "ADDIS   $toc, $toc, -offset_hi" %}
6244   size(12);
6245   ins_encode %{
6246     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6247     FloatRegister Rdst    = $dst$$FloatRegister;
6248     Register      Rtoc    = $toc$$Register;
6249     address float_address = __ double_constant($src$$constant);
6250     int offset            = __ offset_to_method_toc(float_address);
6251     int hi = (offset + (1<<15))>>16;
6252     int lo = offset - hi * (1<<16);
6253 
6254     __ addis(Rtoc, Rtoc, hi);
6255     __ lfd(Rdst, lo, Rtoc);
6256     __ addis(Rtoc, Rtoc, -hi);
6257   %}
6258   ins_pipe(pipe_class_memory);
6259 %}
6260 
6261 // Adlc adds toc node MachConstantTableBase.
6262 instruct loadConD_Ex(regD dst, immD src) %{
6263   match(Set dst src);
6264   ins_cost(MEMORY_REF_COST);
6265 
6266   // See loadConP.
6267   ins_cannot_rematerialize(true);
6268 
6269   format %{ "ConD    $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
6270   postalloc_expand( postalloc_expand_load_double_constant(dst, src, constanttablebase) );
6271 %}
6272 
6273 // Prefetch instructions.
6274 // Must be safe to execute with invalid address (cannot fault).
6275 
6276 instruct prefetchr(indirectMemory mem, iRegLsrc src) %{
6277   match(PrefetchRead (AddP mem src));
6278   ins_cost(MEMORY_REF_COST);
6279 
6280   format %{ "PREFETCH $mem, 0, $src \t// Prefetch read-many" %}
6281   size(4);
6282   ins_encode %{
6283     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
6284     __ dcbt($src$$Register, $mem$$base$$Register);
6285   %}
6286   ins_pipe(pipe_class_memory);
6287 %}
6288 
6289 instruct prefetchr_no_offset(indirectMemory mem) %{
6290   match(PrefetchRead mem);
6291   ins_cost(MEMORY_REF_COST);
6292 
6293   format %{ "PREFETCH $mem" %}
6294   size(4);
6295   ins_encode %{
6296     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
6297     __ dcbt($mem$$base$$Register);
6298   %}
6299   ins_pipe(pipe_class_memory);
6300 %}
6301 
6302 instruct prefetchw(indirectMemory mem, iRegLsrc src) %{
6303   match(PrefetchWrite (AddP mem src));
6304   ins_cost(MEMORY_REF_COST);
6305 
6306   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many (and read)" %}
6307   size(4);
6308   ins_encode %{
6309     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6310     __ dcbtst($src$$Register, $mem$$base$$Register);
6311   %}
6312   ins_pipe(pipe_class_memory);
6313 %}
6314 
6315 instruct prefetchw_no_offset(indirectMemory mem) %{
6316   match(PrefetchWrite mem);
6317   ins_cost(MEMORY_REF_COST);
6318 
6319   format %{ "PREFETCH $mem" %}
6320   size(4);
6321   ins_encode %{
6322     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6323     __ dcbtst($mem$$base$$Register);
6324   %}
6325   ins_pipe(pipe_class_memory);
6326 %}
6327 
6328 // Special prefetch versions which use the dcbz instruction.
6329 instruct prefetch_alloc_zero(indirectMemory mem, iRegLsrc src) %{
6330   match(PrefetchAllocation (AddP mem src));
6331   predicate(AllocatePrefetchStyle == 3);
6332   ins_cost(MEMORY_REF_COST);
6333 
6334   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many with zero" %}
6335   size(4);
6336   ins_encode %{
6337     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6338     __ dcbz($src$$Register, $mem$$base$$Register);
6339   %}
6340   ins_pipe(pipe_class_memory);
6341 %}
6342 
6343 instruct prefetch_alloc_zero_no_offset(indirectMemory mem) %{
6344   match(PrefetchAllocation mem);
6345   predicate(AllocatePrefetchStyle == 3);
6346   ins_cost(MEMORY_REF_COST);
6347 
6348   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many with zero" %}
6349   size(4);
6350   ins_encode %{
6351     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6352     __ dcbz($mem$$base$$Register);
6353   %}
6354   ins_pipe(pipe_class_memory);
6355 %}
6356 
6357 instruct prefetch_alloc(indirectMemory mem, iRegLsrc src) %{
6358   match(PrefetchAllocation (AddP mem src));
6359   predicate(AllocatePrefetchStyle != 3);
6360   ins_cost(MEMORY_REF_COST);
6361 
6362   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many" %}
6363   size(4);
6364   ins_encode %{
6365     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6366     __ dcbtst($src$$Register, $mem$$base$$Register);
6367   %}
6368   ins_pipe(pipe_class_memory);
6369 %}
6370 
6371 instruct prefetch_alloc_no_offset(indirectMemory mem) %{
6372   match(PrefetchAllocation mem);
6373   predicate(AllocatePrefetchStyle != 3);
6374   ins_cost(MEMORY_REF_COST);
6375 
6376   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many" %}
6377   size(4);
6378   ins_encode %{
6379     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6380     __ dcbtst($mem$$base$$Register);
6381   %}
6382   ins_pipe(pipe_class_memory);
6383 %}
6384 
6385 //----------Store Instructions-------------------------------------------------
6386 
6387 // Store Byte
6388 instruct storeB(memory mem, iRegIsrc src) %{
6389   match(Set mem (StoreB mem src));
6390   ins_cost(MEMORY_REF_COST);
6391 
6392   format %{ "STB     $src, $mem \t// byte" %}
6393   size(4);
6394   ins_encode %{
6395     // TODO: PPC port $archOpcode(ppc64Opcode_stb);
6396     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
6397     __ stb($src$$Register, Idisp, $mem$$base$$Register);
6398   %}
6399   ins_pipe(pipe_class_memory);
6400 %}
6401 
6402 // Store Char/Short
6403 instruct storeC(memory mem, iRegIsrc src) %{
6404   match(Set mem (StoreC mem src));
6405   ins_cost(MEMORY_REF_COST);
6406 
6407   format %{ "STH     $src, $mem \t// short" %}
6408   size(4);
6409   ins_encode %{
6410     // TODO: PPC port $archOpcode(ppc64Opcode_sth);
6411     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
6412     __ sth($src$$Register, Idisp, $mem$$base$$Register);
6413   %}
6414   ins_pipe(pipe_class_memory);
6415 %}
6416 
6417 // Store Integer
6418 instruct storeI(memory mem, iRegIsrc src) %{
6419   match(Set mem (StoreI mem src));
6420   ins_cost(MEMORY_REF_COST);
6421 
6422   format %{ "STW     $src, $mem" %}
6423   size(4);
6424   ins_encode( enc_stw(src, mem) );
6425   ins_pipe(pipe_class_memory);
6426 %}
6427 
6428 // ConvL2I + StoreI.
6429 instruct storeI_convL2I(memory mem, iRegLsrc src) %{
6430   match(Set mem (StoreI mem (ConvL2I src)));
6431   ins_cost(MEMORY_REF_COST);
6432 
6433   format %{ "STW     l2i($src), $mem" %}
6434   size(4);
6435   ins_encode( enc_stw(src, mem) );
6436   ins_pipe(pipe_class_memory);
6437 %}
6438 
6439 // Store Long
6440 instruct storeL(memoryAlg4 mem, iRegLsrc src) %{
6441   match(Set mem (StoreL mem src));
6442   ins_cost(MEMORY_REF_COST);
6443 
6444   format %{ "STD     $src, $mem \t// long" %}
6445   size(4);
6446   ins_encode( enc_std(src, mem) );
6447   ins_pipe(pipe_class_memory);
6448 %}
6449 
6450 // Store super word nodes.
6451 
6452 // Store Aligned Packed Byte long register to memory
6453 instruct storeA8B(memoryAlg4 mem, iRegLsrc src) %{
6454   predicate(n->as_StoreVector()->memory_size() == 8);
6455   match(Set mem (StoreVector mem src));
6456   ins_cost(MEMORY_REF_COST);
6457 
6458   format %{ "STD     $mem, $src \t// packed8B" %}
6459   size(4);
6460   ins_encode( enc_std(src, mem) );
6461   ins_pipe(pipe_class_memory);
6462 %}
6463 
6464 // Store Compressed Oop
6465 instruct storeN(memory dst, iRegN_P2N src) %{
6466   match(Set dst (StoreN dst src));
6467   ins_cost(MEMORY_REF_COST);
6468 
6469   format %{ "STW     $src, $dst \t// compressed oop" %}
6470   size(4);
6471   ins_encode( enc_stw(src, dst) );
6472   ins_pipe(pipe_class_memory);
6473 %}
6474 
6475 // Store Compressed KLass
6476 instruct storeNKlass(memory dst, iRegN_P2N src) %{
6477   match(Set dst (StoreNKlass dst src));
6478   ins_cost(MEMORY_REF_COST);
6479 
6480   format %{ "STW     $src, $dst \t// compressed klass" %}
6481   size(4);
6482   ins_encode( enc_stw(src, dst) );
6483   ins_pipe(pipe_class_memory);
6484 %}
6485 
6486 // Store Pointer
6487 instruct storeP(memoryAlg4 dst, iRegPsrc src) %{
6488   match(Set dst (StoreP dst src));
6489   ins_cost(MEMORY_REF_COST);
6490 
6491   format %{ "STD     $src, $dst \t// ptr" %}
6492   size(4);
6493   ins_encode( enc_std(src, dst) );
6494   ins_pipe(pipe_class_memory);
6495 %}
6496 
6497 // Store Float
6498 instruct storeF(memory mem, regF src) %{
6499   match(Set mem (StoreF mem src));
6500   ins_cost(MEMORY_REF_COST);
6501 
6502   format %{ "STFS    $src, $mem" %}
6503   size(4);
6504   ins_encode( enc_stfs(src, mem) );
6505   ins_pipe(pipe_class_memory);
6506 %}
6507 
6508 // Store Double
6509 instruct storeD(memory mem, regD src) %{
6510   match(Set mem (StoreD mem src));
6511   ins_cost(MEMORY_REF_COST);
6512 
6513   format %{ "STFD    $src, $mem" %}
6514   size(4);
6515   ins_encode( enc_stfd(src, mem) );
6516   ins_pipe(pipe_class_memory);
6517 %}
6518 
6519 //----------Store Instructions With Zeros--------------------------------------
6520 
6521 // Card-mark for CMS garbage collection.
6522 // This cardmark does an optimization so that it must not always
6523 // do a releasing store. For this, it gets the address of
6524 // CMSCollectorCardTableModRefBSExt::_requires_release as input.
6525 // (Using releaseFieldAddr in the match rule is a hack.)
6526 instruct storeCM_CMS(memory mem, iRegLdst releaseFieldAddr) %{
6527   match(Set mem (StoreCM mem releaseFieldAddr));
6528   predicate(false);
6529   ins_cost(MEMORY_REF_COST);
6530 
6531   // See loadConP.
6532   ins_cannot_rematerialize(true);
6533 
6534   format %{ "STB     #0, $mem \t// CMS card-mark byte (must be 0!), checking requires_release in [$releaseFieldAddr]" %}
6535   ins_encode( enc_cms_card_mark(mem, releaseFieldAddr) );
6536   ins_pipe(pipe_class_memory);
6537 %}
6538 
6539 // Card-mark for CMS garbage collection.
6540 // This cardmark does an optimization so that it must not always
6541 // do a releasing store. For this, it needs the constant address of
6542 // CMSCollectorCardTableModRefBSExt::_requires_release.
6543 // This constant address is split off here by expand so we can use
6544 // adlc / matcher functionality to load it from the constant section.
6545 instruct storeCM_CMS_ExEx(memory mem, immI_0 zero) %{
6546   match(Set mem (StoreCM mem zero));
6547   predicate(UseConcMarkSweepGC);
6548 
6549   expand %{
6550     immL baseImm %{ 0 /* TODO: PPC port (jlong)CMSCollectorCardTableModRefBSExt::requires_release_address() */ %}
6551     iRegLdst releaseFieldAddress;
6552     loadConL_Ex(releaseFieldAddress, baseImm);
6553     storeCM_CMS(mem, releaseFieldAddress);
6554   %}
6555 %}
6556 
6557 instruct storeCM_G1(memory mem, immI_0 zero) %{
6558   match(Set mem (StoreCM mem zero));
6559   predicate(UseG1GC);
6560   ins_cost(MEMORY_REF_COST);
6561 
6562   ins_cannot_rematerialize(true);
6563 
6564   format %{ "STB     #0, $mem \t// CMS card-mark byte store (G1)" %}
6565   size(8);
6566   ins_encode %{
6567     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6568     __ li(R0, 0);
6569     //__ release(); // G1: oops are allowed to get visible after dirty marking
6570     guarantee($mem$$base$$Register != R1_SP, "use frame_slots_bias");
6571     __ stb(R0, $mem$$disp, $mem$$base$$Register);
6572   %}
6573   ins_pipe(pipe_class_memory);
6574 %}
6575 
6576 // Convert oop pointer into compressed form.
6577 
6578 // Nodes for postalloc expand.
6579 
6580 // Shift node for expand.
6581 instruct encodeP_shift(iRegNdst dst, iRegNsrc src) %{
6582   // The match rule is needed to make it a 'MachTypeNode'!
6583   match(Set dst (EncodeP src));
6584   predicate(false);
6585 
6586   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
6587   size(4);
6588   ins_encode %{
6589     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6590     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
6591   %}
6592   ins_pipe(pipe_class_default);
6593 %}
6594 
6595 // Add node for expand.
6596 instruct encodeP_sub(iRegPdst dst, iRegPdst src) %{
6597   // The match rule is needed to make it a 'MachTypeNode'!
6598   match(Set dst (EncodeP src));
6599   predicate(false);
6600 
6601   format %{ "SUB     $dst, $src, oop_base \t// encode" %}
6602   size(4);
6603   ins_encode %{
6604     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
6605     __ subf($dst$$Register, R30, $src$$Register);
6606   %}
6607   ins_pipe(pipe_class_default);
6608 %}
6609 
6610 // Conditional sub base.
6611 instruct cond_sub_base(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
6612   // The match rule is needed to make it a 'MachTypeNode'!
6613   match(Set dst (EncodeP (Binary crx src1)));
6614   predicate(false);
6615 
6616   ins_variable_size_depending_on_alignment(true);
6617 
6618   format %{ "BEQ     $crx, done\n\t"
6619             "SUB     $dst, $src1, R30 \t// encode: subtract base if != NULL\n"
6620             "done:" %}
6621   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
6622   ins_encode %{
6623     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
6624     Label done;
6625     __ beq($crx$$CondRegister, done);
6626     __ subf($dst$$Register, R30, $src1$$Register);
6627     // TODO PPC port __ endgroup_if_needed(_size == 12);
6628     __ bind(done);
6629   %}
6630   ins_pipe(pipe_class_default);
6631 %}
6632 
6633 // Power 7 can use isel instruction
6634 instruct cond_set_0_oop(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
6635   // The match rule is needed to make it a 'MachTypeNode'!
6636   match(Set dst (EncodeP (Binary crx src1)));
6637   predicate(false);
6638 
6639   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// encode: preserve 0" %}
6640   size(4);
6641   ins_encode %{
6642     // This is a Power7 instruction for which no machine description exists.
6643     // TODO: PPC port $archOpcode(ppc64Opcode_compound); 
6644     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
6645   %}
6646   ins_pipe(pipe_class_default);
6647 %}
6648 
6649 // base != 0
6650 // 32G aligned narrow oop base.
6651 instruct encodeP_32GAligned(iRegNdst dst, iRegPsrc src) %{
6652   match(Set dst (EncodeP src));
6653   predicate(false /* TODO: PPC port Universe::narrow_oop_base_disjoint()*/);
6654 
6655   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
6656   size(4);
6657   ins_encode %{
6658     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6659     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
6660   %}
6661   ins_pipe(pipe_class_default);
6662 %}
6663 
6664 // shift != 0, base != 0
6665 instruct encodeP_Ex(iRegNdst dst, flagsReg crx, iRegPsrc src) %{
6666   match(Set dst (EncodeP src));
6667   effect(TEMP crx);
6668   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull &&
6669             Universe::narrow_oop_shift() != 0 &&
6670             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
6671 
6672   format %{ "EncodeP $dst, $crx, $src \t// postalloc expanded" %}
6673   postalloc_expand( postalloc_expand_encode_oop(dst, src, crx));
6674 %}
6675 
6676 // shift != 0, base != 0
6677 instruct encodeP_not_null_Ex(iRegNdst dst, iRegPsrc src) %{
6678   match(Set dst (EncodeP src));
6679   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull &&
6680             Universe::narrow_oop_shift() != 0 &&
6681             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
6682 
6683   format %{ "EncodeP $dst, $src\t// $src != Null, postalloc expanded" %}
6684   postalloc_expand( postalloc_expand_encode_oop_not_null(dst, src) );
6685 %}
6686 
6687 // shift != 0, base == 0
6688 // TODO: This is the same as encodeP_shift. Merge!
6689 instruct encodeP_not_null_base_null(iRegNdst dst, iRegPsrc src) %{
6690   match(Set dst (EncodeP src));
6691   predicate(Universe::narrow_oop_shift() != 0 &&
6692             Universe::narrow_oop_base() ==0);
6693 
6694   format %{ "SRDI    $dst, $src, #3 \t// encodeP, $src != NULL" %}
6695   size(4);
6696   ins_encode %{
6697     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6698     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
6699   %}
6700   ins_pipe(pipe_class_default);
6701 %}
6702 
6703 // Compressed OOPs with narrow_oop_shift == 0.
6704 // shift == 0, base == 0
6705 instruct encodeP_narrow_oop_shift_0(iRegNdst dst, iRegPsrc src) %{
6706   match(Set dst (EncodeP src));
6707   predicate(Universe::narrow_oop_shift() == 0);
6708 
6709   format %{ "MR      $dst, $src \t// Ptr->Narrow" %}
6710   // variable size, 0 or 4.
6711   ins_encode %{
6712     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6713     __ mr_if_needed($dst$$Register, $src$$Register);
6714   %}
6715   ins_pipe(pipe_class_default);
6716 %}
6717 
6718 // Decode nodes.
6719 
6720 // Shift node for expand.
6721 instruct decodeN_shift(iRegPdst dst, iRegPsrc src) %{
6722   // The match rule is needed to make it a 'MachTypeNode'!
6723   match(Set dst (DecodeN src));
6724   predicate(false);
6725 
6726   format %{ "SLDI    $dst, $src, #3 \t// DecodeN" %}
6727   size(4);
6728   ins_encode %{
6729     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
6730     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
6731   %}
6732   ins_pipe(pipe_class_default);
6733 %}
6734 
6735 // Add node for expand.
6736 instruct decodeN_add(iRegPdst dst, iRegPdst src) %{
6737   // The match rule is needed to make it a 'MachTypeNode'!
6738   match(Set dst (DecodeN src));
6739   predicate(false);
6740 
6741   format %{ "ADD     $dst, $src, R30 \t// DecodeN, add oop base" %}
6742   size(4);
6743   ins_encode %{
6744     // TODO: PPC port $archOpcode(ppc64Opcode_add);
6745     __ add($dst$$Register, $src$$Register, R30);
6746   %}
6747   ins_pipe(pipe_class_default);
6748 %}
6749 
6750 // conditianal add base for expand
6751 instruct cond_add_base(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
6752   // The match rule is needed to make it a 'MachTypeNode'!
6753   // NOTICE that the rule is nonsense - we just have to make sure that:
6754   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
6755   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
6756   match(Set dst (DecodeN (Binary crx src1)));
6757   predicate(false);
6758 
6759   ins_variable_size_depending_on_alignment(true);
6760 
6761   format %{ "BEQ     $crx, done\n\t"
6762             "ADD     $dst, $src1, R30 \t// DecodeN: add oop base if $src1 != NULL\n"
6763             "done:" %}
6764   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling()) */? 12 : 8);
6765   ins_encode %{
6766     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
6767     Label done;
6768     __ beq($crx$$CondRegister, done);
6769     __ add($dst$$Register, $src1$$Register, R30);
6770     // TODO PPC port  __ endgroup_if_needed(_size == 12);
6771     __ bind(done);
6772   %}
6773   ins_pipe(pipe_class_default);
6774 %}
6775 
6776 instruct cond_set_0_ptr(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
6777   // The match rule is needed to make it a 'MachTypeNode'!
6778   // NOTICE that the rule is nonsense - we just have to make sure that:
6779   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
6780   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
6781   match(Set dst (DecodeN (Binary crx src1)));
6782   predicate(false);
6783 
6784   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// decode: preserve 0" %}
6785   size(4);
6786   ins_encode %{
6787     // This is a Power7 instruction for which no machine description exists.
6788     // TODO: PPC port $archOpcode(ppc64Opcode_compound); 
6789     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
6790   %}
6791   ins_pipe(pipe_class_default);
6792 %}
6793 
6794 //  shift != 0, base != 0
6795 instruct decodeN_Ex(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
6796   match(Set dst (DecodeN src));
6797   predicate((n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6798              n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant) &&
6799             Universe::narrow_oop_shift() != 0 &&
6800             Universe::narrow_oop_base() != 0);
6801   effect(TEMP crx);
6802 
6803   format %{ "DecodeN $dst, $src \t// Kills $crx, postalloc expanded" %}
6804   postalloc_expand( postalloc_expand_decode_oop(dst, src, crx) );
6805 %}
6806 
6807 // shift != 0, base == 0
6808 instruct decodeN_nullBase(iRegPdst dst, iRegNsrc src) %{
6809   match(Set dst (DecodeN src));
6810   predicate(Universe::narrow_oop_shift() != 0 &&
6811             Universe::narrow_oop_base() == 0);
6812 
6813   format %{ "SLDI    $dst, $src, #3 \t// DecodeN (zerobased)" %}
6814   size(4);
6815   ins_encode %{
6816     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
6817     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
6818   %}
6819   ins_pipe(pipe_class_default);
6820 %}
6821 
6822 // src != 0, shift != 0, base != 0
6823 instruct decodeN_notNull_addBase_Ex(iRegPdst dst, iRegNsrc src) %{
6824   match(Set dst (DecodeN src));
6825   predicate((n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6826              n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
6827             Universe::narrow_oop_shift() != 0 &&
6828             Universe::narrow_oop_base() != 0);
6829 
6830   format %{ "DecodeN $dst, $src \t// $src != NULL, postalloc expanded" %}
6831   postalloc_expand( postalloc_expand_decode_oop_not_null(dst, src));
6832 %}
6833 
6834 // Compressed OOPs with narrow_oop_shift == 0.
6835 instruct decodeN_unscaled(iRegPdst dst, iRegNsrc src) %{
6836   match(Set dst (DecodeN src));
6837   predicate(Universe::narrow_oop_shift() == 0);
6838   ins_cost(DEFAULT_COST);
6839 
6840   format %{ "MR      $dst, $src \t// DecodeN (unscaled)" %}
6841   // variable size, 0 or 4.
6842   ins_encode %{
6843     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6844     __ mr_if_needed($dst$$Register, $src$$Register);
6845   %}
6846   ins_pipe(pipe_class_default);
6847 %}
6848 
6849 // Convert compressed oop into int for vectors alignment masking.
6850 instruct decodeN2I_unscaled(iRegIdst dst, iRegNsrc src) %{
6851   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
6852   predicate(Universe::narrow_oop_shift() == 0);
6853   ins_cost(DEFAULT_COST);
6854 
6855   format %{ "MR      $dst, $src \t// (int)DecodeN (unscaled)" %}
6856   // variable size, 0 or 4.
6857   ins_encode %{
6858     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6859     __ mr_if_needed($dst$$Register, $src$$Register);
6860   %}
6861   ins_pipe(pipe_class_default);
6862 %}
6863 
6864 // Convert klass pointer into compressed form.
6865 
6866 // Nodes for postalloc expand.
6867 
6868 // Shift node for expand.
6869 instruct encodePKlass_shift(iRegNdst dst, iRegNsrc src) %{
6870   // The match rule is needed to make it a 'MachTypeNode'!
6871   match(Set dst (EncodePKlass src));
6872   predicate(false);
6873 
6874   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
6875   size(4);
6876   ins_encode %{
6877     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6878     __ srdi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
6879   %}
6880   ins_pipe(pipe_class_default);
6881 %}
6882 
6883 // Add node for expand.
6884 instruct encodePKlass_sub_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
6885   // The match rule is needed to make it a 'MachTypeNode'!
6886   match(Set dst (EncodePKlass (Binary base src)));
6887   predicate(false);
6888 
6889   format %{ "SUB     $dst, $base, $src \t// encode" %}
6890   size(4);
6891   ins_encode %{
6892     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
6893     __ subf($dst$$Register, $base$$Register, $src$$Register);
6894   %}
6895   ins_pipe(pipe_class_default);
6896 %}
6897 
6898 // base != 0
6899 // 32G aligned narrow oop base.
6900 instruct encodePKlass_32GAligned(iRegNdst dst, iRegPsrc src) %{
6901   match(Set dst (EncodePKlass src));
6902   predicate(false /* TODO: PPC port Universe::narrow_klass_base_disjoint()*/);
6903 
6904   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
6905   size(4);
6906   ins_encode %{
6907     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6908     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
6909   %}
6910   ins_pipe(pipe_class_default);
6911 %}
6912 
6913 // shift != 0, base != 0
6914 instruct encodePKlass_not_null_Ex(iRegNdst dst, iRegLsrc base, iRegPsrc src) %{
6915   match(Set dst (EncodePKlass (Binary base src)));
6916   predicate(false);
6917 
6918   format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
6919   postalloc_expand %{
6920     encodePKlass_sub_baseNode *n1 = new (C) encodePKlass_sub_baseNode();
6921     n1->add_req(n_region, n_base, n_src);
6922     n1->_opnds[0] = op_dst;
6923     n1->_opnds[1] = op_base;
6924     n1->_opnds[2] = op_src;
6925     n1->_bottom_type = _bottom_type;
6926 
6927     encodePKlass_shiftNode *n2 = new (C) encodePKlass_shiftNode();
6928     n2->add_req(n_region, n1);
6929     n2->_opnds[0] = op_dst;
6930     n2->_opnds[1] = op_dst;
6931     n2->_bottom_type = _bottom_type;
6932     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6933     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6934 
6935     nodes->push(n1);
6936     nodes->push(n2);
6937   %}
6938 %}
6939 
6940 // shift != 0, base != 0
6941 instruct encodePKlass_not_null_ExEx(iRegNdst dst, iRegPsrc src) %{
6942   match(Set dst (EncodePKlass src));
6943   //predicate(Universe::narrow_klass_shift() != 0 &&
6944   //          true /* TODO: PPC port Universe::narrow_klass_base_overlaps()*/);
6945 
6946   //format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
6947   ins_cost(DEFAULT_COST*2);  // Don't count constant.
