1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/osThread.hpp"
  53 #include "runtime/perfMemory.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/statSampler.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/thread.inline.hpp"
  58 #include "runtime/threadCritical.hpp"
  59 #include "runtime/timer.hpp"
  60 #include "services/attachListener.hpp"
  61 #include "services/memTracker.hpp"
  62 #include "services/runtimeService.hpp"
  63 #include "utilities/decoder.hpp"
  64 #include "utilities/defaultStream.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/elfFile.hpp"
  67 #include "utilities/growableArray.hpp"
  68 #include "utilities/vmError.hpp"
  69 
  70 // put OS-includes here
  71 # include <sys/types.h>
  72 # include <sys/mman.h>
  73 # include <sys/stat.h>
  74 # include <sys/select.h>
  75 # include <pthread.h>
  76 # include <signal.h>
  77 # include <errno.h>
  78 # include <dlfcn.h>
  79 # include <stdio.h>
  80 # include <unistd.h>
  81 # include <sys/resource.h>
  82 # include <pthread.h>
  83 # include <sys/stat.h>
  84 # include <sys/time.h>
  85 # include <sys/times.h>
  86 # include <sys/utsname.h>
  87 # include <sys/socket.h>
  88 # include <sys/wait.h>
  89 # include <pwd.h>
  90 # include <poll.h>
  91 # include <semaphore.h>
  92 # include <fcntl.h>
  93 # include <string.h>
  94 # include <syscall.h>
  95 # include <sys/sysinfo.h>
  96 # include <gnu/libc-version.h>
  97 # include <sys/ipc.h>
  98 # include <sys/shm.h>
  99 # include <link.h>
 100 # include <stdint.h>
 101 # include <inttypes.h>
 102 # include <sys/ioctl.h>
 103 
 104 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 105 // getrusage() is prepared to handle the associated failure.
 106 #ifndef RUSAGE_THREAD
 107 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 108 #endif
 109 
 110 #define MAX_PATH    (2 * K)
 111 
 112 // for timer info max values which include all bits
 113 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 114 
 115 #define LARGEPAGES_BIT (1 << 6)
 116 ////////////////////////////////////////////////////////////////////////////////
 117 // global variables
 118 julong os::Linux::_physical_memory = 0;
 119 
 120 address   os::Linux::_initial_thread_stack_bottom = NULL;
 121 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 122 
 123 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 124 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 125 Mutex* os::Linux::_createThread_lock = NULL;
 126 pthread_t os::Linux::_main_thread;
 127 int os::Linux::_page_size = -1;
 128 const int os::Linux::_vm_default_page_size = (8 * K);
 129 bool os::Linux::_is_floating_stack = false;
 130 bool os::Linux::_is_NPTL = false;
 131 bool os::Linux::_supports_fast_thread_cpu_time = false;
 132 const char * os::Linux::_glibc_version = NULL;
 133 const char * os::Linux::_libpthread_version = NULL;
 134 pthread_condattr_t os::Linux::_condattr[1];
 135 
 136 static jlong initial_time_count=0;
 137 
 138 static int clock_tics_per_sec = 100;
 139 
 140 // For diagnostics to print a message once. see run_periodic_checks
 141 static sigset_t check_signal_done;
 142 static bool check_signals = true;
 143 
 144 static pid_t _initial_pid = 0;
 145 
 146 /* Signal number used to suspend/resume a thread */
 147 
 148 /* do not use any signal number less than SIGSEGV, see 4355769 */
 149 static int SR_signum = SIGUSR2;
 150 sigset_t SR_sigset;
 151 
 152 /* Used to protect dlsym() calls */
 153 static pthread_mutex_t dl_mutex;
 154 
 155 // Declarations
 156 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 157 
 158 #ifdef JAVASE_EMBEDDED
 159 class MemNotifyThread: public Thread {
 160   friend class VMStructs;
 161  public:
 162   virtual void run();
 163 
 164  private:
 165   static MemNotifyThread* _memnotify_thread;
 166   int _fd;
 167 
 168  public:
 169 
 170   // Constructor
 171   MemNotifyThread(int fd);
 172 
 173   // Tester
 174   bool is_memnotify_thread() const { return true; }
 175 
 176   // Printing
 177   char* name() const { return (char*)"Linux MemNotify Thread"; }
 178 
 179   // Returns the single instance of the MemNotifyThread
 180   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 181 
 182   // Create and start the single instance of MemNotifyThread
 183   static void start();
 184 };
 185 #endif // JAVASE_EMBEDDED
 186 
 187 // utility functions
 188 
 189 static int SR_initialize();
 190 
 191 julong os::available_memory() {
 192   return Linux::available_memory();
 193 }
 194 
 195 julong os::Linux::available_memory() {
 196   // values in struct sysinfo are "unsigned long"
 197   struct sysinfo si;
 198   sysinfo(&si);
 199 
 200   return (julong)si.freeram * si.mem_unit;
 201 }
 202 
 203 julong os::physical_memory() {
 204   return Linux::physical_memory();
 205 }
 206 
 207 ////////////////////////////////////////////////////////////////////////////////
 208 // environment support
 209 
 210 bool os::getenv(const char* name, char* buf, int len) {
 211   const char* val = ::getenv(name);
 212   if (val != NULL && strlen(val) < (size_t)len) {
 213     strcpy(buf, val);
 214     return true;
 215   }
 216   if (len > 0) buf[0] = 0;  // return a null string
 217   return false;
 218 }
 219 
 220 
 221 // Return true if user is running as root.
 222 
 223 bool os::have_special_privileges() {
 224   static bool init = false;
 225   static bool privileges = false;
 226   if (!init) {
 227     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 228     init = true;
 229   }
 230   return privileges;
 231 }
 232 
 233 
 234 #ifndef SYS_gettid
 235 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 236 #ifdef __ia64__
 237 #define SYS_gettid 1105
 238 #elif __i386__
 239 #define SYS_gettid 224
 240 #elif __amd64__
 241 #define SYS_gettid 186
 242 #elif __sparc__
 243 #define SYS_gettid 143
 244 #else
 245 #error define gettid for the arch
 246 #endif
 247 #endif
 248 
 249 // Cpu architecture string
 250 #if   defined(ZERO)
 251 static char cpu_arch[] = ZERO_LIBARCH;
 252 #elif defined(IA64)
 253 static char cpu_arch[] = "ia64";
 254 #elif defined(IA32)
 255 static char cpu_arch[] = "i386";
 256 #elif defined(AMD64)
 257 static char cpu_arch[] = "amd64";
 258 #elif defined(ARM)
 259 static char cpu_arch[] = "arm";
 260 #elif defined(PPC32)
 261 static char cpu_arch[] = "ppc";
 262 #elif defined(PPC64)
 263 static char cpu_arch[] = "ppc64";
 264 #elif defined(SPARC)
 265 #  ifdef _LP64
 266 static char cpu_arch[] = "sparcv9";
 267 #  else
 268 static char cpu_arch[] = "sparc";
 269 #  endif
 270 #else
 271 #error Add appropriate cpu_arch setting
 272 #endif
 273 
 274 
 275 // pid_t gettid()
 276 //
 277 // Returns the kernel thread id of the currently running thread. Kernel
 278 // thread id is used to access /proc.
 279 //
 280 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 281 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 282 //
 283 pid_t os::Linux::gettid() {
 284   int rslt = syscall(SYS_gettid);
 285   if (rslt == -1) {
 286      // old kernel, no NPTL support
 287      return getpid();
 288   } else {
 289      return (pid_t)rslt;
 290   }
 291 }
 292 
 293 // Most versions of linux have a bug where the number of processors are
 294 // determined by looking at the /proc file system.  In a chroot environment,
 295 // the system call returns 1.  This causes the VM to act as if it is
 296 // a single processor and elide locking (see is_MP() call).
 297 static bool unsafe_chroot_detected = false;
 298 static const char *unstable_chroot_error = "/proc file system not found.\n"
 299                      "Java may be unstable running multithreaded in a chroot "
 300                      "environment on Linux when /proc filesystem is not mounted.";
 301 
 302 void os::Linux::initialize_system_info() {
 303   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 304   if (processor_count() == 1) {
 305     pid_t pid = os::Linux::gettid();
 306     char fname[32];
 307     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 308     FILE *fp = fopen(fname, "r");
 309     if (fp == NULL) {
 310       unsafe_chroot_detected = true;
 311     } else {
 312       fclose(fp);
 313     }
 314   }
 315   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 316   assert(processor_count() > 0, "linux error");
 317 }
 318 
 319 void os::init_system_properties_values() {
 320   // The next steps are taken in the product version:
 321   //
 322   // Obtain the JAVA_HOME value from the location of libjvm.so.
 323   // This library should be located at:
 324   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 325   //
 326   // If "/jre/lib/" appears at the right place in the path, then we
 327   // assume libjvm.so is installed in a JDK and we use this path.
 328   //
 329   // Otherwise exit with message: "Could not create the Java virtual machine."
 330   //
 331   // The following extra steps are taken in the debugging version:
 332   //
 333   // If "/jre/lib/" does NOT appear at the right place in the path
 334   // instead of exit check for $JAVA_HOME environment variable.
 335   //
 336   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 337   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 338   // it looks like libjvm.so is installed there
 339   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 340   //
 341   // Otherwise exit.
 342   //
 343   // Important note: if the location of libjvm.so changes this
 344   // code needs to be changed accordingly.
