1 //
   2 // Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.
   3 // Copyright 2012, 2013 SAP AG. All rights reserved.
   4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5 //
   6 // This code is free software; you can redistribute it and/or modify it
   7 // under the terms of the GNU General Public License version 2 only, as
   8 // published by the Free Software Foundation.
   9 //
  10 // This code is distributed in the hope that it will be useful, but WITHOUT
  11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13 // version 2 for more details (a copy is included in the LICENSE file that
  14 // accompanied this code).
  15 //
  16 // You should have received a copy of the GNU General Public License version
  17 // 2 along with this work; if not, write to the Free Software Foundation,
  18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19 //
  20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21 // or visit www.oracle.com if you need additional information or have any
  22 // questions.
  23 //
  24 //
  25 
  26 //
  27 // PPC64 Architecture Description File
  28 //
  29 
  30 //----------REGISTER DEFINITION BLOCK------------------------------------------
  31 // This information is used by the matcher and the register allocator to
  32 // describe individual registers and classes of registers within the target
  33 // architecture.
  34 register %{
  35 //----------Architecture Description Register Definitions----------------------
  36 // General Registers
  37 // "reg_def"  name (register save type, C convention save type,
  38 //                  ideal register type, encoding);
  39 //
  40 // Register Save Types:
  41 //
  42 //   NS  = No-Save:     The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method, &
  44 //                      that they do not need to be saved at call sites.
  45 //
  46 //   SOC = Save-On-Call: The register allocator assumes that these registers
  47 //                      can be used without saving upon entry to the method,
  48 //                      but that they must be saved at call sites.
  49 //                      These are called "volatiles" on ppc.
  50 //
  51 //   SOE = Save-On-Entry: The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, but they do not need to be saved at call
  54 //                      sites.
  55 //                      These are called "nonvolatiles" on ppc.
  56 //
  57 //   AS  = Always-Save:   The register allocator assumes that these registers
  58 //                      must be saved before using them upon entry to the
  59 //                      method, & that they must be saved at call sites.
  60 //
  61 // Ideal Register Type is used to determine how to save & restore a
  62 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  63 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
  64 //
  65 // The encoding number is the actual bit-pattern placed into the opcodes.
  66 //
  67 // PPC64 register definitions, based on the 64-bit PowerPC ELF ABI
  68 // Supplement Version 1.7 as of 2003-10-29.
  69 //
  70 // For each 64-bit register we must define two registers: the register
  71 // itself, e.g. R3, and a corresponding virtual other (32-bit-)'half',
  72 // e.g. R3_H, which is needed by the allocator, but is not used
  73 // for stores, loads, etc.
  74 
  75 // ----------------------------
  76 // Integer/Long Registers
  77 // ----------------------------
  78 
  79   // PPC64 has 32 64-bit integer registers.
  80 
  81   // types: v = volatile, nv = non-volatile, s = system
  82   reg_def R0   ( SOC, SOC, Op_RegI,  0, R0->as_VMReg()         );  // v   used in prologs
  83   reg_def R0_H ( SOC, SOC, Op_RegI, 99, R0->as_VMReg()->next() );
  84   reg_def R1   ( NS,  NS,  Op_RegI,  1, R1->as_VMReg()         );  // s   SP
  85   reg_def R1_H ( NS,  NS,  Op_RegI, 99, R1->as_VMReg()->next() );
  86   reg_def R2   ( SOC, SOC, Op_RegI,  2, R2->as_VMReg()         );  // v   TOC
  87   reg_def R2_H ( SOC, SOC, Op_RegI, 99, R2->as_VMReg()->next() );
  88   reg_def R3   ( SOC, SOC, Op_RegI,  3, R3->as_VMReg()         );  // v   iarg1 & iret
  89   reg_def R3_H ( SOC, SOC, Op_RegI, 99, R3->as_VMReg()->next() );
  90   reg_def R4   ( SOC, SOC, Op_RegI,  4, R4->as_VMReg()         );  //     iarg2
  91   reg_def R4_H ( SOC, SOC, Op_RegI, 99, R4->as_VMReg()->next() );
  92   reg_def R5   ( SOC, SOC, Op_RegI,  5, R5->as_VMReg()         );  // v   iarg3
  93   reg_def R5_H ( SOC, SOC, Op_RegI, 99, R5->as_VMReg()->next() );
  94   reg_def R6   ( SOC, SOC, Op_RegI,  6, R6->as_VMReg()         );  // v   iarg4
  95   reg_def R6_H ( SOC, SOC, Op_RegI, 99, R6->as_VMReg()->next() );
  96   reg_def R7   ( SOC, SOC, Op_RegI,  7, R7->as_VMReg()         );  // v   iarg5
  97   reg_def R7_H ( SOC, SOC, Op_RegI, 99, R7->as_VMReg()->next() );
  98   reg_def R8   ( SOC, SOC, Op_RegI,  8, R8->as_VMReg()         );  // v   iarg6
  99   reg_def R8_H ( SOC, SOC, Op_RegI, 99, R8->as_VMReg()->next() );
 100   reg_def R9   ( SOC, SOC, Op_RegI,  9, R9->as_VMReg()         );  // v   iarg7
 101   reg_def R9_H ( SOC, SOC, Op_RegI, 99, R9->as_VMReg()->next() );
 102   reg_def R10  ( SOC, SOC, Op_RegI, 10, R10->as_VMReg()        );  // v   iarg8
 103   reg_def R10_H( SOC, SOC, Op_RegI, 99, R10->as_VMReg()->next());
 104   reg_def R11  ( SOC, SOC, Op_RegI, 11, R11->as_VMReg()        );  // v   ENV / scratch
 105   reg_def R11_H( SOC, SOC, Op_RegI, 99, R11->as_VMReg()->next());
 106   reg_def R12  ( SOC, SOC, Op_RegI, 12, R12->as_VMReg()        );  // v   scratch
 107   reg_def R12_H( SOC, SOC, Op_RegI, 99, R12->as_VMReg()->next());
 108   reg_def R13  ( NS,  NS,  Op_RegI, 13, R13->as_VMReg()        );  // s   system thread id
 109   reg_def R13_H( NS,  NS,  Op_RegI, 99, R13->as_VMReg()->next());
 110   reg_def R14  ( SOC, SOE, Op_RegI, 14, R14->as_VMReg()        );  // nv
 111   reg_def R14_H( SOC, SOE, Op_RegI, 99, R14->as_VMReg()->next());
 112   reg_def R15  ( SOC, SOE, Op_RegI, 15, R15->as_VMReg()        );  // nv
 113   reg_def R15_H( SOC, SOE, Op_RegI, 99, R15->as_VMReg()->next());
 114   reg_def R16  ( SOC, SOE, Op_RegI, 16, R16->as_VMReg()        );  // nv
 115   reg_def R16_H( SOC, SOE, Op_RegI, 99, R16->as_VMReg()->next());
 116   reg_def R17  ( SOC, SOE, Op_RegI, 17, R17->as_VMReg()        );  // nv
 117   reg_def R17_H( SOC, SOE, Op_RegI, 99, R17->as_VMReg()->next());
 118   reg_def R18  ( SOC, SOE, Op_RegI, 18, R18->as_VMReg()        );  // nv
 119   reg_def R18_H( SOC, SOE, Op_RegI, 99, R18->as_VMReg()->next());
 120   reg_def R19  ( SOC, SOE, Op_RegI, 19, R19->as_VMReg()        );  // nv
 121   reg_def R19_H( SOC, SOE, Op_RegI, 99, R19->as_VMReg()->next());
 122   reg_def R20  ( SOC, SOE, Op_RegI, 20, R20->as_VMReg()        );  // nv
 123   reg_def R20_H( SOC, SOE, Op_RegI, 99, R20->as_VMReg()->next());
 124   reg_def R21  ( SOC, SOE, Op_RegI, 21, R21->as_VMReg()        );  // nv
 125   reg_def R21_H( SOC, SOE, Op_RegI, 99, R21->as_VMReg()->next());
 126   reg_def R22  ( SOC, SOE, Op_RegI, 22, R22->as_VMReg()        );  // nv
 127   reg_def R22_H( SOC, SOE, Op_RegI, 99, R22->as_VMReg()->next());
 128   reg_def R23  ( SOC, SOE, Op_RegI, 23, R23->as_VMReg()        );  // nv
 129   reg_def R23_H( SOC, SOE, Op_RegI, 99, R23->as_VMReg()->next());
 130   reg_def R24  ( SOC, SOE, Op_RegI, 24, R24->as_VMReg()        );  // nv
 131   reg_def R24_H( SOC, SOE, Op_RegI, 99, R24->as_VMReg()->next());
 132   reg_def R25  ( SOC, SOE, Op_RegI, 25, R25->as_VMReg()        );  // nv
 133   reg_def R25_H( SOC, SOE, Op_RegI, 99, R25->as_VMReg()->next());
 134   reg_def R26  ( SOC, SOE, Op_RegI, 26, R26->as_VMReg()        );  // nv
 135   reg_def R26_H( SOC, SOE, Op_RegI, 99, R26->as_VMReg()->next());
 136   reg_def R27  ( SOC, SOE, Op_RegI, 27, R27->as_VMReg()        );  // nv
 137   reg_def R27_H( SOC, SOE, Op_RegI, 99, R27->as_VMReg()->next());
 138   reg_def R28  ( SOC, SOE, Op_RegI, 28, R28->as_VMReg()        );  // nv
 139   reg_def R28_H( SOC, SOE, Op_RegI, 99, R28->as_VMReg()->next());
 140   reg_def R29  ( SOC, SOE, Op_RegI, 29, R29->as_VMReg()        );  // nv
 141   reg_def R29_H( SOC, SOE, Op_RegI, 99, R29->as_VMReg()->next());
 142   reg_def R30  ( SOC, SOE, Op_RegI, 30, R30->as_VMReg()        );  // nv
 143   reg_def R30_H( SOC, SOE, Op_RegI, 99, R30->as_VMReg()->next());
 144   reg_def R31  ( SOC, SOE, Op_RegI, 31, R31->as_VMReg()        );  // nv
 145   reg_def R31_H( SOC, SOE, Op_RegI, 99, R31->as_VMReg()->next());
 146 
 147 
 148 // ----------------------------
 149 // Float/Double Registers
 150 // ----------------------------
 151 
 152   // Double Registers
 153   // The rules of ADL require that double registers be defined in pairs.
 154   // Each pair must be two 32-bit values, but not necessarily a pair of
 155   // single float registers. In each pair, ADLC-assigned register numbers
 156   // must be adjacent, with the lower number even. Finally, when the
 157   // CPU stores such a register pair to memory, the word associated with
 158   // the lower ADLC-assigned number must be stored to the lower address.
 159 
 160   // PPC64 has 32 64-bit floating-point registers. Each can store a single
 161   // or double precision floating-point value.
 162 
 163   // types: v = volatile, nv = non-volatile, s = system
 164   reg_def F0   ( SOC, SOC, Op_RegF,  0, F0->as_VMReg()         );  // v   scratch
 165   reg_def F0_H ( SOC, SOC, Op_RegF, 99, F0->as_VMReg()->next() );
 166   reg_def F1   ( SOC, SOC, Op_RegF,  1, F1->as_VMReg()         );  // v   farg1 & fret
 167   reg_def F1_H ( SOC, SOC, Op_RegF, 99, F1->as_VMReg()->next() );
 168   reg_def F2   ( SOC, SOC, Op_RegF,  2, F2->as_VMReg()         );  // v   farg2
 169   reg_def F2_H ( SOC, SOC, Op_RegF, 99, F2->as_VMReg()->next() );
 170   reg_def F3   ( SOC, SOC, Op_RegF,  3, F3->as_VMReg()         );  // v   farg3
 171   reg_def F3_H ( SOC, SOC, Op_RegF, 99, F3->as_VMReg()->next() );
 172   reg_def F4   ( SOC, SOC, Op_RegF,  4, F4->as_VMReg()         );  // v   farg4
 173   reg_def F4_H ( SOC, SOC, Op_RegF, 99, F4->as_VMReg()->next() );
 174   reg_def F5   ( SOC, SOC, Op_RegF,  5, F5->as_VMReg()         );  // v   farg5
 175   reg_def F5_H ( SOC, SOC, Op_RegF, 99, F5->as_VMReg()->next() );
 176   reg_def F6   ( SOC, SOC, Op_RegF,  6, F6->as_VMReg()         );  // v   farg6
 177   reg_def F6_H ( SOC, SOC, Op_RegF, 99, F6->as_VMReg()->next() );
 178   reg_def F7   ( SOC, SOC, Op_RegF,  7, F7->as_VMReg()         );  // v   farg7
 179   reg_def F7_H ( SOC, SOC, Op_RegF, 99, F7->as_VMReg()->next() );
 180   reg_def F8   ( SOC, SOC, Op_RegF,  8, F8->as_VMReg()         );  // v   farg8
 181   reg_def F8_H ( SOC, SOC, Op_RegF, 99, F8->as_VMReg()->next() );
 182   reg_def F9   ( SOC, SOC, Op_RegF,  9, F9->as_VMReg()         );  // v   farg9
 183   reg_def F9_H ( SOC, SOC, Op_RegF, 99, F9->as_VMReg()->next() );
 184   reg_def F10  ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()        );  // v   farg10
 185   reg_def F10_H( SOC, SOC, Op_RegF, 99, F10->as_VMReg()->next());
 186   reg_def F11  ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()        );  // v   farg11
 187   reg_def F11_H( SOC, SOC, Op_RegF, 99, F11->as_VMReg()->next());
 188   reg_def F12  ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()        );  // v   farg12
 189   reg_def F12_H( SOC, SOC, Op_RegF, 99, F12->as_VMReg()->next());
 190   reg_def F13  ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()        );  // v   farg13
 191   reg_def F13_H( SOC, SOC, Op_RegF, 99, F13->as_VMReg()->next());
 192   reg_def F14  ( SOC, SOE, Op_RegF, 14, F14->as_VMReg()        );  // nv
 193   reg_def F14_H( SOC, SOE, Op_RegF, 99, F14->as_VMReg()->next());
 194   reg_def F15  ( SOC, SOE, Op_RegF, 15, F15->as_VMReg()        );  // nv
 195   reg_def F15_H( SOC, SOE, Op_RegF, 99, F15->as_VMReg()->next());
 196   reg_def F16  ( SOC, SOE, Op_RegF, 16, F16->as_VMReg()        );  // nv
 197   reg_def F16_H( SOC, SOE, Op_RegF, 99, F16->as_VMReg()->next());
 198   reg_def F17  ( SOC, SOE, Op_RegF, 17, F17->as_VMReg()        );  // nv
 199   reg_def F17_H( SOC, SOE, Op_RegF, 99, F17->as_VMReg()->next());
 200   reg_def F18  ( SOC, SOE, Op_RegF, 18, F18->as_VMReg()        );  // nv
 201   reg_def F18_H( SOC, SOE, Op_RegF, 99, F18->as_VMReg()->next());
 202   reg_def F19  ( SOC, SOE, Op_RegF, 19, F19->as_VMReg()        );  // nv
 203   reg_def F19_H( SOC, SOE, Op_RegF, 99, F19->as_VMReg()->next());
 204   reg_def F20  ( SOC, SOE, Op_RegF, 20, F20->as_VMReg()        );  // nv
 205   reg_def F20_H( SOC, SOE, Op_RegF, 99, F20->as_VMReg()->next());
 206   reg_def F21  ( SOC, SOE, Op_RegF, 21, F21->as_VMReg()        );  // nv
 207   reg_def F21_H( SOC, SOE, Op_RegF, 99, F21->as_VMReg()->next());
 208   reg_def F22  ( SOC, SOE, Op_RegF, 22, F22->as_VMReg()        );  // nv
 209   reg_def F22_H( SOC, SOE, Op_RegF, 99, F22->as_VMReg()->next());
 210   reg_def F23  ( SOC, SOE, Op_RegF, 23, F23->as_VMReg()        );  // nv
 211   reg_def F23_H( SOC, SOE, Op_RegF, 99, F23->as_VMReg()->next());
 212   reg_def F24  ( SOC, SOE, Op_RegF, 24, F24->as_VMReg()        );  // nv
 213   reg_def F24_H( SOC, SOE, Op_RegF, 99, F24->as_VMReg()->next());
 214   reg_def F25  ( SOC, SOE, Op_RegF, 25, F25->as_VMReg()        );  // nv
 215   reg_def F25_H( SOC, SOE, Op_RegF, 99, F25->as_VMReg()->next());
 216   reg_def F26  ( SOC, SOE, Op_RegF, 26, F26->as_VMReg()        );  // nv
 217   reg_def F26_H( SOC, SOE, Op_RegF, 99, F26->as_VMReg()->next());
 218   reg_def F27  ( SOC, SOE, Op_RegF, 27, F27->as_VMReg()        );  // nv
 219   reg_def F27_H( SOC, SOE, Op_RegF, 99, F27->as_VMReg()->next());
 220   reg_def F28  ( SOC, SOE, Op_RegF, 28, F28->as_VMReg()        );  // nv
 221   reg_def F28_H( SOC, SOE, Op_RegF, 99, F28->as_VMReg()->next());
 222   reg_def F29  ( SOC, SOE, Op_RegF, 29, F29->as_VMReg()        );  // nv
 223   reg_def F29_H( SOC, SOE, Op_RegF, 99, F29->as_VMReg()->next());
 224   reg_def F30  ( SOC, SOE, Op_RegF, 30, F30->as_VMReg()        );  // nv
 225   reg_def F30_H( SOC, SOE, Op_RegF, 99, F30->as_VMReg()->next());
 226   reg_def F31  ( SOC, SOE, Op_RegF, 31, F31->as_VMReg()        );  // nv
 227   reg_def F31_H( SOC, SOE, Op_RegF, 99, F31->as_VMReg()->next());
 228 
 229 // ----------------------------
 230 // Special Registers
 231 // ----------------------------
 232 
 233 // Condition Codes Flag Registers
 234 
 235   // PPC64 has 8 condition code "registers" which are all contained
 236   // in the CR register.
 237 
 238   // types: v = volatile, nv = non-volatile, s = system
 239   reg_def CCR0(SOC, SOC, Op_RegFlags, 0, CCR0->as_VMReg());  // v
 240   reg_def CCR1(SOC, SOC, Op_RegFlags, 1, CCR1->as_VMReg());  // v
 241   reg_def CCR2(SOC, SOC, Op_RegFlags, 2, CCR2->as_VMReg());  // nv
 242   reg_def CCR3(SOC, SOC, Op_RegFlags, 3, CCR3->as_VMReg());  // nv
 243   reg_def CCR4(SOC, SOC, Op_RegFlags, 4, CCR4->as_VMReg());  // nv
 244   reg_def CCR5(SOC, SOC, Op_RegFlags, 5, CCR5->as_VMReg());  // v
 245   reg_def CCR6(SOC, SOC, Op_RegFlags, 6, CCR6->as_VMReg());  // v
 246   reg_def CCR7(SOC, SOC, Op_RegFlags, 7, CCR7->as_VMReg());  // v
 247 
 248   // Special registers of PPC64
 249 
 250   reg_def SR_XER(    SOC, SOC, Op_RegP, 0, SR_XER->as_VMReg());     // v
 251   reg_def SR_LR(     SOC, SOC, Op_RegP, 1, SR_LR->as_VMReg());      // v
 252   reg_def SR_CTR(    SOC, SOC, Op_RegP, 2, SR_CTR->as_VMReg());     // v
 253   reg_def SR_VRSAVE( SOC, SOC, Op_RegP, 3, SR_VRSAVE->as_VMReg());  // v
 254   reg_def SR_SPEFSCR(SOC, SOC, Op_RegP, 4, SR_SPEFSCR->as_VMReg()); // v
 255   reg_def SR_PPR(    SOC, SOC, Op_RegP, 5, SR_PPR->as_VMReg());     // v
 256 
 257 
 258 // ----------------------------
 259 // Specify priority of register selection within phases of register
 260 // allocation. Highest priority is first. A useful heuristic is to
 261 // give registers a low priority when they are required by machine
 262 // instructions, like EAX and EDX on I486, and choose no-save registers
 263 // before save-on-call, & save-on-call before save-on-entry. Registers
 264 // which participate in fixed calling sequences should come last.
 265 // Registers which are used as pairs must fall on an even boundary.
 266 
 267 // It's worth about 1% on SPEC geomean to get this right.
 268 
 269 // Chunk0, chunk1, and chunk2 form the MachRegisterNumbers enumeration
 270 // in adGlobals_ppc64.hpp which defines the <register>_num values, e.g.
 271 // R3_num. Therefore, R3_num may not be (and in reality is not)
 272 // the same as R3->encoding()! Furthermore, we cannot make any
 273 // assumptions on ordering, e.g. R3_num may be less than R2_num.
 274 // Additionally, the function
 275 //   static enum RC rc_class(OptoReg::Name reg )
 276 // maps a given <register>_num value to its chunk type (except for flags)
 277 // and its current implementation relies on chunk0 and chunk1 having a
 278 // size of 64 each.
 279 
 280 // If you change this allocation class, please have a look at the
 281 // default values for the parameters RoundRobinIntegerRegIntervalStart
 282 // and RoundRobinFloatRegIntervalStart
 283 
 284 alloc_class chunk0 (
 285   // Chunk0 contains *all* 64 integer registers halves.
 286 
 287   // "non-volatile" registers
 288   R14, R14_H,
 289   R15, R15_H,
 290   R17, R17_H,
 291   R18, R18_H,
 292   R19, R19_H,
 293   R20, R20_H,
 294   R21, R21_H,
 295   R22, R22_H,
 296   R23, R23_H,
 297   R24, R24_H,
 298   R25, R25_H,
 299   R26, R26_H,
 300   R27, R27_H,
 301   R28, R28_H,
 302   R29, R29_H,
 303   R30, R30_H,
 304   R31, R31_H,
 305 
 306   // scratch/special registers
 307   R11, R11_H,
 308   R12, R12_H,
 309 
 310   // argument registers
 311   R10, R10_H,
 312   R9,  R9_H,
 313   R8,  R8_H,
 314   R7,  R7_H,
 315   R6,  R6_H,
 316   R5,  R5_H,
 317   R4,  R4_H,
 318   R3,  R3_H,
 319 
 320   // special registers, not available for allocation
 321   R16, R16_H,     // R16_thread
 322   R13, R13_H,     // system thread id
 323   R2,  R2_H,      // may be used for TOC
 324   R1,  R1_H,      // SP
 325   R0,  R0_H       // R0 (scratch)
 326 );
 327 
 328 // If you change this allocation class, please have a look at the
 329 // default values for the parameters RoundRobinIntegerRegIntervalStart
 330 // and RoundRobinFloatRegIntervalStart
 331 
 332 alloc_class chunk1 (
 333   // Chunk1 contains *all* 64 floating-point registers halves.
 334 
 335   // scratch register
 336   F0,  F0_H,
 337 
 338   // argument registers
 339   F13, F13_H,
 340   F12, F12_H,
 341   F11, F11_H,
 342   F10, F10_H,
 343   F9,  F9_H,
 344   F8,  F8_H,
 345   F7,  F7_H,
 346   F6,  F6_H,
 347   F5,  F5_H,
 348   F4,  F4_H,
 349   F3,  F3_H,
 350   F2,  F2_H,
 351   F1,  F1_H,
 352 
 353   // non-volatile registers
 354   F14, F14_H,
 355   F15, F15_H,
 356   F16, F16_H,
 357   F17, F17_H,
 358   F18, F18_H,
 359   F19, F19_H,
 360   F20, F20_H,
 361   F21, F21_H,
 362   F22, F22_H,
 363   F23, F23_H,
 364   F24, F24_H,
 365   F25, F25_H,
 366   F26, F26_H,
 367   F27, F27_H,
 368   F28, F28_H,
 369   F29, F29_H,
 370   F30, F30_H,
 371   F31, F31_H
 372 );
 373 
 374 alloc_class chunk2 (
 375   // Chunk2 contains *all* 8 condition code registers.
 376 
 377   CCR0,
 378   CCR1,
 379   CCR2,
 380   CCR3,
 381   CCR4,
 382   CCR5,
 383   CCR6,
 384   CCR7
 385 );
 386 
 387 alloc_class chunk3 (
 388   // special registers
 389   // These registers are not allocated, but used for nodes generated by postalloc expand.
 390   SR_XER,
 391   SR_LR,
 392   SR_CTR,
 393   SR_VRSAVE,
 394   SR_SPEFSCR,
 395   SR_PPR
 396 );
 397 
 398 //-------Architecture Description Register Classes-----------------------
 399 
 400 // Several register classes are automatically defined based upon
 401 // information in this architecture description.
 402 
 403 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 404 // 2) reg_class compiler_method_oop_reg    ( as defined in frame section )
 405 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 406 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 407 //
 408 
 409 // ----------------------------
 410 // 32 Bit Register Classes
 411 // ----------------------------
 412 
 413 // We specify registers twice, once as read/write, and once read-only.
 414 // We use the read-only registers for source operands. With this, we
 415 // can include preset read only registers in this class, as a hard-coded
 416 // '0'-register. (We used to simulate this on ppc.)
 417 
 418 // 32 bit registers that can be read and written i.e. these registers
 419 // can be dest (or src) of normal instructions.
 420 reg_class bits32_reg_rw(
 421 /*R0*/              // R0
 422 /*R1*/              // SP
 423   R2,               // TOC
 424   R3,
 425   R4,
 426   R5,
 427   R6,
 428   R7,
 429   R8,
 430   R9,
 431   R10,
 432   R11,
 433   R12,
 434 /*R13*/             // system thread id
 435   R14,
 436   R15,
 437 /*R16*/             // R16_thread
 438   R17,
 439   R18,
 440   R19,
 441   R20,
 442   R21,
 443   R22,
 444   R23,
 445   R24,
 446   R25,
 447   R26,
 448   R27,
 449   R28,
 450 /*R29*/             // global TOC
 451 /*R30*/             // Narrow Oop Base
 452   R31
 453 );
 454 
 455 // 32 bit registers that can only be read i.e. these registers can
 456 // only be src of all instructions.
 457 reg_class bits32_reg_ro(
 458 /*R0*/              // R0
 459 /*R1*/              // SP
 460   R2                // TOC
 461   R3,
 462   R4,
 463   R5,
 464   R6,
 465   R7,
 466   R8,
 467   R9,
 468   R10,
 469   R11,
 470   R12,
 471 /*R13*/             // system thread id
 472   R14,
 473   R15,
 474 /*R16*/             // R16_thread
 475   R17,
 476   R18,
 477   R19,
 478   R20,
 479   R21,
 480   R22,
 481   R23,
 482   R24,
 483   R25,
 484   R26,
 485   R27,
 486   R28,
 487 /*R29*/
 488 /*R30*/             // Narrow Oop Base
 489   R31
 490 );
 491 
 492 // Complement-required-in-pipeline operands for narrow oops.
 493 reg_class bits32_reg_ro_not_complement (
 494 /*R0*/     // R0
 495   R1,      // SP
 496   R2,      // TOC
 497   R3,
 498   R4,
 499   R5,
 500   R6,
 501   R7,
 502   R8,
 503   R9,
 504   R10,
 505   R11,
 506   R12,
 507 /*R13,*/   // system thread id
 508   R14,
 509   R15,
 510   R16,    // R16_thread
 511   R17,
 512   R18,
 513   R19,
 514   R20,
 515   R21,
 516   R22,
 517 /*R23,
 518   R24,
 519   R25,
 520   R26,
 521   R27,
 522   R28,*/
 523 /*R29,*/ // TODO: let allocator handle TOC!!
 524 /*R30,*/
 525   R31
 526 );
 527 
 528 // Complement-required-in-pipeline operands for narrow oops.
 529 // See 64-bit declaration.
 530 reg_class bits32_reg_ro_complement (
 531   R23,
 532   R24,
 533   R25,
 534   R26,
 535   R27,
 536   R28
 537 );
 538 
 539 reg_class rscratch1_bits32_reg(R11);
 540 reg_class rscratch2_bits32_reg(R12);
 541 reg_class rarg1_bits32_reg(R3);
 542 reg_class rarg2_bits32_reg(R4);
 543 reg_class rarg3_bits32_reg(R5);
 544 reg_class rarg4_bits32_reg(R6);
 545 
 546 // ----------------------------
 547 // 64 Bit Register Classes
 548 // ----------------------------
 549 // 64-bit build means 64-bit pointers means hi/lo pairs
 550 
 551 reg_class rscratch1_bits64_reg(R11_H, R11);
 552 reg_class rscratch2_bits64_reg(R12_H, R12);
 553 reg_class rarg1_bits64_reg(R3_H, R3);
 554 reg_class rarg2_bits64_reg(R4_H, R4);
 555 reg_class rarg3_bits64_reg(R5_H, R5);
 556 reg_class rarg4_bits64_reg(R6_H, R6);
 557 // Thread register, 'written' by tlsLoadP, see there.
 558 reg_class thread_bits64_reg(R16_H, R16);
 559 
 560 reg_class r19_bits64_reg(R19_H, R19);
 561 
 562 // 64 bit registers that can be read and written i.e. these registers
 563 // can be dest (or src) of normal instructions.
 564 reg_class bits64_reg_rw(
 565 /*R0_H,  R0*/     // R0
 566 /*R1_H,  R1*/     // SP
 567   R2_H,  R2,      // TOC
 568   R3_H,  R3,
 569   R4_H,  R4,
 570   R5_H,  R5,
 571   R6_H,  R6,
 572   R7_H,  R7,
 573   R8_H,  R8,
 574   R9_H,  R9,
 575   R10_H, R10,
 576   R11_H, R11,
 577   R12_H, R12,
 578 /*R13_H, R13*/   // system thread id
 579   R14_H, R14,
 580   R15_H, R15,
 581 /*R16_H, R16*/   // R16_thread
 582   R17_H, R17,
 583   R18_H, R18,
 584   R19_H, R19,
 585   R20_H, R20,
 586   R21_H, R21,
 587   R22_H, R22,
 588   R23_H, R23,
 589   R24_H, R24,
 590   R25_H, R25,
 591   R26_H, R26,
 592   R27_H, R27,
 593   R28_H, R28,
 594 /*R29_H, R29*/
 595 /*R30_H, R30*/
 596   R31_H, R31
 597 );
 598 
 599 // 64 bit registers used excluding r2, r11 and r12
 600 // Used to hold the TOC to avoid collisions with expanded LeafCall which uses
 601 // r2, r11 and r12 internally.
 602 reg_class bits64_reg_leaf_call(
 603 /*R0_H,  R0*/     // R0
 604 /*R1_H,  R1*/     // SP
 605 /*R2_H,  R2*/     // TOC
 606   R3_H,  R3,
 607   R4_H,  R4,
 608   R5_H,  R5,
 609   R6_H,  R6,
 610   R7_H,  R7,
 611   R8_H,  R8,
 612   R9_H,  R9,
 613   R10_H, R10,
 614 /*R11_H, R11*/
 615 /*R12_H, R12*/
 616 /*R13_H, R13*/   // system thread id
 617   R14_H, R14,
 618   R15_H, R15,
 619 /*R16_H, R16*/   // R16_thread
 620   R17_H, R17,
 621   R18_H, R18,
 622   R19_H, R19,
 623   R20_H, R20,
 624   R21_H, R21,
 625   R22_H, R22,
 626   R23_H, R23,
 627   R24_H, R24,
 628   R25_H, R25,
 629   R26_H, R26,
 630   R27_H, R27,
 631   R28_H, R28,
 632 /*R29_H, R29*/
 633 /*R30_H, R30*/
 634   R31_H, R31
 635 );
 636 
 637 // Used to hold the TOC to avoid collisions with expanded DynamicCall
 638 // which uses r19 as inline cache internally and expanded LeafCall which uses
 639 // r2, r11 and r12 internally.
 640 reg_class bits64_constant_table_base(
 641 /*R0_H,  R0*/     // R0
 642 /*R1_H,  R1*/     // SP
 643 /*R2_H,  R2*/     // TOC
 644   R3_H,  R3,
 645   R4_H,  R4,
 646   R5_H,  R5,
 647   R6_H,  R6,
 648   R7_H,  R7,
 649   R8_H,  R8,
 650   R9_H,  R9,
 651   R10_H, R10,
 652 /*R11_H, R11*/
 653 /*R12_H, R12*/
 654 /*R13_H, R13*/   // system thread id
 655   R14_H, R14,
 656   R15_H, R15,
 657 /*R16_H, R16*/   // R16_thread
 658   R17_H, R17,
 659   R18_H, R18,
 660 /*R19_H, R19*/
 661   R20_H, R20,
 662   R21_H, R21,
 663   R22_H, R22,
 664   R23_H, R23,
 665   R24_H, R24,
 666   R25_H, R25,
 667   R26_H, R26,
 668   R27_H, R27,
 669   R28_H, R28,
 670 /*R29_H, R29*/
 671 /*R30_H, R30*/
 672   R31_H, R31
 673 );
 674 
 675 // 64 bit registers that can only be read i.e. these registers can
 676 // only be src of all instructions.
 677 reg_class bits64_reg_ro(
 678 /*R0_H,  R0*/     // R0
 679   R1_H,  R1,
 680   R2_H,  R2,       // TOC
 681   R3_H,  R3,
 682   R4_H,  R4,
 683   R5_H,  R5,
 684   R6_H,  R6,
 685   R7_H,  R7,
 686   R8_H,  R8,
 687   R9_H,  R9,
 688   R10_H, R10,
 689   R11_H, R11,
 690   R12_H, R12,
 691 /*R13_H, R13*/   // system thread id
 692   R14_H, R14,
 693   R15_H, R15,
 694   R16_H, R16,    // R16_thread
 695   R17_H, R17,
 696   R18_H, R18,
 697   R19_H, R19,
 698   R20_H, R20,
 699   R21_H, R21,
 700   R22_H, R22,
 701   R23_H, R23,
 702   R24_H, R24,
 703   R25_H, R25,
 704   R26_H, R26,
 705   R27_H, R27,
 706   R28_H, R28,
 707 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
 708 /*R30_H, R30,*/
 709   R31_H, R31
 710 );
 711 
 712 // Complement-required-in-pipeline operands.
 713 reg_class bits64_reg_ro_not_complement (
 714 /*R0_H,  R0*/     // R0
 715   R1_H,  R1,      // SP
 716   R2_H,  R2,      // TOC
 717   R3_H,  R3,
 718   R4_H,  R4,
 719   R5_H,  R5,
 720   R6_H,  R6,
 721   R7_H,  R7,
 722   R8_H,  R8,
 723   R9_H,  R9,
 724   R10_H, R10,
 725   R11_H, R11,
 726   R12_H, R12,
 727 /*R13_H, R13*/   // system thread id
 728   R14_H, R14,
 729   R15_H, R15,
 730   R16_H, R16,    // R16_thread
 731   R17_H, R17,
 732   R18_H, R18,
 733   R19_H, R19,
 734   R20_H, R20,
 735   R21_H, R21,
 736   R22_H, R22,
 737 /*R23_H, R23,
 738   R24_H, R24,
 739   R25_H, R25,
 740   R26_H, R26,
 741   R27_H, R27,
 742   R28_H, R28,*/
 743 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
 744 /*R30_H, R30,*/
 745   R31_H, R31
 746 );
 747 
 748 // Complement-required-in-pipeline operands.
 749 // This register mask is used for the trap instructions that implement
 750 // the null checks on AIX. The trap instruction first computes the
 751 // complement of the value it shall trap on. Because of this, the
 752 // instruction can not be scheduled in the same cycle as an other
 753 // instruction reading the normal value of the same register. So we
 754 // force the value to check into 'bits64_reg_ro_not_complement'
 755 // and then copy it to 'bits64_reg_ro_complement' for the trap.
 756 reg_class bits64_reg_ro_complement (
 757   R23_H, R23,
 758   R24_H, R24,
 759   R25_H, R25,
 760   R26_H, R26,
 761   R27_H, R27,
 762   R28_H, R28
 763 );
 764 
 765 
 766 // ----------------------------
 767 // Special Class for Condition Code Flags Register
 768 
 769 reg_class int_flags(
 770 /*CCR0*/             // scratch
 771 /*CCR1*/             // scratch
 772 /*CCR2*/             // nv!
 773 /*CCR3*/             // nv!
 774 /*CCR4*/             // nv!
 775   CCR5,
 776   CCR6,
 777   CCR7
 778 );
 779 
 780 reg_class int_flags_CR0(CCR0);
 781 reg_class int_flags_CR1(CCR1);
 782 reg_class int_flags_CR6(CCR6);
 783 reg_class ctr_reg(SR_CTR);
 784 
 785 // ----------------------------
 786 // Float Register Classes
 787 // ----------------------------
 788 
 789 reg_class flt_reg(
 790 /*F0*/              // scratch
 791   F1,
 792   F2,
 793   F3,
 794   F4,
 795   F5,
 796   F6,
 797   F7,
 798   F8,
 799   F9,
 800   F10,
 801   F11,
 802   F12,
 803   F13,
 804   F14,              // nv!
 805   F15,              // nv!
 806   F16,              // nv!
 807   F17,              // nv!
 808   F18,              // nv!
 809   F19,              // nv!
 810   F20,              // nv!
 811   F21,              // nv!
 812   F22,              // nv!
 813   F23,              // nv!
 814   F24,              // nv!
 815   F25,              // nv!
 816   F26,              // nv!
 817   F27,              // nv!
 818   F28,              // nv!
 819   F29,              // nv!
 820   F30,              // nv!
 821   F31               // nv!
 822 );
 823 
 824 // Double precision float registers have virtual `high halves' that
 825 // are needed by the allocator.
 826 reg_class dbl_reg(
 827 /*F0,  F0_H*/     // scratch
 828   F1,  F1_H,
 829   F2,  F2_H,
 830   F3,  F3_H,
 831   F4,  F4_H,
 832   F5,  F5_H,
 833   F6,  F6_H,
 834   F7,  F7_H,
 835   F8,  F8_H,
 836   F9,  F9_H,
 837   F10, F10_H,
 838   F11, F11_H,
 839   F12, F12_H,
 840   F13, F13_H,
 841   F14, F14_H,    // nv!
 842   F15, F15_H,    // nv!
 843   F16, F16_H,    // nv!
 844   F17, F17_H,    // nv!
 845   F18, F18_H,    // nv!
 846   F19, F19_H,    // nv!
 847   F20, F20_H,    // nv!
 848   F21, F21_H,    // nv!
 849   F22, F22_H,    // nv!
 850   F23, F23_H,    // nv!
 851   F24, F24_H,    // nv!
 852   F25, F25_H,    // nv!
 853   F26, F26_H,    // nv!
 854   F27, F27_H,    // nv!
 855   F28, F28_H,    // nv!
 856   F29, F29_H,    // nv!
 857   F30, F30_H,    // nv!
 858   F31, F31_H     // nv!
 859 );
 860 
 861  %}
 862 
 863 //----------DEFINITION BLOCK---------------------------------------------------
 864 // Define name --> value mappings to inform the ADLC of an integer valued name
 865 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 866 // Format:
 867 //        int_def  <name>         ( <int_value>, <expression>);
 868 // Generated Code in ad_<arch>.hpp
 869 //        #define  <name>   (<expression>)
 870 //        // value == <int_value>
 871 // Generated code in ad_<arch>.cpp adlc_verification()
 872 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 873 //
 874 definitions %{
 875   // The default cost (of an ALU instruction).
 876   int_def DEFAULT_COST_LOW        (     30,      30);
 877   int_def DEFAULT_COST            (    100,     100);
 878   int_def HUGE_COST               (1000000, 1000000);
 879 
 880   // Memory refs
 881   int_def MEMORY_REF_COST_LOW     (    200, DEFAULT_COST * 2);
 882   int_def MEMORY_REF_COST         (    300, DEFAULT_COST * 3);
 883 
 884   // Branches are even more expensive.
 885   int_def BRANCH_COST             (    900, DEFAULT_COST * 9);
 886   int_def CALL_COST               (   1300, DEFAULT_COST * 13);
 887 %}
 888 
 889 
 890 //----------SOURCE BLOCK-------------------------------------------------------
 891 // This is a block of C++ code which provides values, functions, and
 892 // definitions necessary in the rest of the architecture description.
 893 source_hpp %{
 894   // Header information of the source block.
 895   // Method declarations/definitions which are used outside
 896   // the ad-scope can conveniently be defined here.
 897   //
 898   // To keep related declarations/definitions/uses close together,
 899   // we switch between source %{ }% and source_hpp %{ }% freely as needed.
 900 
 901   // Returns true if Node n is followed by a MemBar node that 
 902   // will do an acquire. If so, this node must not do the acquire
 903   // operation.
 904   bool followed_by_acquire(const Node *n);
 905 %}
 906 
 907 source %{
 908 
 909 // Optimize load-acquire.
 910 //
 911 // Check if acquire is unnecessary due to following operation that does 
 912 // acquire anyways.
 913 // Walk the pattern:
 914 //
 915 //      n: Load.acq
 916 //           |
 917 //      MemBarAcquire
 918 //       |         |
 919 //  Proj(ctrl)  Proj(mem)
 920 //       |         |
 921 //   MemBarRelease/Volatile
 922 // 
 923 bool followed_by_acquire(const Node *load) {
 924   assert(load->is_Load(), "So far implemented only for loads.");
 925 
 926   // Find MemBarAcquire.
 927   const Node *mba = NULL;         
 928   for (DUIterator_Fast imax, i = load->fast_outs(imax); i < imax; i++) {
 929     const Node *out = load->fast_out(i);
 930     if (out->Opcode() == Op_MemBarAcquire) {
 931       if (out->in(0) == load) continue; // Skip control edge, membar should be found via precedence edge.
 932       mba = out;
 933       break;
 934     }
 935   }
 936   if (!mba) return false;
 937 
 938   // Find following MemBar node.
 939   //
 940   // The following node must be reachable by control AND memory 
 941   // edge to assure no other operations are in between the two nodes.
 942   //
 943   // So first get the Proj node, mem_proj, to use it to iterate forward.
 944   Node *mem_proj = NULL;
 945   for (DUIterator_Fast imax, i = mba->fast_outs(imax); i < imax; i++) {
 946     mem_proj = mba->fast_out(i);      // Throw out-of-bounds if proj not found
 947     assert(mem_proj->is_Proj(), "only projections here");
 948     ProjNode *proj = mem_proj->as_Proj();
 949     if (proj->_con == TypeFunc::Memory &&
 950         !Compile::current()->node_arena()->contains(mem_proj)) // Unmatched old-space only
 951       break;
 952   }
 953   assert(mem_proj->as_Proj()->_con == TypeFunc::Memory, "Graph broken");
 954 
 955   // Search MemBar behind Proj. If there are other memory operations
 956   // behind the Proj we lost.
 957   for (DUIterator_Fast jmax, j = mem_proj->fast_outs(jmax); j < jmax; j++) {
 958     Node *x = mem_proj->fast_out(j);
 959     // Proj might have an edge to a store or load node which precedes the membar.
 960     if (x->is_Mem()) return false;
 961 
 962     // On PPC64 release and volatile are implemented by an instruction
 963     // that also has acquire semantics. I.e. there is no need for an
 964     // acquire before these.
 965     int xop = x->Opcode();
 966     if (xop == Op_MemBarRelease || xop == Op_MemBarVolatile) {
 967       // Make sure we're not missing Call/Phi/MergeMem by checking
 968       // control edges. The control edge must directly lead back
 969       // to the MemBarAcquire
 970       Node *ctrl_proj = x->in(0);
 971       if (ctrl_proj->is_Proj() && ctrl_proj->in(0) == mba) {
 972         return true;
 973       }
 974     }
 975   }
 976 
 977   return false;
 978 }
 979 
 980 #define __ _masm.
 981 
 982 // Tertiary op of a LoadP or StoreP encoding.
 983 #define REGP_OP true
 984 
 985 // ****************************************************************************
 986 
 987 // REQUIRED FUNCTIONALITY
 988 
 989 // !!!!! Special hack to get all type of calls to specify the byte offset
 990 //       from the start of the call to the point where the return address
 991 //       will point.
 992 
 993 // PPC port: Removed use of lazy constant construct.
 994 
 995 int MachCallStaticJavaNode::ret_addr_offset() {
 996   // It's only a single branch-and-link instruction.
 997   return 4;
 998 }
 999 
1000 int MachCallDynamicJavaNode::ret_addr_offset() {
1001   // Offset is 4 with postalloc expanded calls (bl is one instruction). We use
1002   // postalloc expanded calls if we use inline caches and do not update method data.
1003   if (UseInlineCaches)
1004     return 4;
1005 
1006   int vtable_index = this->_vtable_index;
1007   if (vtable_index < 0) {
1008     // Must be invalid_vtable_index, not nonvirtual_vtable_index.
1009     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
1010     return 12;
1011   } else {
1012     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
1013     return 24;
1014   }
1015 }
1016 
1017 int MachCallRuntimeNode::ret_addr_offset() {
1018 #if defined(ABI_ELFv2)
1019   return 28;
1020 #else
1021   return 40;
1022 #endif
1023 }
1024 
1025 //=============================================================================
1026 
1027 // condition code conversions
1028 
1029 static int cc_to_boint(int cc) {
1030   return Assembler::bcondCRbiIs0 | (cc & 8);
1031 }
1032 
1033 static int cc_to_inverse_boint(int cc) {
1034   return Assembler::bcondCRbiIs0 | (8-(cc & 8));
1035 }
1036 
1037 static int cc_to_biint(int cc, int flags_reg) {
1038   return (flags_reg << 2) | (cc & 3);
1039 }
1040 
1041 //=============================================================================
1042 
1043 // Compute padding required for nodes which need alignment. The padding
1044 // is the number of bytes (not instructions) which will be inserted before
1045 // the instruction. The padding must match the size of a NOP instruction.
1046 
1047 int string_indexOf_imm1_charNode::compute_padding(int current_offset) const {
1048   return (3*4-current_offset)&31;
1049 }
1050 
1051 int string_indexOf_imm1Node::compute_padding(int current_offset) const {
1052   return (2*4-current_offset)&31;
1053 }
1054 
1055 int string_indexOf_immNode::compute_padding(int current_offset) const {
1056   return (3*4-current_offset)&31;
1057 }
1058 
1059 int string_indexOfNode::compute_padding(int current_offset) const {
1060   return (1*4-current_offset)&31;
1061 }
1062 
1063 int string_compareNode::compute_padding(int current_offset) const {
1064   return (4*4-current_offset)&31;
1065 }
1066 
1067 int string_equals_immNode::compute_padding(int current_offset) const {
1068   if (opnd_array(3)->constant() < 16) return 0; // Don't insert nops for short version (loop completely unrolled).
1069   return (2*4-current_offset)&31;
1070 }
1071 
1072 int string_equalsNode::compute_padding(int current_offset) const {
1073   return (7*4-current_offset)&31;
1074 }
1075 
1076 int inlineCallClearArrayNode::compute_padding(int current_offset) const {
1077   return (2*4-current_offset)&31;
1078 }
1079 
1080 //=============================================================================
1081 
1082 // Indicate if the safepoint node needs the polling page as an input.
1083 bool SafePointNode::needs_polling_address_input() {
1084   // The address is loaded from thread by a seperate node.
1085   return true;
1086 }
1087 
1088 //=============================================================================
1089 
1090 // Emit an interrupt that is caught by the debugger (for debugging compiler).
1091 void emit_break(CodeBuffer &cbuf) {
1092   MacroAssembler _masm(&cbuf);
1093   __ illtrap();
1094 }
1095 
1096 #ifndef PRODUCT
1097 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1098   st->print("BREAKPOINT");
1099 }
1100 #endif
1101 
1102 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1103   emit_break(cbuf);
1104 }
1105 
1106 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
1107   return MachNode::size(ra_);
1108 }
1109 
1110 //=============================================================================
1111 
1112 void emit_nop(CodeBuffer &cbuf) {
1113   MacroAssembler _masm(&cbuf);
1114   __ nop();
1115 }
1116 
1117 static inline void emit_long(CodeBuffer &cbuf, int value) {
1118   *((int*)(cbuf.insts_end())) = value;
1119   cbuf.set_insts_end(cbuf.insts_end() + BytesPerInstWord);
1120 }
1121 
1122 //=============================================================================
1123 
1124 %} // interrupt source
1125 
1126 source_hpp %{ // Header information of the source block.
1127 
1128 //--------------------------------------------------------------
1129 //---<  Used for optimization in Compile::Shorten_branches  >---
1130 //--------------------------------------------------------------
1131 
1132 const uint trampoline_stub_size     =  6 * BytesPerInstWord;
1133 
1134 class CallStubImpl {
1135 
1136  public:
1137 
1138   static void emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset);
1139 
1140   // Size of call trampoline stub.
1141   // This doesn't need to be accurate to the byte, but it
1142   // must be larger than or equal to the real size of the stub.
1143   static uint size_call_trampoline() {
1144     return trampoline_stub_size;
1145   }
1146 
1147   // number of relocations needed by a call trampoline stub
1148   static uint reloc_call_trampoline() {
1149     return 5;
1150   }
1151 
1152 };
1153 
1154 %} // end source_hpp
1155 
1156 source %{
1157 
1158 // Emit a trampoline stub for a call to a target which is too far away.
1159 //
1160 // code sequences:
1161 //
1162 // call-site:
1163 //   branch-and-link to <destination> or <trampoline stub>
1164 //
1165 // Related trampoline stub for this call-site in the stub section:
1166 //   load the call target from the constant pool
1167 //   branch via CTR (LR/link still points to the call-site above)
1168 
1169 void CallStubImpl::emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset) {
1170   // Start the stub.
1171   address stub = __ start_a_stub(Compile::MAX_stubs_size/2);
1172   if (stub == NULL) {
1173     Compile::current()->env()->record_out_of_memory_failure();
1174     return;
1175   }
1176 
1177   // For java_to_interp stubs we use R11_scratch1 as scratch register
1178   // and in call trampoline stubs we use R12_scratch2. This way we
1179   // can distinguish them (see is_NativeCallTrampolineStub_at()).
1180   Register reg_scratch = R12_scratch2;
1181 
1182   // Create a trampoline stub relocation which relates this trampoline stub
1183   // with the call instruction at insts_call_instruction_offset in the
1184   // instructions code-section.
1185   __ relocate(trampoline_stub_Relocation::spec(__ code()->insts()->start() + insts_call_instruction_offset));
1186   const int stub_start_offset = __ offset();
1187 
1188   // Now, create the trampoline stub's code:
1189   // - load the TOC
1190   // - load the call target from the constant pool
1191   // - call
1192   __ calculate_address_from_global_toc(reg_scratch, __ method_toc());
1193   __ ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, reg_scratch, false);
1194   __ mtctr(reg_scratch);
1195   __ bctr();
1196 
1197   const address stub_start_addr = __ addr_at(stub_start_offset);
1198 
1199   // FIXME: Assert that the trampoline stub can be identified and patched.
1200 
1201   // Assert that the encoded destination_toc_offset can be identified and that it is correct.
1202   assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
1203          "encoded offset into the constant pool must match");
1204   // Trampoline_stub_size should be good.
1205   assert((uint)(__ offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
1206   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
1207 
1208   // End the stub.
1209   __ end_a_stub();
1210 }
1211 
1212 //=============================================================================
1213 
1214 // Emit an inline branch-and-link call and a related trampoline stub.
1215 //
1216 // code sequences:
1217 //
1218 // call-site:
1219 //   branch-and-link to <destination> or <trampoline stub>
1220 //
1221 // Related trampoline stub for this call-site in the stub section:
1222 //   load the call target from the constant pool
1223 //   branch via CTR (LR/link still points to the call-site above)
1224 //
1225 
1226 typedef struct {
1227   int insts_call_instruction_offset;
1228   int ret_addr_offset;
1229 } EmitCallOffsets;
1230 
1231 // Emit a branch-and-link instruction that branches to a trampoline.
1232 // - Remember the offset of the branch-and-link instruction.
1233 // - Add a relocation at the branch-and-link instruction.
1234 // - Emit a branch-and-link.
1235 // - Remember the return pc offset.
1236 EmitCallOffsets emit_call_with_trampoline_stub(MacroAssembler &_masm, address entry_point, relocInfo::relocType rtype) {
1237   EmitCallOffsets offsets = { -1, -1 };
1238   const int start_offset = __ offset();
1239   offsets.insts_call_instruction_offset = __ offset();
1240 
1241   // No entry point given, use the current pc.
1242   if (entry_point == NULL) entry_point = __ pc();
1243 
1244   if (!Compile::current()->in_scratch_emit_size()) {
1245     // Put the entry point as a constant into the constant pool.
1246     const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
1247     const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
1248 
1249     // Emit the trampoline stub which will be related to the branch-and-link below.
1250     CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, offsets.insts_call_instruction_offset);
1251     __ relocate(rtype);
1252   }
1253 
1254   // Note: At this point we do not have the address of the trampoline
1255   // stub, and the entry point might be too far away for bl, so __ pc()
1256   // serves as dummy and the bl will be patched later.
1257   __ bl((address) __ pc());
1258 
1259   offsets.ret_addr_offset = __ offset() - start_offset;
1260 
1261   return offsets;
1262 }
1263 
1264 //=============================================================================
1265 
1266 // Factory for creating loadConL* nodes for large/small constant pool.
1267 
1268 static inline jlong replicate_immF(float con) {
1269   // Replicate float con 2 times and pack into vector.
1270   int val = *((int*)&con);
1271   jlong lval = val;
1272   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
1273   return lval;
1274 }
1275 
1276 //=============================================================================
1277 
1278 const RegMask& MachConstantBaseNode::_out_RegMask = BITS64_CONSTANT_TABLE_BASE_mask();
1279 int Compile::ConstantTable::calculate_table_base_offset() const {
1280   return 0;  // absolute addressing, no offset
1281 }
1282 
1283 bool MachConstantBaseNode::requires_postalloc_expand() const { return true; }
1284 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
1285   Compile *C = ra_->C;
1286 
1287   iRegPdstOper *op_dst = new (C) iRegPdstOper();
1288   MachNode *m1 = new (C) loadToc_hiNode();
1289   MachNode *m2 = new (C) loadToc_loNode();
1290 
1291   m1->add_req(NULL);
1292   m2->add_req(NULL, m1);
1293   m1->_opnds[0] = op_dst;
1294   m2->_opnds[0] = op_dst;
1295   m2->_opnds[1] = op_dst;
1296   ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
1297   ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
1298   nodes->push(m1);
1299   nodes->push(m2);
1300 }
1301 
1302 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1303   // Is postalloc expanded.
1304   ShouldNotReachHere();
1305 }
1306 
1307 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
1308   return 0;
1309 }
1310 
1311 #ifndef PRODUCT
1312 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1313   st->print("-- \t// MachConstantBaseNode (empty encoding)");
1314 }
1315 #endif
1316 
1317 //=============================================================================
1318 
1319 #ifndef PRODUCT
1320 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1321   Compile* C = ra_->C;
1322   const long framesize = C->frame_slots() << LogBytesPerInt;
1323 
1324   st->print("PROLOG\n\t");
1325   if (C->need_stack_bang(framesize)) {
1326     st->print("stack_overflow_check\n\t");
1327   }
1328 
1329   if (!false /* TODO: PPC port C->is_frameless_method()*/) {
1330     st->print("save return pc\n\t");
1331     st->print("push frame %d\n\t", -framesize);
1332   }
1333 }
1334 #endif
1335 
1336 // Macro used instead of the common __ to emulate the pipes of PPC.
1337 // Instead of e.g. __ ld(...) one hase to write ___(ld) ld(...) This enables the
1338 // micro scheduler to cope with "hand written" assembler like in the prolog. Though
1339 // still no scheduling of this code is possible, the micro scheduler is aware of the
1340 // code and can update its internal data. The following mechanism is used to achieve this:
1341 // The micro scheduler calls size() of each compound node during scheduling. size() does a
1342 // dummy emit and only during this dummy emit C->hb_scheduling() is not NULL.
1343 #if 0 // TODO: PPC port
1344 #define ___(op) if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
1345                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(ppc64Opcode_##op); \
1346                 _masm.
1347 #define ___stop if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
1348                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(archOpcode_none)
1349 #define ___advance if (UsePower6SchedulerPPC64 && C->hb_scheduling())                 \
1350                   C->hb_scheduling()->_pdScheduling->advance_offset
1351 #else
1352 #define ___(op) if (UsePower6SchedulerPPC64)                                          \
1353                   Unimplemented();                                                    \
1354                 _masm.