6948   expand %{
6949     immL baseImm %{ (jlong)(intptr_t)Universe::narrow_klass_base() %}
6950     iRegLdst base;
6951     loadConL_Ex(base, baseImm);
6952     encodePKlass_not_null_Ex(dst, base, src);
6953   %}
6954 %}
6955 
6956 // Decode nodes.
6957 
6958 // Shift node for expand.
6959 instruct decodeNKlass_shift(iRegPdst dst, iRegPsrc src) %{
6960   // The match rule is needed to make it a 'MachTypeNode'!
6961   match(Set dst (DecodeNKlass src));
6962   predicate(false);
6963 
6964   format %{ "SLDI    $dst, $src, #3 \t// DecodeNKlass" %}
6965   size(4);
6966   ins_encode %{
6967     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
6968     __ sldi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
6969   %}
6970   ins_pipe(pipe_class_default);
6971 %}
6972 
6973 // Add node for expand.
6974 
6975 instruct decodeNKlass_add_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
6976   // The match rule is needed to make it a 'MachTypeNode'!
6977   match(Set dst (DecodeNKlass (Binary base src)));
6978   predicate(false);
6979 
6980   format %{ "ADD     $dst, $base, $src \t// DecodeNKlass, add klass base" %}
6981   size(4);
6982   ins_encode %{
6983     // TODO: PPC port $archOpcode(ppc64Opcode_add);
6984     __ add($dst$$Register, $base$$Register, $src$$Register);
6985   %}
6986   ins_pipe(pipe_class_default);
6987 %}
6988 
6989 // src != 0, shift != 0, base != 0
6990 instruct decodeNKlass_notNull_addBase_Ex(iRegPdst dst, iRegLsrc base, iRegNsrc src) %{
6991   match(Set dst (DecodeNKlass (Binary base src)));
6992   //effect(kill src); // We need a register for the immediate result after shifting.
6993   predicate(false);
6994 
6995   format %{ "DecodeNKlass $dst =  $base + ($src << 3) \t// $src != NULL, postalloc expanded" %}
6996   postalloc_expand %{
6997     decodeNKlass_add_baseNode *n1 = new (C) decodeNKlass_add_baseNode();
6998     n1->add_req(n_region, n_base, n_src);
6999     n1->_opnds[0] = op_dst;
7000     n1->_opnds[1] = op_base;
7001     n1->_opnds[2] = op_src;
7002     n1->_bottom_type = _bottom_type;
7003 
7004     decodeNKlass_shiftNode *n2 = new (C) decodeNKlass_shiftNode();
7005     n2->add_req(n_region, n2);
7006     n2->_opnds[0] = op_dst;
7007     n2->_opnds[1] = op_dst;
7008     n2->_bottom_type = _bottom_type;
7009 
7010     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7011     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7012 
7013     nodes->push(n1);
7014     nodes->push(n2);
7015   %}
7016 %}
7017 
7018 // src != 0, shift != 0, base != 0
7019 instruct decodeNKlass_notNull_addBase_ExEx(iRegPdst dst, iRegNsrc src) %{
7020   match(Set dst (DecodeNKlass src));
7021   // predicate(Universe::narrow_klass_shift() != 0 &&
7022   //           Universe::narrow_klass_base() != 0);
7023 
7024   //format %{ "DecodeNKlass $dst, $src \t// $src != NULL, expanded" %}
7025 
7026   ins_cost(DEFAULT_COST*2);  // Don't count constant.
7027   expand %{
7028     // We add first, then we shift. Like this, we can get along with one register less.
7029     // But we have to load the base pre-shifted.
7030     immL baseImm %{ (jlong)((intptr_t)Universe::narrow_klass_base() >> Universe::narrow_klass_shift()) %}
7031     iRegLdst base;
7032     loadConL_Ex(base, baseImm);
7033     decodeNKlass_notNull_addBase_Ex(dst, base, src);
7034   %}
7035 %}
7036 
7037 //----------MemBar Instructions-----------------------------------------------
7038 // Memory barrier flavors
7039 
7040 instruct membar_acquire() %{
7041   match(LoadFence);
7042   ins_cost(4*MEMORY_REF_COST);
7043 
7044   format %{ "MEMBAR-acquire" %}
7045   size(4);
7046   ins_encode %{
7047     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7048     __ acquire();
7049   %}
7050   ins_pipe(pipe_class_default);
7051 %}
7052 
7053 instruct unnecessary_membar_acquire() %{
7054   match(MemBarAcquire);
7055   ins_cost(0);
7056 
7057   format %{ " -- \t// redundant MEMBAR-acquire - empty" %}
7058   size(0);
7059   ins_encode( /*empty*/ );
7060   ins_pipe(pipe_class_default);
7061 %}
7062 
7063 instruct membar_acquire_lock() %{
7064   match(MemBarAcquireLock);
7065   ins_cost(0);
7066 
7067   format %{ " -- \t// redundant MEMBAR-acquire - empty (acquire as part of CAS in prior FastLock)" %}
7068   size(0);
7069   ins_encode( /*empty*/ );
7070   ins_pipe(pipe_class_default);
7071 %}
7072 
7073 instruct membar_release() %{
7074   match(MemBarRelease);
7075   match(StoreFence);
7076   ins_cost(4*MEMORY_REF_COST);
7077 
7078   format %{ "MEMBAR-release" %}
7079   size(4);
7080   ins_encode %{
7081     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7082     __ release();
7083   %}
7084   ins_pipe(pipe_class_default);
7085 %}
7086 
7087 instruct membar_storestore() %{
7088   match(MemBarStoreStore);
7089   ins_cost(4*MEMORY_REF_COST);
7090 
7091   format %{ "MEMBAR-store-store" %}
7092   size(4);
7093   ins_encode %{
7094     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7095     __ membar(Assembler::StoreStore);
7096   %}
7097   ins_pipe(pipe_class_default);
7098 %}
7099 
7100 instruct membar_release_lock() %{
7101   match(MemBarReleaseLock);
7102   ins_cost(0);
7103 
7104   format %{ " -- \t// redundant MEMBAR-release - empty (release in FastUnlock)" %}
7105   size(0);
7106   ins_encode( /*empty*/ );
7107   ins_pipe(pipe_class_default);
7108 %}
7109 
7110 instruct membar_volatile() %{
7111   match(MemBarVolatile);
7112   ins_cost(4*MEMORY_REF_COST);
7113 
7114   format %{ "MEMBAR-volatile" %}
7115   size(4);
7116   ins_encode %{
7117     // TODO: PPC port $archOpcode(ppc64Opcode_sync);
7118     __ fence();
7119   %}
7120   ins_pipe(pipe_class_default);
7121 %}
7122 
7123 // This optimization is wrong on PPC. The following pattern is not supported:
7124 //  MemBarVolatile
7125 //   ^        ^
7126 //   |        |
7127 //  CtrlProj MemProj
7128 //   ^        ^
7129 //   |        |
7130 //   |       Load
7131 //   |
7132 //  MemBarVolatile
7133 //
7134 //  The first MemBarVolatile could get optimized out! According to
7135 //  Vladimir, this pattern can not occur on Oracle platforms.
7136 //  However, it does occur on PPC64 (because of membars in
7137 //  inline_unsafe_load_store).
7138 //
7139 // Add this node again if we found a good solution for inline_unsafe_load_store().
7140 // Don't forget to look at the implementation of post_store_load_barrier again, 
7141 // we did other fixes in that method.
7142 //instruct unnecessary_membar_volatile() %{
7143 //  match(MemBarVolatile);
7144 //  predicate(Matcher::post_store_load_barrier(n));
7145 //  ins_cost(0);
7146 //
7147 //  format %{ " -- \t// redundant MEMBAR-volatile - empty" %}
7148 //  size(0);
7149 //  ins_encode( /*empty*/ );
7150 //  ins_pipe(pipe_class_default);
7151 //%}
7152 
7153 instruct membar_CPUOrder() %{
7154   match(MemBarCPUOrder);
7155   ins_cost(0);
7156 
7157   format %{ " -- \t// MEMBAR-CPUOrder - empty: PPC64 processors are self-consistent." %}
7158   size(0);
7159   ins_encode( /*empty*/ );
7160   ins_pipe(pipe_class_default);
7161 %}
7162 
7163 //----------Conditional Move---------------------------------------------------
7164 
7165 // Cmove using isel.
7166 instruct cmovI_reg_isel(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
7167   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7168   predicate(VM_Version::has_isel());
7169   ins_cost(DEFAULT_COST);
7170 
7171   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7172   size(4);
7173   ins_encode %{
7174     // This is a Power7 instruction for which no machine description
7175     // exists. Anyways, the scheduler should be off on Power7.
7176     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7177     int cc        = $cmp$$cmpcode;
7178     __ isel($dst$$Register, $crx$$CondRegister, 
7179             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7180   %}
7181   ins_pipe(pipe_class_default);
7182 %}
7183 
7184 instruct cmovI_reg(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
7185   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7186   predicate(!VM_Version::has_isel());
7187   ins_cost(DEFAULT_COST+BRANCH_COST);
7188 
7189   ins_variable_size_depending_on_alignment(true);
7190 
7191   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7192   // Worst case is branch + move + stop, no stop without scheduler
7193   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7194   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7195   ins_pipe(pipe_class_default);
7196 %}
7197 
7198 instruct cmovI_imm(cmpOp cmp, flagsReg crx, iRegIdst dst, immI16 src) %{
7199   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7200   ins_cost(DEFAULT_COST+BRANCH_COST);
7201 
7202   ins_variable_size_depending_on_alignment(true);
7203 
7204   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7205   // Worst case is branch + move + stop, no stop without scheduler
7206   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7207   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7208   ins_pipe(pipe_class_default);
7209 %}
7210 
7211 // Cmove using isel.
7212 instruct cmovL_reg_isel(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
7213   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7214   predicate(VM_Version::has_isel());
7215   ins_cost(DEFAULT_COST);
7216 
7217   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7218   size(4);
7219   ins_encode %{
7220     // This is a Power7 instruction for which no machine description
7221     // exists. Anyways, the scheduler should be off on Power7.
7222     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7223     int cc        = $cmp$$cmpcode;
7224     __ isel($dst$$Register, $crx$$CondRegister, 
7225             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7226   %}
7227   ins_pipe(pipe_class_default);
7228 %}
7229 
7230 instruct cmovL_reg(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
7231   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7232   predicate(!VM_Version::has_isel());
7233   ins_cost(DEFAULT_COST+BRANCH_COST);
7234 
7235   ins_variable_size_depending_on_alignment(true);
7236 
7237   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7238   // Worst case is branch + move + stop, no stop without scheduler.
7239   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7240   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7241   ins_pipe(pipe_class_default);
7242 %}
7243 
7244 instruct cmovL_imm(cmpOp cmp, flagsReg crx, iRegLdst dst, immL16 src) %{
7245   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7246   ins_cost(DEFAULT_COST+BRANCH_COST);
7247 
7248   ins_variable_size_depending_on_alignment(true);
7249 
7250   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7251   // Worst case is branch + move + stop, no stop without scheduler.
7252   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7253   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7254   ins_pipe(pipe_class_default);
7255 %}
7256 
7257 // Cmove using isel.
7258 instruct cmovN_reg_isel(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
7259   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7260   predicate(VM_Version::has_isel());
7261   ins_cost(DEFAULT_COST);
7262 
7263   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7264   size(4);
7265   ins_encode %{
7266     // This is a Power7 instruction for which no machine description
7267     // exists. Anyways, the scheduler should be off on Power7.
7268     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7269     int cc        = $cmp$$cmpcode;
7270     __ isel($dst$$Register, $crx$$CondRegister, 
7271             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7272   %}
7273   ins_pipe(pipe_class_default);
7274 %}
7275 
7276 // Conditional move for RegN. Only cmov(reg, reg).
7277 instruct cmovN_reg(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
7278   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7279   predicate(!VM_Version::has_isel());
7280   ins_cost(DEFAULT_COST+BRANCH_COST);
7281 
7282   ins_variable_size_depending_on_alignment(true);
7283 
7284   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7285   // Worst case is branch + move + stop, no stop without scheduler.
7286   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7287   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7288   ins_pipe(pipe_class_default);
7289 %}
7290 
7291 instruct cmovN_imm(cmpOp cmp, flagsReg crx, iRegNdst dst, immN_0 src) %{
7292   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7293   ins_cost(DEFAULT_COST+BRANCH_COST);
7294 
7295   ins_variable_size_depending_on_alignment(true);
7296 
7297   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7298   // Worst case is branch + move + stop, no stop without scheduler.
7299   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7300   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7301   ins_pipe(pipe_class_default);
7302 %}
7303 
7304 // Cmove using isel.
7305 instruct cmovP_reg_isel(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegPsrc src) %{
7306   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7307   predicate(VM_Version::has_isel());
7308   ins_cost(DEFAULT_COST);
7309 
7310   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7311   size(4);
7312   ins_encode %{
7313     // This is a Power7 instruction for which no machine description
7314     // exists. Anyways, the scheduler should be off on Power7.
7315     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7316     int cc        = $cmp$$cmpcode;
7317     __ isel($dst$$Register, $crx$$CondRegister, 
7318             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7319   %}
7320   ins_pipe(pipe_class_default);
7321 %}
7322 
7323 instruct cmovP_reg(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegP_N2P src) %{
7324   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7325   predicate(!VM_Version::has_isel());
7326   ins_cost(DEFAULT_COST+BRANCH_COST);
7327 
7328   ins_variable_size_depending_on_alignment(true);
7329 
7330   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7331   // Worst case is branch + move + stop, no stop without scheduler.
7332   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7333   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7334   ins_pipe(pipe_class_default);
7335 %}
7336 
7337 instruct cmovP_imm(cmpOp cmp, flagsReg crx, iRegPdst dst, immP_0 src) %{
7338   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7339   ins_cost(DEFAULT_COST+BRANCH_COST);
7340 
7341   ins_variable_size_depending_on_alignment(true);
7342 
7343   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7344   // Worst case is branch + move + stop, no stop without scheduler.
7345   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7346   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7347   ins_pipe(pipe_class_default);
7348 %}
7349 
7350 instruct cmovF_reg(cmpOp cmp, flagsReg crx, regF dst, regF src) %{
7351   match(Set dst (CMoveF (Binary cmp crx) (Binary dst src)));
7352   ins_cost(DEFAULT_COST+BRANCH_COST);
7353 
7354   ins_variable_size_depending_on_alignment(true);
7355 
7356   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
7357   // Worst case is branch + move + stop, no stop without scheduler.
7358   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
7359   ins_encode %{
7360     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
7361     Label done;
7362     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
7363     // Branch if not (cmp crx).
7364     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
7365     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
7366     // TODO PPC port __ endgroup_if_needed(_size == 12);
7367     __ bind(done);
7368   %}
7369   ins_pipe(pipe_class_default);
7370 %}
7371 
7372 instruct cmovD_reg(cmpOp cmp, flagsReg crx, regD dst, regD src) %{
7373   match(Set dst (CMoveD (Binary cmp crx) (Binary dst src)));
7374   ins_cost(DEFAULT_COST+BRANCH_COST);
7375 
7376   ins_variable_size_depending_on_alignment(true);
7377 
7378   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
7379   // Worst case is branch + move + stop, no stop without scheduler.
7380   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
7381   ins_encode %{
7382     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
7383     Label done;
7384     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
7385     // Branch if not (cmp crx).
7386     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
7387     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
7388     // TODO PPC port __ endgroup_if_needed(_size == 12);
7389     __ bind(done);
7390   %}
7391   ins_pipe(pipe_class_default);
7392 %}
7393 
7394 //----------Conditional_store--------------------------------------------------
7395 // Conditional-store of the updated heap-top.
7396 // Used during allocation of the shared heap.
7397 // Sets flags (EQ) on success. Implemented with a CASA on Sparc.
7398 
7399 // As compareAndSwapL, but return flag register instead of boolean value in
7400 // int register.
7401 // Used by sun/misc/AtomicLongCSImpl.java.
7402 // Mem_ptr must be a memory operand, else this node does not get
7403 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
7404 // can be rematerialized which leads to errors.
7405 instruct storeLConditional_regP_regL_regL(flagsReg crx, indirect mem_ptr, iRegLsrc oldVal, iRegLsrc newVal) %{
7406   match(Set crx (StoreLConditional mem_ptr (Binary oldVal newVal)));
7407   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
7408   ins_encode %{
7409     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7410     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
7411                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
7412                 noreg, NULL, true);
7413   %}
7414   ins_pipe(pipe_class_default);
7415 %}
7416 
7417 // As compareAndSwapP, but return flag register instead of boolean value in
7418 // int register.
7419 // This instruction is matched if UseTLAB is off.
7420 // Mem_ptr must be a memory operand, else this node does not get
7421 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
7422 // can be rematerialized which leads to errors.
7423 instruct storePConditional_regP_regP_regP(flagsReg crx, indirect mem_ptr, iRegPsrc oldVal, iRegPsrc newVal) %{
7424   match(Set crx (StorePConditional mem_ptr (Binary oldVal newVal)));
7425   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
7426   ins_encode %{
7427     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7428     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
7429                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
7430                 noreg, NULL, true);
7431   %}
7432   ins_pipe(pipe_class_default);
7433 %}
7434 
7435 // Implement LoadPLocked. Must be ordered against changes of the memory location
7436 // by storePConditional.
7437 // Don't know whether this is ever used.
7438 instruct loadPLocked(iRegPdst dst, memory mem) %{
7439   match(Set dst (LoadPLocked mem));
7440   ins_cost(MEMORY_REF_COST);
7441 
7442   format %{ "LD      $dst, $mem \t// loadPLocked\n\t"
7443             "TWI     $dst\n\t"
7444             "ISYNC" %}
7445   size(12);
7446   ins_encode( enc_ld_ac(dst, mem) );
7447   ins_pipe(pipe_class_memory);
7448 %}
7449 
7450 //----------Compare-And-Swap---------------------------------------------------
7451 
7452 // CompareAndSwap{P,I,L} have more than one output, therefore "CmpI
7453 // (CompareAndSwap ...)" or "If (CmpI (CompareAndSwap ..))"  cannot be
7454 // matched.
7455 
7456 instruct compareAndSwapI_regP_regI_regI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src1, iRegIsrc src2) %{
7457   match(Set res (CompareAndSwapI mem_ptr (Binary src1 src2)));
7458   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
7459   // Variable size: instruction count smaller if regs are disjoint.
7460   ins_encode %{
7461     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7462     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7463     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register, 
7464                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(), 
7465                 $res$$Register, true);
7466   %}
7467   ins_pipe(pipe_class_default);
7468 %}
7469 
7470 instruct compareAndSwapN_regP_regN_regN(iRegIdst res, iRegPdst mem_ptr, iRegNsrc src1, iRegNsrc src2) %{
7471   match(Set res (CompareAndSwapN mem_ptr (Binary src1 src2)));
7472   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
7473   // Variable size: instruction count smaller if regs are disjoint.
7474   ins_encode %{
7475     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7476     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7477     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7478                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7479                 $res$$Register, true);
7480   %}
7481   ins_pipe(pipe_class_default);
7482 %}
7483 
7484 instruct compareAndSwapL_regP_regL_regL(iRegIdst res, iRegPdst mem_ptr, iRegLsrc src1, iRegLsrc src2) %{
7485   match(Set res (CompareAndSwapL mem_ptr (Binary src1 src2)));
7486   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool" %}
7487   // Variable size: instruction count smaller if regs are disjoint.
7488   ins_encode %{
7489     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7490     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7491     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7492                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7493                 $res$$Register, NULL, true);
7494   %}
7495   ins_pipe(pipe_class_default);
7496 %}
7497 
7498 instruct compareAndSwapP_regP_regP_regP(iRegIdst res, iRegPdst mem_ptr, iRegPsrc src1, iRegPsrc src2) %{
7499   match(Set res (CompareAndSwapP mem_ptr (Binary src1 src2)));
7500   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool; ptr" %}
7501   // Variable size: instruction count smaller if regs are disjoint.
7502   ins_encode %{
7503     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7504     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7505     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7506                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7507                 $res$$Register, NULL, true);
7508   %}
7509   ins_pipe(pipe_class_default);
7510 %}
7511 
7512 instruct getAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
7513   match(Set res (GetAndAddI mem_ptr src));
7514   format %{ "GetAndAddI $res, $mem_ptr, $src" %}
7515   // Variable size: instruction count smaller if regs are disjoint.
7516   ins_encode( enc_GetAndAddI(res, mem_ptr, src) );
7517   ins_pipe(pipe_class_default);
7518 %}
7519 
7520 instruct getAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
7521   match(Set res (GetAndAddL mem_ptr src));
7522   format %{ "GetAndAddL $res, $mem_ptr, $src" %}
7523   // Variable size: instruction count smaller if regs are disjoint.
7524   ins_encode( enc_GetAndAddL(res, mem_ptr, src) );
7525   ins_pipe(pipe_class_default);
7526 %}
7527 
7528 instruct getAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
7529   match(Set res (GetAndSetI mem_ptr src));
7530   format %{ "GetAndSetI $res, $mem_ptr, $src" %}
7531   // Variable size: instruction count smaller if regs are disjoint.
7532   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
7533   ins_pipe(pipe_class_default);
7534 %}
7535 
7536 instruct getAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
7537   match(Set res (GetAndSetL mem_ptr src));
7538   format %{ "GetAndSetL $res, $mem_ptr, $src" %}
7539   // Variable size: instruction count smaller if regs are disjoint.
7540   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
7541   ins_pipe(pipe_class_default);
7542 %}
7543 
7544 instruct getAndSetP(iRegPdst res, iRegPdst mem_ptr, iRegPsrc src) %{
7545   match(Set res (GetAndSetP mem_ptr src));
7546   format %{ "GetAndSetP $res, $mem_ptr, $src" %}
7547   // Variable size: instruction count smaller if regs are disjoint.
7548   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
7549   ins_pipe(pipe_class_default);
7550 %}
7551 
7552 instruct getAndSetN(iRegNdst res, iRegPdst mem_ptr, iRegNsrc src) %{
7553   match(Set res (GetAndSetN mem_ptr src));
7554   format %{ "GetAndSetN $res, $mem_ptr, $src" %}
7555   // Variable size: instruction count smaller if regs are disjoint.
7556   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
7557   ins_pipe(pipe_class_default);
7558 %}
7559 
7560 //----------Arithmetic Instructions--------------------------------------------
7561 // Addition Instructions
7562 
7563 // Register Addition
7564 instruct addI_reg_reg(iRegIdst dst, iRegIsrc_iRegL2Isrc src1, iRegIsrc_iRegL2Isrc src2) %{
7565   match(Set dst (AddI src1 src2));
7566   format %{ "ADD     $dst, $src1, $src2" %}
7567   size(4);
7568   ins_encode %{
7569     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7570     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7571   %}
7572   ins_pipe(pipe_class_default);
7573 %}
7574 
7575 // Expand does not work with above instruct. (??)
7576 instruct addI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
7577   // no match-rule
7578   effect(DEF dst, USE src1, USE src2);
7579   format %{ "ADD     $dst, $src1, $src2" %}
7580   size(4);
7581   ins_encode %{
7582     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7583     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7584   %}
7585   ins_pipe(pipe_class_default);
7586 %}
7587 
7588 instruct tree_addI_addI_addI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
7589   match(Set dst (AddI (AddI (AddI src1 src2) src3) src4));
7590   ins_cost(DEFAULT_COST*3);
7591 
7592   expand %{
7593     // FIXME: we should do this in the ideal world.
7594     iRegIdst tmp1;
7595     iRegIdst tmp2;
7596     addI_reg_reg(tmp1, src1, src2);
7597     addI_reg_reg_2(tmp2, src3, src4); // Adlc complains about addI_reg_reg.
7598     addI_reg_reg(dst, tmp1, tmp2);
7599   %}
7600 %}
7601 
7602 // Immediate Addition
7603 instruct addI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
7604   match(Set dst (AddI src1 src2));
7605   format %{ "ADDI    $dst, $src1, $src2" %}
7606   size(4);
7607   ins_encode %{
7608     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7609     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7610   %}
7611   ins_pipe(pipe_class_default);
7612 %}
7613 
7614 // Immediate Addition with 16-bit shifted operand
7615 instruct addI_reg_immhi16(iRegIdst dst, iRegIsrc src1, immIhi16 src2) %{
7616   match(Set dst (AddI src1 src2));
7617   format %{ "ADDIS   $dst, $src1, $src2" %}
7618   size(4);
7619   ins_encode %{
7620     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7621     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7622   %}
7623   ins_pipe(pipe_class_default);
7624 %}
7625 
7626 // Long Addition
7627 instruct addL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7628   match(Set dst (AddL src1 src2));
7629   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
7630   size(4);
7631   ins_encode %{
7632     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7633     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7634   %}
7635   ins_pipe(pipe_class_default);
7636 %}
7637 
7638 // Expand does not work with above instruct. (??)
7639 instruct addL_reg_reg_2(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7640   // no match-rule
7641   effect(DEF dst, USE src1, USE src2);
7642   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
7643   size(4);
7644   ins_encode %{
7645     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7646     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7647   %}
7648   ins_pipe(pipe_class_default);
7649 %}
7650 
7651 instruct tree_addL_addL_addL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, iRegLsrc src3, iRegLsrc src4) %{
7652   match(Set dst (AddL (AddL (AddL src1 src2) src3) src4));
7653   ins_cost(DEFAULT_COST*3);
7654 
7655   expand %{
7656     // FIXME: we should do this in the ideal world.
7657     iRegLdst tmp1;
7658     iRegLdst tmp2;
7659     addL_reg_reg(tmp1, src1, src2);
7660     addL_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
7661     addL_reg_reg(dst, tmp1, tmp2);
7662   %}
7663 %}
7664 
7665 // AddL + ConvL2I.
7666 instruct addI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
7667   match(Set dst (ConvL2I (AddL src1 src2)));
7668 
7669   format %{ "ADD     $dst, $src1, $src2 \t// long + l2i" %}
7670   size(4);
7671   ins_encode %{
7672     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7673     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7674   %}
7675   ins_pipe(pipe_class_default);
7676 %}
7677 
7678 // No constant pool entries required.
7679 instruct addL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
7680   match(Set dst (AddL src1 src2));
7681 
7682   format %{ "ADDI    $dst, $src1, $src2" %}
7683   size(4);
7684   ins_encode %{
7685     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7686     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7687   %}
7688   ins_pipe(pipe_class_default);
7689 %}
7690 
7691 // Long Immediate Addition with 16-bit shifted operand.