 345 
 346 // See ld(1):
 347 //      The linker uses the following search paths to locate required
 348 //      shared libraries:
 349 //        1: ...
 350 //        ...
 351 //        7: The default directories, normally /lib and /usr/lib.
 352 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 353 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 354 #else
 355 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 356 #endif
 357 
 358 #define EXTENSIONS_DIR  "/lib/ext"
 359 #define ENDORSED_DIR    "/lib/endorsed"
 360 #define REG_DIR         "/usr/java/packages"
 361 
 362   // sysclasspath, java_home, dll_dir
 363   {
 364     char *pslash;
 365     char buf[MAXPATHLEN];
 366     os::jvm_path(buf, sizeof(buf));
 367 
 368     // Found the full path to libjvm.so.
 369     // Now cut the path to <java_home>/jre if we can.
 370     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 371     pslash = strrchr(buf, '/');
 372     if (pslash != NULL) {
 373       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 374     }
 375     Arguments::set_dll_dir(buf);
 376 
 377     if (pslash != NULL) {
 378       pslash = strrchr(buf, '/');
 379       if (pslash != NULL) {
 380         *pslash = '\0';          // Get rid of /<arch>.
 381         pslash = strrchr(buf, '/');
 382         if (pslash != NULL) {
 383           *pslash = '\0';        // Get rid of /lib.
 384         }
 385       }
 386     }
 387     Arguments::set_java_home(buf);
 388 
 389     if (!set_boot_path('/', ':')) {
 390       return;
 391     }
 392   }
 393 
 394   // Where to look for native libraries.
 395   //
 396   // Note: Due to a legacy implementation, most of the library path
 397   // is set in the launcher. This was to accomodate linking restrictions
 398   // on legacy Linux implementations (which are no longer supported).
 399   // Eventually, all the library path setting will be done here.
 400   //
 401   // However, to prevent the proliferation of improperly built native
 402   // libraries, the new path component /usr/java/packages is added here.
 403   // Eventually, all the library path setting will be done here.
 404   {
 405     char *ld_library_path;
 406 
 407     // Construct the invariant part of ld_library_path. Note that the
 408     // space for the colon and the trailing null are provided by the
 409     // nulls included by the sizeof operator (so actually we allocate
 410     // a byte more than necessary).
 411     ld_library_path = (char *)NEW_C_HEAP_ARRAY(char, sizeof(REG_DIR) + sizeof("/lib/") +
 412                                                strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH), mtInternal);
 413     sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 414 
 415     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 416     // should always exist (until the legacy problem cited above is
 417     // addressed).
 418     char *v = ::getenv("LD_LIBRARY_PATH");
 419     if (v != NULL) {
 420       char *t = ld_library_path;
 421       // That's +1 for the colon and +1 for the trailing '\0'.
 422       ld_library_path = (char *)NEW_C_HEAP_ARRAY(char, strlen(v) + 1 + strlen(t) + 1, mtInternal);
 423       sprintf(ld_library_path, "%s:%s", v, t);
 424       FREE_C_HEAP_ARRAY(char, t, mtInternal);
 425     }
 426     Arguments::set_library_path(ld_library_path);
 427     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 428   }
 429 
 430   // Buffer that fits both sprintfs.
 431   // Note that the space for the colon and the trailing null are provided
 432   // by the nulls included by the sizeof operator (so actually one byte more
 433   // than necessary is allocated).
 434   char buf[MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR) + sizeof(ENDORSED_DIR)];
 435 
 436   // Extensions directories.
 437   sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 438   Arguments::set_ext_dirs(buf);
 439 
 440   // Endorsed standards default directory.
 441   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 442   Arguments::set_endorsed_dirs(buf);
 443 
 444 #undef DEFAULT_LIBPATH
 445 #undef EXTENSIONS_DIR
 446 #undef ENDORSED_DIR
 447 #undef REG_DIR
 448 }
 449 
 450 ////////////////////////////////////////////////////////////////////////////////
 451 // breakpoint support
 452 
 453 void os::breakpoint() {
 454   BREAKPOINT;
 455 }
 456 
 457 extern "C" void breakpoint() {
 458   // use debugger to set breakpoint here
 459 }
 460 
 461 ////////////////////////////////////////////////////////////////////////////////
 462 // signal support
 463 
 464 debug_only(static bool signal_sets_initialized = false);
 465 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 466 
 467 bool os::Linux::is_sig_ignored(int sig) {
 468       struct sigaction oact;
 469       sigaction(sig, (struct sigaction*)NULL, &oact);
 470       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 471                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 472       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 473            return true;
 474       else
 475            return false;
 476 }
 477 
 478 void os::Linux::signal_sets_init() {
 479   // Should also have an assertion stating we are still single-threaded.
 480   assert(!signal_sets_initialized, "Already initialized");
 481   // Fill in signals that are necessarily unblocked for all threads in
 482   // the VM. Currently, we unblock the following signals:
 483   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 484   //                         by -Xrs (=ReduceSignalUsage));
 485   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 486   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 487   // the dispositions or masks wrt these signals.
 488   // Programs embedding the VM that want to use the above signals for their
 489   // own purposes must, at this time, use the "-Xrs" option to prevent
 490   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 491   // (See bug 4345157, and other related bugs).
 492   // In reality, though, unblocking these signals is really a nop, since
 493   // these signals are not blocked by default.
 494   sigemptyset(&unblocked_sigs);
 495   sigemptyset(&allowdebug_blocked_sigs);
 496   sigaddset(&unblocked_sigs, SIGILL);
 497   sigaddset(&unblocked_sigs, SIGSEGV);
 498   sigaddset(&unblocked_sigs, SIGBUS);
 499   sigaddset(&unblocked_sigs, SIGFPE);
 500 #if defined(PPC64)
 501   sigaddset(&unblocked_sigs, SIGTRAP);
 502 #endif
 503   sigaddset(&unblocked_sigs, SR_signum);
 504 
 505   if (!ReduceSignalUsage) {
 506    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 507       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 508       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 509    }
 510    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 511       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 512       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 513    }
 514    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 515       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 516       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 517    }
 518   }
 519   // Fill in signals that are blocked by all but the VM thread.
 520   sigemptyset(&vm_sigs);
 521   if (!ReduceSignalUsage)
 522     sigaddset(&vm_sigs, BREAK_SIGNAL);
 523   debug_only(signal_sets_initialized = true);
 524 
 525 }
 526 
 527 // These are signals that are unblocked while a thread is running Java.
 528 // (For some reason, they get blocked by default.)
 529 sigset_t* os::Linux::unblocked_signals() {
 530   assert(signal_sets_initialized, "Not initialized");
 531   return &unblocked_sigs;
 532 }
 533 
 534 // These are the signals that are blocked while a (non-VM) thread is
 535 // running Java. Only the VM thread handles these signals.
 536 sigset_t* os::Linux::vm_signals() {
 537   assert(signal_sets_initialized, "Not initialized");
 538   return &vm_sigs;
 539 }
 540 
 541 // These are signals that are blocked during cond_wait to allow debugger in
 542 sigset_t* os::Linux::allowdebug_blocked_signals() {
 543   assert(signal_sets_initialized, "Not initialized");
 544   return &allowdebug_blocked_sigs;
 545 }
 546 
 547 void os::Linux::hotspot_sigmask(Thread* thread) {
 548 
 549   //Save caller's signal mask before setting VM signal mask
 550   sigset_t caller_sigmask;
 551   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 552 
 553   OSThread* osthread = thread->osthread();
 554   osthread->set_caller_sigmask(caller_sigmask);
 555 
 556   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 557 
 558   if (!ReduceSignalUsage) {
 559     if (thread->is_VM_thread()) {
 560       // Only the VM thread handles BREAK_SIGNAL ...
 561       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 562     } else {
 563       // ... all other threads block BREAK_SIGNAL
 564       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 565     }
 566   }
 567 }
 568 
 569 //////////////////////////////////////////////////////////////////////////////
 570 // detecting pthread library
 571 
 572 void os::Linux::libpthread_init() {
 573   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 574   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 575   // generic name for earlier versions.
 576   // Define macros here so we can build HotSpot on old systems.
 577 # ifndef _CS_GNU_LIBC_VERSION
 578 # define _CS_GNU_LIBC_VERSION 2
 579 # endif
 580 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 581 # define _CS_GNU_LIBPTHREAD_VERSION 3
 582 # endif
 583 
 584   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 585   if (n > 0) {
 586      char *str = (char *)malloc(n, mtInternal);
 587      confstr(_CS_GNU_LIBC_VERSION, str, n);
 588      os::Linux::set_glibc_version(str);
 589   } else {
 590      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 591      static char _gnu_libc_version[32];
 592      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 593               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 594      os::Linux::set_glibc_version(_gnu_libc_version);
 595   }
 596 
 597   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 598   if (n > 0) {
 599      char *str = (char *)malloc(n, mtInternal);
 600      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 601      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 602      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 603      // is the case. LinuxThreads has a hard limit on max number of threads.
 604      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 605      // On the other hand, NPTL does not have such a limit, sysconf()
 606      // will return -1 and errno is not changed. Check if it is really NPTL.
 607      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 608          strstr(str, "NPTL") &&
 609          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 610        free(str);
 611        os::Linux::set_libpthread_version("linuxthreads");
 612      } else {
 613        os::Linux::set_libpthread_version(str);
 614      }
 615   } else {
 616     // glibc before 2.3.2 only has LinuxThreads.