1355 #define ___stop if (UsePower6SchedulerPPC64)                                          \
1356                   Unimplemented()
1357 #define ___advance if (UsePower6SchedulerPPC64)                                       \
1358                   Unimplemented()
1359 #endif
1360 
1361 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1362   Compile* C = ra_->C;
1363   MacroAssembler _masm(&cbuf);
1364 
1365   const long framesize = ((long)C->frame_slots()) << LogBytesPerInt;
1366   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1367 
1368   const bool method_is_frameless      = false /* TODO: PPC port C->is_frameless_method()*/;
1369 
1370   const Register return_pc            = R20; // Must match return_addr() in frame section.
1371   const Register callers_sp           = R21;
1372   const Register push_frame_temp      = R22;
1373   const Register toc_temp             = R23;
1374   assert_different_registers(R11, return_pc, callers_sp, push_frame_temp, toc_temp);
1375 
1376   if (method_is_frameless) {
1377     // Add nop at beginning of all frameless methods to prevent any
1378     // oop instructions from getting overwritten by make_not_entrant
1379     // (patching attempt would fail).
1380     ___(nop) nop();
1381   } else {
1382     // Get return pc.
1383     ___(mflr) mflr(return_pc);
1384   }
1385 
1386   // Calls to C2R adapters often do not accept exceptional returns.
1387   // We require that their callers must bang for them. But be
1388   // careful, because some VM calls (such as call site linkage) can
1389   // use several kilobytes of stack. But the stack safety zone should
1390   // account for that. See bugs 4446381, 4468289, 4497237.
1391   if (C->need_stack_bang(framesize) && UseStackBanging) {
1392     // Unfortunately we cannot use the function provided in
1393     // assembler.cpp as we have to emulate the pipes. So I had to
1394     // insert the code of generate_stack_overflow_check(), see
1395     // assembler.cpp for some illuminative comments.
1396     const int page_size = os::vm_page_size();
1397     int bang_end = StackShadowPages*page_size;
1398 
1399     // This is how far the previous frame's stack banging extended.
1400     const int bang_end_safe = bang_end;
1401 
1402     if (framesize > page_size) {
1403       bang_end += framesize;
1404     }
1405 
1406     int bang_offset = bang_end_safe;
1407 
1408     while (bang_offset <= bang_end) {
1409       // Need at least one stack bang at end of shadow zone.
1410 
1411       // Again I had to copy code, this time from assembler_ppc64.cpp,
1412       // bang_stack_with_offset - see there for comments.
1413 
1414       // Stack grows down, caller passes positive offset.
1415       assert(bang_offset > 0, "must bang with positive offset");
1416 
1417       long stdoffset = -bang_offset;
1418 
1419       if (Assembler::is_simm(stdoffset, 16)) {
1420         // Signed 16 bit offset, a simple std is ok.
1421         if (UseLoadInstructionsForStackBangingPPC64) {
1422           ___(ld) ld(R0,  (int)(signed short)stdoffset, R1_SP);
1423         } else {
1424           ___(std) std(R0, (int)(signed short)stdoffset, R1_SP);
1425         }
1426       } else if (Assembler::is_simm(stdoffset, 31)) {
1427         // Use largeoffset calculations for addis & ld/std.
1428         const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
1429         const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
1430 
1431         Register tmp = R11;
1432         ___(addis) addis(tmp, R1_SP, hi);
1433         if (UseLoadInstructionsForStackBangingPPC64) {
1434           ___(ld) ld(R0, lo, tmp);
1435         } else {
1436           ___(std) std(R0, lo, tmp);
1437         }
1438       } else {
1439         ShouldNotReachHere();
1440       }
1441 
1442       bang_offset += page_size;
1443     }
1444     // R11 trashed
1445   } // C->need_stack_bang(framesize) && UseStackBanging
1446 
1447   unsigned int bytes = (unsigned int)framesize;
1448   long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
1449   ciMethod *currMethod = C -> method();
1450 
1451   // Optimized version for most common case.
1452   if (UsePower6SchedulerPPC64 &&
1453       !method_is_frameless && Assembler::is_simm((int)(-offset), 16) &&
1454       !(false /* ConstantsALot TODO: PPC port*/)) {
1455     ___(or) mr(callers_sp, R1_SP);
1456     ___(std) std(return_pc, _abi(lr), R1_SP);
1457     ___(stdu) stdu(R1_SP, -offset, R1_SP);
1458     return;
1459   }
1460 
1461   if (!method_is_frameless) {
1462     // Get callers sp.
1463     ___(or) mr(callers_sp, R1_SP);
1464 
1465     // Push method's frame, modifies SP.
1466     assert(Assembler::is_uimm(framesize, 32U), "wrong type");
1467     // The ABI is already accounted for in 'framesize' via the
1468     // 'out_preserve' area.
1469     Register tmp = push_frame_temp;
1470     // Had to insert code of push_frame((unsigned int)framesize, push_frame_temp).
1471     if (Assembler::is_simm(-offset, 16)) {
1472       ___(stdu) stdu(R1_SP, -offset, R1_SP);
1473     } else {
1474       long x = -offset;
1475       // Had to insert load_const(tmp, -offset).
1476       ___(addis)  lis( tmp, (int)((signed short)(((x >> 32) & 0xffff0000) >> 16)));
1477       ___(ori)    ori( tmp, tmp, ((x >> 32) & 0x0000ffff));
1478       ___(rldicr) sldi(tmp, tmp, 32);
1479       ___(oris)   oris(tmp, tmp, (x & 0xffff0000) >> 16);
1480       ___(ori)    ori( tmp, tmp, (x & 0x0000ffff));
1481 
1482       ___(stdux) stdux(R1_SP, R1_SP, tmp);
1483     }
1484   }
1485 #if 0 // TODO: PPC port
1486   // For testing large constant pools, emit a lot of constants to constant pool.
1487   // "Randomize" const_size.
1488   if (ConstantsALot) {
1489     const int num_consts = const_size();
1490     for (int i = 0; i < num_consts; i++) {
1491       __ long_constant(0xB0B5B00BBABE);
1492     }
1493   }
1494 #endif
1495   if (!method_is_frameless) {
1496     // Save return pc.
1497     ___(std) std(return_pc, _abi(lr), callers_sp);
1498   }
1499 }
1500 #undef ___
1501 #undef ___stop
1502 #undef ___advance
1503 
1504 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1505   // Variable size. determine dynamically.
1506   return MachNode::size(ra_);
1507 }
1508 
1509 int MachPrologNode::reloc() const {
1510   // Return number of relocatable values contained in this instruction.
1511   return 1; // 1 reloc entry for load_const(toc).
1512 }
1513 
1514 //=============================================================================
1515 
1516 #ifndef PRODUCT
1517 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1518   Compile* C = ra_->C;
1519 
1520   st->print("EPILOG\n\t");
1521   st->print("restore return pc\n\t");
1522   st->print("pop frame\n\t");
1523 
1524   if (do_polling() && C->is_method_compilation()) {
1525     st->print("touch polling page\n\t");
1526   }
1527 }
1528 #endif
1529 
1530 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1531   Compile* C = ra_->C;
1532   MacroAssembler _masm(&cbuf);
1533 
1534   const long framesize = ((long)C->frame_slots()) << LogBytesPerInt;
1535   assert(framesize >= 0, "negative frame-size?");
1536 
1537   const bool method_needs_polling = do_polling() && C->is_method_compilation();
1538   const bool method_is_frameless  = false /* TODO: PPC port C->is_frameless_method()*/;
1539   const Register return_pc        = R11;
1540   const Register polling_page     = R12;
1541 
1542   if (!method_is_frameless) {
1543     // Restore return pc relative to callers' sp.
1544     __ ld(return_pc, ((int)framesize) + _abi(lr), R1_SP);
1545   }
1546 
1547   if (method_needs_polling) {
1548     if (LoadPollAddressFromThread) {
1549       // TODO: PPC port __ ld(polling_page, in_bytes(JavaThread::poll_address_offset()), R16_thread);
1550       Unimplemented();
1551     } else {
1552       __ load_const_optimized(polling_page, (long)(address) os::get_polling_page()); // TODO: PPC port: get_standard_polling_page()
1553     }
1554   }
1555 
1556   if (!method_is_frameless) {
1557     // Move return pc to LR.
1558     __ mtlr(return_pc);
1559     // Pop frame (fixed frame-size).
1560     __ addi(R1_SP, R1_SP, (int)framesize);
1561   }
1562 
1563   if (method_needs_polling) {
1564     // We need to mark the code position where the load from the safepoint
1565     // polling page was emitted as relocInfo::poll_return_type here.
1566     __ relocate(relocInfo::poll_return_type);
1567     __ load_from_polling_page(polling_page);
1568   }
1569 }
1570 
1571 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1572   // Variable size. Determine dynamically.
1573   return MachNode::size(ra_);
1574 }
1575 
1576 int MachEpilogNode::reloc() const {
1577   // Return number of relocatable values contained in this instruction.
1578   return 1; // 1 for load_from_polling_page.
1579 }
1580 
1581 const Pipeline * MachEpilogNode::pipeline() const {
1582   return MachNode::pipeline_class();
1583 }
1584 
1585 // This method seems to be obsolete. It is declared in machnode.hpp
1586 // and defined in all *.ad files, but it is never called. Should we
1587 // get rid of it?
1588 int MachEpilogNode::safepoint_offset() const {
1589   assert(do_polling(), "no return for this epilog node");
1590   return 0;
1591 }
1592 
1593 #if 0 // TODO: PPC port
1594 void MachLoadPollAddrLateNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1595   MacroAssembler _masm(&cbuf);
1596   if (LoadPollAddressFromThread) {
1597     _masm.ld(R11, in_bytes(JavaThread::poll_address_offset()), R16_thread);
1598   } else {
1599     _masm.nop();
1600   }
1601 }
1602 
1603 uint MachLoadPollAddrLateNode::size(PhaseRegAlloc* ra_) const {
1604   if (LoadPollAddressFromThread) {
1605     return 4;
1606   } else {
1607     return 4;
1608   }
1609 }
1610 
1611 #ifndef PRODUCT
1612 void MachLoadPollAddrLateNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1613   st->print_cr(" LD R11, PollAddressOffset, R16_thread \t// LoadPollAddressFromThread");
1614 }
1615 #endif
1616 
1617 const RegMask &MachLoadPollAddrLateNode::out_RegMask() const {
1618   return RSCRATCH1_BITS64_REG_mask();
1619 }
1620 #endif // PPC port
1621 
1622 // =============================================================================
1623 
1624 // Figure out which register class each belongs in: rc_int, rc_float or
1625 // rc_stack.
1626 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1627 
1628 static enum RC rc_class(OptoReg::Name reg) {
1629   // Return the register class for the given register. The given register
1630   // reg is a <register>_num value, which is an index into the MachRegisterNumbers
1631   // enumeration in adGlobals_ppc64.hpp.
1632 
1633   if (reg == OptoReg::Bad) return rc_bad;
1634 
1635   // We have 64 integer register halves, starting at index 0.
1636   if (reg < 64) return rc_int;
1637 
1638   // We have 64 floating-point register halves, starting at index 64.
1639   if (reg < 64+64) return rc_float;
1640 
1641   // Between float regs & stack are the flags regs.
1642   assert(OptoReg::is_stack(reg), "blow up if spilling flags");
1643 
1644   return rc_stack;
1645 }
1646 
1647 static int ld_st_helper(CodeBuffer *cbuf, const char *op_str, uint opcode, int reg, int offset,
1648                         bool do_print, Compile* C, outputStream *st) {
1649 
1650   assert(opcode == Assembler::LD_OPCODE   ||
1651          opcode == Assembler::STD_OPCODE  ||
1652          opcode == Assembler::LWZ_OPCODE  ||
1653          opcode == Assembler::STW_OPCODE  ||
1654          opcode == Assembler::LFD_OPCODE  ||
1655          opcode == Assembler::STFD_OPCODE ||
1656          opcode == Assembler::LFS_OPCODE  ||
1657          opcode == Assembler::STFS_OPCODE,
1658          "opcode not supported");
1659 
1660   if (cbuf) {
1661     int d =
1662       (Assembler::LD_OPCODE == opcode || Assembler::STD_OPCODE == opcode) ?
1663         Assembler::ds(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/)
1664       : Assembler::d1(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/); // Makes no difference in opt build.
1665     emit_long(*cbuf, opcode | Assembler::rt(Matcher::_regEncode[reg]) | d | Assembler::ra(R1_SP));
1666   }
1667 #ifndef PRODUCT
1668   else if (do_print) {
1669     st->print("%-7s %s, [R1_SP + #%d+%d] \t// spill copy",
1670               op_str,
1671               Matcher::regName[reg],
1672               offset, 0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/);
1673   }
1674 #endif
1675   return 4; // size
1676 }
1677 
1678 uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
1679   Compile* C = ra_->C;
1680 
1681   // Get registers to move.
1682   OptoReg::Name src_hi = ra_->get_reg_second(in(1));
1683   OptoReg::Name src_lo = ra_->get_reg_first(in(1));
1684   OptoReg::Name dst_hi = ra_->get_reg_second(this);
1685   OptoReg::Name dst_lo = ra_->get_reg_first(this);
1686 
1687   enum RC src_hi_rc = rc_class(src_hi);
1688   enum RC src_lo_rc = rc_class(src_lo);
1689   enum RC dst_hi_rc = rc_class(dst_hi);
1690   enum RC dst_lo_rc = rc_class(dst_lo);
1691 
1692   assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
1693   if (src_hi != OptoReg::Bad)
1694     assert((src_lo&1)==0 && src_lo+1==src_hi &&
1695            (dst_lo&1)==0 && dst_lo+1==dst_hi,
1696            "expected aligned-adjacent pairs");
1697   // Generate spill code!
1698   int size = 0;
1699 
1700   if (src_lo == dst_lo && src_hi == dst_hi)
1701     return size;            // Self copy, no move.
1702 
1703   // --------------------------------------
1704   // Memory->Memory Spill. Use R0 to hold the value.
1705   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
1706     int src_offset = ra_->reg2offset(src_lo);
1707     int dst_offset = ra_->reg2offset(dst_lo);
1708     if (src_hi != OptoReg::Bad) {
1709       assert(src_hi_rc==rc_stack && dst_hi_rc==rc_stack,
1710              "expected same type of move for high parts");
1711       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE,  R0_num, src_offset, !do_size, C, st);
1712       if (!cbuf && !do_size) st->print("\n\t");
1713       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, R0_num, dst_offset, !do_size, C, st);
1714     } else {
1715       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, R0_num, src_offset, !do_size, C, st);
1716       if (!cbuf && !do_size) st->print("\n\t");
1717       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, R0_num, dst_offset, !do_size, C, st);
1718     }
1719     return size;
1720   }
1721 
1722   // --------------------------------------
1723   // Check for float->int copy; requires a trip through memory.
1724   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
1725     Unimplemented();
1726   }
1727 
1728   // --------------------------------------
1729   // Check for integer reg-reg copy.
1730   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
1731       Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
1732       Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
1733       size = (Rsrc != Rdst) ? 4 : 0;
1734 
1735       if (cbuf) {
1736         MacroAssembler _masm(cbuf);
1737         if (size) {
1738           __ mr(Rdst, Rsrc);
1739         }
1740       }
1741 #ifndef PRODUCT
1742       else if (!do_size) {
1743         if (size) {
1744           st->print("%-7s %s, %s \t// spill copy", "MR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1745         } else {
1746           st->print("%-7s %s, %s \t// spill copy", "MR-NOP", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1747         }
1748       }
1749 #endif
1750       return size;
1751   }
1752 
1753   // Check for integer store.
1754   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
1755     int dst_offset = ra_->reg2offset(dst_lo);
1756     if (src_hi != OptoReg::Bad) {
1757       assert(src_hi_rc==rc_int && dst_hi_rc==rc_stack,
1758              "expected same type of move for high parts");
1759       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, src_lo, dst_offset, !do_size, C, st);
1760     } else {
1761       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, src_lo, dst_offset, !do_size, C, st);
1762     }
1763     return size;
1764   }
1765 
1766   // Check for integer load.
1767   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
1768     int src_offset = ra_->reg2offset(src_lo);
1769     if (src_hi != OptoReg::Bad) {
1770       assert(dst_hi_rc==rc_int && src_hi_rc==rc_stack,
1771              "expected same type of move for high parts");
1772       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE, dst_lo, src_offset, !do_size, C, st);
1773     } else {
1774       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, dst_lo, src_offset, !do_size, C, st);
1775     }
1776     return size;
1777   }
1778 
1779   // Check for float reg-reg copy.
1780   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
1781     if (cbuf) {
1782       MacroAssembler _masm(cbuf);
1783       FloatRegister Rsrc = as_FloatRegister(Matcher::_regEncode[src_lo]);
1784       FloatRegister Rdst = as_FloatRegister(Matcher::_regEncode[dst_lo]);
1785       __ fmr(Rdst, Rsrc);
1786     }
1787 #ifndef PRODUCT
1788     else if (!do_size) {
1789       st->print("%-7s %s, %s \t// spill copy", "FMR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1790     }
1791 #endif
1792     return 4;
1793   }
1794 
1795   // Check for float store.
1796   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
1797     int dst_offset = ra_->reg2offset(dst_lo);
1798     if (src_hi != OptoReg::Bad) {
1799       assert(src_hi_rc==rc_float && dst_hi_rc==rc_stack,
1800              "expected same type of move for high parts");
1801       size += ld_st_helper(cbuf, "STFD", Assembler::STFD_OPCODE, src_lo, dst_offset, !do_size, C, st);
1802     } else {
1803       size += ld_st_helper(cbuf, "STFS", Assembler::STFS_OPCODE, src_lo, dst_offset, !do_size, C, st);
1804     }
1805     return size;
1806   }
1807 
1808   // Check for float load.
1809   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
1810     int src_offset = ra_->reg2offset(src_lo);
1811     if (src_hi != OptoReg::Bad) {
1812       assert(dst_hi_rc==rc_float && src_hi_rc==rc_stack,
1813              "expected same type of move for high parts");
1814       size += ld_st_helper(cbuf, "LFD ", Assembler::LFD_OPCODE, dst_lo, src_offset, !do_size, C, st);
1815     } else {
1816       size += ld_st_helper(cbuf, "LFS ", Assembler::LFS_OPCODE, dst_lo, src_offset, !do_size, C, st);
1817     }
1818     return size;
1819   }
1820 
1821   // --------------------------------------------------------------------
1822   // Check for hi bits still needing moving. Only happens for misaligned
1823   // arguments to native calls.
1824   if (src_hi == dst_hi)
1825     return size;               // Self copy; no move.
1826 
1827   assert(src_hi_rc != rc_bad && dst_hi_rc != rc_bad, "src_hi & dst_hi cannot be Bad");
1828   ShouldNotReachHere(); // Unimplemented
1829   return 0;
1830 }
1831 
1832 #ifndef PRODUCT
1833 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1834   if (!ra_)
1835     st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
1836   else
1837     implementation(NULL, ra_, false, st);
1838 }
1839 #endif
1840 
1841 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1842   implementation(&cbuf, ra_, false, NULL);
1843 }
1844 
1845 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1846   return implementation(NULL, ra_, true, NULL);
1847 }
1848 
1849 #if 0 // TODO: PPC port
1850 ArchOpcode MachSpillCopyNode_archOpcode(MachSpillCopyNode *n, PhaseRegAlloc *ra_) {
1851 #ifndef PRODUCT
1852   if (ra_->node_regs_max_index() == 0) return archOpcode_undefined;
1853 #endif
1854   assert(ra_->node_regs_max_index() != 0, "");
1855 
1856   // Get registers to move.
1857   OptoReg::Name src_hi = ra_->get_reg_second(n->in(1));
1858   OptoReg::Name src_lo = ra_->get_reg_first(n->in(1));
1859   OptoReg::Name dst_hi = ra_->get_reg_second(n);
1860   OptoReg::Name dst_lo = ra_->get_reg_first(n);
1861 
1862   enum RC src_lo_rc = rc_class(src_lo);
1863   enum RC dst_lo_rc = rc_class(dst_lo);
1864 
1865   if (src_lo == dst_lo && src_hi == dst_hi)
1866     return ppc64Opcode_none;            // Self copy, no move.
1867 
1868   // --------------------------------------
1869   // Memory->Memory Spill. Use R0 to hold the value.
1870   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
1871     return ppc64Opcode_compound;
1872   }
1873 
1874   // --------------------------------------
1875   // Check for float->int copy; requires a trip through memory.
1876   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
1877     Unimplemented();
1878   }
1879 
1880   // --------------------------------------
1881   // Check for integer reg-reg copy.
1882   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
1883     Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
1884     Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
1885     if (Rsrc == Rdst) {
1886       return ppc64Opcode_none;
1887     } else {
1888       return ppc64Opcode_or;
1889     }
1890   }
1891 
1892   // Check for integer store.
1893   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
1894     if (src_hi != OptoReg::Bad) {
1895       return ppc64Opcode_std;
1896     } else {
1897       return ppc64Opcode_stw;
1898     }
1899   }
1900 
1901   // Check for integer load.
1902   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
1903     if (src_hi != OptoReg::Bad) {
1904       return ppc64Opcode_ld;
1905     } else {
1906       return ppc64Opcode_lwz;
1907     }
1908   }
1909 
1910   // Check for float reg-reg copy.
1911   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
1912     return ppc64Opcode_fmr;
1913   }
1914 
1915   // Check for float store.
1916   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
1917     if (src_hi != OptoReg::Bad) {
1918       return ppc64Opcode_stfd;
1919     } else {
1920       return ppc64Opcode_stfs;
1921     }
1922   }
1923 
1924   // Check for float load.
1925   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
1926     if (src_hi != OptoReg::Bad) {
1927       return ppc64Opcode_lfd;
1928     } else {
1929       return ppc64Opcode_lfs;
1930     }
1931   }
1932 
1933   // --------------------------------------------------------------------
1934   // Check for hi bits still needing moving. Only happens for misaligned
1935   // arguments to native calls.
1936   if (src_hi == dst_hi)
1937     return ppc64Opcode_none;               // Self copy; no move.
1938 
1939   ShouldNotReachHere();
1940   return ppc64Opcode_undefined;
1941 }
1942 #endif // PPC port
1943 
1944 #ifndef PRODUCT
1945 void MachNopNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1946   st->print("NOP \t// %d nops to pad for loops.", _count);
1947 }
1948 #endif
1949 
1950 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
1951   MacroAssembler _masm(&cbuf);
1952   // _count contains the number of nops needed for padding.
1953   for (int i = 0; i < _count; i++) {
1954     __ nop();
1955   }
1956 }
1957 
1958 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1959    return _count * 4;
1960 }
1961 
1962 #ifndef PRODUCT
1963 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1964   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1965   int reg = ra_->get_reg_first(this);
1966   st->print("ADDI %s, SP, %d \t// box node", Matcher::regName[reg], offset);
1967 }
1968 #endif
1969 
1970 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1971   MacroAssembler _masm(&cbuf);
1972 
1973   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1974   int reg    = ra_->get_encode(this);
1975 
1976   if (Assembler::is_simm(offset, 16)) {
1977     __ addi(as_Register(reg), R1, offset);
1978   } else {
1979     ShouldNotReachHere();
1980   }
1981 }
1982 
1983 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1984   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
1985   return 4;
1986 }
1987 
1988 #ifndef PRODUCT
1989 void MachUEPNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1990   st->print_cr("---- MachUEPNode ----");
1991   st->print_cr("...");
1992 }
1993 #endif
1994 
1995 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1996   // This is the unverified entry point.
1997   MacroAssembler _masm(&cbuf);
1998 
1999   // Inline_cache contains a klass.
2000   Register ic_klass       = as_Register(Matcher::inline_cache_reg_encode());
2001   Register receiver_klass = R0;  // tmp
2002 
2003   assert_different_registers(ic_klass, receiver_klass, R11_scratch1, R3_ARG1);
2004   assert(R11_scratch1 == R11, "need prologue scratch register");
2005 
2006   // Check for NULL argument if we don't have implicit null checks.
2007   if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
2008     if (TrapBasedNullChecks) {
2009       __ trap_null_check(R3_ARG1);
2010     } else {
2011       Label valid;
2012       __ cmpdi(CCR0, R3_ARG1, 0);
2013       __ bne_predict_taken(CCR0, valid);
2014       // We have a null argument, branch to ic_miss_stub.
2015       __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
2016                            relocInfo::runtime_call_type);
2017       __ bind(valid);
2018     }
2019   }
2020   // Assume argument is not NULL, load klass from receiver.
2021   __ load_klass(receiver_klass, R3_ARG1);
2022 
2023   if (TrapBasedICMissChecks) {
2024     __ trap_ic_miss_check(receiver_klass, ic_klass);
2025   } else {
2026     Label valid;
2027     __ cmpd(CCR0, receiver_klass, ic_klass);
2028     __ beq_predict_taken(CCR0, valid);
2029     // We have an unexpected klass, branch to ic_miss_stub.
2030     __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
2031                          relocInfo::runtime_call_type);
2032     __ bind(valid);
2033   }
2034 
2035   // Argument is valid and klass is as expected, continue.
2036 }
2037 
2038 #if 0 // TODO: PPC port
2039 // Optimize UEP code on z (save a load_const() call in main path).
2040 int MachUEPNode::ep_offset() {
2041   return 0;
2042 }
2043 #endif
2044 
2045 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
2046   // Variable size. Determine dynamically.
2047   return MachNode::size(ra_);
2048 }
2049 
2050 //=============================================================================
2051 
2052 %} // interrupt source
2053 
2054 source_hpp %{ // Header information of the source block.
2055 
2056 class HandlerImpl {
2057 
2058  public:
2059 
2060   static int emit_exception_handler(CodeBuffer &cbuf);
2061   static int emit_deopt_handler(CodeBuffer& cbuf);
2062 
2063   static uint size_exception_handler() {
2064     // The exception_handler is a b64_patchable.
2065     return MacroAssembler::b64_patchable_size;
2066   }
2067 
2068   static uint size_deopt_handler() {
2069     // The deopt_handler is a bl64_patchable.
2070     return MacroAssembler::bl64_patchable_size;
2071   }
2072 
2073 };
2074 
2075 %} // end source_hpp
2076 
2077 source %{
2078 
2079 int HandlerImpl::emit_exception_handler(CodeBuffer &cbuf) {
2080   MacroAssembler _masm(&cbuf);
2081 
2082   address base = __ start_a_stub(size_exception_handler());
2083   if (base == NULL) return 0; // CodeBuffer::expand failed
2084 
2085   int offset = __ offset();
2086   __ b64_patchable((address)OptoRuntime::exception_blob()->content_begin(),
2087                        relocInfo::runtime_call_type);
2088   assert(__ offset() - offset == (int)size_exception_handler(), "must be fixed size");
2089   __ end_a_stub();
2090 
2091   return offset;
2092 }
2093 
2094 // The deopt_handler is like the exception handler, but it calls to
2095 // the deoptimization blob instead of jumping to the exception blob.
2096 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
2097   MacroAssembler _masm(&cbuf);
2098 
2099   address base = __ start_a_stub(size_deopt_handler());
2100   if (base == NULL) return 0; // CodeBuffer::expand failed
2101 
2102   int offset = __ offset();
2103   __ bl64_patchable((address)SharedRuntime::deopt_blob()->unpack(),
2104                         relocInfo::runtime_call_type);
2105   assert(__ offset() - offset == (int) size_deopt_handler(), "must be fixed size");
2106   __ end_a_stub();
2107 
2108   return offset;
2109 }
2110 
2111 //=============================================================================
2112 
2113 // Use a frame slots bias for frameless methods if accessing the stack.
2114 static int frame_slots_bias(int reg_enc, PhaseRegAlloc* ra_) {
2115   if (as_Register(reg_enc) == R1_SP) {
2116     return 0; // TODO: PPC port ra_->C->frame_slots_sp_bias_in_bytes();
2117   }
2118   return 0;
2119 }
2120 
2121 const bool Matcher::match_rule_supported(int opcode) {
2122   if (!has_match_rule(opcode))
2123     return false;
2124 
2125   switch (opcode) {
2126   case Op_SqrtD:
2127     return VM_Version::has_fsqrt();
2128   case Op_CountLeadingZerosI:
2129   case Op_CountLeadingZerosL:
2130   case Op_CountTrailingZerosI:
2131   case Op_CountTrailingZerosL:
2132     if (!UseCountLeadingZerosInstructionsPPC64)
2133       return false;
2134     break;
2135 
2136   case Op_PopCountI:
2137   case Op_PopCountL:
2138     return (UsePopCountInstruction && VM_Version::has_popcntw());
2139 
2140   case Op_StrComp:
2141     return SpecialStringCompareTo;
2142   case Op_StrEquals:
2143     return SpecialStringEquals;
2144   case Op_StrIndexOf:
2145     return SpecialStringIndexOf;
2146   }
2147 
2148   return true;  // Per default match rules are supported.
2149 }
2150 
2151 int Matcher::regnum_to_fpu_offset(int regnum) {
2152   // No user for this method?
2153   Unimplemented();
2154   return 999;
2155 }
2156 
2157 const bool Matcher::convL2FSupported(void) {
2158   // fcfids can do the conversion (>= Power7).
2159   // fcfid + frsp showed rounding problem when result should be 0x3f800001.
2160   return VM_Version::has_fcfids(); // False means that conversion is done by runtime call.
2161 }
2162 
2163 // Vector width in bytes.
2164 const int Matcher::vector_width_in_bytes(BasicType bt) {
2165   assert(MaxVectorSize == 8, "");
2166   return 8;
2167 }
2168 
2169 // Vector ideal reg.
2170 const int Matcher::vector_ideal_reg(int size) {
2171   assert(MaxVectorSize == 8 && size == 8, "");
2172   return Op_RegL;
2173 }
2174 
2175 const int Matcher::vector_shift_count_ideal_reg(int size) {
2176   fatal("vector shift is not supported");
2177   return Node::NotAMachineReg;
2178 }
2179 
2180 // Limits on vector size (number of elements) loaded into vector.
2181 const int Matcher::max_vector_size(const BasicType bt) {
2182   assert(is_java_primitive(bt), "only primitive type vectors");
2183   return vector_width_in_bytes(bt)/type2aelembytes(bt);
2184 }
2185 
2186 const int Matcher::min_vector_size(const BasicType bt) {
2187   return max_vector_size(bt); // Same as max.
2188 }
2189 
2190 // PPC doesn't support misaligned vectors store/load.
2191 const bool Matcher::misaligned_vectors_ok() {
2192   return false;
2193 }
2194 
2195 // PPC AES support not yet implemented
2196 const bool Matcher::pass_original_key_for_aes() {
2197   return false;
2198 }
2199 
2200 // RETURNS: whether this branch offset is short enough that a short
2201 // branch can be used.
2202 //
2203 // If the platform does not provide any short branch variants, then
2204 // this method should return `false' for offset 0.
2205 //
2206 // `Compile::Fill_buffer' will decide on basis of this information
2207 // whether to do the pass `Compile::Shorten_branches' at all.
2208 //
2209 // And `Compile::Shorten_branches' will decide on basis of this
2210 // information whether to replace particular branch sites by short
2211 // ones.
2212 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
2213   // Is the offset within the range of a ppc64 pc relative branch?
2214   bool b;
2215 
2216   const int safety_zone = 3 * BytesPerInstWord;
2217   b = Assembler::is_simm((offset<0 ? offset-safety_zone : offset+safety_zone),
2218                          29 - 16 + 1 + 2);
2219   return b;
2220 }
2221 
2222 const bool Matcher::isSimpleConstant64(jlong value) {
2223   // Probably always true, even if a temp register is required.
2224   return true;
2225 }
2226 /* TODO: PPC port
2227 // Make a new machine dependent decode node (with its operands).
2228 MachTypeNode *Matcher::make_decode_node(Compile *C) {
2229   assert(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0,
2230          "This method is only implemented for unscaled cOops mode so far");
2231   MachTypeNode *decode = new (C) decodeN_unscaledNode();
2232   decode->set_opnd_array(0, new (C) iRegPdstOper());
2233   decode->set_opnd_array(1, new (C) iRegNsrcOper());
2234   return decode;
2235 }
2236 */
2237 // Threshold size for cleararray.
2238 const int Matcher::init_array_short_size = 8 * BytesPerLong;
2239 
2240 // false => size gets scaled to BytesPerLong, ok.
2241 const bool Matcher::init_array_count_is_in_bytes = false;
2242 
2243 // Use conditional move (CMOVL) on Power7.
2244 const int Matcher::long_cmove_cost() { return 0; } // this only makes long cmoves more expensive than int cmoves
2245 
2246 // Suppress CMOVF. Conditional move available (sort of) on PPC64 only from P7 onwards. Not exploited yet.
2247 // fsel doesn't accept a condition register as input, so this would be slightly different.
2248 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
2249 
2250 // Power6 requires postalloc expand (see block.cpp for description of postalloc expand).
2251 const bool Matcher::require_postalloc_expand = true;
2252 
2253 // Should the Matcher clone shifts on addressing modes, expecting them to
2254 // be subsumed into complex addressing expressions or compute them into
2255 // registers? True for Intel but false for most RISCs.
2256 const bool Matcher::clone_shift_expressions = false;
2257 
2258 // Do we need to mask the count passed to shift instructions or does
2259 // the cpu only look at the lower 5/6 bits anyway?
2260 // Off, as masks are generated in expand rules where required.
2261 // Constant shift counts are handled in Ideal phase.
2262 const bool Matcher::need_masked_shift_count = false;
2263 
2264 // This affects two different things:
2265 //  - how Decode nodes are matched
2266 //  - how ImplicitNullCheck opportunities are recognized
2267 // If true, the matcher will try to remove all Decodes and match them
2268 // (as operands) into nodes. NullChecks are not prepared to deal with
2269 // Decodes by final_graph_reshaping().
2270 // If false, final_graph_reshaping() forces the decode behind the Cmp
2271 // for a NullCheck. The matcher matches the Decode node into a register.
2272 // Implicit_null_check optimization moves the Decode along with the
2273 // memory operation back up before the NullCheck.
2274 bool Matcher::narrow_oop_use_complex_address() {
2275   // TODO: PPC port if (MatchDecodeNodes) return true;
2276   return false;
2277 }
2278 
2279 bool Matcher::narrow_klass_use_complex_address() {
2280   NOT_LP64(ShouldNotCallThis());
2281   assert(UseCompressedClassPointers, "only for compressed klass code");
2282   // TODO: PPC port if (MatchDecodeNodes) return true;
2283   return false;
2284 }
2285 
2286 // Is it better to copy float constants, or load them directly from memory?
2287 // Intel can load a float constant from a direct address, requiring no
2288 // extra registers. Most RISCs will have to materialize an address into a
2289 // register first, so they would do better to copy the constant from stack.
2290 const bool Matcher::rematerialize_float_constants = false;
2291 
2292 // If CPU can load and store mis-aligned doubles directly then no fixup is
2293 // needed. Else we split the double into 2 integer pieces and move it
2294 // piece-by-piece. Only happens when passing doubles into C code as the
2295 // Java calling convention forces doubles to be aligned.
2296 const bool Matcher::misaligned_doubles_ok = true;
2297 
2298 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
2299  Unimplemented();
2300 }
2301 
2302 // Advertise here if the CPU requires explicit rounding operations
2303 // to implement the UseStrictFP mode.
2304 const bool Matcher::strict_fp_requires_explicit_rounding = false;
2305 
2306 // Do floats take an entire double register or just half?
2307 //
2308 // A float occupies a ppc64 double register. For the allocator, a
2309 // ppc64 double register appears as a pair of float registers.
2310 bool Matcher::float_in_double() { return true; }
2311 
2312 // Do ints take an entire long register or just half?
2313 // The relevant question is how the int is callee-saved:
2314 // the whole long is written but de-opt'ing will have to extract
2315 // the relevant 32 bits.
2316 const bool Matcher::int_in_long = true;
2317 
2318 // Constants for c2c and c calling conventions.
2319 
2320 const MachRegisterNumbers iarg_reg[8] = {
2321   R3_num, R4_num, R5_num, R6_num,
2322   R7_num, R8_num, R9_num, R10_num
2323 };
2324 
2325 const MachRegisterNumbers farg_reg[13] = {
2326   F1_num, F2_num, F3_num, F4_num,
2327   F5_num, F6_num, F7_num, F8_num,
2328   F9_num, F10_num, F11_num, F12_num,
2329   F13_num
2330 };
2331 
2332 const int num_iarg_registers = sizeof(iarg_reg) / sizeof(iarg_reg[0]);
2333 
2334 const int num_farg_registers = sizeof(farg_reg) / sizeof(farg_reg[0]);
2335 
2336 // Return whether or not this register is ever used as an argument. This
2337 // function is used on startup to build the trampoline stubs in generateOptoStub.
2338 // Registers not mentioned will be killed by the VM call in the trampoline, and
2339 // arguments in those registers not be available to the callee.
2340 bool Matcher::can_be_java_arg(int reg) {
2341   // We return true for all registers contained in iarg_reg[] and
2342   // farg_reg[] and their virtual halves.
2343   // We must include the virtual halves in order to get STDs and LDs
2344   // instead of STWs and LWs in the trampoline stubs.
2345 
2346   if (   reg == R3_num  || reg == R3_H_num
2347       || reg == R4_num  || reg == R4_H_num
2348       || reg == R5_num  || reg == R5_H_num
2349       || reg == R6_num  || reg == R6_H_num
2350       || reg == R7_num  || reg == R7_H_num
2351       || reg == R8_num  || reg == R8_H_num
2352       || reg == R9_num  || reg == R9_H_num
2353       || reg == R10_num || reg == R10_H_num)
2354     return true;
2355 
2356   if (   reg == F1_num  || reg == F1_H_num
2357       || reg == F2_num  || reg == F2_H_num
2358       || reg == F3_num  || reg == F3_H_num
2359       || reg == F4_num  || reg == F4_H_num
2360       || reg == F5_num  || reg == F5_H_num
2361       || reg == F6_num  || reg == F6_H_num
2362       || reg == F7_num  || reg == F7_H_num
2363       || reg == F8_num  || reg == F8_H_num
2364       || reg == F9_num  || reg == F9_H_num
2365       || reg == F10_num || reg == F10_H_num
2366       || reg == F11_num || reg == F11_H_num
2367       || reg == F12_num || reg == F12_H_num
2368       || reg == F13_num || reg == F13_H_num)
2369     return true;
2370 
2371   return false;
2372 }
2373 
2374 bool Matcher::is_spillable_arg(int reg) {
2375   return can_be_java_arg(reg);
2376 }
2377 
2378 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
2379   return false;
2380 }
2381 
2382 // Register for DIVI projection of divmodI.
2383 RegMask Matcher::divI_proj_mask() {
2384   ShouldNotReachHere();
2385   return RegMask();
2386 }
2387 
2388 // Register for MODI projection of divmodI.
2389 RegMask Matcher::modI_proj_mask() {
2390   ShouldNotReachHere();
2391   return RegMask();
2392 }
2393 
2394 // Register for DIVL projection of divmodL.
2395 RegMask Matcher::divL_proj_mask() {
2396   ShouldNotReachHere();
2397   return RegMask();
2398 }
2399 
2400 // Register for MODL projection of divmodL.
2401 RegMask Matcher::modL_proj_mask() {
2402   ShouldNotReachHere();
2403   return RegMask();
2404 }
2405 
2406 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2407   return RegMask();
2408 }
2409 
2410 %}
2411 
2412 //----------ENCODING BLOCK-----------------------------------------------------
2413 // This block specifies the encoding classes used by the compiler to output
2414 // byte streams. Encoding classes are parameterized macros used by
2415 // Machine Instruction Nodes in order to generate the bit encoding of the
2416 // instruction. Operands specify their base encoding interface with the
2417 // interface keyword. There are currently supported four interfaces,
2418 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
2419 // operand to generate a function which returns its register number when
2420 // queried. CONST_INTER causes an operand to generate a function which
2421 // returns the value of the constant when queried. MEMORY_INTER causes an
2422 // operand to generate four functions which return the Base Register, the
2423 // Index Register, the Scale Value, and the Offset Value of the operand when
2424 // queried. COND_INTER causes an operand to generate six functions which
2425 // return the encoding code (ie - encoding bits for the instruction)
2426 // associated with each basic boolean condition for a conditional instruction.
2427 //
2428 // Instructions specify two basic values for encoding. Again, a function
2429 // is available to check if the constant displacement is an oop. They use the
2430 // ins_encode keyword to specify their encoding classes (which must be
2431 // a sequence of enc_class names, and their parameters, specified in
2432 // the encoding block), and they use the
2433 // opcode keyword to specify, in order, their primary, secondary, and
2434 // tertiary opcode. Only the opcode sections which a particular instruction
2435 // needs for encoding need to be specified.
2436 encode %{
2437   enc_class enc_unimplemented %{
2438     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2439     MacroAssembler _masm(&cbuf);
2440     __ unimplemented("Unimplemented mach node encoding in AD file.", 13);
2441   %}
2442 
2443   enc_class enc_untested %{
2444 #ifdef ASSERT
2445     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2446     MacroAssembler _masm(&cbuf);
2447     __ untested("Untested mach node encoding in AD file.");
2448 #else
2449     // TODO: PPC port $archOpcode(ppc64Opcode_none);
2450 #endif
2451   %}
2452 
2453   enc_class enc_lbz(iRegIdst dst, memory mem) %{
2454     // TODO: PPC port $archOpcode(ppc64Opcode_lbz);
2455     MacroAssembler _masm(&cbuf);
2456     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2457     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
2458   %}
2459 
2460   // Load acquire.
2461   enc_class enc_lbz_ac(iRegIdst dst, memory mem) %{
2462     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2463     MacroAssembler _masm(&cbuf);
2464     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2465     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
2466     __ twi_0($dst$$Register);
2467     __ isync();
2468   %}
2469 
2470   enc_class enc_lhz(iRegIdst dst, memory mem) %{
2471     // TODO: PPC port $archOpcode(ppc64Opcode_lhz);
2472 
2473     MacroAssembler _masm(&cbuf);
2474     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2475     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
2476   %}
2477 
2478   // Load acquire.
2479   enc_class enc_lhz_ac(iRegIdst dst, memory mem) %{
2480     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2481 
2482     MacroAssembler _masm(&cbuf);
2483     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2484     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
2485     __ twi_0($dst$$Register);
2486     __ isync();
2487   %}
2488 
2489   enc_class enc_lwz(iRegIdst dst, memory mem) %{
2490     // TODO: PPC port $archOpcode(ppc64Opcode_lwz);
2491 
2492     MacroAssembler _masm(&cbuf);
2493     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2494     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
2495   %}
2496 
2497   // Load acquire.
2498   enc_class enc_lwz_ac(iRegIdst dst, memory mem) %{
2499     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2500 
2501     MacroAssembler _masm(&cbuf);
2502     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2503     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
2504     __ twi_0($dst$$Register);
2505     __ isync();
2506   %}
2507 
2508   enc_class enc_ld(iRegLdst dst, memoryAlg4 mem) %{
2509     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2510     MacroAssembler _masm(&cbuf);
2511     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2512     // Operand 'ds' requires 4-alignment.
2513     assert((Idisp & 0x3) == 0, "unaligned offset");
2514     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
2515   %}
2516 
2517   // Load acquire.
2518   enc_class enc_ld_ac(iRegLdst dst, memoryAlg4 mem) %{
2519     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2520     MacroAssembler _masm(&cbuf);
2521     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2522     // Operand 'ds' requires 4-alignment.
2523     assert((Idisp & 0x3) == 0, "unaligned offset");
2524     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
2525     __ twi_0($dst$$Register);
2526     __ isync();
2527   %}
2528 
2529   enc_class enc_lfd(RegF dst, memory mem) %{
2530     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
2531     MacroAssembler _masm(&cbuf);
2532     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2533     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
2534   %}
2535 
2536   enc_class enc_load_long_constL(iRegLdst dst, immL src, iRegLdst toc) %{
2537     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2538 
2539     MacroAssembler _masm(&cbuf);
2540     int toc_offset = 0;
2541 
2542     if (!ra_->C->in_scratch_emit_size()) {
2543       address const_toc_addr;
2544       // Create a non-oop constant, no relocation needed.
2545       // If it is an IC, it has a virtual_call_Relocation.
2546       const_toc_addr = __ long_constant((jlong)$src$$constant);
2547 
2548       // Get the constant's TOC offset.
2549       toc_offset = __ offset_to_method_toc(const_toc_addr);
2550 
2551       // Keep the current instruction offset in mind.
2552       ((loadConLNode*)this)->_cbuf_insts_offset = __ offset();
2553     }
2554 
2555     __ ld($dst$$Register, toc_offset, $toc$$Register);
2556   %}
2557 
2558   enc_class enc_load_long_constL_hi(iRegLdst dst, iRegLdst toc, immL src) %{
2559     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
2560 
2561     MacroAssembler _masm(&cbuf);
2562 
2563     if (!ra_->C->in_scratch_emit_size()) {
2564       address const_toc_addr;
2565       // Create a non-oop constant, no relocation needed.
2566       // If it is an IC, it has a virtual_call_Relocation.
2567       const_toc_addr = __ long_constant((jlong)$src$$constant);
2568 
2569       // Get the constant's TOC offset.
2570       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
2571       // Store the toc offset of the constant.
2572       ((loadConL_hiNode*)this)->_const_toc_offset = toc_offset;
2573 
2574       // Also keep the current instruction offset in mind.
2575       ((loadConL_hiNode*)this)->_cbuf_insts_offset = __ offset();
2576     }
2577 
2578     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
2579   %}
2580 
2581 %} // encode
2582 
2583 source %{
2584 
2585 typedef struct {
2586   loadConL_hiNode *_large_hi;
2587   loadConL_loNode *_large_lo;
2588   loadConLNode    *_small;
2589   MachNode        *_last;
2590 } loadConLNodesTuple;
2591 
2592 loadConLNodesTuple loadConLNodesTuple_create(Compile *C, PhaseRegAlloc *ra_, Node *toc, immLOper *immSrc,
2593                                              OptoReg::Name reg_second, OptoReg::Name reg_first) {
2594   loadConLNodesTuple nodes;
2595 
2596   const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2597   if (large_constant_pool) {
2598     // Create new nodes.
2599     loadConL_hiNode *m1 = new (C) loadConL_hiNode();
2600     loadConL_loNode *m2 = new (C) loadConL_loNode();
2601 
2602     // inputs for new nodes
2603     m1->add_req(NULL, toc);
2604     m2->add_req(NULL, m1);
2605 
2606     // operands for new nodes
2607     m1->_opnds[0] = new (C) iRegLdstOper(); // dst
2608     m1->_opnds[1] = immSrc;                 // src
2609     m1->_opnds[2] = new (C) iRegPdstOper(); // toc
2610     m2->_opnds[0] = new (C) iRegLdstOper(); // dst
2611     m2->_opnds[1] = immSrc;                 // src
2612     m2->_opnds[2] = new (C) iRegLdstOper(); // base
2613 
2614     // Initialize ins_attrib TOC fields.
2615     m1->_const_toc_offset = -1;
2616     m2->_const_toc_offset_hi_node = m1;
2617 
2618     // Initialize ins_attrib instruction offset.
2619     m1->_cbuf_insts_offset = -1;
2620 
2621     // register allocation for new nodes
2622     ra_->set_pair(m1->_idx, reg_second, reg_first);
2623     ra_->set_pair(m2->_idx, reg_second, reg_first);
2624 
2625     // Create result.
2626     nodes._large_hi = m1;
2627     nodes._large_lo = m2;
2628     nodes._small = NULL;
2629     nodes._last = nodes._large_lo;
2630     assert(m2->bottom_type()->isa_long(), "must be long");
2631   } else {
2632     loadConLNode *m2 = new (C) loadConLNode();
2633 
2634     // inputs for new nodes
2635     m2->add_req(NULL, toc);
2636 
2637     // operands for new nodes
2638     m2->_opnds[0] = new (C) iRegLdstOper(); // dst
2639     m2->_opnds[1] = immSrc;                 // src
2640     m2->_opnds[2] = new (C) iRegPdstOper(); // toc
2641 
2642     // Initialize ins_attrib instruction offset.
2643     m2->_cbuf_insts_offset = -1;
2644 
2645     // register allocation for new nodes
2646     ra_->set_pair(m2->_idx, reg_second, reg_first);
2647 
2648     // Create result.
2649     nodes._large_hi = NULL;
2650     nodes._large_lo = NULL;
2651     nodes._small = m2;
2652     nodes._last = nodes._small;
2653     assert(m2->bottom_type()->isa_long(), "must be long");
2654   }
2655 
2656   return nodes;
2657 }
2658 
2659 %} // source
2660 
2661 encode %{
2662   // Postalloc expand emitter for loading a long constant from the method's TOC.
2663   // Enc_class needed as consttanttablebase is not supported by postalloc
2664   // expand.
2665   enc_class postalloc_expand_load_long_constant(iRegLdst dst, immL src, iRegLdst toc) %{
2666     // Create new nodes.
2667     loadConLNodesTuple loadConLNodes =
2668       loadConLNodesTuple_create(C, ra_, n_toc, op_src,
2669                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
2670 
2671     // Push new nodes.
2672     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
2673     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
2674 
2675     // some asserts
2676     assert(nodes->length() >= 1, "must have created at least 1 node");
2677     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
2678   %}
2679 
2680   enc_class enc_load_long_constP(iRegLdst dst, immP src, iRegLdst toc) %{
2681     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2682 
2683     MacroAssembler _masm(&cbuf);
2684     int toc_offset = 0;
2685 
2686     if (!ra_->C->in_scratch_emit_size()) {
2687       intptr_t val = $src$$constant;
2688       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
2689       address const_toc_addr;
2690       if (constant_reloc == relocInfo::oop_type) {
2691         // Create an oop constant and a corresponding relocation.
2692         AddressLiteral a = __ allocate_oop_address((jobject)val);
2693         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2694         __ relocate(a.rspec());
2695       } else if (constant_reloc == relocInfo::metadata_type) {
2696         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
2697         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2698         __ relocate(a.rspec());
2699       } else {
2700         // Create a non-oop constant, no relocation needed.
2701         const_toc_addr = __ long_constant((jlong)$src$$constant);
2702       }
2703 
2704       // Get the constant's TOC offset.
2705       toc_offset = __ offset_to_method_toc(const_toc_addr);
2706     }
2707 
2708     __ ld($dst$$Register, toc_offset, $toc$$Register);
2709   %}
2710 
2711   enc_class enc_load_long_constP_hi(iRegLdst dst, immP src, iRegLdst toc) %{
2712     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
2713 
2714     MacroAssembler _masm(&cbuf);
2715     if (!ra_->C->in_scratch_emit_size()) {
2716       intptr_t val = $src$$constant;
2717       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
2718       address const_toc_addr;
2719       if (constant_reloc == relocInfo::oop_type) {
2720         // Create an oop constant and a corresponding relocation.
2721         AddressLiteral a = __ allocate_oop_address((jobject)val);
2722         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2723         __ relocate(a.rspec());
2724       } else if (constant_reloc == relocInfo::metadata_type) {
2725         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
2726         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2727         __ relocate(a.rspec());
2728       } else {  // non-oop pointers, e.g. card mark base, heap top
2729         // Create a non-oop constant, no relocation needed.
2730         const_toc_addr = __ long_constant((jlong)$src$$constant);
2731       }
2732 
2733       // Get the constant's TOC offset.
2734       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
2735       // Store the toc offset of the constant.
2736       ((loadConP_hiNode*)this)->_const_toc_offset = toc_offset;
2737     }
2738 
2739     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
2740   %}
2741 
2742   // Postalloc expand emitter for loading a ptr constant from the method's TOC.
2743   // Enc_class needed as consttanttablebase is not supported by postalloc
2744   // expand.
2745   enc_class postalloc_expand_load_ptr_constant(iRegPdst dst, immP src, iRegLdst toc) %{
2746     const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2747     if (large_constant_pool) {
2748       // Create new nodes.
2749       loadConP_hiNode *m1 = new (C) loadConP_hiNode();
2750       loadConP_loNode *m2 = new (C) loadConP_loNode();
2751 
2752       // inputs for new nodes
2753       m1->add_req(NULL, n_toc);
2754       m2->add_req(NULL, m1);
2755       
2756       // operands for new nodes
2757       m1->_opnds[0] = new (C) iRegPdstOper(); // dst
2758       m1->_opnds[1] = op_src;                 // src
2759       m1->_opnds[2] = new (C) iRegPdstOper(); // toc
2760       m2->_opnds[0] = new (C) iRegPdstOper(); // dst
2761       m2->_opnds[1] = op_src;                 // src
2762       m2->_opnds[2] = new (C) iRegLdstOper(); // base
2763       
2764       // Initialize ins_attrib TOC fields.
2765       m1->_const_toc_offset = -1;
2766       m2->_const_toc_offset_hi_node = m1;
2767       
2768       // Register allocation for new nodes.
2769       ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2770       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2771       
2772       nodes->push(m1);
2773       nodes->push(m2);
2774       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
2775     } else {
2776       loadConPNode *m2 = new (C) loadConPNode();
2777       
2778       // inputs for new nodes
2779       m2->add_req(NULL, n_toc);
2780       
2781       // operands for new nodes
2782       m2->_opnds[0] = new (C) iRegPdstOper(); // dst
2783       m2->_opnds[1] = op_src;                 // src
2784       m2->_opnds[2] = new (C) iRegPdstOper(); // toc
2785       
2786       // Register allocation for new nodes.
2787       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2788 
2789       nodes->push(m2);
2790       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
2791     }
2792   %}
2793 
2794   // Enc_class needed as consttanttablebase is not supported by postalloc
2795   // expand.
2796   enc_class postalloc_expand_load_float_constant(regF dst, immF src, iRegLdst toc) %{
2797     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2798 
2799     MachNode *m2;
2800     if (large_constant_pool) {
2801       m2 = new (C) loadConFCompNode();
2802     } else {
2803       m2 = new (C) loadConFNode();
2804     }
2805     // inputs for new nodes
2806     m2->add_req(NULL, n_toc);
2807 
2808     // operands for new nodes
2809     m2->_opnds[0] = op_dst;
2810     m2->_opnds[1] = op_src;
2811     m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
2812 
2813     // register allocation for new nodes
2814     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2815     nodes->push(m2);
2816   %}
2817 
2818   // Enc_class needed as consttanttablebase is not supported by postalloc
2819   // expand.
2820   enc_class postalloc_expand_load_double_constant(regD dst, immD src, iRegLdst toc) %{
2821     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2822 
2823     MachNode *m2;
2824     if (large_constant_pool) {
2825       m2 = new (C) loadConDCompNode();
2826     } else {
2827       m2 = new (C) loadConDNode();
2828     }
2829     // inputs for new nodes
2830     m2->add_req(NULL, n_toc);
2831 
2832     // operands for new nodes
2833     m2->_opnds[0] = op_dst;
2834     m2->_opnds[1] = op_src;
2835     m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
2836 
2837     // register allocation for new nodes
2838     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2839     nodes->push(m2);
2840   %}
2841 
2842   enc_class enc_stw(iRegIsrc src, memory mem) %{
2843     // TODO: PPC port $archOpcode(ppc64Opcode_stw);
2844     MacroAssembler _masm(&cbuf);
2845     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2846     __ stw($src$$Register, Idisp, $mem$$base$$Register);
2847   %}
2848 
2849   enc_class enc_std(iRegIsrc src, memoryAlg4 mem) %{
2850     // TODO: PPC port $archOpcode(ppc64Opcode_std);
2851     MacroAssembler _masm(&cbuf);
2852     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2853     // Operand 'ds' requires 4-alignment.
2854     assert((Idisp & 0x3) == 0, "unaligned offset");
2855     __ std($src$$Register, Idisp, $mem$$base$$Register);
2856   %}
2857 
2858   enc_class enc_stfs(RegF src, memory mem) %{
2859     // TODO: PPC port $archOpcode(ppc64Opcode_stfs);
2860     MacroAssembler _masm(&cbuf);
2861     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2862     __ stfs($src$$FloatRegister, Idisp, $mem$$base$$Register);
2863   %}
2864 
2865   enc_class enc_stfd(RegF src, memory mem) %{
2866     // TODO: PPC port $archOpcode(ppc64Opcode_stfd);
2867     MacroAssembler _masm(&cbuf);
2868     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2869     __ stfd($src$$FloatRegister, Idisp, $mem$$base$$Register);
2870   %}
2871 
2872   // Use release_store for card-marking to ensure that previous
2873   // oop-stores are visible before the card-mark change.
2874   enc_class enc_cms_card_mark(memory mem, iRegLdst releaseFieldAddr) %{
2875     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2876     // FIXME: Implement this as a cmove and use a fixed condition code
2877     // register which is written on every transition to compiled code,
2878     // e.g. in call-stub and when returning from runtime stubs.