7692 // No constant pool entries required.
7693 instruct addL_reg_immhi16(iRegLdst dst, iRegLsrc src1, immL32hi16 src2) %{
7694   match(Set dst (AddL src1 src2));
7695 
7696   format %{ "ADDIS   $dst, $src1, $src2" %}
7697   size(4);
7698   ins_encode %{
7699     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7700     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7701   %}
7702   ins_pipe(pipe_class_default);
7703 %}
7704 
7705 // Pointer Register Addition
7706 instruct addP_reg_reg(iRegPdst dst, iRegP_N2P src1, iRegLsrc src2) %{
7707   match(Set dst (AddP src1 src2));
7708   format %{ "ADD     $dst, $src1, $src2" %}
7709   size(4);
7710   ins_encode %{
7711     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7712     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7713   %}
7714   ins_pipe(pipe_class_default);
7715 %}
7716 
7717 // Pointer Immediate Addition
7718 // No constant pool entries required.
7719 instruct addP_reg_imm16(iRegPdst dst, iRegP_N2P src1, immL16 src2) %{
7720   match(Set dst (AddP src1 src2));
7721 
7722   format %{ "ADDI    $dst, $src1, $src2" %}
7723   size(4);
7724   ins_encode %{
7725     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7726     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7727   %}
7728   ins_pipe(pipe_class_default);
7729 %}
7730 
7731 // Pointer Immediate Addition with 16-bit shifted operand.
7732 // No constant pool entries required.
7733 instruct addP_reg_immhi16(iRegPdst dst, iRegP_N2P src1, immL32hi16 src2) %{
7734   match(Set dst (AddP src1 src2));
7735 
7736   format %{ "ADDIS   $dst, $src1, $src2" %}
7737   size(4);
7738   ins_encode %{
7739     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7740     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7741   %}
7742   ins_pipe(pipe_class_default);
7743 %}
7744 
7745 //---------------------
7746 // Subtraction Instructions
7747 
7748 // Register Subtraction
7749 instruct subI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
7750   match(Set dst (SubI src1 src2));
7751   format %{ "SUBF    $dst, $src2, $src1" %}
7752   size(4);
7753   ins_encode %{
7754     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7755     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7756   %}
7757   ins_pipe(pipe_class_default);
7758 %}
7759 
7760 // Immediate Subtraction
7761 // The compiler converts "x-c0" into "x+ -c0" (see SubINode::Ideal),
7762 // so this rule seems to be unused.
7763 instruct subI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
7764   match(Set dst (SubI src1 src2));
7765   format %{ "SUBI    $dst, $src1, $src2" %}
7766   size(4);
7767   ins_encode %{
7768     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7769     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
7770   %}
7771   ins_pipe(pipe_class_default);
7772 %}
7773 
7774 // SubI from constant (using subfic).
7775 instruct subI_imm16_reg(iRegIdst dst, immI16 src1, iRegIsrc src2) %{
7776   match(Set dst (SubI src1 src2));
7777   format %{ "SUBI    $dst, $src1, $src2" %}
7778 
7779   size(4);
7780   ins_encode %{
7781     // TODO: PPC port $archOpcode(ppc64Opcode_subfic);
7782     __ subfic($dst$$Register, $src2$$Register, $src1$$constant);
7783   %}
7784   ins_pipe(pipe_class_default);
7785 %}
7786 
7787 // Turn the sign-bit of an integer into a 32-bit mask, 0x0...0 for
7788 // positive integers and 0xF...F for negative ones.
7789 instruct signmask32I_regI(iRegIdst dst, iRegIsrc src) %{
7790   // no match-rule, false predicate
7791   effect(DEF dst, USE src);
7792   predicate(false);
7793 
7794   format %{ "SRAWI   $dst, $src, #31" %}
7795   size(4);
7796   ins_encode %{
7797     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
7798     __ srawi($dst$$Register, $src$$Register, 0x1f);
7799   %}
7800   ins_pipe(pipe_class_default);
7801 %}
7802 
7803 instruct absI_reg_Ex(iRegIdst dst, iRegIsrc src) %{
7804   match(Set dst (AbsI src));
7805   ins_cost(DEFAULT_COST*3);
7806 
7807   expand %{
7808     iRegIdst tmp1;
7809     iRegIdst tmp2;
7810     signmask32I_regI(tmp1, src);
7811     xorI_reg_reg(tmp2, tmp1, src);
7812     subI_reg_reg(dst, tmp2, tmp1);
7813   %}
7814 %}
7815 
7816 instruct negI_regI(iRegIdst dst, immI_0 zero, iRegIsrc src2) %{
7817   match(Set dst (SubI zero src2));
7818   format %{ "NEG     $dst, $src2" %}
7819   size(4);
7820   ins_encode %{
7821     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
7822     __ neg($dst$$Register, $src2$$Register);
7823   %}
7824   ins_pipe(pipe_class_default);
7825 %}
7826 
7827 // Long subtraction
7828 instruct subL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7829   match(Set dst (SubL src1 src2));
7830   format %{ "SUBF    $dst, $src2, $src1 \t// long" %}
7831   size(4);
7832   ins_encode %{
7833     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7834     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7835   %}
7836   ins_pipe(pipe_class_default);
7837 %}
7838 
7839 // SubL + convL2I.
7840 instruct subI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
7841   match(Set dst (ConvL2I (SubL src1 src2)));
7842 
7843   format %{ "SUBF    $dst, $src2, $src1 \t// long + l2i" %}
7844   size(4);
7845   ins_encode %{
7846     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7847     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7848   %}
7849   ins_pipe(pipe_class_default);
7850 %}
7851 
7852 // Immediate Subtraction
7853 // The compiler converts "x-c0" into "x+ -c0" (see SubLNode::Ideal),
7854 // so this rule seems to be unused.
7855 // No constant pool entries required.
7856 instruct subL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
7857   match(Set dst (SubL src1 src2));
7858 
7859   format %{ "SUBI    $dst, $src1, $src2 \t// long" %}
7860   size(4);
7861   ins_encode %{
7862     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7863     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
7864   %}
7865   ins_pipe(pipe_class_default);
7866 %}
7867 
7868 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
7869 // positive longs and 0xF...F for negative ones.
7870 instruct signmask64I_regI(iRegIdst dst, iRegIsrc src) %{
7871   // no match-rule, false predicate
7872   effect(DEF dst, USE src);
7873   predicate(false);
7874 
7875   format %{ "SRADI   $dst, $src, #63" %}
7876   size(4);
7877   ins_encode %{
7878     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
7879     __ sradi($dst$$Register, $src$$Register, 0x3f);
7880   %}
7881   ins_pipe(pipe_class_default);
7882 %}
7883 
7884 // Long negation
7885 instruct negL_reg_reg(iRegLdst dst, immL_0 zero, iRegLsrc src2) %{
7886   match(Set dst (SubL zero src2));
7887   format %{ "NEG     $dst, $src2 \t// long" %}
7888   size(4);
7889   ins_encode %{
7890     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
7891     __ neg($dst$$Register, $src2$$Register);
7892   %}
7893   ins_pipe(pipe_class_default);
7894 %}
7895 
7896 // NegL + ConvL2I.
7897 instruct negI_con0_regL(iRegIdst dst, immL_0 zero, iRegLsrc src2) %{
7898   match(Set dst (ConvL2I (SubL zero src2)));
7899 
7900   format %{ "NEG     $dst, $src2 \t// long + l2i" %}
7901   size(4);
7902   ins_encode %{
7903     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
7904     __ neg($dst$$Register, $src2$$Register);
7905   %}
7906   ins_pipe(pipe_class_default);
7907 %}
7908 
7909 // Multiplication Instructions
7910 // Integer Multiplication
7911 
7912 // Register Multiplication
7913 instruct mulI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
7914   match(Set dst (MulI src1 src2));
7915   ins_cost(DEFAULT_COST);
7916 
7917   format %{ "MULLW   $dst, $src1, $src2" %}
7918   size(4);
7919   ins_encode %{
7920     // TODO: PPC port $archOpcode(ppc64Opcode_mullw);
7921     __ mullw($dst$$Register, $src1$$Register, $src2$$Register);
7922   %}
7923   ins_pipe(pipe_class_default);
7924 %}
7925 
7926 // Immediate Multiplication
7927 instruct mulI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
7928   match(Set dst (MulI src1 src2));
7929   ins_cost(DEFAULT_COST);
7930 
7931   format %{ "MULLI   $dst, $src1, $src2" %}
7932   size(4);
7933   ins_encode %{
7934     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
7935     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
7936   %}
7937   ins_pipe(pipe_class_default);
7938 %}
7939 
7940 instruct mulL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7941   match(Set dst (MulL src1 src2));
7942   ins_cost(DEFAULT_COST);
7943 
7944   format %{ "MULLD   $dst $src1, $src2 \t// long" %}
7945   size(4);
7946   ins_encode %{
7947     // TODO: PPC port $archOpcode(ppc64Opcode_mulld);
7948     __ mulld($dst$$Register, $src1$$Register, $src2$$Register);
7949   %}
7950   ins_pipe(pipe_class_default);
7951 %}
7952 
7953 // Multiply high for optimized long division by constant.
7954 instruct mulHighL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7955   match(Set dst (MulHiL src1 src2));
7956   ins_cost(DEFAULT_COST);
7957 
7958   format %{ "MULHD   $dst $src1, $src2 \t// long" %}
7959   size(4);
7960   ins_encode %{
7961     // TODO: PPC port $archOpcode(ppc64Opcode_mulhd);
7962     __ mulhd($dst$$Register, $src1$$Register, $src2$$Register);
7963   %}
7964   ins_pipe(pipe_class_default);
7965 %}
7966 
7967 // Immediate Multiplication
7968 instruct mulL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
7969   match(Set dst (MulL src1 src2));
7970   ins_cost(DEFAULT_COST);
7971 
7972   format %{ "MULLI   $dst, $src1, $src2" %}
7973   size(4);
7974   ins_encode %{
7975     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
7976     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
7977   %}
7978   ins_pipe(pipe_class_default);
7979 %}
7980 
7981 // Integer Division with Immediate -1: Negate.
7982 instruct divI_reg_immIvalueMinus1(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
7983   match(Set dst (DivI src1 src2));
7984   ins_cost(DEFAULT_COST);
7985 
7986   format %{ "NEG     $dst, $src1 \t// /-1" %}
7987   size(4);
7988   ins_encode %{
7989     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
7990     __ neg($dst$$Register, $src1$$Register);
7991   %}
7992   ins_pipe(pipe_class_default);
7993 %}
7994 
7995 // Integer Division with constant, but not -1.
7996 // We should be able to improve this by checking the type of src2.
7997 // It might well be that src2 is known to be positive.
7998 instruct divI_reg_regnotMinus1(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
7999   match(Set dst (DivI src1 src2));
8000   predicate(n->in(2)->find_int_con(-1) != -1); // src2 is a constant, but not -1
8001   ins_cost(2*DEFAULT_COST);
8002 
8003   format %{ "DIVW    $dst, $src1, $src2 \t// /not-1" %}
8004   size(4);
8005   ins_encode %{
8006     // TODO: PPC port $archOpcode(ppc64Opcode_divw);
8007     __ divw($dst$$Register, $src1$$Register, $src2$$Register);
8008   %}
8009   ins_pipe(pipe_class_default);
8010 %}
8011 
8012 instruct cmovI_bne_negI_reg(iRegIdst dst, flagsReg crx, iRegIsrc src1) %{
8013   effect(USE_DEF dst, USE src1, USE crx);
8014   predicate(false);
8015 
8016   ins_variable_size_depending_on_alignment(true);
8017 
8018   format %{ "CMOVE   $dst, neg($src1), $crx" %}
8019   // Worst case is branch + move + stop, no stop without scheduler.
8020   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
8021   ins_encode %{
8022     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
8023     Label done;
8024     __ bne($crx$$CondRegister, done);
8025     __ neg($dst$$Register, $src1$$Register);
8026     // TODO PPC port __ endgroup_if_needed(_size == 12);
8027     __ bind(done);
8028   %}
8029   ins_pipe(pipe_class_default);
8030 %}
8031 
8032 // Integer Division with Registers not containing constants.
8033 instruct divI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8034   match(Set dst (DivI src1 src2));
8035   ins_cost(10*DEFAULT_COST);
8036 
8037   expand %{
8038     immI16 imm %{ (int)-1 %}
8039     flagsReg tmp1;
8040     cmpI_reg_imm16(tmp1, src2, imm);          // check src2 == -1
8041     divI_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
8042     cmovI_bne_negI_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
8043   %}
8044 %}
8045 
8046 // Long Division with Immediate -1: Negate.
8047 instruct divL_reg_immLvalueMinus1(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
8048   match(Set dst (DivL src1 src2));
8049   ins_cost(DEFAULT_COST);
8050 
8051   format %{ "NEG     $dst, $src1 \t// /-1, long" %}
8052   size(4);
8053   ins_encode %{
8054     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
8055     __ neg($dst$$Register, $src1$$Register);
8056   %}
8057   ins_pipe(pipe_class_default);
8058 %}
8059 
8060 // Long Division with constant, but not -1.
8061 instruct divL_reg_regnotMinus1(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8062   match(Set dst (DivL src1 src2));
8063   predicate(n->in(2)->find_long_con(-1L) != -1L); // Src2 is a constant, but not -1.
8064   ins_cost(2*DEFAULT_COST);
8065 
8066   format %{ "DIVD    $dst, $src1, $src2 \t// /not-1, long" %}
8067   size(4);
8068   ins_encode %{
8069     // TODO: PPC port $archOpcode(ppc64Opcode_divd);
8070     __ divd($dst$$Register, $src1$$Register, $src2$$Register);
8071   %}
8072   ins_pipe(pipe_class_default);
8073 %}
8074 
8075 instruct cmovL_bne_negL_reg(iRegLdst dst, flagsReg crx, iRegLsrc src1) %{
8076   effect(USE_DEF dst, USE src1, USE crx);
8077   predicate(false);
8078 
8079   ins_variable_size_depending_on_alignment(true);
8080 
8081   format %{ "CMOVE   $dst, neg($src1), $crx" %}
8082   // Worst case is branch + move + stop, no stop without scheduler.
8083   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
8084   ins_encode %{
8085     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
8086     Label done;
8087     __ bne($crx$$CondRegister, done);
8088     __ neg($dst$$Register, $src1$$Register);
8089     // TODO PPC port __ endgroup_if_needed(_size == 12);
8090     __ bind(done);
8091   %}
8092   ins_pipe(pipe_class_default);
8093 %}
8094 
8095 // Long Division with Registers not containing constants.
8096 instruct divL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8097   match(Set dst (DivL src1 src2));
8098   ins_cost(10*DEFAULT_COST);
8099 
8100   expand %{
8101     immL16 imm %{ (int)-1 %}
8102     flagsReg tmp1;
8103     cmpL_reg_imm16(tmp1, src2, imm);          // check src2 == -1
8104     divL_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
8105     cmovL_bne_negL_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
8106   %}
8107 %}
8108 
8109 // Integer Remainder with registers.
8110 instruct modI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8111   match(Set dst (ModI src1 src2));
8112   ins_cost(10*DEFAULT_COST);
8113 
8114   expand %{
8115     immI16 imm %{ (int)-1 %}
8116     flagsReg tmp1;
8117     iRegIdst tmp2;
8118     iRegIdst tmp3;
8119     cmpI_reg_imm16(tmp1, src2, imm);           // check src2 == -1
8120     divI_reg_regnotMinus1(tmp2, src1, src2);   // tmp2 = src1 / src2
8121     cmovI_bne_negI_reg(tmp2, tmp1, src1);      // cmove tmp2 = neg(src1) if src2 == -1
8122     mulI_reg_reg(tmp3, src2, tmp2);            // tmp3 = src2 * tmp2
8123     subI_reg_reg(dst, src1, tmp3);             // dst = src1 - tmp3
8124   %}
8125 %}
8126 
8127 // Long Remainder with registers
8128 instruct modL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, flagsRegCR0 cr0) %{
8129   match(Set dst (ModL src1 src2));
8130   ins_cost(10*DEFAULT_COST);
8131 
8132   expand %{
8133     immL16 imm %{ (int)-1 %}
8134     flagsReg tmp1;
8135     iRegLdst tmp2;
8136     iRegLdst tmp3;
8137     cmpL_reg_imm16(tmp1, src2, imm);             // check src2 == -1
8138     divL_reg_regnotMinus1(tmp2, src1, src2);     // tmp2 = src1 / src2
8139     cmovL_bne_negL_reg(tmp2, tmp1, src1);        // cmove tmp2 = neg(src1) if src2 == -1
8140     mulL_reg_reg(tmp3, src2, tmp2);              // tmp3 = src2 * tmp2
8141     subL_reg_reg(dst, src1, tmp3);               // dst = src1 - tmp3
8142   %}
8143 %}
8144 
8145 // Integer Shift Instructions
8146 
8147 // Register Shift Left
8148 
8149 // Clear all but the lowest #mask bits.
8150 // Used to normalize shift amounts in registers.
8151 instruct maskI_reg_imm(iRegIdst dst, iRegIsrc src, uimmI6 mask) %{
8152   // no match-rule, false predicate
8153   effect(DEF dst, USE src, USE mask);
8154   predicate(false);
8155 
8156   format %{ "MASK    $dst, $src, $mask \t// clear $mask upper bits" %}
8157   size(4);
8158   ins_encode %{
8159     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8160     __ clrldi($dst$$Register, $src$$Register, $mask$$constant);
8161   %}
8162   ins_pipe(pipe_class_default);
8163 %}
8164 
8165 instruct lShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8166   // no match-rule, false predicate
8167   effect(DEF dst, USE src1, USE src2);
8168   predicate(false);
8169 
8170   format %{ "SLW     $dst, $src1, $src2" %}
8171   size(4);
8172   ins_encode %{
8173     // TODO: PPC port $archOpcode(ppc64Opcode_slw);
8174     __ slw($dst$$Register, $src1$$Register, $src2$$Register);
8175   %}
8176   ins_pipe(pipe_class_default);
8177 %}
8178 
8179 instruct lShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8180   match(Set dst (LShiftI src1 src2));
8181   ins_cost(DEFAULT_COST*2);
8182   expand %{
8183     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8184     iRegIdst tmpI;
8185     maskI_reg_imm(tmpI, src2, mask);
8186     lShiftI_reg_reg(dst, src1, tmpI);
8187   %}
8188 %}
8189 
8190 // Register Shift Left Immediate
8191 instruct lShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8192   match(Set dst (LShiftI src1 src2));
8193 
8194   format %{ "SLWI    $dst, $src1, ($src2 & 0x1f)" %}
8195   size(4);
8196   ins_encode %{
8197     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8198     __ slwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8199   %}
8200   ins_pipe(pipe_class_default);
8201 %}
8202 
8203 // AndI with negpow2-constant + LShiftI
8204 instruct lShiftI_andI_immInegpow2_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
8205   match(Set dst (LShiftI (AndI src1 src2) src3));
8206   predicate(UseRotateAndMaskInstructionsPPC64);
8207 
8208   format %{ "RLWINM  $dst, lShiftI(AndI($src1, $src2), $src3)" %}
8209   size(4);
8210   ins_encode %{
8211     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
8212     long src2      = $src2$$constant;
8213     long src3      = $src3$$constant;
8214     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
8215     if (maskbits >= 32) {
8216       __ li($dst$$Register, 0); // addi
8217     } else {
8218       __ rlwinm($dst$$Register, $src1$$Register, src3 & 0x1f, 0, (31-maskbits) & 0x1f);
8219     }
8220   %}
8221   ins_pipe(pipe_class_default);
8222 %}
8223 
8224 // RShiftI + AndI with negpow2-constant + LShiftI
8225 instruct lShiftI_andI_immInegpow2_rShiftI_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
8226   match(Set dst (LShiftI (AndI (RShiftI src1 src3) src2) src3));
8227   predicate(UseRotateAndMaskInstructionsPPC64);
8228 
8229   format %{ "RLWINM  $dst, lShiftI(AndI(RShiftI($src1, $src3), $src2), $src3)" %}
8230   size(4);
8231   ins_encode %{
8232     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
8233     long src2      = $src2$$constant;
8234     long src3      = $src3$$constant;
8235     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
8236     if (maskbits >= 32) {
8237       __ li($dst$$Register, 0); // addi
8238     } else {
8239       __ rlwinm($dst$$Register, $src1$$Register, 0, 0, (31-maskbits) & 0x1f);
8240     }
8241   %}
8242   ins_pipe(pipe_class_default);
8243 %}
8244 
8245 instruct lShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8246   // no match-rule, false predicate
8247   effect(DEF dst, USE src1, USE src2);
8248   predicate(false);
8249 
8250   format %{ "SLD     $dst, $src1, $src2" %}
8251   size(4);
8252   ins_encode %{
8253     // TODO: PPC port $archOpcode(ppc64Opcode_sld);
8254     __ sld($dst$$Register, $src1$$Register, $src2$$Register);
8255   %}
8256   ins_pipe(pipe_class_default);
8257 %}
8258 
8259 // Register Shift Left
8260 instruct lShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8261   match(Set dst (LShiftL src1 src2));
8262   ins_cost(DEFAULT_COST*2);
8263   expand %{
8264     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8265     iRegIdst tmpI;
8266     maskI_reg_imm(tmpI, src2, mask);
8267     lShiftL_regL_regI(dst, src1, tmpI);
8268   %}
8269 %}
8270 
8271 // Register Shift Left Immediate
8272 instruct lshiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8273   match(Set dst (LShiftL src1 src2));
8274   format %{ "SLDI    $dst, $src1, ($src2 & 0x3f)" %}
8275   size(4);
8276   ins_encode %{
8277     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8278     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8279   %}
8280   ins_pipe(pipe_class_default);
8281 %}
8282 
8283 // If we shift more than 32 bits, we need not convert I2L.
8284 instruct lShiftL_regI_immGE32(iRegLdst dst, iRegIsrc src1, uimmI6_ge32 src2) %{
8285   match(Set dst (LShiftL (ConvI2L src1) src2));
8286   ins_cost(DEFAULT_COST);
8287 
8288   size(4);
8289   format %{ "SLDI    $dst, i2l($src1), $src2" %}
8290   ins_encode %{
8291     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8292     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8293   %}
8294   ins_pipe(pipe_class_default);
8295 %}
8296 
8297 // Shift a postivie int to the left.
8298 // Clrlsldi clears the upper 32 bits and shifts.
8299 instruct scaledPositiveI2L_lShiftL_convI2L_reg_imm6(iRegLdst dst, iRegIsrc src1, uimmI6 src2) %{
8300   match(Set dst (LShiftL (ConvI2L src1) src2));
8301   predicate(((ConvI2LNode*)(_kids[0]->_leaf))->type()->is_long()->is_positive_int());
8302 
8303   format %{ "SLDI    $dst, i2l(positive_int($src1)), $src2" %}
8304   size(4);
8305   ins_encode %{
8306     // TODO: PPC port $archOpcode(ppc64Opcode_rldic);
8307     __ clrlsldi($dst$$Register, $src1$$Register, 0x20, $src2$$constant);
8308   %}
8309   ins_pipe(pipe_class_default);
8310 %}
8311 
8312 instruct arShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8313   // no match-rule, false predicate
8314   effect(DEF dst, USE src1, USE src2);
8315   predicate(false);
8316 
8317   format %{ "SRAW    $dst, $src1, $src2" %}
8318   size(4);
8319   ins_encode %{
8320     // TODO: PPC port $archOpcode(ppc64Opcode_sraw);
8321     __ sraw($dst$$Register, $src1$$Register, $src2$$Register);
8322   %}
8323   ins_pipe(pipe_class_default);
8324 %}
8325 
8326 // Register Arithmetic Shift Right
8327 instruct arShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8328   match(Set dst (RShiftI src1 src2));
8329   ins_cost(DEFAULT_COST*2);
8330   expand %{
8331     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8332     iRegIdst tmpI;
8333     maskI_reg_imm(tmpI, src2, mask);
8334     arShiftI_reg_reg(dst, src1, tmpI);
8335   %}
8336 %}
8337 
8338 // Register Arithmetic Shift Right Immediate
8339 instruct arShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8340   match(Set dst (RShiftI src1 src2));
8341 
8342   format %{ "SRAWI   $dst, $src1, ($src2 & 0x1f)" %}
8343   size(4);
8344   ins_encode %{
8345     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
8346     __ srawi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8347   %}
8348   ins_pipe(pipe_class_default);
8349 %}
8350 
8351 instruct arShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8352   // no match-rule, false predicate
8353   effect(DEF dst, USE src1, USE src2);
8354   predicate(false);
8355 
8356   format %{ "SRAD    $dst, $src1, $src2" %}
8357   size(4);
8358   ins_encode %{
8359     // TODO: PPC port $archOpcode(ppc64Opcode_srad);
8360     __ srad($dst$$Register, $src1$$Register, $src2$$Register);
8361   %}
8362   ins_pipe(pipe_class_default);
8363 %}
8364 
8365 // Register Shift Right Arithmetic Long
8366 instruct arShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8367   match(Set dst (RShiftL src1 src2));
8368   ins_cost(DEFAULT_COST*2);
8369 
8370   expand %{
8371     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8372     iRegIdst tmpI;
8373     maskI_reg_imm(tmpI, src2, mask);
8374     arShiftL_regL_regI(dst, src1, tmpI);
8375   %}
8376 %}
8377 
8378 // Register Shift Right Immediate
8379 instruct arShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8380   match(Set dst (RShiftL src1 src2));
8381 
8382   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f)" %}
8383   size(4);
8384   ins_encode %{
8385     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
8386     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8387   %}
8388   ins_pipe(pipe_class_default);
8389 %}
8390 
8391 // RShiftL + ConvL2I
8392 instruct convL2I_arShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
8393   match(Set dst (ConvL2I (RShiftL src1 src2)));
8394 
8395   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
8396   size(4);
8397   ins_encode %{
8398     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
8399     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8400   %}
8401   ins_pipe(pipe_class_default);
8402 %}
8403 
8404 instruct urShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8405   // no match-rule, false predicate
8406   effect(DEF dst, USE src1, USE src2);
8407   predicate(false);
8408 
8409   format %{ "SRW     $dst, $src1, $src2" %}
8410   size(4);
8411   ins_encode %{
8412     // TODO: PPC port $archOpcode(ppc64Opcode_srw);
8413     __ srw($dst$$Register, $src1$$Register, $src2$$Register);
8414   %}
8415   ins_pipe(pipe_class_default);
8416 %}
8417 
8418 // Register Shift Right
8419 instruct urShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8420   match(Set dst (URShiftI src1 src2));
8421   ins_cost(DEFAULT_COST*2);
8422 
8423   expand %{
8424     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8425     iRegIdst tmpI;
8426     maskI_reg_imm(tmpI, src2, mask);
8427     urShiftI_reg_reg(dst, src1, tmpI);
8428   %}
8429 %}
8430 
8431 // Register Shift Right Immediate
8432 instruct urShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8433   match(Set dst (URShiftI src1 src2));
8434 
8435   format %{ "SRWI    $dst, $src1, ($src2 & 0x1f)" %}
8436   size(4);
8437   ins_encode %{
8438     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8439     __ srwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8440   %}
8441   ins_pipe(pipe_class_default);
8442 %}
8443 
8444 instruct urShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8445   // no match-rule, false predicate
8446   effect(DEF dst, USE src1, USE src2);
8447   predicate(false);
8448 
8449   format %{ "SRD     $dst, $src1, $src2" %}
8450   size(4);
8451   ins_encode %{
8452     // TODO: PPC port $archOpcode(ppc64Opcode_srd);
8453     __ srd($dst$$Register, $src1$$Register, $src2$$Register);
8454   %}
8455   ins_pipe(pipe_class_default);
8456 %}
8457 
8458 // Register Shift Right
8459 instruct urShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8460   match(Set dst (URShiftL src1 src2));
8461   ins_cost(DEFAULT_COST*2);
8462 
8463   expand %{
8464     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8465     iRegIdst tmpI;
8466     maskI_reg_imm(tmpI, src2, mask);
8467     urShiftL_regL_regI(dst, src1, tmpI);
8468   %}
8469 %}
8470 
8471 // Register Shift Right Immediate
8472 instruct urShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8473   match(Set dst (URShiftL src1 src2));
8474 
8475   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f)" %}
8476   size(4);
8477   ins_encode %{
8478     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8479     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8480   %}
8481   ins_pipe(pipe_class_default);
8482 %}
8483 
8484 // URShiftL + ConvL2I.