 617     os::Linux::set_libpthread_version("linuxthreads");
 618   }
 619 
 620   if (strstr(libpthread_version(), "NPTL")) {
 621      os::Linux::set_is_NPTL();
 622   } else {
 623      os::Linux::set_is_LinuxThreads();
 624   }
 625 
 626   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 627   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 628   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 629      os::Linux::set_is_floating_stack();
 630   }
 631 }
 632 
 633 /////////////////////////////////////////////////////////////////////////////
 634 // thread stack
 635 
 636 // Force Linux kernel to expand current thread stack. If "bottom" is close
 637 // to the stack guard, caller should block all signals.
 638 //
 639 // MAP_GROWSDOWN:
 640 //   A special mmap() flag that is used to implement thread stacks. It tells
 641 //   kernel that the memory region should extend downwards when needed. This
 642 //   allows early versions of LinuxThreads to only mmap the first few pages
 643 //   when creating a new thread. Linux kernel will automatically expand thread
 644 //   stack as needed (on page faults).
 645 //
 646 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 647 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 648 //   region, it's hard to tell if the fault is due to a legitimate stack
 649 //   access or because of reading/writing non-exist memory (e.g. buffer
 650 //   overrun). As a rule, if the fault happens below current stack pointer,
 651 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 652 //   application (see Linux kernel fault.c).
 653 //
 654 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 655 //   stack overflow detection.
 656 //
 657 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 658 //   not use this flag. However, the stack of initial thread is not created
 659 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 660 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 661 //   and then attach the thread to JVM.
 662 //
 663 // To get around the problem and allow stack banging on Linux, we need to
 664 // manually expand thread stack after receiving the SIGSEGV.
 665 //
 666 // There are two ways to expand thread stack to address "bottom", we used
 667 // both of them in JVM before 1.5:
 668 //   1. adjust stack pointer first so that it is below "bottom", and then
 669 //      touch "bottom"
 670 //   2. mmap() the page in question
 671 //
 672 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 673 // if current sp is already near the lower end of page 101, and we need to
 674 // call mmap() to map page 100, it is possible that part of the mmap() frame
 675 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 676 // That will destroy the mmap() frame and cause VM to crash.
 677 //
 678 // The following code works by adjusting sp first, then accessing the "bottom"
 679 // page to force a page fault. Linux kernel will then automatically expand the
 680 // stack mapping.
 681 //
 682 // _expand_stack_to() assumes its frame size is less than page size, which
 683 // should always be true if the function is not inlined.
 684 
 685 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 686 #define NOINLINE
 687 #else
 688 #define NOINLINE __attribute__ ((noinline))
 689 #endif
 690 
 691 static void _expand_stack_to(address bottom) NOINLINE;
 692 
 693 static void _expand_stack_to(address bottom) {
 694   address sp;
 695   size_t size;
 696   volatile char *p;
 697 
 698   // Adjust bottom to point to the largest address within the same page, it
 699   // gives us a one-page buffer if alloca() allocates slightly more memory.
 700   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 701   bottom += os::Linux::page_size() - 1;
 702 
 703   // sp might be slightly above current stack pointer; if that's the case, we
 704   // will alloca() a little more space than necessary, which is OK. Don't use
 705   // os::current_stack_pointer(), as its result can be slightly below current
 706   // stack pointer, causing us to not alloca enough to reach "bottom".
 707   sp = (address)&sp;
 708 
 709   if (sp > bottom) {
 710     size = sp - bottom;
 711     p = (volatile char *)alloca(size);
 712     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 713     p[0] = '\0';
 714   }
 715 }
 716 
 717 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 718   assert(t!=NULL, "just checking");
 719   assert(t->osthread()->expanding_stack(), "expand should be set");
 720   assert(t->stack_base() != NULL, "stack_base was not initialized");
 721 
 722   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 723     sigset_t mask_all, old_sigset;
 724     sigfillset(&mask_all);
 725     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 726     _expand_stack_to(addr);
 727     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 728     return true;
 729   }
 730   return false;
 731 }
 732 
 733 //////////////////////////////////////////////////////////////////////////////
 734 // create new thread
 735 
 736 static address highest_vm_reserved_address();
 737 
 738 // check if it's safe to start a new thread
 739 static bool _thread_safety_check(Thread* thread) {
 740   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 741     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 742     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 743     //   allocated (MAP_FIXED) from high address space. Every thread stack
 744     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 745     //   it to other values if they rebuild LinuxThreads).
 746     //
 747     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 748     // the memory region has already been mmap'ed. That means if we have too
 749     // many threads and/or very large heap, eventually thread stack will
 750     // collide with heap.
 751     //
 752     // Here we try to prevent heap/stack collision by comparing current
 753     // stack bottom with the highest address that has been mmap'ed by JVM
 754     // plus a safety margin for memory maps created by native code.
 755     //
 756     // This feature can be disabled by setting ThreadSafetyMargin to 0
 757     //
 758     if (ThreadSafetyMargin > 0) {
 759       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 760 
 761       // not safe if our stack extends below the safety margin
 762       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 763     } else {
 764       return true;
 765     }
 766   } else {
 767     // Floating stack LinuxThreads or NPTL:
 768     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 769     //   there's not enough space left, pthread_create() will fail. If we come
 770     //   here, that means enough space has been reserved for stack.
 771     return true;
 772   }
 773 }
 774 
 775 // Thread start routine for all newly created threads
 776 static void *java_start(Thread *thread) {
 777   // Try to randomize the cache line index of hot stack frames.
 778   // This helps when threads of the same stack traces evict each other's
 779   // cache lines. The threads can be either from the same JVM instance, or
 780   // from different JVM instances. The benefit is especially true for
 781   // processors with hyperthreading technology.
 782   static int counter = 0;
 783   int pid = os::current_process_id();
 784   alloca(((pid ^ counter++) & 7) * 128);
 785 
 786   ThreadLocalStorage::set_thread(thread);
 787 
 788   OSThread* osthread = thread->osthread();
 789   Monitor* sync = osthread->startThread_lock();
 790 
 791   // non floating stack LinuxThreads needs extra check, see above
 792   if (!_thread_safety_check(thread)) {
 793     // notify parent thread
 794     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 795     osthread->set_state(ZOMBIE);
 796     sync->notify_all();
 797     return NULL;
 798   }
 799 
 800   // thread_id is kernel thread id (similar to Solaris LWP id)
 801   osthread->set_thread_id(os::Linux::gettid());
 802 
 803   if (UseNUMA) {
 804     int lgrp_id = os::numa_get_group_id();
 805     if (lgrp_id != -1) {
 806       thread->set_lgrp_id(lgrp_id);
 807     }
 808   }
 809   // initialize signal mask for this thread
 810   os::Linux::hotspot_sigmask(thread);
 811 
 812   // initialize floating point control register
 813   os::Linux::init_thread_fpu_state();
 814 
 815   // handshaking with parent thread
 816   {
 817     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 818 
 819     // notify parent thread
 820     osthread->set_state(INITIALIZED);
 821     sync->notify_all();
 822 
 823     // wait until os::start_thread()
 824     while (osthread->get_state() == INITIALIZED) {
 825       sync->wait(Mutex::_no_safepoint_check_flag);
 826     }
 827   }
 828 
 829   // call one more level start routine
 830   thread->run();
 831 
 832   return 0;
 833 }
 834 
 835 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 836   assert(thread->osthread() == NULL, "caller responsible");
 837 
 838   // Allocate the OSThread object
 839   OSThread* osthread = new OSThread(NULL, NULL);
 840   if (osthread == NULL) {
 841     return false;
 842   }
 843 
 844   // set the correct thread state
 845   osthread->set_thread_type(thr_type);
 846 
 847   // Initial state is ALLOCATED but not INITIALIZED
 848   osthread->set_state(ALLOCATED);
 849 
 850   thread->set_osthread(osthread);
 851 
 852   // init thread attributes
 853   pthread_attr_t attr;
 854   pthread_attr_init(&attr);
 855   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 856 
 857   // stack size
 858   if (os::Linux::supports_variable_stack_size()) {
 859     // calculate stack size if it's not specified by caller
 860     if (stack_size == 0) {
 861       stack_size = os::Linux::default_stack_size(thr_type);
 862 
 863       switch (thr_type) {
 864       case os::java_thread:
 865         // Java threads use ThreadStackSize which default value can be
 866         // changed with the flag -Xss
 867         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 868         stack_size = JavaThread::stack_size_at_create();
 869         break;
 870       case os::compiler_thread:
 871         if (CompilerThreadStackSize > 0) {
 872           stack_size = (size_t)(CompilerThreadStackSize * K);
 873           break;
 874         } // else fall through:
 875           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 876       case os::vm_thread:
 877       case os::pgc_thread:
 878       case os::cgc_thread:
 879       case os::watcher_thread:
 880         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 881         break;
 882       }
 883     }
 884 
 885     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 886     pthread_attr_setstacksize(&attr, stack_size);
 887   } else {
 888     // let pthread_create() pick the default value.