2879     //
2880     // Proposed code sequence for the cmove implementation:
2881     //
2882     // Label skip_release;
2883     // __ beq(CCRfixed, skip_release);
2884     // __ release();
2885     // __ bind(skip_release);
2886     // __ stb(card mark);
2887 
2888     MacroAssembler _masm(&cbuf);
2889     Label skip_storestore;
2890 
2891 #if 0 // TODO: PPC port
2892     // Check CMSCollectorCardTableModRefBSExt::_requires_release and do the
2893     // StoreStore barrier conditionally.
2894     __ lwz(R0, 0, $releaseFieldAddr$$Register);
2895     __ cmpwi(CCR0, R0, 0);
2896     __ beq_predict_taken(CCR0, skip_storestore);
2897 #endif
2898     __ li(R0, 0);
2899     __ membar(Assembler::StoreStore);
2900 #if 0 // TODO: PPC port
2901     __ bind(skip_storestore);
2902 #endif
2903 
2904     // Do the store.
2905     if ($mem$$index == 0) {
2906       __ stb(R0, $mem$$disp, $mem$$base$$Register);
2907     } else {
2908       assert(0 == $mem$$disp, "no displacement possible with indexed load/stores on ppc");
2909       __ stbx(R0, $mem$$base$$Register, $mem$$index$$Register);
2910     }
2911   %}
2912 
2913   enc_class postalloc_expand_encode_oop(iRegNdst dst, iRegPdst src, flagsReg crx) %{
2914 
2915     if (VM_Version::has_isel()) {
2916       // use isel instruction with Power 7
2917       cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
2918       encodeP_subNode    *n_sub_base = new (C) encodeP_subNode();
2919       encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
2920       cond_set_0_oopNode *n_cond_set = new (C) cond_set_0_oopNode();
2921 
2922       n_compare->add_req(n_region, n_src);
2923       n_compare->_opnds[0] = op_crx;
2924       n_compare->_opnds[1] = op_src;
2925       n_compare->_opnds[2] = new (C) immL16Oper(0);
2926 
2927       n_sub_base->add_req(n_region, n_src);
2928       n_sub_base->_opnds[0] = op_dst;
2929       n_sub_base->_opnds[1] = op_src;
2930       n_sub_base->_bottom_type = _bottom_type;
2931 
2932       n_shift->add_req(n_region, n_sub_base);
2933       n_shift->_opnds[0] = op_dst;
2934       n_shift->_opnds[1] = op_dst;
2935       n_shift->_bottom_type = _bottom_type;
2936 
2937       n_cond_set->add_req(n_region, n_compare, n_shift);
2938       n_cond_set->_opnds[0] = op_dst;
2939       n_cond_set->_opnds[1] = op_crx;
2940       n_cond_set->_opnds[2] = op_dst;
2941       n_cond_set->_bottom_type = _bottom_type;
2942 
2943       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
2944       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2945       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2946       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2947 
2948       nodes->push(n_compare);
2949       nodes->push(n_sub_base);
2950       nodes->push(n_shift);
2951       nodes->push(n_cond_set);
2952 
2953     } else {
2954       // before Power 7
2955       moveRegNode        *n_move     = new (C) moveRegNode();
2956       cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
2957       encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
2958       cond_sub_baseNode  *n_sub_base = new (C) cond_sub_baseNode();
2959 
2960       n_move->add_req(n_region, n_src);
2961       n_move->_opnds[0] = op_dst;
2962       n_move->_opnds[1] = op_src;
2963       ra_->set_oop(n_move, true); // Until here, 'n_move' still produces an oop.
2964 
2965       n_compare->add_req(n_region, n_src);
2966       n_compare->add_prec(n_move);
2967 
2968       n_compare->_opnds[0] = op_crx;
2969       n_compare->_opnds[1] = op_src;
2970       n_compare->_opnds[2] = new (C) immL16Oper(0);
2971 
2972       n_sub_base->add_req(n_region, n_compare, n_src);
2973       n_sub_base->_opnds[0] = op_dst;
2974       n_sub_base->_opnds[1] = op_crx;
2975       n_sub_base->_opnds[2] = op_src;
2976       n_sub_base->_bottom_type = _bottom_type;
2977    
2978       n_shift->add_req(n_region, n_sub_base);
2979       n_shift->_opnds[0] = op_dst;
2980       n_shift->_opnds[1] = op_dst;
2981       n_shift->_bottom_type = _bottom_type;
2982    
2983       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2984       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
2985       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2986       ra_->set_pair(n_move->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2987    
2988       nodes->push(n_move);
2989       nodes->push(n_compare);
2990       nodes->push(n_sub_base);
2991       nodes->push(n_shift);
2992     }
2993 
2994     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
2995   %}
2996 
2997   enc_class postalloc_expand_encode_oop_not_null(iRegNdst dst, iRegPdst src) %{
2998 
2999     encodeP_subNode *n1 = new (C) encodeP_subNode();
3000     n1->add_req(n_region, n_src);
3001     n1->_opnds[0] = op_dst;
3002     n1->_opnds[1] = op_src;
3003     n1->_bottom_type = _bottom_type;
3004 
3005     encodeP_shiftNode *n2 = new (C) encodeP_shiftNode();
3006     n2->add_req(n_region, n1);
3007     n2->_opnds[0] = op_dst;
3008     n2->_opnds[1] = op_dst;
3009     n2->_bottom_type = _bottom_type;
3010     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3011     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3012 
3013     nodes->push(n1);
3014     nodes->push(n2);
3015     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
3016   %}
3017 
3018   enc_class postalloc_expand_decode_oop(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
3019     decodeN_shiftNode *n_shift    = new (C) decodeN_shiftNode();
3020     cmpN_reg_imm0Node *n_compare  = new (C) cmpN_reg_imm0Node();
3021 
3022     n_compare->add_req(n_region, n_src);
3023     n_compare->_opnds[0] = op_crx;
3024     n_compare->_opnds[1] = op_src;
3025     n_compare->_opnds[2] = new (C) immN_0Oper(TypeNarrowOop::NULL_PTR);
3026 
3027     n_shift->add_req(n_region, n_src);
3028     n_shift->_opnds[0] = op_dst;
3029     n_shift->_opnds[1] = op_src;
3030     n_shift->_bottom_type = _bottom_type;
3031 
3032     if (VM_Version::has_isel()) {
3033       // use isel instruction with Power 7
3034 
3035       decodeN_addNode *n_add_base = new (C) decodeN_addNode();
3036       n_add_base->add_req(n_region, n_shift);
3037       n_add_base->_opnds[0] = op_dst;
3038       n_add_base->_opnds[1] = op_dst;
3039       n_add_base->_bottom_type = _bottom_type;
3040 
3041       cond_set_0_ptrNode *n_cond_set = new (C) cond_set_0_ptrNode();
3042       n_cond_set->add_req(n_region, n_compare, n_add_base);
3043       n_cond_set->_opnds[0] = op_dst;
3044       n_cond_set->_opnds[1] = op_crx;
3045       n_cond_set->_opnds[2] = op_dst;
3046       n_cond_set->_bottom_type = _bottom_type;
3047 
3048       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
3049       ra_->set_oop(n_cond_set, true);
3050 
3051       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3052       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
3053       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3054       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3055 
3056       nodes->push(n_compare);
3057       nodes->push(n_shift);
3058       nodes->push(n_add_base);
3059       nodes->push(n_cond_set);
3060 
3061     } else {
3062       // before Power 7
3063       cond_add_baseNode *n_add_base = new (C) cond_add_baseNode();
3064      
3065       n_add_base->add_req(n_region, n_compare, n_shift);
3066       n_add_base->_opnds[0] = op_dst;
3067       n_add_base->_opnds[1] = op_crx;
3068       n_add_base->_opnds[2] = op_dst;
3069       n_add_base->_bottom_type = _bottom_type;
3070      
3071       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
3072       ra_->set_oop(n_add_base, true);
3073      
3074       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3075       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
3076       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3077      
3078       nodes->push(n_compare);
3079       nodes->push(n_shift);
3080       nodes->push(n_add_base);
3081     }
3082   %}
3083 
3084   enc_class postalloc_expand_decode_oop_not_null(iRegPdst dst, iRegNsrc src) %{
3085     decodeN_shiftNode *n1 = new (C) decodeN_shiftNode();
3086     n1->add_req(n_region, n_src);
3087     n1->_opnds[0] = op_dst;
3088     n1->_opnds[1] = op_src;
3089     n1->_bottom_type = _bottom_type;
3090 
3091     decodeN_addNode *n2 = new (C) decodeN_addNode();
3092     n2->add_req(n_region, n1);
3093     n2->_opnds[0] = op_dst;
3094     n2->_opnds[1] = op_dst;
3095     n2->_bottom_type = _bottom_type;
3096     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3097     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3098 
3099     assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
3100     ra_->set_oop(n2, true);
3101 
3102     nodes->push(n1);
3103     nodes->push(n2);
3104   %}
3105 
3106   enc_class enc_cmove_reg(iRegIdst dst, flagsReg crx, iRegIsrc src, cmpOp cmp) %{
3107     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3108 
3109     MacroAssembler _masm(&cbuf);
3110     int cc        = $cmp$$cmpcode;
3111     int flags_reg = $crx$$reg;
3112     Label done;
3113     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3114     // Branch if not (cmp crx).
3115     __ bc(cc_to_inverse_boint(cc), cc_to_biint(cc, flags_reg), done);
3116     __ mr($dst$$Register, $src$$Register);
3117     // TODO PPC port __ endgroup_if_needed(_size == 12);
3118     __ bind(done);
3119   %}
3120 
3121   enc_class enc_cmove_imm(iRegIdst dst, flagsReg crx, immI16 src, cmpOp cmp) %{
3122     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3123 
3124     MacroAssembler _masm(&cbuf);
3125     Label done;
3126     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3127     // Branch if not (cmp crx).
3128     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
3129     __ li($dst$$Register, $src$$constant);
3130     // TODO PPC port __ endgroup_if_needed(_size == 12);
3131     __ bind(done);
3132   %}
3133 
3134   // New atomics.
3135   enc_class enc_GetAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
3136     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3137 
3138     MacroAssembler _masm(&cbuf);
3139     Register Rtmp   = R0;
3140     Register Rres   = $res$$Register;
3141     Register Rsrc   = $src$$Register;
3142     Register Rptr   = $mem_ptr$$Register;
3143     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3144     Register Rold   = RegCollision ? Rtmp : Rres;
3145 
3146     Label Lretry;
3147     __ bind(Lretry);
3148     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3149     __ add(Rtmp, Rsrc, Rold);
3150     __ stwcx_(Rtmp, Rptr);
3151     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3152       __ bne_predict_not_taken(CCR0, Lretry);
3153     } else {
3154       __ bne(                  CCR0, Lretry);
3155     }
3156     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
3157     __ fence();
3158   %}
3159 
3160   enc_class enc_GetAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
3161     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3162 
3163     MacroAssembler _masm(&cbuf);
3164     Register Rtmp   = R0;
3165     Register Rres   = $res$$Register;
3166     Register Rsrc   = $src$$Register;
3167     Register Rptr   = $mem_ptr$$Register;
3168     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3169     Register Rold   = RegCollision ? Rtmp : Rres;
3170 
3171     Label Lretry;
3172     __ bind(Lretry);
3173     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3174     __ add(Rtmp, Rsrc, Rold);
3175     __ stdcx_(Rtmp, Rptr);
3176     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3177       __ bne_predict_not_taken(CCR0, Lretry);
3178     } else {
3179       __ bne(                  CCR0, Lretry);
3180     }
3181     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
3182     __ fence();
3183   %}
3184 
3185   enc_class enc_GetAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
3186     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3187 
3188     MacroAssembler _masm(&cbuf);
3189     Register Rtmp   = R0;
3190     Register Rres   = $res$$Register;
3191     Register Rsrc   = $src$$Register;
3192     Register Rptr   = $mem_ptr$$Register;
3193     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3194     Register Rold   = RegCollision ? Rtmp : Rres;
3195 
3196     Label Lretry;
3197     __ bind(Lretry);
3198     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3199     __ stwcx_(Rsrc, Rptr);
3200     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3201       __ bne_predict_not_taken(CCR0, Lretry);
3202     } else {
3203       __ bne(                  CCR0, Lretry);
3204     }
3205     if (RegCollision) __ mr(Rres, Rtmp);
3206     __ fence();
3207   %}
3208 
3209   enc_class enc_GetAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
3210     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3211 
3212     MacroAssembler _masm(&cbuf);
3213     Register Rtmp   = R0;
3214     Register Rres   = $res$$Register;
3215     Register Rsrc   = $src$$Register;
3216     Register Rptr   = $mem_ptr$$Register;
3217     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3218     Register Rold   = RegCollision ? Rtmp : Rres;
3219 
3220     Label Lretry;
3221     __ bind(Lretry);
3222     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3223     __ stdcx_(Rsrc, Rptr);
3224     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3225       __ bne_predict_not_taken(CCR0, Lretry);
3226     } else {
3227       __ bne(                  CCR0, Lretry);
3228     }
3229     if (RegCollision) __ mr(Rres, Rtmp);
3230     __ fence();
3231   %}
3232 
3233   // This enc_class is needed so that scheduler gets proper
3234   // input mapping for latency computation.
3235   enc_class enc_andc(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
3236     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
3237     MacroAssembler _masm(&cbuf);
3238     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
3239   %}
3240 
3241   enc_class enc_convI2B_regI__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
3242     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3243 
3244     MacroAssembler _masm(&cbuf);
3245 
3246     Label done;
3247     __ cmpwi($crx$$CondRegister, $src$$Register, 0);
3248     __ li($dst$$Register, $zero$$constant);
3249     __ beq($crx$$CondRegister, done);
3250     __ li($dst$$Register, $notzero$$constant);
3251     __ bind(done);
3252   %}
3253 
3254   enc_class enc_convP2B_regP__cmove(iRegIdst dst, iRegPsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
3255     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3256 
3257     MacroAssembler _masm(&cbuf);
3258 
3259     Label done;
3260     __ cmpdi($crx$$CondRegister, $src$$Register, 0);
3261     __ li($dst$$Register, $zero$$constant);
3262     __ beq($crx$$CondRegister, done);
3263     __ li($dst$$Register, $notzero$$constant);
3264     __ bind(done);
3265   %}
3266 
3267   enc_class enc_cmove_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL mem ) %{
3268     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3269 
3270     MacroAssembler _masm(&cbuf);
3271     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
3272     Label done;
3273     __ bso($crx$$CondRegister, done);
3274     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
3275     // TODO PPC port __ endgroup_if_needed(_size == 12);
3276     __ bind(done);
3277   %}
3278 
3279   enc_class enc_bc(flagsReg crx, cmpOp cmp, Label lbl) %{
3280     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3281 
3282     MacroAssembler _masm(&cbuf);
3283     Label d;   // dummy
3284     __ bind(d);
3285     Label* p = ($lbl$$label);
3286     // `p' is `NULL' when this encoding class is used only to
3287     // determine the size of the encoded instruction.
3288     Label& l = (NULL == p)? d : *(p);
3289     int cc = $cmp$$cmpcode;
3290     int flags_reg = $crx$$reg;
3291     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3292     int bhint = Assembler::bhintNoHint;
3293 
3294     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3295       if (_prob <= PROB_NEVER) {
3296         bhint = Assembler::bhintIsNotTaken;
3297       } else if (_prob >= PROB_ALWAYS) {
3298         bhint = Assembler::bhintIsTaken;
3299       }
3300     }
3301 
3302     __ bc(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3303           cc_to_biint(cc, flags_reg),
3304           l);
3305   %}
3306 
3307   enc_class enc_bc_far(flagsReg crx, cmpOp cmp, Label lbl) %{
3308     // The scheduler doesn't know about branch shortening, so we set the opcode
3309     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
3310     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3311 
3312     MacroAssembler _masm(&cbuf);
3313     Label d;    // dummy
3314     __ bind(d);
3315     Label* p = ($lbl$$label);
3316     // `p' is `NULL' when this encoding class is used only to
3317     // determine the size of the encoded instruction.
3318     Label& l = (NULL == p)? d : *(p);
3319     int cc = $cmp$$cmpcode;
3320     int flags_reg = $crx$$reg;
3321     int bhint = Assembler::bhintNoHint;
3322 
3323     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3324       if (_prob <= PROB_NEVER) {
3325         bhint = Assembler::bhintIsNotTaken;
3326       } else if (_prob >= PROB_ALWAYS) {
3327         bhint = Assembler::bhintIsTaken;
3328       }
3329     }
3330 
3331     // Tell the conditional far branch to optimize itself when being relocated.
3332     __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3333                   cc_to_biint(cc, flags_reg),
3334                   l,
3335                   MacroAssembler::bc_far_optimize_on_relocate);
3336   %}
3337 
3338   // Branch used with Power6 scheduling (can be shortened without changing the node).
3339   enc_class enc_bc_short_far(flagsReg crx, cmpOp cmp, Label lbl) %{
3340     // The scheduler doesn't know about branch shortening, so we set the opcode
3341     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
3342     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3343 
3344     MacroAssembler _masm(&cbuf);
3345     Label d;   // dummy
3346     __ bind(d);
3347     Label* p = ($lbl$$label);
3348     // `p' is `NULL' when this encoding class is used only to
3349     // determine the size of the encoded instruction.
3350     Label& l = (NULL == p)? d : *(p);
3351     int cc = $cmp$$cmpcode;
3352     int flags_reg = $crx$$reg;
3353     int bhint = Assembler::bhintNoHint;
3354 
3355     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3356       if (_prob <= PROB_NEVER) {
3357         bhint = Assembler::bhintIsNotTaken;
3358       } else if (_prob >= PROB_ALWAYS) {
3359         bhint = Assembler::bhintIsTaken;
3360       }
3361     }
3362 
3363 #if 0 // TODO: PPC port
3364     if (_size == 8) {
3365       // Tell the conditional far branch to optimize itself when being relocated.
3366       __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3367                     cc_to_biint(cc, flags_reg),
3368                     l,
3369                     MacroAssembler::bc_far_optimize_on_relocate);
3370     } else {
3371       __ bc    (Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3372                     cc_to_biint(cc, flags_reg),
3373                     l);
3374     }
3375 #endif
3376     Unimplemented();
3377   %}
3378 
3379   // Postalloc expand emitter for loading a replicatef float constant from
3380   // the method's TOC.
3381   // Enc_class needed as consttanttablebase is not supported by postalloc
3382   // expand.
3383   enc_class postalloc_expand_load_replF_constant(iRegLdst dst, immF src, iRegLdst toc) %{
3384     // Create new nodes.
3385 
3386     // Make an operand with the bit pattern to load as float.
3387     immLOper *op_repl = new (C) immLOper((jlong)replicate_immF(op_src->constantF()));
3388 
3389     loadConLNodesTuple loadConLNodes =
3390       loadConLNodesTuple_create(C, ra_, n_toc, op_repl,
3391                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
3392 
3393     // Push new nodes.
3394     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
3395     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
3396 
3397     assert(nodes->length() >= 1, "must have created at least 1 node");
3398     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
3399   %}
3400 
3401   // This enc_class is needed so that scheduler gets proper
3402   // input mapping for latency computation.
3403   enc_class enc_poll(immI dst, iRegLdst poll) %{
3404     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
3405     // Fake operand dst needed for PPC scheduler.
3406     assert($dst$$constant == 0x0, "dst must be 0x0");
3407 
3408     MacroAssembler _masm(&cbuf);
3409     // Mark the code position where the load from the safepoint
3410     // polling page was emitted as relocInfo::poll_type.
3411     __ relocate(relocInfo::poll_type);
3412     __ load_from_polling_page($poll$$Register);
3413   %}
3414 
3415   // A Java static call or a runtime call.
3416   //
3417   // Branch-and-link relative to a trampoline.
3418   // The trampoline loads the target address and does a long branch to there.
3419   // In case we call java, the trampoline branches to a interpreter_stub
3420   // which loads the inline cache and the real call target from the constant pool.
3421   //
3422   // This basically looks like this:
3423   //
3424   // >>>> consts      -+  -+
3425   //                   |   |- offset1
3426   // [call target1]    | <-+
3427   // [IC cache]        |- offset2
3428   // [call target2] <--+
3429   //
3430   // <<<< consts
3431   // >>>> insts
3432   //
3433   // bl offset16               -+  -+             ??? // How many bits available?
3434   //                            |   |
3435   // <<<< insts                 |   |
3436   // >>>> stubs                 |   |
3437   //                            |   |- trampoline_stub_Reloc
3438   // trampoline stub:           | <-+
3439   //   r2 = toc                 |
3440   //   r2 = [r2 + offset1]      |       // Load call target1 from const section
3441   //   mtctr r2                 |
3442   //   bctr                     |- static_stub_Reloc
3443   // comp_to_interp_stub:   <---+
3444   //   r1 = toc
3445   //   ICreg = [r1 + IC_offset]         // Load IC from const section
3446   //   r1    = [r1 + offset2]           // Load call target2 from const section
3447   //   mtctr r1
3448   //   bctr
3449   //
3450   // <<<< stubs
3451   //
3452   // The call instruction in the code either
3453   // - Branches directly to a compiled method if the offset is encodable in instruction.
3454   // - Branches to the trampoline stub if the offset to the compiled method is not encodable.
3455   // - Branches to the compiled_to_interp stub if the target is interpreted.
3456   //
3457   // Further there are three relocations from the loads to the constants in
3458   // the constant section.
3459   //
3460   // Usage of r1 and r2 in the stubs allows to distinguish them.
3461   enc_class enc_java_static_call(method meth) %{
3462     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
3463 
3464     MacroAssembler _masm(&cbuf);
3465     address entry_point = (address)$meth$$method;
3466 
3467     if (!_method) {
3468       // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
3469       emit_call_with_trampoline_stub(_masm, entry_point, relocInfo::runtime_call_type);
3470     } else {
3471       // Remember the offset not the address.
3472       const int start_offset = __ offset();
3473       // The trampoline stub.
3474       if (!Compile::current()->in_scratch_emit_size()) {
3475         // No entry point given, use the current pc.
3476         // Make sure branch fits into
3477         if (entry_point == 0) entry_point = __ pc();
3478 
3479         // Put the entry point as a constant into the constant pool.
3480         const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
3481         const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
3482 
3483         // Emit the trampoline stub which will be related to the branch-and-link below.
3484         CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
3485         __ relocate(_optimized_virtual ?
3486                     relocInfo::opt_virtual_call_type : relocInfo::static_call_type);
3487       }
3488 
3489       // The real call.
3490       // Note: At this point we do not have the address of the trampoline
3491       // stub, and the entry point might be too far away for bl, so __ pc()
3492       // serves as dummy and the bl will be patched later.
3493       cbuf.set_insts_mark();
3494       __ bl(__ pc());  // Emits a relocation.
3495 
3496       // The stub for call to interpreter.
3497       CompiledStaticCall::emit_to_interp_stub(cbuf);
3498     }
3499   %}
3500 
3501   // Emit a method handle call.
3502   //
3503   // Method handle calls from compiled to compiled are going thru a
3504   // c2i -> i2c adapter, extending the frame for their arguments. The
3505   // caller however, returns directly to the compiled callee, that has
3506   // to cope with the extended frame. We restore the original frame by
3507   // loading the callers sp and adding the calculated framesize.
3508   enc_class enc_java_handle_call(method meth) %{
3509     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3510 
3511     MacroAssembler _masm(&cbuf);
3512     address entry_point = (address)$meth$$method;
3513 
3514     // Remember the offset not the address.
3515     const int start_offset = __ offset();
3516     // The trampoline stub.
3517     if (!ra_->C->in_scratch_emit_size()) {
3518       // No entry point given, use the current pc.
3519       // Make sure branch fits into
3520       if (entry_point == 0) entry_point = __ pc();
3521 
3522       // Put the entry point as a constant into the constant pool.
3523       const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
3524       const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
3525 
3526       // Emit the trampoline stub which will be related to the branch-and-link below.
3527       CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
3528       assert(_optimized_virtual, "methodHandle call should be a virtual call");
3529       __ relocate(relocInfo::opt_virtual_call_type);
3530     }
3531 
3532     // The real call.
3533     // Note: At this point we do not have the address of the trampoline
3534     // stub, and the entry point might be too far away for bl, so __ pc()
3535     // serves as dummy and the bl will be patched later.
3536     cbuf.set_insts_mark();
3537     __ bl(__ pc());  // Emits a relocation.
3538 
3539     assert(_method, "execute next statement conditionally");
3540     // The stub for call to interpreter.
3541     CompiledStaticCall::emit_to_interp_stub(cbuf);
3542 
3543     // Restore original sp.
3544     __ ld(R11_scratch1, 0, R1_SP); // Load caller sp.
3545     const long framesize = ra_->C->frame_slots() << LogBytesPerInt;
3546     unsigned int bytes = (unsigned int)framesize;
3547     long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
3548     if (Assembler::is_simm(-offset, 16)) {
3549       __ addi(R1_SP, R11_scratch1, -offset);
3550     } else {
3551       __ load_const_optimized(R12_scratch2, -offset);
3552       __ add(R1_SP, R11_scratch1, R12_scratch2);
3553     }
3554 #ifdef ASSERT
3555   __ ld(R12_scratch2, 0, R1_SP); // Load from unextended_sp.
3556   __ cmpd(CCR0, R11_scratch1, R12_scratch2);
3557   __ asm_assert_eq("backlink changed", 0x8000);
3558 #endif
3559     // If fails should store backlink before unextending.
3560 
3561     if (ra_->C->env()->failing()) {
3562       return;
3563     }
3564   %}
3565 
3566   // Second node of expanded dynamic call - the call.
3567   enc_class enc_java_dynamic_call_sched(method meth) %{
3568     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
3569 
3570     MacroAssembler _masm(&cbuf);
3571 
3572     if (!ra_->C->in_scratch_emit_size()) {
3573       // Create a call trampoline stub for the given method.
3574       const address entry_point = !($meth$$method) ? 0 : (address)$meth$$method;
3575       const address entry_point_const = __ address_constant(entry_point, RelocationHolder::none);
3576       const int entry_point_const_toc_offset = __ offset_to_method_toc(entry_point_const);
3577       CallStubImpl::emit_trampoline_stub(_masm, entry_point_const_toc_offset, __ offset());
3578 
3579       if (ra_->C->env()->failing())
3580         return;
3581 
3582       // Build relocation at call site with ic position as data.
3583       assert((_load_ic_hi_node != NULL && _load_ic_node == NULL) ||
3584              (_load_ic_hi_node == NULL && _load_ic_node != NULL),
3585              "must have one, but can't have both");
3586       assert((_load_ic_hi_node != NULL && _load_ic_hi_node->_cbuf_insts_offset != -1) ||
3587              (_load_ic_node != NULL    && _load_ic_node->_cbuf_insts_offset != -1),
3588              "must contain instruction offset");
3589       const int virtual_call_oop_addr_offset = _load_ic_hi_node != NULL
3590         ? _load_ic_hi_node->_cbuf_insts_offset
3591         : _load_ic_node->_cbuf_insts_offset;
3592       const address virtual_call_oop_addr = __ addr_at(virtual_call_oop_addr_offset);
3593       assert(MacroAssembler::is_load_const_from_method_toc_at(virtual_call_oop_addr),
3594              "should be load from TOC");
3595 
3596       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
3597     }
3598 
3599     // At this point I do not have the address of the trampoline stub,
3600     // and the entry point might be too far away for bl. Pc() serves
3601     // as dummy and bl will be patched later.
3602     __ bl((address) __ pc());
3603   %}
3604 
3605   // postalloc expand emitter for virtual calls.
3606   enc_class postalloc_expand_java_dynamic_call_sched(method meth, iRegLdst toc) %{
3607 
3608     // Create the nodes for loading the IC from the TOC.
3609     loadConLNodesTuple loadConLNodes_IC =
3610       loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong)Universe::non_oop_word()),
3611                                 OptoReg::Name(R19_H_num), OptoReg::Name(R19_num));
3612 
3613     // Create the call node.
3614     CallDynamicJavaDirectSchedNode *call = new (C) CallDynamicJavaDirectSchedNode();
3615     call->_method_handle_invoke = _method_handle_invoke;
3616     call->_vtable_index      = _vtable_index;
3617     call->_method            = _method;
3618     call->_bci               = _bci;
3619     call->_optimized_virtual = _optimized_virtual;
3620     call->_tf                = _tf;
3621     call->_entry_point       = _entry_point;
3622     call->_cnt               = _cnt;
3623     call->_argsize           = _argsize;
3624     call->_oop_map           = _oop_map;
3625     call->_jvms              = _jvms;
3626     call->_jvmadj            = _jvmadj;
3627     call->_in_rms            = _in_rms;
3628     call->_nesting           = _nesting;
3629 
3630     // New call needs all inputs of old call.
3631     // Req...
3632     for (uint i = 0; i < req(); ++i) {
3633       // The expanded node does not need toc any more.
3634       // Add the inline cache constant here instead.  This expresses the 
3635       // register of the inline cache must be live at the call.
3636       // Else we would have to adapt JVMState by -1.
3637       if (i == mach_constant_base_node_input()) {
3638         call->add_req(loadConLNodes_IC._last);        
3639       } else {
3640         call->add_req(in(i));
3641       }
3642     }
3643     // ...as well as prec
3644     for (uint i = req(); i < len(); ++i) {
3645       call->add_prec(in(i));
3646     }
3647 
3648     // Remember nodes loading the inline cache into r19.
3649     call->_load_ic_hi_node = loadConLNodes_IC._large_hi;
3650     call->_load_ic_node    = loadConLNodes_IC._small;
3651 
3652     // Operands for new nodes.
3653     call->_opnds[0] = _opnds[0];
3654     call->_opnds[1] = _opnds[1];
3655 
3656     // Only the inline cache is associated with a register.
3657     assert(Matcher::inline_cache_reg() == OptoReg::Name(R19_num), "ic reg should be R19");
3658 
3659     // Push new nodes.
3660     if (loadConLNodes_IC._large_hi) nodes->push(loadConLNodes_IC._large_hi);
3661     if (loadConLNodes_IC._last)     nodes->push(loadConLNodes_IC._last);
3662     nodes->push(call);
3663   %}
3664 
3665   // Compound version of call dynamic
3666   enc_class enc_java_dynamic_call(method meth, iRegLdst toc) %{
3667     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3668     MacroAssembler _masm(&cbuf);
3669     int start_offset = __ offset();
3670 
3671     Register Rtoc = (ra_) ? $constanttablebase : R2_TOC;
3672 #if 0
3673     if (_vtable_index < 0) {
3674       // Must be invalid_vtable_index, not nonvirtual_vtable_index.
3675       assert(_vtable_index == Method::invalid_vtable_index, "correct sentinel value");
3676       Register ic_reg = as_Register(Matcher::inline_cache_reg_encode());
3677       AddressLiteral meta = __ allocate_metadata_address((Metadata *)Universe::non_oop_word());
3678 
3679       address virtual_call_meta_addr = __ pc();
3680       __ load_const_from_method_toc(ic_reg, meta, Rtoc);
3681       // CALL to fixup routine.  Fixup routine uses ScopeDesc info
3682       // to determine who we intended to call.
3683       __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
3684       emit_call_with_trampoline_stub(_masm, (address)$meth$$method, relocInfo::none);
3685       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
3686              "Fix constant in ret_addr_offset()");
3687     } else {
3688       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
3689       // Go thru the vtable. Get receiver klass. Receiver already
3690       // checked for non-null. If we'll go thru a C2I adapter, the
3691       // interpreter expects method in R19_method.
3692 
3693       __ load_klass(R11_scratch1, R3);
3694 
3695       int entry_offset = InstanceKlass::vtable_start_offset() + _vtable_index * vtableEntry::size();
3696       int v_off = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
3697       __ li(R19_method, v_off);
3698       __ ldx(R19_method/*method oop*/, R19_method/*method offset*/, R11_scratch1/*class*/);
3699       // NOTE: for vtable dispatches, the vtable entry will never be
3700       // null. However it may very well end up in handle_wrong_method
3701       // if the method is abstract for the particular class.
3702       __ ld(R11_scratch1, in_bytes(Method::from_compiled_offset()), R19_method);
3703       // Call target. Either compiled code or C2I adapter.
3704       __ mtctr(R11_scratch1);
3705       __ bctrl();
3706       if (((MachCallDynamicJavaNode*)this)->ret_addr_offset() != __ offset() - start_offset) {
3707         tty->print(" %d, %d\n", ((MachCallDynamicJavaNode*)this)->ret_addr_offset(),__ offset() - start_offset);
3708       }
3709       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
3710              "Fix constant in ret_addr_offset()");
3711     }
3712 #endif
3713     guarantee(0, "Fix handling of toc edge: messes up derived/base pairs.");
3714     Unimplemented();  // ret_addr_offset not yet fixed. Depends on compressed oops (load klass!).
3715   %}
3716 
3717   // a runtime call
3718   enc_class enc_java_to_runtime_call (method meth) %{
3719     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3720 
3721     MacroAssembler _masm(&cbuf);
3722     const address start_pc = __ pc();
3723 
3724 #if defined(ABI_ELFv2)
3725     address entry= !($meth$$method) ? NULL : (address)$meth$$method;
3726     __ call_c(entry, relocInfo::runtime_call_type);
3727 #else
3728     // The function we're going to call.
3729     FunctionDescriptor fdtemp;
3730     const FunctionDescriptor* fd = !($meth$$method) ? &fdtemp : (FunctionDescriptor*)$meth$$method;
3731 
3732     Register Rtoc = R12_scratch2;
3733     // Calculate the method's TOC.
3734     __ calculate_address_from_global_toc(Rtoc, __ method_toc());
3735     // Put entry, env, toc into the constant pool, this needs up to 3 constant
3736     // pool entries; call_c_using_toc will optimize the call.
3737     __ call_c_using_toc(fd, relocInfo::runtime_call_type, Rtoc);
3738 #endif
3739 
3740     // Check the ret_addr_offset.
3741     assert(((MachCallRuntimeNode*)this)->ret_addr_offset() ==  __ last_calls_return_pc() - start_pc,
3742            "Fix constant in ret_addr_offset()");
3743   %}
3744 
3745   // Move to ctr for leaf call.
3746   // This enc_class is needed so that scheduler gets proper
3747   // input mapping for latency computation.
3748   enc_class enc_leaf_call_mtctr(iRegLsrc src) %{
3749     // TODO: PPC port $archOpcode(ppc64Opcode_mtctr);
3750     MacroAssembler _masm(&cbuf);
3751     __ mtctr($src$$Register);
3752   %}
3753 
3754   // Postalloc expand emitter for runtime leaf calls.
3755   enc_class postalloc_expand_java_to_runtime_call(method meth, iRegLdst toc) %{
3756     loadConLNodesTuple loadConLNodes_Entry;
3757 #if defined(ABI_ELFv2)
3758     jlong entry_address = (jlong) this->entry_point();
3759     assert(entry_address, "need address here");
3760     loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper(entry_address),
3761                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
3762 #else
3763     // Get the struct that describes the function we are about to call.
3764     FunctionDescriptor* fd = (FunctionDescriptor*) this->entry_point();
3765     assert(fd, "need fd here");
3766     jlong entry_address = (jlong) fd->entry();
3767     // new nodes
3768     loadConLNodesTuple loadConLNodes_Env;
3769     loadConLNodesTuple loadConLNodes_Toc;
3770 
3771     // Create nodes and operands for loading the entry point.
3772     loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper(entry_address),
3773                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
3774 
3775 
3776     // Create nodes and operands for loading the env pointer.
3777     if (fd->env() != NULL) {
3778       loadConLNodes_Env = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->env()),
3779                                                     OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
3780     } else {
3781       loadConLNodes_Env._large_hi = NULL;
3782       loadConLNodes_Env._large_lo = NULL;
3783       loadConLNodes_Env._small    = NULL;
3784       loadConLNodes_Env._last = new (C) loadConL16Node();
3785       loadConLNodes_Env._last->_opnds[0] = new (C) iRegLdstOper();
3786       loadConLNodes_Env._last->_opnds[1] = new (C) immL16Oper(0);
3787       ra_->set_pair(loadConLNodes_Env._last->_idx, OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
3788     }
3789 
3790     // Create nodes and operands for loading the Toc point.
3791     loadConLNodes_Toc = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->toc()),
3792                                                   OptoReg::Name(R2_H_num), OptoReg::Name(R2_num));
3793 #endif // ABI_ELFv2
3794     // mtctr node
3795     MachNode *mtctr = new (C) CallLeafDirect_mtctrNode();
3796 
3797     assert(loadConLNodes_Entry._last != NULL, "entry must exist");
3798     mtctr->add_req(0, loadConLNodes_Entry._last);
3799 
3800     mtctr->_opnds[0] = new (C) iRegLdstOper();
3801     mtctr->_opnds[1] = new (C) iRegLdstOper();
3802 
3803     // call node
3804     MachCallLeafNode *call = new (C) CallLeafDirectNode();
3805 
3806     call->_opnds[0] = _opnds[0];
3807     call->_opnds[1] = new (C) methodOper((intptr_t) entry_address); // May get set later.
3808 
3809     // Make the new call node look like the old one.
3810     call->_name        = _name;
3811     call->_tf          = _tf;
3812     call->_entry_point = _entry_point;
3813     call->_cnt         = _cnt;
3814     call->_argsize     = _argsize;
3815     call->_oop_map     = _oop_map;
3816     guarantee(!_jvms, "You must clone the jvms and adapt the offsets by fix_jvms().");
3817     call->_jvms        = NULL;
3818     call->_jvmadj      = _jvmadj;
3819     call->_in_rms      = _in_rms;
3820     call->_nesting     = _nesting;
3821 
3822 
3823     // New call needs all inputs of old call.
3824     // Req...
3825     for (uint i = 0; i < req(); ++i) {
3826       if (i != mach_constant_base_node_input()) {
3827         call->add_req(in(i));
3828       }
3829     }
3830 
3831     // These must be reqired edges, as the registers are live up to
3832     // the call. Else the constants are handled as kills.
3833     call->add_req(mtctr);
3834 #if !defined(ABI_ELFv2)
3835     call->add_req(loadConLNodes_Env._last);
3836     call->add_req(loadConLNodes_Toc._last);
3837 #endif
3838 
3839     // ...as well as prec
3840     for (uint i = req(); i < len(); ++i) {
3841       call->add_prec(in(i));
3842     }
3843 
3844     // registers
3845     ra_->set1(mtctr->_idx, OptoReg::Name(SR_CTR_num));
3846 
3847     // Insert the new nodes.
3848     if (loadConLNodes_Entry._large_hi) nodes->push(loadConLNodes_Entry._large_hi);
3849     if (loadConLNodes_Entry._last)     nodes->push(loadConLNodes_Entry._last);
3850 #if !defined(ABI_ELFv2)
3851     if (loadConLNodes_Env._large_hi)   nodes->push(loadConLNodes_Env._large_hi);
3852     if (loadConLNodes_Env._last)       nodes->push(loadConLNodes_Env._last);
3853     if (loadConLNodes_Toc._large_hi)   nodes->push(loadConLNodes_Toc._large_hi);
3854     if (loadConLNodes_Toc._last)       nodes->push(loadConLNodes_Toc._last);
3855 #endif
3856     nodes->push(mtctr);
3857     nodes->push(call);
3858   %}
3859 %}
3860 
3861 //----------FRAME--------------------------------------------------------------
3862 // Definition of frame structure and management information.
3863 
3864 frame %{
3865   // What direction does stack grow in (assumed to be same for native & Java).
3866   stack_direction(TOWARDS_LOW);
3867 
3868   // These two registers define part of the calling convention between
3869   // compiled code and the interpreter.
3870 
3871   // Inline Cache Register or method for I2C.
3872   inline_cache_reg(R19); // R19_method
3873 
3874   // Method Oop Register when calling interpreter.
3875   interpreter_method_oop_reg(R19); // R19_method
3876 
3877   // Optional: name the operand used by cisc-spilling to access
3878   // [stack_pointer + offset].
3879   cisc_spilling_operand_name(indOffset);
3880 
3881   // Number of stack slots consumed by a Monitor enter.
3882   sync_stack_slots((frame::jit_monitor_size / VMRegImpl::stack_slot_size));
3883 
3884   // Compiled code's Frame Pointer.
3885   frame_pointer(R1); // R1_SP
3886 
3887   // Interpreter stores its frame pointer in a register which is
3888   // stored to the stack by I2CAdaptors. I2CAdaptors convert from
3889   // interpreted java to compiled java.
3890   //
3891   // R14_state holds pointer to caller's cInterpreter.
3892   interpreter_frame_pointer(R14); // R14_state
3893 
3894   stack_alignment(frame::alignment_in_bytes);
3895 
3896   in_preserve_stack_slots((frame::jit_in_preserve_size / VMRegImpl::stack_slot_size));
3897 
3898   // Number of outgoing stack slots killed above the
3899   // out_preserve_stack_slots for calls to C. Supports the var-args
3900   // backing area for register parms.
3901   //
3902   varargs_C_out_slots_killed(((frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size));
3903 
3904   // The after-PROLOG location of the return address. Location of
3905   // return address specifies a type (REG or STACK) and a number
3906   // representing the register number (i.e. - use a register name) or
3907   // stack slot.
3908   //
3909   // A: Link register is stored in stack slot ...
3910   // M:  ... but it's in the caller's frame according to PPC-64 ABI.
3911   // J: Therefore, we make sure that the link register is also in R11_scratch1
3912   //    at the end of the prolog.
3913   // B: We use R20, now.
3914   //return_addr(REG R20);
3915 
3916   // G: After reading the comments made by all the luminaries on their
3917   //    failure to tell the compiler where the return address really is,
3918   //    I hardly dare to try myself.  However, I'm convinced it's in slot
3919   //    4 what apparently works and saves us some spills.
3920   return_addr(STACK 4);
3921 
3922   // This is the body of the function
3923   //
3924   // void Matcher::calling_convention(OptoRegPair* sig, // array of ideal regs
3925   //                                  uint length,      // length of array
3926   //                                  bool is_outgoing)
3927   //
3928   // The `sig' array is to be updated. sig[j] represents the location
3929   // of the j-th argument, either a register or a stack slot.
3930 
3931   // Comment taken from i486.ad:
3932   // Body of function which returns an integer array locating
3933   // arguments either in registers or in stack slots. Passed an array
3934   // of ideal registers called "sig" and a "length" count. Stack-slot
3935   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3936   // arguments for a CALLEE. Incoming stack arguments are
3937   // automatically biased by the preserve_stack_slots field above.
3938   calling_convention %{
3939     // No difference between ingoing/outgoing. Just pass false.
3940     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
3941   %}
3942 
3943   // Comment taken from i486.ad:
3944   // Body of function which returns an integer array locating
3945   // arguments either in registers or in stack slots. Passed an array
3946   // of ideal registers called "sig" and a "length" count. Stack-slot
3947   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3948   // arguments for a CALLEE. Incoming stack arguments are
3949   // automatically biased by the preserve_stack_slots field above.
3950   c_calling_convention %{
3951     // This is obviously always outgoing.
3952     // C argument in register AND stack slot.
3953     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3954   %}
3955 
3956   // Location of native (C/C++) and interpreter return values. This
3957   // is specified to be the same as Java. In the 32-bit VM, long
3958   // values are actually returned from native calls in O0:O1 and
3959   // returned to the interpreter in I0:I1. The copying to and from
3960   // the register pairs is done by the appropriate call and epilog
3961   // opcodes. This simplifies the register allocator.
3962   c_return_value %{
3963     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
3964             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
3965             "only return normal values");
3966     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
3967     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
3968     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
3969     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
3970   %}
3971 
3972   // Location of compiled Java return values.  Same as C
3973   return_value %{
3974     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
3975             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
3976             "only return normal values");
3977     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
3978     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
3979     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
3980     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
3981   %}
3982 %}
3983 
3984 
3985 //----------ATTRIBUTES---------------------------------------------------------
3986 
3987 //----------Operand Attributes-------------------------------------------------
3988 op_attrib op_cost(1);          // Required cost attribute.
3989 
3990 //----------Instruction Attributes---------------------------------------------
3991 
3992 // Cost attribute. required.
3993 ins_attrib ins_cost(DEFAULT_COST);
3994 
3995 // Is this instruction a non-matching short branch variant of some
3996 // long branch? Not required.
3997 ins_attrib ins_short_branch(0);
3998 
3999 ins_attrib ins_is_TrapBasedCheckNode(true);
4000 
4001 // Number of constants.
4002 // This instruction uses the given number of constants
4003 // (optional attribute).
4004 // This is needed to determine in time whether the constant pool will
4005 // exceed 4000 entries. Before postalloc_expand the overall number of constants
4006 // is determined. It's also used to compute the constant pool size
4007 // in Output().
4008 ins_attrib ins_num_consts(0);
4009 
4010 // Required alignment attribute (must be a power of 2) specifies the
4011 // alignment that some part of the instruction (not necessarily the
4012 // start) requires. If > 1, a compute_padding() function must be
4013 // provided for the instruction.
4014 ins_attrib ins_alignment(1);
4015 
4016 // Enforce/prohibit rematerializations.
4017 // - If an instruction is attributed with 'ins_cannot_rematerialize(true)'
4018 //   then rematerialization of that instruction is prohibited and the
4019 //   instruction's value will be spilled if necessary.
4020 //   Causes that MachNode::rematerialize() returns false.
4021 // - If an instruction is attributed with 'ins_should_rematerialize(true)'
4022 //   then rematerialization should be enforced and a copy of the instruction
4023 //   should be inserted if possible; rematerialization is not guaranteed.
4024 //   Note: this may result in rematerializations in front of every use.
4025 //   Causes that MachNode::rematerialize() can return true.
4026 // (optional attribute)
4027 ins_attrib ins_cannot_rematerialize(false);
4028 ins_attrib ins_should_rematerialize(false);
4029 
4030 // Instruction has variable size depending on alignment.
4031 ins_attrib ins_variable_size_depending_on_alignment(false);
4032 
4033 // Instruction is a nop.
4034 ins_attrib ins_is_nop(false);
4035 
4036 // Instruction is mapped to a MachIfFastLock node (instead of MachFastLock).
4037 ins_attrib ins_use_mach_if_fast_lock_node(false);
4038 
4039 // Field for the toc offset of a constant.
4040 //
4041 // This is needed if the toc offset is not encodable as an immediate in
4042 // the PPC load instruction. If so, the upper (hi) bits of the offset are
4043 // added to the toc, and from this a load with immediate is performed.
4044 // With postalloc expand, we get two nodes that require the same offset
4045 // but which don't know about each other. The offset is only known
4046 // when the constant is added to the constant pool during emitting.
4047 // It is generated in the 'hi'-node adding the upper bits, and saved
4048 // in this node.  The 'lo'-node has a link to the 'hi'-node and reads
4049 // the offset from there when it gets encoded.
4050 ins_attrib ins_field_const_toc_offset(0);
4051 ins_attrib ins_field_const_toc_offset_hi_node(0);
4052 
4053 // A field that can hold the instructions offset in the code buffer.
4054 // Set in the nodes emitter.
4055 ins_attrib ins_field_cbuf_insts_offset(-1);
4056 
4057 // Fields for referencing a call's load-IC-node.
4058 // If the toc offset can not be encoded as an immediate in a load, we
4059 // use two nodes.
4060 ins_attrib ins_field_load_ic_hi_node(0);
4061 ins_attrib ins_field_load_ic_node(0);
4062 
4063 //----------OPERANDS-----------------------------------------------------------
4064 // Operand definitions must precede instruction definitions for correct
4065 // parsing in the ADLC because operands constitute user defined types
4066 // which are used in instruction definitions.
4067 //
4068 // Formats are generated automatically for constants and base registers.
4069 
4070 //----------Simple Operands----------------------------------------------------
4071 // Immediate Operands
4072 
4073 // Integer Immediate: 32-bit
4074 operand immI() %{
4075   match(ConI);
4076   op_cost(40);
4077   format %{ %}
4078   interface(CONST_INTER);
4079 %}
4080 
4081 operand immI8() %{
4082   predicate(Assembler::is_simm(n->get_int(), 8));
4083   op_cost(0);
4084   match(ConI);
4085   format %{ %}
4086   interface(CONST_INTER);
4087 %}
4088 
4089 // Integer Immediate: 16-bit
4090 operand immI16() %{
4091   predicate(Assembler::is_simm(n->get_int(), 16));
4092   op_cost(0);
4093   match(ConI);
4094   format %{ %}
4095   interface(CONST_INTER);
4096 %}
4097 
4098 // Integer Immediate: 32-bit, where lowest 16 bits are 0x0000.
4099 operand immIhi16() %{
4100   predicate(((n->get_int() & 0xffff0000) != 0) && ((n->get_int() & 0xffff) == 0));
4101   match(ConI);
4102   op_cost(0);
4103   format %{ %}
4104   interface(CONST_INTER);
4105 %}
4106 
4107 operand immInegpow2() %{
4108   predicate(is_power_of_2_long((jlong) (julong) (juint) (-(n->get_int()))));
4109   match(ConI);
4110   op_cost(0);
4111   format %{ %}
4112   interface(CONST_INTER);
4113 %}
4114 
4115 operand immIpow2minus1() %{
4116   predicate(is_power_of_2_long((((jlong) (n->get_int()))+1)));
4117   match(ConI);
4118   op_cost(0);
4119   format %{ %}
4120   interface(CONST_INTER);
4121 %}
4122 
4123 operand immIpowerOf2() %{
4124   predicate(is_power_of_2_long((((jlong) (julong) (juint) (n->get_int())))));
4125   match(ConI);
4126   op_cost(0);
4127   format %{ %}
4128   interface(CONST_INTER);
4129 %}
4130 
4131 // Unsigned Integer Immediate: the values 0-31
4132 operand uimmI5() %{
4133   predicate(Assembler::is_uimm(n->get_int(), 5));
4134   match(ConI);
4135   op_cost(0);
4136   format %{ %}
4137   interface(CONST_INTER);
4138 %}
4139 
4140 // Unsigned Integer Immediate: 6-bit
4141 operand uimmI6() %{
4142   predicate(Assembler::is_uimm(n->get_int(), 6));
4143   match(ConI);
4144   op_cost(0);
4145   format %{ %}
4146   interface(CONST_INTER);
4147 %}
4148 
4149 // Unsigned Integer Immediate:  6-bit int, greater than 32
4150 operand uimmI6_ge32() %{
4151   predicate(Assembler::is_uimm(n->get_int(), 6) && n->get_int() >= 32);
4152   match(ConI);
4153   op_cost(0);
4154   format %{ %}
4155   interface(CONST_INTER);
4156 %}
4157 
4158 // Unsigned Integer Immediate: 15-bit
4159 operand uimmI15() %{
4160   predicate(Assembler::is_uimm(n->get_int(), 15));
4161   match(ConI);
4162   op_cost(0);
4163   format %{ %}
4164   interface(CONST_INTER);
4165 %}
4166 
4167 // Unsigned Integer Immediate: 16-bit
4168 operand uimmI16() %{
4169   predicate(Assembler::is_uimm(n->get_int(), 16));
4170   match(ConI);
4171   op_cost(0);
4172   format %{ %}
4173   interface(CONST_INTER);
4174 %}
4175 
4176 // constant 'int 0'.
4177 operand immI_0() %{
4178   predicate(n->get_int() == 0);
4179   match(ConI);
4180   op_cost(0);
4181   format %{ %}
4182   interface(CONST_INTER);
4183 %}
4184 
4185 // constant 'int 1'.
4186 operand immI_1() %{
4187   predicate(n->get_int() == 1);
4188   match(ConI);
4189   op_cost(0);
4190   format %{ %}
4191   interface(CONST_INTER);
4192 %}
4193 
4194 // constant 'int -1'.
4195 operand immI_minus1() %{
4196   predicate(n->get_int() == -1);
4197   match(ConI);
4198   op_cost(0);
4199   format %{ %}
4200   interface(CONST_INTER);
4201 %}
4202 
4203 // int value 16.
4204 operand immI_16() %{
4205   predicate(n->get_int() == 16);
4206   match(ConI);
4207   op_cost(0);
4208   format %{ %}
4209   interface(CONST_INTER);
4210 %}
4211 
4212 // int value 24.
4213 operand immI_24() %{
4214   predicate(n->get_int() == 24);
4215   match(ConI);
4216   op_cost(0);
4217   format %{ %}
4218   interface(CONST_INTER);
4219 %}
4220 
4221 // Compressed oops constants
4222 // Pointer Immediate
4223 operand immN() %{
4224   match(ConN);
4225 
4226   op_cost(10);
4227   format %{ %}
4228   interface(CONST_INTER);
4229 %}
4230 
4231 // NULL Pointer Immediate
4232 operand immN_0() %{
4233   predicate(n->get_narrowcon() == 0);
4234   match(ConN);
4235 
4236   op_cost(0);
4237   format %{ %}
4238   interface(CONST_INTER);
4239 %}
4240 
4241 // Compressed klass constants
4242 operand immNKlass() %{
4243   match(ConNKlass);
4244 
4245   op_cost(0);
4246   format %{ %}
4247   interface(CONST_INTER);
4248 %}
4249 
4250 // This operand can be used to avoid matching of an instruct
4251 // with chain rule.
4252 operand immNKlass_NM() %{
4253   match(ConNKlass);
4254   predicate(false);
4255   op_cost(0);
4256   format %{ %}
4257   interface(CONST_INTER);
4258 %}
4259 
4260 // Pointer Immediate: 64-bit
4261 operand immP() %{
4262   match(ConP);
4263   op_cost(0);
4264   format %{ %}
4265   interface(CONST_INTER);
4266 %}
4267 
4268 // Operand to avoid match of loadConP.
4269 // This operand can be used to avoid matching of an instruct
4270 // with chain rule.
4271 operand immP_NM() %{
4272   match(ConP);
4273   predicate(false);
4274   op_cost(0);
4275   format %{ %}
4276   interface(CONST_INTER);
4277 %}
4278 
4279 // costant 'pointer 0'.
4280 operand immP_0() %{
4281   predicate(n->get_ptr() == 0);
4282   match(ConP);
4283   op_cost(0);
4284   format %{ %}
4285   interface(CONST_INTER);
4286 %}
4287 
4288 // pointer 0x0 or 0x1
4289 operand immP_0or1() %{
4290   predicate((n->get_ptr() == 0) || (n->get_ptr() == 1));
4291   match(ConP);
4292   op_cost(0);
4293   format %{ %}
4294   interface(CONST_INTER);
4295 %}
4296 
4297 operand immL() %{
4298   match(ConL);
4299   op_cost(40);
4300   format %{ %}
4301   interface(CONST_INTER);
4302 %}
4303 
4304 // Long Immediate: 16-bit
4305 operand immL16() %{
4306   predicate(Assembler::is_simm(n->get_long(), 16));
4307   match(ConL);
4308   op_cost(0);
4309   format %{ %}
4310   interface(CONST_INTER);
4311 %}
4312 
4313 // Long Immediate: 16-bit, 4-aligned
4314 operand immL16Alg4() %{
4315   predicate(Assembler::is_simm(n->get_long(), 16) && ((n->get_long() & 0x3) == 0));
4316   match(ConL);
4317   op_cost(0);
4318   format %{ %}
4319   interface(CONST_INTER);
4320 %}
4321 
4322 // Long Immediate: 32-bit, where lowest 16 bits are 0x0000.
4323 operand immL32hi16() %{
4324   predicate(Assembler::is_simm(n->get_long(), 32) && ((n->get_long() & 0xffffL) == 0L));
4325   match(ConL);
4326   op_cost(0);
4327   format %{ %}
4328   interface(CONST_INTER);
4329 %}
4330 
4331 // Long Immediate: 32-bit
4332 operand immL32() %{
4333   predicate(Assembler::is_simm(n->get_long(), 32));
4334   match(ConL);
4335   op_cost(0);
4336   format %{ %}
4337   interface(CONST_INTER);
4338 %}
4339 
4340 // Long Immediate: 64-bit, where highest 16 bits are not 0x0000.
4341 operand immLhighest16() %{
4342   predicate((n->get_long() & 0xffff000000000000L) != 0L && (n->get_long() & 0x0000ffffffffffffL) == 0L);
4343   match(ConL);
4344   op_cost(0);
4345   format %{ %}
4346   interface(CONST_INTER);
4347 %}
4348 
4349 operand immLnegpow2() %{
4350   predicate(is_power_of_2_long((jlong)-(n->get_long())));
4351   match(ConL);
4352   op_cost(0);
4353   format %{ %}
4354   interface(CONST_INTER);
4355 %}
4356 
4357 operand immLpow2minus1() %{
4358   predicate(is_power_of_2_long((((jlong) (n->get_long()))+1)) &&
4359             (n->get_long() != (jlong)0xffffffffffffffffL));
4360   match(ConL);
4361   op_cost(0);
4362   format %{ %}
4363   interface(CONST_INTER);
4364 %}
4365 
4366 // constant 'long 0'.