8485 instruct convL2I_urShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
8486   match(Set dst (ConvL2I (URShiftL src1 src2)));
8487 
8488   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
8489   size(4);
8490   ins_encode %{
8491     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8492     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8493   %}
8494   ins_pipe(pipe_class_default);
8495 %}
8496 
8497 // Register Shift Right Immediate with a CastP2X
8498 instruct shrP_convP2X_reg_imm6(iRegLdst dst, iRegP_N2P src1, uimmI6 src2) %{
8499   match(Set dst (URShiftL (CastP2X src1) src2));
8500 
8501   format %{ "SRDI    $dst, $src1, $src2 \t// Cast ptr $src1 to long and shift" %}
8502   size(4);
8503   ins_encode %{
8504     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8505     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8506   %}
8507   ins_pipe(pipe_class_default);
8508 %}
8509 
8510 instruct sxtI_reg(iRegIdst dst, iRegIsrc src) %{
8511   match(Set dst (ConvL2I (ConvI2L src)));
8512 
8513   format %{ "EXTSW   $dst, $src \t// int->int" %}
8514   size(4);
8515   ins_encode %{
8516     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
8517     __ extsw($dst$$Register, $src$$Register);
8518   %}
8519   ins_pipe(pipe_class_default);
8520 %}
8521 
8522 //----------Rotate Instructions------------------------------------------------
8523 
8524 // Rotate Left by 8-bit immediate
8525 instruct rotlI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 lshift, immI8 rshift) %{
8526   match(Set dst (OrI (LShiftI src lshift) (URShiftI src rshift)));
8527   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8528 
8529   format %{ "ROTLWI  $dst, $src, $lshift" %}
8530   size(4);
8531   ins_encode %{
8532     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8533     __ rotlwi($dst$$Register, $src$$Register, $lshift$$constant);
8534   %}
8535   ins_pipe(pipe_class_default);
8536 %}
8537 
8538 // Rotate Right by 8-bit immediate
8539 instruct rotrI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 rshift, immI8 lshift) %{
8540   match(Set dst (OrI (URShiftI src rshift) (LShiftI src lshift)));
8541   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8542 
8543   format %{ "ROTRWI  $dst, $rshift" %}
8544   size(4);
8545   ins_encode %{
8546     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8547     __ rotrwi($dst$$Register, $src$$Register, $rshift$$constant);
8548   %}
8549   ins_pipe(pipe_class_default);
8550 %}
8551 
8552 //----------Floating Point Arithmetic Instructions-----------------------------
8553 
8554 // Add float single precision
8555 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
8556   match(Set dst (AddF src1 src2));
8557 
8558   format %{ "FADDS   $dst, $src1, $src2" %}
8559   size(4);
8560   ins_encode %{
8561     // TODO: PPC port $archOpcode(ppc64Opcode_fadds);
8562     __ fadds($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8563   %}
8564   ins_pipe(pipe_class_default);
8565 %}
8566 
8567 // Add float double precision
8568 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
8569   match(Set dst (AddD src1 src2));
8570 
8571   format %{ "FADD    $dst, $src1, $src2" %}
8572   size(4);
8573   ins_encode %{
8574     // TODO: PPC port $archOpcode(ppc64Opcode_fadd);
8575     __ fadd($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8576   %}
8577   ins_pipe(pipe_class_default);
8578 %}
8579 
8580 // Sub float single precision
8581 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
8582   match(Set dst (SubF src1 src2));
8583 
8584   format %{ "FSUBS   $dst, $src1, $src2" %}
8585   size(4);
8586   ins_encode %{
8587     // TODO: PPC port $archOpcode(ppc64Opcode_fsubs);
8588     __ fsubs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8589   %}
8590   ins_pipe(pipe_class_default);
8591 %}
8592 
8593 // Sub float double precision
8594 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
8595   match(Set dst (SubD src1 src2));
8596   format %{ "FSUB    $dst, $src1, $src2" %}
8597   size(4);
8598   ins_encode %{
8599     // TODO: PPC port $archOpcode(ppc64Opcode_fsub);
8600     __ fsub($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8601   %}
8602   ins_pipe(pipe_class_default);
8603 %}
8604 
8605 // Mul float single precision
8606 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
8607   match(Set dst (MulF src1 src2));
8608   format %{ "FMULS   $dst, $src1, $src2" %}
8609   size(4);
8610   ins_encode %{
8611     // TODO: PPC port $archOpcode(ppc64Opcode_fmuls);
8612     __ fmuls($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8613   %}
8614   ins_pipe(pipe_class_default);
8615 %}
8616 
8617 // Mul float double precision
8618 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
8619   match(Set dst (MulD src1 src2));
8620   format %{ "FMUL    $dst, $src1, $src2" %}
8621   size(4);
8622   ins_encode %{
8623     // TODO: PPC port $archOpcode(ppc64Opcode_fmul);
8624     __ fmul($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8625   %}
8626   ins_pipe(pipe_class_default);
8627 %}
8628 
8629 // Div float single precision
8630 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
8631   match(Set dst (DivF src1 src2));
8632   format %{ "FDIVS   $dst, $src1, $src2" %}
8633   size(4);
8634   ins_encode %{
8635     // TODO: PPC port $archOpcode(ppc64Opcode_fdivs);
8636     __ fdivs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8637   %}
8638   ins_pipe(pipe_class_default);
8639 %}
8640 
8641 // Div float double precision
8642 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
8643   match(Set dst (DivD src1 src2));
8644   format %{ "FDIV    $dst, $src1, $src2" %}
8645   size(4);
8646   ins_encode %{
8647     // TODO: PPC port $archOpcode(ppc64Opcode_fdiv);
8648     __ fdiv($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8649   %}
8650   ins_pipe(pipe_class_default);
8651 %}
8652 
8653 // Absolute float single precision
8654 instruct absF_reg(regF dst, regF src) %{
8655   match(Set dst (AbsF src));
8656   format %{ "FABS    $dst, $src \t// float" %}
8657   size(4);
8658   ins_encode %{
8659     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
8660     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
8661   %}
8662   ins_pipe(pipe_class_default);
8663 %}
8664 
8665 // Absolute float double precision
8666 instruct absD_reg(regD dst, regD src) %{
8667   match(Set dst (AbsD src));
8668   format %{ "FABS    $dst, $src \t// double" %}
8669   size(4);
8670   ins_encode %{
8671     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
8672     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
8673   %}
8674   ins_pipe(pipe_class_default);
8675 %}
8676 
8677 instruct negF_reg(regF dst, regF src) %{
8678   match(Set dst (NegF src));
8679   format %{ "FNEG    $dst, $src \t// float" %}
8680   size(4);
8681   ins_encode %{
8682     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
8683     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
8684   %}
8685   ins_pipe(pipe_class_default);
8686 %}
8687 
8688 instruct negD_reg(regD dst, regD src) %{
8689   match(Set dst (NegD src));
8690   format %{ "FNEG    $dst, $src \t// double" %}
8691   size(4);
8692   ins_encode %{
8693     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
8694     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
8695   %}
8696   ins_pipe(pipe_class_default);
8697 %}
8698 
8699 // AbsF + NegF.
8700 instruct negF_absF_reg(regF dst, regF src) %{
8701   match(Set dst (NegF (AbsF src)));
8702   format %{ "FNABS   $dst, $src \t// float" %}
8703   size(4);
8704   ins_encode %{
8705     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
8706     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
8707   %}
8708   ins_pipe(pipe_class_default);
8709 %}
8710 
8711 // AbsD + NegD.
8712 instruct negD_absD_reg(regD dst, regD src) %{
8713   match(Set dst (NegD (AbsD src)));
8714   format %{ "FNABS   $dst, $src \t// double" %}
8715   size(4);
8716   ins_encode %{
8717     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
8718     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
8719   %}
8720   ins_pipe(pipe_class_default);
8721 %}
8722 
8723 // VM_Version::has_fsqrt() decides if this node will be used.
8724 // Sqrt float double precision
8725 instruct sqrtD_reg(regD dst, regD src) %{
8726   match(Set dst (SqrtD src));
8727   format %{ "FSQRT   $dst, $src" %}
8728   size(4);
8729   ins_encode %{
8730     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrt);
8731     __ fsqrt($dst$$FloatRegister, $src$$FloatRegister);
8732   %}
8733   ins_pipe(pipe_class_default);
8734 %}
8735 
8736 // Single-precision sqrt.
8737 instruct sqrtF_reg(regF dst, regF src) %{
8738   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
8739   ins_cost(DEFAULT_COST);
8740 
8741   format %{ "FSQRTS  $dst, $src" %}
8742   size(4);
8743   ins_encode %{
8744     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrts);
8745     __ fsqrts($dst$$FloatRegister, $src$$FloatRegister);
8746   %}
8747   ins_pipe(pipe_class_default);
8748 %}
8749 
8750 instruct roundDouble_nop(regD dst) %{
8751   match(Set dst (RoundDouble dst));
8752   ins_cost(0);
8753 
8754   format %{ " -- \t// RoundDouble not needed - empty" %}
8755   size(0);
8756   // PPC results are already "rounded" (i.e., normal-format IEEE).
8757   ins_encode( /*empty*/ );
8758   ins_pipe(pipe_class_default);
8759 %}
8760 
8761 instruct roundFloat_nop(regF dst) %{
8762   match(Set dst (RoundFloat dst));
8763   ins_cost(0);
8764 
8765   format %{ " -- \t// RoundFloat not needed - empty" %}
8766   size(0);
8767   // PPC results are already "rounded" (i.e., normal-format IEEE).
8768   ins_encode( /*empty*/ );
8769   ins_pipe(pipe_class_default);
8770 %}
8771 
8772 //----------Logical Instructions-----------------------------------------------
8773 
8774 // And Instructions
8775 
8776 // Register And
8777 instruct andI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8778   match(Set dst (AndI src1 src2));
8779   format %{ "AND     $dst, $src1, $src2" %}
8780   size(4);
8781   ins_encode %{
8782     // TODO: PPC port $archOpcode(ppc64Opcode_and);
8783     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
8784   %}
8785   ins_pipe(pipe_class_default);
8786 %}
8787 
8788 // Immediate And
8789 instruct andI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2, flagsRegCR0 cr0) %{
8790   match(Set dst (AndI src1 src2));
8791   effect(KILL cr0);
8792 
8793   format %{ "ANDI    $dst, $src1, $src2" %}
8794   size(4);
8795   ins_encode %{
8796     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
8797     // FIXME: avoid andi_ ?
8798     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
8799   %}
8800   ins_pipe(pipe_class_default);
8801 %}
8802 
8803 // Immediate And where the immediate is a negative power of 2.
8804 instruct andI_reg_immInegpow2(iRegIdst dst, iRegIsrc src1, immInegpow2 src2) %{
8805   match(Set dst (AndI src1 src2));
8806   format %{ "ANDWI   $dst, $src1, $src2" %}
8807   size(4);
8808   ins_encode %{
8809     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8810     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)(julong)(juint)-($src2$$constant)));
8811   %}
8812   ins_pipe(pipe_class_default);
8813 %}
8814 
8815 instruct andI_reg_immIpow2minus1(iRegIdst dst, iRegIsrc src1, immIpow2minus1 src2) %{
8816   match(Set dst (AndI src1 src2));
8817   format %{ "ANDWI   $dst, $src1, $src2" %}
8818   size(4);
8819   ins_encode %{
8820     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8821     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
8822   %}
8823   ins_pipe(pipe_class_default);
8824 %}
8825 
8826 instruct andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src1, immIpowerOf2 src2) %{
8827   match(Set dst (AndI src1 src2));
8828   predicate(UseRotateAndMaskInstructionsPPC64);
8829   format %{ "ANDWI   $dst, $src1, $src2" %}
8830   size(4);
8831   ins_encode %{
8832     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8833     __ rlwinm($dst$$Register, $src1$$Register, 0, 
8834               (31-log2_long((jlong) $src2$$constant)) & 0x1f, (31-log2_long((jlong) $src2$$constant)) & 0x1f);
8835   %}
8836   ins_pipe(pipe_class_default);
8837 %}
8838 
8839 // Register And Long
8840 instruct andL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8841   match(Set dst (AndL src1 src2));
8842   ins_cost(DEFAULT_COST);
8843 
8844   format %{ "AND     $dst, $src1, $src2 \t// long" %}
8845   size(4);
8846   ins_encode %{
8847     // TODO: PPC port $archOpcode(ppc64Opcode_and);
8848     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
8849   %}
8850   ins_pipe(pipe_class_default);
8851 %}
8852 
8853 // Immediate And long
8854 instruct andL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2, flagsRegCR0 cr0) %{
8855   match(Set dst (AndL src1 src2));
8856   effect(KILL cr0);
8857   ins_cost(DEFAULT_COST);
8858 
8859   format %{ "ANDI    $dst, $src1, $src2 \t// long" %}
8860   size(4);
8861   ins_encode %{
8862     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
8863     // FIXME: avoid andi_ ?
8864     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
8865   %}
8866   ins_pipe(pipe_class_default);
8867 %}
8868 
8869 // Immediate And Long where the immediate is a negative power of 2.
8870 instruct andL_reg_immLnegpow2(iRegLdst dst, iRegLsrc src1, immLnegpow2 src2) %{
8871   match(Set dst (AndL src1 src2));
8872   format %{ "ANDDI   $dst, $src1, $src2" %}
8873   size(4);
8874   ins_encode %{
8875     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8876     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)-$src2$$constant));
8877   %}
8878   ins_pipe(pipe_class_default);
8879 %}
8880 
8881 instruct andL_reg_immLpow2minus1(iRegLdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
8882   match(Set dst (AndL src1 src2));
8883   format %{ "ANDDI   $dst, $src1, $src2" %}
8884   size(4);
8885   ins_encode %{
8886     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8887     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
8888   %}
8889   ins_pipe(pipe_class_default);
8890 %}
8891 
8892 // AndL + ConvL2I.
8893 instruct convL2I_andL_reg_immLpow2minus1(iRegIdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
8894   match(Set dst (ConvL2I (AndL src1 src2)));
8895   ins_cost(DEFAULT_COST);
8896 
8897   format %{ "ANDDI   $dst, $src1, $src2 \t// long + l2i" %}
8898   size(4);
8899   ins_encode %{
8900     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8901     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
8902   %}
8903   ins_pipe(pipe_class_default);
8904 %}
8905 
8906 // Or Instructions
8907 
8908 // Register Or
8909 instruct orI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8910   match(Set dst (OrI src1 src2));
8911   format %{ "OR      $dst, $src1, $src2" %}
8912   size(4);
8913   ins_encode %{
8914     // TODO: PPC port $archOpcode(ppc64Opcode_or);
8915     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
8916   %}
8917   ins_pipe(pipe_class_default);
8918 %}
8919 
8920 // Expand does not work with above instruct. (??)
8921 instruct orI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8922   // no match-rule
8923   effect(DEF dst, USE src1, USE src2);
8924   format %{ "OR      $dst, $src1, $src2" %}
8925   size(4);
8926   ins_encode %{
8927     // TODO: PPC port $archOpcode(ppc64Opcode_or);
8928     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
8929   %}
8930   ins_pipe(pipe_class_default);
8931 %}
8932 
8933 instruct tree_orI_orI_orI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
8934   match(Set dst (OrI (OrI (OrI src1 src2) src3) src4));
8935   ins_cost(DEFAULT_COST*3);
8936 
8937   expand %{
8938     // FIXME: we should do this in the ideal world.
8939     iRegIdst tmp1;
8940     iRegIdst tmp2;
8941     orI_reg_reg(tmp1, src1, src2);
8942     orI_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
8943     orI_reg_reg(dst, tmp1, tmp2);
8944   %}
8945 %}
8946 
8947 // Immediate Or
8948 instruct orI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
8949   match(Set dst (OrI src1 src2));
8950   format %{ "ORI     $dst, $src1, $src2" %}
8951   size(4);
8952   ins_encode %{
8953     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
8954     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
8955   %}
8956   ins_pipe(pipe_class_default);
8957 %}
8958 
8959 // Register Or Long
8960 instruct orL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8961   match(Set dst (OrL src1 src2));
8962   ins_cost(DEFAULT_COST);
8963 
8964   size(4);
8965   format %{ "OR      $dst, $src1, $src2 \t// long" %}
8966   ins_encode %{
8967     // TODO: PPC port $archOpcode(ppc64Opcode_or);
8968     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
8969   %}
8970   ins_pipe(pipe_class_default);
8971 %}
8972 
8973 // OrL + ConvL2I.
8974 instruct orI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
8975   match(Set dst (ConvL2I (OrL src1 src2)));
8976   ins_cost(DEFAULT_COST);
8977 
8978   format %{ "OR      $dst, $src1, $src2 \t// long + l2i" %}
8979   size(4);
8980   ins_encode %{
8981     // TODO: PPC port $archOpcode(ppc64Opcode_or);
8982     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
8983   %}
8984   ins_pipe(pipe_class_default);
8985 %}
8986 
8987 // Immediate Or long
8988 instruct orL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 con) %{
8989   match(Set dst (OrL src1 con));
8990   ins_cost(DEFAULT_COST);
8991 
8992   format %{ "ORI     $dst, $src1, $con \t// long" %}
8993   size(4);
8994   ins_encode %{
8995     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
8996     __ ori($dst$$Register, $src1$$Register, ($con$$constant) & 0xFFFF);
8997   %}
8998   ins_pipe(pipe_class_default);
8999 %}
9000 
9001 // Xor Instructions
9002 
9003 // Register Xor
9004 instruct xorI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9005   match(Set dst (XorI src1 src2));
9006   format %{ "XOR     $dst, $src1, $src2" %}
9007   size(4);
9008   ins_encode %{
9009     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9010     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9011   %}
9012   ins_pipe(pipe_class_default);
9013 %}
9014 
9015 // Expand does not work with above instruct. (??)
9016 instruct xorI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9017   // no match-rule
9018   effect(DEF dst, USE src1, USE src2);
9019   format %{ "XOR     $dst, $src1, $src2" %}
9020   size(4);
9021   ins_encode %{
9022     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9023     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9024   %}
9025   ins_pipe(pipe_class_default);
9026 %}
9027 
9028 instruct tree_xorI_xorI_xorI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
9029   match(Set dst (XorI (XorI (XorI src1 src2) src3) src4));
9030   ins_cost(DEFAULT_COST*3);
9031 
9032   expand %{
9033     // FIXME: we should do this in the ideal world.
9034     iRegIdst tmp1;
9035     iRegIdst tmp2;
9036     xorI_reg_reg(tmp1, src1, src2);
9037     xorI_reg_reg_2(tmp2, src3, src4); // Adlc complains about xorI_reg_reg.
9038     xorI_reg_reg(dst, tmp1, tmp2);
9039   %}
9040 %}
9041 
9042 // Immediate Xor
9043 instruct xorI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
9044   match(Set dst (XorI src1 src2));
9045   format %{ "XORI    $dst, $src1, $src2" %}
9046   size(4);
9047   ins_encode %{
9048     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
9049     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
9050   %}
9051   ins_pipe(pipe_class_default);
9052 %}
9053 
9054 // Register Xor Long
9055 instruct xorL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
9056   match(Set dst (XorL src1 src2));
9057   ins_cost(DEFAULT_COST);
9058 
9059   format %{ "XOR     $dst, $src1, $src2 \t// long" %}
9060   size(4);
9061   ins_encode %{
9062     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9063     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9064   %}
9065   ins_pipe(pipe_class_default);
9066 %}
9067 
9068 // XorL + ConvL2I.
9069 instruct xorI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
9070   match(Set dst (ConvL2I (XorL src1 src2)));
9071   ins_cost(DEFAULT_COST);
9072 
9073   format %{ "XOR     $dst, $src1, $src2 \t// long + l2i" %}
9074   size(4);
9075   ins_encode %{
9076     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9077     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9078   %}
9079   ins_pipe(pipe_class_default);
9080 %}
9081 
9082 // Immediate Xor Long
9083 instruct xorL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2) %{
9084   match(Set dst (XorL src1 src2));
9085   ins_cost(DEFAULT_COST);
9086 
9087   format %{ "XORI    $dst, $src1, $src2 \t// long" %}
9088   size(4);
9089   ins_encode %{
9090     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
9091     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
9092   %}
9093   ins_pipe(pipe_class_default);
9094 %}
9095 
9096 instruct notI_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
9097   match(Set dst (XorI src1 src2));
9098   ins_cost(DEFAULT_COST);
9099 
9100   format %{ "NOT     $dst, $src1 ($src2)" %}
9101   size(4);
9102   ins_encode %{
9103     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
9104     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
9105   %}
9106   ins_pipe(pipe_class_default);
9107 %}
9108 
9109 instruct notL_reg(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
9110   match(Set dst (XorL src1 src2));
9111   ins_cost(DEFAULT_COST);
9112 
9113   format %{ "NOT     $dst, $src1 ($src2) \t// long" %}
9114   size(4);
9115   ins_encode %{
9116     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
9117     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
9118   %}
9119   ins_pipe(pipe_class_default);
9120 %}
9121 
9122 // And-complement
9123 instruct andcI_reg_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2, iRegIsrc src3) %{
9124   match(Set dst (AndI (XorI src1 src2) src3));
9125   ins_cost(DEFAULT_COST);
9126 
9127   format %{ "ANDW    $dst, xori($src1, $src2), $src3" %}
9128   size(4);
9129   ins_encode( enc_andc(dst, src3, src1) );
9130   ins_pipe(pipe_class_default);
9131 %}
9132 
9133 // And-complement
9134 instruct andcL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
9135   // no match-rule, false predicate
9136   effect(DEF dst, USE src1, USE src2);
9137   predicate(false);
9138 
9139   format %{ "ANDC    $dst, $src1, $src2" %}
9140   size(4);
9141   ins_encode %{
9142     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
9143     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
9144   %}
9145   ins_pipe(pipe_class_default);
9146 %}
9147 
9148 //----------Moves between int/long and float/double----------------------------
9149 //
9150 // The following rules move values from int/long registers/stack-locations
9151 // to float/double registers/stack-locations and vice versa, without doing any
9152 // conversions. These rules are used to implement the bit-conversion methods
9153 // of java.lang.Float etc., e.g.
9154 //   int   floatToIntBits(float value)
9155 //   float intBitsToFloat(int bits)
9156 //
9157 // Notes on the implementation on ppc64:
9158 // We only provide rules which move between a register and a stack-location,
9159 // because we always have to go through memory when moving between a float
9160 // register and an integer register.
9161 
9162 //---------- Chain stack slots between similar types --------
9163 
9164 // These are needed so that the rules below can match.
9165 
9166 // Load integer from stack slot
9167 instruct stkI_to_regI(iRegIdst dst, stackSlotI src) %{
9168   match(Set dst src);
9169   ins_cost(MEMORY_REF_COST);
9170 
9171   format %{ "LWZ     $dst, $src" %}
9172   size(4);
9173   ins_encode( enc_lwz(dst, src) );
9174   ins_pipe(pipe_class_memory);
9175 %}
9176 
9177 // Store integer to stack slot
9178 instruct regI_to_stkI(stackSlotI dst, iRegIsrc src) %{
9179   match(Set dst src);
9180   ins_cost(MEMORY_REF_COST);
9181 
9182   format %{ "STW     $src, $dst \t// stk" %}
9183   size(4);
9184   ins_encode( enc_stw(src, dst) ); // rs=rt
9185   ins_pipe(pipe_class_memory);
9186 %}
9187 
9188 // Load long from stack slot
9189 instruct stkL_to_regL(iRegLdst dst, stackSlotL src) %{
9190   match(Set dst src);
9191   ins_cost(MEMORY_REF_COST);
9192 
9193   format %{ "LD      $dst, $src \t// long" %}
9194   size(4);
9195   ins_encode( enc_ld(dst, src) );
9196   ins_pipe(pipe_class_memory);
9197 %}
9198 
9199 // Store long to stack slot
9200 instruct regL_to_stkL(stackSlotL dst, iRegLsrc src) %{
9201   match(Set dst src);
9202   ins_cost(MEMORY_REF_COST);
9203 
9204   format %{ "STD     $src, $dst \t// long" %}
9205   size(4);
9206   ins_encode( enc_std(src, dst) ); // rs=rt
9207   ins_pipe(pipe_class_memory);
9208 %}
9209 
9210 //----------Moves between int and float
9211 
9212 // Move float value from float stack-location to integer register.
9213 instruct moveF2I_stack_reg(iRegIdst dst, stackSlotF src) %{
9214   match(Set dst (MoveF2I src));
9215   ins_cost(MEMORY_REF_COST);
9216 
9217   format %{ "LWZ     $dst, $src \t// MoveF2I" %}
9218   size(4);
9219   ins_encode( enc_lwz(dst, src) );
9220   ins_pipe(pipe_class_memory);
9221 %}
9222 
9223 // Move float value from float register to integer stack-location.