 889   }
 890 
 891   // glibc guard page
 892   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 893 
 894   ThreadState state;
 895 
 896   {
 897     // Serialize thread creation if we are running with fixed stack LinuxThreads
 898     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 899     if (lock) {
 900       os::Linux::createThread_lock()->lock_without_safepoint_check();
 901     }
 902 
 903     pthread_t tid;
 904     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 905 
 906     pthread_attr_destroy(&attr);
 907 
 908     if (ret != 0) {
 909       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 910         perror("pthread_create()");
 911       }
 912       // Need to clean up stuff we've allocated so far
 913       thread->set_osthread(NULL);
 914       delete osthread;
 915       if (lock) os::Linux::createThread_lock()->unlock();
 916       return false;
 917     }
 918 
 919     // Store pthread info into the OSThread
 920     osthread->set_pthread_id(tid);
 921 
 922     // Wait until child thread is either initialized or aborted
 923     {
 924       Monitor* sync_with_child = osthread->startThread_lock();
 925       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 926       while ((state = osthread->get_state()) == ALLOCATED) {
 927         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 928       }
 929     }
 930 
 931     if (lock) {
 932       os::Linux::createThread_lock()->unlock();
 933     }
 934   }
 935 
 936   // Aborted due to thread limit being reached
 937   if (state == ZOMBIE) {
 938       thread->set_osthread(NULL);
 939       delete osthread;
 940       return false;
 941   }
 942 
 943   // The thread is returned suspended (in state INITIALIZED),
 944   // and is started higher up in the call chain
 945   assert(state == INITIALIZED, "race condition");
 946   return true;
 947 }
 948 
 949 /////////////////////////////////////////////////////////////////////////////
 950 // attach existing thread
 951 
 952 // bootstrap the main thread
 953 bool os::create_main_thread(JavaThread* thread) {
 954   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 955   return create_attached_thread(thread);
 956 }
 957 
 958 bool os::create_attached_thread(JavaThread* thread) {
 959 #ifdef ASSERT
 960     thread->verify_not_published();
 961 #endif
 962 
 963   // Allocate the OSThread object
 964   OSThread* osthread = new OSThread(NULL, NULL);
 965 
 966   if (osthread == NULL) {
 967     return false;
 968   }
 969 
 970   // Store pthread info into the OSThread
 971   osthread->set_thread_id(os::Linux::gettid());
 972   osthread->set_pthread_id(::pthread_self());
 973 
 974   // initialize floating point control register
 975   os::Linux::init_thread_fpu_state();
 976 
 977   // Initial thread state is RUNNABLE
 978   osthread->set_state(RUNNABLE);
 979 
 980   thread->set_osthread(osthread);
 981 
 982   if (UseNUMA) {
 983     int lgrp_id = os::numa_get_group_id();
 984     if (lgrp_id != -1) {
 985       thread->set_lgrp_id(lgrp_id);
 986     }
 987   }
 988 
 989   if (os::Linux::is_initial_thread()) {
 990     // If current thread is initial thread, its stack is mapped on demand,
 991     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 992     // the entire stack region to avoid SEGV in stack banging.
 993     // It is also useful to get around the heap-stack-gap problem on SuSE
 994     // kernel (see 4821821 for details). We first expand stack to the top
 995     // of yellow zone, then enable stack yellow zone (order is significant,
 996     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 997     // is no gap between the last two virtual memory regions.
 998 
 999     JavaThread *jt = (JavaThread *)thread;
1000     address addr = jt->stack_yellow_zone_base();
1001     assert(addr != NULL, "initialization problem?");
1002     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1003 
1004     osthread->set_expanding_stack();
1005     os::Linux::manually_expand_stack(jt, addr);
1006     osthread->clear_expanding_stack();
1007   }
1008 
1009   // initialize signal mask for this thread
1010   // and save the caller's signal mask
1011   os::Linux::hotspot_sigmask(thread);
1012 
1013   return true;
1014 }
1015 
1016 void os::pd_start_thread(Thread* thread) {
1017   OSThread * osthread = thread->osthread();
1018   assert(osthread->get_state() != INITIALIZED, "just checking");
1019   Monitor* sync_with_child = osthread->startThread_lock();
1020   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1021   sync_with_child->notify();
1022 }
1023 
1024 // Free Linux resources related to the OSThread
1025 void os::free_thread(OSThread* osthread) {
1026   assert(osthread != NULL, "osthread not set");
1027 
1028   if (Thread::current()->osthread() == osthread) {
1029     // Restore caller's signal mask
1030     sigset_t sigmask = osthread->caller_sigmask();
1031     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1032    }
1033 
1034   delete osthread;
1035 }
1036 
1037 //////////////////////////////////////////////////////////////////////////////
1038 // thread local storage
1039 
1040 int os::allocate_thread_local_storage() {
1041   pthread_key_t key;
1042   int rslt = pthread_key_create(&key, NULL);
1043   assert(rslt == 0, "cannot allocate thread local storage");
1044   return (int)key;
1045 }
1046 
1047 // Note: This is currently not used by VM, as we don't destroy TLS key
1048 // on VM exit.
1049 void os::free_thread_local_storage(int index) {
1050   int rslt = pthread_key_delete((pthread_key_t)index);
1051   assert(rslt == 0, "invalid index");
1052 }
1053 
1054 void os::thread_local_storage_at_put(int index, void* value) {
1055   int rslt = pthread_setspecific((pthread_key_t)index, value);
1056   assert(rslt == 0, "pthread_setspecific failed");
1057 }
1058 
1059 extern "C" Thread* get_thread() {
1060   return ThreadLocalStorage::thread();
1061 }
1062 
1063 //////////////////////////////////////////////////////////////////////////////
1064 // initial thread
1065 
1066 // Check if current thread is the initial thread, similar to Solaris thr_main.
1067 bool os::Linux::is_initial_thread(void) {
1068   char dummy;
1069   // If called before init complete, thread stack bottom will be null.
1070   // Can be called if fatal error occurs before initialization.
1071   if (initial_thread_stack_bottom() == NULL) return false;
1072   assert(initial_thread_stack_bottom() != NULL &&
1073          initial_thread_stack_size()   != 0,
1074          "os::init did not locate initial thread's stack region");
1075   if ((address)&dummy >= initial_thread_stack_bottom() &&
1076       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1077        return true;
1078   else return false;
1079 }
1080 
1081 // Find the virtual memory area that contains addr
1082 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1083   FILE *fp = fopen("/proc/self/maps", "r");
1084   if (fp) {
1085     address low, high;
1086     while (!feof(fp)) {
1087       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1088         if (low <= addr && addr < high) {
1089            if (vma_low)  *vma_low  = low;
1090            if (vma_high) *vma_high = high;
1091            fclose (fp);
1092            return true;
1093         }
1094       }
1095       for (;;) {
1096         int ch = fgetc(fp);
1097         if (ch == EOF || ch == (int)'\n') break;
1098       }
1099     }
1100     fclose(fp);
1101   }
1102   return false;
1103 }
1104 
1105 // Locate initial thread stack. This special handling of initial thread stack
1106 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1107 // bogus value for initial thread.
1108 void os::Linux::capture_initial_stack(size_t max_size) {
1109   // stack size is the easy part, get it from RLIMIT_STACK
1110   size_t stack_size;
1111   struct rlimit rlim;
1112   getrlimit(RLIMIT_STACK, &rlim);
1113   stack_size = rlim.rlim_cur;
1114 
1115   // 6308388: a bug in ld.so will relocate its own .data section to the
1116   //   lower end of primordial stack; reduce ulimit -s value a little bit
1117   //   so we won't install guard page on ld.so's data section.
1118   stack_size -= 2 * page_size();
1119 
1120   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1121   //   7.1, in both cases we will get 2G in return value.
1122   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1123   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1124   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1125   //   in case other parts in glibc still assumes 2M max stack size.
1126   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1127   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1128   if (stack_size > 2 * K * K IA64_ONLY(*2))
1129       stack_size = 2 * K * K IA64_ONLY(*2);
1130   // Try to figure out where the stack base (top) is. This is harder.
1131   //
1132   // When an application is started, glibc saves the initial stack pointer in
1133   // a global variable "__libc_stack_end", which is then used by system
1134   // libraries. __libc_stack_end should be pretty close to stack top. The
1135   // variable is available since the very early days. However, because it is
1136   // a private interface, it could disappear in the future.
1137   //
1138   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1139   // to __libc_stack_end, it is very close to stack top, but isn't the real
1140   // stack top. Note that /proc may not exist if VM is running as a chroot
1141   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1142   // /proc/<pid>/stat could change in the future (though unlikely).
1143   //
1144   // We try __libc_stack_end first. If that doesn't work, look for
1145   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1146   // as a hint, which should work well in most cases.
1147 
1148   uintptr_t stack_start;
1149 
1150   // try __libc_stack_end first
1151   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1152   if (p && *p) {
1153     stack_start = *p;
1154   } else {
1155     // see if we can get the start_stack field from /proc/self/stat
1156     FILE *fp;
1157     int pid;
1158     char state;
1159     int ppid;
1160     int pgrp;
1161     int session;
1162     int nr;
1163     int tpgrp;
1164     unsigned long flags;
1165     unsigned long minflt;
1166     unsigned long cminflt;
1167     unsigned long majflt;
1168     unsigned long cmajflt;
1169     unsigned long utime;
1170     unsigned long stime;
1171     long cutime;
1172     long cstime;
1173     long prio;
1174     long nice;
1175     long junk;
1176     long it_real;
1177     uintptr_t start;
1178     uintptr_t vsize;
1179     intptr_t rss;
1180     uintptr_t rsslim;
1181     uintptr_t scodes;
1182     uintptr_t ecode;
1183     int i;
1184 
1185     // Figure what the primordial thread stack base is. Code is inspired
1186     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1187     // followed by command name surrounded by parentheses, state, etc.