4367 operand immL_0() %{
4368   predicate(n->get_long() == 0L);
4369   match(ConL);
4370   op_cost(0);
4371   format %{ %}
4372   interface(CONST_INTER);
4373 %}
4374 
4375 // constat ' long -1'.
4376 operand immL_minus1() %{
4377   predicate(n->get_long() == -1L);
4378   match(ConL);
4379   op_cost(0);
4380   format %{ %}
4381   interface(CONST_INTER);
4382 %}
4383 
4384 // Long Immediate: low 32-bit mask
4385 operand immL_32bits() %{
4386   predicate(n->get_long() == 0xFFFFFFFFL);
4387   match(ConL);
4388   op_cost(0);
4389   format %{ %}
4390   interface(CONST_INTER);
4391 %}
4392 
4393 // Unsigned Long Immediate: 16-bit
4394 operand uimmL16() %{
4395   predicate(Assembler::is_uimm(n->get_long(), 16));
4396   match(ConL);
4397   op_cost(0);
4398   format %{ %}
4399   interface(CONST_INTER);
4400 %}
4401 
4402 // Float Immediate
4403 operand immF() %{
4404   match(ConF);
4405   op_cost(40);
4406   format %{ %}
4407   interface(CONST_INTER);
4408 %}
4409 
4410 // constant 'float +0.0'.
4411 operand immF_0() %{
4412   predicate((n->getf() == 0) &&
4413             (fpclassify(n->getf()) == FP_ZERO) && (signbit(n->getf()) == 0));
4414   match(ConF);
4415   op_cost(0);
4416   format %{ %}
4417   interface(CONST_INTER);
4418 %}
4419 
4420 // Double Immediate
4421 operand immD() %{
4422   match(ConD);
4423   op_cost(40);
4424   format %{ %}
4425   interface(CONST_INTER);
4426 %}
4427 
4428 // Integer Register Operands
4429 // Integer Destination Register
4430 // See definition of reg_class bits32_reg_rw.
4431 operand iRegIdst() %{
4432   constraint(ALLOC_IN_RC(bits32_reg_rw));
4433   match(RegI);
4434   match(rscratch1RegI);
4435   match(rscratch2RegI);
4436   match(rarg1RegI);
4437   match(rarg2RegI);
4438   match(rarg3RegI);
4439   match(rarg4RegI);
4440   format %{ %}
4441   interface(REG_INTER);
4442 %}
4443 
4444 // Integer Source Register
4445 // See definition of reg_class bits32_reg_ro.
4446 operand iRegIsrc() %{
4447   constraint(ALLOC_IN_RC(bits32_reg_ro));
4448   match(RegI);
4449   match(rscratch1RegI);
4450   match(rscratch2RegI);
4451   match(rarg1RegI);
4452   match(rarg2RegI);
4453   match(rarg3RegI);
4454   match(rarg4RegI);
4455   format %{ %}
4456   interface(REG_INTER);
4457 %}
4458 
4459 operand rscratch1RegI() %{
4460   constraint(ALLOC_IN_RC(rscratch1_bits32_reg));
4461   match(iRegIdst);
4462   format %{ %}
4463   interface(REG_INTER);
4464 %}
4465 
4466 operand rscratch2RegI() %{
4467   constraint(ALLOC_IN_RC(rscratch2_bits32_reg));
4468   match(iRegIdst);
4469   format %{ %}
4470   interface(REG_INTER);
4471 %}
4472 
4473 operand rarg1RegI() %{
4474   constraint(ALLOC_IN_RC(rarg1_bits32_reg));
4475   match(iRegIdst);
4476   format %{ %}
4477   interface(REG_INTER);
4478 %}
4479 
4480 operand rarg2RegI() %{
4481   constraint(ALLOC_IN_RC(rarg2_bits32_reg));
4482   match(iRegIdst);
4483   format %{ %}
4484   interface(REG_INTER);
4485 %}
4486 
4487 operand rarg3RegI() %{
4488   constraint(ALLOC_IN_RC(rarg3_bits32_reg));
4489   match(iRegIdst);
4490   format %{ %}
4491   interface(REG_INTER);
4492 %}
4493 
4494 operand rarg4RegI() %{
4495   constraint(ALLOC_IN_RC(rarg4_bits32_reg));
4496   match(iRegIdst);
4497   format %{ %}
4498   interface(REG_INTER);
4499 %}
4500 
4501 operand rarg1RegL() %{
4502   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
4503   match(iRegLdst);
4504   format %{ %}
4505   interface(REG_INTER);
4506 %}
4507 
4508 operand rarg2RegL() %{
4509   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
4510   match(iRegLdst);
4511   format %{ %}
4512   interface(REG_INTER);
4513 %}
4514 
4515 operand rarg3RegL() %{
4516   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
4517   match(iRegLdst);
4518   format %{ %}
4519   interface(REG_INTER);
4520 %}
4521 
4522 operand rarg4RegL() %{
4523   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
4524   match(iRegLdst);
4525   format %{ %}
4526   interface(REG_INTER);
4527 %}
4528 
4529 // Pointer Destination Register
4530 // See definition of reg_class bits64_reg_rw.
4531 operand iRegPdst() %{
4532   constraint(ALLOC_IN_RC(bits64_reg_rw));
4533   match(RegP);
4534   match(rscratch1RegP);
4535   match(rscratch2RegP);
4536   match(rarg1RegP);
4537   match(rarg2RegP);
4538   match(rarg3RegP);
4539   match(rarg4RegP);
4540   format %{ %}
4541   interface(REG_INTER);
4542 %}
4543 
4544 // Pointer Destination Register
4545 // Operand not using r11 and r12 (killed in epilog).
4546 operand iRegPdstNoScratch() %{
4547   constraint(ALLOC_IN_RC(bits64_reg_leaf_call));
4548   match(RegP);
4549   match(rarg1RegP);
4550   match(rarg2RegP);
4551   match(rarg3RegP);
4552   match(rarg4RegP);
4553   format %{ %}
4554   interface(REG_INTER);
4555 %}
4556 
4557 // Pointer Source Register
4558 // See definition of reg_class bits64_reg_ro.
4559 operand iRegPsrc() %{
4560   constraint(ALLOC_IN_RC(bits64_reg_ro));
4561   match(RegP);
4562   match(iRegPdst);
4563   match(rscratch1RegP);
4564   match(rscratch2RegP);
4565   match(rarg1RegP);
4566   match(rarg2RegP);
4567   match(rarg3RegP);
4568   match(rarg4RegP);
4569   match(threadRegP);
4570   format %{ %}
4571   interface(REG_INTER);
4572 %}
4573 
4574 // Thread operand.
4575 operand threadRegP() %{
4576   constraint(ALLOC_IN_RC(thread_bits64_reg));
4577   match(iRegPdst);
4578   format %{ "R16" %}
4579   interface(REG_INTER);
4580 %}
4581 
4582 operand rscratch1RegP() %{
4583   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
4584   match(iRegPdst);
4585   format %{ "R11" %}
4586   interface(REG_INTER);
4587 %}
4588 
4589 operand rscratch2RegP() %{
4590   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
4591   match(iRegPdst);
4592   format %{ %}
4593   interface(REG_INTER);
4594 %}
4595 
4596 operand rarg1RegP() %{
4597   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
4598   match(iRegPdst);
4599   format %{ %}
4600   interface(REG_INTER);
4601 %}
4602 
4603 operand rarg2RegP() %{
4604   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
4605   match(iRegPdst);
4606   format %{ %}
4607   interface(REG_INTER);
4608 %}
4609 
4610 operand rarg3RegP() %{
4611   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
4612   match(iRegPdst);
4613   format %{ %}
4614   interface(REG_INTER);
4615 %}
4616 
4617 operand rarg4RegP() %{
4618   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
4619   match(iRegPdst);
4620   format %{ %}
4621   interface(REG_INTER);
4622 %}
4623 
4624 operand iRegNsrc() %{
4625   constraint(ALLOC_IN_RC(bits32_reg_ro));
4626   match(RegN);
4627   match(iRegNdst);
4628 
4629   format %{ %}
4630   interface(REG_INTER);
4631 %}
4632 
4633 operand iRegNdst() %{
4634   constraint(ALLOC_IN_RC(bits32_reg_rw));
4635   match(RegN);
4636 
4637   format %{ %}
4638   interface(REG_INTER);
4639 %}
4640 
4641 // Long Destination Register
4642 // See definition of reg_class bits64_reg_rw.
4643 operand iRegLdst() %{
4644   constraint(ALLOC_IN_RC(bits64_reg_rw));
4645   match(RegL);
4646   match(rscratch1RegL);
4647   match(rscratch2RegL);
4648   format %{ %}
4649   interface(REG_INTER);
4650 %}
4651 
4652 // Long Source Register
4653 // See definition of reg_class bits64_reg_ro.
4654 operand iRegLsrc() %{
4655   constraint(ALLOC_IN_RC(bits64_reg_ro));
4656   match(RegL);
4657   match(iRegLdst);
4658   match(rscratch1RegL);
4659   match(rscratch2RegL);
4660   format %{ %}
4661   interface(REG_INTER);
4662 %}
4663 
4664 // Special operand for ConvL2I.
4665 operand iRegL2Isrc(iRegLsrc reg) %{
4666   constraint(ALLOC_IN_RC(bits64_reg_ro));
4667   match(ConvL2I reg);
4668   format %{ "ConvL2I($reg)" %}
4669   interface(REG_INTER)
4670 %}
4671 
4672 operand rscratch1RegL() %{
4673   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
4674   match(RegL);
4675   format %{ %}
4676   interface(REG_INTER);
4677 %}
4678 
4679 operand rscratch2RegL() %{
4680   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
4681   match(RegL);
4682   format %{ %}
4683   interface(REG_INTER);
4684 %}
4685 
4686 // Condition Code Flag Registers
4687 operand flagsReg() %{
4688   constraint(ALLOC_IN_RC(int_flags));
4689   match(RegFlags);
4690   format %{ %}
4691   interface(REG_INTER);
4692 %}
4693 
4694 // Condition Code Flag Register CR0
4695 operand flagsRegCR0() %{
4696   constraint(ALLOC_IN_RC(int_flags_CR0));
4697   match(RegFlags);
4698   format %{ "CR0" %}
4699   interface(REG_INTER);
4700 %}
4701 
4702 operand flagsRegCR1() %{
4703   constraint(ALLOC_IN_RC(int_flags_CR1));
4704   match(RegFlags);
4705   format %{ "CR1" %}
4706   interface(REG_INTER);
4707 %}
4708 
4709 operand flagsRegCR6() %{
4710   constraint(ALLOC_IN_RC(int_flags_CR6));
4711   match(RegFlags);
4712   format %{ "CR6" %}
4713   interface(REG_INTER);
4714 %}
4715 
4716 operand regCTR() %{
4717   constraint(ALLOC_IN_RC(ctr_reg));
4718   // RegFlags should work. Introducing a RegSpecial type would cause a
4719   // lot of changes.
4720   match(RegFlags);
4721   format %{"SR_CTR" %}
4722   interface(REG_INTER);
4723 %}
4724 
4725 operand regD() %{
4726   constraint(ALLOC_IN_RC(dbl_reg));
4727   match(RegD);
4728   format %{ %}
4729   interface(REG_INTER);
4730 %}
4731 
4732 operand regF() %{
4733   constraint(ALLOC_IN_RC(flt_reg));
4734   match(RegF);
4735   format %{ %}
4736   interface(REG_INTER);
4737 %}
4738 
4739 // Special Registers
4740 
4741 // Method Register
4742 operand inline_cache_regP(iRegPdst reg) %{
4743   constraint(ALLOC_IN_RC(r19_bits64_reg)); // inline_cache_reg
4744   match(reg);
4745   format %{ %}
4746   interface(REG_INTER);
4747 %}
4748 
4749 operand compiler_method_oop_regP(iRegPdst reg) %{
4750   constraint(ALLOC_IN_RC(rscratch1_bits64_reg)); // compiler_method_oop_reg
4751   match(reg);
4752   format %{ %}
4753   interface(REG_INTER);
4754 %}
4755 
4756 operand interpreter_method_oop_regP(iRegPdst reg) %{
4757   constraint(ALLOC_IN_RC(r19_bits64_reg)); // interpreter_method_oop_reg
4758   match(reg);
4759   format %{ %}
4760   interface(REG_INTER);
4761 %}
4762 
4763 // Operands to remove register moves in unscaled mode.
4764 // Match read/write registers with an EncodeP node if neither shift nor add are required.
4765 operand iRegP2N(iRegPsrc reg) %{
4766   predicate(false /* TODO: PPC port MatchDecodeNodes*/&& Universe::narrow_oop_shift() == 0);
4767   constraint(ALLOC_IN_RC(bits64_reg_ro));
4768   match(EncodeP reg);
4769   format %{ "$reg" %}
4770   interface(REG_INTER)
4771 %}
4772 
4773 operand iRegN2P(iRegNsrc reg) %{
4774   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4775   constraint(ALLOC_IN_RC(bits32_reg_ro));
4776   match(DecodeN reg);
4777   match(DecodeNKlass reg);
4778   format %{ "$reg" %}
4779   interface(REG_INTER)
4780 %}
4781 
4782 //----------Complex Operands---------------------------------------------------
4783 // Indirect Memory Reference
4784 operand indirect(iRegPsrc reg) %{
4785   constraint(ALLOC_IN_RC(bits64_reg_ro));
4786   match(reg);
4787   op_cost(100);
4788   format %{ "[$reg]" %}
4789   interface(MEMORY_INTER) %{
4790     base($reg);
4791     index(0x0);
4792     scale(0x0);
4793     disp(0x0);
4794   %}
4795 %}
4796 
4797 // Indirect with Offset
4798 operand indOffset16(iRegPsrc reg, immL16 offset) %{
4799   constraint(ALLOC_IN_RC(bits64_reg_ro));
4800   match(AddP reg offset);
4801   op_cost(100);
4802   format %{ "[$reg + $offset]" %}
4803   interface(MEMORY_INTER) %{
4804     base($reg);
4805     index(0x0);
4806     scale(0x0);
4807     disp($offset);
4808   %}
4809 %}
4810 
4811 // Indirect with 4-aligned Offset
4812 operand indOffset16Alg4(iRegPsrc reg, immL16Alg4 offset) %{
4813   constraint(ALLOC_IN_RC(bits64_reg_ro));
4814   match(AddP reg offset);
4815   op_cost(100);
4816   format %{ "[$reg + $offset]" %}
4817   interface(MEMORY_INTER) %{
4818     base($reg);
4819     index(0x0);
4820     scale(0x0);
4821     disp($offset);
4822   %}
4823 %}
4824 
4825 //----------Complex Operands for Compressed OOPs-------------------------------
4826 // Compressed OOPs with narrow_oop_shift == 0.
4827 
4828 // Indirect Memory Reference, compressed OOP
4829 operand indirectNarrow(iRegNsrc reg) %{
4830   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4831   constraint(ALLOC_IN_RC(bits64_reg_ro));
4832   match(DecodeN reg);
4833   match(DecodeNKlass reg);
4834   op_cost(100);
4835   format %{ "[$reg]" %}
4836   interface(MEMORY_INTER) %{
4837     base($reg);
4838     index(0x0);
4839     scale(0x0);
4840     disp(0x0);
4841   %}
4842 %}
4843 
4844 // Indirect with Offset, compressed OOP
4845 operand indOffset16Narrow(iRegNsrc reg, immL16 offset) %{
4846   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4847   constraint(ALLOC_IN_RC(bits64_reg_ro));
4848   match(AddP (DecodeN reg) offset);
4849   match(AddP (DecodeNKlass reg) offset);
4850   op_cost(100);
4851   format %{ "[$reg + $offset]" %}
4852   interface(MEMORY_INTER) %{
4853     base($reg);
4854     index(0x0);
4855     scale(0x0);
4856     disp($offset);
4857   %}
4858 %}
4859 
4860 // Indirect with 4-aligned Offset, compressed OOP
4861 operand indOffset16NarrowAlg4(iRegNsrc reg, immL16Alg4 offset) %{
4862   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4863   constraint(ALLOC_IN_RC(bits64_reg_ro));
4864   match(AddP (DecodeN reg) offset);
4865   match(AddP (DecodeNKlass reg) offset);
4866   op_cost(100);
4867   format %{ "[$reg + $offset]" %}
4868   interface(MEMORY_INTER) %{
4869     base($reg);
4870     index(0x0);
4871     scale(0x0);
4872     disp($offset);
4873   %}
4874 %}
4875 
4876 //----------Special Memory Operands--------------------------------------------
4877 // Stack Slot Operand
4878 //
4879 // This operand is used for loading and storing temporary values on
4880 // the stack where a match requires a value to flow through memory.
4881 operand stackSlotI(sRegI reg) %{
4882   constraint(ALLOC_IN_RC(stack_slots));
4883   op_cost(100);
4884   //match(RegI);
4885   format %{ "[sp+$reg]" %}
4886   interface(MEMORY_INTER) %{
4887     base(0x1);   // R1_SP
4888     index(0x0);
4889     scale(0x0);
4890     disp($reg);  // Stack Offset
4891   %}
4892 %}
4893 
4894 operand stackSlotL(sRegL reg) %{
4895   constraint(ALLOC_IN_RC(stack_slots));
4896   op_cost(100);
4897   //match(RegL);
4898   format %{ "[sp+$reg]" %}
4899   interface(MEMORY_INTER) %{
4900     base(0x1);   // R1_SP
4901     index(0x0);
4902     scale(0x0);
4903     disp($reg);  // Stack Offset
4904   %}
4905 %}
4906 
4907 operand stackSlotP(sRegP reg) %{
4908   constraint(ALLOC_IN_RC(stack_slots));
4909   op_cost(100);
4910   //match(RegP);
4911   format %{ "[sp+$reg]" %}
4912   interface(MEMORY_INTER) %{
4913     base(0x1);   // R1_SP
4914     index(0x0);
4915     scale(0x0);
4916     disp($reg);  // Stack Offset
4917   %}
4918 %}
4919 
4920 operand stackSlotF(sRegF reg) %{
4921   constraint(ALLOC_IN_RC(stack_slots));
4922   op_cost(100);
4923   //match(RegF);
4924   format %{ "[sp+$reg]" %}
4925   interface(MEMORY_INTER) %{
4926     base(0x1);   // R1_SP
4927     index(0x0);
4928     scale(0x0);
4929     disp($reg);  // Stack Offset
4930   %}
4931 %}
4932 
4933 operand stackSlotD(sRegD reg) %{
4934   constraint(ALLOC_IN_RC(stack_slots));
4935   op_cost(100);
4936   //match(RegD);
4937   format %{ "[sp+$reg]" %}
4938   interface(MEMORY_INTER) %{
4939     base(0x1);   // R1_SP
4940     index(0x0);
4941     scale(0x0);
4942     disp($reg);  // Stack Offset
4943   %}
4944 %}
4945 
4946 // Operands for expressing Control Flow
4947 // NOTE: Label is a predefined operand which should not be redefined in
4948 //       the AD file. It is generically handled within the ADLC.
4949 
4950 //----------Conditional Branch Operands----------------------------------------
4951 // Comparison Op
4952 //
4953 // This is the operation of the comparison, and is limited to the
4954 // following set of codes: L (<), LE (<=), G (>), GE (>=), E (==), NE
4955 // (!=).
4956 //
4957 // Other attributes of the comparison, such as unsignedness, are specified
4958 // by the comparison instruction that sets a condition code flags register.
4959 // That result is represented by a flags operand whose subtype is appropriate
4960 // to the unsignedness (etc.) of the comparison.
4961 //
4962 // Later, the instruction which matches both the Comparison Op (a Bool) and
4963 // the flags (produced by the Cmp) specifies the coding of the comparison op
4964 // by matching a specific subtype of Bool operand below.
4965 
4966 // When used for floating point comparisons: unordered same as less.
4967 operand cmpOp() %{
4968   match(Bool);
4969   format %{ "" %}
4970   interface(COND_INTER) %{
4971                            // BO only encodes bit 4 of bcondCRbiIsX, as bits 1-3 are always '100'.
4972                            //           BO          &  BI
4973     equal(0xA);            // 10 10:   bcondCRbiIs1 & Condition::equal
4974     not_equal(0x2);        // 00 10:   bcondCRbiIs0 & Condition::equal
4975     less(0x8);             // 10 00:   bcondCRbiIs1 & Condition::less
4976     greater_equal(0x0);    // 00 00:   bcondCRbiIs0 & Condition::less
4977     less_equal(0x1);       // 00 01:   bcondCRbiIs0 & Condition::greater
4978     greater(0x9);          // 10 01:   bcondCRbiIs1 & Condition::greater
4979     overflow(0xB);         // 10 11:   bcondCRbiIs1 & Condition::summary_overflow
4980     no_overflow(0x3);      // 00 11:   bcondCRbiIs0 & Condition::summary_overflow
4981   %}
4982 %}
4983 
4984 //----------OPERAND CLASSES----------------------------------------------------
4985 // Operand Classes are groups of operands that are used to simplify
4986 // instruction definitions by not requiring the AD writer to specify
4987 // seperate instructions for every form of operand when the
4988 // instruction accepts multiple operand types with the same basic
4989 // encoding and format. The classic case of this is memory operands.
4990 // Indirect is not included since its use is limited to Compare & Swap.
4991 
4992 opclass memory(indirect, indOffset16 /*, indIndex, tlsReference*/, indirectNarrow, indOffset16Narrow);
4993 // Memory operand where offsets are 4-aligned. Required for ld, std.
4994 opclass memoryAlg4(indirect, indOffset16Alg4, indirectNarrow, indOffset16NarrowAlg4);
4995 opclass indirectMemory(indirect, indirectNarrow);
4996 
4997 // Special opclass for I and ConvL2I.
4998 opclass iRegIsrc_iRegL2Isrc(iRegIsrc, iRegL2Isrc);
4999 
5000 // Operand classes to match encode and decode. iRegN_P2N is only used
5001 // for storeN. I have never seen an encode node elsewhere.
5002 opclass iRegN_P2N(iRegNsrc, iRegP2N);
5003 opclass iRegP_N2P(iRegPsrc, iRegN2P);
5004 
5005 //----------PIPELINE-----------------------------------------------------------
5006 
5007 pipeline %{
5008 
5009 // See J.M.Tendler et al. "Power4 system microarchitecture", IBM
5010 // J. Res. & Dev., No. 1, Jan. 2002.
5011 
5012 //----------ATTRIBUTES---------------------------------------------------------
5013 attributes %{
5014 
5015   // Power4 instructions are of fixed length.
5016   fixed_size_instructions;
5017 
5018   // TODO: if `bundle' means number of instructions fetched
5019   // per cycle, this is 8. If `bundle' means Power4 `group', that is
5020   // max instructions issued per cycle, this is 5.
5021   max_instructions_per_bundle = 8;
5022 
5023   // A Power4 instruction is 4 bytes long.
5024   instruction_unit_size = 4;
5025 
5026   // The Power4 processor fetches 64 bytes...
5027   instruction_fetch_unit_size = 64;
5028 
5029   // ...in one line
5030   instruction_fetch_units = 1
5031 
5032   // Unused, list one so that array generated by adlc is not empty.
5033   // Aix compiler chokes if _nop_count = 0.
5034   nops(fxNop);
5035 %}
5036 
5037 //----------RESOURCES----------------------------------------------------------
5038 // Resources are the functional units available to the machine
5039 resources(
5040    PPC_BR,         // branch unit
5041    PPC_CR,         // condition unit
5042    PPC_FX1,        // integer arithmetic unit 1
5043    PPC_FX2,        // integer arithmetic unit 2
5044    PPC_LDST1,      // load/store unit 1
5045    PPC_LDST2,      // load/store unit 2
5046    PPC_FP1,        // float arithmetic unit 1
5047    PPC_FP2,        // float arithmetic unit 2
5048    PPC_LDST = PPC_LDST1 | PPC_LDST2,
5049    PPC_FX = PPC_FX1 | PPC_FX2,
5050    PPC_FP = PPC_FP1 | PPC_FP2
5051  );
5052 
5053 //----------PIPELINE DESCRIPTION-----------------------------------------------
5054 // Pipeline Description specifies the stages in the machine's pipeline
5055 pipe_desc(
5056    // Power4 longest pipeline path
5057    PPC_IF,   // instruction fetch
5058    PPC_IC,
5059    //PPC_BP, // branch prediction
5060    PPC_D0,   // decode
5061    PPC_D1,   // decode
5062    PPC_D2,   // decode
5063    PPC_D3,   // decode
5064    PPC_Xfer1,
5065    PPC_GD,   // group definition
5066    PPC_MP,   // map
5067    PPC_ISS,  // issue
5068    PPC_RF,   // resource fetch
5069    PPC_EX1,  // execute (all units)
5070    PPC_EX2,  // execute (FP, LDST)
5071    PPC_EX3,  // execute (FP, LDST)
5072    PPC_EX4,  // execute (FP)
5073    PPC_EX5,  // execute (FP)
5074    PPC_EX6,  // execute (FP)
5075    PPC_WB,   // write back
5076    PPC_Xfer2,
5077    PPC_CP
5078  );
5079 
5080 //----------PIPELINE CLASSES---------------------------------------------------
5081 // Pipeline Classes describe the stages in which input and output are
5082 // referenced by the hardware pipeline.
5083 
5084 // Simple pipeline classes.
5085 
5086 // Default pipeline class.
5087 pipe_class pipe_class_default() %{
5088   single_instruction;
5089   fixed_latency(2);
5090 %}
5091 
5092 // Pipeline class for empty instructions.
5093 pipe_class pipe_class_empty() %{
5094   single_instruction;
5095   fixed_latency(0);
5096 %}
5097 
5098 // Pipeline class for compares.
5099 pipe_class pipe_class_compare() %{
5100   single_instruction;
5101   fixed_latency(16);
5102 %}
5103 
5104 // Pipeline class for traps.
5105 pipe_class pipe_class_trap() %{
5106   single_instruction;
5107   fixed_latency(100);
5108 %}
5109 
5110 // Pipeline class for memory operations.
5111 pipe_class pipe_class_memory() %{
5112   single_instruction;
5113   fixed_latency(16);
5114 %}
5115 
5116 // Pipeline class for call.
5117 pipe_class pipe_class_call() %{
5118   single_instruction;
5119   fixed_latency(100);
5120 %}
5121 
5122 // Define the class for the Nop node.
5123 define %{
5124    MachNop = pipe_class_default;
5125 %}
5126 
5127 %}
5128 
5129 //----------INSTRUCTIONS-------------------------------------------------------
5130 
5131 // Naming of instructions:
5132 //   opA_operB / opA_operB_operC:
5133 //     Operation 'op' with one or two source operands 'oper'. Result
5134 //     type is A, source operand types are B and C.
5135 //     Iff A == B == C, B and C are left out.
5136 //
5137 // The instructions are ordered according to the following scheme:
5138 //  - loads
5139 //  - load constants
5140 //  - prefetch
5141 //  - store
5142 //  - encode/decode
5143 //  - membar
5144 //  - conditional moves
5145 //  - compare & swap
5146 //  - arithmetic and logic operations
5147 //    * int: Add, Sub, Mul, Div, Mod
5148 //    * int: lShift, arShift, urShift, rot
5149 //    * float: Add, Sub, Mul, Div
5150 //    * and, or, xor ...
5151 //  - register moves: float <-> int, reg <-> stack, repl
5152 //  - cast (high level type cast, XtoP, castPP, castII, not_null etc.
5153 //  - conv (low level type cast requiring bit changes (sign extend etc)
5154 //  - compares, range & zero checks.
5155 //  - branches
5156 //  - complex operations, intrinsics, min, max, replicate
5157 //  - lock
5158 //  - Calls
5159 //
5160 // If there are similar instructions with different types they are sorted:
5161 // int before float
5162 // small before big
5163 // signed before unsigned
5164 // e.g., loadS before loadUS before loadI before loadF.
5165 
5166 
5167 //----------Load/Store Instructions--------------------------------------------
5168 
5169 //----------Load Instructions--------------------------------------------------
5170 
5171 // Converts byte to int.
5172 // As convB2I_reg, but without match rule.  The match rule of convB2I_reg
5173 // reuses the 'amount' operand, but adlc expects that operand specification
5174 // and operands in match rule are equivalent.
5175 instruct convB2I_reg_2(iRegIdst dst, iRegIsrc src) %{
5176   effect(DEF dst, USE src);
5177   format %{ "EXTSB   $dst, $src \t// byte->int" %}
5178   size(4);
5179   ins_encode %{
5180     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
5181     __ extsb($dst$$Register, $src$$Register);
5182   %}
5183   ins_pipe(pipe_class_default);
5184 %}
5185 
5186 instruct loadUB_indirect(iRegIdst dst, indirectMemory mem) %{
5187   // match-rule, false predicate
5188   match(Set dst (LoadB mem));
5189   predicate(false);
5190 
5191   format %{ "LBZ     $dst, $mem" %}
5192   size(4);
5193   ins_encode( enc_lbz(dst, mem) );
5194   ins_pipe(pipe_class_memory);
5195 %}
5196 
5197 instruct loadUB_indirect_ac(iRegIdst dst, indirectMemory mem) %{
5198   // match-rule, false predicate
5199   match(Set dst (LoadB mem));
5200   predicate(false);
5201 
5202   format %{ "LBZ     $dst, $mem\n\t"
5203             "TWI     $dst\n\t"
5204             "ISYNC" %}
5205   size(12);
5206   ins_encode( enc_lbz_ac(dst, mem) );
5207   ins_pipe(pipe_class_memory);
5208 %}
5209 
5210 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
5211 instruct loadB_indirect_Ex(iRegIdst dst, indirectMemory mem) %{
5212   match(Set dst (LoadB mem));
5213   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5214   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5215   expand %{
5216     iRegIdst tmp;
5217     loadUB_indirect(tmp, mem);
5218     convB2I_reg_2(dst, tmp);
5219   %}
5220 %}
5221 
5222 instruct loadB_indirect_ac_Ex(iRegIdst dst, indirectMemory mem) %{
5223   match(Set dst (LoadB mem));
5224   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
5225   expand %{
5226     iRegIdst tmp;
5227     loadUB_indirect_ac(tmp, mem);
5228     convB2I_reg_2(dst, tmp);
5229   %}
5230 %}
5231 
5232 instruct loadUB_indOffset16(iRegIdst dst, indOffset16 mem) %{
5233   // match-rule, false predicate
5234   match(Set dst (LoadB mem));
5235   predicate(false);
5236 
5237   format %{ "LBZ     $dst, $mem" %}
5238   size(4);
5239   ins_encode( enc_lbz(dst, mem) );
5240   ins_pipe(pipe_class_memory);
5241 %}
5242 
5243 instruct loadUB_indOffset16_ac(iRegIdst dst, indOffset16 mem) %{
5244   // match-rule, false predicate
5245   match(Set dst (LoadB mem));
5246   predicate(false);
5247 
5248   format %{ "LBZ     $dst, $mem\n\t"
5249             "TWI     $dst\n\t"
5250             "ISYNC" %}
5251   size(12);
5252   ins_encode( enc_lbz_ac(dst, mem) );
5253   ins_pipe(pipe_class_memory);
5254 %}
5255 
5256 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
5257 instruct loadB_indOffset16_Ex(iRegIdst dst, indOffset16 mem) %{
5258   match(Set dst (LoadB mem));
5259   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5260   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5261 
5262   expand %{
5263     iRegIdst tmp;
5264     loadUB_indOffset16(tmp, mem);
5265     convB2I_reg_2(dst, tmp);
5266   %}
5267 %}
5268 
5269 instruct loadB_indOffset16_ac_Ex(iRegIdst dst, indOffset16 mem) %{
5270   match(Set dst (LoadB mem));
5271   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
5272 
5273   expand %{
5274     iRegIdst tmp;
5275     loadUB_indOffset16_ac(tmp, mem);
5276     convB2I_reg_2(dst, tmp);
5277   %}
5278 %}
5279 
5280 // Load Unsigned Byte (8bit UNsigned) into an int reg.
5281 instruct loadUB(iRegIdst dst, memory mem) %{
5282   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5283   match(Set dst (LoadUB mem));
5284   ins_cost(MEMORY_REF_COST);
5285 
5286   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int" %}
5287   size(4);
5288   ins_encode( enc_lbz(dst, mem) );
5289   ins_pipe(pipe_class_memory);
5290 %}
5291 
5292 // Load  Unsigned Byte (8bit UNsigned) acquire.
5293 instruct loadUB_ac(iRegIdst dst, memory mem) %{
5294   match(Set dst (LoadUB mem));
5295   ins_cost(3*MEMORY_REF_COST);
5296 
5297   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int, acquire\n\t"
5298             "TWI     $dst\n\t"
5299             "ISYNC" %}
5300   size(12);
5301   ins_encode( enc_lbz_ac(dst, mem) );
5302   ins_pipe(pipe_class_memory);
5303 %}
5304 
5305 // Load Unsigned Byte (8bit UNsigned) into a Long Register.
5306 instruct loadUB2L(iRegLdst dst, memory mem) %{
5307   match(Set dst (ConvI2L (LoadUB mem)));
5308   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
5309   ins_cost(MEMORY_REF_COST);
5310 
5311   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long" %}
5312   size(4);
5313   ins_encode( enc_lbz(dst, mem) );
5314   ins_pipe(pipe_class_memory);
5315 %}
5316 
5317 instruct loadUB2L_ac(iRegLdst dst, memory mem) %{
5318   match(Set dst (ConvI2L (LoadUB mem)));
5319   ins_cost(3*MEMORY_REF_COST);
5320 
5321   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long, acquire\n\t"
5322             "TWI     $dst\n\t"
5323             "ISYNC" %}
5324   size(12);
5325   ins_encode( enc_lbz_ac(dst, mem) );
5326   ins_pipe(pipe_class_memory);
5327 %}
5328 
5329 // Load Short (16bit signed)
5330 instruct loadS(iRegIdst dst, memory mem) %{
5331   match(Set dst (LoadS mem));
5332   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5333   ins_cost(MEMORY_REF_COST);
5334 
5335   format %{ "LHA     $dst, $mem" %}
5336   size(4);
5337   ins_encode %{
5338     // TODO: PPC port $archOpcode(ppc64Opcode_lha);
5339     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5340     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
5341   %}
5342   ins_pipe(pipe_class_memory);
5343 %}
5344 
5345 // Load Short (16bit signed) acquire.
5346 instruct loadS_ac(iRegIdst dst, memory mem) %{
5347   match(Set dst (LoadS mem));
5348   ins_cost(3*MEMORY_REF_COST);
5349 
5350   format %{ "LHA     $dst, $mem\t acquire\n\t"
5351             "TWI     $dst\n\t"
5352             "ISYNC" %}
5353   size(12);
5354   ins_encode %{
5355     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5356     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5357     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
5358     __ twi_0($dst$$Register);
5359     __ isync();
5360   %}
5361   ins_pipe(pipe_class_memory);
5362 %}
5363 
5364 // Load Char (16bit unsigned)
5365 instruct loadUS(iRegIdst dst, memory mem) %{
5366   match(Set dst (LoadUS mem));
5367   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5368   ins_cost(MEMORY_REF_COST);
5369 
5370   format %{ "LHZ     $dst, $mem" %}
5371   size(4);
5372   ins_encode( enc_lhz(dst, mem) );
5373   ins_pipe(pipe_class_memory);
5374 %}
5375 
5376 // Load Char (16bit unsigned) acquire.
5377 instruct loadUS_ac(iRegIdst dst, memory mem) %{
5378   match(Set dst (LoadUS mem));
5379   ins_cost(3*MEMORY_REF_COST);
5380 
5381   format %{ "LHZ     $dst, $mem \t// acquire\n\t"
5382             "TWI     $dst\n\t"
5383             "ISYNC" %}
5384   size(12);
5385   ins_encode( enc_lhz_ac(dst, mem) );
5386   ins_pipe(pipe_class_memory);
5387 %}
5388 
5389 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register.
5390 instruct loadUS2L(iRegLdst dst, memory mem) %{
5391   match(Set dst (ConvI2L (LoadUS mem)));
5392   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
5393   ins_cost(MEMORY_REF_COST);
5394 
5395   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long" %}
5396   size(4);
5397   ins_encode( enc_lhz(dst, mem) );
5398   ins_pipe(pipe_class_memory);
5399 %}
5400 
5401 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register acquire.
5402 instruct loadUS2L_ac(iRegLdst dst, memory mem) %{
5403   match(Set dst (ConvI2L (LoadUS mem)));
5404   ins_cost(3*MEMORY_REF_COST);
5405 
5406   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long, acquire\n\t"
5407             "TWI     $dst\n\t"
5408             "ISYNC" %}
5409   size(12);
5410   ins_encode( enc_lhz_ac(dst, mem) );
5411   ins_pipe(pipe_class_memory);
5412 %}
5413 
5414 // Load Integer.
5415 instruct loadI(iRegIdst dst, memory mem) %{
5416   match(Set dst (LoadI mem));
5417   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5418   ins_cost(MEMORY_REF_COST);
5419 
5420   format %{ "LWZ     $dst, $mem" %}
5421   size(4);
5422   ins_encode( enc_lwz(dst, mem) );
5423   ins_pipe(pipe_class_memory);
5424 %}
5425 
5426 // Load Integer acquire.
5427 instruct loadI_ac(iRegIdst dst, memory mem) %{
5428   match(Set dst (LoadI mem));
5429   ins_cost(3*MEMORY_REF_COST);
5430 
5431   format %{ "LWZ     $dst, $mem \t// load acquire\n\t"
5432             "TWI     $dst\n\t"
5433             "ISYNC" %}
5434   size(12);
5435   ins_encode( enc_lwz_ac(dst, mem) );
5436   ins_pipe(pipe_class_memory);
5437 %}
5438 
5439 // Match loading integer and casting it to unsigned int in 
5440 // long register.
5441 // LoadI + ConvI2L + AndL 0xffffffff.
5442 instruct loadUI2L(iRegLdst dst, memory mem, immL_32bits mask) %{
5443   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5444   predicate(_kids[0]->_kids[0]->_leaf->as_Load()->is_unordered());
5445   ins_cost(MEMORY_REF_COST);
5446 
5447   format %{ "LWZ     $dst, $mem \t// zero-extend to long" %}
5448   size(4);
5449   ins_encode( enc_lwz(dst, mem) );
5450   ins_pipe(pipe_class_memory);
5451 %}
5452 
5453 // Match loading integer and casting it to long.
5454 instruct loadI2L(iRegLdst dst, memory mem) %{
5455   match(Set dst (ConvI2L (LoadI mem)));
5456   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
5457   ins_cost(MEMORY_REF_COST);
5458 
5459   format %{ "LWA     $dst, $mem \t// loadI2L" %}
5460   size(4);
5461   ins_encode %{
5462     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
5463     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5464     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
5465   %}
5466   ins_pipe(pipe_class_memory);
5467 %}
5468 
5469 // Match loading integer and casting it to long - acquire.
5470 instruct loadI2L_ac(iRegLdst dst, memory mem) %{
5471   match(Set dst (ConvI2L (LoadI mem)));
5472   ins_cost(3*MEMORY_REF_COST);
5473 
5474   format %{ "LWA     $dst, $mem \t// loadI2L acquire"
5475             "TWI     $dst\n\t"
5476             "ISYNC" %}
5477   size(12);
5478   ins_encode %{
5479     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
5480     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5481     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
5482     __ twi_0($dst$$Register);
5483     __ isync();
5484   %}
5485   ins_pipe(pipe_class_memory);
5486 %}
5487 
5488 // Load Long - aligned
5489 instruct loadL(iRegLdst dst, memoryAlg4 mem) %{
5490   match(Set dst (LoadL mem));
5491   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5492   ins_cost(MEMORY_REF_COST);
5493 
5494   format %{ "LD      $dst, $mem \t// long" %}
5495   size(4);
5496   ins_encode( enc_ld(dst, mem) );
5497   ins_pipe(pipe_class_memory);
5498 %}
5499 
5500 // Load Long - aligned acquire.
5501 instruct loadL_ac(iRegLdst dst, memoryAlg4 mem) %{
5502   match(Set dst (LoadL mem));
5503   ins_cost(3*MEMORY_REF_COST);
5504 
5505   format %{ "LD      $dst, $mem \t// long acquire\n\t"
5506             "TWI     $dst\n\t"
5507             "ISYNC" %}
5508   size(12);
5509   ins_encode( enc_ld_ac(dst, mem) );
5510   ins_pipe(pipe_class_memory);
5511 %}
5512 
5513 // Load Long - UNaligned
5514 instruct loadL_unaligned(iRegLdst dst, memoryAlg4 mem) %{
5515   match(Set dst (LoadL_unaligned mem));
5516   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
5517   ins_cost(MEMORY_REF_COST);
5518 
5519   format %{ "LD      $dst, $mem \t// unaligned long" %}
5520   size(4);
5521   ins_encode( enc_ld(dst, mem) );
5522   ins_pipe(pipe_class_memory);
5523 %}
5524 
5525 // Load nodes for superwords
5526 
5527 // Load Aligned Packed Byte
5528 instruct loadV8(iRegLdst dst, memoryAlg4 mem) %{
5529   predicate(n->as_LoadVector()->memory_size() == 8);
5530   match(Set dst (LoadVector mem));
5531   ins_cost(MEMORY_REF_COST);
5532 
5533   format %{ "LD      $dst, $mem \t// load 8-byte Vector" %}
5534   size(4);
5535   ins_encode( enc_ld(dst, mem) );
5536   ins_pipe(pipe_class_memory);
5537 %}
5538 
5539 // Load Range, range = array length (=jint)
5540 instruct loadRange(iRegIdst dst, memory mem) %{
5541   match(Set dst (LoadRange mem));
5542   ins_cost(MEMORY_REF_COST);
5543 
5544   format %{ "LWZ     $dst, $mem \t// range" %}
5545   size(4);
5546   ins_encode( enc_lwz(dst, mem) );
5547   ins_pipe(pipe_class_memory);
5548 %}
5549 
5550 // Load Compressed Pointer
5551 instruct loadN(iRegNdst dst, memory mem) %{
5552   match(Set dst (LoadN mem));
5553   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5554   ins_cost(MEMORY_REF_COST);
5555 
5556   format %{ "LWZ     $dst, $mem \t// load compressed ptr" %}
5557   size(4);
5558   ins_encode( enc_lwz(dst, mem) );
5559   ins_pipe(pipe_class_memory);
5560 %}
5561 
5562 // Load Compressed Pointer acquire.
5563 instruct loadN_ac(iRegNdst dst, memory mem) %{
5564   match(Set dst (LoadN mem));
5565   ins_cost(3*MEMORY_REF_COST);
5566 
5567   format %{ "LWZ     $dst, $mem \t// load acquire compressed ptr\n\t"
5568             "TWI     $dst\n\t"
5569             "ISYNC" %}
5570   size(12);
5571   ins_encode( enc_lwz_ac(dst, mem) );
5572   ins_pipe(pipe_class_memory);
5573 %}
5574 
5575 // Load Compressed Pointer and decode it if narrow_oop_shift == 0.
5576 instruct loadN2P_unscaled(iRegPdst dst, memory mem) %{
5577   match(Set dst (DecodeN (LoadN mem)));
5578   predicate(_kids[0]->_leaf->as_Load()->is_unordered() && Universe::narrow_oop_shift() == 0);
5579   ins_cost(MEMORY_REF_COST);
5580 
5581   format %{ "LWZ     $dst, $mem \t// DecodeN (unscaled)" %}
5582   size(4);
5583   ins_encode( enc_lwz(dst, mem) );
5584   ins_pipe(pipe_class_memory);
5585 %}
5586 
5587 // Load Pointer
5588 instruct loadP(iRegPdst dst, memoryAlg4 mem) %{
5589   match(Set dst (LoadP mem));
5590   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5591   ins_cost(MEMORY_REF_COST);
5592 
5593   format %{ "LD      $dst, $mem \t// ptr" %}
5594   size(4);
5595   ins_encode( enc_ld(dst, mem) );
5596   ins_pipe(pipe_class_memory);
5597 %}
5598 
5599 // Load Pointer acquire.
5600 instruct loadP_ac(iRegPdst dst, memoryAlg4 mem) %{
5601   match(Set dst (LoadP mem));
5602   ins_cost(3*MEMORY_REF_COST);
5603 
5604   format %{ "LD      $dst, $mem \t// ptr acquire\n\t"
5605             "TWI     $dst\n\t"
5606             "ISYNC" %}
5607   size(12);
5608   ins_encode( enc_ld_ac(dst, mem) );
5609   ins_pipe(pipe_class_memory);
5610 %}
5611 
5612 // LoadP + CastP2L
5613 instruct loadP2X(iRegLdst dst, memoryAlg4 mem) %{
5614   match(Set dst (CastP2X (LoadP mem)));
5615   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
5616   ins_cost(MEMORY_REF_COST);
5617 
5618   format %{ "LD      $dst, $mem \t// ptr + p2x" %}
5619   size(4);
5620   ins_encode( enc_ld(dst, mem) );
5621   ins_pipe(pipe_class_memory);
5622 %}
5623 
5624 // Load compressed klass pointer.
5625 instruct loadNKlass(iRegNdst dst, memory mem) %{
5626   match(Set dst (LoadNKlass mem));
5627   ins_cost(MEMORY_REF_COST);
5628 
5629   format %{ "LWZ     $dst, $mem \t// compressed klass ptr" %}
5630   size(4);
5631   ins_encode( enc_lwz(dst, mem) );
5632   ins_pipe(pipe_class_memory);
5633 %}
5634 
5635 //// Load compressed klass and decode it if narrow_klass_shift == 0.
5636 //// TODO: will narrow_klass_shift ever be 0?
5637 //instruct decodeNKlass2Klass(iRegPdst dst, memory mem) %{
5638 //  match(Set dst (DecodeNKlass (LoadNKlass mem)));
5639 //  predicate(false /* TODO: PPC port Universe::narrow_klass_shift() == 0*);
5640 //  ins_cost(MEMORY_REF_COST);
5641 //
5642 //  format %{ "LWZ     $dst, $mem \t// DecodeNKlass (unscaled)" %}
5643 //  size(4);
5644 //  ins_encode( enc_lwz(dst, mem) );
5645 //  ins_pipe(pipe_class_memory);
5646 //%}
5647 
5648 // Load Klass Pointer
5649 instruct loadKlass(iRegPdst dst, memoryAlg4 mem) %{
5650   match(Set dst (LoadKlass mem));
5651   ins_cost(MEMORY_REF_COST);
5652 
5653   format %{ "LD      $dst, $mem \t// klass ptr" %}
5654   size(4);
5655   ins_encode( enc_ld(dst, mem) );
5656   ins_pipe(pipe_class_memory);
5657 %}
5658 
5659 // Load Float
5660 instruct loadF(regF dst, memory mem) %{
5661   match(Set dst (LoadF mem));
5662   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5663   ins_cost(MEMORY_REF_COST);
5664 
5665   format %{ "LFS     $dst, $mem" %}
5666   size(4);
5667   ins_encode %{
5668     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
5669     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5670     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5671   %}
5672   ins_pipe(pipe_class_memory);
5673 %}
5674 
5675 // Load Float acquire.
5676 instruct loadF_ac(regF dst, memory mem) %{
5677   match(Set dst (LoadF mem));
5678   ins_cost(3*MEMORY_REF_COST);
5679 
5680   format %{ "LFS     $dst, $mem \t// acquire\n\t"
5681             "FCMPU   cr0, $dst, $dst\n\t"
5682             "BNE     cr0, next\n"
5683             "next:\n\t"
5684             "ISYNC" %}
5685   size(16);
5686   ins_encode %{
5687     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5688     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5689     Label next;
5690     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5691     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
5692     __ bne(CCR0, next);
5693     __ bind(next);
5694     __ isync();
5695   %}
5696   ins_pipe(pipe_class_memory);
5697 %}
5698 
5699 // Load Double - aligned
5700 instruct loadD(regD dst, memory mem) %{
5701   match(Set dst (LoadD mem));
5702   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5703   ins_cost(MEMORY_REF_COST);
5704 
5705   format %{ "LFD     $dst, $mem" %}
5706   size(4);
5707   ins_encode( enc_lfd(dst, mem) );
5708   ins_pipe(pipe_class_memory);
5709 %}
5710 
5711 // Load Double - aligned acquire.
5712 instruct loadD_ac(regD dst, memory mem) %{
5713   match(Set dst (LoadD mem));
5714   ins_cost(3*MEMORY_REF_COST);
5715 
5716   format %{ "LFD     $dst, $mem \t// acquire\n\t"
5717             "FCMPU   cr0, $dst, $dst\n\t"
5718             "BNE     cr0, next\n"
5719             "next:\n\t"
5720             "ISYNC" %}
5721   size(16);
5722   ins_encode %{
5723     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5724     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5725     Label next;
5726     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5727     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
5728     __ bne(CCR0, next);
5729     __ bind(next);
5730     __ isync();
5731   %}
5732   ins_pipe(pipe_class_memory);
5733 %}
5734 
5735 // Load Double - UNaligned
5736 instruct loadD_unaligned(regD dst, memory mem) %{
5737   match(Set dst (LoadD_unaligned mem));
5738   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
5739   ins_cost(MEMORY_REF_COST);
5740 
5741   format %{ "LFD     $dst, $mem" %}
5742   size(4);
5743   ins_encode( enc_lfd(dst, mem) );
5744   ins_pipe(pipe_class_memory);
5745 %}
5746 
5747 //----------Constants--------------------------------------------------------
5748 
5749 // Load MachConstantTableBase: add hi offset to global toc.
5750 // TODO: Handle hidden register r29 in bundler!
5751 instruct loadToc_hi(iRegLdst dst) %{
5752   effect(DEF dst);
5753   ins_cost(DEFAULT_COST);
5754 
5755   format %{ "ADDIS   $dst, R29, DISP.hi \t// load TOC hi" %}
5756   size(4);
5757   ins_encode %{
5758     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5759     __ calculate_address_from_global_toc_hi16only($dst$$Register, __ method_toc());
5760   %}
5761   ins_pipe(pipe_class_default);
5762 %}
5763 
5764 // Load MachConstantTableBase: add lo offset to global toc.
5765 instruct loadToc_lo(iRegLdst dst, iRegLdst src) %{
5766   effect(DEF dst, USE src);
5767   ins_cost(DEFAULT_COST);
5768 
5769   format %{ "ADDI    $dst, $src, DISP.lo \t// load TOC lo" %}
5770   size(4);
5771   ins_encode %{
5772     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5773     __ calculate_address_from_global_toc_lo16only($dst$$Register, __ method_toc());
5774   %}
5775   ins_pipe(pipe_class_default);
5776 %}
5777 
5778 // Load 16-bit integer constant 0xssss????
5779 instruct loadConI16(iRegIdst dst, immI16 src) %{
5780   match(Set dst src);
5781 
5782   format %{ "LI      $dst, $src" %}
5783   size(4);
5784   ins_encode %{
5785     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5786     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
5787   %}
5788   ins_pipe(pipe_class_default);
5789 %}
5790 
5791 // Load integer constant 0x????0000
5792 instruct loadConIhi16(iRegIdst dst, immIhi16 src) %{
5793   match(Set dst src);
5794   ins_cost(DEFAULT_COST);
5795 
5796   format %{ "LIS     $dst, $src.hi" %}
5797   size(4);
5798   ins_encode %{
5799     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5800     // Lis sign extends 16-bit src then shifts it 16 bit to the left.
5801     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
5802   %}
5803   ins_pipe(pipe_class_default);
5804 %}
5805 
5806 // Part 2 of loading 32 bit constant: hi16 is is src1 (properly shifted
5807 // and sign extended), this adds the low 16 bits.
5808 instruct loadConI32_lo16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
5809   // no match-rule, false predicate
5810   effect(DEF dst, USE src1, USE src2);
5811   predicate(false);
5812 
5813   format %{ "ORI     $dst, $src1.hi, $src2.lo" %}
5814   size(4);
5815   ins_encode %{
5816     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5817     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
5818   %}
5819   ins_pipe(pipe_class_default);
5820 %}
5821 
5822 instruct loadConI_Ex(iRegIdst dst, immI src) %{
5823   match(Set dst src);
5824   ins_cost(DEFAULT_COST*2);
5825 
5826   expand %{
5827     // Would like to use $src$$constant.
5828     immI16 srcLo %{ _opnds[1]->constant() %}
5829     // srcHi can be 0000 if srcLo sign-extends to a negative number.
5830     immIhi16 srcHi %{ _opnds[1]->constant() %}
5831     iRegIdst tmpI;
5832     loadConIhi16(tmpI, srcHi);
5833     loadConI32_lo16(dst, tmpI, srcLo);
5834   %}
5835 %}
5836 
5837 // No constant pool entries required.
5838 instruct loadConL16(iRegLdst dst, immL16 src) %{
5839   match(Set dst src);
5840 
5841   format %{ "LI      $dst, $src \t// long" %}
5842   size(4);
5843   ins_encode %{
5844     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5845     __ li($dst$$Register, (int)((short) ($src$$constant & 0xFFFF)));
5846   %}
5847   ins_pipe(pipe_class_default);
5848 %}
5849 
5850 // Load long constant 0xssssssss????0000
5851 instruct loadConL32hi16(iRegLdst dst, immL32hi16 src) %{
5852   match(Set dst src);
5853   ins_cost(DEFAULT_COST);
5854 
5855   format %{ "LIS     $dst, $src.hi \t// long" %}
5856   size(4);
5857   ins_encode %{
5858     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5859     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
5860   %}
5861   ins_pipe(pipe_class_default);
5862 %}
5863 
5864 // To load a 32 bit constant: merge lower 16 bits into already loaded
5865 // high 16 bits.
5866 instruct loadConL32_lo16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
5867   // no match-rule, false predicate
5868   effect(DEF dst, USE src1, USE src2);
5869   predicate(false);
5870 
5871   format %{ "ORI     $dst, $src1, $src2.lo" %}
5872   size(4);
5873   ins_encode %{
5874     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5875     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
5876   %}
5877   ins_pipe(pipe_class_default);
5878 %}
5879 
5880 // Load 32-bit long constant
5881 instruct loadConL32_Ex(iRegLdst dst, immL32 src) %{
5882   match(Set dst src);
5883   ins_cost(DEFAULT_COST*2);
5884 
5885   expand %{
5886     // Would like to use $src$$constant.
5887     immL16     srcLo %{ _opnds[1]->constant() /*& 0x0000FFFFL */%}
5888     // srcHi can be 0000 if srcLo sign-extends to a negative number.
5889     immL32hi16 srcHi %{ _opnds[1]->constant() /*& 0xFFFF0000L */%}
5890     iRegLdst tmpL;
5891     loadConL32hi16(tmpL, srcHi);
5892     loadConL32_lo16(dst, tmpL, srcLo);
5893   %}
5894 %}
5895 
5896 // Load long constant 0x????000000000000.
5897 instruct loadConLhighest16_Ex(iRegLdst dst, immLhighest16 src) %{
5898   match(Set dst src);
5899   ins_cost(DEFAULT_COST);
5900 
5901   expand %{
5902     immL32hi16 srcHi %{ _opnds[1]->constant() >> 32 /*& 0xFFFF0000L */%}
5903     immI shift32 %{ 32 %}
5904     iRegLdst tmpL;
5905     loadConL32hi16(tmpL, srcHi);
5906     lshiftL_regL_immI(dst, tmpL, shift32);
5907   %}
5908 %}
5909 
5910 // Expand node for constant pool load: small offset.
5911 instruct loadConL(iRegLdst dst, immL src, iRegLdst toc) %{
5912   effect(DEF dst, USE src, USE toc);
5913   ins_cost(MEMORY_REF_COST);
5914 
5915   ins_num_consts(1);
5916   // Needed so that CallDynamicJavaDirect can compute the address of this
5917   // instruction for relocation.
5918   ins_field_cbuf_insts_offset(int);
5919 
5920   format %{ "LD      $dst, offset, $toc \t// load long $src from TOC" %}
5921   size(4);
5922   ins_encode( enc_load_long_constL(dst, src, toc) );
5923   ins_pipe(pipe_class_memory);
5924 %}
5925 
5926 // Expand node for constant pool load: large offset.
5927 instruct loadConL_hi(iRegLdst dst, immL src, iRegLdst toc) %{
5928   effect(DEF dst, USE src, USE toc);
5929   predicate(false);
5930 
5931   ins_num_consts(1);
5932   ins_field_const_toc_offset(int);
5933   // Needed so that CallDynamicJavaDirect can compute the address of this
5934   // instruction for relocation.