9224 instruct moveF2I_reg_stack(stackSlotI dst, regF src) %{
9225   match(Set dst (MoveF2I src));
9226   ins_cost(MEMORY_REF_COST);
9227 
9228   format %{ "STFS    $src, $dst \t// MoveF2I" %}
9229   size(4);
9230   ins_encode( enc_stfs(src, dst) );
9231   ins_pipe(pipe_class_memory);
9232 %}
9233 
9234 // Move integer value from integer stack-location to float register.
9235 instruct moveI2F_stack_reg(regF dst, stackSlotI src) %{
9236   match(Set dst (MoveI2F src));
9237   ins_cost(MEMORY_REF_COST);
9238 
9239   format %{ "LFS     $dst, $src \t// MoveI2F" %}
9240   size(4);
9241   ins_encode %{
9242     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
9243     int Idisp = $src$$disp + frame_slots_bias($src$$base, ra_);
9244     __ lfs($dst$$FloatRegister, Idisp, $src$$base$$Register);
9245   %}
9246   ins_pipe(pipe_class_memory);
9247 %}
9248 
9249 // Move integer value from integer register to float stack-location.
9250 instruct moveI2F_reg_stack(stackSlotF dst, iRegIsrc src) %{
9251   match(Set dst (MoveI2F src));
9252   ins_cost(MEMORY_REF_COST);
9253 
9254   format %{ "STW     $src, $dst \t// MoveI2F" %}
9255   size(4);
9256   ins_encode( enc_stw(src, dst) );
9257   ins_pipe(pipe_class_memory);
9258 %}
9259 
9260 //----------Moves between long and float
9261 
9262 instruct moveF2L_reg_stack(stackSlotL dst, regF src) %{
9263   // no match-rule, false predicate
9264   effect(DEF dst, USE src);
9265   predicate(false);
9266 
9267   format %{ "storeD  $src, $dst \t// STACK" %}
9268   size(4);
9269   ins_encode( enc_stfd(src, dst) );
9270   ins_pipe(pipe_class_default);
9271 %}
9272 
9273 //----------Moves between long and double
9274 
9275 // Move double value from double stack-location to long register.
9276 instruct moveD2L_stack_reg(iRegLdst dst, stackSlotD src) %{
9277   match(Set dst (MoveD2L src));
9278   ins_cost(MEMORY_REF_COST);
9279   size(4);
9280   format %{ "LD      $dst, $src \t// MoveD2L" %}
9281   ins_encode( enc_ld(dst, src) );
9282   ins_pipe(pipe_class_memory);
9283 %}
9284 
9285 // Move double value from double register to long stack-location.
9286 instruct moveD2L_reg_stack(stackSlotL dst, regD src) %{
9287   match(Set dst (MoveD2L src));
9288   effect(DEF dst, USE src);
9289   ins_cost(MEMORY_REF_COST);
9290 
9291   format %{ "STFD    $src, $dst \t// MoveD2L" %}
9292   size(4);
9293   ins_encode( enc_stfd(src, dst) );
9294   ins_pipe(pipe_class_memory);
9295 %}
9296 
9297 // Move long value from long stack-location to double register.
9298 instruct moveL2D_stack_reg(regD dst, stackSlotL src) %{
9299   match(Set dst (MoveL2D src));
9300   ins_cost(MEMORY_REF_COST);
9301 
9302   format %{ "LFD     $dst, $src \t// MoveL2D" %}
9303   size(4);
9304   ins_encode( enc_lfd(dst, src) );
9305   ins_pipe(pipe_class_memory);
9306 %}
9307 
9308 // Move long value from long register to double stack-location.
9309 instruct moveL2D_reg_stack(stackSlotD dst, iRegLsrc src) %{
9310   match(Set dst (MoveL2D src));
9311   ins_cost(MEMORY_REF_COST);
9312 
9313   format %{ "STD     $src, $dst \t// MoveL2D" %}
9314   size(4);
9315   ins_encode( enc_std(src, dst) );
9316   ins_pipe(pipe_class_memory);
9317 %}
9318 
9319 //----------Register Move Instructions-----------------------------------------
9320 
9321 // Replicate for Superword
9322 
9323 instruct moveReg(iRegLdst dst, iRegIsrc src) %{
9324   predicate(false);
9325   effect(DEF dst, USE src);
9326 
9327   format %{ "MR      $dst, $src \t// replicate " %}
9328   // variable size, 0 or 4.
9329   ins_encode %{
9330     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9331     __ mr_if_needed($dst$$Register, $src$$Register);
9332   %}
9333   ins_pipe(pipe_class_default);
9334 %}
9335 
9336 //----------Cast instructions (Java-level type cast)---------------------------
9337 
9338 // Cast Long to Pointer for unsafe natives.
9339 instruct castX2P(iRegPdst dst, iRegLsrc src) %{
9340   match(Set dst (CastX2P src));
9341 
9342   format %{ "MR      $dst, $src \t// Long->Ptr" %}
9343   // variable size, 0 or 4.
9344   ins_encode %{
9345     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9346     __ mr_if_needed($dst$$Register, $src$$Register);
9347   %}
9348  ins_pipe(pipe_class_default);
9349 %}
9350 
9351 // Cast Pointer to Long for unsafe natives.
9352 instruct castP2X(iRegLdst dst, iRegP_N2P src) %{
9353   match(Set dst (CastP2X src));
9354 
9355   format %{ "MR      $dst, $src \t// Ptr->Long" %}
9356   // variable size, 0 or 4.
9357   ins_encode %{
9358     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9359     __ mr_if_needed($dst$$Register, $src$$Register);
9360   %}
9361   ins_pipe(pipe_class_default);
9362 %}
9363 
9364 instruct castPP(iRegPdst dst) %{
9365   match(Set dst (CastPP dst));
9366   format %{ " -- \t// castPP of $dst" %}
9367   size(0);
9368   ins_encode( /*empty*/ );
9369   ins_pipe(pipe_class_default);
9370 %}
9371 
9372 instruct castII(iRegIdst dst) %{
9373   match(Set dst (CastII dst));
9374   format %{ " -- \t// castII of $dst" %}
9375   size(0);
9376   ins_encode( /*empty*/ );
9377   ins_pipe(pipe_class_default);
9378 %}
9379 
9380 instruct checkCastPP(iRegPdst dst) %{
9381   match(Set dst (CheckCastPP dst));
9382   format %{ " -- \t// checkcastPP of $dst" %}
9383   size(0);
9384   ins_encode( /*empty*/ );
9385   ins_pipe(pipe_class_default);
9386 %}
9387 
9388 //----------Convert instructions-----------------------------------------------
9389 
9390 // Convert to boolean.
9391 
9392 // int_to_bool(src) : { 1   if src != 0
9393 //                    { 0   else
9394 //
9395 // strategy:
9396 // 1) Count leading zeros of 32 bit-value src,
9397 //    this returns 32 (0b10.0000) iff src == 0 and <32 otherwise.
9398 // 2) Shift 5 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
9399 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
9400 
9401 // convI2Bool
9402 instruct convI2Bool_reg__cntlz_Ex(iRegIdst dst, iRegIsrc src) %{
9403   match(Set dst (Conv2B src));
9404   predicate(UseCountLeadingZerosInstructionsPPC64);
9405   ins_cost(DEFAULT_COST);
9406 
9407   expand %{
9408     immI shiftAmount %{ 0x5 %}
9409     uimmI16 mask %{ 0x1 %}
9410     iRegIdst tmp1;
9411     iRegIdst tmp2;
9412     countLeadingZerosI(tmp1, src);
9413     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
9414     xorI_reg_uimm16(dst, tmp2, mask);
9415   %}
9416 %}
9417 
9418 instruct convI2Bool_reg__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx) %{
9419   match(Set dst (Conv2B src));
9420   effect(TEMP crx);
9421   predicate(!UseCountLeadingZerosInstructionsPPC64);
9422   ins_cost(DEFAULT_COST);
9423 
9424   format %{ "CMPWI   $crx, $src, #0 \t// convI2B"
9425             "LI      $dst, #0\n\t"
9426             "BEQ     $crx, done\n\t"
9427             "LI      $dst, #1\n"
9428             "done:" %}
9429   size(16);
9430   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x0, 0x1) );
9431   ins_pipe(pipe_class_compare);
9432 %}
9433 
9434 // ConvI2B + XorI
9435 instruct xorI_convI2Bool_reg_immIvalue1__cntlz_Ex(iRegIdst dst, iRegIsrc src, immI_1 mask) %{
9436   match(Set dst (XorI (Conv2B src) mask));
9437   predicate(UseCountLeadingZerosInstructionsPPC64);
9438   ins_cost(DEFAULT_COST);
9439 
9440   expand %{
9441     immI shiftAmount %{ 0x5 %}
9442     iRegIdst tmp1;
9443     countLeadingZerosI(tmp1, src);
9444     urShiftI_reg_imm(dst, tmp1, shiftAmount);
9445   %}
9446 %}
9447 
9448 instruct xorI_convI2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI_1 mask) %{
9449   match(Set dst (XorI (Conv2B src) mask));
9450   effect(TEMP crx);
9451   predicate(!UseCountLeadingZerosInstructionsPPC64);
9452   ins_cost(DEFAULT_COST);
9453 
9454   format %{ "CMPWI   $crx, $src, #0 \t// Xor(convI2B($src), $mask)"
9455             "LI      $dst, #1\n\t"
9456             "BEQ     $crx, done\n\t"
9457             "LI      $dst, #0\n"
9458             "done:" %}
9459   size(16);
9460   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x1, 0x0) );
9461   ins_pipe(pipe_class_compare);
9462 %}
9463 
9464 // AndI 0b0..010..0 + ConvI2B
9465 instruct convI2Bool_andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src, immIpowerOf2 mask) %{
9466   match(Set dst (Conv2B (AndI src mask)));
9467   predicate(UseRotateAndMaskInstructionsPPC64);
9468   ins_cost(DEFAULT_COST);
9469 
9470   format %{ "RLWINM  $dst, $src, $mask \t// convI2B(AndI($src, $mask))" %}
9471   size(4);
9472   ins_encode %{
9473     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
9474     __ rlwinm($dst$$Register, $src$$Register, (32-log2_long((jlong)$mask$$constant)) & 0x1f, 31, 31);
9475   %}
9476   ins_pipe(pipe_class_default);
9477 %}
9478 
9479 // Convert pointer to boolean.
9480 //
9481 // ptr_to_bool(src) : { 1   if src != 0
9482 //                    { 0   else
9483 //
9484 // strategy:
9485 // 1) Count leading zeros of 64 bit-value src,
9486 //    this returns 64 (0b100.0000) iff src == 0 and <64 otherwise.
9487 // 2) Shift 6 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
9488 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
9489 
9490 // ConvP2B
9491 instruct convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src) %{
9492   match(Set dst (Conv2B src));
9493   predicate(UseCountLeadingZerosInstructionsPPC64);
9494   ins_cost(DEFAULT_COST);
9495 
9496   expand %{
9497     immI shiftAmount %{ 0x6 %}
9498     uimmI16 mask %{ 0x1 %}
9499     iRegIdst tmp1;
9500     iRegIdst tmp2;
9501     countLeadingZerosP(tmp1, src);
9502     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
9503     xorI_reg_uimm16(dst, tmp2, mask);
9504   %}
9505 %}
9506 
9507 instruct convP2Bool_reg__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx) %{
9508   match(Set dst (Conv2B src));
9509   effect(TEMP crx);
9510   predicate(!UseCountLeadingZerosInstructionsPPC64);
9511   ins_cost(DEFAULT_COST);
9512 
9513   format %{ "CMPDI   $crx, $src, #0 \t// convP2B"
9514             "LI      $dst, #0\n\t"
9515             "BEQ     $crx, done\n\t"
9516             "LI      $dst, #1\n"
9517             "done:" %}
9518   size(16);
9519   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x0, 0x1) );
9520   ins_pipe(pipe_class_compare);
9521 %}
9522 
9523 // ConvP2B + XorI
9524 instruct xorI_convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src, immI_1 mask) %{
9525   match(Set dst (XorI (Conv2B src) mask));
9526   predicate(UseCountLeadingZerosInstructionsPPC64);
9527   ins_cost(DEFAULT_COST);
9528 
9529   expand %{
9530     immI shiftAmount %{ 0x6 %}
9531     iRegIdst tmp1;
9532     countLeadingZerosP(tmp1, src);
9533     urShiftI_reg_imm(dst, tmp1, shiftAmount);
9534   %}
9535 %}
9536 
9537 instruct xorI_convP2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx, immI_1 mask) %{
9538   match(Set dst (XorI (Conv2B src) mask));
9539   effect(TEMP crx);
9540   predicate(!UseCountLeadingZerosInstructionsPPC64);
9541   ins_cost(DEFAULT_COST);
9542 
9543   format %{ "CMPDI   $crx, $src, #0 \t// XorI(convP2B($src), $mask)"
9544             "LI      $dst, #1\n\t"
9545             "BEQ     $crx, done\n\t"
9546             "LI      $dst, #0\n"
9547             "done:" %}
9548   size(16);
9549   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x1, 0x0) );
9550   ins_pipe(pipe_class_compare);
9551 %}
9552 
9553 // if src1 < src2, return -1 else return 0
9554 instruct cmpLTMask_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9555   match(Set dst (CmpLTMask src1 src2));
9556   ins_cost(DEFAULT_COST*4);
9557 
9558   expand %{
9559     iRegIdst src1s;
9560     iRegIdst src2s;
9561     iRegIdst diff;
9562     sxtI_reg(src1s, src1); // ensure proper sign extention
9563     sxtI_reg(src2s, src2); // ensure proper sign extention
9564     subI_reg_reg(diff, src1s, src2s);
9565     // Need to consider >=33 bit result, therefore we need signmaskL.
9566     signmask64I_regI(dst, diff);
9567   %}
9568 %}
9569 
9570 instruct cmpLTMask_reg_immI0(iRegIdst dst, iRegIsrc src1, immI_0 src2) %{
9571   match(Set dst (CmpLTMask src1 src2)); // if src1 < src2, return -1 else return 0
9572   format %{ "SRAWI   $dst, $src1, $src2 \t// CmpLTMask" %}
9573   size(4);
9574   ins_encode %{
9575     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
9576     __ srawi($dst$$Register, $src1$$Register, 0x1f);
9577   %}
9578   ins_pipe(pipe_class_default);
9579 %}
9580 
9581 //----------Arithmetic Conversion Instructions---------------------------------
9582 
9583 // Convert to Byte  -- nop
9584 // Convert to Short -- nop
9585 
9586 // Convert to Int
9587 
9588 instruct convB2I_reg(iRegIdst dst, iRegIsrc src, immI_24 amount) %{
9589   match(Set dst (RShiftI (LShiftI src amount) amount));
9590   format %{ "EXTSB   $dst, $src \t// byte->int" %}
9591   size(4);
9592   ins_encode %{
9593     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
9594     __ extsb($dst$$Register, $src$$Register);
9595   %}
9596   ins_pipe(pipe_class_default);
9597 %}
9598 
9599 // LShiftI 16 + RShiftI 16 converts short to int.
9600 instruct convS2I_reg(iRegIdst dst, iRegIsrc src, immI_16 amount) %{
9601   match(Set dst (RShiftI (LShiftI src amount) amount));
9602   format %{ "EXTSH   $dst, $src \t// short->int" %}
9603   size(4);
9604   ins_encode %{
9605     // TODO: PPC port $archOpcode(ppc64Opcode_extsh);
9606     __ extsh($dst$$Register, $src$$Register);
9607   %}
9608   ins_pipe(pipe_class_default);
9609 %}
9610 
9611 // ConvL2I + ConvI2L: Sign extend int in long register.
9612 instruct sxtI_L2L_reg(iRegLdst dst, iRegLsrc src) %{
9613   match(Set dst (ConvI2L (ConvL2I src)));
9614 
9615   format %{ "EXTSW   $dst, $src \t// long->long" %}
9616   size(4);
9617   ins_encode %{
9618     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
9619     __ extsw($dst$$Register, $src$$Register);
9620   %}
9621   ins_pipe(pipe_class_default);
9622 %}
9623 
9624 instruct convL2I_reg(iRegIdst dst, iRegLsrc src) %{
9625   match(Set dst (ConvL2I src));
9626   format %{ "MR      $dst, $src \t// long->int" %}
9627   // variable size, 0 or 4
9628   ins_encode %{
9629     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9630     __ mr_if_needed($dst$$Register, $src$$Register);
9631   %}
9632   ins_pipe(pipe_class_default);
9633 %}
9634 
9635 instruct convD2IRaw_regD(regD dst, regD src) %{
9636   // no match-rule, false predicate
9637   effect(DEF dst, USE src);
9638   predicate(false);
9639 
9640   format %{ "FCTIWZ $dst, $src \t// convD2I, $src != NaN" %}
9641   size(4);
9642   ins_encode %{
9643     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);;
9644     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
9645   %}
9646   ins_pipe(pipe_class_default);
9647 %}
9648 
9649 instruct cmovI_bso_stackSlotL(iRegIdst dst, flagsReg crx, stackSlotL src) %{
9650   // no match-rule, false predicate
9651   effect(DEF dst, USE crx, USE src);
9652   predicate(false);
9653 
9654   ins_variable_size_depending_on_alignment(true);
9655 
9656   format %{ "cmovI   $crx, $dst, $src" %}
9657   // Worst case is branch + move + stop, no stop without scheduler.
9658   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
9659   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
9660   ins_pipe(pipe_class_default);
9661 %}
9662 
9663 instruct cmovI_bso_stackSlotL_conLvalue0_Ex(iRegIdst dst, flagsReg crx, stackSlotL mem) %{
9664   // no match-rule, false predicate
9665   effect(DEF dst, USE crx, USE mem);
9666   predicate(false);
9667 
9668   format %{ "CmovI   $dst, $crx, $mem \t// postalloc expanded" %}
9669   postalloc_expand %{
9670     //
9671     // replaces
9672     //
9673     //   region  dst  crx  mem
9674     //    \       |    |   /
9675     //     dst=cmovI_bso_stackSlotL_conLvalue0
9676     //
9677     // with
9678     //
9679     //   region  dst
9680     //    \       /
9681     //     dst=loadConI16(0)
9682     //      |
9683     //      ^  region  dst  crx  mem
9684     //      |   \       |    |    /
9685     //      dst=cmovI_bso_stackSlotL
9686     //
9687 
9688     // Create new nodes.
9689     MachNode *m1 = new (C) loadConI16Node();
9690     MachNode *m2 = new (C) cmovI_bso_stackSlotLNode();
9691 
9692     // inputs for new nodes
9693     m1->add_req(n_region);
9694     m2->add_req(n_region, n_crx, n_mem);
9695 
9696     // precedences for new nodes
9697     m2->add_prec(m1);
9698 
9699     // operands for new nodes
9700     m1->_opnds[0] = op_dst;
9701     m1->_opnds[1] = new (C) immI16Oper(0);
9702 
9703     m2->_opnds[0] = op_dst;
9704     m2->_opnds[1] = op_crx;
9705     m2->_opnds[2] = op_mem;
9706 
9707     // registers for new nodes
9708     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9709     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9710 
9711     // Insert new nodes.
9712     nodes->push(m1);
9713     nodes->push(m2);
9714   %}
9715 %}
9716 
9717 // Double to Int conversion, NaN is mapped to 0.
9718 instruct convD2I_reg_ExEx(iRegIdst dst, regD src) %{
9719   match(Set dst (ConvD2I src));
9720   ins_cost(DEFAULT_COST);
9721 
9722   expand %{
9723     regD tmpD;
9724     stackSlotL tmpS;
9725     flagsReg crx;
9726     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9727     convD2IRaw_regD(tmpD, src);                         // Convert float to int (speculated).
9728     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
9729     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9730   %}
9731 %}
9732 
9733 instruct convF2IRaw_regF(regF dst, regF src) %{
9734   // no match-rule, false predicate
9735   effect(DEF dst, USE src);
9736   predicate(false);
9737 
9738   format %{ "FCTIWZ $dst, $src \t// convF2I, $src != NaN" %}
9739   size(4);
9740   ins_encode %{
9741     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
9742     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
9743   %}
9744   ins_pipe(pipe_class_default);
9745 %}
9746 
9747 // Float to Int conversion, NaN is mapped to 0.
9748 instruct convF2I_regF_ExEx(iRegIdst dst, regF src) %{
9749   match(Set dst (ConvF2I src));
9750   ins_cost(DEFAULT_COST);
9751 
9752   expand %{
9753     regF tmpF;
9754     stackSlotL tmpS;
9755     flagsReg crx;
9756     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9757     convF2IRaw_regF(tmpF, src);                         // Convert float to int (speculated).
9758     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
9759     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9760   %}
9761 %}
9762 
9763 // Convert to Long
9764 
9765 instruct convI2L_reg(iRegLdst dst, iRegIsrc src) %{
9766   match(Set dst (ConvI2L src));
9767   format %{ "EXTSW   $dst, $src \t// int->long" %}
9768   size(4);
9769   ins_encode %{
9770     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
9771     __ extsw($dst$$Register, $src$$Register);
9772   %}
9773   ins_pipe(pipe_class_default);
9774 %}
9775 
9776 // Zero-extend: convert unsigned int to long (convUI2L).
9777 instruct zeroExtendL_regI(iRegLdst dst, iRegIsrc src, immL_32bits mask) %{
9778   match(Set dst (AndL (ConvI2L src) mask));
9779   ins_cost(DEFAULT_COST);
9780 
9781   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
9782   size(4);
9783   ins_encode %{
9784     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
9785     __ clrldi($dst$$Register, $src$$Register, 32);
9786   %}
9787   ins_pipe(pipe_class_default);
9788 %}
9789 
9790 // Zero-extend: convert unsigned int to long in long register.
9791 instruct zeroExtendL_regL(iRegLdst dst, iRegLsrc src, immL_32bits mask) %{
9792   match(Set dst (AndL src mask));
9793   ins_cost(DEFAULT_COST);
9794 
9795   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
9796   size(4);
9797   ins_encode %{
9798     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
9799     __ clrldi($dst$$Register, $src$$Register, 32);
9800   %}
9801   ins_pipe(pipe_class_default);
9802 %}
9803 
9804 instruct convF2LRaw_regF(regF dst, regF src) %{
9805   // no match-rule, false predicate
9806   effect(DEF dst, USE src);
9807   predicate(false);
9808 
9809   format %{ "FCTIDZ $dst, $src \t// convF2L, $src != NaN" %}
9810   size(4);
9811   ins_encode %{
9812     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
9813     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
9814   %}
9815   ins_pipe(pipe_class_default);
9816 %}
9817 
9818 instruct cmovL_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL src) %{
9819   // no match-rule, false predicate
9820   effect(DEF dst, USE crx, USE src);
9821   predicate(false);
9822 
9823   ins_variable_size_depending_on_alignment(true);
9824 
9825   format %{ "cmovL   $crx, $dst, $src" %}
9826   // Worst case is branch + move + stop, no stop without scheduler.
9827   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
9828   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
9829   ins_pipe(pipe_class_default);
9830 %}
9831 
9832 instruct cmovL_bso_stackSlotL_conLvalue0_Ex(iRegLdst dst, flagsReg crx, stackSlotL mem) %{
9833   // no match-rule, false predicate
9834   effect(DEF dst, USE crx, USE mem);
9835   predicate(false);
9836 
9837   format %{ "CmovL   $dst, $crx, $mem \t// postalloc expanded" %}
9838   postalloc_expand %{
9839     //
9840     // replaces
9841     //
9842     //   region  dst  crx  mem
9843     //    \       |    |   /
9844     //     dst=cmovL_bso_stackSlotL_conLvalue0
9845     //
9846     // with
9847     //
9848     //   region  dst
9849     //    \       /
9850     //     dst=loadConL16(0)
9851     //      |
9852     //      ^  region  dst  crx  mem
9853     //      |   \       |    |    /
9854     //      dst=cmovL_bso_stackSlotL
9855     //
9856 
9857     // Create new nodes.
9858     MachNode *m1 = new (C) loadConL16Node();
9859     MachNode *m2 = new (C) cmovL_bso_stackSlotLNode();
9860 
9861     // inputs for new nodes
9862     m1->add_req(n_region);
9863     m2->add_req(n_region, n_crx, n_mem);
9864     m2->add_prec(m1);
9865 
9866     // operands for new nodes
9867     m1->_opnds[0] = op_dst;
9868     m1->_opnds[1] = new (C) immL16Oper(0);
9869     m2->_opnds[0] = op_dst;
9870     m2->_opnds[1] = op_crx;
9871     m2->_opnds[2] = op_mem;
9872 
9873     // registers for new nodes
9874     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9875     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9876 
9877     // Insert new nodes.
9878     nodes->push(m1);
9879     nodes->push(m2);
9880   %}
9881 %}
9882 
9883 // Float to Long conversion, NaN is mapped to 0.
9884 instruct convF2L_reg_ExEx(iRegLdst dst, regF src) %{
9885   match(Set dst (ConvF2L src));
9886   ins_cost(DEFAULT_COST);
9887 
9888   expand %{
9889     regF tmpF;
9890     stackSlotL tmpS;
9891     flagsReg crx;
9892     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9893     convF2LRaw_regF(tmpF, src);                         // Convert float to long (speculated).
9894     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
9895     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9896   %}
9897 %}
9898 
9899 instruct convD2LRaw_regD(regD dst, regD src) %{
9900   // no match-rule, false predicate
9901   effect(DEF dst, USE src);
9902   predicate(false);
9903 
9904   format %{ "FCTIDZ $dst, $src \t// convD2L $src != NaN" %}
9905   size(4);
9906   ins_encode %{
9907     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
9908     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
9909   %}
9910   ins_pipe(pipe_class_default);
9911 %}
9912 
9913 // Double to Long conversion, NaN is mapped to 0.
9914 instruct convD2L_reg_ExEx(iRegLdst dst, regD src) %{
9915   match(Set dst (ConvD2L src));
9916   ins_cost(DEFAULT_COST);
9917 
9918   expand %{
9919     regD tmpD;
9920     stackSlotL tmpS;
9921     flagsReg crx;
9922     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9923     convD2LRaw_regD(tmpD, src);                         // Convert float to long (speculated).
9924     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
9925     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9926   %}
9927 %}
9928 
9929 // Convert to Float
9930 
9931 // Placed here as needed in expand.