1188     char stat[2048];
1189     int statlen;
1190 
1191     fp = fopen("/proc/self/stat", "r");
1192     if (fp) {
1193       statlen = fread(stat, 1, 2047, fp);
1194       stat[statlen] = '\0';
1195       fclose(fp);
1196 
1197       // Skip pid and the command string. Note that we could be dealing with
1198       // weird command names, e.g. user could decide to rename java launcher
1199       // to "java 1.4.2 :)", then the stat file would look like
1200       //                1234 (java 1.4.2 :)) R ... ...
1201       // We don't really need to know the command string, just find the last
1202       // occurrence of ")" and then start parsing from there. See bug 4726580.
1203       char * s = strrchr(stat, ')');
1204 
1205       i = 0;
1206       if (s) {
1207         // Skip blank chars
1208         do s++; while (isspace(*s));
1209 
1210 #define _UFM UINTX_FORMAT
1211 #define _DFM INTX_FORMAT
1212 
1213         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1214         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1215         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1216              &state,          /* 3  %c  */
1217              &ppid,           /* 4  %d  */
1218              &pgrp,           /* 5  %d  */
1219              &session,        /* 6  %d  */
1220              &nr,             /* 7  %d  */
1221              &tpgrp,          /* 8  %d  */
1222              &flags,          /* 9  %lu  */
1223              &minflt,         /* 10 %lu  */
1224              &cminflt,        /* 11 %lu  */
1225              &majflt,         /* 12 %lu  */
1226              &cmajflt,        /* 13 %lu  */
1227              &utime,          /* 14 %lu  */
1228              &stime,          /* 15 %lu  */
1229              &cutime,         /* 16 %ld  */
1230              &cstime,         /* 17 %ld  */
1231              &prio,           /* 18 %ld  */
1232              &nice,           /* 19 %ld  */
1233              &junk,           /* 20 %ld  */
1234              &it_real,        /* 21 %ld  */
1235              &start,          /* 22 UINTX_FORMAT */
1236              &vsize,          /* 23 UINTX_FORMAT */
1237              &rss,            /* 24 INTX_FORMAT  */
1238              &rsslim,         /* 25 UINTX_FORMAT */
1239              &scodes,         /* 26 UINTX_FORMAT */
1240              &ecode,          /* 27 UINTX_FORMAT */
1241              &stack_start);   /* 28 UINTX_FORMAT */
1242       }
1243 
1244 #undef _UFM
1245 #undef _DFM
1246 
1247       if (i != 28 - 2) {
1248          assert(false, "Bad conversion from /proc/self/stat");
1249          // product mode - assume we are the initial thread, good luck in the
1250          // embedded case.
1251          warning("Can't detect initial thread stack location - bad conversion");
1252          stack_start = (uintptr_t) &rlim;
1253       }
1254     } else {
1255       // For some reason we can't open /proc/self/stat (for example, running on
1256       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1257       // most cases, so don't abort:
1258       warning("Can't detect initial thread stack location - no /proc/self/stat");
1259       stack_start = (uintptr_t) &rlim;
1260     }
1261   }
1262 
1263   // Now we have a pointer (stack_start) very close to the stack top, the
1264   // next thing to do is to figure out the exact location of stack top. We
1265   // can find out the virtual memory area that contains stack_start by
1266   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1267   // and its upper limit is the real stack top. (again, this would fail if
1268   // running inside chroot, because /proc may not exist.)
1269 
1270   uintptr_t stack_top;
1271   address low, high;
1272   if (find_vma((address)stack_start, &low, &high)) {
1273     // success, "high" is the true stack top. (ignore "low", because initial
1274     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1275     stack_top = (uintptr_t)high;
1276   } else {
1277     // failed, likely because /proc/self/maps does not exist
1278     warning("Can't detect initial thread stack location - find_vma failed");
1279     // best effort: stack_start is normally within a few pages below the real
1280     // stack top, use it as stack top, and reduce stack size so we won't put
1281     // guard page outside stack.
1282     stack_top = stack_start;
1283     stack_size -= 16 * page_size();
1284   }
1285 
1286   // stack_top could be partially down the page so align it
1287   stack_top = align_size_up(stack_top, page_size());
1288 
1289   if (max_size && stack_size > max_size) {
1290      _initial_thread_stack_size = max_size;
1291   } else {
1292      _initial_thread_stack_size = stack_size;
1293   }
1294 
1295   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1296   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1297 }
1298 
1299 ////////////////////////////////////////////////////////////////////////////////
1300 // time support
1301 
1302 // Time since start-up in seconds to a fine granularity.
1303 // Used by VMSelfDestructTimer and the MemProfiler.
1304 double os::elapsedTime() {
1305 
1306   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1307 }
1308 
1309 jlong os::elapsed_counter() {
1310   return javaTimeNanos() - initial_time_count;
1311 }
1312 
1313 jlong os::elapsed_frequency() {
1314   return NANOSECS_PER_SEC; // nanosecond resolution
1315 }
1316 
1317 bool os::supports_vtime() { return true; }
1318 bool os::enable_vtime()   { return false; }
1319 bool os::vtime_enabled()  { return false; }
1320 
1321 double os::elapsedVTime() {
1322   struct rusage usage;
1323   int retval = getrusage(RUSAGE_THREAD, &usage);
1324   if (retval == 0) {
1325     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1326   } else {
1327     // better than nothing, but not much
1328     return elapsedTime();
1329   }
1330 }
1331 
1332 jlong os::javaTimeMillis() {
1333   timeval time;
1334   int status = gettimeofday(&time, NULL);
1335   assert(status != -1, "linux error");
1336   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1337 }
1338 
1339 #ifndef CLOCK_MONOTONIC
1340 #define CLOCK_MONOTONIC (1)
1341 #endif
1342 
1343 void os::Linux::clock_init() {
1344   // we do dlopen's in this particular order due to bug in linux
1345   // dynamical loader (see 6348968) leading to crash on exit
1346   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1347   if (handle == NULL) {
1348     handle = dlopen("librt.so", RTLD_LAZY);
1349   }
1350 
1351   if (handle) {
1352     int (*clock_getres_func)(clockid_t, struct timespec*) =
1353            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1354     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1355            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1356     if (clock_getres_func && clock_gettime_func) {
1357       // See if monotonic clock is supported by the kernel. Note that some
1358       // early implementations simply return kernel jiffies (updated every
1359       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1360       // for nano time (though the monotonic property is still nice to have).
1361       // It's fixed in newer kernels, however clock_getres() still returns
1362       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1363       // resolution for now. Hopefully as people move to new kernels, this
1364       // won't be a problem.
1365       struct timespec res;
1366       struct timespec tp;
1367       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1368           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1369         // yes, monotonic clock is supported
1370         _clock_gettime = clock_gettime_func;
1371         return;
1372       } else {
1373         // close librt if there is no monotonic clock
1374         dlclose(handle);
1375       }
1376     }
1377   }
1378   warning("No monotonic clock was available - timed services may " \
1379           "be adversely affected if the time-of-day clock changes");
1380 }
1381 
1382 #ifndef SYS_clock_getres
1383 
1384 #if defined(IA32) || defined(AMD64)
1385 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1386 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1387 #else
1388 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1389 #define sys_clock_getres(x,y)  -1
1390 #endif
1391 
1392 #else
1393 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1394 #endif
1395 
1396 void os::Linux::fast_thread_clock_init() {
1397   if (!UseLinuxPosixThreadCPUClocks) {
1398     return;
1399   }
1400   clockid_t clockid;
1401   struct timespec tp;
1402   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1403       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1404 
1405   // Switch to using fast clocks for thread cpu time if
1406   // the sys_clock_getres() returns 0 error code.
1407   // Note, that some kernels may support the current thread
1408   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1409   // returned by the pthread_getcpuclockid().
1410   // If the fast Posix clocks are supported then the sys_clock_getres()
1411   // must return at least tp.tv_sec == 0 which means a resolution
1412   // better than 1 sec. This is extra check for reliability.
1413 
1414   if(pthread_getcpuclockid_func &&
1415      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1416      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1417 
1418     _supports_fast_thread_cpu_time = true;
1419     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1420   }
1421 }
1422 
1423 jlong os::javaTimeNanos() {
1424   if (os::supports_monotonic_clock()) {
1425     struct timespec tp;
1426     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1427     assert(status == 0, "gettime error");
1428     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1429     return result;
1430   } else {
1431     timeval time;
1432     int status = gettimeofday(&time, NULL);
1433     assert(status != -1, "linux error");
1434     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1435     return 1000 * usecs;
1436   }
1437 }
1438 
1439 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1440   if (os::supports_monotonic_clock()) {
1441     info_ptr->max_value = ALL_64_BITS;
1442 
1443     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1444     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1445     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1446   } else {
1447     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1448     info_ptr->max_value = ALL_64_BITS;
1449 
1450     // gettimeofday is a real time clock so it skips
1451     info_ptr->may_skip_backward = true;
1452     info_ptr->may_skip_forward = true;
1453   }
1454 
1455   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1456 }
1457 
1458 // Return the real, user, and system times in seconds from an
1459 // arbitrary fixed point in the past.