5935   ins_field_cbuf_insts_offset(int);
5936 
5937   format %{ "ADDIS   $dst, $toc, offset \t// load long $src from TOC (hi)" %}
5938   size(4);
5939   ins_encode( enc_load_long_constL_hi(dst, toc, src) );
5940   ins_pipe(pipe_class_default);
5941 %}
5942 
5943 // Expand node for constant pool load: large offset.
5944 // No constant pool entries required.
5945 instruct loadConL_lo(iRegLdst dst, immL src, iRegLdst base) %{
5946   effect(DEF dst, USE src, USE base);
5947   predicate(false);
5948 
5949   ins_field_const_toc_offset_hi_node(loadConL_hiNode*);
5950 
5951   format %{ "LD      $dst, offset, $base \t// load long $src from TOC (lo)" %}
5952   size(4);
5953   ins_encode %{
5954     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
5955     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
5956     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
5957   %}
5958   ins_pipe(pipe_class_memory);
5959 %}
5960 
5961 // Load long constant from constant table. Expand in case of
5962 // offset > 16 bit is needed.
5963 // Adlc adds toc node MachConstantTableBase.
5964 instruct loadConL_Ex(iRegLdst dst, immL src) %{
5965   match(Set dst src);
5966   ins_cost(MEMORY_REF_COST);
5967 
5968   format %{ "LD      $dst, offset, $constanttablebase\t// load long $src from table, postalloc expanded" %}
5969   // We can not inline the enc_class for the expand as that does not support constanttablebase.
5970   postalloc_expand( postalloc_expand_load_long_constant(dst, src, constanttablebase) );
5971 %}
5972 
5973 // Load NULL as compressed oop.
5974 instruct loadConN0(iRegNdst dst, immN_0 src) %{
5975   match(Set dst src);
5976   ins_cost(DEFAULT_COST);
5977 
5978   format %{ "LI      $dst, $src \t// compressed ptr" %}
5979   size(4);
5980   ins_encode %{
5981     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5982     __ li($dst$$Register, 0);
5983   %}
5984   ins_pipe(pipe_class_default);
5985 %}
5986 
5987 // Load hi part of compressed oop constant.
5988 instruct loadConN_hi(iRegNdst dst, immN src) %{
5989   effect(DEF dst, USE src);
5990   ins_cost(DEFAULT_COST);
5991 
5992   format %{ "LIS     $dst, $src \t// narrow oop hi" %}
5993   size(4);
5994   ins_encode %{
5995     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5996     __ lis($dst$$Register, (int)(short)(($src$$constant >> 16) & 0xffff));
5997   %}
5998   ins_pipe(pipe_class_default);
5999 %}
6000 
6001 // Add lo part of compressed oop constant to already loaded hi part.
6002 instruct loadConN_lo(iRegNdst dst, iRegNsrc src1, immN src2) %{
6003   effect(DEF dst, USE src1, USE src2);
6004   ins_cost(DEFAULT_COST);
6005 
6006   format %{ "ORI     $dst, $src1, $src2 \t// narrow oop lo" %}
6007   size(4);
6008   ins_encode %{
6009     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
6010     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
6011     int oop_index = __ oop_recorder()->find_index((jobject)$src2$$constant);
6012     RelocationHolder rspec = oop_Relocation::spec(oop_index);
6013     __ relocate(rspec, 1);
6014     __ ori($dst$$Register, $src1$$Register, $src2$$constant & 0xffff);
6015   %}
6016   ins_pipe(pipe_class_default);
6017 %}
6018 
6019 // Needed to postalloc expand loadConN: ConN is loaded as ConI
6020 // leaving the upper 32 bits with sign-extension bits.
6021 // This clears these bits: dst = src & 0xFFFFFFFF.
6022 // TODO: Eventually call this maskN_regN_FFFFFFFF.
6023 instruct clearMs32b(iRegNdst dst, iRegNsrc src) %{
6024   effect(DEF dst, USE src);
6025   predicate(false);
6026 
6027   format %{ "MASK    $dst, $src, 0xFFFFFFFF" %} // mask
6028   size(4);
6029   ins_encode %{
6030     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6031     __ clrldi($dst$$Register, $src$$Register, 0x20);
6032   %}
6033   ins_pipe(pipe_class_default);
6034 %}
6035 
6036 // Loading ConN must be postalloc expanded so that edges between
6037 // the nodes are safe. They may not interfere with a safepoint.
6038 // GL TODO: This needs three instructions: better put this into the constant pool.
6039 instruct loadConN_Ex(iRegNdst dst, immN src) %{
6040   match(Set dst src);
6041   ins_cost(DEFAULT_COST*2);
6042 
6043   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
6044   postalloc_expand %{
6045     MachNode *m1 = new (C) loadConN_hiNode();
6046     MachNode *m2 = new (C) loadConN_loNode();
6047     MachNode *m3 = new (C) clearMs32bNode();
6048     m1->add_req(NULL);
6049     m2->add_req(NULL, m1);
6050     m3->add_req(NULL, m2);
6051     m1->_opnds[0] = op_dst;
6052     m1->_opnds[1] = op_src;
6053     m2->_opnds[0] = op_dst;
6054     m2->_opnds[1] = op_dst;
6055     m2->_opnds[2] = op_src;
6056     m3->_opnds[0] = op_dst;
6057     m3->_opnds[1] = op_dst;
6058     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6059     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6060     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6061     nodes->push(m1);
6062     nodes->push(m2);
6063     nodes->push(m3);
6064   %}
6065 %}
6066 
6067 instruct loadConNKlass_hi(iRegNdst dst, immNKlass src) %{
6068   effect(DEF dst, USE src);
6069   ins_cost(DEFAULT_COST);
6070 
6071   format %{ "LIS     $dst, $src \t// narrow oop hi" %}
6072   size(4);
6073   ins_encode %{
6074     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
6075     intptr_t Csrc = Klass::encode_klass((Klass *)$src$$constant);
6076     __ lis($dst$$Register, (int)(short)((Csrc >> 16) & 0xffff));
6077   %}
6078   ins_pipe(pipe_class_default);
6079 %}
6080 
6081 // This needs a match rule so that build_oop_map knows this is 
6082 // not a narrow oop.
6083 instruct loadConNKlass_lo(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
6084   match(Set dst src1);
6085   effect(TEMP src2);
6086   ins_cost(DEFAULT_COST);
6087 
6088   format %{ "ADDI    $dst, $src1, $src2 \t// narrow oop lo" %}
6089   size(4);
6090   ins_encode %{
6091     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
6092     intptr_t Csrc = Klass::encode_klass((Klass *)$src1$$constant);
6093     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
6094     int klass_index = __ oop_recorder()->find_index((Klass *)$src1$$constant);
6095     RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6096 
6097     __ relocate(rspec, 1);
6098     __ ori($dst$$Register, $src2$$Register, Csrc & 0xffff);
6099   %}
6100   ins_pipe(pipe_class_default);
6101 %}
6102 
6103 // Loading ConNKlass must be postalloc expanded so that edges between
6104 // the nodes are safe. They may not interfere with a safepoint.
6105 instruct loadConNKlass_Ex(iRegNdst dst, immNKlass src) %{
6106   match(Set dst src);
6107   ins_cost(DEFAULT_COST*2);
6108 
6109   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
6110   postalloc_expand %{
6111     // Load high bits into register. Sign extended.
6112     MachNode *m1 = new (C) loadConNKlass_hiNode();
6113     m1->add_req(NULL);
6114     m1->_opnds[0] = op_dst;
6115     m1->_opnds[1] = op_src;
6116     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6117     nodes->push(m1);
6118 
6119     MachNode *m2 = m1;
6120     if (!Assembler::is_uimm((jlong)Klass::encode_klass((Klass *)op_src->constant()), 31)) {
6121       // Value might be 1-extended. Mask out these bits.
6122       m2 = new (C) clearMs32bNode();
6123       m2->add_req(NULL, m1);
6124       m2->_opnds[0] = op_dst;
6125       m2->_opnds[1] = op_dst;
6126       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6127       nodes->push(m2);
6128     }
6129 
6130     MachNode *m3 = new (C) loadConNKlass_loNode();
6131     m3->add_req(NULL, m2);
6132     m3->_opnds[0] = op_dst;
6133     m3->_opnds[1] = op_src;
6134     m3->_opnds[2] = op_dst;
6135     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6136     nodes->push(m3);
6137   %}
6138 %}
6139 
6140 // 0x1 is used in object initialization (initial object header).
6141 // No constant pool entries required.
6142 instruct loadConP0or1(iRegPdst dst, immP_0or1 src) %{
6143   match(Set dst src);
6144 
6145   format %{ "LI      $dst, $src \t// ptr" %}
6146   size(4);
6147   ins_encode %{
6148     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
6149     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
6150   %}
6151   ins_pipe(pipe_class_default);
6152 %}
6153 
6154 // Expand node for constant pool load: small offset.
6155 // The match rule is needed to generate the correct bottom_type(),
6156 // however this node should never match. The use of predicate is not
6157 // possible since ADLC forbids predicates for chain rules. The higher
6158 // costs do not prevent matching in this case. For that reason the
6159 // operand immP_NM with predicate(false) is used.
6160 instruct loadConP(iRegPdst dst, immP_NM src, iRegLdst toc) %{
6161   match(Set dst src);
6162   effect(TEMP toc);
6163 
6164   ins_num_consts(1);
6165 
6166   format %{ "LD      $dst, offset, $toc \t// load ptr $src from TOC" %}
6167   size(4);
6168   ins_encode( enc_load_long_constP(dst, src, toc) );
6169   ins_pipe(pipe_class_memory);
6170 %}
6171 
6172 // Expand node for constant pool load: large offset.
6173 instruct loadConP_hi(iRegPdst dst, immP_NM src, iRegLdst toc) %{
6174   effect(DEF dst, USE src, USE toc);
6175   predicate(false);
6176 
6177   ins_num_consts(1);
6178   ins_field_const_toc_offset(int);
6179 
6180   format %{ "ADDIS   $dst, $toc, offset \t// load ptr $src from TOC (hi)" %}
6181   size(4);
6182   ins_encode( enc_load_long_constP_hi(dst, src, toc) );
6183   ins_pipe(pipe_class_default);
6184 %}
6185 
6186 // Expand node for constant pool load: large offset.
6187 instruct loadConP_lo(iRegPdst dst, immP_NM src, iRegLdst base) %{
6188   match(Set dst src);
6189   effect(TEMP base);
6190 
6191   ins_field_const_toc_offset_hi_node(loadConP_hiNode*);
6192 
6193   format %{ "LD      $dst, offset, $base \t// load ptr $src from TOC (lo)" %}
6194   size(4);
6195   ins_encode %{
6196     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
6197     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
6198     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
6199   %}
6200   ins_pipe(pipe_class_memory);
6201 %}
6202 
6203 // Load pointer constant from constant table. Expand in case an
6204 // offset > 16 bit is needed.
6205 // Adlc adds toc node MachConstantTableBase.
6206 instruct loadConP_Ex(iRegPdst dst, immP src) %{
6207   match(Set dst src);
6208   ins_cost(MEMORY_REF_COST);
6209 
6210   // This rule does not use "expand" because then
6211   // the result type is not known to be an Oop.  An ADLC
6212   // enhancement will be needed to make that work - not worth it!
6213 
6214   // If this instruction rematerializes, it prolongs the live range
6215   // of the toc node, causing illegal graphs.
6216   // assert(edge_from_to(_reg_node[reg_lo],def)) fails in verify_good_schedule().
6217   ins_cannot_rematerialize(true);
6218 
6219   format %{ "LD    $dst, offset, $constanttablebase \t//  load ptr $src from table, postalloc expanded" %}
6220   postalloc_expand( postalloc_expand_load_ptr_constant(dst, src, constanttablebase) );
6221 %}
6222 
6223 // Expand node for constant pool load: small offset.
6224 instruct loadConF(regF dst, immF src, iRegLdst toc) %{
6225   effect(DEF dst, USE src, USE toc);
6226   ins_cost(MEMORY_REF_COST);
6227 
6228   ins_num_consts(1);
6229 
6230   format %{ "LFS     $dst, offset, $toc \t// load float $src from TOC" %}
6231   size(4);
6232   ins_encode %{
6233     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
6234     address float_address = __ float_constant($src$$constant);
6235     __ lfs($dst$$FloatRegister, __ offset_to_method_toc(float_address), $toc$$Register);
6236   %}
6237   ins_pipe(pipe_class_memory);
6238 %}
6239 
6240 // Expand node for constant pool load: large offset.
6241 instruct loadConFComp(regF dst, immF src, iRegLdst toc) %{
6242   effect(DEF dst, USE src, USE toc);
6243   ins_cost(MEMORY_REF_COST);
6244 
6245   ins_num_consts(1);
6246 
6247   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
6248             "LFS     $dst, offset_lo, $toc \t// load float $src from TOC (hi/lo)\n\t"
6249             "ADDIS   $toc, $toc, -offset_hi"%}
6250   size(12);
6251   ins_encode %{
6252     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6253     FloatRegister Rdst    = $dst$$FloatRegister;
6254     Register Rtoc         = $toc$$Register;
6255     address float_address = __ float_constant($src$$constant);
6256     int offset            = __ offset_to_method_toc(float_address);
6257     int hi = (offset + (1<<15))>>16;
6258     int lo = offset - hi * (1<<16);
6259 
6260     __ addis(Rtoc, Rtoc, hi);
6261     __ lfs(Rdst, lo, Rtoc);
6262     __ addis(Rtoc, Rtoc, -hi);
6263   %}
6264   ins_pipe(pipe_class_memory);
6265 %}
6266 
6267 // Adlc adds toc node MachConstantTableBase.
6268 instruct loadConF_Ex(regF dst, immF src) %{
6269   match(Set dst src);
6270   ins_cost(MEMORY_REF_COST);
6271 
6272   // See loadConP.
6273   ins_cannot_rematerialize(true);
6274 
6275   format %{ "LFS     $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
6276   postalloc_expand( postalloc_expand_load_float_constant(dst, src, constanttablebase) );
6277 %}
6278 
6279 // Expand node for constant pool load: small offset.
6280 instruct loadConD(regD dst, immD src, iRegLdst toc) %{
6281   effect(DEF dst, USE src, USE toc);
6282   ins_cost(MEMORY_REF_COST);
6283 
6284   ins_num_consts(1);
6285 
6286   format %{ "LFD     $dst, offset, $toc \t// load double $src from TOC" %}
6287   size(4);
6288   ins_encode %{
6289     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
6290     int offset =  __ offset_to_method_toc(__ double_constant($src$$constant));
6291     __ lfd($dst$$FloatRegister, offset, $toc$$Register);
6292   %}
6293   ins_pipe(pipe_class_memory);
6294 %}
6295 
6296 // Expand node for constant pool load: large offset.
6297 instruct loadConDComp(regD dst, immD src, iRegLdst toc) %{
6298   effect(DEF dst, USE src, USE toc);
6299   ins_cost(MEMORY_REF_COST);
6300 
6301   ins_num_consts(1);
6302 
6303   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
6304             "LFD     $dst, offset_lo, $toc \t// load double $src from TOC (hi/lo)\n\t"
6305             "ADDIS   $toc, $toc, -offset_hi" %}
6306   size(12);
6307   ins_encode %{
6308     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6309     FloatRegister Rdst    = $dst$$FloatRegister;
6310     Register      Rtoc    = $toc$$Register;
6311     address float_address = __ double_constant($src$$constant);
6312     int offset            = __ offset_to_method_toc(float_address);
6313     int hi = (offset + (1<<15))>>16;
6314     int lo = offset - hi * (1<<16);
6315 
6316     __ addis(Rtoc, Rtoc, hi);
6317     __ lfd(Rdst, lo, Rtoc);
6318     __ addis(Rtoc, Rtoc, -hi);
6319   %}
6320   ins_pipe(pipe_class_memory);
6321 %}
6322 
6323 // Adlc adds toc node MachConstantTableBase.
6324 instruct loadConD_Ex(regD dst, immD src) %{
6325   match(Set dst src);
6326   ins_cost(MEMORY_REF_COST);
6327 
6328   // See loadConP.
6329   ins_cannot_rematerialize(true);
6330 
6331   format %{ "ConD    $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
6332   postalloc_expand( postalloc_expand_load_double_constant(dst, src, constanttablebase) );
6333 %}
6334 
6335 // Prefetch instructions.
6336 // Must be safe to execute with invalid address (cannot fault).
6337 
6338 instruct prefetchr(indirectMemory mem, iRegLsrc src) %{
6339   match(PrefetchRead (AddP mem src));
6340   ins_cost(MEMORY_REF_COST);
6341 
6342   format %{ "PREFETCH $mem, 0, $src \t// Prefetch read-many" %}
6343   size(4);
6344   ins_encode %{
6345     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
6346     __ dcbt($src$$Register, $mem$$base$$Register);
6347   %}
6348   ins_pipe(pipe_class_memory);
6349 %}
6350 
6351 instruct prefetchr_no_offset(indirectMemory mem) %{
6352   match(PrefetchRead mem);
6353   ins_cost(MEMORY_REF_COST);
6354 
6355   format %{ "PREFETCH $mem" %}
6356   size(4);
6357   ins_encode %{
6358     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
6359     __ dcbt($mem$$base$$Register);
6360   %}
6361   ins_pipe(pipe_class_memory);
6362 %}
6363 
6364 instruct prefetchw(indirectMemory mem, iRegLsrc src) %{
6365   match(PrefetchWrite (AddP mem src));
6366   ins_cost(MEMORY_REF_COST);
6367 
6368   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many (and read)" %}
6369   size(4);
6370   ins_encode %{
6371     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6372     __ dcbtst($src$$Register, $mem$$base$$Register);
6373   %}
6374   ins_pipe(pipe_class_memory);
6375 %}
6376 
6377 instruct prefetchw_no_offset(indirectMemory mem) %{
6378   match(PrefetchWrite mem);
6379   ins_cost(MEMORY_REF_COST);
6380 
6381   format %{ "PREFETCH $mem" %}
6382   size(4);
6383   ins_encode %{
6384     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6385     __ dcbtst($mem$$base$$Register);
6386   %}
6387   ins_pipe(pipe_class_memory);
6388 %}
6389 
6390 // Special prefetch versions which use the dcbz instruction.
6391 instruct prefetch_alloc_zero(indirectMemory mem, iRegLsrc src) %{
6392   match(PrefetchAllocation (AddP mem src));
6393   predicate(AllocatePrefetchStyle == 3);
6394   ins_cost(MEMORY_REF_COST);
6395 
6396   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many with zero" %}
6397   size(4);
6398   ins_encode %{
6399     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6400     __ dcbz($src$$Register, $mem$$base$$Register);
6401   %}
6402   ins_pipe(pipe_class_memory);
6403 %}
6404 
6405 instruct prefetch_alloc_zero_no_offset(indirectMemory mem) %{
6406   match(PrefetchAllocation mem);
6407   predicate(AllocatePrefetchStyle == 3);
6408   ins_cost(MEMORY_REF_COST);
6409 
6410   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many with zero" %}
6411   size(4);
6412   ins_encode %{
6413     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6414     __ dcbz($mem$$base$$Register);
6415   %}
6416   ins_pipe(pipe_class_memory);
6417 %}
6418 
6419 instruct prefetch_alloc(indirectMemory mem, iRegLsrc src) %{
6420   match(PrefetchAllocation (AddP mem src));
6421   predicate(AllocatePrefetchStyle != 3);
6422   ins_cost(MEMORY_REF_COST);
6423 
6424   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many" %}
6425   size(4);
6426   ins_encode %{
6427     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6428     __ dcbtst($src$$Register, $mem$$base$$Register);
6429   %}
6430   ins_pipe(pipe_class_memory);
6431 %}
6432 
6433 instruct prefetch_alloc_no_offset(indirectMemory mem) %{
6434   match(PrefetchAllocation mem);
6435   predicate(AllocatePrefetchStyle != 3);
6436   ins_cost(MEMORY_REF_COST);
6437 
6438   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many" %}
6439   size(4);
6440   ins_encode %{
6441     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6442     __ dcbtst($mem$$base$$Register);
6443   %}
6444   ins_pipe(pipe_class_memory);
6445 %}
6446 
6447 //----------Store Instructions-------------------------------------------------
6448 
6449 // Store Byte
6450 instruct storeB(memory mem, iRegIsrc src) %{
6451   match(Set mem (StoreB mem src));
6452   ins_cost(MEMORY_REF_COST);
6453 
6454   format %{ "STB     $src, $mem \t// byte" %}
6455   size(4);
6456   ins_encode %{
6457     // TODO: PPC port $archOpcode(ppc64Opcode_stb);
6458     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
6459     __ stb($src$$Register, Idisp, $mem$$base$$Register);
6460   %}
6461   ins_pipe(pipe_class_memory);
6462 %}
6463 
6464 // Store Char/Short
6465 instruct storeC(memory mem, iRegIsrc src) %{
6466   match(Set mem (StoreC mem src));
6467   ins_cost(MEMORY_REF_COST);
6468 
6469   format %{ "STH     $src, $mem \t// short" %}
6470   size(4);
6471   ins_encode %{
6472     // TODO: PPC port $archOpcode(ppc64Opcode_sth);
6473     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
6474     __ sth($src$$Register, Idisp, $mem$$base$$Register);
6475   %}
6476   ins_pipe(pipe_class_memory);
6477 %}
6478 
6479 // Store Integer
6480 instruct storeI(memory mem, iRegIsrc src) %{
6481   match(Set mem (StoreI mem src));
6482   ins_cost(MEMORY_REF_COST);
6483 
6484   format %{ "STW     $src, $mem" %}
6485   size(4);
6486   ins_encode( enc_stw(src, mem) );
6487   ins_pipe(pipe_class_memory);
6488 %}
6489 
6490 // ConvL2I + StoreI.
6491 instruct storeI_convL2I(memory mem, iRegLsrc src) %{
6492   match(Set mem (StoreI mem (ConvL2I src)));
6493   ins_cost(MEMORY_REF_COST);
6494 
6495   format %{ "STW     l2i($src), $mem" %}
6496   size(4);
6497   ins_encode( enc_stw(src, mem) );
6498   ins_pipe(pipe_class_memory);
6499 %}
6500 
6501 // Store Long
6502 instruct storeL(memoryAlg4 mem, iRegLsrc src) %{
6503   match(Set mem (StoreL mem src));
6504   ins_cost(MEMORY_REF_COST);
6505 
6506   format %{ "STD     $src, $mem \t// long" %}
6507   size(4);
6508   ins_encode( enc_std(src, mem) );
6509   ins_pipe(pipe_class_memory);
6510 %}
6511 
6512 // Store super word nodes.
6513 
6514 // Store Aligned Packed Byte long register to memory
6515 instruct storeA8B(memoryAlg4 mem, iRegLsrc src) %{
6516   predicate(n->as_StoreVector()->memory_size() == 8);
6517   match(Set mem (StoreVector mem src));
6518   ins_cost(MEMORY_REF_COST);
6519 
6520   format %{ "STD     $mem, $src \t// packed8B" %}
6521   size(4);
6522   ins_encode( enc_std(src, mem) );
6523   ins_pipe(pipe_class_memory);
6524 %}
6525 
6526 // Store Compressed Oop
6527 instruct storeN(memory dst, iRegN_P2N src) %{
6528   match(Set dst (StoreN dst src));
6529   ins_cost(MEMORY_REF_COST);
6530 
6531   format %{ "STW     $src, $dst \t// compressed oop" %}
6532   size(4);
6533   ins_encode( enc_stw(src, dst) );
6534   ins_pipe(pipe_class_memory);
6535 %}
6536 
6537 // Store Compressed KLass
6538 instruct storeNKlass(memory dst, iRegN_P2N src) %{
6539   match(Set dst (StoreNKlass dst src));
6540   ins_cost(MEMORY_REF_COST);
6541 
6542   format %{ "STW     $src, $dst \t// compressed klass" %}
6543   size(4);
6544   ins_encode( enc_stw(src, dst) );
6545   ins_pipe(pipe_class_memory);
6546 %}
6547 
6548 // Store Pointer
6549 instruct storeP(memoryAlg4 dst, iRegPsrc src) %{
6550   match(Set dst (StoreP dst src));
6551   ins_cost(MEMORY_REF_COST);
6552 
6553   format %{ "STD     $src, $dst \t// ptr" %}
6554   size(4);
6555   ins_encode( enc_std(src, dst) );
6556   ins_pipe(pipe_class_memory);
6557 %}
6558 
6559 // Store Float
6560 instruct storeF(memory mem, regF src) %{
6561   match(Set mem (StoreF mem src));
6562   ins_cost(MEMORY_REF_COST);
6563 
6564   format %{ "STFS    $src, $mem" %}
6565   size(4);
6566   ins_encode( enc_stfs(src, mem) );
6567   ins_pipe(pipe_class_memory);
6568 %}
6569 
6570 // Store Double
6571 instruct storeD(memory mem, regD src) %{
6572   match(Set mem (StoreD mem src));
6573   ins_cost(MEMORY_REF_COST);
6574 
6575   format %{ "STFD    $src, $mem" %}
6576   size(4);
6577   ins_encode( enc_stfd(src, mem) );
6578   ins_pipe(pipe_class_memory);
6579 %}
6580 
6581 //----------Store Instructions With Zeros--------------------------------------
6582 
6583 // Card-mark for CMS garbage collection.
6584 // This cardmark does an optimization so that it must not always
6585 // do a releasing store. For this, it gets the address of
6586 // CMSCollectorCardTableModRefBSExt::_requires_release as input.
6587 // (Using releaseFieldAddr in the match rule is a hack.)
6588 instruct storeCM_CMS(memory mem, iRegLdst releaseFieldAddr) %{
6589   match(Set mem (StoreCM mem releaseFieldAddr));
6590   predicate(false);
6591   ins_cost(MEMORY_REF_COST);
6592 
6593   // See loadConP.
6594   ins_cannot_rematerialize(true);
6595 
6596   format %{ "STB     #0, $mem \t// CMS card-mark byte (must be 0!), checking requires_release in [$releaseFieldAddr]" %}
6597   ins_encode( enc_cms_card_mark(mem, releaseFieldAddr) );
6598   ins_pipe(pipe_class_memory);
6599 %}
6600 
6601 // Card-mark for CMS garbage collection.
6602 // This cardmark does an optimization so that it must not always
6603 // do a releasing store. For this, it needs the constant address of
6604 // CMSCollectorCardTableModRefBSExt::_requires_release.
6605 // This constant address is split off here by expand so we can use
6606 // adlc / matcher functionality to load it from the constant section.
6607 instruct storeCM_CMS_ExEx(memory mem, immI_0 zero) %{
6608   match(Set mem (StoreCM mem zero));
6609   predicate(UseConcMarkSweepGC);
6610 
6611   expand %{
6612     immL baseImm %{ 0 /* TODO: PPC port (jlong)CMSCollectorCardTableModRefBSExt::requires_release_address() */ %}
6613     iRegLdst releaseFieldAddress;
6614     loadConL_Ex(releaseFieldAddress, baseImm);
6615     storeCM_CMS(mem, releaseFieldAddress);
6616   %}
6617 %}
6618 
6619 instruct storeCM_G1(memory mem, immI_0 zero) %{
6620   match(Set mem (StoreCM mem zero));
6621   predicate(UseG1GC);
6622   ins_cost(MEMORY_REF_COST);
6623 
6624   ins_cannot_rematerialize(true);
6625 
6626   format %{ "STB     #0, $mem \t// CMS card-mark byte store (G1)" %}
6627   size(8);
6628   ins_encode %{
6629     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6630     __ li(R0, 0);
6631     //__ release(); // G1: oops are allowed to get visible after dirty marking
6632     guarantee($mem$$base$$Register != R1_SP, "use frame_slots_bias");
6633     __ stb(R0, $mem$$disp, $mem$$base$$Register);
6634   %}
6635   ins_pipe(pipe_class_memory);
6636 %}
6637 
6638 // Convert oop pointer into compressed form.
6639 
6640 // Nodes for postalloc expand.
6641 
6642 // Shift node for expand.
6643 instruct encodeP_shift(iRegNdst dst, iRegNsrc src) %{
6644   // The match rule is needed to make it a 'MachTypeNode'!
6645   match(Set dst (EncodeP src));
6646   predicate(false);
6647 
6648   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
6649   size(4);
6650   ins_encode %{
6651     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6652     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
6653   %}
6654   ins_pipe(pipe_class_default);
6655 %}
6656 
6657 // Add node for expand.
6658 instruct encodeP_sub(iRegPdst dst, iRegPdst src) %{
6659   // The match rule is needed to make it a 'MachTypeNode'!
6660   match(Set dst (EncodeP src));
6661   predicate(false);
6662 
6663   format %{ "SUB     $dst, $src, oop_base \t// encode" %}
6664   size(4);
6665   ins_encode %{
6666     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
6667     __ subf($dst$$Register, R30, $src$$Register);
6668   %}
6669   ins_pipe(pipe_class_default);
6670 %}
6671 
6672 // Conditional sub base.
6673 instruct cond_sub_base(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
6674   // The match rule is needed to make it a 'MachTypeNode'!
6675   match(Set dst (EncodeP (Binary crx src1)));
6676   predicate(false);
6677 
6678   ins_variable_size_depending_on_alignment(true);
6679 
6680   format %{ "BEQ     $crx, done\n\t"
6681             "SUB     $dst, $src1, R30 \t// encode: subtract base if != NULL\n"
6682             "done:" %}
6683   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
6684   ins_encode %{
6685     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
6686     Label done;
6687     __ beq($crx$$CondRegister, done);
6688     __ subf($dst$$Register, R30, $src1$$Register);
6689     // TODO PPC port __ endgroup_if_needed(_size == 12);
6690     __ bind(done);
6691   %}
6692   ins_pipe(pipe_class_default);
6693 %}
6694 
6695 // Power 7 can use isel instruction
6696 instruct cond_set_0_oop(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
6697   // The match rule is needed to make it a 'MachTypeNode'!
6698   match(Set dst (EncodeP (Binary crx src1)));
6699   predicate(false);
6700 
6701   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// encode: preserve 0" %}
6702   size(4);
6703   ins_encode %{
6704     // This is a Power7 instruction for which no machine description exists.
6705     // TODO: PPC port $archOpcode(ppc64Opcode_compound); 
6706     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
6707   %}
6708   ins_pipe(pipe_class_default);
6709 %}
6710 
6711 // base != 0
6712 // 32G aligned narrow oop base.
6713 instruct encodeP_32GAligned(iRegNdst dst, iRegPsrc src) %{
6714   match(Set dst (EncodeP src));
6715   predicate(false /* TODO: PPC port Universe::narrow_oop_base_disjoint()*/);
6716 
6717   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
6718   size(4);
6719   ins_encode %{
6720     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6721     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
6722   %}
6723   ins_pipe(pipe_class_default);
6724 %}
6725 
6726 // shift != 0, base != 0
6727 instruct encodeP_Ex(iRegNdst dst, flagsReg crx, iRegPsrc src) %{
6728   match(Set dst (EncodeP src));
6729   effect(TEMP crx);
6730   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull &&
6731             Universe::narrow_oop_shift() != 0 &&
6732             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
6733 
6734   format %{ "EncodeP $dst, $crx, $src \t// postalloc expanded" %}
6735   postalloc_expand( postalloc_expand_encode_oop(dst, src, crx));
6736 %}
6737 
6738 // shift != 0, base != 0
6739 instruct encodeP_not_null_Ex(iRegNdst dst, iRegPsrc src) %{
6740   match(Set dst (EncodeP src));
6741   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull &&
6742             Universe::narrow_oop_shift() != 0 &&
6743             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
6744 
6745   format %{ "EncodeP $dst, $src\t// $src != Null, postalloc expanded" %}
6746   postalloc_expand( postalloc_expand_encode_oop_not_null(dst, src) );
6747 %}
6748 
6749 // shift != 0, base == 0
6750 // TODO: This is the same as encodeP_shift. Merge!
6751 instruct encodeP_not_null_base_null(iRegNdst dst, iRegPsrc src) %{
6752   match(Set dst (EncodeP src));
6753   predicate(Universe::narrow_oop_shift() != 0 &&
6754             Universe::narrow_oop_base() ==0);
6755 
6756   format %{ "SRDI    $dst, $src, #3 \t// encodeP, $src != NULL" %}
6757   size(4);
6758   ins_encode %{
6759     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6760     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
6761   %}
6762   ins_pipe(pipe_class_default);
6763 %}
6764 
6765 // Compressed OOPs with narrow_oop_shift == 0.
6766 // shift == 0, base == 0
6767 instruct encodeP_narrow_oop_shift_0(iRegNdst dst, iRegPsrc src) %{
6768   match(Set dst (EncodeP src));
6769   predicate(Universe::narrow_oop_shift() == 0);
6770 
6771   format %{ "MR      $dst, $src \t// Ptr->Narrow" %}
6772   // variable size, 0 or 4.
6773   ins_encode %{
6774     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6775     __ mr_if_needed($dst$$Register, $src$$Register);
6776   %}
6777   ins_pipe(pipe_class_default);
6778 %}
6779 
6780 // Decode nodes.
6781 
6782 // Shift node for expand.
6783 instruct decodeN_shift(iRegPdst dst, iRegPsrc src) %{
6784   // The match rule is needed to make it a 'MachTypeNode'!
6785   match(Set dst (DecodeN src));
6786   predicate(false);
6787 
6788   format %{ "SLDI    $dst, $src, #3 \t// DecodeN" %}
6789   size(4);
6790   ins_encode %{
6791     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
6792     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
6793   %}
6794   ins_pipe(pipe_class_default);
6795 %}
6796 
6797 // Add node for expand.
6798 instruct decodeN_add(iRegPdst dst, iRegPdst src) %{
6799   // The match rule is needed to make it a 'MachTypeNode'!
6800   match(Set dst (DecodeN src));
6801   predicate(false);
6802 
6803   format %{ "ADD     $dst, $src, R30 \t// DecodeN, add oop base" %}
6804   size(4);
6805   ins_encode %{
6806     // TODO: PPC port $archOpcode(ppc64Opcode_add);
6807     __ add($dst$$Register, $src$$Register, R30);
6808   %}
6809   ins_pipe(pipe_class_default);
6810 %}
6811 
6812 // conditianal add base for expand
6813 instruct cond_add_base(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
6814   // The match rule is needed to make it a 'MachTypeNode'!
6815   // NOTICE that the rule is nonsense - we just have to make sure that:
6816   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
6817   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
6818   match(Set dst (DecodeN (Binary crx src1)));
6819   predicate(false);
6820 
6821   ins_variable_size_depending_on_alignment(true);
6822 
6823   format %{ "BEQ     $crx, done\n\t"
6824             "ADD     $dst, $src1, R30 \t// DecodeN: add oop base if $src1 != NULL\n"
6825             "done:" %}
6826   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling()) */? 12 : 8);
6827   ins_encode %{
6828     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
6829     Label done;
6830     __ beq($crx$$CondRegister, done);
6831     __ add($dst$$Register, $src1$$Register, R30);
6832     // TODO PPC port  __ endgroup_if_needed(_size == 12);
6833     __ bind(done);
6834   %}
6835   ins_pipe(pipe_class_default);
6836 %}
6837 
6838 instruct cond_set_0_ptr(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
6839   // The match rule is needed to make it a 'MachTypeNode'!
6840   // NOTICE that the rule is nonsense - we just have to make sure that:
6841   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
6842   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
6843   match(Set dst (DecodeN (Binary crx src1)));
6844   predicate(false);
6845 
6846   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// decode: preserve 0" %}
6847   size(4);
6848   ins_encode %{
6849     // This is a Power7 instruction for which no machine description exists.
6850     // TODO: PPC port $archOpcode(ppc64Opcode_compound); 
6851     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
6852   %}
6853   ins_pipe(pipe_class_default);
6854 %}
6855 
6856 //  shift != 0, base != 0
6857 instruct decodeN_Ex(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
6858   match(Set dst (DecodeN src));
6859   predicate((n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6860              n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant) &&
6861             Universe::narrow_oop_shift() != 0 &&
6862             Universe::narrow_oop_base() != 0);
6863   effect(TEMP crx);
6864 
6865   format %{ "DecodeN $dst, $src \t// Kills $crx, postalloc expanded" %}
6866   postalloc_expand( postalloc_expand_decode_oop(dst, src, crx) );
6867 %}
6868 
6869 // shift != 0, base == 0
6870 instruct decodeN_nullBase(iRegPdst dst, iRegNsrc src) %{
6871   match(Set dst (DecodeN src));
6872   predicate(Universe::narrow_oop_shift() != 0 &&
6873             Universe::narrow_oop_base() == 0);
6874 
6875   format %{ "SLDI    $dst, $src, #3 \t// DecodeN (zerobased)" %}
6876   size(4);
6877   ins_encode %{
6878     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
6879     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
6880   %}
6881   ins_pipe(pipe_class_default);
6882 %}
6883 
6884 // src != 0, shift != 0, base != 0
6885 instruct decodeN_notNull_addBase_Ex(iRegPdst dst, iRegNsrc src) %{
6886   match(Set dst (DecodeN src));
6887   predicate((n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6888              n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
6889             Universe::narrow_oop_shift() != 0 &&
6890             Universe::narrow_oop_base() != 0);
6891 
6892   format %{ "DecodeN $dst, $src \t// $src != NULL, postalloc expanded" %}
6893   postalloc_expand( postalloc_expand_decode_oop_not_null(dst, src));
6894 %}
6895 
6896 // Compressed OOPs with narrow_oop_shift == 0.
6897 instruct decodeN_unscaled(iRegPdst dst, iRegNsrc src) %{
6898   match(Set dst (DecodeN src));
6899   predicate(Universe::narrow_oop_shift() == 0);
6900   ins_cost(DEFAULT_COST);
6901 
6902   format %{ "MR      $dst, $src \t// DecodeN (unscaled)" %}
6903   // variable size, 0 or 4.
6904   ins_encode %{
6905     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6906     __ mr_if_needed($dst$$Register, $src$$Register);
6907   %}
6908   ins_pipe(pipe_class_default);
6909 %}
6910 
6911 // Convert compressed oop into int for vectors alignment masking.
6912 instruct decodeN2I_unscaled(iRegIdst dst, iRegNsrc src) %{
6913   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
6914   predicate(Universe::narrow_oop_shift() == 0);
6915   ins_cost(DEFAULT_COST);
6916 
6917   format %{ "MR      $dst, $src \t// (int)DecodeN (unscaled)" %}
6918   // variable size, 0 or 4.
6919   ins_encode %{
6920     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6921     __ mr_if_needed($dst$$Register, $src$$Register);
6922   %}
6923   ins_pipe(pipe_class_default);
6924 %}
6925 
6926 // Convert klass pointer into compressed form.
6927 
6928 // Nodes for postalloc expand.
6929 
6930 // Shift node for expand.
6931 instruct encodePKlass_shift(iRegNdst dst, iRegNsrc src) %{
6932   // The match rule is needed to make it a 'MachTypeNode'!
6933   match(Set dst (EncodePKlass src));
6934   predicate(false);
6935 
6936   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
6937   size(4);
6938   ins_encode %{
6939     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6940     __ srdi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
6941   %}
6942   ins_pipe(pipe_class_default);
6943 %}
6944 
6945 // Add node for expand.
6946 instruct encodePKlass_sub_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
6947   // The match rule is needed to make it a 'MachTypeNode'!
6948   match(Set dst (EncodePKlass (Binary base src)));
6949   predicate(false);
6950 
6951   format %{ "SUB     $dst, $base, $src \t// encode" %}
6952   size(4);
6953   ins_encode %{
6954     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
6955     __ subf($dst$$Register, $base$$Register, $src$$Register);
6956   %}
6957   ins_pipe(pipe_class_default);
6958 %}
6959 
6960 // base != 0
6961 // 32G aligned narrow oop base.
6962 instruct encodePKlass_32GAligned(iRegNdst dst, iRegPsrc src) %{
6963   match(Set dst (EncodePKlass src));
6964   predicate(false /* TODO: PPC port Universe::narrow_klass_base_disjoint()*/);
6965 
6966   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
6967   size(4);
6968   ins_encode %{
6969     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6970     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
6971   %}
6972   ins_pipe(pipe_class_default);
6973 %}
6974 
6975 // shift != 0, base != 0
6976 instruct encodePKlass_not_null_Ex(iRegNdst dst, iRegLsrc base, iRegPsrc src) %{
6977   match(Set dst (EncodePKlass (Binary base src)));
6978   predicate(false);
6979 
6980   format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
6981   postalloc_expand %{
6982     encodePKlass_sub_baseNode *n1 = new (C) encodePKlass_sub_baseNode();
6983     n1->add_req(n_region, n_base, n_src);
6984     n1->_opnds[0] = op_dst;
6985     n1->_opnds[1] = op_base;
6986     n1->_opnds[2] = op_src;
6987     n1->_bottom_type = _bottom_type;
6988 
6989     encodePKlass_shiftNode *n2 = new (C) encodePKlass_shiftNode();
6990     n2->add_req(n_region, n1);
6991     n2->_opnds[0] = op_dst;
6992     n2->_opnds[1] = op_dst;
6993     n2->_bottom_type = _bottom_type;
6994     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6995     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6996 
6997     nodes->push(n1);
6998     nodes->push(n2);
6999   %}
7000 %}
7001 
7002 // shift != 0, base != 0
7003 instruct encodePKlass_not_null_ExEx(iRegNdst dst, iRegPsrc src) %{
7004   match(Set dst (EncodePKlass src));
7005   //predicate(Universe::narrow_klass_shift() != 0 &&
7006   //          true /* TODO: PPC port Universe::narrow_klass_base_overlaps()*/);
7007 
7008   //format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
7009   ins_cost(DEFAULT_COST*2);  // Don't count constant.
7010   expand %{
7011     immL baseImm %{ (jlong)(intptr_t)Universe::narrow_klass_base() %}
7012     iRegLdst base;
7013     loadConL_Ex(base, baseImm);
7014     encodePKlass_not_null_Ex(dst, base, src);
7015   %}
7016 %}
7017 
7018 // Decode nodes.
7019 
7020 // Shift node for expand.
7021 instruct decodeNKlass_shift(iRegPdst dst, iRegPsrc src) %{
7022   // The match rule is needed to make it a 'MachTypeNode'!
7023   match(Set dst (DecodeNKlass src));
7024   predicate(false);
7025 
7026   format %{ "SLDI    $dst, $src, #3 \t// DecodeNKlass" %}
7027   size(4);
7028   ins_encode %{
7029     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
7030     __ sldi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
7031   %}
7032   ins_pipe(pipe_class_default);
7033 %}
7034 
7035 // Add node for expand.
7036 
7037 instruct decodeNKlass_add_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
7038   // The match rule is needed to make it a 'MachTypeNode'!
7039   match(Set dst (DecodeNKlass (Binary base src)));
7040   predicate(false);
7041 
7042   format %{ "ADD     $dst, $base, $src \t// DecodeNKlass, add klass base" %}
7043   size(4);
7044   ins_encode %{
7045     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7046     __ add($dst$$Register, $base$$Register, $src$$Register);
7047   %}
7048   ins_pipe(pipe_class_default);
7049 %}
7050 
7051 // src != 0, shift != 0, base != 0
7052 instruct decodeNKlass_notNull_addBase_Ex(iRegPdst dst, iRegLsrc base, iRegNsrc src) %{
7053   match(Set dst (DecodeNKlass (Binary base src)));
7054   //effect(kill src); // We need a register for the immediate result after shifting.
7055   predicate(false);
7056 
7057   format %{ "DecodeNKlass $dst =  $base + ($src << 3) \t// $src != NULL, postalloc expanded" %}
7058   postalloc_expand %{
7059     decodeNKlass_add_baseNode *n1 = new (C) decodeNKlass_add_baseNode();
7060     n1->add_req(n_region, n_base, n_src);
7061     n1->_opnds[0] = op_dst;
7062     n1->_opnds[1] = op_base;
7063     n1->_opnds[2] = op_src;
7064     n1->_bottom_type = _bottom_type;
7065 
7066     decodeNKlass_shiftNode *n2 = new (C) decodeNKlass_shiftNode();
7067     n2->add_req(n_region, n2);
7068     n2->_opnds[0] = op_dst;
7069     n2->_opnds[1] = op_dst;
7070     n2->_bottom_type = _bottom_type;
7071 
7072     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7073     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7074 
7075     nodes->push(n1);
7076     nodes->push(n2);
7077   %}
7078 %}
7079 
7080 // src != 0, shift != 0, base != 0
7081 instruct decodeNKlass_notNull_addBase_ExEx(iRegPdst dst, iRegNsrc src) %{
7082   match(Set dst (DecodeNKlass src));
7083   // predicate(Universe::narrow_klass_shift() != 0 &&
7084   //           Universe::narrow_klass_base() != 0);
7085 
7086   //format %{ "DecodeNKlass $dst, $src \t// $src != NULL, expanded" %}
7087 
7088   ins_cost(DEFAULT_COST*2);  // Don't count constant.
7089   expand %{
7090     // We add first, then we shift. Like this, we can get along with one register less.
7091     // But we have to load the base pre-shifted.
7092     immL baseImm %{ (jlong)((intptr_t)Universe::narrow_klass_base() >> Universe::narrow_klass_shift()) %}
7093     iRegLdst base;
7094     loadConL_Ex(base, baseImm);
7095     decodeNKlass_notNull_addBase_Ex(dst, base, src);
7096   %}
7097 %}
7098 
7099 //----------MemBar Instructions-----------------------------------------------
7100 // Memory barrier flavors
7101 
7102 instruct membar_acquire() %{
7103   match(LoadFence);
7104   ins_cost(4*MEMORY_REF_COST);
7105 
7106   format %{ "MEMBAR-acquire" %}
7107   size(4);
7108   ins_encode %{
7109     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7110     __ acquire();
7111   %}
7112   ins_pipe(pipe_class_default);
7113 %}
7114 
7115 instruct unnecessary_membar_acquire() %{
7116   match(MemBarAcquire);
7117   ins_cost(0);
7118 
7119   format %{ " -- \t// redundant MEMBAR-acquire - empty" %}
7120   size(0);
7121   ins_encode( /*empty*/ );
7122   ins_pipe(pipe_class_default);
7123 %}
7124 
7125 instruct membar_acquire_lock() %{
7126   match(MemBarAcquireLock);
7127   ins_cost(0);
7128 
7129   format %{ " -- \t// redundant MEMBAR-acquire - empty (acquire as part of CAS in prior FastLock)" %}
7130   size(0);
7131   ins_encode( /*empty*/ );
7132   ins_pipe(pipe_class_default);
7133 %}
7134 
7135 instruct membar_release() %{
7136   match(MemBarRelease);
7137   match(StoreFence);
7138   ins_cost(4*MEMORY_REF_COST);
7139 
7140   format %{ "MEMBAR-release" %}
7141   size(4);
7142   ins_encode %{
7143     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7144     __ release();
7145   %}
7146   ins_pipe(pipe_class_default);
7147 %}
7148 
7149 instruct membar_storestore() %{
7150   match(MemBarStoreStore);
7151   ins_cost(4*MEMORY_REF_COST);
7152 
7153   format %{ "MEMBAR-store-store" %}
7154   size(4);
7155   ins_encode %{
7156     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7157     __ membar(Assembler::StoreStore);
7158   %}
7159   ins_pipe(pipe_class_default);
7160 %}
7161 
7162 instruct membar_release_lock() %{
7163   match(MemBarReleaseLock);
7164   ins_cost(0);
7165 
7166   format %{ " -- \t// redundant MEMBAR-release - empty (release in FastUnlock)" %}
7167   size(0);
7168   ins_encode( /*empty*/ );
7169   ins_pipe(pipe_class_default);
7170 %}
7171 
7172 instruct membar_volatile() %{
7173   match(MemBarVolatile);
7174   ins_cost(4*MEMORY_REF_COST);
7175 
7176   format %{ "MEMBAR-volatile" %}
7177   size(4);
7178   ins_encode %{
7179     // TODO: PPC port $archOpcode(ppc64Opcode_sync);
7180     __ fence();
7181   %}
7182   ins_pipe(pipe_class_default);
7183 %}
7184 
7185 // This optimization is wrong on PPC. The following pattern is not supported:
7186 //  MemBarVolatile
7187 //   ^        ^
7188 //   |        |
7189 //  CtrlProj MemProj
7190 //   ^        ^
7191 //   |        |
7192 //   |       Load
7193 //   |
7194 //  MemBarVolatile
7195 //
7196 //  The first MemBarVolatile could get optimized out! According to
7197 //  Vladimir, this pattern can not occur on Oracle platforms.
7198 //  However, it does occur on PPC64 (because of membars in
7199 //  inline_unsafe_load_store).
7200 //
7201 // Add this node again if we found a good solution for inline_unsafe_load_store().
7202 // Don't forget to look at the implementation of post_store_load_barrier again, 
7203 // we did other fixes in that method.
7204 //instruct unnecessary_membar_volatile() %{
7205 //  match(MemBarVolatile);
7206 //  predicate(Matcher::post_store_load_barrier(n));
7207 //  ins_cost(0);
7208 //
7209 //  format %{ " -- \t// redundant MEMBAR-volatile - empty" %}
7210 //  size(0);
7211 //  ins_encode( /*empty*/ );
7212 //  ins_pipe(pipe_class_default);
7213 //%}
7214 
7215 instruct membar_CPUOrder() %{
7216   match(MemBarCPUOrder);
7217   ins_cost(0);
7218 
7219   format %{ " -- \t// MEMBAR-CPUOrder - empty: PPC64 processors are self-consistent." %}
7220   size(0);
7221   ins_encode( /*empty*/ );
7222   ins_pipe(pipe_class_default);
7223 %}
7224 
7225 //----------Conditional Move---------------------------------------------------
7226 
7227 // Cmove using isel.
7228 instruct cmovI_reg_isel(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
7229   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7230   predicate(VM_Version::has_isel());
7231   ins_cost(DEFAULT_COST);
7232 
7233   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7234   size(4);
7235   ins_encode %{
7236     // This is a Power7 instruction for which no machine description
7237     // exists. Anyways, the scheduler should be off on Power7.
7238     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7239     int cc        = $cmp$$cmpcode;
7240     __ isel($dst$$Register, $crx$$CondRegister, 
7241             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7242   %}
7243   ins_pipe(pipe_class_default);
7244 %}
7245 
7246 instruct cmovI_reg(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
7247   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7248   predicate(!VM_Version::has_isel());
7249   ins_cost(DEFAULT_COST+BRANCH_COST);
7250 
7251   ins_variable_size_depending_on_alignment(true);
7252 
7253   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7254   // Worst case is branch + move + stop, no stop without scheduler
7255   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7256   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7257   ins_pipe(pipe_class_default);
7258 %}
7259 
7260 instruct cmovI_imm(cmpOp cmp, flagsReg crx, iRegIdst dst, immI16 src) %{
7261   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7262   ins_cost(DEFAULT_COST+BRANCH_COST);
7263 
7264   ins_variable_size_depending_on_alignment(true);
7265 
7266   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7267   // Worst case is branch + move + stop, no stop without scheduler
7268   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7269   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7270   ins_pipe(pipe_class_default);
7271 %}
7272 
7273 // Cmove using isel.
7274 instruct cmovL_reg_isel(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
7275   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7276   predicate(VM_Version::has_isel());
7277   ins_cost(DEFAULT_COST);
7278 
7279   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7280   size(4);
7281   ins_encode %{
7282     // This is a Power7 instruction for which no machine description
7283     // exists. Anyways, the scheduler should be off on Power7.
7284     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7285     int cc        = $cmp$$cmpcode;
7286     __ isel($dst$$Register, $crx$$CondRegister, 
7287             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7288   %}
7289   ins_pipe(pipe_class_default);
7290 %}
7291 
7292 instruct cmovL_reg(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
7293   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7294   predicate(!VM_Version::has_isel());
7295   ins_cost(DEFAULT_COST+BRANCH_COST);
7296 
7297   ins_variable_size_depending_on_alignment(true);
7298 
7299   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7300   // Worst case is branch + move + stop, no stop without scheduler.
7301   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7302   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7303   ins_pipe(pipe_class_default);
7304 %}
7305 
7306 instruct cmovL_imm(cmpOp cmp, flagsReg crx, iRegLdst dst, immL16 src) %{
7307   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7308   ins_cost(DEFAULT_COST+BRANCH_COST);
7309 
7310   ins_variable_size_depending_on_alignment(true);
7311 
7312   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7313   // Worst case is branch + move + stop, no stop without scheduler.
7314   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7315   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7316   ins_pipe(pipe_class_default);
7317 %}
7318 
7319 // Cmove using isel.
7320 instruct cmovN_reg_isel(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
7321   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7322   predicate(VM_Version::has_isel());
7323   ins_cost(DEFAULT_COST);
7324 
7325   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7326   size(4);
7327   ins_encode %{
7328     // This is a Power7 instruction for which no machine description
7329     // exists. Anyways, the scheduler should be off on Power7.
7330     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7331     int cc        = $cmp$$cmpcode;
7332     __ isel($dst$$Register, $crx$$CondRegister, 
7333             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7334   %}
7335   ins_pipe(pipe_class_default);
7336 %}
7337 
7338 // Conditional move for RegN. Only cmov(reg, reg).
7339 instruct cmovN_reg(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
7340   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7341   predicate(!VM_Version::has_isel());
7342   ins_cost(DEFAULT_COST+BRANCH_COST);
7343 
7344   ins_variable_size_depending_on_alignment(true);
7345 
7346   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7347   // Worst case is branch + move + stop, no stop without scheduler.
7348   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7349   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7350   ins_pipe(pipe_class_default);
7351 %}
7352 
7353 instruct cmovN_imm(cmpOp cmp, flagsReg crx, iRegNdst dst, immN_0 src) %{
7354   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7355   ins_cost(DEFAULT_COST+BRANCH_COST);
7356 
7357   ins_variable_size_depending_on_alignment(true);
7358 
7359   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7360   // Worst case is branch + move + stop, no stop without scheduler.
7361   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7362   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7363   ins_pipe(pipe_class_default);
7364 %}
7365 
7366 // Cmove using isel.
7367 instruct cmovP_reg_isel(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegPsrc src) %{
7368   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7369   predicate(VM_Version::has_isel());
7370   ins_cost(DEFAULT_COST);
7371 
7372   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7373   size(4);
7374   ins_encode %{
7375     // This is a Power7 instruction for which no machine description
7376     // exists. Anyways, the scheduler should be off on Power7.
7377     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7378     int cc        = $cmp$$cmpcode;
7379     __ isel($dst$$Register, $crx$$CondRegister, 
7380             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7381   %}
7382   ins_pipe(pipe_class_default);
7383 %}
7384 
7385 instruct cmovP_reg(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegP_N2P src) %{
7386   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7387   predicate(!VM_Version::has_isel());
7388   ins_cost(DEFAULT_COST+BRANCH_COST);
7389 
7390   ins_variable_size_depending_on_alignment(true);
7391 
7392   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7393   // Worst case is branch + move + stop, no stop without scheduler.
7394   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7395   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7396   ins_pipe(pipe_class_default);
7397 %}
7398 
7399 instruct cmovP_imm(cmpOp cmp, flagsReg crx, iRegPdst dst, immP_0 src) %{
7400   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7401   ins_cost(DEFAULT_COST+BRANCH_COST);
7402 
7403   ins_variable_size_depending_on_alignment(true);
7404 
7405   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7406   // Worst case is branch + move + stop, no stop without scheduler.
7407   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7408   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7409   ins_pipe(pipe_class_default);
7410 %}
7411 
7412 instruct cmovF_reg(cmpOp cmp, flagsReg crx, regF dst, regF src) %{
7413   match(Set dst (CMoveF (Binary cmp crx) (Binary dst src)));
7414   ins_cost(DEFAULT_COST+BRANCH_COST);
7415 
7416   ins_variable_size_depending_on_alignment(true);
7417 
7418   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
7419   // Worst case is branch + move + stop, no stop without scheduler.
7420   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
7421   ins_encode %{
7422     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
7423     Label done;
7424     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
7425     // Branch if not (cmp crx).
7426     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
7427     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
7428     // TODO PPC port __ endgroup_if_needed(_size == 12);
7429     __ bind(done);
7430   %}
7431   ins_pipe(pipe_class_default);
7432 %}
7433 
7434 instruct cmovD_reg(cmpOp cmp, flagsReg crx, regD dst, regD src) %{
7435   match(Set dst (CMoveD (Binary cmp crx) (Binary dst src)));
7436   ins_cost(DEFAULT_COST+BRANCH_COST);
7437 
7438   ins_variable_size_depending_on_alignment(true);
7439 
7440   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
7441   // Worst case is branch + move + stop, no stop without scheduler.