9932 instruct convL2DRaw_regD(regD dst, regD src) %{
9933   // no match-rule, false predicate
9934   effect(DEF dst, USE src);
9935   predicate(false);
9936 
9937   format %{ "FCFID $dst, $src \t// convL2D" %}
9938   size(4);
9939   ins_encode %{
9940     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
9941     __ fcfid($dst$$FloatRegister, $src$$FloatRegister);
9942   %}
9943   ins_pipe(pipe_class_default);
9944 %}
9945 
9946 // Placed here as needed in expand.
9947 instruct convD2F_reg(regF dst, regD src) %{
9948   match(Set dst (ConvD2F src));
9949   format %{ "FRSP    $dst, $src \t// convD2F" %}
9950   size(4);
9951   ins_encode %{
9952     // TODO: PPC port $archOpcode(ppc64Opcode_frsp);
9953     __ frsp($dst$$FloatRegister, $src$$FloatRegister);
9954   %}
9955   ins_pipe(pipe_class_default);
9956 %}
9957 
9958 // Integer to Float conversion.
9959 instruct convI2F_ireg_Ex(regF dst, iRegIsrc src) %{
9960   match(Set dst (ConvI2F src));
9961   predicate(!VM_Version::has_fcfids());
9962   ins_cost(DEFAULT_COST);
9963 
9964   expand %{
9965     iRegLdst tmpL;
9966     stackSlotL tmpS;
9967     regD tmpD;
9968     regD tmpD2;
9969     convI2L_reg(tmpL, src);              // Sign-extension int to long.
9970     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
9971     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
9972     convL2DRaw_regD(tmpD2, tmpD);        // Convert to double.
9973     convD2F_reg(dst, tmpD2);             // Convert double to float.
9974   %}
9975 %}
9976 
9977 instruct convL2FRaw_regF(regF dst, regD src) %{
9978   // no match-rule, false predicate
9979   effect(DEF dst, USE src);
9980   predicate(false);
9981 
9982   format %{ "FCFIDS $dst, $src \t// convL2F" %}
9983   size(4);
9984   ins_encode %{
9985     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
9986     __ fcfids($dst$$FloatRegister, $src$$FloatRegister);
9987   %}
9988   ins_pipe(pipe_class_default);
9989 %}
9990 
9991 // Integer to Float conversion. Special version for Power7.
9992 instruct convI2F_ireg_fcfids_Ex(regF dst, iRegIsrc src) %{
9993   match(Set dst (ConvI2F src));
9994   predicate(VM_Version::has_fcfids());
9995   ins_cost(DEFAULT_COST);
9996 
9997   expand %{
9998     iRegLdst tmpL;
9999     stackSlotL tmpS;
10000     regD tmpD;
10001     convI2L_reg(tmpL, src);              // Sign-extension int to long.
10002     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
10003     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10004     convL2FRaw_regF(dst, tmpD);          // Convert to float.
10005   %}
10006 %}
10007 
10008 // L2F to avoid runtime call.
10009 instruct convL2F_ireg_fcfids_Ex(regF dst, iRegLsrc src) %{
10010   match(Set dst (ConvL2F src));
10011   predicate(VM_Version::has_fcfids());
10012   ins_cost(DEFAULT_COST);
10013 
10014   expand %{
10015     stackSlotL tmpS;
10016     regD tmpD;
10017     regL_to_stkL(tmpS, src);             // Store long to stack.
10018     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10019     convL2FRaw_regF(dst, tmpD);          // Convert to float.
10020   %}
10021 %}
10022 
10023 // Moved up as used in expand.
10024 //instruct convD2F_reg(regF dst, regD src) %{%}
10025 
10026 // Convert to Double
10027 
10028 // Integer to Double conversion.
10029 instruct convI2D_reg_Ex(regD dst, iRegIsrc src) %{
10030   match(Set dst (ConvI2D src));
10031   ins_cost(DEFAULT_COST);
10032 
10033   expand %{
10034     iRegLdst tmpL;
10035     stackSlotL tmpS;
10036     regD tmpD;
10037     convI2L_reg(tmpL, src);              // Sign-extension int to long.
10038     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
10039     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10040     convL2DRaw_regD(dst, tmpD);          // Convert to double.
10041   %}
10042 %}
10043 
10044 // Long to Double conversion
10045 instruct convL2D_reg_Ex(regD dst, stackSlotL src) %{
10046   match(Set dst (ConvL2D src));
10047   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10048 
10049   expand %{
10050     regD tmpD;
10051     moveL2D_stack_reg(tmpD, src);
10052     convL2DRaw_regD(dst, tmpD);
10053   %}
10054 %}
10055 
10056 instruct convF2D_reg(regD dst, regF src) %{
10057   match(Set dst (ConvF2D src));
10058   format %{ "FMR     $dst, $src \t// float->double" %}
10059   // variable size, 0 or 4
10060   ins_encode %{
10061     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
10062     __ fmr_if_needed($dst$$FloatRegister, $src$$FloatRegister);
10063   %}
10064   ins_pipe(pipe_class_default);
10065 %}
10066 
10067 //----------Control Flow Instructions------------------------------------------
10068 // Compare Instructions
10069 
10070 // Compare Integers
10071 instruct cmpI_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
10072   match(Set crx (CmpI src1 src2));
10073   size(4);
10074   format %{ "CMPW    $crx, $src1, $src2" %}
10075   ins_encode %{
10076     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
10077     __ cmpw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10078   %}
10079   ins_pipe(pipe_class_compare);
10080 %}
10081 
10082 instruct cmpI_reg_imm16(flagsReg crx, iRegIsrc src1, immI16 src2) %{
10083   match(Set crx (CmpI src1 src2));
10084   format %{ "CMPWI   $crx, $src1, $src2" %}
10085   size(4);
10086   ins_encode %{
10087     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10088     __ cmpwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10089   %}
10090   ins_pipe(pipe_class_compare);
10091 %}
10092 
10093 // (src1 & src2) == 0?
10094 instruct testI_reg_imm(flagsRegCR0 cr0, iRegIsrc src1, uimmI16 src2, immI_0 zero) %{
10095   match(Set cr0 (CmpI (AndI src1 src2) zero));
10096   // r0 is killed
10097   format %{ "ANDI    R0, $src1, $src2 \t// BTST int" %}
10098   size(4);
10099   ins_encode %{
10100     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
10101     // FIXME: avoid andi_ ?
10102     __ andi_(R0, $src1$$Register, $src2$$constant);
10103   %}
10104   ins_pipe(pipe_class_compare);
10105 %}
10106 
10107 instruct cmpL_reg_reg(flagsReg crx, iRegLsrc src1, iRegLsrc src2) %{
10108   match(Set crx (CmpL src1 src2));
10109   format %{ "CMPD    $crx, $src1, $src2" %}
10110   size(4);
10111   ins_encode %{
10112     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
10113     __ cmpd($crx$$CondRegister, $src1$$Register, $src2$$Register);
10114   %}
10115   ins_pipe(pipe_class_compare);
10116 %}
10117 
10118 instruct cmpL_reg_imm16(flagsReg crx, iRegLsrc src1, immL16 src2) %{
10119   match(Set crx (CmpL src1 src2));
10120   format %{ "CMPDI   $crx, $src1, $src2" %}
10121   size(4);
10122   ins_encode %{
10123     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10124     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10125   %}
10126   ins_pipe(pipe_class_compare);
10127 %}
10128 
10129 instruct testL_reg_reg(flagsRegCR0 cr0, iRegLsrc src1, iRegLsrc src2, immL_0 zero) %{
10130   match(Set cr0 (CmpL (AndL src1 src2) zero));
10131   // r0 is killed
10132   format %{ "AND     R0, $src1, $src2 \t// BTST long" %}
10133   size(4);
10134   ins_encode %{
10135     // TODO: PPC port $archOpcode(ppc64Opcode_and_);
10136     __ and_(R0, $src1$$Register, $src2$$Register);
10137   %}
10138   ins_pipe(pipe_class_compare);
10139 %}
10140 
10141 instruct testL_reg_imm(flagsRegCR0 cr0, iRegLsrc src1, uimmL16 src2, immL_0 zero) %{
10142   match(Set cr0 (CmpL (AndL src1 src2) zero));
10143   // r0 is killed
10144   format %{ "ANDI    R0, $src1, $src2 \t// BTST long" %}
10145   size(4);
10146   ins_encode %{
10147     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
10148     // FIXME: avoid andi_ ?
10149     __ andi_(R0, $src1$$Register, $src2$$constant);
10150   %}
10151   ins_pipe(pipe_class_compare);
10152 %}
10153 
10154 instruct cmovI_conIvalueMinus1_conIvalue1(iRegIdst dst, flagsReg crx) %{
10155   // no match-rule, false predicate
10156   effect(DEF dst, USE crx);
10157   predicate(false);
10158 
10159   ins_variable_size_depending_on_alignment(true);
10160 
10161   format %{ "cmovI   $crx, $dst, -1, 0, +1" %}
10162   // Worst case is branch + move + branch + move + stop, no stop without scheduler.
10163   size(false /* TODO: PPC PORTInsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 20 : 16);
10164   ins_encode %{
10165     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
10166     Label done;
10167     // li(Rdst, 0);              // equal -> 0
10168     __ beq($crx$$CondRegister, done);
10169     __ li($dst$$Register, 1);    // greater -> +1
10170     __ bgt($crx$$CondRegister, done);
10171     __ li($dst$$Register, -1);   // unordered or less -> -1
10172     // TODO: PPC port__ endgroup_if_needed(_size == 20);
10173     __ bind(done);
10174   %}
10175   ins_pipe(pipe_class_compare);
10176 %}
10177 
10178 instruct cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(iRegIdst dst, flagsReg crx) %{
10179   // no match-rule, false predicate
10180   effect(DEF dst, USE crx);
10181   predicate(false);
10182 
10183   format %{ "CmovI    $crx, $dst, -1, 0, +1 \t// postalloc expanded" %}
10184   postalloc_expand %{
10185     //
10186     // replaces
10187     //
10188     //   region  crx
10189     //    \       |
10190     //     dst=cmovI_conIvalueMinus1_conIvalue0_conIvalue1
10191     //
10192     // with
10193     //
10194     //   region
10195     //    \
10196     //     dst=loadConI16(0)
10197     //      |
10198     //      ^  region  crx
10199     //      |   \       |
10200     //      dst=cmovI_conIvalueMinus1_conIvalue1
10201     //
10202 
10203     // Create new nodes.
10204     MachNode *m1 = new (C) loadConI16Node();
10205     MachNode *m2 = new (C) cmovI_conIvalueMinus1_conIvalue1Node();
10206 
10207     // inputs for new nodes
10208     m1->add_req(n_region);
10209     m2->add_req(n_region, n_crx);
10210     m2->add_prec(m1);
10211 
10212     // operands for new nodes
10213     m1->_opnds[0] = op_dst;
10214     m1->_opnds[1] = new (C) immI16Oper(0);
10215     m2->_opnds[0] = op_dst;
10216     m2->_opnds[1] = op_crx;
10217 
10218     // registers for new nodes
10219     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
10220     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
10221 
10222     // Insert new nodes.
10223     nodes->push(m1);
10224     nodes->push(m2);
10225   %}
10226 %}
10227 
10228 // Manifest a CmpL3 result in an integer register. Very painful.
10229 // This is the test to avoid.
10230 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
10231 instruct cmpL3_reg_reg_ExEx(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
10232   match(Set dst (CmpL3 src1 src2));
10233   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10234 
10235   expand %{
10236     flagsReg tmp1;
10237     cmpL_reg_reg(tmp1, src1, src2);
10238     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10239   %}
10240 %}
10241 
10242 // Implicit range checks.
10243 // A range check in the ideal world has one of the following shapes:
10244 //  - (If le (CmpU length index)), (IfTrue  throw exception)
10245 //  - (If lt (CmpU index length)), (IfFalse throw exception)
10246 //
10247 // Match range check 'If le (CmpU length index)'.
10248 instruct rangeCheck_iReg_uimm15(cmpOp cmp, iRegIsrc src_length, uimmI15 index, label labl) %{
10249   match(If cmp (CmpU src_length index));
10250   effect(USE labl);
10251   predicate(TrapBasedRangeChecks &&
10252             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le &&
10253             PROB_UNLIKELY(_leaf->as_If()->_prob) >= PROB_ALWAYS &&
10254             (Matcher::branches_to_uncommon_trap(_leaf)));
10255 
10256   ins_is_TrapBasedCheckNode(true);
10257 
10258   format %{ "TWI     $index $cmp $src_length \t// RangeCheck => trap $labl" %}
10259   size(4);
10260   ins_encode %{
10261     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
10262     if ($cmp$$cmpcode == 0x1 /* less_equal */) {
10263       __ trap_range_check_le($src_length$$Register, $index$$constant);
10264     } else {
10265       // Both successors are uncommon traps, probability is 0.
10266       // Node got flipped during fixup flow.
10267       assert($cmp$$cmpcode == 0x9, "must be greater");
10268       __ trap_range_check_g($src_length$$Register, $index$$constant);
10269     }
10270   %}
10271   ins_pipe(pipe_class_trap);
10272 %}
10273 
10274 // Match range check 'If lt (CmpU index length)'.
10275 instruct rangeCheck_iReg_iReg(cmpOp cmp, iRegIsrc src_index, iRegIsrc src_length, label labl) %{
10276   match(If cmp (CmpU src_index src_length));
10277   effect(USE labl);
10278   predicate(TrapBasedRangeChecks &&
10279             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
10280             _leaf->as_If()->_prob >= PROB_ALWAYS &&
10281             (Matcher::branches_to_uncommon_trap(_leaf)));
10282 
10283   ins_is_TrapBasedCheckNode(true);
10284 
10285   format %{ "TW      $src_index $cmp $src_length \t// RangeCheck => trap $labl" %}
10286   size(4);
10287   ins_encode %{
10288     // TODO: PPC port $archOpcode(ppc64Opcode_tw);
10289     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
10290       __ trap_range_check_ge($src_index$$Register, $src_length$$Register);
10291     } else {
10292       // Both successors are uncommon traps, probability is 0.
10293       // Node got flipped during fixup flow.
10294       assert($cmp$$cmpcode == 0x8, "must be less");
10295       __ trap_range_check_l($src_index$$Register, $src_length$$Register);
10296     }
10297   %}
10298   ins_pipe(pipe_class_trap);
10299 %}
10300 
10301 // Match range check 'If lt (CmpU index length)'.
10302 instruct rangeCheck_uimm15_iReg(cmpOp cmp, iRegIsrc src_index, uimmI15 length, label labl) %{
10303   match(If cmp (CmpU src_index length));
10304   effect(USE labl);
10305   predicate(TrapBasedRangeChecks &&
10306             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
10307             _leaf->as_If()->_prob >= PROB_ALWAYS &&
10308             (Matcher::branches_to_uncommon_trap(_leaf)));
10309 
10310   ins_is_TrapBasedCheckNode(true);
10311 
10312   format %{ "TWI     $src_index $cmp $length \t// RangeCheck => trap $labl" %}
10313   size(4);
10314   ins_encode %{
10315     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
10316     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
10317       __ trap_range_check_ge($src_index$$Register, $length$$constant);
10318     } else {
10319       // Both successors are uncommon traps, probability is 0.
10320       // Node got flipped during fixup flow.
10321       assert($cmp$$cmpcode == 0x8, "must be less");
10322       __ trap_range_check_l($src_index$$Register, $length$$constant);
10323     }
10324   %}
10325   ins_pipe(pipe_class_trap);
10326 %}
10327 
10328 instruct compU_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
10329   match(Set crx (CmpU src1 src2));
10330   format %{ "CMPLW   $crx, $src1, $src2 \t// unsigned" %}
10331   size(4);
10332   ins_encode %{
10333     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10334     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10335   %}
10336   ins_pipe(pipe_class_compare);
10337 %}
10338 
10339 instruct compU_reg_uimm16(flagsReg crx, iRegIsrc src1, uimmI16 src2) %{
10340   match(Set crx (CmpU src1 src2));
10341   size(4);
10342   format %{ "CMPLWI  $crx, $src1, $src2" %}
10343   ins_encode %{
10344     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
10345     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10346   %}
10347   ins_pipe(pipe_class_compare);
10348 %}
10349 
10350 // Implicit zero checks (more implicit null checks).
10351 // No constant pool entries required.
10352 instruct zeroCheckN_iReg_imm0(cmpOp cmp, iRegNsrc value, immN_0 zero, label labl) %{
10353   match(If cmp (CmpN value zero));
10354   effect(USE labl);
10355   predicate(TrapBasedNullChecks &&
10356             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
10357             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
10358             Matcher::branches_to_uncommon_trap(_leaf));
10359   ins_cost(1);
10360 
10361   ins_is_TrapBasedCheckNode(true);
10362 
10363   format %{ "TDI     $value $cmp $zero \t// ZeroCheckN => trap $labl" %}
10364   size(4);
10365   ins_encode %{
10366     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
10367     if ($cmp$$cmpcode == 0xA) {
10368       __ trap_null_check($value$$Register);
10369     } else {
10370       // Both successors are uncommon traps, probability is 0.
10371       // Node got flipped during fixup flow.
10372       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
10373       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
10374     }
10375   %}
10376   ins_pipe(pipe_class_trap);
10377 %}
10378 
10379 // Compare narrow oops.
10380 instruct cmpN_reg_reg(flagsReg crx, iRegNsrc src1, iRegNsrc src2) %{
10381   match(Set crx (CmpN src1 src2));
10382 
10383   size(4);
10384   ins_cost(DEFAULT_COST);
10385   format %{ "CMPLW   $crx, $src1, $src2 \t// compressed ptr" %}
10386   ins_encode %{
10387     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10388     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10389   %}
10390   ins_pipe(pipe_class_compare);
10391 %}
10392 
10393 instruct cmpN_reg_imm0(flagsReg crx, iRegNsrc src1, immN_0 src2) %{
10394   match(Set crx (CmpN src1 src2));
10395   // Make this more expensive than zeroCheckN_iReg_imm0.
10396   ins_cost(DEFAULT_COST);
10397 
10398   format %{ "CMPLWI  $crx, $src1, $src2 \t// compressed ptr" %}
10399   size(4);
10400   ins_encode %{
10401     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
10402     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10403   %}
10404   ins_pipe(pipe_class_compare);
10405 %}
10406 
10407 // Implicit zero checks (more implicit null checks).
10408 // No constant pool entries required.
10409 instruct zeroCheckP_reg_imm0(cmpOp cmp, iRegP_N2P value, immP_0 zero, label labl) %{
10410   match(If cmp (CmpP value zero));
10411   effect(USE labl);
10412   predicate(TrapBasedNullChecks &&
10413             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
10414             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
10415             Matcher::branches_to_uncommon_trap(_leaf));
10416 
10417   ins_is_TrapBasedCheckNode(true);
10418 
10419   format %{ "TDI     $value $cmp $zero \t// ZeroCheckP => trap $labl" %}
10420   size(4);
10421   ins_encode %{
10422     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
10423     if ($cmp$$cmpcode == 0xA) {
10424       __ trap_null_check($value$$Register);
10425     } else {
10426       // Both successors are uncommon traps, probability is 0.
10427       // Node got flipped during fixup flow.
10428       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
10429       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
10430     }
10431   %}
10432   ins_pipe(pipe_class_trap);
10433 %}
10434 
10435 // Compare Pointers
10436 instruct cmpP_reg_reg(flagsReg crx, iRegP_N2P src1, iRegP_N2P src2) %{
10437   match(Set crx (CmpP src1 src2));
10438   format %{ "CMPLD   $crx, $src1, $src2 \t// ptr" %}
10439   size(4);
10440   ins_encode %{
10441     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10442     __ cmpld($crx$$CondRegister, $src1$$Register, $src2$$Register);
10443   %}
10444   ins_pipe(pipe_class_compare);
10445 %}
10446 
10447 // Used in postalloc expand.
10448 instruct cmpP_reg_imm16(flagsReg crx, iRegPsrc src1, immL16 src2) %{
10449   // This match rule prevents reordering of node before a safepoint.
10450   // This only makes sense if this instructions is used exclusively
10451   // for the expansion of EncodeP!
10452   match(Set crx (CmpP src1 src2));
10453   predicate(false);
10454 
10455   format %{ "CMPDI   $crx, $src1, $src2" %}
10456   size(4);
10457   ins_encode %{
10458     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10459     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10460   %}
10461   ins_pipe(pipe_class_compare);
10462 %}
10463 
10464 //----------Float Compares----------------------------------------------------
10465 
10466 instruct cmpFUnordered_reg_reg(flagsReg crx, regF src1, regF src2) %{
10467   // no match-rule, false predicate
10468   effect(DEF crx, USE src1, USE src2);
10469   predicate(false);
10470 
10471   format %{ "cmpFUrd $crx, $src1, $src2" %}
10472   size(4);
10473   ins_encode %{
10474     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
10475     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
10476   %}
10477   ins_pipe(pipe_class_default);
10478 %}
10479 
10480 instruct cmov_bns_less(flagsReg crx) %{
10481   // no match-rule, false predicate
10482   effect(DEF crx);
10483   predicate(false);
10484 
10485   ins_variable_size_depending_on_alignment(true);
10486 
10487   format %{ "cmov    $crx" %}
10488   // Worst case is branch + move + stop, no stop without scheduler.
10489   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 16 : 12);
10490   ins_encode %{
10491     // TODO: PPC port $archOpcode(ppc64Opcode_cmovecr);
10492     Label done;
10493     __ bns($crx$$CondRegister, done);        // not unordered -> keep crx
10494     __ li(R0, 0);
10495     __ cmpwi($crx$$CondRegister, R0, 1);     // unordered -> set crx to 'less'
10496     // TODO PPC port __ endgroup_if_needed(_size == 16);
10497     __ bind(done);
10498   %}
10499   ins_pipe(pipe_class_default);
10500 %}
10501 
10502 // Compare floating, generate condition code.
10503 instruct cmpF_reg_reg_Ex(flagsReg crx, regF src1, regF src2) %{
10504   // FIXME: should we match 'If cmp (CmpF src1 src2))' ??
10505   //
10506   // The following code sequence occurs a lot in mpegaudio:
10507   //
10508   // block BXX:
10509   // 0: instruct cmpFUnordered_reg_reg (cmpF_reg_reg-0):
10510   //    cmpFUrd CCR6, F11, F9
10511   // 4: instruct cmov_bns_less (cmpF_reg_reg-1):
10512   //    cmov CCR6
10513   // 8: instruct branchConSched:
10514   //    B_FARle CCR6, B56  P=0.500000 C=-1.000000
10515   match(Set crx (CmpF src1 src2));
10516   ins_cost(DEFAULT_COST+BRANCH_COST);
10517 
10518   format %{ "CmpF    $crx, $src1, $src2 \t// postalloc expanded" %}
10519   postalloc_expand %{
10520     //
10521     // replaces
10522     //
10523     //   region  src1  src2
10524     //    \       |     |
10525     //     crx=cmpF_reg_reg
10526     //
10527     // with
10528     //
10529     //   region  src1  src2
10530     //    \       |     |
10531     //     crx=cmpFUnordered_reg_reg
10532     //      |
10533     //      ^  region
10534     //      |   \
10535     //      crx=cmov_bns_less
10536     //
10537 
10538     // Create new nodes.
10539     MachNode *m1 = new (C) cmpFUnordered_reg_regNode();
10540     MachNode *m2 = new (C) cmov_bns_lessNode();
10541 
10542     // inputs for new nodes
10543     m1->add_req(n_region, n_src1, n_src2);
10544     m2->add_req(n_region);
10545     m2->add_prec(m1);
10546 
10547     // operands for new nodes
10548     m1->_opnds[0] = op_crx;
10549     m1->_opnds[1] = op_src1;
10550     m1->_opnds[2] = op_src2;
10551     m2->_opnds[0] = op_crx;
10552 
10553     // registers for new nodes
10554     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10555     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10556 
10557     // Insert new nodes.
10558     nodes->push(m1);
10559     nodes->push(m2);
10560   %}
10561 %}
10562 
10563 // Compare float, generate -1,0,1
10564 instruct cmpF3_reg_reg_ExEx(iRegIdst dst, regF src1, regF src2) %{
10565   match(Set dst (CmpF3 src1 src2));
10566   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10567 
10568   expand %{
10569     flagsReg tmp1;
10570     cmpFUnordered_reg_reg(tmp1, src1, src2);
10571     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10572   %}
10573 %}
10574 
10575 instruct cmpDUnordered_reg_reg(flagsReg crx, regD src1, regD src2) %{
10576   // no match-rule, false predicate
10577   effect(DEF crx, USE src1, USE src2);
10578   predicate(false);
10579 
10580   format %{ "cmpFUrd $crx, $src1, $src2" %}
10581   size(4);
10582   ins_encode %{
10583     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
10584     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
10585   %}
10586   ins_pipe(pipe_class_default);
10587 %}
10588 
10589 instruct cmpD_reg_reg_Ex(flagsReg crx, regD src1, regD src2) %{
10590   match(Set crx (CmpD src1 src2));
10591   ins_cost(DEFAULT_COST+BRANCH_COST);
10592 
10593   format %{ "CmpD    $crx, $src1, $src2 \t// postalloc expanded" %}
10594   postalloc_expand %{
10595     //
10596     // replaces
10597     //
10598     //   region  src1  src2
10599     //    \       |     |
10600     //     crx=cmpD_reg_reg
10601     //
10602     // with
10603     //
10604     //   region  src1  src2
10605     //    \       |     |
10606     //     crx=cmpDUnordered_reg_reg
10607     //      |
10608     //      ^  region
10609     //      |   \
10610     //      crx=cmov_bns_less
10611     //
10612 
10613     // create new nodes
10614     MachNode *m1 = new (C) cmpDUnordered_reg_regNode();
10615     MachNode *m2 = new (C) cmov_bns_lessNode();
10616 
10617     // inputs for new nodes
10618     m1->add_req(n_region, n_src1, n_src2);
10619     m2->add_req(n_region);
10620     m2->add_prec(m1);
10621 
10622     // operands for new nodes
10623     m1->_opnds[0] = op_crx;
10624     m1->_opnds[1] = op_src1;
10625     m1->_opnds[2] = op_src2;
10626     m2->_opnds[0] = op_crx;
10627 
10628     // registers for new nodes
10629     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10630     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10631 
10632     // Insert new nodes.
10633     nodes->push(m1);
10634     nodes->push(m2);
10635   %}
10636 %}
10637 
10638 // Compare double, generate -1,0,1
10639 instruct cmpD3_reg_reg_ExEx(iRegIdst dst, regD src1, regD src2) %{
10640   match(Set dst (CmpD3 src1 src2));
10641   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10642 
10643   expand %{
10644     flagsReg tmp1;
10645     cmpDUnordered_reg_reg(tmp1, src1, src2);
10646     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10647   %}
10648 %}
10649 
10650 //----------Branches---------------------------------------------------------
10651 // Jump
10652 
10653 // Direct Branch.