1460 bool os::getTimesSecs(double* process_real_time,
1461                       double* process_user_time,
1462                       double* process_system_time) {
1463   struct tms ticks;
1464   clock_t real_ticks = times(&ticks);
1465 
1466   if (real_ticks == (clock_t) (-1)) {
1467     return false;
1468   } else {
1469     double ticks_per_second = (double) clock_tics_per_sec;
1470     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1471     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1472     *process_real_time = ((double) real_ticks) / ticks_per_second;
1473 
1474     return true;
1475   }
1476 }
1477 
1478 
1479 char * os::local_time_string(char *buf, size_t buflen) {
1480   struct tm t;
1481   time_t long_time;
1482   time(&long_time);
1483   localtime_r(&long_time, &t);
1484   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1485                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1486                t.tm_hour, t.tm_min, t.tm_sec);
1487   return buf;
1488 }
1489 
1490 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1491   return localtime_r(clock, res);
1492 }
1493 
1494 ////////////////////////////////////////////////////////////////////////////////
1495 // runtime exit support
1496 
1497 // Note: os::shutdown() might be called very early during initialization, or
1498 // called from signal handler. Before adding something to os::shutdown(), make
1499 // sure it is async-safe and can handle partially initialized VM.
1500 void os::shutdown() {
1501 
1502   // allow PerfMemory to attempt cleanup of any persistent resources
1503   perfMemory_exit();
1504 
1505   // needs to remove object in file system
1506   AttachListener::abort();
1507 
1508   // flush buffered output, finish log files
1509   ostream_abort();
1510 
1511   // Check for abort hook
1512   abort_hook_t abort_hook = Arguments::abort_hook();
1513   if (abort_hook != NULL) {
1514     abort_hook();
1515   }
1516 
1517 }
1518 
1519 // Note: os::abort() might be called very early during initialization, or
1520 // called from signal handler. Before adding something to os::abort(), make
1521 // sure it is async-safe and can handle partially initialized VM.
1522 void os::abort(bool dump_core) {
1523   os::shutdown();
1524   if (dump_core) {
1525 #ifndef PRODUCT
1526     fdStream out(defaultStream::output_fd());
1527     out.print_raw("Current thread is ");
1528     char buf[16];
1529     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1530     out.print_raw_cr(buf);
1531     out.print_raw_cr("Dumping core ...");
1532 #endif
1533     ::abort(); // dump core
1534   }
1535 
1536   ::exit(1);
1537 }
1538 
1539 // Die immediately, no exit hook, no abort hook, no cleanup.
1540 void os::die() {
1541   // _exit() on LinuxThreads only kills current thread
1542   ::abort();
1543 }
1544 
1545 // unused on linux for now.
1546 void os::set_error_file(const char *logfile) {}
1547 
1548 
1549 // This method is a copy of JDK's sysGetLastErrorString
1550 // from src/solaris/hpi/src/system_md.c
1551 
1552 size_t os::lasterror(char *buf, size_t len) {
1553 
1554   if (errno == 0)  return 0;
1555 
1556   const char *s = ::strerror(errno);
1557   size_t n = ::strlen(s);
1558   if (n >= len) {
1559     n = len - 1;
1560   }
1561   ::strncpy(buf, s, n);
1562   buf[n] = '\0';
1563   return n;
1564 }
1565 
1566 intx os::current_thread_id() { return (intx)pthread_self(); }
1567 int os::current_process_id() {
1568 
1569   // Under the old linux thread library, linux gives each thread
1570   // its own process id. Because of this each thread will return
1571   // a different pid if this method were to return the result
1572   // of getpid(2). Linux provides no api that returns the pid
1573   // of the launcher thread for the vm. This implementation
1574   // returns a unique pid, the pid of the launcher thread
1575   // that starts the vm 'process'.
1576 
1577   // Under the NPTL, getpid() returns the same pid as the
1578   // launcher thread rather than a unique pid per thread.
1579   // Use gettid() if you want the old pre NPTL behaviour.
1580 
1581   // if you are looking for the result of a call to getpid() that
1582   // returns a unique pid for the calling thread, then look at the
1583   // OSThread::thread_id() method in osThread_linux.hpp file
1584 
1585   return (int)(_initial_pid ? _initial_pid : getpid());
1586 }
1587 
1588 // DLL functions
1589 
1590 const char* os::dll_file_extension() { return ".so"; }
1591 
1592 // This must be hard coded because it's the system's temporary
1593 // directory not the java application's temp directory, ala java.io.tmpdir.
1594 const char* os::get_temp_directory() { return "/tmp"; }
1595 
1596 static bool file_exists(const char* filename) {
1597   struct stat statbuf;
1598   if (filename == NULL || strlen(filename) == 0) {
1599     return false;
1600   }
1601   return os::stat(filename, &statbuf) == 0;
1602 }
1603 
1604 bool os::dll_build_name(char* buffer, size_t buflen,
1605                         const char* pname, const char* fname) {
1606   bool retval = false;
1607   // Copied from libhpi
1608   const size_t pnamelen = pname ? strlen(pname) : 0;
1609 
1610   // Return error on buffer overflow.
1611   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1612     return retval;
1613   }
1614 
1615   if (pnamelen == 0) {
1616     snprintf(buffer, buflen, "lib%s.so", fname);
1617     retval = true;
1618   } else if (strchr(pname, *os::path_separator()) != NULL) {
1619     int n;
1620     char** pelements = split_path(pname, &n);
1621     if (pelements == NULL) {
1622       return false;
1623     }
1624     for (int i = 0 ; i < n ; i++) {
1625       // Really shouldn't be NULL, but check can't hurt
1626       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1627         continue; // skip the empty path values
1628       }
1629       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1630       if (file_exists(buffer)) {
1631         retval = true;
1632         break;
1633       }
1634     }
1635     // release the storage
1636     for (int i = 0 ; i < n ; i++) {
1637       if (pelements[i] != NULL) {
1638         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1639       }
1640     }
1641     if (pelements != NULL) {
1642       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1643     }
1644   } else {
1645     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1646     retval = true;
1647   }
1648   return retval;
1649 }
1650 
1651 // check if addr is inside libjvm.so
1652 bool os::address_is_in_vm(address addr) {
1653   static address libjvm_base_addr;
1654   Dl_info dlinfo;
1655 
1656   if (libjvm_base_addr == NULL) {
1657     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1658       libjvm_base_addr = (address)dlinfo.dli_fbase;
1659     }
1660     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1661   }
1662 
1663   if (dladdr((void *)addr, &dlinfo) != 0) {
1664     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1665   }
1666 
1667   return false;
1668 }
1669 
1670 bool os::dll_address_to_function_name(address addr, char *buf,
1671                                       int buflen, int *offset) {
1672   // buf is not optional, but offset is optional
1673   assert(buf != NULL, "sanity check");
1674 
1675   Dl_info dlinfo;
1676 
1677   if (dladdr((void*)addr, &dlinfo) != 0) {
1678     // see if we have a matching symbol
1679     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1680       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1681         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1682       }
1683       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1684       return true;
1685     }
1686     // no matching symbol so try for just file info
1687     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1688       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1689                           buf, buflen, offset, dlinfo.dli_fname)) {
1690         return true;
1691       }
1692     }
1693   }
1694 
1695   buf[0] = '\0';
1696   if (offset != NULL) *offset = -1;
1697   return false;
1698 }
1699 
1700 struct _address_to_library_name {
1701   address addr;          // input : memory address
1702   size_t  buflen;        //         size of fname
1703   char*   fname;         // output: library name
1704   address base;          //         library base addr
1705 };
1706 
1707 static int address_to_library_name_callback(struct dl_phdr_info *info,
1708                                             size_t size, void *data) {
1709   int i;
1710   bool found = false;
1711   address libbase = NULL;
1712   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1713 
1714   // iterate through all loadable segments
1715   for (i = 0; i < info->dlpi_phnum; i++) {
1716     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1717     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1718       // base address of a library is the lowest address of its loaded
1719       // segments.
1720       if (libbase == NULL || libbase > segbase) {
1721         libbase = segbase;
1722       }
1723       // see if 'addr' is within current segment
1724       if (segbase <= d->addr &&
1725           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1726         found = true;
1727       }
1728     }
1729   }
1730 
1731   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1732   // so dll_address_to_library_name() can fall through to use dladdr() which
1733   // can figure out executable name from argv[0].
1734   if (found && info->dlpi_name && info->dlpi_name[0]) {
1735     d->base = libbase;
1736     if (d->fname) {
1737       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1738     }
1739     return 1;
1740   }
1741   return 0;
1742 }
1743 
1744 bool os::dll_address_to_library_name(address addr, char* buf,
1745                                      int buflen, int* offset) {
1746   // buf is not optional, but offset is optional
1747   assert(buf != NULL, "sanity check");
1748 
1749   Dl_info dlinfo;
1750   struct _address_to_library_name data;
1751 
1752   // There is a bug in old glibc dladdr() implementation that it could resolve
1753   // to wrong library name if the .so file has a base address != NULL. Here
1754   // we iterate through the program headers of all loaded libraries to find
1755   // out which library 'addr' really belongs to. This workaround can be
1756   // removed once the minimum requirement for glibc is moved to 2.3.x.