7442   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
7443   ins_encode %{
7444     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
7445     Label done;
7446     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
7447     // Branch if not (cmp crx).
7448     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
7449     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
7450     // TODO PPC port __ endgroup_if_needed(_size == 12);
7451     __ bind(done);
7452   %}
7453   ins_pipe(pipe_class_default);
7454 %}
7455 
7456 //----------Conditional_store--------------------------------------------------
7457 // Conditional-store of the updated heap-top.
7458 // Used during allocation of the shared heap.
7459 // Sets flags (EQ) on success. Implemented with a CASA on Sparc.
7460 
7461 // As compareAndSwapL, but return flag register instead of boolean value in
7462 // int register.
7463 // Used by sun/misc/AtomicLongCSImpl.java.
7464 // Mem_ptr must be a memory operand, else this node does not get
7465 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
7466 // can be rematerialized which leads to errors.
7467 instruct storeLConditional_regP_regL_regL(flagsReg crx, indirect mem_ptr, iRegLsrc oldVal, iRegLsrc newVal) %{
7468   match(Set crx (StoreLConditional mem_ptr (Binary oldVal newVal)));
7469   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
7470   ins_encode %{
7471     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7472     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
7473                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
7474                 noreg, NULL, true);
7475   %}
7476   ins_pipe(pipe_class_default);
7477 %}
7478 
7479 // As compareAndSwapP, but return flag register instead of boolean value in
7480 // int register.
7481 // This instruction is matched if UseTLAB is off.
7482 // Mem_ptr must be a memory operand, else this node does not get
7483 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
7484 // can be rematerialized which leads to errors.
7485 instruct storePConditional_regP_regP_regP(flagsReg crx, indirect mem_ptr, iRegPsrc oldVal, iRegPsrc newVal) %{
7486   match(Set crx (StorePConditional mem_ptr (Binary oldVal newVal)));
7487   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
7488   ins_encode %{
7489     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7490     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
7491                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
7492                 noreg, NULL, true);
7493   %}
7494   ins_pipe(pipe_class_default);
7495 %}
7496 
7497 // Implement LoadPLocked. Must be ordered against changes of the memory location
7498 // by storePConditional.
7499 // Don't know whether this is ever used.
7500 instruct loadPLocked(iRegPdst dst, memory mem) %{
7501   match(Set dst (LoadPLocked mem));
7502   ins_cost(MEMORY_REF_COST);
7503 
7504   format %{ "LD      $dst, $mem \t// loadPLocked\n\t"
7505             "TWI     $dst\n\t"
7506             "ISYNC" %}
7507   size(12);
7508   ins_encode( enc_ld_ac(dst, mem) );
7509   ins_pipe(pipe_class_memory);
7510 %}
7511 
7512 //----------Compare-And-Swap---------------------------------------------------
7513 
7514 // CompareAndSwap{P,I,L} have more than one output, therefore "CmpI
7515 // (CompareAndSwap ...)" or "If (CmpI (CompareAndSwap ..))"  cannot be
7516 // matched.
7517 
7518 instruct compareAndSwapI_regP_regI_regI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src1, iRegIsrc src2) %{
7519   match(Set res (CompareAndSwapI mem_ptr (Binary src1 src2)));
7520   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
7521   // Variable size: instruction count smaller if regs are disjoint.
7522   ins_encode %{
7523     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7524     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7525     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register, 
7526                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(), 
7527                 $res$$Register, true);
7528   %}
7529   ins_pipe(pipe_class_default);
7530 %}
7531 
7532 instruct compareAndSwapN_regP_regN_regN(iRegIdst res, iRegPdst mem_ptr, iRegNsrc src1, iRegNsrc src2) %{
7533   match(Set res (CompareAndSwapN mem_ptr (Binary src1 src2)));
7534   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
7535   // Variable size: instruction count smaller if regs are disjoint.
7536   ins_encode %{
7537     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7538     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7539     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7540                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7541                 $res$$Register, true);
7542   %}
7543   ins_pipe(pipe_class_default);
7544 %}
7545 
7546 instruct compareAndSwapL_regP_regL_regL(iRegIdst res, iRegPdst mem_ptr, iRegLsrc src1, iRegLsrc src2) %{
7547   match(Set res (CompareAndSwapL mem_ptr (Binary src1 src2)));
7548   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool" %}
7549   // Variable size: instruction count smaller if regs are disjoint.
7550   ins_encode %{
7551     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7552     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7553     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7554                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7555                 $res$$Register, NULL, true);
7556   %}
7557   ins_pipe(pipe_class_default);
7558 %}
7559 
7560 instruct compareAndSwapP_regP_regP_regP(iRegIdst res, iRegPdst mem_ptr, iRegPsrc src1, iRegPsrc src2) %{
7561   match(Set res (CompareAndSwapP mem_ptr (Binary src1 src2)));
7562   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool; ptr" %}
7563   // Variable size: instruction count smaller if regs are disjoint.
7564   ins_encode %{
7565     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7566     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7567     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7568                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7569                 $res$$Register, NULL, true);
7570   %}
7571   ins_pipe(pipe_class_default);
7572 %}
7573 
7574 instruct getAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
7575   match(Set res (GetAndAddI mem_ptr src));
7576   format %{ "GetAndAddI $res, $mem_ptr, $src" %}
7577   // Variable size: instruction count smaller if regs are disjoint.
7578   ins_encode( enc_GetAndAddI(res, mem_ptr, src) );
7579   ins_pipe(pipe_class_default);
7580 %}
7581 
7582 instruct getAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
7583   match(Set res (GetAndAddL mem_ptr src));
7584   format %{ "GetAndAddL $res, $mem_ptr, $src" %}
7585   // Variable size: instruction count smaller if regs are disjoint.
7586   ins_encode( enc_GetAndAddL(res, mem_ptr, src) );
7587   ins_pipe(pipe_class_default);
7588 %}
7589 
7590 instruct getAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
7591   match(Set res (GetAndSetI mem_ptr src));
7592   format %{ "GetAndSetI $res, $mem_ptr, $src" %}
7593   // Variable size: instruction count smaller if regs are disjoint.
7594   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
7595   ins_pipe(pipe_class_default);
7596 %}
7597 
7598 instruct getAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
7599   match(Set res (GetAndSetL mem_ptr src));
7600   format %{ "GetAndSetL $res, $mem_ptr, $src" %}
7601   // Variable size: instruction count smaller if regs are disjoint.
7602   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
7603   ins_pipe(pipe_class_default);
7604 %}
7605 
7606 instruct getAndSetP(iRegPdst res, iRegPdst mem_ptr, iRegPsrc src) %{
7607   match(Set res (GetAndSetP mem_ptr src));
7608   format %{ "GetAndSetP $res, $mem_ptr, $src" %}
7609   // Variable size: instruction count smaller if regs are disjoint.
7610   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
7611   ins_pipe(pipe_class_default);
7612 %}
7613 
7614 instruct getAndSetN(iRegNdst res, iRegPdst mem_ptr, iRegNsrc src) %{
7615   match(Set res (GetAndSetN mem_ptr src));
7616   format %{ "GetAndSetN $res, $mem_ptr, $src" %}
7617   // Variable size: instruction count smaller if regs are disjoint.
7618   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
7619   ins_pipe(pipe_class_default);
7620 %}
7621 
7622 //----------Arithmetic Instructions--------------------------------------------
7623 // Addition Instructions
7624 
7625 // Register Addition
7626 instruct addI_reg_reg(iRegIdst dst, iRegIsrc_iRegL2Isrc src1, iRegIsrc_iRegL2Isrc src2) %{
7627   match(Set dst (AddI src1 src2));
7628   format %{ "ADD     $dst, $src1, $src2" %}
7629   size(4);
7630   ins_encode %{
7631     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7632     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7633   %}
7634   ins_pipe(pipe_class_default);
7635 %}
7636 
7637 // Expand does not work with above instruct. (??)
7638 instruct addI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
7639   // no match-rule
7640   effect(DEF dst, USE src1, USE src2);
7641   format %{ "ADD     $dst, $src1, $src2" %}
7642   size(4);
7643   ins_encode %{
7644     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7645     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7646   %}
7647   ins_pipe(pipe_class_default);
7648 %}
7649 
7650 instruct tree_addI_addI_addI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
7651   match(Set dst (AddI (AddI (AddI src1 src2) src3) src4));
7652   ins_cost(DEFAULT_COST*3);
7653 
7654   expand %{
7655     // FIXME: we should do this in the ideal world.
7656     iRegIdst tmp1;
7657     iRegIdst tmp2;
7658     addI_reg_reg(tmp1, src1, src2);
7659     addI_reg_reg_2(tmp2, src3, src4); // Adlc complains about addI_reg_reg.
7660     addI_reg_reg(dst, tmp1, tmp2);
7661   %}
7662 %}
7663 
7664 // Immediate Addition
7665 instruct addI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
7666   match(Set dst (AddI src1 src2));
7667   format %{ "ADDI    $dst, $src1, $src2" %}
7668   size(4);
7669   ins_encode %{
7670     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7671     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7672   %}
7673   ins_pipe(pipe_class_default);
7674 %}
7675 
7676 // Immediate Addition with 16-bit shifted operand
7677 instruct addI_reg_immhi16(iRegIdst dst, iRegIsrc src1, immIhi16 src2) %{
7678   match(Set dst (AddI src1 src2));
7679   format %{ "ADDIS   $dst, $src1, $src2" %}
7680   size(4);
7681   ins_encode %{
7682     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7683     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7684   %}
7685   ins_pipe(pipe_class_default);
7686 %}
7687 
7688 // Long Addition
7689 instruct addL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7690   match(Set dst (AddL src1 src2));
7691   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
7692   size(4);
7693   ins_encode %{
7694     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7695     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7696   %}
7697   ins_pipe(pipe_class_default);
7698 %}
7699 
7700 // Expand does not work with above instruct. (??)
7701 instruct addL_reg_reg_2(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7702   // no match-rule
7703   effect(DEF dst, USE src1, USE src2);
7704   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
7705   size(4);
7706   ins_encode %{
7707     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7708     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7709   %}
7710   ins_pipe(pipe_class_default);
7711 %}
7712 
7713 instruct tree_addL_addL_addL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, iRegLsrc src3, iRegLsrc src4) %{
7714   match(Set dst (AddL (AddL (AddL src1 src2) src3) src4));
7715   ins_cost(DEFAULT_COST*3);
7716 
7717   expand %{
7718     // FIXME: we should do this in the ideal world.
7719     iRegLdst tmp1;
7720     iRegLdst tmp2;
7721     addL_reg_reg(tmp1, src1, src2);
7722     addL_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
7723     addL_reg_reg(dst, tmp1, tmp2);
7724   %}
7725 %}
7726 
7727 // AddL + ConvL2I.
7728 instruct addI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
7729   match(Set dst (ConvL2I (AddL src1 src2)));
7730 
7731   format %{ "ADD     $dst, $src1, $src2 \t// long + l2i" %}
7732   size(4);
7733   ins_encode %{
7734     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7735     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7736   %}
7737   ins_pipe(pipe_class_default);
7738 %}
7739 
7740 // No constant pool entries required.
7741 instruct addL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
7742   match(Set dst (AddL src1 src2));
7743 
7744   format %{ "ADDI    $dst, $src1, $src2" %}
7745   size(4);
7746   ins_encode %{
7747     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7748     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7749   %}
7750   ins_pipe(pipe_class_default);
7751 %}
7752 
7753 // Long Immediate Addition with 16-bit shifted operand.
7754 // No constant pool entries required.
7755 instruct addL_reg_immhi16(iRegLdst dst, iRegLsrc src1, immL32hi16 src2) %{
7756   match(Set dst (AddL src1 src2));
7757 
7758   format %{ "ADDIS   $dst, $src1, $src2" %}
7759   size(4);
7760   ins_encode %{
7761     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7762     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7763   %}
7764   ins_pipe(pipe_class_default);
7765 %}
7766 
7767 // Pointer Register Addition
7768 instruct addP_reg_reg(iRegPdst dst, iRegP_N2P src1, iRegLsrc src2) %{
7769   match(Set dst (AddP src1 src2));
7770   format %{ "ADD     $dst, $src1, $src2" %}
7771   size(4);
7772   ins_encode %{
7773     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7774     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7775   %}
7776   ins_pipe(pipe_class_default);
7777 %}
7778 
7779 // Pointer Immediate Addition
7780 // No constant pool entries required.
7781 instruct addP_reg_imm16(iRegPdst dst, iRegP_N2P src1, immL16 src2) %{
7782   match(Set dst (AddP src1 src2));
7783 
7784   format %{ "ADDI    $dst, $src1, $src2" %}
7785   size(4);
7786   ins_encode %{
7787     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7788     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7789   %}
7790   ins_pipe(pipe_class_default);
7791 %}
7792 
7793 // Pointer Immediate Addition with 16-bit shifted operand.
7794 // No constant pool entries required.
7795 instruct addP_reg_immhi16(iRegPdst dst, iRegP_N2P src1, immL32hi16 src2) %{
7796   match(Set dst (AddP src1 src2));
7797 
7798   format %{ "ADDIS   $dst, $src1, $src2" %}
7799   size(4);
7800   ins_encode %{
7801     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7802     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7803   %}
7804   ins_pipe(pipe_class_default);
7805 %}
7806 
7807 //---------------------
7808 // Subtraction Instructions
7809 
7810 // Register Subtraction
7811 instruct subI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
7812   match(Set dst (SubI src1 src2));
7813   format %{ "SUBF    $dst, $src2, $src1" %}
7814   size(4);
7815   ins_encode %{
7816     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7817     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7818   %}
7819   ins_pipe(pipe_class_default);
7820 %}
7821 
7822 // Immediate Subtraction
7823 // The compiler converts "x-c0" into "x+ -c0" (see SubINode::Ideal),
7824 // so this rule seems to be unused.
7825 instruct subI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
7826   match(Set dst (SubI src1 src2));
7827   format %{ "SUBI    $dst, $src1, $src2" %}
7828   size(4);
7829   ins_encode %{
7830     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7831     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
7832   %}
7833   ins_pipe(pipe_class_default);
7834 %}
7835 
7836 // SubI from constant (using subfic).
7837 instruct subI_imm16_reg(iRegIdst dst, immI16 src1, iRegIsrc src2) %{
7838   match(Set dst (SubI src1 src2));
7839   format %{ "SUBI    $dst, $src1, $src2" %}
7840 
7841   size(4);
7842   ins_encode %{
7843     // TODO: PPC port $archOpcode(ppc64Opcode_subfic);
7844     __ subfic($dst$$Register, $src2$$Register, $src1$$constant);
7845   %}
7846   ins_pipe(pipe_class_default);
7847 %}
7848 
7849 // Turn the sign-bit of an integer into a 32-bit mask, 0x0...0 for
7850 // positive integers and 0xF...F for negative ones.
7851 instruct signmask32I_regI(iRegIdst dst, iRegIsrc src) %{
7852   // no match-rule, false predicate
7853   effect(DEF dst, USE src);
7854   predicate(false);
7855 
7856   format %{ "SRAWI   $dst, $src, #31" %}
7857   size(4);
7858   ins_encode %{
7859     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
7860     __ srawi($dst$$Register, $src$$Register, 0x1f);
7861   %}
7862   ins_pipe(pipe_class_default);
7863 %}
7864 
7865 instruct absI_reg_Ex(iRegIdst dst, iRegIsrc src) %{
7866   match(Set dst (AbsI src));
7867   ins_cost(DEFAULT_COST*3);
7868 
7869   expand %{
7870     iRegIdst tmp1;
7871     iRegIdst tmp2;
7872     signmask32I_regI(tmp1, src);
7873     xorI_reg_reg(tmp2, tmp1, src);
7874     subI_reg_reg(dst, tmp2, tmp1);
7875   %}
7876 %}
7877 
7878 instruct negI_regI(iRegIdst dst, immI_0 zero, iRegIsrc src2) %{
7879   match(Set dst (SubI zero src2));
7880   format %{ "NEG     $dst, $src2" %}
7881   size(4);
7882   ins_encode %{
7883     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
7884     __ neg($dst$$Register, $src2$$Register);
7885   %}
7886   ins_pipe(pipe_class_default);
7887 %}
7888 
7889 // Long subtraction
7890 instruct subL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7891   match(Set dst (SubL src1 src2));
7892   format %{ "SUBF    $dst, $src2, $src1 \t// long" %}
7893   size(4);
7894   ins_encode %{
7895     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7896     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7897   %}
7898   ins_pipe(pipe_class_default);
7899 %}
7900 
7901 // SubL + convL2I.
7902 instruct subI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
7903   match(Set dst (ConvL2I (SubL src1 src2)));
7904 
7905   format %{ "SUBF    $dst, $src2, $src1 \t// long + l2i" %}
7906   size(4);
7907   ins_encode %{
7908     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7909     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7910   %}
7911   ins_pipe(pipe_class_default);
7912 %}
7913 
7914 // Immediate Subtraction
7915 // The compiler converts "x-c0" into "x+ -c0" (see SubLNode::Ideal),
7916 // so this rule seems to be unused.
7917 // No constant pool entries required.
7918 instruct subL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
7919   match(Set dst (SubL src1 src2));
7920 
7921   format %{ "SUBI    $dst, $src1, $src2 \t// long" %}
7922   size(4);
7923   ins_encode %{
7924     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7925     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
7926   %}
7927   ins_pipe(pipe_class_default);
7928 %}
7929 
7930 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
7931 // positive longs and 0xF...F for negative ones.
7932 instruct signmask64I_regI(iRegIdst dst, iRegIsrc src) %{
7933   // no match-rule, false predicate
7934   effect(DEF dst, USE src);
7935   predicate(false);
7936 
7937   format %{ "SRADI   $dst, $src, #63" %}
7938   size(4);
7939   ins_encode %{
7940     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
7941     __ sradi($dst$$Register, $src$$Register, 0x3f);
7942   %}
7943   ins_pipe(pipe_class_default);
7944 %}
7945 
7946 // Long negation
7947 instruct negL_reg_reg(iRegLdst dst, immL_0 zero, iRegLsrc src2) %{
7948   match(Set dst (SubL zero src2));
7949   format %{ "NEG     $dst, $src2 \t// long" %}
7950   size(4);
7951   ins_encode %{
7952     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
7953     __ neg($dst$$Register, $src2$$Register);
7954   %}
7955   ins_pipe(pipe_class_default);
7956 %}
7957 
7958 // NegL + ConvL2I.
7959 instruct negI_con0_regL(iRegIdst dst, immL_0 zero, iRegLsrc src2) %{
7960   match(Set dst (ConvL2I (SubL zero src2)));
7961 
7962   format %{ "NEG     $dst, $src2 \t// long + l2i" %}
7963   size(4);
7964   ins_encode %{
7965     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
7966     __ neg($dst$$Register, $src2$$Register);
7967   %}
7968   ins_pipe(pipe_class_default);
7969 %}
7970 
7971 // Multiplication Instructions
7972 // Integer Multiplication
7973 
7974 // Register Multiplication
7975 instruct mulI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
7976   match(Set dst (MulI src1 src2));
7977   ins_cost(DEFAULT_COST);
7978 
7979   format %{ "MULLW   $dst, $src1, $src2" %}
7980   size(4);
7981   ins_encode %{
7982     // TODO: PPC port $archOpcode(ppc64Opcode_mullw);
7983     __ mullw($dst$$Register, $src1$$Register, $src2$$Register);
7984   %}
7985   ins_pipe(pipe_class_default);
7986 %}
7987 
7988 // Immediate Multiplication
7989 instruct mulI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
7990   match(Set dst (MulI src1 src2));
7991   ins_cost(DEFAULT_COST);
7992 
7993   format %{ "MULLI   $dst, $src1, $src2" %}
7994   size(4);
7995   ins_encode %{
7996     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
7997     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
7998   %}
7999   ins_pipe(pipe_class_default);
8000 %}
8001 
8002 instruct mulL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8003   match(Set dst (MulL src1 src2));
8004   ins_cost(DEFAULT_COST);
8005 
8006   format %{ "MULLD   $dst $src1, $src2 \t// long" %}
8007   size(4);
8008   ins_encode %{
8009     // TODO: PPC port $archOpcode(ppc64Opcode_mulld);
8010     __ mulld($dst$$Register, $src1$$Register, $src2$$Register);
8011   %}
8012   ins_pipe(pipe_class_default);
8013 %}
8014 
8015 // Multiply high for optimized long division by constant.
8016 instruct mulHighL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8017   match(Set dst (MulHiL src1 src2));
8018   ins_cost(DEFAULT_COST);
8019 
8020   format %{ "MULHD   $dst $src1, $src2 \t// long" %}
8021   size(4);
8022   ins_encode %{
8023     // TODO: PPC port $archOpcode(ppc64Opcode_mulhd);
8024     __ mulhd($dst$$Register, $src1$$Register, $src2$$Register);
8025   %}
8026   ins_pipe(pipe_class_default);
8027 %}
8028 
8029 // Immediate Multiplication
8030 instruct mulL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
8031   match(Set dst (MulL src1 src2));
8032   ins_cost(DEFAULT_COST);
8033 
8034   format %{ "MULLI   $dst, $src1, $src2" %}
8035   size(4);
8036   ins_encode %{
8037     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
8038     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
8039   %}
8040   ins_pipe(pipe_class_default);
8041 %}
8042 
8043 // Integer Division with Immediate -1: Negate.
8044 instruct divI_reg_immIvalueMinus1(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
8045   match(Set dst (DivI src1 src2));
8046   ins_cost(DEFAULT_COST);
8047 
8048   format %{ "NEG     $dst, $src1 \t// /-1" %}
8049   size(4);
8050   ins_encode %{
8051     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
8052     __ neg($dst$$Register, $src1$$Register);
8053   %}
8054   ins_pipe(pipe_class_default);
8055 %}
8056 
8057 // Integer Division with constant, but not -1.
8058 // We should be able to improve this by checking the type of src2.
8059 // It might well be that src2 is known to be positive.
8060 instruct divI_reg_regnotMinus1(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8061   match(Set dst (DivI src1 src2));
8062   predicate(n->in(2)->find_int_con(-1) != -1); // src2 is a constant, but not -1
8063   ins_cost(2*DEFAULT_COST);
8064 
8065   format %{ "DIVW    $dst, $src1, $src2 \t// /not-1" %}
8066   size(4);
8067   ins_encode %{
8068     // TODO: PPC port $archOpcode(ppc64Opcode_divw);
8069     __ divw($dst$$Register, $src1$$Register, $src2$$Register);
8070   %}
8071   ins_pipe(pipe_class_default);
8072 %}
8073 
8074 instruct cmovI_bne_negI_reg(iRegIdst dst, flagsReg crx, iRegIsrc src1) %{
8075   effect(USE_DEF dst, USE src1, USE crx);
8076   predicate(false);
8077 
8078   ins_variable_size_depending_on_alignment(true);
8079 
8080   format %{ "CMOVE   $dst, neg($src1), $crx" %}
8081   // Worst case is branch + move + stop, no stop without scheduler.
8082   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
8083   ins_encode %{
8084     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
8085     Label done;
8086     __ bne($crx$$CondRegister, done);
8087     __ neg($dst$$Register, $src1$$Register);
8088     // TODO PPC port __ endgroup_if_needed(_size == 12);
8089     __ bind(done);
8090   %}
8091   ins_pipe(pipe_class_default);
8092 %}
8093 
8094 // Integer Division with Registers not containing constants.
8095 instruct divI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8096   match(Set dst (DivI src1 src2));
8097   ins_cost(10*DEFAULT_COST);
8098 
8099   expand %{
8100     immI16 imm %{ (int)-1 %}
8101     flagsReg tmp1;
8102     cmpI_reg_imm16(tmp1, src2, imm);          // check src2 == -1
8103     divI_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
8104     cmovI_bne_negI_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
8105   %}
8106 %}
8107 
8108 // Long Division with Immediate -1: Negate.
8109 instruct divL_reg_immLvalueMinus1(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
8110   match(Set dst (DivL src1 src2));
8111   ins_cost(DEFAULT_COST);
8112 
8113   format %{ "NEG     $dst, $src1 \t// /-1, long" %}
8114   size(4);
8115   ins_encode %{
8116     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
8117     __ neg($dst$$Register, $src1$$Register);
8118   %}
8119   ins_pipe(pipe_class_default);
8120 %}
8121 
8122 // Long Division with constant, but not -1.
8123 instruct divL_reg_regnotMinus1(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8124   match(Set dst (DivL src1 src2));
8125   predicate(n->in(2)->find_long_con(-1L) != -1L); // Src2 is a constant, but not -1.
8126   ins_cost(2*DEFAULT_COST);
8127 
8128   format %{ "DIVD    $dst, $src1, $src2 \t// /not-1, long" %}
8129   size(4);
8130   ins_encode %{
8131     // TODO: PPC port $archOpcode(ppc64Opcode_divd);
8132     __ divd($dst$$Register, $src1$$Register, $src2$$Register);
8133   %}
8134   ins_pipe(pipe_class_default);
8135 %}
8136 
8137 instruct cmovL_bne_negL_reg(iRegLdst dst, flagsReg crx, iRegLsrc src1) %{
8138   effect(USE_DEF dst, USE src1, USE crx);
8139   predicate(false);
8140 
8141   ins_variable_size_depending_on_alignment(true);
8142 
8143   format %{ "CMOVE   $dst, neg($src1), $crx" %}
8144   // Worst case is branch + move + stop, no stop without scheduler.
8145   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
8146   ins_encode %{
8147     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
8148     Label done;
8149     __ bne($crx$$CondRegister, done);
8150     __ neg($dst$$Register, $src1$$Register);
8151     // TODO PPC port __ endgroup_if_needed(_size == 12);
8152     __ bind(done);
8153   %}
8154   ins_pipe(pipe_class_default);
8155 %}
8156 
8157 // Long Division with Registers not containing constants.
8158 instruct divL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8159   match(Set dst (DivL src1 src2));
8160   ins_cost(10*DEFAULT_COST);
8161 
8162   expand %{
8163     immL16 imm %{ (int)-1 %}
8164     flagsReg tmp1;
8165     cmpL_reg_imm16(tmp1, src2, imm);          // check src2 == -1
8166     divL_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
8167     cmovL_bne_negL_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
8168   %}
8169 %}
8170 
8171 // Integer Remainder with registers.
8172 instruct modI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8173   match(Set dst (ModI src1 src2));
8174   ins_cost(10*DEFAULT_COST);
8175 
8176   expand %{
8177     immI16 imm %{ (int)-1 %}
8178     flagsReg tmp1;
8179     iRegIdst tmp2;
8180     iRegIdst tmp3;
8181     cmpI_reg_imm16(tmp1, src2, imm);           // check src2 == -1
8182     divI_reg_regnotMinus1(tmp2, src1, src2);   // tmp2 = src1 / src2
8183     cmovI_bne_negI_reg(tmp2, tmp1, src1);      // cmove tmp2 = neg(src1) if src2 == -1
8184     mulI_reg_reg(tmp3, src2, tmp2);            // tmp3 = src2 * tmp2
8185     subI_reg_reg(dst, src1, tmp3);             // dst = src1 - tmp3
8186   %}
8187 %}
8188 
8189 // Long Remainder with registers
8190 instruct modL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, flagsRegCR0 cr0) %{
8191   match(Set dst (ModL src1 src2));
8192   ins_cost(10*DEFAULT_COST);
8193 
8194   expand %{
8195     immL16 imm %{ (int)-1 %}
8196     flagsReg tmp1;
8197     iRegLdst tmp2;
8198     iRegLdst tmp3;
8199     cmpL_reg_imm16(tmp1, src2, imm);             // check src2 == -1
8200     divL_reg_regnotMinus1(tmp2, src1, src2);     // tmp2 = src1 / src2
8201     cmovL_bne_negL_reg(tmp2, tmp1, src1);        // cmove tmp2 = neg(src1) if src2 == -1
8202     mulL_reg_reg(tmp3, src2, tmp2);              // tmp3 = src2 * tmp2
8203     subL_reg_reg(dst, src1, tmp3);               // dst = src1 - tmp3
8204   %}
8205 %}
8206 
8207 // Integer Shift Instructions
8208 
8209 // Register Shift Left
8210 
8211 // Clear all but the lowest #mask bits.
8212 // Used to normalize shift amounts in registers.
8213 instruct maskI_reg_imm(iRegIdst dst, iRegIsrc src, uimmI6 mask) %{
8214   // no match-rule, false predicate
8215   effect(DEF dst, USE src, USE mask);
8216   predicate(false);
8217 
8218   format %{ "MASK    $dst, $src, $mask \t// clear $mask upper bits" %}
8219   size(4);
8220   ins_encode %{
8221     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8222     __ clrldi($dst$$Register, $src$$Register, $mask$$constant);
8223   %}
8224   ins_pipe(pipe_class_default);
8225 %}
8226 
8227 instruct lShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8228   // no match-rule, false predicate
8229   effect(DEF dst, USE src1, USE src2);
8230   predicate(false);
8231 
8232   format %{ "SLW     $dst, $src1, $src2" %}
8233   size(4);
8234   ins_encode %{
8235     // TODO: PPC port $archOpcode(ppc64Opcode_slw);
8236     __ slw($dst$$Register, $src1$$Register, $src2$$Register);
8237   %}
8238   ins_pipe(pipe_class_default);
8239 %}
8240 
8241 instruct lShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8242   match(Set dst (LShiftI src1 src2));
8243   ins_cost(DEFAULT_COST*2);
8244   expand %{
8245     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8246     iRegIdst tmpI;
8247     maskI_reg_imm(tmpI, src2, mask);
8248     lShiftI_reg_reg(dst, src1, tmpI);
8249   %}
8250 %}
8251 
8252 // Register Shift Left Immediate
8253 instruct lShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8254   match(Set dst (LShiftI src1 src2));
8255 
8256   format %{ "SLWI    $dst, $src1, ($src2 & 0x1f)" %}
8257   size(4);
8258   ins_encode %{
8259     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8260     __ slwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8261   %}
8262   ins_pipe(pipe_class_default);
8263 %}
8264 
8265 // AndI with negpow2-constant + LShiftI
8266 instruct lShiftI_andI_immInegpow2_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
8267   match(Set dst (LShiftI (AndI src1 src2) src3));
8268   predicate(UseRotateAndMaskInstructionsPPC64);
8269 
8270   format %{ "RLWINM  $dst, lShiftI(AndI($src1, $src2), $src3)" %}
8271   size(4);
8272   ins_encode %{
8273     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
8274     long src2      = $src2$$constant;
8275     long src3      = $src3$$constant;
8276     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
8277     if (maskbits >= 32) {
8278       __ li($dst$$Register, 0); // addi
8279     } else {
8280       __ rlwinm($dst$$Register, $src1$$Register, src3 & 0x1f, 0, (31-maskbits) & 0x1f);
8281     }
8282   %}
8283   ins_pipe(pipe_class_default);
8284 %}
8285 
8286 // RShiftI + AndI with negpow2-constant + LShiftI
8287 instruct lShiftI_andI_immInegpow2_rShiftI_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
8288   match(Set dst (LShiftI (AndI (RShiftI src1 src3) src2) src3));
8289   predicate(UseRotateAndMaskInstructionsPPC64);
8290 
8291   format %{ "RLWINM  $dst, lShiftI(AndI(RShiftI($src1, $src3), $src2), $src3)" %}
8292   size(4);
8293   ins_encode %{
8294     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
8295     long src2      = $src2$$constant;
8296     long src3      = $src3$$constant;
8297     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
8298     if (maskbits >= 32) {
8299       __ li($dst$$Register, 0); // addi
8300     } else {
8301       __ rlwinm($dst$$Register, $src1$$Register, 0, 0, (31-maskbits) & 0x1f);
8302     }
8303   %}
8304   ins_pipe(pipe_class_default);
8305 %}
8306 
8307 instruct lShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8308   // no match-rule, false predicate
8309   effect(DEF dst, USE src1, USE src2);
8310   predicate(false);
8311 
8312   format %{ "SLD     $dst, $src1, $src2" %}
8313   size(4);
8314   ins_encode %{
8315     // TODO: PPC port $archOpcode(ppc64Opcode_sld);
8316     __ sld($dst$$Register, $src1$$Register, $src2$$Register);
8317   %}
8318   ins_pipe(pipe_class_default);
8319 %}
8320 
8321 // Register Shift Left
8322 instruct lShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8323   match(Set dst (LShiftL src1 src2));
8324   ins_cost(DEFAULT_COST*2);
8325   expand %{
8326     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8327     iRegIdst tmpI;
8328     maskI_reg_imm(tmpI, src2, mask);
8329     lShiftL_regL_regI(dst, src1, tmpI);
8330   %}
8331 %}
8332 
8333 // Register Shift Left Immediate
8334 instruct lshiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8335   match(Set dst (LShiftL src1 src2));
8336   format %{ "SLDI    $dst, $src1, ($src2 & 0x3f)" %}
8337   size(4);
8338   ins_encode %{
8339     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8340     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8341   %}
8342   ins_pipe(pipe_class_default);
8343 %}
8344 
8345 // If we shift more than 32 bits, we need not convert I2L.
8346 instruct lShiftL_regI_immGE32(iRegLdst dst, iRegIsrc src1, uimmI6_ge32 src2) %{
8347   match(Set dst (LShiftL (ConvI2L src1) src2));
8348   ins_cost(DEFAULT_COST);
8349 
8350   size(4);
8351   format %{ "SLDI    $dst, i2l($src1), $src2" %}
8352   ins_encode %{
8353     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8354     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8355   %}
8356   ins_pipe(pipe_class_default);
8357 %}
8358 
8359 // Shift a postivie int to the left.
8360 // Clrlsldi clears the upper 32 bits and shifts.
8361 instruct scaledPositiveI2L_lShiftL_convI2L_reg_imm6(iRegLdst dst, iRegIsrc src1, uimmI6 src2) %{
8362   match(Set dst (LShiftL (ConvI2L src1) src2));
8363   predicate(((ConvI2LNode*)(_kids[0]->_leaf))->type()->is_long()->is_positive_int());
8364 
8365   format %{ "SLDI    $dst, i2l(positive_int($src1)), $src2" %}
8366   size(4);
8367   ins_encode %{
8368     // TODO: PPC port $archOpcode(ppc64Opcode_rldic);
8369     __ clrlsldi($dst$$Register, $src1$$Register, 0x20, $src2$$constant);
8370   %}
8371   ins_pipe(pipe_class_default);
8372 %}
8373 
8374 instruct arShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8375   // no match-rule, false predicate
8376   effect(DEF dst, USE src1, USE src2);
8377   predicate(false);
8378 
8379   format %{ "SRAW    $dst, $src1, $src2" %}
8380   size(4);
8381   ins_encode %{
8382     // TODO: PPC port $archOpcode(ppc64Opcode_sraw);
8383     __ sraw($dst$$Register, $src1$$Register, $src2$$Register);
8384   %}
8385   ins_pipe(pipe_class_default);
8386 %}
8387 
8388 // Register Arithmetic Shift Right
8389 instruct arShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8390   match(Set dst (RShiftI src1 src2));
8391   ins_cost(DEFAULT_COST*2);
8392   expand %{
8393     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8394     iRegIdst tmpI;
8395     maskI_reg_imm(tmpI, src2, mask);
8396     arShiftI_reg_reg(dst, src1, tmpI);
8397   %}
8398 %}
8399 
8400 // Register Arithmetic Shift Right Immediate
8401 instruct arShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8402   match(Set dst (RShiftI src1 src2));
8403 
8404   format %{ "SRAWI   $dst, $src1, ($src2 & 0x1f)" %}
8405   size(4);
8406   ins_encode %{
8407     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
8408     __ srawi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8409   %}
8410   ins_pipe(pipe_class_default);
8411 %}
8412 
8413 instruct arShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8414   // no match-rule, false predicate
8415   effect(DEF dst, USE src1, USE src2);
8416   predicate(false);
8417 
8418   format %{ "SRAD    $dst, $src1, $src2" %}
8419   size(4);
8420   ins_encode %{
8421     // TODO: PPC port $archOpcode(ppc64Opcode_srad);
8422     __ srad($dst$$Register, $src1$$Register, $src2$$Register);
8423   %}
8424   ins_pipe(pipe_class_default);
8425 %}
8426 
8427 // Register Shift Right Arithmetic Long
8428 instruct arShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8429   match(Set dst (RShiftL src1 src2));
8430   ins_cost(DEFAULT_COST*2);
8431 
8432   expand %{
8433     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8434     iRegIdst tmpI;
8435     maskI_reg_imm(tmpI, src2, mask);
8436     arShiftL_regL_regI(dst, src1, tmpI);
8437   %}
8438 %}
8439 
8440 // Register Shift Right Immediate
8441 instruct arShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8442   match(Set dst (RShiftL src1 src2));
8443 
8444   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f)" %}
8445   size(4);
8446   ins_encode %{
8447     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
8448     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8449   %}
8450   ins_pipe(pipe_class_default);
8451 %}
8452 
8453 // RShiftL + ConvL2I
8454 instruct convL2I_arShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
8455   match(Set dst (ConvL2I (RShiftL src1 src2)));
8456 
8457   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
8458   size(4);
8459   ins_encode %{
8460     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
8461     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8462   %}
8463   ins_pipe(pipe_class_default);
8464 %}
8465 
8466 instruct urShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8467   // no match-rule, false predicate
8468   effect(DEF dst, USE src1, USE src2);
8469   predicate(false);
8470 
8471   format %{ "SRW     $dst, $src1, $src2" %}
8472   size(4);
8473   ins_encode %{
8474     // TODO: PPC port $archOpcode(ppc64Opcode_srw);
8475     __ srw($dst$$Register, $src1$$Register, $src2$$Register);
8476   %}
8477   ins_pipe(pipe_class_default);
8478 %}
8479 
8480 // Register Shift Right
8481 instruct urShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8482   match(Set dst (URShiftI src1 src2));
8483   ins_cost(DEFAULT_COST*2);
8484 
8485   expand %{
8486     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8487     iRegIdst tmpI;
8488     maskI_reg_imm(tmpI, src2, mask);
8489     urShiftI_reg_reg(dst, src1, tmpI);
8490   %}
8491 %}
8492 
8493 // Register Shift Right Immediate
8494 instruct urShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8495   match(Set dst (URShiftI src1 src2));
8496 
8497   format %{ "SRWI    $dst, $src1, ($src2 & 0x1f)" %}
8498   size(4);
8499   ins_encode %{
8500     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8501     __ srwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8502   %}
8503   ins_pipe(pipe_class_default);
8504 %}
8505 
8506 instruct urShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8507   // no match-rule, false predicate
8508   effect(DEF dst, USE src1, USE src2);
8509   predicate(false);
8510 
8511   format %{ "SRD     $dst, $src1, $src2" %}
8512   size(4);
8513   ins_encode %{
8514     // TODO: PPC port $archOpcode(ppc64Opcode_srd);
8515     __ srd($dst$$Register, $src1$$Register, $src2$$Register);
8516   %}
8517   ins_pipe(pipe_class_default);
8518 %}
8519 
8520 // Register Shift Right
8521 instruct urShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8522   match(Set dst (URShiftL src1 src2));
8523   ins_cost(DEFAULT_COST*2);
8524 
8525   expand %{
8526     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8527     iRegIdst tmpI;
8528     maskI_reg_imm(tmpI, src2, mask);
8529     urShiftL_regL_regI(dst, src1, tmpI);
8530   %}
8531 %}
8532 
8533 // Register Shift Right Immediate
8534 instruct urShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8535   match(Set dst (URShiftL src1 src2));
8536 
8537   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f)" %}
8538   size(4);
8539   ins_encode %{
8540     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8541     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8542   %}
8543   ins_pipe(pipe_class_default);
8544 %}
8545 
8546 // URShiftL + ConvL2I.
8547 instruct convL2I_urShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
8548   match(Set dst (ConvL2I (URShiftL src1 src2)));
8549 
8550   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
8551   size(4);
8552   ins_encode %{
8553     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8554     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8555   %}
8556   ins_pipe(pipe_class_default);
8557 %}
8558 
8559 // Register Shift Right Immediate with a CastP2X
8560 instruct shrP_convP2X_reg_imm6(iRegLdst dst, iRegP_N2P src1, uimmI6 src2) %{
8561   match(Set dst (URShiftL (CastP2X src1) src2));
8562 
8563   format %{ "SRDI    $dst, $src1, $src2 \t// Cast ptr $src1 to long and shift" %}
8564   size(4);
8565   ins_encode %{
8566     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8567     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8568   %}
8569   ins_pipe(pipe_class_default);
8570 %}
8571 
8572 instruct sxtI_reg(iRegIdst dst, iRegIsrc src) %{
8573   match(Set dst (ConvL2I (ConvI2L src)));
8574 
8575   format %{ "EXTSW   $dst, $src \t// int->int" %}
8576   size(4);
8577   ins_encode %{
8578     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
8579     __ extsw($dst$$Register, $src$$Register);
8580   %}
8581   ins_pipe(pipe_class_default);
8582 %}
8583 
8584 //----------Rotate Instructions------------------------------------------------
8585 
8586 // Rotate Left by 8-bit immediate
8587 instruct rotlI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 lshift, immI8 rshift) %{
8588   match(Set dst (OrI (LShiftI src lshift) (URShiftI src rshift)));
8589   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8590 
8591   format %{ "ROTLWI  $dst, $src, $lshift" %}
8592   size(4);
8593   ins_encode %{
8594     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8595     __ rotlwi($dst$$Register, $src$$Register, $lshift$$constant);
8596   %}
8597   ins_pipe(pipe_class_default);
8598 %}
8599 
8600 // Rotate Right by 8-bit immediate
8601 instruct rotrI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 rshift, immI8 lshift) %{
8602   match(Set dst (OrI (URShiftI src rshift) (LShiftI src lshift)));
8603   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8604 
8605   format %{ "ROTRWI  $dst, $rshift" %}
8606   size(4);
8607   ins_encode %{
8608     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8609     __ rotrwi($dst$$Register, $src$$Register, $rshift$$constant);
8610   %}
8611   ins_pipe(pipe_class_default);
8612 %}
8613 
8614 //----------Floating Point Arithmetic Instructions-----------------------------
8615 
8616 // Add float single precision
8617 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
8618   match(Set dst (AddF src1 src2));
8619 
8620   format %{ "FADDS   $dst, $src1, $src2" %}
8621   size(4);
8622   ins_encode %{
8623     // TODO: PPC port $archOpcode(ppc64Opcode_fadds);
8624     __ fadds($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8625   %}
8626   ins_pipe(pipe_class_default);
8627 %}
8628 
8629 // Add float double precision
8630 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
8631   match(Set dst (AddD src1 src2));
8632 
8633   format %{ "FADD    $dst, $src1, $src2" %}
8634   size(4);
8635   ins_encode %{
8636     // TODO: PPC port $archOpcode(ppc64Opcode_fadd);
8637     __ fadd($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8638   %}
8639   ins_pipe(pipe_class_default);
8640 %}
8641 
8642 // Sub float single precision
8643 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
8644   match(Set dst (SubF src1 src2));
8645 
8646   format %{ "FSUBS   $dst, $src1, $src2" %}
8647   size(4);
8648   ins_encode %{
8649     // TODO: PPC port $archOpcode(ppc64Opcode_fsubs);
8650     __ fsubs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8651   %}
8652   ins_pipe(pipe_class_default);
8653 %}
8654 
8655 // Sub float double precision
8656 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
8657   match(Set dst (SubD src1 src2));
8658   format %{ "FSUB    $dst, $src1, $src2" %}
8659   size(4);
8660   ins_encode %{
8661     // TODO: PPC port $archOpcode(ppc64Opcode_fsub);
8662     __ fsub($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8663   %}
8664   ins_pipe(pipe_class_default);
8665 %}
8666 
8667 // Mul float single precision
8668 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
8669   match(Set dst (MulF src1 src2));
8670   format %{ "FMULS   $dst, $src1, $src2" %}
8671   size(4);
8672   ins_encode %{
8673     // TODO: PPC port $archOpcode(ppc64Opcode_fmuls);
8674     __ fmuls($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8675   %}
8676   ins_pipe(pipe_class_default);
8677 %}
8678 
8679 // Mul float double precision
8680 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
8681   match(Set dst (MulD src1 src2));
8682   format %{ "FMUL    $dst, $src1, $src2" %}
8683   size(4);
8684   ins_encode %{
8685     // TODO: PPC port $archOpcode(ppc64Opcode_fmul);
8686     __ fmul($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8687   %}
8688   ins_pipe(pipe_class_default);
8689 %}
8690 
8691 // Div float single precision
8692 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
8693   match(Set dst (DivF src1 src2));
8694   format %{ "FDIVS   $dst, $src1, $src2" %}
8695   size(4);
8696   ins_encode %{
8697     // TODO: PPC port $archOpcode(ppc64Opcode_fdivs);
8698     __ fdivs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8699   %}
8700   ins_pipe(pipe_class_default);
8701 %}
8702 
8703 // Div float double precision
8704 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
8705   match(Set dst (DivD src1 src2));
8706   format %{ "FDIV    $dst, $src1, $src2" %}
8707   size(4);
8708   ins_encode %{
8709     // TODO: PPC port $archOpcode(ppc64Opcode_fdiv);
8710     __ fdiv($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8711   %}
8712   ins_pipe(pipe_class_default);
8713 %}
8714 
8715 // Absolute float single precision
8716 instruct absF_reg(regF dst, regF src) %{
8717   match(Set dst (AbsF src));
8718   format %{ "FABS    $dst, $src \t// float" %}
8719   size(4);
8720   ins_encode %{
8721     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
8722     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
8723   %}
8724   ins_pipe(pipe_class_default);
8725 %}
8726 
8727 // Absolute float double precision
8728 instruct absD_reg(regD dst, regD src) %{
8729   match(Set dst (AbsD src));
8730   format %{ "FABS    $dst, $src \t// double" %}
8731   size(4);
8732   ins_encode %{
8733     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
8734     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
8735   %}
8736   ins_pipe(pipe_class_default);
8737 %}
8738 
8739 instruct negF_reg(regF dst, regF src) %{
8740   match(Set dst (NegF src));
8741   format %{ "FNEG    $dst, $src \t// float" %}
8742   size(4);
8743   ins_encode %{
8744     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
8745     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
8746   %}
8747   ins_pipe(pipe_class_default);
8748 %}
8749 
8750 instruct negD_reg(regD dst, regD src) %{
8751   match(Set dst (NegD src));
8752   format %{ "FNEG    $dst, $src \t// double" %}
8753   size(4);
8754   ins_encode %{
8755     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
8756     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
8757   %}
8758   ins_pipe(pipe_class_default);
8759 %}
8760 
8761 // AbsF + NegF.
8762 instruct negF_absF_reg(regF dst, regF src) %{
8763   match(Set dst (NegF (AbsF src)));
8764   format %{ "FNABS   $dst, $src \t// float" %}
8765   size(4);
8766   ins_encode %{
8767     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
8768     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
8769   %}
8770   ins_pipe(pipe_class_default);
8771 %}
8772 
8773 // AbsD + NegD.
8774 instruct negD_absD_reg(regD dst, regD src) %{
8775   match(Set dst (NegD (AbsD src)));
8776   format %{ "FNABS   $dst, $src \t// double" %}
8777   size(4);
8778   ins_encode %{
8779     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
8780     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
8781   %}
8782   ins_pipe(pipe_class_default);
8783 %}
8784 
8785 // VM_Version::has_fsqrt() decides if this node will be used.
8786 // Sqrt float double precision
8787 instruct sqrtD_reg(regD dst, regD src) %{
8788   match(Set dst (SqrtD src));
8789   format %{ "FSQRT   $dst, $src" %}
8790   size(4);
8791   ins_encode %{
8792     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrt);
8793     __ fsqrt($dst$$FloatRegister, $src$$FloatRegister);
8794   %}
8795   ins_pipe(pipe_class_default);
8796 %}
8797 
8798 // Single-precision sqrt.
8799 instruct sqrtF_reg(regF dst, regF src) %{
8800   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
8801   ins_cost(DEFAULT_COST);
8802 
8803   format %{ "FSQRTS  $dst, $src" %}
8804   size(4);
8805   ins_encode %{
8806     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrts);
8807     __ fsqrts($dst$$FloatRegister, $src$$FloatRegister);
8808   %}
8809   ins_pipe(pipe_class_default);
8810 %}
8811 
8812 instruct roundDouble_nop(regD dst) %{
8813   match(Set dst (RoundDouble dst));
8814   ins_cost(0);
8815 
8816   format %{ " -- \t// RoundDouble not needed - empty" %}
8817   size(0);
8818   // PPC results are already "rounded" (i.e., normal-format IEEE).
8819   ins_encode( /*empty*/ );
8820   ins_pipe(pipe_class_default);
8821 %}
8822 
8823 instruct roundFloat_nop(regF dst) %{
8824   match(Set dst (RoundFloat dst));
8825   ins_cost(0);
8826 
8827   format %{ " -- \t// RoundFloat not needed - empty" %}
8828   size(0);
8829   // PPC results are already "rounded" (i.e., normal-format IEEE).
8830   ins_encode( /*empty*/ );
8831   ins_pipe(pipe_class_default);
8832 %}
8833 
8834 //----------Logical Instructions-----------------------------------------------
8835 
8836 // And Instructions
8837 
8838 // Register And
8839 instruct andI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8840   match(Set dst (AndI src1 src2));
8841   format %{ "AND     $dst, $src1, $src2" %}
8842   size(4);
8843   ins_encode %{
8844     // TODO: PPC port $archOpcode(ppc64Opcode_and);
8845     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
8846   %}
8847   ins_pipe(pipe_class_default);
8848 %}
8849 
8850 // Immediate And
8851 instruct andI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2, flagsRegCR0 cr0) %{
8852   match(Set dst (AndI src1 src2));
8853   effect(KILL cr0);
8854 
8855   format %{ "ANDI    $dst, $src1, $src2" %}
8856   size(4);
8857   ins_encode %{
8858     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
8859     // FIXME: avoid andi_ ?
8860     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
8861   %}
8862   ins_pipe(pipe_class_default);
8863 %}
8864 
8865 // Immediate And where the immediate is a negative power of 2.
8866 instruct andI_reg_immInegpow2(iRegIdst dst, iRegIsrc src1, immInegpow2 src2) %{
8867   match(Set dst (AndI src1 src2));
8868   format %{ "ANDWI   $dst, $src1, $src2" %}
8869   size(4);
8870   ins_encode %{
8871     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8872     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)(julong)(juint)-($src2$$constant)));
8873   %}
8874   ins_pipe(pipe_class_default);
8875 %}
8876 
8877 instruct andI_reg_immIpow2minus1(iRegIdst dst, iRegIsrc src1, immIpow2minus1 src2) %{
8878   match(Set dst (AndI src1 src2));
8879   format %{ "ANDWI   $dst, $src1, $src2" %}
8880   size(4);
8881   ins_encode %{
8882     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8883     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
8884   %}
8885   ins_pipe(pipe_class_default);
8886 %}
8887 
8888 instruct andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src1, immIpowerOf2 src2) %{
8889   match(Set dst (AndI src1 src2));
8890   predicate(UseRotateAndMaskInstructionsPPC64);
8891   format %{ "ANDWI   $dst, $src1, $src2" %}
8892   size(4);
8893   ins_encode %{
8894     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8895     __ rlwinm($dst$$Register, $src1$$Register, 0, 
8896               (31-log2_long((jlong) $src2$$constant)) & 0x1f, (31-log2_long((jlong) $src2$$constant)) & 0x1f);
8897   %}
8898   ins_pipe(pipe_class_default);
8899 %}
8900 
8901 // Register And Long
8902 instruct andL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8903   match(Set dst (AndL src1 src2));
8904   ins_cost(DEFAULT_COST);
8905 
8906   format %{ "AND     $dst, $src1, $src2 \t// long" %}
8907   size(4);
8908   ins_encode %{
8909     // TODO: PPC port $archOpcode(ppc64Opcode_and);
8910     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
8911   %}
8912   ins_pipe(pipe_class_default);
8913 %}
8914 
8915 // Immediate And long
8916 instruct andL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2, flagsRegCR0 cr0) %{
8917   match(Set dst (AndL src1 src2));
8918   effect(KILL cr0);
8919   ins_cost(DEFAULT_COST);
8920 
8921   format %{ "ANDI    $dst, $src1, $src2 \t// long" %}
8922   size(4);
8923   ins_encode %{
8924     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
8925     // FIXME: avoid andi_ ?
8926     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
8927   %}
8928   ins_pipe(pipe_class_default);
8929 %}
8930 
8931 // Immediate And Long where the immediate is a negative power of 2.
8932 instruct andL_reg_immLnegpow2(iRegLdst dst, iRegLsrc src1, immLnegpow2 src2) %{
8933   match(Set dst (AndL src1 src2));
8934   format %{ "ANDDI   $dst, $src1, $src2" %}
8935   size(4);
8936   ins_encode %{
8937     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8938     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)-$src2$$constant));
8939   %}
8940   ins_pipe(pipe_class_default);
8941 %}
8942 
8943 instruct andL_reg_immLpow2minus1(iRegLdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
8944   match(Set dst (AndL src1 src2));
8945   format %{ "ANDDI   $dst, $src1, $src2" %}
8946   size(4);
8947   ins_encode %{
8948     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8949     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
8950   %}
8951   ins_pipe(pipe_class_default);
8952 %}
8953 
8954 // AndL + ConvL2I.
8955 instruct convL2I_andL_reg_immLpow2minus1(iRegIdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
8956   match(Set dst (ConvL2I (AndL src1 src2)));
8957   ins_cost(DEFAULT_COST);
8958 
8959   format %{ "ANDDI   $dst, $src1, $src2 \t// long + l2i" %}
8960   size(4);
8961   ins_encode %{
8962     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8963     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
8964   %}
8965   ins_pipe(pipe_class_default);
8966 %}
8967 
8968 // Or Instructions
8969 
8970 // Register Or
8971 instruct orI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8972   match(Set dst (OrI src1 src2));
8973   format %{ "OR      $dst, $src1, $src2" %}
8974   size(4);
8975   ins_encode %{
8976     // TODO: PPC port $archOpcode(ppc64Opcode_or);
8977     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
8978   %}
8979   ins_pipe(pipe_class_default);
8980 %}
8981 
8982 // Expand does not work with above instruct. (??)
8983 instruct orI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8984   // no match-rule
8985   effect(DEF dst, USE src1, USE src2);
8986   format %{ "OR      $dst, $src1, $src2" %}
8987   size(4);
8988   ins_encode %{
8989     // TODO: PPC port $archOpcode(ppc64Opcode_or);
8990     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
8991   %}
8992   ins_pipe(pipe_class_default);
8993 %}
8994 
8995 instruct tree_orI_orI_orI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
8996   match(Set dst (OrI (OrI (OrI src1 src2) src3) src4));
8997   ins_cost(DEFAULT_COST*3);
8998 
8999   expand %{
9000     // FIXME: we should do this in the ideal world.
9001     iRegIdst tmp1;
9002     iRegIdst tmp2;
9003     orI_reg_reg(tmp1, src1, src2);
9004     orI_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
9005     orI_reg_reg(dst, tmp1, tmp2);
9006   %}
9007 %}
9008 
9009 // Immediate Or
9010 instruct orI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
9011   match(Set dst (OrI src1 src2));
9012   format %{ "ORI     $dst, $src1, $src2" %}
9013   size(4);
9014   ins_encode %{
9015     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
9016     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
9017   %}
9018   ins_pipe(pipe_class_default);
9019 %}
9020 
9021 // Register Or Long
9022 instruct orL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
9023   match(Set dst (OrL src1 src2));
9024   ins_cost(DEFAULT_COST);
9025 
9026   size(4);
9027   format %{ "OR      $dst, $src1, $src2 \t// long" %}
9028   ins_encode %{
9029     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9030     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
9031   %}
9032   ins_pipe(pipe_class_default);
9033 %}
9034 
9035 // OrL + ConvL2I.
9036 instruct orI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
9037   match(Set dst (ConvL2I (OrL src1 src2)));
9038   ins_cost(DEFAULT_COST);
9039 
9040   format %{ "OR      $dst, $src1, $src2 \t// long + l2i" %}
9041   size(4);
9042   ins_encode %{
9043     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9044     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
9045   %}
9046   ins_pipe(pipe_class_default);
9047 %}
9048 
9049 // Immediate Or long
9050 instruct orL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 con) %{
9051   match(Set dst (OrL src1 con));
9052   ins_cost(DEFAULT_COST);
9053 
9054   format %{ "ORI     $dst, $src1, $con \t// long" %}
9055   size(4);
9056   ins_encode %{
9057     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
9058     __ ori($dst$$Register, $src1$$Register, ($con$$constant) & 0xFFFF);
9059   %}
9060   ins_pipe(pipe_class_default);
9061 %}
9062 
9063 // Xor Instructions
9064 
9065 // Register Xor
9066 instruct xorI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9067   match(Set dst (XorI src1 src2));
9068   format %{ "XOR     $dst, $src1, $src2" %}
9069   size(4);
9070   ins_encode %{
9071     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9072     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9073   %}
9074   ins_pipe(pipe_class_default);
9075 %}
9076 
9077 // Expand does not work with above instruct. (??)