10654 instruct branch(label labl) %{
10655   match(Goto);
10656   effect(USE labl);
10657   ins_cost(BRANCH_COST);
10658 
10659   format %{ "B       $labl" %}
10660   size(4);
10661   ins_encode %{
10662     // TODO: PPC port $archOpcode(ppc64Opcode_b);
10663      Label d;    // dummy
10664      __ bind(d);
10665      Label* p = $labl$$label;
10666      // `p' is `NULL' when this encoding class is used only to
10667      // determine the size of the encoded instruction.
10668      Label& l = (NULL == p)? d : *(p);
10669      __ b(l);
10670   %}
10671   ins_pipe(pipe_class_default);
10672 %}
10673 
10674 // Conditional Near Branch
10675 instruct branchCon(cmpOp cmp, flagsReg crx, label lbl) %{
10676   // Same match rule as `branchConFar'.
10677   match(If cmp crx);
10678   effect(USE lbl);
10679   ins_cost(BRANCH_COST);
10680 
10681   // If set to 1 this indicates that the current instruction is a
10682   // short variant of a long branch. This avoids using this
10683   // instruction in first-pass matching. It will then only be used in
10684   // the `Shorten_branches' pass.
10685   ins_short_branch(1);
10686 
10687   format %{ "B$cmp     $crx, $lbl" %}
10688   size(4);
10689   ins_encode( enc_bc(crx, cmp, lbl) );
10690   ins_pipe(pipe_class_default);
10691 %}
10692 
10693 // This is for cases when the ppc64 `bc' instruction does not
10694 // reach far enough. So we emit a far branch here, which is more
10695 // expensive.
10696 //
10697 // Conditional Far Branch
10698 instruct branchConFar(cmpOp cmp, flagsReg crx, label lbl) %{
10699   // Same match rule as `branchCon'.
10700   match(If cmp crx);
10701   effect(USE crx, USE lbl);
10702   predicate(!false /* TODO: PPC port HB_Schedule*/);
10703   // Higher cost than `branchCon'.
10704   ins_cost(5*BRANCH_COST);
10705 
10706   // This is not a short variant of a branch, but the long variant.
10707   ins_short_branch(0);
10708 
10709   format %{ "B_FAR$cmp $crx, $lbl" %}
10710   size(8);
10711   ins_encode( enc_bc_far(crx, cmp, lbl) );
10712   ins_pipe(pipe_class_default);
10713 %}
10714 
10715 // Conditional Branch used with Power6 scheduler (can be far or short).
10716 instruct branchConSched(cmpOp cmp, flagsReg crx, label lbl) %{
10717   // Same match rule as `branchCon'.
10718   match(If cmp crx);
10719   effect(USE crx, USE lbl);
10720   predicate(false /* TODO: PPC port HB_Schedule*/);
10721   // Higher cost than `branchCon'.
10722   ins_cost(5*BRANCH_COST);
10723 
10724   // Actually size doesn't depend on alignment but on shortening.
10725   ins_variable_size_depending_on_alignment(true);
10726   // long variant.
10727   ins_short_branch(0);
10728 
10729   format %{ "B_FAR$cmp $crx, $lbl" %}
10730   size(8); // worst case
10731   ins_encode( enc_bc_short_far(crx, cmp, lbl) );
10732   ins_pipe(pipe_class_default);
10733 %}
10734 
10735 instruct branchLoopEnd(cmpOp cmp, flagsReg crx, label labl) %{
10736   match(CountedLoopEnd cmp crx);
10737   effect(USE labl);
10738   ins_cost(BRANCH_COST);
10739 
10740   // short variant.
10741   ins_short_branch(1);
10742 
10743   format %{ "B$cmp     $crx, $labl \t// counted loop end" %}
10744   size(4);
10745   ins_encode( enc_bc(crx, cmp, labl) );
10746   ins_pipe(pipe_class_default);
10747 %}
10748 
10749 instruct branchLoopEndFar(cmpOp cmp, flagsReg crx, label labl) %{
10750   match(CountedLoopEnd cmp crx);
10751   effect(USE labl);
10752   predicate(!false /* TODO: PPC port HB_Schedule */);
10753   ins_cost(BRANCH_COST);
10754 
10755   // Long variant.
10756   ins_short_branch(0);
10757 
10758   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
10759   size(8);
10760   ins_encode( enc_bc_far(crx, cmp, labl) );
10761   ins_pipe(pipe_class_default);
10762 %}
10763 
10764 // Conditional Branch used with Power6 scheduler (can be far or short).
10765 instruct branchLoopEndSched(cmpOp cmp, flagsReg crx, label labl) %{
10766   match(CountedLoopEnd cmp crx);
10767   effect(USE labl);
10768   predicate(false /* TODO: PPC port HB_Schedule */);
10769   // Higher cost than `branchCon'.
10770   ins_cost(5*BRANCH_COST);
10771 
10772   // Actually size doesn't depend on alignment but on shortening.
10773   ins_variable_size_depending_on_alignment(true);
10774   // Long variant.
10775   ins_short_branch(0);
10776 
10777   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
10778   size(8); // worst case
10779   ins_encode( enc_bc_short_far(crx, cmp, labl) );
10780   ins_pipe(pipe_class_default);
10781 %}
10782 
10783 // ============================================================================
10784 // Java runtime operations, intrinsics and other complex operations.
10785 
10786 // The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
10787 // array for an instance of the superklass. Set a hidden internal cache on a
10788 // hit (cache is checked with exposed code in gen_subtype_check()). Return
10789 // not zero for a miss or zero for a hit. The encoding ALSO sets flags.
10790 //
10791 // GL TODO: Improve this.
10792 // - result should not be a TEMP
10793 // - Add match rule as on sparc avoiding additional Cmp.
10794 instruct partialSubtypeCheck(iRegPdst result, iRegP_N2P subklass, iRegP_N2P superklass,
10795                              iRegPdst tmp_klass, iRegPdst tmp_arrayptr) %{
10796   match(Set result (PartialSubtypeCheck subklass superklass));
10797   effect(TEMP result, TEMP tmp_klass, TEMP tmp_arrayptr);
10798   ins_cost(DEFAULT_COST*10);
10799 
10800   format %{ "PartialSubtypeCheck $result = ($subklass instanceOf $superklass) tmp: $tmp_klass, $tmp_arrayptr" %}
10801   ins_encode %{
10802     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10803     __ check_klass_subtype_slow_path($subklass$$Register, $superklass$$Register, $tmp_arrayptr$$Register, 
10804                                      $tmp_klass$$Register, NULL, $result$$Register);
10805   %}
10806   ins_pipe(pipe_class_default);
10807 %}
10808 
10809 // inlined locking and unlocking
10810 
10811 instruct cmpFastLock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
10812   match(Set crx (FastLock oop box));
10813   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
10814   // TODO PPC port predicate(!UseNewFastLockPPC64 || UseBiasedLocking);
10815 
10816   format %{ "FASTLOCK  $oop, $box, $tmp1, $tmp2, $tmp3" %}
10817   ins_encode %{
10818     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10819     __ compiler_fast_lock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
10820                                  $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
10821     // If locking was successfull, crx should indicate 'EQ'.
10822     // The compiler generates a branch to the runtime call to
10823     // _complete_monitor_locking_Java for the case where crx is 'NE'.
10824   %}
10825   ins_pipe(pipe_class_compare);
10826 %}
10827 
10828 instruct cmpFastUnlock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
10829   match(Set crx (FastUnlock oop box));
10830   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
10831 
10832   format %{ "FASTUNLOCK  $oop, $box, $tmp1, $tmp2" %}
10833   ins_encode %{
10834     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10835     __ compiler_fast_unlock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
10836                                    $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
10837     // If unlocking was successfull, crx should indicate 'EQ'.
10838     // The compiler generates a branch to the runtime call to
10839     // _complete_monitor_unlocking_Java for the case where crx is 'NE'.
10840   %}
10841   ins_pipe(pipe_class_compare);
10842 %}
10843 
10844 // Align address.
10845 instruct align_addr(iRegPdst dst, iRegPsrc src, immLnegpow2 mask) %{
10846   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
10847 
10848   format %{ "ANDDI   $dst, $src, $mask \t// next aligned address" %}
10849   size(4);
10850   ins_encode %{
10851     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
10852     __ clrrdi($dst$$Register, $src$$Register, log2_long((jlong)-$mask$$constant));
10853   %}
10854   ins_pipe(pipe_class_default);
10855 %}
10856 
10857 // Array size computation.
10858 instruct array_size(iRegLdst dst, iRegPsrc end, iRegPsrc start) %{
10859   match(Set dst (SubL (CastP2X end) (CastP2X start)));
10860 
10861   format %{ "SUB     $dst, $end, $start \t// array size in bytes" %}
10862   size(4);
10863   ins_encode %{
10864     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
10865     __ subf($dst$$Register, $start$$Register, $end$$Register);
10866   %}
10867   ins_pipe(pipe_class_default);
10868 %}
10869 
10870 // Clear-array with dynamic array-size.
10871 instruct inlineCallClearArray(rarg1RegL cnt, rarg2RegP base, Universe dummy, regCTR ctr) %{
10872   match(Set dummy (ClearArray cnt base));
10873   effect(USE_KILL cnt, USE_KILL base, KILL ctr);
10874   ins_cost(MEMORY_REF_COST);
10875 
10876   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
10877 
10878   format %{ "ClearArray $cnt, $base" %}
10879   ins_encode %{
10880     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10881     __ clear_memory_doubleword($base$$Register, $cnt$$Register); // kills cnt, base, R0
10882   %}
10883   ins_pipe(pipe_class_default);
10884 %}
10885 
10886 // String_IndexOf for needle of length 1.
10887 //
10888 // Match needle into immediate operands: no loadConP node needed. Saves one
10889 // register and two instructions over string_indexOf_imm1Node.
10890 //
10891 // Assumes register result differs from all input registers.
10892 //
10893 // Preserves registers haystack, haycnt
10894 // Kills     registers tmp1, tmp2
10895 // Defines   registers result
10896 //
10897 // Use dst register classes if register gets killed, as it is the case for tmp registers!
10898 //
10899 // Unfortunately this does not match too often. In many situations the AddP is used
10900 // by several nodes, even several StrIndexOf nodes, breaking the match tree.
10901 instruct string_indexOf_imm1_char(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
10902                                   immP needleImm, immL offsetImm, immI_1 needlecntImm,
10903                                   iRegIdst tmp1, iRegIdst tmp2,
10904                                   flagsRegCR0 cr0, flagsRegCR1 cr1) %{
10905   predicate(SpecialStringIndexOf);  // type check implicit by parameter type, See Matcher::match_rule_supported
10906   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary (AddP needleImm offsetImm) needlecntImm)));
10907 
10908   effect(TEMP result, TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1);
10909 
10910   ins_cost(150);
10911   format %{ "String IndexOf CSCL1 $haystack[0..$haycnt], $needleImm+$offsetImm[0..$needlecntImm]"
10912             "-> $result \t// KILL $haycnt, $tmp1, $tmp2, $cr0, $cr1" %}
10913 
10914   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted
10915   ins_encode %{
10916     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10917     immPOper *needleOper = (immPOper *)$needleImm;
10918     const TypeOopPtr *t = needleOper->type()->isa_oopptr();
10919     ciTypeArray* needle_values = t->const_oop()->as_type_array();  // Pointer to live char *
10920 
10921     __ string_indexof_1($result$$Register,
10922                         $haystack$$Register, $haycnt$$Register,
10923                         R0, needle_values->char_at(0),
10924                         $tmp1$$Register, $tmp2$$Register);
10925   %}
10926   ins_pipe(pipe_class_compare);
10927 %}
10928 
10929 // String_IndexOf for needle of length 1.
10930 //
10931 // Special case requires less registers and emits less instructions.
10932 //
10933 // Assumes register result differs from all input registers.
10934 //
10935 // Preserves registers haystack, haycnt
10936 // Kills     registers tmp1, tmp2, needle
10937 // Defines   registers result
10938 //
10939 // Use dst register classes if register gets killed, as it is the case for tmp registers!
10940 instruct string_indexOf_imm1(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
10941                              rscratch2RegP needle, immI_1 needlecntImm,
10942                              iRegIdst tmp1, iRegIdst tmp2,
10943                              flagsRegCR0 cr0, flagsRegCR1 cr1) %{
10944   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
10945   effect(USE_KILL needle, /* TDEF needle, */ TEMP result,
10946          TEMP tmp1, TEMP tmp2);
10947   // Required for EA: check if it is still a type_array.
10948   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
10949             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
10950   ins_cost(180);
10951 
10952   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
10953 
10954   format %{ "String IndexOf SCL1 $haystack[0..$haycnt], $needle[0..$needlecntImm]"
10955             " -> $result \t// KILL $haycnt, $needle, $tmp1, $tmp2, $cr0, $cr1" %}
10956   ins_encode %{
10957     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10958     Node *ndl = in(operand_index($needle));  // The node that defines needle.
10959     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
10960     guarantee(needle_values, "sanity");
10961     if (needle_values != NULL) {
10962       __ string_indexof_1($result$$Register,
10963                           $haystack$$Register, $haycnt$$Register,
10964                           R0, needle_values->char_at(0),
10965                           $tmp1$$Register, $tmp2$$Register);
10966     } else {
10967       __ string_indexof_1($result$$Register,
10968                           $haystack$$Register, $haycnt$$Register,
10969                           $needle$$Register, 0,
10970                           $tmp1$$Register, $tmp2$$Register);
10971     }
10972   %}
10973   ins_pipe(pipe_class_compare);
10974 %}
10975 
10976 // String_IndexOf.
10977 //
10978 // Length of needle as immediate. This saves instruction loading constant needle
10979 // length.
10980 // @@@ TODO Specify rules for length < 8 or so, and roll out comparison of needle
10981 // completely or do it in vector instruction. This should save registers for
10982 // needlecnt and needle.
10983 //
10984 // Assumes register result differs from all input registers.
10985 // Overwrites haycnt, needlecnt.
10986 // Use dst register classes if register gets killed, as it is the case for tmp registers!
10987 instruct string_indexOf_imm(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt,
10988                             iRegPsrc needle, uimmI15 needlecntImm,
10989                             iRegIdst tmp1, iRegIdst tmp2, iRegIdst tmp3, iRegIdst tmp4, iRegIdst tmp5,
10990                             flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
10991   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
10992   effect(USE_KILL haycnt, /* better: TDEF haycnt, */ TEMP result,
10993          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, KILL cr0, KILL cr1, KILL cr6);
10994   // Required for EA: check if it is still a type_array.
10995   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
10996             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
10997   ins_cost(250);
10998 
10999   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11000 
11001   format %{ "String IndexOf SCL $haystack[0..$haycnt], $needle[0..$needlecntImm]"
11002             " -> $result \t// KILL $haycnt, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5, $cr0, $cr1" %}
11003   ins_encode %{
11004     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11005     Node *ndl = in(operand_index($needle));  // The node that defines needle.
11006     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
11007 
11008     __ string_indexof($result$$Register,
11009                       $haystack$$Register, $haycnt$$Register,
11010                       $needle$$Register, needle_values, $tmp5$$Register, $needlecntImm$$constant,
11011                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
11012   %}
11013   ins_pipe(pipe_class_compare);
11014 %}
11015 
11016 // StrIndexOf node.
11017 //
11018 // Assumes register result differs from all input registers.
11019 // Overwrites haycnt, needlecnt.
11020 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11021 instruct string_indexOf(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt, iRegPsrc needle, rscratch2RegI needlecnt,
11022                         iRegLdst tmp1, iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4,
11023                         flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
11024   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
11025   effect(USE_KILL haycnt, USE_KILL needlecnt, /*better: TDEF haycnt, TDEF needlecnt,*/
11026          TEMP result,
11027          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr0, KILL cr1, KILL cr6);
11028   predicate(SpecialStringIndexOf);  // See Matcher::match_rule_supported.
11029   ins_cost(300);
11030 
11031   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11032 
11033   format %{ "String IndexOf $haystack[0..$haycnt], $needle[0..$needlecnt]"
11034              " -> $result \t// KILL $haycnt, $needlecnt, $tmp1, $tmp2, $tmp3, $tmp4, $cr0, $cr1" %}
11035   ins_encode %{
11036     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11037     __ string_indexof($result$$Register,
11038                       $haystack$$Register, $haycnt$$Register,
11039                       $needle$$Register, NULL, $needlecnt$$Register, 0,  // needlecnt not constant.
11040                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
11041   %}
11042   ins_pipe(pipe_class_compare);
11043 %}
11044 
11045 // String equals with immediate.
11046 instruct string_equals_imm(iRegPsrc str1, iRegPsrc str2, uimmI15 cntImm, iRegIdst result,
11047                            iRegPdst tmp1, iRegPdst tmp2,
11048                            flagsRegCR0 cr0, flagsRegCR6 cr6, regCTR ctr) %{
11049   match(Set result (StrEquals (Binary str1 str2) cntImm));
11050   effect(TEMP result, TEMP tmp1, TEMP tmp2,
11051          KILL cr0, KILL cr6, KILL ctr);
11052   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
11053   ins_cost(250);
11054 
11055   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11056 
11057   format %{ "String Equals SCL [0..$cntImm]($str1),[0..$cntImm]($str2)"
11058             " -> $result \t// KILL $cr0, $cr6, $ctr, TEMP $result, $tmp1, $tmp2" %}
11059   ins_encode %{
11060     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11061     __ char_arrays_equalsImm($str1$$Register, $str2$$Register, $cntImm$$constant,
11062                              $result$$Register, $tmp1$$Register, $tmp2$$Register);
11063   %}
11064   ins_pipe(pipe_class_compare);
11065 %}
11066 
11067 // String equals.
11068 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
11069 instruct string_equals(iRegPsrc str1, iRegPsrc str2, iRegIsrc cnt, iRegIdst result,
11070                        iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3, iRegPdst tmp4, iRegPdst tmp5,
11071                        flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
11072   match(Set result (StrEquals (Binary str1 str2) cnt));
11073   effect(TEMP result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5,
11074          KILL cr0, KILL cr1, KILL cr6, KILL ctr);
11075   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
11076   ins_cost(300);
11077 
11078   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11079 
11080   format %{ "String Equals [0..$cnt]($str1),[0..$cnt]($str2) -> $result"
11081             " \t// KILL $cr0, $cr1, $cr6, $ctr, TEMP $result, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5" %}
11082   ins_encode %{
11083     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11084     __ char_arrays_equals($str1$$Register, $str2$$Register, $cnt$$Register, $result$$Register,
11085                           $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, $tmp5$$Register);
11086   %}
11087   ins_pipe(pipe_class_compare);
11088 %}
11089 
11090 // String compare.
11091 // Char[] pointers are passed in.
11092 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
11093 instruct string_compare(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt1, rarg4RegI cnt2, iRegIdst result,
11094                         iRegPdst tmp, flagsRegCR0 cr0, regCTR ctr) %{
11095   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11096   effect(USE_KILL cnt1, USE_KILL cnt2, USE_KILL str1, USE_KILL str2, TEMP result, TEMP tmp, KILL cr0, KILL ctr);
11097   ins_cost(300);
11098 
11099   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11100 
11101   format %{ "String Compare $str1[0..$cnt1], $str2[0..$cnt2] -> $result"
11102             " \t// TEMP $tmp, $result KILLs $str1, $cnt1, $str2, $cnt2, $cr0, $ctr" %}
11103   ins_encode %{
11104     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11105     __ string_compare($str1$$Register, $str2$$Register, $cnt1$$Register, $cnt2$$Register,
11106                       $result$$Register, $tmp$$Register);
11107   %}
11108   ins_pipe(pipe_class_compare);
11109 %}
11110 
11111 //---------- Min/Max Instructions ---------------------------------------------
11112 
11113 instruct minI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
11114   match(Set dst (MinI src1 src2));
11115   ins_cost(DEFAULT_COST*6);
11116 
11117   expand %{
11118     iRegIdst src1s;
11119     iRegIdst src2s;
11120     iRegIdst diff;
11121     iRegIdst sm;
11122     iRegIdst doz; // difference or zero
11123     sxtI_reg(src1s, src1); // Ensure proper sign extention.
11124     sxtI_reg(src2s, src2); // Ensure proper sign extention.
11125     subI_reg_reg(diff, src2s, src1s);
11126     // Need to consider >=33 bit result, therefore we need signmaskL.
11127     signmask64I_regI(sm, diff);
11128     andI_reg_reg(doz, diff, sm); // <=0
11129     addI_reg_reg(dst, doz, src1s);
11130   %}
11131 %}
11132 
11133 instruct maxI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
11134   match(Set dst (MaxI src1 src2));
11135   ins_cost(DEFAULT_COST*6);
11136 
11137   expand %{
11138     immI_minus1 m1 %{ -1 %}
11139     iRegIdst src1s;
11140     iRegIdst src2s;
11141     iRegIdst diff;
11142     iRegIdst sm;
11143     iRegIdst doz; // difference or zero
11144     sxtI_reg(src1s, src1); // Ensure proper sign extention.
11145     sxtI_reg(src2s, src2); // Ensure proper sign extention.
11146     subI_reg_reg(diff, src2s, src1s);
11147     // Need to consider >=33 bit result, therefore we need signmaskL.
11148     signmask64I_regI(sm, diff);
11149     andcI_reg_reg(doz, sm, m1, diff); // >=0
11150     addI_reg_reg(dst, doz, src1s);
11151   %}
11152 %}
11153 
11154 //---------- Population Count Instructions ------------------------------------
11155 
11156 // Popcnt for Power7.
11157 instruct popCountI(iRegIdst dst, iRegIsrc src) %{
11158   match(Set dst (PopCountI src));
11159   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
11160   ins_cost(DEFAULT_COST);
11161 
11162   format %{ "POPCNTW $dst, $src" %}
11163   size(4);
11164   ins_encode %{
11165     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
11166     __ popcntw($dst$$Register, $src$$Register);
11167   %}
11168   ins_pipe(pipe_class_default);
11169 %}
11170 
11171 // Popcnt for Power7.
11172 instruct popCountL(iRegIdst dst, iRegLsrc src) %{
11173   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
11174   match(Set dst (PopCountL src));
11175   ins_cost(DEFAULT_COST);
11176 
11177   format %{ "POPCNTD $dst, $src" %}
11178   size(4);
11179   ins_encode %{
11180     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
11181     __ popcntd($dst$$Register, $src$$Register);
11182   %}
11183   ins_pipe(pipe_class_default);
11184 %}
11185 
11186 instruct countLeadingZerosI(iRegIdst dst, iRegIsrc src) %{
11187   match(Set dst (CountLeadingZerosI src));
11188   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
11189   ins_cost(DEFAULT_COST);
11190 
11191   format %{ "CNTLZW  $dst, $src" %}
11192   size(4);
11193   ins_encode %{
11194     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzw);
11195     __ cntlzw($dst$$Register, $src$$Register);
11196   %}
11197   ins_pipe(pipe_class_default);
11198 %}
11199 
11200 instruct countLeadingZerosL(iRegIdst dst, iRegLsrc src) %{
11201   match(Set dst (CountLeadingZerosL src));
11202   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
11203   ins_cost(DEFAULT_COST);
11204 
11205   format %{ "CNTLZD  $dst, $src" %}
11206   size(4);
11207   ins_encode %{
11208     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
11209     __ cntlzd($dst$$Register, $src$$Register);
11210   %}
11211   ins_pipe(pipe_class_default);
11212 %}
11213 
11214 instruct countLeadingZerosP(iRegIdst dst, iRegPsrc src) %{
11215   // no match-rule, false predicate
11216   effect(DEF dst, USE src);
11217   predicate(false);
11218 
11219   format %{ "CNTLZD  $dst, $src" %}
11220   size(4);
11221   ins_encode %{
11222     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
11223     __ cntlzd($dst$$Register, $src$$Register);
11224   %}
11225   ins_pipe(pipe_class_default);
11226 %}
11227 
11228 instruct countTrailingZerosI_Ex(iRegIdst dst, iRegIsrc src) %{
11229   match(Set dst (CountTrailingZerosI src));
11230   predicate(UseCountLeadingZerosInstructionsPPC64);
11231   ins_cost(DEFAULT_COST);
11232 
11233   expand %{
11234     immI16 imm1 %{ (int)-1 %}
11235     immI16 imm2 %{ (int)32 %}
11236     immI_minus1 m1 %{ -1 %}
11237     iRegIdst tmpI1;
11238     iRegIdst tmpI2;
11239     iRegIdst tmpI3;
11240     addI_reg_imm16(tmpI1, src, imm1);
11241     andcI_reg_reg(tmpI2, src, m1, tmpI1);
11242     countLeadingZerosI(tmpI3, tmpI2);
11243     subI_imm16_reg(dst, imm2, tmpI3);
11244   %}
11245 %}
11246 
11247 instruct countTrailingZerosL_Ex(iRegIdst dst, iRegLsrc src) %{
11248   match(Set dst (CountTrailingZerosL src));
11249   predicate(UseCountLeadingZerosInstructionsPPC64);
11250   ins_cost(DEFAULT_COST);
11251 
11252   expand %{
11253     immL16 imm1 %{ (long)-1 %}
11254     immI16 imm2 %{ (int)64 %}
11255     iRegLdst tmpL1;
11256     iRegLdst tmpL2;
11257     iRegIdst tmpL3;
11258     addL_reg_imm16(tmpL1, src, imm1);
11259     andcL_reg_reg(tmpL2, tmpL1, src);
11260     countLeadingZerosL(tmpL3, tmpL2);
11261     subI_imm16_reg(dst, imm2, tmpL3);
11262  %}
11263 %}
11264 
11265 // Expand nodes for byte_reverse_int.
11266 instruct insrwi_a(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
11267   effect(DEF dst, USE src, USE pos, USE shift);
11268   predicate(false);
11269 
11270   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
11271   size(4);
11272   ins_encode %{
11273     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
11274     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
11275   %}
11276   ins_pipe(pipe_class_default);
11277 %}
11278 
11279 // As insrwi_a, but with USE_DEF.
11280 instruct insrwi(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
11281   effect(USE_DEF dst, USE src, USE pos, USE shift);
11282   predicate(false);
11283 
11284   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
11285   size(4);
11286   ins_encode %{
11287     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
11288     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
11289   %}
11290   ins_pipe(pipe_class_default);
11291 %}
11292 
11293 // Just slightly faster than java implementation.