1757   data.addr = addr;
1758   data.fname = buf;
1759   data.buflen = buflen;
1760   data.base = NULL;
1761   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1762 
1763   if (rslt) {
1764      // buf already contains library name
1765      if (offset) *offset = addr - data.base;
1766      return true;
1767   }
1768   if (dladdr((void*)addr, &dlinfo) != 0) {
1769     if (dlinfo.dli_fname != NULL) {
1770       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1771     }
1772     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1773       *offset = addr - (address)dlinfo.dli_fbase;
1774     }
1775     return true;
1776   }
1777 
1778   buf[0] = '\0';
1779   if (offset) *offset = -1;
1780   return false;
1781 }
1782 
1783   // Loads .dll/.so and
1784   // in case of error it checks if .dll/.so was built for the
1785   // same architecture as Hotspot is running on
1786 
1787 
1788 // Remember the stack's state. The Linux dynamic linker will change
1789 // the stack to 'executable' at most once, so we must safepoint only once.
1790 bool os::Linux::_stack_is_executable = false;
1791 
1792 // VM operation that loads a library.  This is necessary if stack protection
1793 // of the Java stacks can be lost during loading the library.  If we
1794 // do not stop the Java threads, they can stack overflow before the stacks
1795 // are protected again.
1796 class VM_LinuxDllLoad: public VM_Operation {
1797  private:
1798   const char *_filename;
1799   char *_ebuf;
1800   int _ebuflen;
1801   void *_lib;
1802  public:
1803   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1804     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1805   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1806   void doit() {
1807     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1808     os::Linux::_stack_is_executable = true;
1809   }
1810   void* loaded_library() { return _lib; }
1811 };
1812 
1813 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1814 {
1815   void * result = NULL;
1816   bool load_attempted = false;
1817 
1818   // Check whether the library to load might change execution rights
1819   // of the stack. If they are changed, the protection of the stack
1820   // guard pages will be lost. We need a safepoint to fix this.
1821   //
1822   // See Linux man page execstack(8) for more info.
1823   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1824     ElfFile ef(filename);
1825     if (!ef.specifies_noexecstack()) {
1826       if (!is_init_completed()) {
1827         os::Linux::_stack_is_executable = true;
1828         // This is OK - No Java threads have been created yet, and hence no
1829         // stack guard pages to fix.
1830         //
1831         // This should happen only when you are building JDK7 using a very
1832         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1833         //
1834         // Dynamic loader will make all stacks executable after
1835         // this function returns, and will not do that again.
1836         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1837       } else {
1838         warning("You have loaded library %s which might have disabled stack guard. "
1839                 "The VM will try to fix the stack guard now.\n"
1840                 "It's highly recommended that you fix the library with "
1841                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1842                 filename);
1843 
1844         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1845         JavaThread *jt = JavaThread::current();
1846         if (jt->thread_state() != _thread_in_native) {
1847           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1848           // that requires ExecStack. Cannot enter safe point. Let's give up.
1849           warning("Unable to fix stack guard. Giving up.");
1850         } else {
1851           if (!LoadExecStackDllInVMThread) {
1852             // This is for the case where the DLL has an static
1853             // constructor function that executes JNI code. We cannot
1854             // load such DLLs in the VMThread.
1855             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1856           }
1857 
1858           ThreadInVMfromNative tiv(jt);
1859           debug_only(VMNativeEntryWrapper vew;)
1860 
1861           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1862           VMThread::execute(&op);
1863           if (LoadExecStackDllInVMThread) {
1864             result = op.loaded_library();
1865           }
1866           load_attempted = true;
1867         }
1868       }
1869     }
1870   }
1871 
1872   if (!load_attempted) {
1873     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1874   }
1875 
1876   if (result != NULL) {
1877     // Successful loading
1878     return result;
1879   }
1880 
1881   Elf32_Ehdr elf_head;
1882   int diag_msg_max_length=ebuflen-strlen(ebuf);
1883   char* diag_msg_buf=ebuf+strlen(ebuf);
1884 
1885   if (diag_msg_max_length==0) {
1886     // No more space in ebuf for additional diagnostics message
1887     return NULL;
1888   }
1889 
1890 
1891   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1892 
1893   if (file_descriptor < 0) {
1894     // Can't open library, report dlerror() message
1895     return NULL;
1896   }
1897 
1898   bool failed_to_read_elf_head=
1899     (sizeof(elf_head)!=
1900         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1901 
1902   ::close(file_descriptor);
1903   if (failed_to_read_elf_head) {
1904     // file i/o error - report dlerror() msg
1905     return NULL;
1906   }
1907 
1908   typedef struct {
1909     Elf32_Half  code;         // Actual value as defined in elf.h
1910     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1911     char        elf_class;    // 32 or 64 bit
1912     char        endianess;    // MSB or LSB
1913     char*       name;         // String representation
1914   } arch_t;
1915 
1916   #ifndef EM_486
1917   #define EM_486          6               /* Intel 80486 */
1918   #endif
1919 
1920   static const arch_t arch_array[]={
1921     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1922     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1923     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1924     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1925     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1926     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1927     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1928     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1929     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1930     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1931     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1932     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1933     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1934     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1935     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1936     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1937   };
1938 
1939   #if  (defined IA32)
1940     static  Elf32_Half running_arch_code=EM_386;
1941   #elif   (defined AMD64)
1942     static  Elf32_Half running_arch_code=EM_X86_64;
1943   #elif  (defined IA64)
1944     static  Elf32_Half running_arch_code=EM_IA_64;
1945   #elif  (defined __sparc) && (defined _LP64)
1946     static  Elf32_Half running_arch_code=EM_SPARCV9;
1947   #elif  (defined __sparc) && (!defined _LP64)
1948     static  Elf32_Half running_arch_code=EM_SPARC;
1949   #elif  (defined __powerpc64__)
1950     static  Elf32_Half running_arch_code=EM_PPC64;
1951   #elif  (defined __powerpc__)
1952     static  Elf32_Half running_arch_code=EM_PPC;
1953   #elif  (defined ARM)
1954     static  Elf32_Half running_arch_code=EM_ARM;
1955   #elif  (defined S390)
1956     static  Elf32_Half running_arch_code=EM_S390;
1957   #elif  (defined ALPHA)
1958     static  Elf32_Half running_arch_code=EM_ALPHA;
1959   #elif  (defined MIPSEL)
1960     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1961   #elif  (defined PARISC)
1962     static  Elf32_Half running_arch_code=EM_PARISC;
1963   #elif  (defined MIPS)
1964     static  Elf32_Half running_arch_code=EM_MIPS;
1965   #elif  (defined M68K)
1966     static  Elf32_Half running_arch_code=EM_68K;
1967   #else
1968     #error Method os::dll_load requires that one of following is defined:\
1969          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1970   #endif
1971 
1972   // Identify compatability class for VM's architecture and library's architecture
1973   // Obtain string descriptions for architectures
1974 
1975   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1976   int running_arch_index=-1;
1977 
1978   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1979     if (running_arch_code == arch_array[i].code) {
1980       running_arch_index    = i;
1981     }
1982     if (lib_arch.code == arch_array[i].code) {
1983       lib_arch.compat_class = arch_array[i].compat_class;
1984       lib_arch.name         = arch_array[i].name;
1985     }
1986   }
1987 
1988   assert(running_arch_index != -1,
1989     "Didn't find running architecture code (running_arch_code) in arch_array");
1990   if (running_arch_index == -1) {
1991     // Even though running architecture detection failed
1992     // we may still continue with reporting dlerror() message
1993     return NULL;
1994   }
1995 
1996   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1997     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1998     return NULL;
1999   }
2000 
2001 #ifndef S390
2002   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2003     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2004     return NULL;
2005   }
2006 #endif // !S390
2007 
2008   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2009     if ( lib_arch.name!=NULL ) {
2010       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2011         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2012         lib_arch.name, arch_array[running_arch_index].name);
2013     } else {
2014       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2015       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2016         lib_arch.code,
2017         arch_array[running_arch_index].name);
2018     }
2019   }
2020 
2021   return NULL;
2022 }
2023 
2024 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2025   void * result = ::dlopen(filename, RTLD_LAZY);
2026   if (result == NULL) {
2027     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2028     ebuf[ebuflen-1] = '\0';
2029   }
2030   return result;
2031 }
2032 
2033 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2034   void * result = NULL;
2035   if (LoadExecStackDllInVMThread) {
2036     result = dlopen_helper(filename, ebuf, ebuflen);
2037   }
2038 
2039   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2040   // library that requires an executable stack, or which does not have this
2041   // stack attribute set, dlopen changes the stack attribute to executable. The
2042   // read protection of the guard pages gets lost.
2043   //
2044   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2045   // may have been queued at the same time.
2046 
2047   if (!_stack_is_executable) {
2048     JavaThread *jt = Threads::first();
2049 
2050     while (jt) {
2051       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2052           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2053         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2054                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2055           warning("Attempt to reguard stack yellow zone failed.");
2056         }
2057       }
2058       jt = jt->next();
2059     }
2060   }
2061 
2062   return result;
2063 }
2064 
2065 /*
2066  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2067  * chances are you might want to run the generated bits against glibc-2.0
2068  * libdl.so, so always use locking for any version of glibc.