9078 instruct xorI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9079   // no match-rule
9080   effect(DEF dst, USE src1, USE src2);
9081   format %{ "XOR     $dst, $src1, $src2" %}
9082   size(4);
9083   ins_encode %{
9084     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9085     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9086   %}
9087   ins_pipe(pipe_class_default);
9088 %}
9089 
9090 instruct tree_xorI_xorI_xorI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
9091   match(Set dst (XorI (XorI (XorI src1 src2) src3) src4));
9092   ins_cost(DEFAULT_COST*3);
9093 
9094   expand %{
9095     // FIXME: we should do this in the ideal world.
9096     iRegIdst tmp1;
9097     iRegIdst tmp2;
9098     xorI_reg_reg(tmp1, src1, src2);
9099     xorI_reg_reg_2(tmp2, src3, src4); // Adlc complains about xorI_reg_reg.
9100     xorI_reg_reg(dst, tmp1, tmp2);
9101   %}
9102 %}
9103 
9104 // Immediate Xor
9105 instruct xorI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
9106   match(Set dst (XorI src1 src2));
9107   format %{ "XORI    $dst, $src1, $src2" %}
9108   size(4);
9109   ins_encode %{
9110     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
9111     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
9112   %}
9113   ins_pipe(pipe_class_default);
9114 %}
9115 
9116 // Register Xor Long
9117 instruct xorL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
9118   match(Set dst (XorL src1 src2));
9119   ins_cost(DEFAULT_COST);
9120 
9121   format %{ "XOR     $dst, $src1, $src2 \t// long" %}
9122   size(4);
9123   ins_encode %{
9124     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9125     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9126   %}
9127   ins_pipe(pipe_class_default);
9128 %}
9129 
9130 // XorL + ConvL2I.
9131 instruct xorI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
9132   match(Set dst (ConvL2I (XorL src1 src2)));
9133   ins_cost(DEFAULT_COST);
9134 
9135   format %{ "XOR     $dst, $src1, $src2 \t// long + l2i" %}
9136   size(4);
9137   ins_encode %{
9138     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9139     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9140   %}
9141   ins_pipe(pipe_class_default);
9142 %}
9143 
9144 // Immediate Xor Long
9145 instruct xorL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2) %{
9146   match(Set dst (XorL src1 src2));
9147   ins_cost(DEFAULT_COST);
9148 
9149   format %{ "XORI    $dst, $src1, $src2 \t// long" %}
9150   size(4);
9151   ins_encode %{
9152     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
9153     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
9154   %}
9155   ins_pipe(pipe_class_default);
9156 %}
9157 
9158 instruct notI_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
9159   match(Set dst (XorI src1 src2));
9160   ins_cost(DEFAULT_COST);
9161 
9162   format %{ "NOT     $dst, $src1 ($src2)" %}
9163   size(4);
9164   ins_encode %{
9165     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
9166     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
9167   %}
9168   ins_pipe(pipe_class_default);
9169 %}
9170 
9171 instruct notL_reg(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
9172   match(Set dst (XorL src1 src2));
9173   ins_cost(DEFAULT_COST);
9174 
9175   format %{ "NOT     $dst, $src1 ($src2) \t// long" %}
9176   size(4);
9177   ins_encode %{
9178     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
9179     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
9180   %}
9181   ins_pipe(pipe_class_default);
9182 %}
9183 
9184 // And-complement
9185 instruct andcI_reg_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2, iRegIsrc src3) %{
9186   match(Set dst (AndI (XorI src1 src2) src3));
9187   ins_cost(DEFAULT_COST);
9188 
9189   format %{ "ANDW    $dst, xori($src1, $src2), $src3" %}
9190   size(4);
9191   ins_encode( enc_andc(dst, src3, src1) );
9192   ins_pipe(pipe_class_default);
9193 %}
9194 
9195 // And-complement
9196 instruct andcL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
9197   // no match-rule, false predicate
9198   effect(DEF dst, USE src1, USE src2);
9199   predicate(false);
9200 
9201   format %{ "ANDC    $dst, $src1, $src2" %}
9202   size(4);
9203   ins_encode %{
9204     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
9205     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
9206   %}
9207   ins_pipe(pipe_class_default);
9208 %}
9209 
9210 //----------Moves between int/long and float/double----------------------------
9211 //
9212 // The following rules move values from int/long registers/stack-locations
9213 // to float/double registers/stack-locations and vice versa, without doing any
9214 // conversions. These rules are used to implement the bit-conversion methods
9215 // of java.lang.Float etc., e.g.
9216 //   int   floatToIntBits(float value)
9217 //   float intBitsToFloat(int bits)
9218 //
9219 // Notes on the implementation on ppc64:
9220 // We only provide rules which move between a register and a stack-location,
9221 // because we always have to go through memory when moving between a float
9222 // register and an integer register.
9223 
9224 //---------- Chain stack slots between similar types --------
9225 
9226 // These are needed so that the rules below can match.
9227 
9228 // Load integer from stack slot
9229 instruct stkI_to_regI(iRegIdst dst, stackSlotI src) %{
9230   match(Set dst src);
9231   ins_cost(MEMORY_REF_COST);
9232 
9233   format %{ "LWZ     $dst, $src" %}
9234   size(4);
9235   ins_encode( enc_lwz(dst, src) );
9236   ins_pipe(pipe_class_memory);
9237 %}
9238 
9239 // Store integer to stack slot
9240 instruct regI_to_stkI(stackSlotI dst, iRegIsrc src) %{
9241   match(Set dst src);
9242   ins_cost(MEMORY_REF_COST);
9243 
9244   format %{ "STW     $src, $dst \t// stk" %}
9245   size(4);
9246   ins_encode( enc_stw(src, dst) ); // rs=rt
9247   ins_pipe(pipe_class_memory);
9248 %}
9249 
9250 // Load long from stack slot
9251 instruct stkL_to_regL(iRegLdst dst, stackSlotL src) %{
9252   match(Set dst src);
9253   ins_cost(MEMORY_REF_COST);
9254 
9255   format %{ "LD      $dst, $src \t// long" %}
9256   size(4);
9257   ins_encode( enc_ld(dst, src) );
9258   ins_pipe(pipe_class_memory);
9259 %}
9260 
9261 // Store long to stack slot
9262 instruct regL_to_stkL(stackSlotL dst, iRegLsrc src) %{
9263   match(Set dst src);
9264   ins_cost(MEMORY_REF_COST);
9265 
9266   format %{ "STD     $src, $dst \t// long" %}
9267   size(4);
9268   ins_encode( enc_std(src, dst) ); // rs=rt
9269   ins_pipe(pipe_class_memory);
9270 %}
9271 
9272 //----------Moves between int and float
9273 
9274 // Move float value from float stack-location to integer register.
9275 instruct moveF2I_stack_reg(iRegIdst dst, stackSlotF src) %{
9276   match(Set dst (MoveF2I src));
9277   ins_cost(MEMORY_REF_COST);
9278 
9279   format %{ "LWZ     $dst, $src \t// MoveF2I" %}
9280   size(4);
9281   ins_encode( enc_lwz(dst, src) );
9282   ins_pipe(pipe_class_memory);
9283 %}
9284 
9285 // Move float value from float register to integer stack-location.
9286 instruct moveF2I_reg_stack(stackSlotI dst, regF src) %{
9287   match(Set dst (MoveF2I src));
9288   ins_cost(MEMORY_REF_COST);
9289 
9290   format %{ "STFS    $src, $dst \t// MoveF2I" %}
9291   size(4);
9292   ins_encode( enc_stfs(src, dst) );
9293   ins_pipe(pipe_class_memory);
9294 %}
9295 
9296 // Move integer value from integer stack-location to float register.
9297 instruct moveI2F_stack_reg(regF dst, stackSlotI src) %{
9298   match(Set dst (MoveI2F src));
9299   ins_cost(MEMORY_REF_COST);
9300 
9301   format %{ "LFS     $dst, $src \t// MoveI2F" %}
9302   size(4);
9303   ins_encode %{
9304     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
9305     int Idisp = $src$$disp + frame_slots_bias($src$$base, ra_);
9306     __ lfs($dst$$FloatRegister, Idisp, $src$$base$$Register);
9307   %}
9308   ins_pipe(pipe_class_memory);
9309 %}
9310 
9311 // Move integer value from integer register to float stack-location.
9312 instruct moveI2F_reg_stack(stackSlotF dst, iRegIsrc src) %{
9313   match(Set dst (MoveI2F src));
9314   ins_cost(MEMORY_REF_COST);
9315 
9316   format %{ "STW     $src, $dst \t// MoveI2F" %}
9317   size(4);
9318   ins_encode( enc_stw(src, dst) );
9319   ins_pipe(pipe_class_memory);
9320 %}
9321 
9322 //----------Moves between long and float
9323 
9324 instruct moveF2L_reg_stack(stackSlotL dst, regF src) %{
9325   // no match-rule, false predicate
9326   effect(DEF dst, USE src);
9327   predicate(false);
9328 
9329   format %{ "storeD  $src, $dst \t// STACK" %}
9330   size(4);
9331   ins_encode( enc_stfd(src, dst) );
9332   ins_pipe(pipe_class_default);
9333 %}
9334 
9335 //----------Moves between long and double
9336 
9337 // Move double value from double stack-location to long register.
9338 instruct moveD2L_stack_reg(iRegLdst dst, stackSlotD src) %{
9339   match(Set dst (MoveD2L src));
9340   ins_cost(MEMORY_REF_COST);
9341   size(4);
9342   format %{ "LD      $dst, $src \t// MoveD2L" %}
9343   ins_encode( enc_ld(dst, src) );
9344   ins_pipe(pipe_class_memory);
9345 %}
9346 
9347 // Move double value from double register to long stack-location.
9348 instruct moveD2L_reg_stack(stackSlotL dst, regD src) %{
9349   match(Set dst (MoveD2L src));
9350   effect(DEF dst, USE src);
9351   ins_cost(MEMORY_REF_COST);
9352 
9353   format %{ "STFD    $src, $dst \t// MoveD2L" %}
9354   size(4);
9355   ins_encode( enc_stfd(src, dst) );
9356   ins_pipe(pipe_class_memory);
9357 %}
9358 
9359 // Move long value from long stack-location to double register.
9360 instruct moveL2D_stack_reg(regD dst, stackSlotL src) %{
9361   match(Set dst (MoveL2D src));
9362   ins_cost(MEMORY_REF_COST);
9363 
9364   format %{ "LFD     $dst, $src \t// MoveL2D" %}
9365   size(4);
9366   ins_encode( enc_lfd(dst, src) );
9367   ins_pipe(pipe_class_memory);
9368 %}
9369 
9370 // Move long value from long register to double stack-location.
9371 instruct moveL2D_reg_stack(stackSlotD dst, iRegLsrc src) %{
9372   match(Set dst (MoveL2D src));
9373   ins_cost(MEMORY_REF_COST);
9374 
9375   format %{ "STD     $src, $dst \t// MoveL2D" %}
9376   size(4);
9377   ins_encode( enc_std(src, dst) );
9378   ins_pipe(pipe_class_memory);
9379 %}
9380 
9381 //----------Register Move Instructions-----------------------------------------
9382 
9383 // Replicate for Superword
9384 
9385 instruct moveReg(iRegLdst dst, iRegIsrc src) %{
9386   predicate(false);
9387   effect(DEF dst, USE src);
9388 
9389   format %{ "MR      $dst, $src \t// replicate " %}
9390   // variable size, 0 or 4.
9391   ins_encode %{
9392     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9393     __ mr_if_needed($dst$$Register, $src$$Register);
9394   %}
9395   ins_pipe(pipe_class_default);
9396 %}
9397 
9398 //----------Cast instructions (Java-level type cast)---------------------------
9399 
9400 // Cast Long to Pointer for unsafe natives.
9401 instruct castX2P(iRegPdst dst, iRegLsrc src) %{
9402   match(Set dst (CastX2P src));
9403 
9404   format %{ "MR      $dst, $src \t// Long->Ptr" %}
9405   // variable size, 0 or 4.
9406   ins_encode %{
9407     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9408     __ mr_if_needed($dst$$Register, $src$$Register);
9409   %}
9410  ins_pipe(pipe_class_default);
9411 %}
9412 
9413 // Cast Pointer to Long for unsafe natives.
9414 instruct castP2X(iRegLdst dst, iRegP_N2P src) %{
9415   match(Set dst (CastP2X src));
9416 
9417   format %{ "MR      $dst, $src \t// Ptr->Long" %}
9418   // variable size, 0 or 4.
9419   ins_encode %{
9420     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9421     __ mr_if_needed($dst$$Register, $src$$Register);
9422   %}
9423   ins_pipe(pipe_class_default);
9424 %}
9425 
9426 instruct castPP(iRegPdst dst) %{
9427   match(Set dst (CastPP dst));
9428   format %{ " -- \t// castPP of $dst" %}
9429   size(0);
9430   ins_encode( /*empty*/ );
9431   ins_pipe(pipe_class_default);
9432 %}
9433 
9434 instruct castII(iRegIdst dst) %{
9435   match(Set dst (CastII dst));
9436   format %{ " -- \t// castII of $dst" %}
9437   size(0);
9438   ins_encode( /*empty*/ );
9439   ins_pipe(pipe_class_default);
9440 %}
9441 
9442 instruct checkCastPP(iRegPdst dst) %{
9443   match(Set dst (CheckCastPP dst));
9444   format %{ " -- \t// checkcastPP of $dst" %}
9445   size(0);
9446   ins_encode( /*empty*/ );
9447   ins_pipe(pipe_class_default);
9448 %}
9449 
9450 //----------Convert instructions-----------------------------------------------
9451 
9452 // Convert to boolean.
9453 
9454 // int_to_bool(src) : { 1   if src != 0
9455 //                    { 0   else
9456 //
9457 // strategy:
9458 // 1) Count leading zeros of 32 bit-value src,
9459 //    this returns 32 (0b10.0000) iff src == 0 and <32 otherwise.
9460 // 2) Shift 5 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
9461 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
9462 
9463 // convI2Bool
9464 instruct convI2Bool_reg__cntlz_Ex(iRegIdst dst, iRegIsrc src) %{
9465   match(Set dst (Conv2B src));
9466   predicate(UseCountLeadingZerosInstructionsPPC64);
9467   ins_cost(DEFAULT_COST);
9468 
9469   expand %{
9470     immI shiftAmount %{ 0x5 %}
9471     uimmI16 mask %{ 0x1 %}
9472     iRegIdst tmp1;
9473     iRegIdst tmp2;
9474     countLeadingZerosI(tmp1, src);
9475     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
9476     xorI_reg_uimm16(dst, tmp2, mask);
9477   %}
9478 %}
9479 
9480 instruct convI2Bool_reg__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx) %{
9481   match(Set dst (Conv2B src));
9482   effect(TEMP crx);
9483   predicate(!UseCountLeadingZerosInstructionsPPC64);
9484   ins_cost(DEFAULT_COST);
9485 
9486   format %{ "CMPWI   $crx, $src, #0 \t// convI2B"
9487             "LI      $dst, #0\n\t"
9488             "BEQ     $crx, done\n\t"
9489             "LI      $dst, #1\n"
9490             "done:" %}
9491   size(16);
9492   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x0, 0x1) );
9493   ins_pipe(pipe_class_compare);
9494 %}
9495 
9496 // ConvI2B + XorI
9497 instruct xorI_convI2Bool_reg_immIvalue1__cntlz_Ex(iRegIdst dst, iRegIsrc src, immI_1 mask) %{
9498   match(Set dst (XorI (Conv2B src) mask));
9499   predicate(UseCountLeadingZerosInstructionsPPC64);
9500   ins_cost(DEFAULT_COST);
9501 
9502   expand %{
9503     immI shiftAmount %{ 0x5 %}
9504     iRegIdst tmp1;
9505     countLeadingZerosI(tmp1, src);
9506     urShiftI_reg_imm(dst, tmp1, shiftAmount);
9507   %}
9508 %}
9509 
9510 instruct xorI_convI2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI_1 mask) %{
9511   match(Set dst (XorI (Conv2B src) mask));
9512   effect(TEMP crx);
9513   predicate(!UseCountLeadingZerosInstructionsPPC64);
9514   ins_cost(DEFAULT_COST);
9515 
9516   format %{ "CMPWI   $crx, $src, #0 \t// Xor(convI2B($src), $mask)"
9517             "LI      $dst, #1\n\t"
9518             "BEQ     $crx, done\n\t"
9519             "LI      $dst, #0\n"
9520             "done:" %}
9521   size(16);
9522   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x1, 0x0) );
9523   ins_pipe(pipe_class_compare);
9524 %}
9525 
9526 // AndI 0b0..010..0 + ConvI2B
9527 instruct convI2Bool_andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src, immIpowerOf2 mask) %{
9528   match(Set dst (Conv2B (AndI src mask)));
9529   predicate(UseRotateAndMaskInstructionsPPC64);
9530   ins_cost(DEFAULT_COST);
9531 
9532   format %{ "RLWINM  $dst, $src, $mask \t// convI2B(AndI($src, $mask))" %}
9533   size(4);
9534   ins_encode %{
9535     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
9536     __ rlwinm($dst$$Register, $src$$Register, (32-log2_long((jlong)$mask$$constant)) & 0x1f, 31, 31);
9537   %}
9538   ins_pipe(pipe_class_default);
9539 %}
9540 
9541 // Convert pointer to boolean.
9542 //
9543 // ptr_to_bool(src) : { 1   if src != 0
9544 //                    { 0   else
9545 //
9546 // strategy:
9547 // 1) Count leading zeros of 64 bit-value src,
9548 //    this returns 64 (0b100.0000) iff src == 0 and <64 otherwise.
9549 // 2) Shift 6 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
9550 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
9551 
9552 // ConvP2B
9553 instruct convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src) %{
9554   match(Set dst (Conv2B src));
9555   predicate(UseCountLeadingZerosInstructionsPPC64);
9556   ins_cost(DEFAULT_COST);
9557 
9558   expand %{
9559     immI shiftAmount %{ 0x6 %}
9560     uimmI16 mask %{ 0x1 %}
9561     iRegIdst tmp1;
9562     iRegIdst tmp2;
9563     countLeadingZerosP(tmp1, src);
9564     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
9565     xorI_reg_uimm16(dst, tmp2, mask);
9566   %}
9567 %}
9568 
9569 instruct convP2Bool_reg__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx) %{
9570   match(Set dst (Conv2B src));
9571   effect(TEMP crx);
9572   predicate(!UseCountLeadingZerosInstructionsPPC64);
9573   ins_cost(DEFAULT_COST);
9574 
9575   format %{ "CMPDI   $crx, $src, #0 \t// convP2B"
9576             "LI      $dst, #0\n\t"
9577             "BEQ     $crx, done\n\t"
9578             "LI      $dst, #1\n"
9579             "done:" %}
9580   size(16);
9581   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x0, 0x1) );
9582   ins_pipe(pipe_class_compare);
9583 %}
9584 
9585 // ConvP2B + XorI
9586 instruct xorI_convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src, immI_1 mask) %{
9587   match(Set dst (XorI (Conv2B src) mask));
9588   predicate(UseCountLeadingZerosInstructionsPPC64);
9589   ins_cost(DEFAULT_COST);
9590 
9591   expand %{
9592     immI shiftAmount %{ 0x6 %}
9593     iRegIdst tmp1;
9594     countLeadingZerosP(tmp1, src);
9595     urShiftI_reg_imm(dst, tmp1, shiftAmount);
9596   %}
9597 %}
9598 
9599 instruct xorI_convP2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx, immI_1 mask) %{
9600   match(Set dst (XorI (Conv2B src) mask));
9601   effect(TEMP crx);
9602   predicate(!UseCountLeadingZerosInstructionsPPC64);
9603   ins_cost(DEFAULT_COST);
9604 
9605   format %{ "CMPDI   $crx, $src, #0 \t// XorI(convP2B($src), $mask)"
9606             "LI      $dst, #1\n\t"
9607             "BEQ     $crx, done\n\t"
9608             "LI      $dst, #0\n"
9609             "done:" %}
9610   size(16);
9611   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x1, 0x0) );
9612   ins_pipe(pipe_class_compare);
9613 %}
9614 
9615 // if src1 < src2, return -1 else return 0
9616 instruct cmpLTMask_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9617   match(Set dst (CmpLTMask src1 src2));
9618   ins_cost(DEFAULT_COST*4);
9619 
9620   expand %{
9621     iRegIdst src1s;
9622     iRegIdst src2s;
9623     iRegIdst diff;
9624     sxtI_reg(src1s, src1); // ensure proper sign extention
9625     sxtI_reg(src2s, src2); // ensure proper sign extention
9626     subI_reg_reg(diff, src1s, src2s);
9627     // Need to consider >=33 bit result, therefore we need signmaskL.
9628     signmask64I_regI(dst, diff);
9629   %}
9630 %}
9631 
9632 instruct cmpLTMask_reg_immI0(iRegIdst dst, iRegIsrc src1, immI_0 src2) %{
9633   match(Set dst (CmpLTMask src1 src2)); // if src1 < src2, return -1 else return 0
9634   format %{ "SRAWI   $dst, $src1, $src2 \t// CmpLTMask" %}
9635   size(4);
9636   ins_encode %{
9637     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
9638     __ srawi($dst$$Register, $src1$$Register, 0x1f);
9639   %}
9640   ins_pipe(pipe_class_default);
9641 %}
9642 
9643 //----------Arithmetic Conversion Instructions---------------------------------
9644 
9645 // Convert to Byte  -- nop
9646 // Convert to Short -- nop
9647 
9648 // Convert to Int
9649 
9650 instruct convB2I_reg(iRegIdst dst, iRegIsrc src, immI_24 amount) %{
9651   match(Set dst (RShiftI (LShiftI src amount) amount));
9652   format %{ "EXTSB   $dst, $src \t// byte->int" %}
9653   size(4);
9654   ins_encode %{
9655     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
9656     __ extsb($dst$$Register, $src$$Register);
9657   %}
9658   ins_pipe(pipe_class_default);
9659 %}
9660 
9661 // LShiftI 16 + RShiftI 16 converts short to int.
9662 instruct convS2I_reg(iRegIdst dst, iRegIsrc src, immI_16 amount) %{
9663   match(Set dst (RShiftI (LShiftI src amount) amount));
9664   format %{ "EXTSH   $dst, $src \t// short->int" %}
9665   size(4);
9666   ins_encode %{
9667     // TODO: PPC port $archOpcode(ppc64Opcode_extsh);
9668     __ extsh($dst$$Register, $src$$Register);
9669   %}
9670   ins_pipe(pipe_class_default);
9671 %}
9672 
9673 // ConvL2I + ConvI2L: Sign extend int in long register.
9674 instruct sxtI_L2L_reg(iRegLdst dst, iRegLsrc src) %{
9675   match(Set dst (ConvI2L (ConvL2I src)));
9676 
9677   format %{ "EXTSW   $dst, $src \t// long->long" %}
9678   size(4);
9679   ins_encode %{
9680     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
9681     __ extsw($dst$$Register, $src$$Register);
9682   %}
9683   ins_pipe(pipe_class_default);
9684 %}
9685 
9686 instruct convL2I_reg(iRegIdst dst, iRegLsrc src) %{
9687   match(Set dst (ConvL2I src));
9688   format %{ "MR      $dst, $src \t// long->int" %}
9689   // variable size, 0 or 4
9690   ins_encode %{
9691     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9692     __ mr_if_needed($dst$$Register, $src$$Register);
9693   %}
9694   ins_pipe(pipe_class_default);
9695 %}
9696 
9697 instruct convD2IRaw_regD(regD dst, regD src) %{
9698   // no match-rule, false predicate
9699   effect(DEF dst, USE src);
9700   predicate(false);
9701 
9702   format %{ "FCTIWZ $dst, $src \t// convD2I, $src != NaN" %}
9703   size(4);
9704   ins_encode %{
9705     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);;
9706     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
9707   %}
9708   ins_pipe(pipe_class_default);
9709 %}
9710 
9711 instruct cmovI_bso_stackSlotL(iRegIdst dst, flagsReg crx, stackSlotL src) %{
9712   // no match-rule, false predicate
9713   effect(DEF dst, USE crx, USE src);
9714   predicate(false);
9715 
9716   ins_variable_size_depending_on_alignment(true);
9717 
9718   format %{ "cmovI   $crx, $dst, $src" %}
9719   // Worst case is branch + move + stop, no stop without scheduler.
9720   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
9721   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
9722   ins_pipe(pipe_class_default);
9723 %}
9724 
9725 instruct cmovI_bso_stackSlotL_conLvalue0_Ex(iRegIdst dst, flagsReg crx, stackSlotL mem) %{
9726   // no match-rule, false predicate
9727   effect(DEF dst, USE crx, USE mem);
9728   predicate(false);
9729 
9730   format %{ "CmovI   $dst, $crx, $mem \t// postalloc expanded" %}
9731   postalloc_expand %{
9732     //
9733     // replaces
9734     //
9735     //   region  dst  crx  mem
9736     //    \       |    |   /
9737     //     dst=cmovI_bso_stackSlotL_conLvalue0
9738     //
9739     // with
9740     //
9741     //   region  dst
9742     //    \       /
9743     //     dst=loadConI16(0)
9744     //      |
9745     //      ^  region  dst  crx  mem
9746     //      |   \       |    |    /
9747     //      dst=cmovI_bso_stackSlotL
9748     //
9749 
9750     // Create new nodes.
9751     MachNode *m1 = new (C) loadConI16Node();
9752     MachNode *m2 = new (C) cmovI_bso_stackSlotLNode();
9753 
9754     // inputs for new nodes
9755     m1->add_req(n_region);
9756     m2->add_req(n_region, n_crx, n_mem);
9757 
9758     // precedences for new nodes
9759     m2->add_prec(m1);
9760 
9761     // operands for new nodes
9762     m1->_opnds[0] = op_dst;
9763     m1->_opnds[1] = new (C) immI16Oper(0);
9764 
9765     m2->_opnds[0] = op_dst;
9766     m2->_opnds[1] = op_crx;
9767     m2->_opnds[2] = op_mem;
9768 
9769     // registers for new nodes
9770     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9771     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9772 
9773     // Insert new nodes.
9774     nodes->push(m1);
9775     nodes->push(m2);
9776   %}
9777 %}
9778 
9779 // Double to Int conversion, NaN is mapped to 0.
9780 instruct convD2I_reg_ExEx(iRegIdst dst, regD src) %{
9781   match(Set dst (ConvD2I src));
9782   ins_cost(DEFAULT_COST);
9783 
9784   expand %{
9785     regD tmpD;
9786     stackSlotL tmpS;
9787     flagsReg crx;
9788     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9789     convD2IRaw_regD(tmpD, src);                         // Convert float to int (speculated).
9790     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
9791     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9792   %}
9793 %}
9794 
9795 instruct convF2IRaw_regF(regF dst, regF src) %{
9796   // no match-rule, false predicate
9797   effect(DEF dst, USE src);
9798   predicate(false);
9799 
9800   format %{ "FCTIWZ $dst, $src \t// convF2I, $src != NaN" %}
9801   size(4);
9802   ins_encode %{
9803     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
9804     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
9805   %}
9806   ins_pipe(pipe_class_default);
9807 %}
9808 
9809 // Float to Int conversion, NaN is mapped to 0.
9810 instruct convF2I_regF_ExEx(iRegIdst dst, regF src) %{
9811   match(Set dst (ConvF2I src));
9812   ins_cost(DEFAULT_COST);
9813 
9814   expand %{
9815     regF tmpF;
9816     stackSlotL tmpS;
9817     flagsReg crx;
9818     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9819     convF2IRaw_regF(tmpF, src);                         // Convert float to int (speculated).
9820     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
9821     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9822   %}
9823 %}
9824 
9825 // Convert to Long
9826 
9827 instruct convI2L_reg(iRegLdst dst, iRegIsrc src) %{
9828   match(Set dst (ConvI2L src));
9829   format %{ "EXTSW   $dst, $src \t// int->long" %}
9830   size(4);
9831   ins_encode %{
9832     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
9833     __ extsw($dst$$Register, $src$$Register);
9834   %}
9835   ins_pipe(pipe_class_default);
9836 %}
9837 
9838 // Zero-extend: convert unsigned int to long (convUI2L).
9839 instruct zeroExtendL_regI(iRegLdst dst, iRegIsrc src, immL_32bits mask) %{
9840   match(Set dst (AndL (ConvI2L src) mask));
9841   ins_cost(DEFAULT_COST);
9842 
9843   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
9844   size(4);
9845   ins_encode %{
9846     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
9847     __ clrldi($dst$$Register, $src$$Register, 32);
9848   %}
9849   ins_pipe(pipe_class_default);
9850 %}
9851 
9852 // Zero-extend: convert unsigned int to long in long register.
9853 instruct zeroExtendL_regL(iRegLdst dst, iRegLsrc src, immL_32bits mask) %{
9854   match(Set dst (AndL src mask));
9855   ins_cost(DEFAULT_COST);
9856 
9857   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
9858   size(4);
9859   ins_encode %{
9860     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
9861     __ clrldi($dst$$Register, $src$$Register, 32);
9862   %}
9863   ins_pipe(pipe_class_default);
9864 %}
9865 
9866 instruct convF2LRaw_regF(regF dst, regF src) %{
9867   // no match-rule, false predicate
9868   effect(DEF dst, USE src);
9869   predicate(false);
9870 
9871   format %{ "FCTIDZ $dst, $src \t// convF2L, $src != NaN" %}
9872   size(4);
9873   ins_encode %{
9874     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
9875     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
9876   %}
9877   ins_pipe(pipe_class_default);
9878 %}
9879 
9880 instruct cmovL_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL src) %{
9881   // no match-rule, false predicate
9882   effect(DEF dst, USE crx, USE src);
9883   predicate(false);
9884 
9885   ins_variable_size_depending_on_alignment(true);
9886 
9887   format %{ "cmovL   $crx, $dst, $src" %}
9888   // Worst case is branch + move + stop, no stop without scheduler.
9889   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
9890   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
9891   ins_pipe(pipe_class_default);
9892 %}
9893 
9894 instruct cmovL_bso_stackSlotL_conLvalue0_Ex(iRegLdst dst, flagsReg crx, stackSlotL mem) %{
9895   // no match-rule, false predicate
9896   effect(DEF dst, USE crx, USE mem);
9897   predicate(false);
9898 
9899   format %{ "CmovL   $dst, $crx, $mem \t// postalloc expanded" %}
9900   postalloc_expand %{
9901     //
9902     // replaces
9903     //
9904     //   region  dst  crx  mem
9905     //    \       |    |   /
9906     //     dst=cmovL_bso_stackSlotL_conLvalue0
9907     //
9908     // with
9909     //
9910     //   region  dst
9911     //    \       /
9912     //     dst=loadConL16(0)
9913     //      |
9914     //      ^  region  dst  crx  mem
9915     //      |   \       |    |    /
9916     //      dst=cmovL_bso_stackSlotL
9917     //
9918 
9919     // Create new nodes.
9920     MachNode *m1 = new (C) loadConL16Node();
9921     MachNode *m2 = new (C) cmovL_bso_stackSlotLNode();
9922 
9923     // inputs for new nodes
9924     m1->add_req(n_region);
9925     m2->add_req(n_region, n_crx, n_mem);
9926     m2->add_prec(m1);
9927 
9928     // operands for new nodes
9929     m1->_opnds[0] = op_dst;
9930     m1->_opnds[1] = new (C) immL16Oper(0);
9931     m2->_opnds[0] = op_dst;
9932     m2->_opnds[1] = op_crx;
9933     m2->_opnds[2] = op_mem;
9934 
9935     // registers for new nodes
9936     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9937     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9938 
9939     // Insert new nodes.
9940     nodes->push(m1);
9941     nodes->push(m2);
9942   %}
9943 %}
9944 
9945 // Float to Long conversion, NaN is mapped to 0.
9946 instruct convF2L_reg_ExEx(iRegLdst dst, regF src) %{
9947   match(Set dst (ConvF2L src));
9948   ins_cost(DEFAULT_COST);
9949 
9950   expand %{
9951     regF tmpF;
9952     stackSlotL tmpS;
9953     flagsReg crx;
9954     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9955     convF2LRaw_regF(tmpF, src);                         // Convert float to long (speculated).
9956     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
9957     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9958   %}
9959 %}
9960 
9961 instruct convD2LRaw_regD(regD dst, regD src) %{
9962   // no match-rule, false predicate
9963   effect(DEF dst, USE src);
9964   predicate(false);
9965 
9966   format %{ "FCTIDZ $dst, $src \t// convD2L $src != NaN" %}
9967   size(4);
9968   ins_encode %{
9969     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
9970     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
9971   %}
9972   ins_pipe(pipe_class_default);
9973 %}
9974 
9975 // Double to Long conversion, NaN is mapped to 0.
9976 instruct convD2L_reg_ExEx(iRegLdst dst, regD src) %{
9977   match(Set dst (ConvD2L src));
9978   ins_cost(DEFAULT_COST);
9979 
9980   expand %{
9981     regD tmpD;
9982     stackSlotL tmpS;
9983     flagsReg crx;
9984     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9985     convD2LRaw_regD(tmpD, src);                         // Convert float to long (speculated).
9986     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
9987     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9988   %}
9989 %}
9990 
9991 // Convert to Float
9992 
9993 // Placed here as needed in expand.
9994 instruct convL2DRaw_regD(regD dst, regD src) %{
9995   // no match-rule, false predicate
9996   effect(DEF dst, USE src);
9997   predicate(false);
9998 
9999   format %{ "FCFID $dst, $src \t// convL2D" %}
10000   size(4);
10001   ins_encode %{
10002     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
10003     __ fcfid($dst$$FloatRegister, $src$$FloatRegister);
10004   %}
10005   ins_pipe(pipe_class_default);
10006 %}
10007 
10008 // Placed here as needed in expand.
10009 instruct convD2F_reg(regF dst, regD src) %{
10010   match(Set dst (ConvD2F src));
10011   format %{ "FRSP    $dst, $src \t// convD2F" %}
10012   size(4);
10013   ins_encode %{
10014     // TODO: PPC port $archOpcode(ppc64Opcode_frsp);
10015     __ frsp($dst$$FloatRegister, $src$$FloatRegister);
10016   %}
10017   ins_pipe(pipe_class_default);
10018 %}
10019 
10020 // Integer to Float conversion.
10021 instruct convI2F_ireg_Ex(regF dst, iRegIsrc src) %{
10022   match(Set dst (ConvI2F src));
10023   predicate(!VM_Version::has_fcfids());
10024   ins_cost(DEFAULT_COST);
10025 
10026   expand %{
10027     iRegLdst tmpL;
10028     stackSlotL tmpS;
10029     regD tmpD;
10030     regD tmpD2;
10031     convI2L_reg(tmpL, src);              // Sign-extension int to long.
10032     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
10033     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10034     convL2DRaw_regD(tmpD2, tmpD);        // Convert to double.
10035     convD2F_reg(dst, tmpD2);             // Convert double to float.
10036   %}
10037 %}
10038 
10039 instruct convL2FRaw_regF(regF dst, regD src) %{
10040   // no match-rule, false predicate
10041   effect(DEF dst, USE src);
10042   predicate(false);
10043 
10044   format %{ "FCFIDS $dst, $src \t// convL2F" %}
10045   size(4);
10046   ins_encode %{
10047     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
10048     __ fcfids($dst$$FloatRegister, $src$$FloatRegister);
10049   %}
10050   ins_pipe(pipe_class_default);
10051 %}
10052 
10053 // Integer to Float conversion. Special version for Power7.
10054 instruct convI2F_ireg_fcfids_Ex(regF dst, iRegIsrc src) %{
10055   match(Set dst (ConvI2F src));
10056   predicate(VM_Version::has_fcfids());
10057   ins_cost(DEFAULT_COST);
10058 
10059   expand %{
10060     iRegLdst tmpL;
10061     stackSlotL tmpS;
10062     regD tmpD;
10063     convI2L_reg(tmpL, src);              // Sign-extension int to long.
10064     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
10065     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10066     convL2FRaw_regF(dst, tmpD);          // Convert to float.
10067   %}
10068 %}
10069 
10070 // L2F to avoid runtime call.
10071 instruct convL2F_ireg_fcfids_Ex(regF dst, iRegLsrc src) %{
10072   match(Set dst (ConvL2F src));
10073   predicate(VM_Version::has_fcfids());
10074   ins_cost(DEFAULT_COST);
10075 
10076   expand %{
10077     stackSlotL tmpS;
10078     regD tmpD;
10079     regL_to_stkL(tmpS, src);             // Store long to stack.
10080     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10081     convL2FRaw_regF(dst, tmpD);          // Convert to float.
10082   %}
10083 %}
10084 
10085 // Moved up as used in expand.
10086 //instruct convD2F_reg(regF dst, regD src) %{%}
10087 
10088 // Convert to Double
10089 
10090 // Integer to Double conversion.
10091 instruct convI2D_reg_Ex(regD dst, iRegIsrc src) %{
10092   match(Set dst (ConvI2D src));
10093   ins_cost(DEFAULT_COST);
10094 
10095   expand %{
10096     iRegLdst tmpL;
10097     stackSlotL tmpS;
10098     regD tmpD;
10099     convI2L_reg(tmpL, src);              // Sign-extension int to long.
10100     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
10101     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10102     convL2DRaw_regD(dst, tmpD);          // Convert to double.
10103   %}
10104 %}
10105 
10106 // Long to Double conversion
10107 instruct convL2D_reg_Ex(regD dst, stackSlotL src) %{
10108   match(Set dst (ConvL2D src));
10109   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10110 
10111   expand %{
10112     regD tmpD;
10113     moveL2D_stack_reg(tmpD, src);
10114     convL2DRaw_regD(dst, tmpD);
10115   %}
10116 %}
10117 
10118 instruct convF2D_reg(regD dst, regF src) %{
10119   match(Set dst (ConvF2D src));
10120   format %{ "FMR     $dst, $src \t// float->double" %}
10121   // variable size, 0 or 4
10122   ins_encode %{
10123     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
10124     __ fmr_if_needed($dst$$FloatRegister, $src$$FloatRegister);
10125   %}
10126   ins_pipe(pipe_class_default);
10127 %}
10128 
10129 //----------Control Flow Instructions------------------------------------------
10130 // Compare Instructions
10131 
10132 // Compare Integers
10133 instruct cmpI_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
10134   match(Set crx (CmpI src1 src2));
10135   size(4);
10136   format %{ "CMPW    $crx, $src1, $src2" %}
10137   ins_encode %{
10138     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
10139     __ cmpw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10140   %}
10141   ins_pipe(pipe_class_compare);
10142 %}
10143 
10144 instruct cmpI_reg_imm16(flagsReg crx, iRegIsrc src1, immI16 src2) %{
10145   match(Set crx (CmpI src1 src2));
10146   format %{ "CMPWI   $crx, $src1, $src2" %}
10147   size(4);
10148   ins_encode %{
10149     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10150     __ cmpwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10151   %}
10152   ins_pipe(pipe_class_compare);
10153 %}
10154 
10155 // (src1 & src2) == 0?
10156 instruct testI_reg_imm(flagsRegCR0 cr0, iRegIsrc src1, uimmI16 src2, immI_0 zero) %{
10157   match(Set cr0 (CmpI (AndI src1 src2) zero));
10158   // r0 is killed
10159   format %{ "ANDI    R0, $src1, $src2 \t// BTST int" %}
10160   size(4);
10161   ins_encode %{
10162     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
10163     // FIXME: avoid andi_ ?
10164     __ andi_(R0, $src1$$Register, $src2$$constant);
10165   %}
10166   ins_pipe(pipe_class_compare);
10167 %}
10168 
10169 instruct cmpL_reg_reg(flagsReg crx, iRegLsrc src1, iRegLsrc src2) %{
10170   match(Set crx (CmpL src1 src2));
10171   format %{ "CMPD    $crx, $src1, $src2" %}
10172   size(4);
10173   ins_encode %{
10174     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
10175     __ cmpd($crx$$CondRegister, $src1$$Register, $src2$$Register);
10176   %}
10177   ins_pipe(pipe_class_compare);
10178 %}
10179 
10180 instruct cmpL_reg_imm16(flagsReg crx, iRegLsrc src1, immL16 src2) %{
10181   match(Set crx (CmpL src1 src2));
10182   format %{ "CMPDI   $crx, $src1, $src2" %}
10183   size(4);
10184   ins_encode %{
10185     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10186     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10187   %}
10188   ins_pipe(pipe_class_compare);
10189 %}
10190 
10191 instruct testL_reg_reg(flagsRegCR0 cr0, iRegLsrc src1, iRegLsrc src2, immL_0 zero) %{
10192   match(Set cr0 (CmpL (AndL src1 src2) zero));
10193   // r0 is killed
10194   format %{ "AND     R0, $src1, $src2 \t// BTST long" %}
10195   size(4);
10196   ins_encode %{
10197     // TODO: PPC port $archOpcode(ppc64Opcode_and_);
10198     __ and_(R0, $src1$$Register, $src2$$Register);
10199   %}
10200   ins_pipe(pipe_class_compare);
10201 %}
10202 
10203 instruct testL_reg_imm(flagsRegCR0 cr0, iRegLsrc src1, uimmL16 src2, immL_0 zero) %{
10204   match(Set cr0 (CmpL (AndL src1 src2) zero));
10205   // r0 is killed
10206   format %{ "ANDI    R0, $src1, $src2 \t// BTST long" %}
10207   size(4);
10208   ins_encode %{
10209     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
10210     // FIXME: avoid andi_ ?
10211     __ andi_(R0, $src1$$Register, $src2$$constant);
10212   %}
10213   ins_pipe(pipe_class_compare);
10214 %}
10215 
10216 instruct cmovI_conIvalueMinus1_conIvalue1(iRegIdst dst, flagsReg crx) %{
10217   // no match-rule, false predicate
10218   effect(DEF dst, USE crx);
10219   predicate(false);
10220 
10221   ins_variable_size_depending_on_alignment(true);
10222 
10223   format %{ "cmovI   $crx, $dst, -1, 0, +1" %}
10224   // Worst case is branch + move + branch + move + stop, no stop without scheduler.
10225   size(false /* TODO: PPC PORTInsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 20 : 16);
10226   ins_encode %{
10227     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
10228     Label done;
10229     // li(Rdst, 0);              // equal -> 0
10230     __ beq($crx$$CondRegister, done);
10231     __ li($dst$$Register, 1);    // greater -> +1
10232     __ bgt($crx$$CondRegister, done);
10233     __ li($dst$$Register, -1);   // unordered or less -> -1
10234     // TODO: PPC port__ endgroup_if_needed(_size == 20);
10235     __ bind(done);
10236   %}
10237   ins_pipe(pipe_class_compare);
10238 %}
10239 
10240 instruct cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(iRegIdst dst, flagsReg crx) %{
10241   // no match-rule, false predicate
10242   effect(DEF dst, USE crx);
10243   predicate(false);
10244 
10245   format %{ "CmovI    $crx, $dst, -1, 0, +1 \t// postalloc expanded" %}
10246   postalloc_expand %{
10247     //
10248     // replaces
10249     //
10250     //   region  crx
10251     //    \       |
10252     //     dst=cmovI_conIvalueMinus1_conIvalue0_conIvalue1
10253     //
10254     // with
10255     //
10256     //   region
10257     //    \
10258     //     dst=loadConI16(0)
10259     //      |
10260     //      ^  region  crx
10261     //      |   \       |
10262     //      dst=cmovI_conIvalueMinus1_conIvalue1
10263     //
10264 
10265     // Create new nodes.
10266     MachNode *m1 = new (C) loadConI16Node();
10267     MachNode *m2 = new (C) cmovI_conIvalueMinus1_conIvalue1Node();
10268 
10269     // inputs for new nodes
10270     m1->add_req(n_region);
10271     m2->add_req(n_region, n_crx);
10272     m2->add_prec(m1);
10273 
10274     // operands for new nodes
10275     m1->_opnds[0] = op_dst;
10276     m1->_opnds[1] = new (C) immI16Oper(0);
10277     m2->_opnds[0] = op_dst;
10278     m2->_opnds[1] = op_crx;
10279 
10280     // registers for new nodes
10281     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
10282     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
10283 
10284     // Insert new nodes.
10285     nodes->push(m1);
10286     nodes->push(m2);
10287   %}
10288 %}
10289 
10290 // Manifest a CmpL3 result in an integer register. Very painful.
10291 // This is the test to avoid.
10292 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
10293 instruct cmpL3_reg_reg_ExEx(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
10294   match(Set dst (CmpL3 src1 src2));
10295   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10296 
10297   expand %{
10298     flagsReg tmp1;
10299     cmpL_reg_reg(tmp1, src1, src2);
10300     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10301   %}
10302 %}
10303 
10304 // Implicit range checks.
10305 // A range check in the ideal world has one of the following shapes:
10306 //  - (If le (CmpU length index)), (IfTrue  throw exception)
10307 //  - (If lt (CmpU index length)), (IfFalse throw exception)
10308 //
10309 // Match range check 'If le (CmpU length index)'.
10310 instruct rangeCheck_iReg_uimm15(cmpOp cmp, iRegIsrc src_length, uimmI15 index, label labl) %{
10311   match(If cmp (CmpU src_length index));
10312   effect(USE labl);
10313   predicate(TrapBasedRangeChecks &&
10314             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le &&
10315             PROB_UNLIKELY(_leaf->as_If()->_prob) >= PROB_ALWAYS &&
10316             (Matcher::branches_to_uncommon_trap(_leaf)));
10317 
10318   ins_is_TrapBasedCheckNode(true);
10319 
10320   format %{ "TWI     $index $cmp $src_length \t// RangeCheck => trap $labl" %}
10321   size(4);
10322   ins_encode %{
10323     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
10324     if ($cmp$$cmpcode == 0x1 /* less_equal */) {
10325       __ trap_range_check_le($src_length$$Register, $index$$constant);
10326     } else {
10327       // Both successors are uncommon traps, probability is 0.
10328       // Node got flipped during fixup flow.
10329       assert($cmp$$cmpcode == 0x9, "must be greater");
10330       __ trap_range_check_g($src_length$$Register, $index$$constant);
10331     }
10332   %}
10333   ins_pipe(pipe_class_trap);
10334 %}
10335 
10336 // Match range check 'If lt (CmpU index length)'.
10337 instruct rangeCheck_iReg_iReg(cmpOp cmp, iRegIsrc src_index, iRegIsrc src_length, label labl) %{
10338   match(If cmp (CmpU src_index src_length));
10339   effect(USE labl);
10340   predicate(TrapBasedRangeChecks &&
10341             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
10342             _leaf->as_If()->_prob >= PROB_ALWAYS &&
10343             (Matcher::branches_to_uncommon_trap(_leaf)));
10344 
10345   ins_is_TrapBasedCheckNode(true);
10346 
10347   format %{ "TW      $src_index $cmp $src_length \t// RangeCheck => trap $labl" %}
10348   size(4);
10349   ins_encode %{
10350     // TODO: PPC port $archOpcode(ppc64Opcode_tw);
10351     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
10352       __ trap_range_check_ge($src_index$$Register, $src_length$$Register);
10353     } else {
10354       // Both successors are uncommon traps, probability is 0.
10355       // Node got flipped during fixup flow.
10356       assert($cmp$$cmpcode == 0x8, "must be less");
10357       __ trap_range_check_l($src_index$$Register, $src_length$$Register);
10358     }
10359   %}
10360   ins_pipe(pipe_class_trap);
10361 %}
10362 
10363 // Match range check 'If lt (CmpU index length)'.
10364 instruct rangeCheck_uimm15_iReg(cmpOp cmp, iRegIsrc src_index, uimmI15 length, label labl) %{
10365   match(If cmp (CmpU src_index length));
10366   effect(USE labl);
10367   predicate(TrapBasedRangeChecks &&
10368             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
10369             _leaf->as_If()->_prob >= PROB_ALWAYS &&
10370             (Matcher::branches_to_uncommon_trap(_leaf)));
10371 
10372   ins_is_TrapBasedCheckNode(true);
10373 
10374   format %{ "TWI     $src_index $cmp $length \t// RangeCheck => trap $labl" %}
10375   size(4);
10376   ins_encode %{
10377     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
10378     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
10379       __ trap_range_check_ge($src_index$$Register, $length$$constant);
10380     } else {
10381       // Both successors are uncommon traps, probability is 0.
10382       // Node got flipped during fixup flow.
10383       assert($cmp$$cmpcode == 0x8, "must be less");
10384       __ trap_range_check_l($src_index$$Register, $length$$constant);
10385     }
10386   %}
10387   ins_pipe(pipe_class_trap);
10388 %}
10389 
10390 instruct compU_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
10391   match(Set crx (CmpU src1 src2));
10392   format %{ "CMPLW   $crx, $src1, $src2 \t// unsigned" %}
10393   size(4);
10394   ins_encode %{
10395     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10396     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10397   %}
10398   ins_pipe(pipe_class_compare);
10399 %}
10400 
10401 instruct compU_reg_uimm16(flagsReg crx, iRegIsrc src1, uimmI16 src2) %{
10402   match(Set crx (CmpU src1 src2));
10403   size(4);
10404   format %{ "CMPLWI  $crx, $src1, $src2" %}
10405   ins_encode %{
10406     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
10407     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10408   %}
10409   ins_pipe(pipe_class_compare);
10410 %}
10411 
10412 // Implicit zero checks (more implicit null checks).
10413 // No constant pool entries required.
10414 instruct zeroCheckN_iReg_imm0(cmpOp cmp, iRegNsrc value, immN_0 zero, label labl) %{
10415   match(If cmp (CmpN value zero));
10416   effect(USE labl);
10417   predicate(TrapBasedNullChecks &&
10418             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
10419             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
10420             Matcher::branches_to_uncommon_trap(_leaf));
10421   ins_cost(1);
10422 
10423   ins_is_TrapBasedCheckNode(true);
10424 
10425   format %{ "TDI     $value $cmp $zero \t// ZeroCheckN => trap $labl" %}
10426   size(4);
10427   ins_encode %{
10428     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
10429     if ($cmp$$cmpcode == 0xA) {
10430       __ trap_null_check($value$$Register);
10431     } else {
10432       // Both successors are uncommon traps, probability is 0.
10433       // Node got flipped during fixup flow.
10434       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
10435       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
10436     }
10437   %}
10438   ins_pipe(pipe_class_trap);
10439 %}
10440 
10441 // Compare narrow oops.
10442 instruct cmpN_reg_reg(flagsReg crx, iRegNsrc src1, iRegNsrc src2) %{
10443   match(Set crx (CmpN src1 src2));
10444 
10445   size(4);
10446   ins_cost(DEFAULT_COST);
10447   format %{ "CMPLW   $crx, $src1, $src2 \t// compressed ptr" %}
10448   ins_encode %{
10449     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10450     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10451   %}
10452   ins_pipe(pipe_class_compare);
10453 %}
10454 
10455 instruct cmpN_reg_imm0(flagsReg crx, iRegNsrc src1, immN_0 src2) %{
10456   match(Set crx (CmpN src1 src2));
10457   // Make this more expensive than zeroCheckN_iReg_imm0.
10458   ins_cost(DEFAULT_COST);
10459 
10460   format %{ "CMPLWI  $crx, $src1, $src2 \t// compressed ptr" %}
10461   size(4);
10462   ins_encode %{
10463     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
10464     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10465   %}
10466   ins_pipe(pipe_class_compare);
10467 %}
10468 
10469 // Implicit zero checks (more implicit null checks).
10470 // No constant pool entries required.
10471 instruct zeroCheckP_reg_imm0(cmpOp cmp, iRegP_N2P value, immP_0 zero, label labl) %{
10472   match(If cmp (CmpP value zero));
10473   effect(USE labl);
10474   predicate(TrapBasedNullChecks &&
10475             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
10476             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
10477             Matcher::branches_to_uncommon_trap(_leaf));
10478 
10479   ins_is_TrapBasedCheckNode(true);
10480 
10481   format %{ "TDI     $value $cmp $zero \t// ZeroCheckP => trap $labl" %}
10482   size(4);
10483   ins_encode %{
10484     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
10485     if ($cmp$$cmpcode == 0xA) {
10486       __ trap_null_check($value$$Register);
10487     } else {
10488       // Both successors are uncommon traps, probability is 0.
10489       // Node got flipped during fixup flow.
10490       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
10491       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
10492     }
10493   %}
10494   ins_pipe(pipe_class_trap);
10495 %}
10496 
10497 // Compare Pointers
10498 instruct cmpP_reg_reg(flagsReg crx, iRegP_N2P src1, iRegP_N2P src2) %{
10499   match(Set crx (CmpP src1 src2));
10500   format %{ "CMPLD   $crx, $src1, $src2 \t// ptr" %}
10501   size(4);
10502   ins_encode %{
10503     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10504     __ cmpld($crx$$CondRegister, $src1$$Register, $src2$$Register);
10505   %}
10506   ins_pipe(pipe_class_compare);
10507 %}
10508 
10509 // Used in postalloc expand.
10510 instruct cmpP_reg_imm16(flagsReg crx, iRegPsrc src1, immL16 src2) %{
10511   // This match rule prevents reordering of node before a safepoint.
10512   // This only makes sense if this instructions is used exclusively
10513   // for the expansion of EncodeP!
10514   match(Set crx (CmpP src1 src2));
10515   predicate(false);
10516 
10517   format %{ "CMPDI   $crx, $src1, $src2" %}
10518   size(4);
10519   ins_encode %{
10520     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10521     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10522   %}
10523   ins_pipe(pipe_class_compare);
10524 %}
10525 
10526 //----------Float Compares----------------------------------------------------
10527 
10528 instruct cmpFUnordered_reg_reg(flagsReg crx, regF src1, regF src2) %{
10529   // no match-rule, false predicate
10530   effect(DEF crx, USE src1, USE src2);
10531   predicate(false);
10532 
10533   format %{ "cmpFUrd $crx, $src1, $src2" %}
10534   size(4);
10535   ins_encode %{
10536     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
10537     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
10538   %}
10539   ins_pipe(pipe_class_default);
10540 %}
10541 
10542 instruct cmov_bns_less(flagsReg crx) %{
10543   // no match-rule, false predicate
10544   effect(DEF crx);
10545   predicate(false);
10546 
10547   ins_variable_size_depending_on_alignment(true);
10548 
10549   format %{ "cmov    $crx" %}
10550   // Worst case is branch + move + stop, no stop without scheduler.
10551   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 16 : 12);
10552   ins_encode %{
10553     // TODO: PPC port $archOpcode(ppc64Opcode_cmovecr);
10554     Label done;
10555     __ bns($crx$$CondRegister, done);        // not unordered -> keep crx
10556     __ li(R0, 0);
10557     __ cmpwi($crx$$CondRegister, R0, 1);     // unordered -> set crx to 'less'
10558     // TODO PPC port __ endgroup_if_needed(_size == 16);
10559     __ bind(done);
10560   %}
10561   ins_pipe(pipe_class_default);
10562 %}
10563 
10564 // Compare floating, generate condition code.
10565 instruct cmpF_reg_reg_Ex(flagsReg crx, regF src1, regF src2) %{
10566   // FIXME: should we match 'If cmp (CmpF src1 src2))' ??
10567   //
10568   // The following code sequence occurs a lot in mpegaudio:
10569   //
10570   // block BXX:
10571   // 0: instruct cmpFUnordered_reg_reg (cmpF_reg_reg-0):
10572   //    cmpFUrd CCR6, F11, F9
10573   // 4: instruct cmov_bns_less (cmpF_reg_reg-1):
10574   //    cmov CCR6
10575   // 8: instruct branchConSched:
10576   //    B_FARle CCR6, B56  P=0.500000 C=-1.000000
10577   match(Set crx (CmpF src1 src2));
10578   ins_cost(DEFAULT_COST+BRANCH_COST);
10579 
10580   format %{ "CmpF    $crx, $src1, $src2 \t// postalloc expanded" %}
10581   postalloc_expand %{
10582     //
10583     // replaces
10584     //
10585     //   region  src1  src2
10586     //    \       |     |
10587     //     crx=cmpF_reg_reg
10588     //
10589     // with
10590     //
10591     //   region  src1  src2
10592     //    \       |     |
10593     //     crx=cmpFUnordered_reg_reg
10594     //      |
10595     //      ^  region
10596     //      |   \
10597     //      crx=cmov_bns_less
10598     //
10599 
10600     // Create new nodes.