11294 instruct bytes_reverse_int_Ex(iRegIdst dst, iRegIsrc src) %{
11295   match(Set dst (ReverseBytesI src));
11296   predicate(UseCountLeadingZerosInstructionsPPC64);
11297   ins_cost(DEFAULT_COST);
11298 
11299   expand %{
11300     immI16 imm24 %{ (int) 24 %}
11301     immI16 imm16 %{ (int) 16 %}
11302     immI16  imm8 %{ (int)  8 %}
11303     immI16  imm4 %{ (int)  4 %}
11304     immI16  imm0 %{ (int)  0 %}
11305     iRegLdst tmpI1;
11306     iRegLdst tmpI2;
11307     iRegLdst tmpI3;
11308 
11309     urShiftI_reg_imm(tmpI1, src, imm24);
11310     insrwi_a(dst, tmpI1, imm24, imm8);
11311     urShiftI_reg_imm(tmpI2, src, imm16);
11312     insrwi(dst, tmpI2, imm8, imm16);
11313     urShiftI_reg_imm(tmpI3, src, imm8);
11314     insrwi(dst, tmpI3, imm8, imm8);
11315     insrwi(dst, src, imm0, imm8);
11316   %}
11317 %}
11318 
11319 //---------- Replicate Vector Instructions ------------------------------------
11320 
11321 // Insrdi does replicate if src == dst.
11322 instruct repl32(iRegLdst dst) %{
11323   predicate(false);
11324   effect(USE_DEF dst);
11325 
11326   format %{ "INSRDI  $dst, #0, $dst, #32 \t// replicate" %}
11327   size(4);
11328   ins_encode %{
11329     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11330     __ insrdi($dst$$Register, $dst$$Register, 32, 0);
11331   %}
11332   ins_pipe(pipe_class_default);
11333 %}
11334 
11335 // Insrdi does replicate if src == dst.
11336 instruct repl48(iRegLdst dst) %{
11337   predicate(false);
11338   effect(USE_DEF dst);
11339 
11340   format %{ "INSRDI  $dst, #0, $dst, #48 \t// replicate" %}
11341   size(4);
11342   ins_encode %{
11343     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11344     __ insrdi($dst$$Register, $dst$$Register, 48, 0);
11345   %}
11346   ins_pipe(pipe_class_default);
11347 %}
11348 
11349 // Insrdi does replicate if src == dst.
11350 instruct repl56(iRegLdst dst) %{
11351   predicate(false);
11352   effect(USE_DEF dst);
11353 
11354   format %{ "INSRDI  $dst, #0, $dst, #56 \t// replicate" %}
11355   size(4);
11356   ins_encode %{
11357     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11358     __ insrdi($dst$$Register, $dst$$Register, 56, 0);
11359   %}
11360   ins_pipe(pipe_class_default);
11361 %}
11362 
11363 instruct repl8B_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11364   match(Set dst (ReplicateB src));
11365   predicate(n->as_Vector()->length() == 8);
11366   expand %{
11367     moveReg(dst, src);
11368     repl56(dst);
11369     repl48(dst);
11370     repl32(dst);
11371   %}
11372 %}
11373 
11374 instruct repl8B_immI0(iRegLdst dst, immI_0 zero) %{
11375   match(Set dst (ReplicateB zero));
11376   predicate(n->as_Vector()->length() == 8);
11377   format %{ "LI      $dst, #0 \t// replicate8B" %}
11378   size(4);
11379   ins_encode %{
11380     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11381     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11382   %}
11383   ins_pipe(pipe_class_default);
11384 %}
11385 
11386 instruct repl8B_immIminus1(iRegLdst dst, immI_minus1 src) %{
11387   match(Set dst (ReplicateB src));
11388   predicate(n->as_Vector()->length() == 8);
11389   format %{ "LI      $dst, #-1 \t// replicate8B" %}
11390   size(4);
11391   ins_encode %{
11392     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11393     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11394   %}
11395   ins_pipe(pipe_class_default);
11396 %}
11397 
11398 instruct repl4S_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11399   match(Set dst (ReplicateS src));
11400   predicate(n->as_Vector()->length() == 4);
11401   expand %{
11402     moveReg(dst, src);
11403     repl48(dst);
11404     repl32(dst);
11405   %}
11406 %}
11407 
11408 instruct repl4S_immI0(iRegLdst dst, immI_0 zero) %{
11409   match(Set dst (ReplicateS zero));
11410   predicate(n->as_Vector()->length() == 4);
11411   format %{ "LI      $dst, #0 \t// replicate4C" %}
11412   size(4);
11413   ins_encode %{
11414     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11415     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11416   %}
11417   ins_pipe(pipe_class_default);
11418 %}
11419 
11420 instruct repl4S_immIminus1(iRegLdst dst, immI_minus1 src) %{
11421   match(Set dst (ReplicateS src));
11422   predicate(n->as_Vector()->length() == 4);
11423   format %{ "LI      $dst, -1 \t// replicate4C" %}
11424   size(4);
11425   ins_encode %{
11426     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11427     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11428   %}
11429   ins_pipe(pipe_class_default);
11430 %}
11431 
11432 instruct repl2I_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11433   match(Set dst (ReplicateI src));
11434   predicate(n->as_Vector()->length() == 2);
11435   ins_cost(2 * DEFAULT_COST);
11436   expand %{
11437     moveReg(dst, src);
11438     repl32(dst);
11439   %}
11440 %}
11441 
11442 instruct repl2I_immI0(iRegLdst dst, immI_0 zero) %{
11443   match(Set dst (ReplicateI zero));
11444   predicate(n->as_Vector()->length() == 2);
11445   format %{ "LI      $dst, #0 \t// replicate4C" %}
11446   size(4);
11447   ins_encode %{
11448     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11449     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11450   %}
11451   ins_pipe(pipe_class_default);
11452 %}
11453 
11454 instruct repl2I_immIminus1(iRegLdst dst, immI_minus1 src) %{
11455   match(Set dst (ReplicateI src));
11456   predicate(n->as_Vector()->length() == 2);
11457   format %{ "LI      $dst, -1 \t// replicate4C" %}
11458   size(4);
11459   ins_encode %{
11460     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11461     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11462   %}
11463   ins_pipe(pipe_class_default);
11464 %}
11465 
11466 // Move float to int register via stack, replicate.
11467 instruct repl2F_reg_Ex(iRegLdst dst, regF src) %{
11468   match(Set dst (ReplicateF src));
11469   predicate(n->as_Vector()->length() == 2);
11470   ins_cost(2 * MEMORY_REF_COST + DEFAULT_COST);
11471   expand %{
11472     stackSlotL tmpS;
11473     iRegIdst tmpI;
11474     moveF2I_reg_stack(tmpS, src);   // Move float to stack.
11475     moveF2I_stack_reg(tmpI, tmpS);  // Move stack to int reg.
11476     moveReg(dst, tmpI);             // Move int to long reg.
11477     repl32(dst);                    // Replicate bitpattern.
11478   %}
11479 %}
11480 
11481 // Replicate scalar constant to packed float values in Double register
11482 instruct repl2F_immF_Ex(iRegLdst dst, immF src) %{
11483   match(Set dst (ReplicateF src));
11484   predicate(n->as_Vector()->length() == 2);
11485   ins_cost(5 * DEFAULT_COST);
11486 
11487   format %{ "LD      $dst, offset, $constanttablebase\t// load replicated float $src $src from table, postalloc expanded" %}
11488   postalloc_expand( postalloc_expand_load_replF_constant(dst, src, constanttablebase) );
11489 %}
11490 
11491 // Replicate scalar zero constant to packed float values in Double register
11492 instruct repl2F_immF0(iRegLdst dst, immF_0 zero) %{
11493   match(Set dst (ReplicateF zero));
11494   predicate(n->as_Vector()->length() == 2);
11495 
11496   format %{ "LI      $dst, #0 \t// replicate2F" %}
11497   ins_encode %{
11498     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11499     __ li($dst$$Register, 0x0);
11500   %}
11501   ins_pipe(pipe_class_default);
11502 %}
11503 
11504 // ============================================================================
11505 // Safepoint Instruction
11506 
11507 instruct safePoint_poll(iRegPdst poll) %{
11508   match(SafePoint poll);
11509   predicate(LoadPollAddressFromThread);
11510 
11511   // It caused problems to add the effect that r0 is killed, but this
11512   // effect no longer needs to be mentioned, since r0 is not contained
11513   // in a reg_class.
11514 
11515   format %{ "LD      R0, #0, $poll \t// Safepoint poll for GC" %}
11516   size(4);
11517   ins_encode( enc_poll(0x0, poll) );
11518   ins_pipe(pipe_class_default);
11519 %}
11520 
11521 // Safepoint without per-thread support. Load address of page to poll
11522 // as constant.
11523 // Rscratch2RegP is R12.
11524 // LoadConPollAddr node is added in pd_post_matching_hook(). It must be
11525 // a seperate node so that the oop map is at the right location.
11526 instruct safePoint_poll_conPollAddr(rscratch2RegP poll) %{
11527   match(SafePoint poll);
11528   predicate(!LoadPollAddressFromThread);
11529 
11530   // It caused problems to add the effect that r0 is killed, but this
11531   // effect no longer needs to be mentioned, since r0 is not contained
11532   // in a reg_class.
11533 
11534   format %{ "LD      R12, addr of polling page\n\t"
11535             "LD      R0, #0, R12 \t// Safepoint poll for GC" %}
11536   ins_encode( enc_poll(0x0, poll) );
11537   ins_pipe(pipe_class_default);
11538 %}
11539 
11540 // ============================================================================
11541 // Call Instructions
11542 
11543 // Call Java Static Instruction
11544 
11545 // Schedulable version of call static node.
11546 instruct CallStaticJavaDirect(method meth) %{
11547   match(CallStaticJava);
11548   effect(USE meth);
11549   predicate(!((CallStaticJavaNode*)n)->is_method_handle_invoke());
11550   ins_cost(CALL_COST);
11551 
11552   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
11553 
11554   format %{ "CALL,static $meth \t// ==> " %}
11555   size(4);
11556   ins_encode( enc_java_static_call(meth) );
11557   ins_pipe(pipe_class_call);
11558 %}
11559 
11560 // Schedulable version of call static node.
11561 instruct CallStaticJavaDirectHandle(method meth) %{
11562   match(CallStaticJava);
11563   effect(USE meth);
11564   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
11565   ins_cost(CALL_COST);
11566 
11567   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
11568 
11569   format %{ "CALL,static $meth \t// ==> " %}
11570   ins_encode( enc_java_handle_call(meth) );
11571   ins_pipe(pipe_class_call);
11572 %}
11573 
11574 // Call Java Dynamic Instruction
11575 
11576 // Used by postalloc expand of CallDynamicJavaDirectSchedEx (actual call).
11577 // Loading of IC was postalloc expanded. The nodes loading the IC are reachable
11578 // via fields ins_field_load_ic_hi_node and ins_field_load_ic_node.
11579 // The call destination must still be placed in the constant pool.
11580 instruct CallDynamicJavaDirectSched(method meth) %{
11581   match(CallDynamicJava); // To get all the data fields we need ...
11582   effect(USE meth);
11583   predicate(false);       // ... but never match.
11584 
11585   ins_field_load_ic_hi_node(loadConL_hiNode*);
11586   ins_field_load_ic_node(loadConLNode*);
11587   ins_num_consts(1 /* 1 patchable constant: call destination */);
11588 
11589   format %{ "BL        \t// dynamic $meth ==> " %}
11590   size(4);
11591   ins_encode( enc_java_dynamic_call_sched(meth) );
11592   ins_pipe(pipe_class_call);
11593 %}
11594 
11595 // Schedulable (i.e. postalloc expanded) version of call dynamic java.
11596 // We use postalloc expanded calls if we use inline caches
11597 // and do not update method data.
11598 //
11599 // This instruction has two constants: inline cache (IC) and call destination.
11600 // Loading the inline cache will be postalloc expanded, thus leaving a call with
11601 // one constant.
11602 instruct CallDynamicJavaDirectSched_Ex(method meth) %{
11603   match(CallDynamicJava);
11604   effect(USE meth);
11605   predicate(UseInlineCaches);
11606   ins_cost(CALL_COST);
11607 
11608   ins_num_consts(2 /* 2 patchable constants: inline cache, call destination. */);
11609 
11610   format %{ "CALL,dynamic $meth \t// postalloc expanded" %}
11611   postalloc_expand( postalloc_expand_java_dynamic_call_sched(meth, constanttablebase) );
11612 %}
11613 
11614 // Compound version of call dynamic java
11615 // We use postalloc expanded calls if we use inline caches
11616 // and do not update method data.
11617 instruct CallDynamicJavaDirect(method meth) %{
11618   match(CallDynamicJava);
11619   effect(USE meth);
11620   predicate(!UseInlineCaches);
11621   ins_cost(CALL_COST);
11622 
11623   // Enc_java_to_runtime_call needs up to 4 constants (method data oop).
11624   ins_num_consts(4);
11625 
11626   format %{ "CALL,dynamic $meth \t// ==> " %}
11627   ins_encode( enc_java_dynamic_call(meth, constanttablebase) );
11628   ins_pipe(pipe_class_call);
11629 %}
11630 
11631 // Call Runtime Instruction
11632 
11633 instruct CallRuntimeDirect(method meth) %{
11634   match(CallRuntime);
11635   effect(USE meth);
11636   ins_cost(CALL_COST);
11637 
11638   // Enc_java_to_runtime_call needs up to 3 constants: call target,
11639   // env for callee, C-toc.
11640   ins_num_consts(3);
11641 
11642   format %{ "CALL,runtime" %}
11643   ins_encode( enc_java_to_runtime_call(meth) );
11644   ins_pipe(pipe_class_call);
11645 %}
11646 
11647 // Call Leaf
11648 
11649 // Used by postalloc expand of CallLeafDirect_Ex (mtctr).
11650 instruct CallLeafDirect_mtctr(iRegLdst dst, iRegLsrc src) %{
11651   effect(DEF dst, USE src);
11652 
11653   ins_num_consts(1);
11654 
11655   format %{ "MTCTR   $src" %}
11656   size(4);
11657   ins_encode( enc_leaf_call_mtctr(src) );
11658   ins_pipe(pipe_class_default);
11659 %}
11660 
11661 // Used by postalloc expand of CallLeafDirect_Ex (actual call).
11662 instruct CallLeafDirect(method meth) %{
11663   match(CallLeaf);   // To get the data all the data fields we need ...
11664   effect(USE meth);
11665   predicate(false);  // but never match.
11666 
11667   format %{ "BCTRL     \t// leaf call $meth ==> " %}
11668   size(4);
11669   ins_encode %{
11670     // TODO: PPC port $archOpcode(ppc64Opcode_bctrl);
11671     __ bctrl();
11672   %}
11673   ins_pipe(pipe_class_call);
11674 %}
11675 
11676 // postalloc expand of CallLeafDirect.
11677 // Load adress to call from TOC, then bl to it.
11678 instruct CallLeafDirect_Ex(method meth) %{
11679   match(CallLeaf);
11680   effect(USE meth);
11681   ins_cost(CALL_COST);
11682 
11683   // Postalloc_expand_java_to_runtime_call needs up to 3 constants: call target,
11684   // env for callee, C-toc.
11685   ins_num_consts(3);
11686 
11687   format %{ "CALL,runtime leaf $meth \t// postalloc expanded" %}
11688   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
11689 %}
11690 
11691 // Call runtime without safepoint - same as CallLeaf.
11692 // postalloc expand of CallLeafNoFPDirect.
11693 // Load adress to call from TOC, then bl to it.
11694 instruct CallLeafNoFPDirect_Ex(method meth) %{
11695   match(CallLeafNoFP);
11696   effect(USE meth);
11697   ins_cost(CALL_COST);
11698 
11699   // Enc_java_to_runtime_call needs up to 3 constants: call target,
11700   // env for callee, C-toc.
11701   ins_num_consts(3);
11702 
11703   format %{ "CALL,runtime leaf nofp $meth \t// postalloc expanded" %}
11704   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
11705 %}
11706 
11707 // Tail Call; Jump from runtime stub to Java code.
11708 // Also known as an 'interprocedural jump'.
11709 // Target of jump will eventually return to caller.
11710 // TailJump below removes the return address.
11711 instruct TailCalljmpInd(iRegPdstNoScratch jump_target, inline_cache_regP method_oop) %{
11712   match(TailCall jump_target method_oop);
11713   ins_cost(CALL_COST);
11714 
11715   format %{ "MTCTR   $jump_target \t// $method_oop holds method oop\n\t"
11716             "BCTR         \t// tail call" %}
11717   size(8);
11718   ins_encode %{
11719     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11720     __ mtctr($jump_target$$Register);
11721     __ bctr();
11722   %}
11723   ins_pipe(pipe_class_call);
11724 %}
11725 
11726 // Return Instruction
11727 instruct Ret() %{
11728   match(Return);
11729   format %{ "BLR      \t// branch to link register" %}
11730   size(4);
11731   ins_encode %{
11732     // TODO: PPC port $archOpcode(ppc64Opcode_blr);
11733     // LR is restored in MachEpilogNode. Just do the RET here.
11734     __ blr();
11735   %}
11736   ins_pipe(pipe_class_default);
11737 %}
11738 
11739 // Tail Jump; remove the return address; jump to target.
11740 // TailCall above leaves the return address around.
11741 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
11742 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
11743 // "restore" before this instruction (in Epilogue), we need to materialize it
11744 // in %i0.
11745 instruct tailjmpInd(iRegPdstNoScratch jump_target, rarg1RegP ex_oop) %{
11746   match(TailJump jump_target ex_oop);
11747   ins_cost(CALL_COST);
11748 
11749   format %{ "LD      R4_ARG2 = LR\n\t"
11750             "MTCTR   $jump_target\n\t"
11751             "BCTR     \t// TailJump, exception oop: $ex_oop" %}
11752   size(12);
11753   ins_encode %{
11754     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11755     __ ld(R4_ARG2/* issuing pc */, _abi(lr), R1_SP);
11756     __ mtctr($jump_target$$Register);
11757     __ bctr();
11758   %}
11759   ins_pipe(pipe_class_call);
11760 %}
11761 
11762 // Create exception oop: created by stack-crawling runtime code.
11763 // Created exception is now available to this handler, and is setup
11764 // just prior to jumping to this handler. No code emitted.
11765 instruct CreateException(rarg1RegP ex_oop) %{
11766   match(Set ex_oop (CreateEx));
11767   ins_cost(0);
11768 
11769   format %{ " -- \t// exception oop; no code emitted" %}
11770   size(0);
11771   ins_encode( /*empty*/ );
11772   ins_pipe(pipe_class_default);
11773 %}
11774 
11775 // Rethrow exception: The exception oop will come in the first
11776 // argument position. Then JUMP (not call) to the rethrow stub code.
11777 instruct RethrowException() %{
11778   match(Rethrow);
11779   ins_cost(CALL_COST);
11780 
11781   format %{ "Jmp     rethrow_stub" %}
11782   ins_encode %{
11783     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11784     cbuf.set_insts_mark();
11785     __ b64_patchable((address)OptoRuntime::rethrow_stub(), relocInfo::runtime_call_type);
11786   %}
11787   ins_pipe(pipe_class_call);
11788 %}
11789 
11790 // Die now.
11791 instruct ShouldNotReachHere() %{
11792   match(Halt);
11793   ins_cost(CALL_COST);
11794 
11795   format %{ "ShouldNotReachHere" %}
11796   size(4);
11797   ins_encode %{
11798     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
11799     __ trap_should_not_reach_here();
11800   %}
11801   ins_pipe(pipe_class_default);
11802 %}
11803 
11804 // This name is KNOWN by the ADLC and cannot be changed.  The ADLC
11805 // forces a 'TypeRawPtr::BOTTOM' output type for this guy.
11806 // Get a DEF on threadRegP, no costs, no encoding, use
11807 // 'ins_should_rematerialize(true)' to avoid spilling.
11808 instruct tlsLoadP(threadRegP dst) %{
11809   match(Set dst (ThreadLocal));
11810   ins_cost(0);
11811 
11812   ins_should_rematerialize(true);
11813 
11814   format %{ " -- \t// $dst=Thread::current(), empty" %}
11815   size(0);
11816   ins_encode( /*empty*/ );
11817   ins_pipe(pipe_class_empty);
11818 %}
11819 
11820 //---Some PPC specific nodes---------------------------------------------------
11821 
11822 // Stop a group.
11823 instruct endGroup() %{
11824   ins_cost(0);
11825 
11826   ins_is_nop(true);
11827 
11828   format %{ "End Bundle (ori r1, r1, 0)" %}
11829   size(4);
11830   ins_encode %{
11831     // TODO: PPC port $archOpcode(ppc64Opcode_endgroup);
11832     __ endgroup();
11833   %}
11834   ins_pipe(pipe_class_default);
11835 %}
11836 
11837 // Nop instructions
11838 
11839 instruct fxNop() %{
11840   ins_cost(0);
11841 
11842   ins_is_nop(true);
11843 
11844   format %{ "fxNop" %}
11845   size(4);
11846   ins_encode %{
11847     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
11848     __ nop();
11849   %}
11850   ins_pipe(pipe_class_default);
11851 %}
11852 
11853 instruct fpNop0() %{
11854   ins_cost(0);
11855 
11856   ins_is_nop(true);
11857 
11858   format %{ "fpNop0" %}
11859   size(4);
11860   ins_encode %{
11861     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
11862     __ fpnop0();
11863   %}
11864   ins_pipe(pipe_class_default);
11865 %}
11866 
11867 instruct fpNop1() %{
11868   ins_cost(0);
11869 
11870   ins_is_nop(true);
11871 
11872   format %{ "fpNop1" %}
11873   size(4);
11874   ins_encode %{
11875     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
11876     __ fpnop1();
11877   %}
11878   ins_pipe(pipe_class_default);
11879 %}
11880 
11881 instruct brNop0() %{
11882   ins_cost(0);
11883   size(4);
11884   format %{ "brNop0" %}
11885   ins_encode %{
11886     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
11887     __ brnop0();
11888   %}
11889   ins_is_nop(true);
11890   ins_pipe(pipe_class_default);
11891 %}
11892 
11893 instruct brNop1() %{
11894   ins_cost(0);
11895 
11896   ins_is_nop(true);
11897 
11898   format %{ "brNop1" %}
11899   size(4);
11900   ins_encode %{
11901     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
11902     __ brnop1();
11903   %}
11904   ins_pipe(pipe_class_default);
11905 %}
11906 
11907 instruct brNop2() %{
11908   ins_cost(0);
11909 
11910   ins_is_nop(true);
11911 
11912   format %{ "brNop2" %}
11913   size(4);
11914   ins_encode %{
11915     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
11916     __ brnop2();
11917   %}
11918   ins_pipe(pipe_class_default);
11919 %}
11920 
11921 //----------PEEPHOLE RULES-----------------------------------------------------
11922 // These must follow all instruction definitions as they use the names
11923 // defined in the instructions definitions.
11924 //
11925 // peepmatch ( root_instr_name [preceeding_instruction]* );
11926 //
11927 // peepconstraint %{
11928 // (instruction_number.operand_name relational_op instruction_number.operand_name
11929 //  [, ...] );
11930 // // instruction numbers are zero-based using left to right order in peepmatch
11931 //
11932 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
11933 // // provide an instruction_number.operand_name for each operand that appears
11934 // // in the replacement instruction's match rule
11935 //
11936 // ---------VM FLAGS---------------------------------------------------------
11937 //
11938 // All peephole optimizations can be turned off using -XX:-OptoPeephole
11939 //
11940 // Each peephole rule is given an identifying number starting with zero and
11941 // increasing by one in the order seen by the parser. An individual peephole
11942 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
11943 // on the command-line.
11944 //
11945 // ---------CURRENT LIMITATIONS----------------------------------------------
11946 //
11947 // Only match adjacent instructions in same basic block
11948 // Only equality constraints
11949 // Only constraints between operands, not (0.dest_reg == EAX_enc)
11950 // Only one replacement instruction
11951 //
11952 // ---------EXAMPLE----------------------------------------------------------
11953 //
11954 // // pertinent parts of existing instructions in architecture description
11955 // instruct movI(eRegI dst, eRegI src) %{
11956 //   match(Set dst (CopyI src));
11957 // %}
11958 //
11959 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
11960 //   match(Set dst (AddI dst src));
11961 //   effect(KILL cr);
11962 // %}
11963 //
11964 // // Change (inc mov) to lea
11965 // peephole %{
11966 //   // increment preceeded by register-register move
11967 //   peepmatch ( incI_eReg movI );
11968 //   // require that the destination register of the increment
11969 //   // match the destination register of the move
11970 //   peepconstraint ( 0.dst == 1.dst );
11971 //   // construct a replacement instruction that sets
11972 //   // the destination to ( move's source register + one )
11973 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
11974 // %}
11975 //
11976 // Implementation no longer uses movX instructions since
11977 // machine-independent system no longer uses CopyX nodes.
11978 //
11979 // peephole %{
11980 //   peepmatch ( incI_eReg movI );
11981 //   peepconstraint ( 0.dst == 1.dst );
11982 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
11983 // %}
11984 //
11985 // peephole %{
11986 //   peepmatch ( decI_eReg movI );
11987 //   peepconstraint ( 0.dst == 1.dst );
11988 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
11989 // %}
11990 //
11991 // peephole %{
11992 //   peepmatch ( addI_eReg_imm movI );
11993 //   peepconstraint ( 0.dst == 1.dst );
11994 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
11995 // %}
11996 //
11997 // peephole %{
11998 //   peepmatch ( addP_eReg_imm movP );
11999 //   peepconstraint ( 0.dst == 1.dst );
12000 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
12001 // %}
12002 
12003 // // Change load of spilled value to only a spill
12004 // instruct storeI(memory mem, eRegI src) %{
12005 //   match(Set mem (StoreI mem src));
12006 // %}
12007 //
12008 // instruct loadI(eRegI dst, memory mem) %{
12009 //   match(Set dst (LoadI mem));
12010 // %}
12011 //
12012 peephole %{
12013   peepmatch ( loadI storeI );
12014   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
12015   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
12016 %}
12017 
12018 peephole %{
12019   peepmatch ( loadL storeL );
12020   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
12021   peepreplace ( storeL( 1.mem 1.mem 1.src ) );
12022 %}
12023 
12024 peephole %{
12025   peepmatch ( loadP storeP );
12026   peepconstraint ( 1.src == 0.dst, 1.dst == 0.mem );
12027   peepreplace ( storeP( 1.dst 1.dst 1.src ) );
12028 %}
12029 
12030 //----------SMARTSPILL RULES---------------------------------------------------
12031 // These must follow all instruction definitions as they use the names
12032 // defined in the instructions definitions.