10601     MachNode *m1 = new (C) cmpFUnordered_reg_regNode();
10602     MachNode *m2 = new (C) cmov_bns_lessNode();
10603 
10604     // inputs for new nodes
10605     m1->add_req(n_region, n_src1, n_src2);
10606     m2->add_req(n_region);
10607     m2->add_prec(m1);
10608 
10609     // operands for new nodes
10610     m1->_opnds[0] = op_crx;
10611     m1->_opnds[1] = op_src1;
10612     m1->_opnds[2] = op_src2;
10613     m2->_opnds[0] = op_crx;
10614 
10615     // registers for new nodes
10616     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10617     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10618 
10619     // Insert new nodes.
10620     nodes->push(m1);
10621     nodes->push(m2);
10622   %}
10623 %}
10624 
10625 // Compare float, generate -1,0,1
10626 instruct cmpF3_reg_reg_ExEx(iRegIdst dst, regF src1, regF src2) %{
10627   match(Set dst (CmpF3 src1 src2));
10628   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10629 
10630   expand %{
10631     flagsReg tmp1;
10632     cmpFUnordered_reg_reg(tmp1, src1, src2);
10633     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10634   %}
10635 %}
10636 
10637 instruct cmpDUnordered_reg_reg(flagsReg crx, regD src1, regD src2) %{
10638   // no match-rule, false predicate
10639   effect(DEF crx, USE src1, USE src2);
10640   predicate(false);
10641 
10642   format %{ "cmpFUrd $crx, $src1, $src2" %}
10643   size(4);
10644   ins_encode %{
10645     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
10646     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
10647   %}
10648   ins_pipe(pipe_class_default);
10649 %}
10650 
10651 instruct cmpD_reg_reg_Ex(flagsReg crx, regD src1, regD src2) %{
10652   match(Set crx (CmpD src1 src2));
10653   ins_cost(DEFAULT_COST+BRANCH_COST);
10654 
10655   format %{ "CmpD    $crx, $src1, $src2 \t// postalloc expanded" %}
10656   postalloc_expand %{
10657     //
10658     // replaces
10659     //
10660     //   region  src1  src2
10661     //    \       |     |
10662     //     crx=cmpD_reg_reg
10663     //
10664     // with
10665     //
10666     //   region  src1  src2
10667     //    \       |     |
10668     //     crx=cmpDUnordered_reg_reg
10669     //      |
10670     //      ^  region
10671     //      |   \
10672     //      crx=cmov_bns_less
10673     //
10674 
10675     // create new nodes
10676     MachNode *m1 = new (C) cmpDUnordered_reg_regNode();
10677     MachNode *m2 = new (C) cmov_bns_lessNode();
10678 
10679     // inputs for new nodes
10680     m1->add_req(n_region, n_src1, n_src2);
10681     m2->add_req(n_region);
10682     m2->add_prec(m1);
10683 
10684     // operands for new nodes
10685     m1->_opnds[0] = op_crx;
10686     m1->_opnds[1] = op_src1;
10687     m1->_opnds[2] = op_src2;
10688     m2->_opnds[0] = op_crx;
10689 
10690     // registers for new nodes
10691     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10692     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10693 
10694     // Insert new nodes.
10695     nodes->push(m1);
10696     nodes->push(m2);
10697   %}
10698 %}
10699 
10700 // Compare double, generate -1,0,1
10701 instruct cmpD3_reg_reg_ExEx(iRegIdst dst, regD src1, regD src2) %{
10702   match(Set dst (CmpD3 src1 src2));
10703   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10704 
10705   expand %{
10706     flagsReg tmp1;
10707     cmpDUnordered_reg_reg(tmp1, src1, src2);
10708     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10709   %}
10710 %}
10711 
10712 //----------Branches---------------------------------------------------------
10713 // Jump
10714 
10715 // Direct Branch.
10716 instruct branch(label labl) %{
10717   match(Goto);
10718   effect(USE labl);
10719   ins_cost(BRANCH_COST);
10720 
10721   format %{ "B       $labl" %}
10722   size(4);
10723   ins_encode %{
10724     // TODO: PPC port $archOpcode(ppc64Opcode_b);
10725      Label d;    // dummy
10726      __ bind(d);
10727      Label* p = $labl$$label;
10728      // `p' is `NULL' when this encoding class is used only to
10729      // determine the size of the encoded instruction.
10730      Label& l = (NULL == p)? d : *(p);
10731      __ b(l);
10732   %}
10733   ins_pipe(pipe_class_default);
10734 %}
10735 
10736 // Conditional Near Branch
10737 instruct branchCon(cmpOp cmp, flagsReg crx, label lbl) %{
10738   // Same match rule as `branchConFar'.
10739   match(If cmp crx);
10740   effect(USE lbl);
10741   ins_cost(BRANCH_COST);
10742 
10743   // If set to 1 this indicates that the current instruction is a
10744   // short variant of a long branch. This avoids using this
10745   // instruction in first-pass matching. It will then only be used in
10746   // the `Shorten_branches' pass.
10747   ins_short_branch(1);
10748 
10749   format %{ "B$cmp     $crx, $lbl" %}
10750   size(4);
10751   ins_encode( enc_bc(crx, cmp, lbl) );
10752   ins_pipe(pipe_class_default);
10753 %}
10754 
10755 // This is for cases when the ppc64 `bc' instruction does not
10756 // reach far enough. So we emit a far branch here, which is more
10757 // expensive.
10758 //
10759 // Conditional Far Branch
10760 instruct branchConFar(cmpOp cmp, flagsReg crx, label lbl) %{
10761   // Same match rule as `branchCon'.
10762   match(If cmp crx);
10763   effect(USE crx, USE lbl);
10764   predicate(!false /* TODO: PPC port HB_Schedule*/);
10765   // Higher cost than `branchCon'.
10766   ins_cost(5*BRANCH_COST);
10767 
10768   // This is not a short variant of a branch, but the long variant.
10769   ins_short_branch(0);
10770 
10771   format %{ "B_FAR$cmp $crx, $lbl" %}
10772   size(8);
10773   ins_encode( enc_bc_far(crx, cmp, lbl) );
10774   ins_pipe(pipe_class_default);
10775 %}
10776 
10777 // Conditional Branch used with Power6 scheduler (can be far or short).
10778 instruct branchConSched(cmpOp cmp, flagsReg crx, label lbl) %{
10779   // Same match rule as `branchCon'.
10780   match(If cmp crx);
10781   effect(USE crx, USE lbl);
10782   predicate(false /* TODO: PPC port HB_Schedule*/);
10783   // Higher cost than `branchCon'.
10784   ins_cost(5*BRANCH_COST);
10785 
10786   // Actually size doesn't depend on alignment but on shortening.
10787   ins_variable_size_depending_on_alignment(true);
10788   // long variant.
10789   ins_short_branch(0);
10790 
10791   format %{ "B_FAR$cmp $crx, $lbl" %}
10792   size(8); // worst case
10793   ins_encode( enc_bc_short_far(crx, cmp, lbl) );
10794   ins_pipe(pipe_class_default);
10795 %}
10796 
10797 instruct branchLoopEnd(cmpOp cmp, flagsReg crx, label labl) %{
10798   match(CountedLoopEnd cmp crx);
10799   effect(USE labl);
10800   ins_cost(BRANCH_COST);
10801 
10802   // short variant.
10803   ins_short_branch(1);
10804 
10805   format %{ "B$cmp     $crx, $labl \t// counted loop end" %}
10806   size(4);
10807   ins_encode( enc_bc(crx, cmp, labl) );
10808   ins_pipe(pipe_class_default);
10809 %}
10810 
10811 instruct branchLoopEndFar(cmpOp cmp, flagsReg crx, label labl) %{
10812   match(CountedLoopEnd cmp crx);
10813   effect(USE labl);
10814   predicate(!false /* TODO: PPC port HB_Schedule */);
10815   ins_cost(BRANCH_COST);
10816 
10817   // Long variant.
10818   ins_short_branch(0);
10819 
10820   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
10821   size(8);
10822   ins_encode( enc_bc_far(crx, cmp, labl) );
10823   ins_pipe(pipe_class_default);
10824 %}
10825 
10826 // Conditional Branch used with Power6 scheduler (can be far or short).
10827 instruct branchLoopEndSched(cmpOp cmp, flagsReg crx, label labl) %{
10828   match(CountedLoopEnd cmp crx);
10829   effect(USE labl);
10830   predicate(false /* TODO: PPC port HB_Schedule */);
10831   // Higher cost than `branchCon'.
10832   ins_cost(5*BRANCH_COST);
10833 
10834   // Actually size doesn't depend on alignment but on shortening.
10835   ins_variable_size_depending_on_alignment(true);
10836   // Long variant.
10837   ins_short_branch(0);
10838 
10839   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
10840   size(8); // worst case
10841   ins_encode( enc_bc_short_far(crx, cmp, labl) );
10842   ins_pipe(pipe_class_default);
10843 %}
10844 
10845 // ============================================================================
10846 // Java runtime operations, intrinsics and other complex operations.
10847 
10848 // The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
10849 // array for an instance of the superklass. Set a hidden internal cache on a
10850 // hit (cache is checked with exposed code in gen_subtype_check()). Return
10851 // not zero for a miss or zero for a hit. The encoding ALSO sets flags.
10852 //
10853 // GL TODO: Improve this.
10854 // - result should not be a TEMP
10855 // - Add match rule as on sparc avoiding additional Cmp.
10856 instruct partialSubtypeCheck(iRegPdst result, iRegP_N2P subklass, iRegP_N2P superklass,
10857                              iRegPdst tmp_klass, iRegPdst tmp_arrayptr) %{
10858   match(Set result (PartialSubtypeCheck subklass superklass));
10859   effect(TEMP result, TEMP tmp_klass, TEMP tmp_arrayptr);
10860   ins_cost(DEFAULT_COST*10);
10861 
10862   format %{ "PartialSubtypeCheck $result = ($subklass instanceOf $superklass) tmp: $tmp_klass, $tmp_arrayptr" %}
10863   ins_encode %{
10864     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10865     __ check_klass_subtype_slow_path($subklass$$Register, $superklass$$Register, $tmp_arrayptr$$Register, 
10866                                      $tmp_klass$$Register, NULL, $result$$Register);
10867   %}
10868   ins_pipe(pipe_class_default);
10869 %}
10870 
10871 // inlined locking and unlocking
10872 
10873 instruct cmpFastLock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
10874   match(Set crx (FastLock oop box));
10875   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
10876   // TODO PPC port predicate(!UseNewFastLockPPC64 || UseBiasedLocking);
10877 
10878   format %{ "FASTLOCK  $oop, $box, $tmp1, $tmp2, $tmp3" %}
10879   ins_encode %{
10880     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10881     __ compiler_fast_lock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
10882                                  $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
10883     // If locking was successfull, crx should indicate 'EQ'.
10884     // The compiler generates a branch to the runtime call to
10885     // _complete_monitor_locking_Java for the case where crx is 'NE'.
10886   %}
10887   ins_pipe(pipe_class_compare);
10888 %}
10889 
10890 instruct cmpFastUnlock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
10891   match(Set crx (FastUnlock oop box));
10892   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
10893 
10894   format %{ "FASTUNLOCK  $oop, $box, $tmp1, $tmp2" %}
10895   ins_encode %{
10896     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10897     __ compiler_fast_unlock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
10898                                    $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
10899     // If unlocking was successfull, crx should indicate 'EQ'.
10900     // The compiler generates a branch to the runtime call to
10901     // _complete_monitor_unlocking_Java for the case where crx is 'NE'.
10902   %}
10903   ins_pipe(pipe_class_compare);
10904 %}
10905 
10906 // Align address.
10907 instruct align_addr(iRegPdst dst, iRegPsrc src, immLnegpow2 mask) %{
10908   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
10909 
10910   format %{ "ANDDI   $dst, $src, $mask \t// next aligned address" %}
10911   size(4);
10912   ins_encode %{
10913     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
10914     __ clrrdi($dst$$Register, $src$$Register, log2_long((jlong)-$mask$$constant));
10915   %}
10916   ins_pipe(pipe_class_default);
10917 %}
10918 
10919 // Array size computation.
10920 instruct array_size(iRegLdst dst, iRegPsrc end, iRegPsrc start) %{
10921   match(Set dst (SubL (CastP2X end) (CastP2X start)));
10922 
10923   format %{ "SUB     $dst, $end, $start \t// array size in bytes" %}
10924   size(4);
10925   ins_encode %{
10926     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
10927     __ subf($dst$$Register, $start$$Register, $end$$Register);
10928   %}
10929   ins_pipe(pipe_class_default);
10930 %}
10931 
10932 // Clear-array with dynamic array-size.
10933 instruct inlineCallClearArray(rarg1RegL cnt, rarg2RegP base, Universe dummy, regCTR ctr) %{
10934   match(Set dummy (ClearArray cnt base));
10935   effect(USE_KILL cnt, USE_KILL base, KILL ctr);
10936   ins_cost(MEMORY_REF_COST);
10937 
10938   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
10939 
10940   format %{ "ClearArray $cnt, $base" %}
10941   ins_encode %{
10942     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10943     __ clear_memory_doubleword($base$$Register, $cnt$$Register); // kills cnt, base, R0
10944   %}
10945   ins_pipe(pipe_class_default);
10946 %}
10947 
10948 // String_IndexOf for needle of length 1.
10949 //
10950 // Match needle into immediate operands: no loadConP node needed. Saves one
10951 // register and two instructions over string_indexOf_imm1Node.
10952 //
10953 // Assumes register result differs from all input registers.
10954 //
10955 // Preserves registers haystack, haycnt
10956 // Kills     registers tmp1, tmp2
10957 // Defines   registers result
10958 //
10959 // Use dst register classes if register gets killed, as it is the case for tmp registers!
10960 //
10961 // Unfortunately this does not match too often. In many situations the AddP is used
10962 // by several nodes, even several StrIndexOf nodes, breaking the match tree.
10963 instruct string_indexOf_imm1_char(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
10964                                   immP needleImm, immL offsetImm, immI_1 needlecntImm,
10965                                   iRegIdst tmp1, iRegIdst tmp2,
10966                                   flagsRegCR0 cr0, flagsRegCR1 cr1) %{
10967   predicate(SpecialStringIndexOf);  // type check implicit by parameter type, See Matcher::match_rule_supported
10968   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary (AddP needleImm offsetImm) needlecntImm)));
10969 
10970   effect(TEMP result, TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1);
10971 
10972   ins_cost(150);
10973   format %{ "String IndexOf CSCL1 $haystack[0..$haycnt], $needleImm+$offsetImm[0..$needlecntImm]"
10974             "-> $result \t// KILL $haycnt, $tmp1, $tmp2, $cr0, $cr1" %}
10975 
10976   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted
10977   ins_encode %{
10978     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10979     immPOper *needleOper = (immPOper *)$needleImm;
10980     const TypeOopPtr *t = needleOper->type()->isa_oopptr();
10981     ciTypeArray* needle_values = t->const_oop()->as_type_array();  // Pointer to live char *
10982 
10983     __ string_indexof_1($result$$Register,
10984                         $haystack$$Register, $haycnt$$Register,
10985                         R0, needle_values->char_at(0),
10986                         $tmp1$$Register, $tmp2$$Register);
10987   %}
10988   ins_pipe(pipe_class_compare);
10989 %}
10990 
10991 // String_IndexOf for needle of length 1.
10992 //
10993 // Special case requires less registers and emits less instructions.
10994 //
10995 // Assumes register result differs from all input registers.
10996 //
10997 // Preserves registers haystack, haycnt
10998 // Kills     registers tmp1, tmp2, needle
10999 // Defines   registers result
11000 //
11001 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11002 instruct string_indexOf_imm1(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
11003                              rscratch2RegP needle, immI_1 needlecntImm,
11004                              iRegIdst tmp1, iRegIdst tmp2,
11005                              flagsRegCR0 cr0, flagsRegCR1 cr1) %{
11006   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
11007   effect(USE_KILL needle, /* TDEF needle, */ TEMP result,
11008          TEMP tmp1, TEMP tmp2);
11009   // Required for EA: check if it is still a type_array.
11010   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
11011             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
11012   ins_cost(180);
11013 
11014   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11015 
11016   format %{ "String IndexOf SCL1 $haystack[0..$haycnt], $needle[0..$needlecntImm]"
11017             " -> $result \t// KILL $haycnt, $needle, $tmp1, $tmp2, $cr0, $cr1" %}
11018   ins_encode %{
11019     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11020     Node *ndl = in(operand_index($needle));  // The node that defines needle.
11021     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
11022     guarantee(needle_values, "sanity");
11023     if (needle_values != NULL) {
11024       __ string_indexof_1($result$$Register,
11025                           $haystack$$Register, $haycnt$$Register,
11026                           R0, needle_values->char_at(0),
11027                           $tmp1$$Register, $tmp2$$Register);
11028     } else {
11029       __ string_indexof_1($result$$Register,
11030                           $haystack$$Register, $haycnt$$Register,
11031                           $needle$$Register, 0,
11032                           $tmp1$$Register, $tmp2$$Register);
11033     }
11034   %}
11035   ins_pipe(pipe_class_compare);
11036 %}
11037 
11038 // String_IndexOf.
11039 //
11040 // Length of needle as immediate. This saves instruction loading constant needle
11041 // length.
11042 // @@@ TODO Specify rules for length < 8 or so, and roll out comparison of needle
11043 // completely or do it in vector instruction. This should save registers for
11044 // needlecnt and needle.
11045 //
11046 // Assumes register result differs from all input registers.
11047 // Overwrites haycnt, needlecnt.
11048 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11049 instruct string_indexOf_imm(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt,
11050                             iRegPsrc needle, uimmI15 needlecntImm,
11051                             iRegIdst tmp1, iRegIdst tmp2, iRegIdst tmp3, iRegIdst tmp4, iRegIdst tmp5,
11052                             flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
11053   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
11054   effect(USE_KILL haycnt, /* better: TDEF haycnt, */ TEMP result,
11055          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, KILL cr0, KILL cr1, KILL cr6);
11056   // Required for EA: check if it is still a type_array.
11057   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
11058             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
11059   ins_cost(250);
11060 
11061   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11062 
11063   format %{ "String IndexOf SCL $haystack[0..$haycnt], $needle[0..$needlecntImm]"
11064             " -> $result \t// KILL $haycnt, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5, $cr0, $cr1" %}
11065   ins_encode %{
11066     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11067     Node *ndl = in(operand_index($needle));  // The node that defines needle.
11068     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
11069 
11070     __ string_indexof($result$$Register,
11071                       $haystack$$Register, $haycnt$$Register,
11072                       $needle$$Register, needle_values, $tmp5$$Register, $needlecntImm$$constant,
11073                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
11074   %}
11075   ins_pipe(pipe_class_compare);
11076 %}
11077 
11078 // StrIndexOf node.
11079 //
11080 // Assumes register result differs from all input registers.
11081 // Overwrites haycnt, needlecnt.
11082 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11083 instruct string_indexOf(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt, iRegPsrc needle, rscratch2RegI needlecnt,
11084                         iRegLdst tmp1, iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4,
11085                         flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
11086   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
11087   effect(USE_KILL haycnt, USE_KILL needlecnt, /*better: TDEF haycnt, TDEF needlecnt,*/
11088          TEMP result,
11089          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr0, KILL cr1, KILL cr6);
11090   predicate(SpecialStringIndexOf);  // See Matcher::match_rule_supported.
11091   ins_cost(300);
11092 
11093   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11094 
11095   format %{ "String IndexOf $haystack[0..$haycnt], $needle[0..$needlecnt]"
11096              " -> $result \t// KILL $haycnt, $needlecnt, $tmp1, $tmp2, $tmp3, $tmp4, $cr0, $cr1" %}
11097   ins_encode %{
11098     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11099     __ string_indexof($result$$Register,
11100                       $haystack$$Register, $haycnt$$Register,
11101                       $needle$$Register, NULL, $needlecnt$$Register, 0,  // needlecnt not constant.
11102                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
11103   %}
11104   ins_pipe(pipe_class_compare);
11105 %}
11106 
11107 // String equals with immediate.
11108 instruct string_equals_imm(iRegPsrc str1, iRegPsrc str2, uimmI15 cntImm, iRegIdst result,
11109                            iRegPdst tmp1, iRegPdst tmp2,
11110                            flagsRegCR0 cr0, flagsRegCR6 cr6, regCTR ctr) %{
11111   match(Set result (StrEquals (Binary str1 str2) cntImm));
11112   effect(TEMP result, TEMP tmp1, TEMP tmp2,
11113          KILL cr0, KILL cr6, KILL ctr);
11114   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
11115   ins_cost(250);
11116 
11117   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11118 
11119   format %{ "String Equals SCL [0..$cntImm]($str1),[0..$cntImm]($str2)"
11120             " -> $result \t// KILL $cr0, $cr6, $ctr, TEMP $result, $tmp1, $tmp2" %}
11121   ins_encode %{
11122     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11123     __ char_arrays_equalsImm($str1$$Register, $str2$$Register, $cntImm$$constant,
11124                              $result$$Register, $tmp1$$Register, $tmp2$$Register);
11125   %}
11126   ins_pipe(pipe_class_compare);
11127 %}
11128 
11129 // String equals.
11130 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
11131 instruct string_equals(iRegPsrc str1, iRegPsrc str2, iRegIsrc cnt, iRegIdst result,
11132                        iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3, iRegPdst tmp4, iRegPdst tmp5,
11133                        flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
11134   match(Set result (StrEquals (Binary str1 str2) cnt));
11135   effect(TEMP result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5,
11136          KILL cr0, KILL cr1, KILL cr6, KILL ctr);
11137   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
11138   ins_cost(300);
11139 
11140   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11141 
11142   format %{ "String Equals [0..$cnt]($str1),[0..$cnt]($str2) -> $result"
11143             " \t// KILL $cr0, $cr1, $cr6, $ctr, TEMP $result, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5" %}
11144   ins_encode %{
11145     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11146     __ char_arrays_equals($str1$$Register, $str2$$Register, $cnt$$Register, $result$$Register,
11147                           $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, $tmp5$$Register);
11148   %}
11149   ins_pipe(pipe_class_compare);
11150 %}
11151 
11152 // String compare.
11153 // Char[] pointers are passed in.
11154 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
11155 instruct string_compare(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt1, rarg4RegI cnt2, iRegIdst result,
11156                         iRegPdst tmp, flagsRegCR0 cr0, regCTR ctr) %{
11157   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11158   effect(USE_KILL cnt1, USE_KILL cnt2, USE_KILL str1, USE_KILL str2, TEMP result, TEMP tmp, KILL cr0, KILL ctr);
11159   ins_cost(300);
11160 
11161   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11162 
11163   format %{ "String Compare $str1[0..$cnt1], $str2[0..$cnt2] -> $result"
11164             " \t// TEMP $tmp, $result KILLs $str1, $cnt1, $str2, $cnt2, $cr0, $ctr" %}
11165   ins_encode %{
11166     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11167     __ string_compare($str1$$Register, $str2$$Register, $cnt1$$Register, $cnt2$$Register,
11168                       $result$$Register, $tmp$$Register);
11169   %}
11170   ins_pipe(pipe_class_compare);
11171 %}
11172 
11173 //---------- Min/Max Instructions ---------------------------------------------
11174 
11175 instruct minI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
11176   match(Set dst (MinI src1 src2));
11177   ins_cost(DEFAULT_COST*6);
11178 
11179   expand %{
11180     iRegIdst src1s;
11181     iRegIdst src2s;
11182     iRegIdst diff;
11183     iRegIdst sm;
11184     iRegIdst doz; // difference or zero
11185     sxtI_reg(src1s, src1); // Ensure proper sign extention.
11186     sxtI_reg(src2s, src2); // Ensure proper sign extention.
11187     subI_reg_reg(diff, src2s, src1s);
11188     // Need to consider >=33 bit result, therefore we need signmaskL.
11189     signmask64I_regI(sm, diff);
11190     andI_reg_reg(doz, diff, sm); // <=0
11191     addI_reg_reg(dst, doz, src1s);
11192   %}
11193 %}
11194 
11195 instruct maxI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
11196   match(Set dst (MaxI src1 src2));
11197   ins_cost(DEFAULT_COST*6);
11198 
11199   expand %{
11200     immI_minus1 m1 %{ -1 %}
11201     iRegIdst src1s;
11202     iRegIdst src2s;
11203     iRegIdst diff;
11204     iRegIdst sm;
11205     iRegIdst doz; // difference or zero
11206     sxtI_reg(src1s, src1); // Ensure proper sign extention.
11207     sxtI_reg(src2s, src2); // Ensure proper sign extention.
11208     subI_reg_reg(diff, src2s, src1s);
11209     // Need to consider >=33 bit result, therefore we need signmaskL.
11210     signmask64I_regI(sm, diff);
11211     andcI_reg_reg(doz, sm, m1, diff); // >=0
11212     addI_reg_reg(dst, doz, src1s);
11213   %}
11214 %}
11215 
11216 //---------- Population Count Instructions ------------------------------------
11217 
11218 // Popcnt for Power7.
11219 instruct popCountI(iRegIdst dst, iRegIsrc src) %{
11220   match(Set dst (PopCountI src));
11221   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
11222   ins_cost(DEFAULT_COST);
11223 
11224   format %{ "POPCNTW $dst, $src" %}
11225   size(4);
11226   ins_encode %{
11227     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
11228     __ popcntw($dst$$Register, $src$$Register);
11229   %}
11230   ins_pipe(pipe_class_default);
11231 %}
11232 
11233 // Popcnt for Power7.
11234 instruct popCountL(iRegIdst dst, iRegLsrc src) %{
11235   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
11236   match(Set dst (PopCountL src));
11237   ins_cost(DEFAULT_COST);
11238 
11239   format %{ "POPCNTD $dst, $src" %}
11240   size(4);
11241   ins_encode %{
11242     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
11243     __ popcntd($dst$$Register, $src$$Register);
11244   %}
11245   ins_pipe(pipe_class_default);
11246 %}
11247 
11248 instruct countLeadingZerosI(iRegIdst dst, iRegIsrc src) %{
11249   match(Set dst (CountLeadingZerosI src));
11250   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
11251   ins_cost(DEFAULT_COST);
11252 
11253   format %{ "CNTLZW  $dst, $src" %}
11254   size(4);
11255   ins_encode %{
11256     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzw);
11257     __ cntlzw($dst$$Register, $src$$Register);
11258   %}
11259   ins_pipe(pipe_class_default);
11260 %}
11261 
11262 instruct countLeadingZerosL(iRegIdst dst, iRegLsrc src) %{
11263   match(Set dst (CountLeadingZerosL src));
11264   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
11265   ins_cost(DEFAULT_COST);
11266 
11267   format %{ "CNTLZD  $dst, $src" %}
11268   size(4);
11269   ins_encode %{
11270     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
11271     __ cntlzd($dst$$Register, $src$$Register);
11272   %}
11273   ins_pipe(pipe_class_default);
11274 %}
11275 
11276 instruct countLeadingZerosP(iRegIdst dst, iRegPsrc src) %{
11277   // no match-rule, false predicate
11278   effect(DEF dst, USE src);
11279   predicate(false);
11280 
11281   format %{ "CNTLZD  $dst, $src" %}
11282   size(4);
11283   ins_encode %{
11284     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
11285     __ cntlzd($dst$$Register, $src$$Register);
11286   %}
11287   ins_pipe(pipe_class_default);
11288 %}
11289 
11290 instruct countTrailingZerosI_Ex(iRegIdst dst, iRegIsrc src) %{
11291   match(Set dst (CountTrailingZerosI src));
11292   predicate(UseCountLeadingZerosInstructionsPPC64);
11293   ins_cost(DEFAULT_COST);
11294 
11295   expand %{
11296     immI16 imm1 %{ (int)-1 %}
11297     immI16 imm2 %{ (int)32 %}
11298     immI_minus1 m1 %{ -1 %}
11299     iRegIdst tmpI1;
11300     iRegIdst tmpI2;
11301     iRegIdst tmpI3;
11302     addI_reg_imm16(tmpI1, src, imm1);
11303     andcI_reg_reg(tmpI2, src, m1, tmpI1);
11304     countLeadingZerosI(tmpI3, tmpI2);
11305     subI_imm16_reg(dst, imm2, tmpI3);
11306   %}
11307 %}
11308 
11309 instruct countTrailingZerosL_Ex(iRegIdst dst, iRegLsrc src) %{
11310   match(Set dst (CountTrailingZerosL src));
11311   predicate(UseCountLeadingZerosInstructionsPPC64);
11312   ins_cost(DEFAULT_COST);
11313 
11314   expand %{
11315     immL16 imm1 %{ (long)-1 %}
11316     immI16 imm2 %{ (int)64 %}
11317     iRegLdst tmpL1;
11318     iRegLdst tmpL2;
11319     iRegIdst tmpL3;
11320     addL_reg_imm16(tmpL1, src, imm1);
11321     andcL_reg_reg(tmpL2, tmpL1, src);
11322     countLeadingZerosL(tmpL3, tmpL2);
11323     subI_imm16_reg(dst, imm2, tmpL3);
11324  %}
11325 %}
11326 
11327 // Expand nodes for byte_reverse_int.
11328 instruct insrwi_a(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
11329   effect(DEF dst, USE src, USE pos, USE shift);
11330   predicate(false);
11331 
11332   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
11333   size(4);
11334   ins_encode %{
11335     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
11336     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
11337   %}
11338   ins_pipe(pipe_class_default);
11339 %}
11340 
11341 // As insrwi_a, but with USE_DEF.
11342 instruct insrwi(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
11343   effect(USE_DEF dst, USE src, USE pos, USE shift);
11344   predicate(false);
11345 
11346   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
11347   size(4);
11348   ins_encode %{
11349     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
11350     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
11351   %}
11352   ins_pipe(pipe_class_default);
11353 %}
11354 
11355 // Just slightly faster than java implementation.
11356 instruct bytes_reverse_int_Ex(iRegIdst dst, iRegIsrc src) %{
11357   match(Set dst (ReverseBytesI src));
11358   predicate(UseCountLeadingZerosInstructionsPPC64);
11359   ins_cost(DEFAULT_COST);
11360 
11361   expand %{
11362     immI16 imm24 %{ (int) 24 %}
11363     immI16 imm16 %{ (int) 16 %}
11364     immI16  imm8 %{ (int)  8 %}
11365     immI16  imm4 %{ (int)  4 %}
11366     immI16  imm0 %{ (int)  0 %}
11367     iRegLdst tmpI1;
11368     iRegLdst tmpI2;
11369     iRegLdst tmpI3;
11370 
11371     urShiftI_reg_imm(tmpI1, src, imm24);
11372     insrwi_a(dst, tmpI1, imm24, imm8);
11373     urShiftI_reg_imm(tmpI2, src, imm16);
11374     insrwi(dst, tmpI2, imm8, imm16);
11375     urShiftI_reg_imm(tmpI3, src, imm8);
11376     insrwi(dst, tmpI3, imm8, imm8);
11377     insrwi(dst, src, imm0, imm8);
11378   %}
11379 %}
11380 
11381 //---------- Replicate Vector Instructions ------------------------------------
11382 
11383 // Insrdi does replicate if src == dst.
11384 instruct repl32(iRegLdst dst) %{
11385   predicate(false);
11386   effect(USE_DEF dst);
11387 
11388   format %{ "INSRDI  $dst, #0, $dst, #32 \t// replicate" %}
11389   size(4);
11390   ins_encode %{
11391     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11392     __ insrdi($dst$$Register, $dst$$Register, 32, 0);
11393   %}
11394   ins_pipe(pipe_class_default);
11395 %}
11396 
11397 // Insrdi does replicate if src == dst.
11398 instruct repl48(iRegLdst dst) %{
11399   predicate(false);
11400   effect(USE_DEF dst);
11401 
11402   format %{ "INSRDI  $dst, #0, $dst, #48 \t// replicate" %}
11403   size(4);
11404   ins_encode %{
11405     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11406     __ insrdi($dst$$Register, $dst$$Register, 48, 0);
11407   %}
11408   ins_pipe(pipe_class_default);
11409 %}
11410 
11411 // Insrdi does replicate if src == dst.
11412 instruct repl56(iRegLdst dst) %{
11413   predicate(false);
11414   effect(USE_DEF dst);
11415 
11416   format %{ "INSRDI  $dst, #0, $dst, #56 \t// replicate" %}
11417   size(4);
11418   ins_encode %{
11419     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11420     __ insrdi($dst$$Register, $dst$$Register, 56, 0);
11421   %}
11422   ins_pipe(pipe_class_default);
11423 %}
11424 
11425 instruct repl8B_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11426   match(Set dst (ReplicateB src));
11427   predicate(n->as_Vector()->length() == 8);
11428   expand %{
11429     moveReg(dst, src);
11430     repl56(dst);
11431     repl48(dst);
11432     repl32(dst);
11433   %}
11434 %}
11435 
11436 instruct repl8B_immI0(iRegLdst dst, immI_0 zero) %{
11437   match(Set dst (ReplicateB zero));
11438   predicate(n->as_Vector()->length() == 8);
11439   format %{ "LI      $dst, #0 \t// replicate8B" %}
11440   size(4);
11441   ins_encode %{
11442     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11443     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11444   %}
11445   ins_pipe(pipe_class_default);
11446 %}
11447 
11448 instruct repl8B_immIminus1(iRegLdst dst, immI_minus1 src) %{
11449   match(Set dst (ReplicateB src));
11450   predicate(n->as_Vector()->length() == 8);
11451   format %{ "LI      $dst, #-1 \t// replicate8B" %}
11452   size(4);
11453   ins_encode %{
11454     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11455     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11456   %}
11457   ins_pipe(pipe_class_default);
11458 %}
11459 
11460 instruct repl4S_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11461   match(Set dst (ReplicateS src));
11462   predicate(n->as_Vector()->length() == 4);
11463   expand %{
11464     moveReg(dst, src);
11465     repl48(dst);
11466     repl32(dst);
11467   %}
11468 %}
11469 
11470 instruct repl4S_immI0(iRegLdst dst, immI_0 zero) %{
11471   match(Set dst (ReplicateS zero));
11472   predicate(n->as_Vector()->length() == 4);
11473   format %{ "LI      $dst, #0 \t// replicate4C" %}
11474   size(4);
11475   ins_encode %{
11476     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11477     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11478   %}
11479   ins_pipe(pipe_class_default);
11480 %}
11481 
11482 instruct repl4S_immIminus1(iRegLdst dst, immI_minus1 src) %{
11483   match(Set dst (ReplicateS src));
11484   predicate(n->as_Vector()->length() == 4);
11485   format %{ "LI      $dst, -1 \t// replicate4C" %}
11486   size(4);
11487   ins_encode %{
11488     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11489     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11490   %}
11491   ins_pipe(pipe_class_default);
11492 %}
11493 
11494 instruct repl2I_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11495   match(Set dst (ReplicateI src));
11496   predicate(n->as_Vector()->length() == 2);
11497   ins_cost(2 * DEFAULT_COST);
11498   expand %{
11499     moveReg(dst, src);
11500     repl32(dst);
11501   %}
11502 %}
11503 
11504 instruct repl2I_immI0(iRegLdst dst, immI_0 zero) %{
11505   match(Set dst (ReplicateI zero));
11506   predicate(n->as_Vector()->length() == 2);
11507   format %{ "LI      $dst, #0 \t// replicate4C" %}
11508   size(4);
11509   ins_encode %{
11510     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11511     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11512   %}
11513   ins_pipe(pipe_class_default);
11514 %}
11515 
11516 instruct repl2I_immIminus1(iRegLdst dst, immI_minus1 src) %{
11517   match(Set dst (ReplicateI src));
11518   predicate(n->as_Vector()->length() == 2);
11519   format %{ "LI      $dst, -1 \t// replicate4C" %}
11520   size(4);
11521   ins_encode %{
11522     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11523     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11524   %}
11525   ins_pipe(pipe_class_default);
11526 %}
11527 
11528 // Move float to int register via stack, replicate.
11529 instruct repl2F_reg_Ex(iRegLdst dst, regF src) %{
11530   match(Set dst (ReplicateF src));
11531   predicate(n->as_Vector()->length() == 2);
11532   ins_cost(2 * MEMORY_REF_COST + DEFAULT_COST);
11533   expand %{
11534     stackSlotL tmpS;
11535     iRegIdst tmpI;
11536     moveF2I_reg_stack(tmpS, src);   // Move float to stack.
11537     moveF2I_stack_reg(tmpI, tmpS);  // Move stack to int reg.
11538     moveReg(dst, tmpI);             // Move int to long reg.
11539     repl32(dst);                    // Replicate bitpattern.
11540   %}
11541 %}
11542 
11543 // Replicate scalar constant to packed float values in Double register
11544 instruct repl2F_immF_Ex(iRegLdst dst, immF src) %{
11545   match(Set dst (ReplicateF src));
11546   predicate(n->as_Vector()->length() == 2);
11547   ins_cost(5 * DEFAULT_COST);
11548 
11549   format %{ "LD      $dst, offset, $constanttablebase\t// load replicated float $src $src from table, postalloc expanded" %}
11550   postalloc_expand( postalloc_expand_load_replF_constant(dst, src, constanttablebase) );
11551 %}
11552 
11553 // Replicate scalar zero constant to packed float values in Double register
11554 instruct repl2F_immF0(iRegLdst dst, immF_0 zero) %{
11555   match(Set dst (ReplicateF zero));
11556   predicate(n->as_Vector()->length() == 2);
11557 
11558   format %{ "LI      $dst, #0 \t// replicate2F" %}
11559   ins_encode %{
11560     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11561     __ li($dst$$Register, 0x0);
11562   %}
11563   ins_pipe(pipe_class_default);
11564 %}
11565 
11566 // ============================================================================
11567 // Safepoint Instruction
11568 
11569 instruct safePoint_poll(iRegPdst poll) %{
11570   match(SafePoint poll);
11571   predicate(LoadPollAddressFromThread);
11572 
11573   // It caused problems to add the effect that r0 is killed, but this
11574   // effect no longer needs to be mentioned, since r0 is not contained
11575   // in a reg_class.
11576 
11577   format %{ "LD      R0, #0, $poll \t// Safepoint poll for GC" %}
11578   size(4);
11579   ins_encode( enc_poll(0x0, poll) );
11580   ins_pipe(pipe_class_default);
11581 %}
11582 
11583 // Safepoint without per-thread support. Load address of page to poll
11584 // as constant.
11585 // Rscratch2RegP is R12.
11586 // LoadConPollAddr node is added in pd_post_matching_hook(). It must be
11587 // a seperate node so that the oop map is at the right location.
11588 instruct safePoint_poll_conPollAddr(rscratch2RegP poll) %{
11589   match(SafePoint poll);
11590   predicate(!LoadPollAddressFromThread);
11591 
11592   // It caused problems to add the effect that r0 is killed, but this
11593   // effect no longer needs to be mentioned, since r0 is not contained
11594   // in a reg_class.
11595 
11596   format %{ "LD      R12, addr of polling page\n\t"
11597             "LD      R0, #0, R12 \t// Safepoint poll for GC" %}
11598   ins_encode( enc_poll(0x0, poll) );
11599   ins_pipe(pipe_class_default);
11600 %}
11601 
11602 // ============================================================================
11603 // Call Instructions
11604 
11605 // Call Java Static Instruction
11606 
11607 // Schedulable version of call static node.
11608 instruct CallStaticJavaDirect(method meth) %{
11609   match(CallStaticJava);
11610   effect(USE meth);
11611   predicate(!((CallStaticJavaNode*)n)->is_method_handle_invoke());
11612   ins_cost(CALL_COST);
11613 
11614   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
11615 
11616   format %{ "CALL,static $meth \t// ==> " %}
11617   size(4);
11618   ins_encode( enc_java_static_call(meth) );
11619   ins_pipe(pipe_class_call);
11620 %}
11621 
11622 // Schedulable version of call static node.
11623 instruct CallStaticJavaDirectHandle(method meth) %{
11624   match(CallStaticJava);
11625   effect(USE meth);
11626   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
11627   ins_cost(CALL_COST);
11628 
11629   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
11630 
11631   format %{ "CALL,static $meth \t// ==> " %}
11632   ins_encode( enc_java_handle_call(meth) );
11633   ins_pipe(pipe_class_call);
11634 %}
11635 
11636 // Call Java Dynamic Instruction
11637 
11638 // Used by postalloc expand of CallDynamicJavaDirectSchedEx (actual call).
11639 // Loading of IC was postalloc expanded. The nodes loading the IC are reachable
11640 // via fields ins_field_load_ic_hi_node and ins_field_load_ic_node.
11641 // The call destination must still be placed in the constant pool.
11642 instruct CallDynamicJavaDirectSched(method meth) %{
11643   match(CallDynamicJava); // To get all the data fields we need ...
11644   effect(USE meth);
11645   predicate(false);       // ... but never match.
11646 
11647   ins_field_load_ic_hi_node(loadConL_hiNode*);
11648   ins_field_load_ic_node(loadConLNode*);
11649   ins_num_consts(1 /* 1 patchable constant: call destination */);
11650 
11651   format %{ "BL        \t// dynamic $meth ==> " %}
11652   size(4);
11653   ins_encode( enc_java_dynamic_call_sched(meth) );
11654   ins_pipe(pipe_class_call);
11655 %}
11656 
11657 // Schedulable (i.e. postalloc expanded) version of call dynamic java.
11658 // We use postalloc expanded calls if we use inline caches
11659 // and do not update method data.
11660 //
11661 // This instruction has two constants: inline cache (IC) and call destination.
11662 // Loading the inline cache will be postalloc expanded, thus leaving a call with
11663 // one constant.
11664 instruct CallDynamicJavaDirectSched_Ex(method meth) %{
11665   match(CallDynamicJava);
11666   effect(USE meth);
11667   predicate(UseInlineCaches);
11668   ins_cost(CALL_COST);
11669 
11670   ins_num_consts(2 /* 2 patchable constants: inline cache, call destination. */);
11671 
11672   format %{ "CALL,dynamic $meth \t// postalloc expanded" %}
11673   postalloc_expand( postalloc_expand_java_dynamic_call_sched(meth, constanttablebase) );
11674 %}
11675 
11676 // Compound version of call dynamic java
11677 // We use postalloc expanded calls if we use inline caches
11678 // and do not update method data.
11679 instruct CallDynamicJavaDirect(method meth) %{
11680   match(CallDynamicJava);
11681   effect(USE meth);
11682   predicate(!UseInlineCaches);
11683   ins_cost(CALL_COST);
11684 
11685   // Enc_java_to_runtime_call needs up to 4 constants (method data oop).
11686   ins_num_consts(4);
11687 
11688   format %{ "CALL,dynamic $meth \t// ==> " %}
11689   ins_encode( enc_java_dynamic_call(meth, constanttablebase) );
11690   ins_pipe(pipe_class_call);
11691 %}
11692 
11693 // Call Runtime Instruction
11694 
11695 instruct CallRuntimeDirect(method meth) %{
11696   match(CallRuntime);
11697   effect(USE meth);
11698   ins_cost(CALL_COST);
11699 
11700   // Enc_java_to_runtime_call needs up to 3 constants: call target,
11701   // env for callee, C-toc.
11702   ins_num_consts(3);
11703 
11704   format %{ "CALL,runtime" %}
11705   ins_encode( enc_java_to_runtime_call(meth) );
11706   ins_pipe(pipe_class_call);
11707 %}
11708 
11709 // Call Leaf
11710 
11711 // Used by postalloc expand of CallLeafDirect_Ex (mtctr).
11712 instruct CallLeafDirect_mtctr(iRegLdst dst, iRegLsrc src) %{
11713   effect(DEF dst, USE src);
11714 
11715   ins_num_consts(1);
11716 
11717   format %{ "MTCTR   $src" %}
11718   size(4);
11719   ins_encode( enc_leaf_call_mtctr(src) );
11720   ins_pipe(pipe_class_default);
11721 %}
11722 
11723 // Used by postalloc expand of CallLeafDirect_Ex (actual call).
11724 instruct CallLeafDirect(method meth) %{
11725   match(CallLeaf);   // To get the data all the data fields we need ...
11726   effect(USE meth);
11727   predicate(false);  // but never match.
11728 
11729   format %{ "BCTRL     \t// leaf call $meth ==> " %}
11730   size(4);
11731   ins_encode %{
11732     // TODO: PPC port $archOpcode(ppc64Opcode_bctrl);
11733     __ bctrl();
11734   %}
11735   ins_pipe(pipe_class_call);
11736 %}
11737 
11738 // postalloc expand of CallLeafDirect.
11739 // Load adress to call from TOC, then bl to it.
11740 instruct CallLeafDirect_Ex(method meth) %{
11741   match(CallLeaf);
11742   effect(USE meth);
11743   ins_cost(CALL_COST);
11744 
11745   // Postalloc_expand_java_to_runtime_call needs up to 3 constants: call target,
11746   // env for callee, C-toc.
11747   ins_num_consts(3);
11748 
11749   format %{ "CALL,runtime leaf $meth \t// postalloc expanded" %}
11750   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
11751 %}
11752 
11753 // Call runtime without safepoint - same as CallLeaf.
11754 // postalloc expand of CallLeafNoFPDirect.
11755 // Load adress to call from TOC, then bl to it.
11756 instruct CallLeafNoFPDirect_Ex(method meth) %{
11757   match(CallLeafNoFP);
11758   effect(USE meth);
11759   ins_cost(CALL_COST);
11760 
11761   // Enc_java_to_runtime_call needs up to 3 constants: call target,
11762   // env for callee, C-toc.
11763   ins_num_consts(3);
11764 
11765   format %{ "CALL,runtime leaf nofp $meth \t// postalloc expanded" %}
11766   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
11767 %}
11768 
11769 // Tail Call; Jump from runtime stub to Java code.
11770 // Also known as an 'interprocedural jump'.
11771 // Target of jump will eventually return to caller.
11772 // TailJump below removes the return address.
11773 instruct TailCalljmpInd(iRegPdstNoScratch jump_target, inline_cache_regP method_oop) %{
11774   match(TailCall jump_target method_oop);
11775   ins_cost(CALL_COST);
11776 
11777   format %{ "MTCTR   $jump_target \t// $method_oop holds method oop\n\t"
11778             "BCTR         \t// tail call" %}
11779   size(8);
11780   ins_encode %{
11781     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11782     __ mtctr($jump_target$$Register);
11783     __ bctr();
11784   %}
11785   ins_pipe(pipe_class_call);
11786 %}
11787 
11788 // Return Instruction
11789 instruct Ret() %{
11790   match(Return);
11791   format %{ "BLR      \t// branch to link register" %}
11792   size(4);
11793   ins_encode %{
11794     // TODO: PPC port $archOpcode(ppc64Opcode_blr);
11795     // LR is restored in MachEpilogNode. Just do the RET here.
11796     __ blr();
11797   %}
11798   ins_pipe(pipe_class_default);
11799 %}
11800 
11801 // Tail Jump; remove the return address; jump to target.
11802 // TailCall above leaves the return address around.
11803 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
11804 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
11805 // "restore" before this instruction (in Epilogue), we need to materialize it
11806 // in %i0.
11807 instruct tailjmpInd(iRegPdstNoScratch jump_target, rarg1RegP ex_oop) %{
11808   match(TailJump jump_target ex_oop);
11809   ins_cost(CALL_COST);
11810 
11811   format %{ "LD      R4_ARG2 = LR\n\t"
11812             "MTCTR   $jump_target\n\t"
11813             "BCTR     \t// TailJump, exception oop: $ex_oop" %}
11814   size(12);
11815   ins_encode %{
11816     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11817     __ ld(R4_ARG2/* issuing pc */, _abi(lr), R1_SP);
11818     __ mtctr($jump_target$$Register);
11819     __ bctr();
11820   %}
11821   ins_pipe(pipe_class_call);
11822 %}
11823 
11824 // Create exception oop: created by stack-crawling runtime code.
11825 // Created exception is now available to this handler, and is setup
11826 // just prior to jumping to this handler. No code emitted.
11827 instruct CreateException(rarg1RegP ex_oop) %{
11828   match(Set ex_oop (CreateEx));
11829   ins_cost(0);
11830 
11831   format %{ " -- \t// exception oop; no code emitted" %}
11832   size(0);
11833   ins_encode( /*empty*/ );
11834   ins_pipe(pipe_class_default);
11835 %}
11836 
11837 // Rethrow exception: The exception oop will come in the first
11838 // argument position. Then JUMP (not call) to the rethrow stub code.
11839 instruct RethrowException() %{
11840   match(Rethrow);
11841   ins_cost(CALL_COST);
11842 
11843   format %{ "Jmp     rethrow_stub" %}
11844   ins_encode %{
11845     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11846     cbuf.set_insts_mark();
11847     __ b64_patchable((address)OptoRuntime::rethrow_stub(), relocInfo::runtime_call_type);
11848   %}
11849   ins_pipe(pipe_class_call);
11850 %}
11851 
11852 // Die now.
11853 instruct ShouldNotReachHere() %{
11854   match(Halt);
11855   ins_cost(CALL_COST);
11856 
11857   format %{ "ShouldNotReachHere" %}
11858   size(4);
11859   ins_encode %{
11860     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
11861     __ trap_should_not_reach_here();
11862   %}
11863   ins_pipe(pipe_class_default);
11864 %}
11865 
11866 // This name is KNOWN by the ADLC and cannot be changed.  The ADLC
11867 // forces a 'TypeRawPtr::BOTTOM' output type for this guy.
11868 // Get a DEF on threadRegP, no costs, no encoding, use
11869 // 'ins_should_rematerialize(true)' to avoid spilling.
11870 instruct tlsLoadP(threadRegP dst) %{
11871   match(Set dst (ThreadLocal));
11872   ins_cost(0);
11873 
11874   ins_should_rematerialize(true);
11875 
11876   format %{ " -- \t// $dst=Thread::current(), empty" %}
11877   size(0);
11878   ins_encode( /*empty*/ );
11879   ins_pipe(pipe_class_empty);
11880 %}
11881 
11882 //---Some PPC specific nodes---------------------------------------------------
11883 
11884 // Stop a group.
11885 instruct endGroup() %{
11886   ins_cost(0);
11887 
11888   ins_is_nop(true);
11889 
11890   format %{ "End Bundle (ori r1, r1, 0)" %}
11891   size(4);
11892   ins_encode %{
11893     // TODO: PPC port $archOpcode(ppc64Opcode_endgroup);
11894     __ endgroup();
11895   %}
11896   ins_pipe(pipe_class_default);
11897 %}
11898 
11899 // Nop instructions
11900 
11901 instruct fxNop() %{
11902   ins_cost(0);
11903 
11904   ins_is_nop(true);
11905 
11906   format %{ "fxNop" %}
11907   size(4);
11908   ins_encode %{
11909     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
11910     __ nop();
11911   %}
11912   ins_pipe(pipe_class_default);
11913 %}
11914 
11915 instruct fpNop0() %{
11916   ins_cost(0);
11917 
11918   ins_is_nop(true);
11919 
11920   format %{ "fpNop0" %}
11921   size(4);
11922   ins_encode %{
11923     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
11924     __ fpnop0();
11925   %}
11926   ins_pipe(pipe_class_default);
11927 %}
11928 
11929 instruct fpNop1() %{
11930   ins_cost(0);
11931 
11932   ins_is_nop(true);
11933 
11934   format %{ "fpNop1" %}
11935   size(4);
11936   ins_encode %{
11937     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
11938     __ fpnop1();
11939   %}
11940   ins_pipe(pipe_class_default);
11941 %}
11942 
11943 instruct brNop0() %{
11944   ins_cost(0);
11945   size(4);
11946   format %{ "brNop0" %}
11947   ins_encode %{
11948     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
11949     __ brnop0();
11950   %}
11951   ins_is_nop(true);
11952   ins_pipe(pipe_class_default);
11953 %}
11954 
11955 instruct brNop1() %{
11956   ins_cost(0);
11957 
11958   ins_is_nop(true);
11959 
11960   format %{ "brNop1" %}
11961   size(4);
11962   ins_encode %{
11963     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
11964     __ brnop1();
11965   %}
11966   ins_pipe(pipe_class_default);
11967 %}
11968 
11969 instruct brNop2() %{
11970   ins_cost(0);
11971 
11972   ins_is_nop(true);
11973 
11974   format %{ "brNop2" %}
11975   size(4);
11976   ins_encode %{
11977     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
11978     __ brnop2();
11979   %}
11980   ins_pipe(pipe_class_default);
11981 %}
11982 
11983 //----------PEEPHOLE RULES-----------------------------------------------------
11984 // These must follow all instruction definitions as they use the names
11985 // defined in the instructions definitions.
11986 //
11987 // peepmatch ( root_instr_name [preceeding_instruction]* );
11988 //
11989 // peepconstraint %{
11990 // (instruction_number.operand_name relational_op instruction_number.operand_name
11991 //  [, ...] );
11992 // // instruction numbers are zero-based using left to right order in peepmatch
11993 //
11994 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
11995 // // provide an instruction_number.operand_name for each operand that appears
11996 // // in the replacement instruction's match rule
11997 //
11998 // ---------VM FLAGS---------------------------------------------------------
11999 //
12000 // All peephole optimizations can be turned off using -XX:-OptoPeephole
12001 //
12002 // Each peephole rule is given an identifying number starting with zero and
12003 // increasing by one in the order seen by the parser. An individual peephole
12004 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
12005 // on the command-line.
12006 //
12007 // ---------CURRENT LIMITATIONS----------------------------------------------
12008 //
12009 // Only match adjacent instructions in same basic block
12010 // Only equality constraints
12011 // Only constraints between operands, not (0.dest_reg == EAX_enc)
12012 // Only one replacement instruction
12013 //
12014 // ---------EXAMPLE----------------------------------------------------------
12015 //
12016 // // pertinent parts of existing instructions in architecture description
12017 // instruct movI(eRegI dst, eRegI src) %{
12018 //   match(Set dst (CopyI src));
12019 // %}
12020 //
12021 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
12022 //   match(Set dst (AddI dst src));
12023 //   effect(KILL cr);
12024 // %}
12025 //
12026 // // Change (inc mov) to lea
12027 // peephole %{
12028 //   // increment preceeded by register-register move
12029 //   peepmatch ( incI_eReg movI );
12030 //   // require that the destination register of the increment
12031 //   // match the destination register of the move
12032 //   peepconstraint ( 0.dst == 1.dst );
12033 //   // construct a replacement instruction that sets
12034 //   // the destination to ( move's source register + one )
12035 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12036 // %}
12037 //
12038 // Implementation no longer uses movX instructions since
12039 // machine-independent system no longer uses CopyX nodes.
12040 //
12041 // peephole %{
12042 //   peepmatch ( incI_eReg movI );
12043 //   peepconstraint ( 0.dst == 1.dst );
12044 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12045 // %}
12046 //
12047 // peephole %{
12048 //   peepmatch ( decI_eReg movI );
12049 //   peepconstraint ( 0.dst == 1.dst );
12050 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12051 // %}
12052 //
12053 // peephole %{
12054 //   peepmatch ( addI_eReg_imm movI );
12055 //   peepconstraint ( 0.dst == 1.dst );
12056 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12057 // %}
12058 //
12059 // peephole %{
12060 //   peepmatch ( addP_eReg_imm movP );
12061 //   peepconstraint ( 0.dst == 1.dst );
12062 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
12063 // %}
12064 
12065 // // Change load of spilled value to only a spill
12066 // instruct storeI(memory mem, eRegI src) %{
12067 //   match(Set mem (StoreI mem src));
12068 // %}
12069 //
12070 // instruct loadI(eRegI dst, memory mem) %{
12071 //   match(Set dst (LoadI mem));
12072 // %}
12073 //
12074 peephole %{
12075   peepmatch ( loadI storeI );
12076   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
12077   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
12078 %}
12079 
12080 peephole %{
12081   peepmatch ( loadL storeL );
12082   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
12083   peepreplace ( storeL( 1.mem 1.mem 1.src ) );
12084 %}
12085 
12086 peephole %{
12087   peepmatch ( loadP storeP );
12088   peepconstraint ( 1.src == 0.dst, 1.dst == 0.mem );
12089   peepreplace ( storeP( 1.dst 1.dst 1.src ) );
12090 %}
12091 
12092 //----------SMARTSPILL RULES---------------------------------------------------
12093 // These must follow all instruction definitions as they use the names
12094 // defined in the instructions definitions.