2069  */
2070 void* os::dll_lookup(void* handle, const char* name) {
2071   pthread_mutex_lock(&dl_mutex);
2072   void* res = dlsym(handle, name);
2073   pthread_mutex_unlock(&dl_mutex);
2074   return res;
2075 }
2076 
2077 void* os::get_default_process_handle() {
2078   return (void*)::dlopen(NULL, RTLD_LAZY);
2079 }
2080 
2081 static bool _print_ascii_file(const char* filename, outputStream* st) {
2082   int fd = ::open(filename, O_RDONLY);
2083   if (fd == -1) {
2084      return false;
2085   }
2086 
2087   char buf[32];
2088   int bytes;
2089   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2090     st->print_raw(buf, bytes);
2091   }
2092 
2093   ::close(fd);
2094 
2095   return true;
2096 }
2097 
2098 void os::print_dll_info(outputStream *st) {
2099    st->print_cr("Dynamic libraries:");
2100 
2101    char fname[32];
2102    pid_t pid = os::Linux::gettid();
2103 
2104    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2105 
2106    if (!_print_ascii_file(fname, st)) {
2107      st->print("Can not get library information for pid = %d\n", pid);
2108    }
2109 }
2110 
2111 void os::print_os_info_brief(outputStream* st) {
2112   os::Linux::print_distro_info(st);
2113 
2114   os::Posix::print_uname_info(st);
2115 
2116   os::Linux::print_libversion_info(st);
2117 
2118 }
2119 
2120 void os::print_os_info(outputStream* st) {
2121   st->print("OS:");
2122 
2123   os::Linux::print_distro_info(st);
2124 
2125   os::Posix::print_uname_info(st);
2126 
2127   // Print warning if unsafe chroot environment detected
2128   if (unsafe_chroot_detected) {
2129     st->print("WARNING!! ");
2130     st->print_cr(unstable_chroot_error);
2131   }
2132 
2133   os::Linux::print_libversion_info(st);
2134 
2135   os::Posix::print_rlimit_info(st);
2136 
2137   os::Posix::print_load_average(st);
2138 
2139   os::Linux::print_full_memory_info(st);
2140 }
2141 
2142 // Try to identify popular distros.
2143 // Most Linux distributions have a /etc/XXX-release file, which contains
2144 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2145 // file that also contains the OS version string. Some have more than one
2146 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2147 // /etc/redhat-release.), so the order is important.
2148 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2149 // their own specific XXX-release file as well as a redhat-release file.
2150 // Because of this the XXX-release file needs to be searched for before the
2151 // redhat-release file.
2152 // Since Red Hat has a lsb-release file that is not very descriptive the
2153 // search for redhat-release needs to be before lsb-release.
2154 // Since the lsb-release file is the new standard it needs to be searched
2155 // before the older style release files.
2156 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2157 // next to last resort.  The os-release file is a new standard that contains
2158 // distribution information and the system-release file seems to be an old
2159 // standard that has been replaced by the lsb-release and os-release files.
2160 // Searching for the debian_version file is the last resort.  It contains
2161 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2162 // "Debian " is printed before the contents of the debian_version file.
2163 void os::Linux::print_distro_info(outputStream* st) {
2164    if (!_print_ascii_file("/etc/oracle-release", st) &&
2165        !_print_ascii_file("/etc/mandriva-release", st) &&
2166        !_print_ascii_file("/etc/mandrake-release", st) &&
2167        !_print_ascii_file("/etc/sun-release", st) &&
2168        !_print_ascii_file("/etc/redhat-release", st) &&
2169        !_print_ascii_file("/etc/lsb-release", st) &&
2170        !_print_ascii_file("/etc/SuSE-release", st) &&
2171        !_print_ascii_file("/etc/turbolinux-release", st) &&
2172        !_print_ascii_file("/etc/gentoo-release", st) &&
2173        !_print_ascii_file("/etc/ltib-release", st) &&
2174        !_print_ascii_file("/etc/angstrom-version", st) &&
2175        !_print_ascii_file("/etc/system-release", st) &&
2176        !_print_ascii_file("/etc/os-release", st)) {
2177 
2178        if (file_exists("/etc/debian_version")) {
2179          st->print("Debian ");
2180          _print_ascii_file("/etc/debian_version", st);
2181        } else {
2182          st->print("Linux");
2183        }
2184    }
2185    st->cr();
2186 }
2187 
2188 void os::Linux::print_libversion_info(outputStream* st) {
2189   // libc, pthread
2190   st->print("libc:");
2191   st->print(os::Linux::glibc_version()); st->print(" ");
2192   st->print(os::Linux::libpthread_version()); st->print(" ");
2193   if (os::Linux::is_LinuxThreads()) {
2194      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2195   }
2196   st->cr();
2197 }
2198 
2199 void os::Linux::print_full_memory_info(outputStream* st) {
2200    st->print("\n/proc/meminfo:\n");
2201    _print_ascii_file("/proc/meminfo", st);
2202    st->cr();
2203 }
2204 
2205 void os::print_memory_info(outputStream* st) {
2206 
2207   st->print("Memory:");
2208   st->print(" %dk page", os::vm_page_size()>>10);
2209 
2210   // values in struct sysinfo are "unsigned long"
2211   struct sysinfo si;
2212   sysinfo(&si);
2213 
2214   st->print(", physical " UINT64_FORMAT "k",
2215             os::physical_memory() >> 10);
2216   st->print("(" UINT64_FORMAT "k free)",
2217             os::available_memory() >> 10);
2218   st->print(", swap " UINT64_FORMAT "k",
2219             ((jlong)si.totalswap * si.mem_unit) >> 10);
2220   st->print("(" UINT64_FORMAT "k free)",
2221             ((jlong)si.freeswap * si.mem_unit) >> 10);
2222   st->cr();
2223 }
2224 
2225 void os::pd_print_cpu_info(outputStream* st) {
2226   st->print("\n/proc/cpuinfo:\n");
2227   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2228     st->print("  <Not Available>");
2229   }
2230   st->cr();
2231 }
2232 
2233 void os::print_siginfo(outputStream* st, void* siginfo) {
2234   const siginfo_t* si = (const siginfo_t*)siginfo;
2235 
2236   os::Posix::print_siginfo_brief(st, si);
2237 
2238   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2239       UseSharedSpaces) {
2240     FileMapInfo* mapinfo = FileMapInfo::current_info();
2241     if (mapinfo->is_in_shared_space(si->si_addr)) {
2242       st->print("\n\nError accessing class data sharing archive."   \
2243                 " Mapped file inaccessible during execution, "      \
2244                 " possible disk/network problem.");
2245     }
2246   }
2247   st->cr();
2248 }
2249 
2250 
2251 static void print_signal_handler(outputStream* st, int sig,
2252                                  char* buf, size_t buflen);
2253 
2254 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2255   st->print_cr("Signal Handlers:");
2256   print_signal_handler(st, SIGSEGV, buf, buflen);
2257   print_signal_handler(st, SIGBUS , buf, buflen);
2258   print_signal_handler(st, SIGFPE , buf, buflen);
2259   print_signal_handler(st, SIGPIPE, buf, buflen);
2260   print_signal_handler(st, SIGXFSZ, buf, buflen);
2261   print_signal_handler(st, SIGILL , buf, buflen);
2262   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2263   print_signal_handler(st, SR_signum, buf, buflen);
2264   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2265   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2266   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2267   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2268 #if defined(PPC64)
2269   print_signal_handler(st, SIGTRAP, buf, buflen);
2270 #endif
2271 }
2272 
2273 static char saved_jvm_path[MAXPATHLEN] = {0};
2274 
2275 // Find the full path to the current module, libjvm.so
2276 void os::jvm_path(char *buf, jint buflen) {
2277   // Error checking.
2278   if (buflen < MAXPATHLEN) {
2279     assert(false, "must use a large-enough buffer");
2280     buf[0] = '\0';
2281     return;
2282   }
2283   // Lazy resolve the path to current module.
2284   if (saved_jvm_path[0] != 0) {
2285     strcpy(buf, saved_jvm_path);
2286     return;
2287   }
2288 
2289   char dli_fname[MAXPATHLEN];
2290   bool ret = dll_address_to_library_name(
2291                 CAST_FROM_FN_PTR(address, os::jvm_path),
2292                 dli_fname, sizeof(dli_fname), NULL);
2293   assert(ret, "cannot locate libjvm");
2294   char *rp = NULL;
2295   if (ret && dli_fname[0] != '\0') {
2296     rp = realpath(dli_fname, buf);
2297   }
2298   if (rp == NULL)
2299     return;
2300 
2301   if (Arguments::sun_java_launcher_is_altjvm()) {
2302     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2303     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2304     // If "/jre/lib/" appears at the right place in the string, then
2305     // assume we are installed in a JDK and we're done. Otherwise, check
2306     // for a JAVA_HOME environment variable and fix up the path so it
2307     // looks like libjvm.so is installed there (append a fake suffix
2308     // hotspot/libjvm.so).
2309     const char *p = buf + strlen(buf) - 1;
2310     for (int count = 0; p > buf && count < 5; ++count) {
2311       for (--p; p > buf && *p != '/'; --p)
2312         /* empty */ ;
2313     }
2314 
2315     if (strncmp(p, "/jre/lib/", 9) != 0) {
2316       // Look for JAVA_HOME in the environment.
2317       char* java_home_var = ::getenv("JAVA_HOME");
2318       if (java_home_var != NULL && java_home_var[0] != 0) {
2319         char* jrelib_p;
2320         int len;
2321 
2322         // Check the current module name "libjvm.so".
2323         p = strrchr(buf, '/');
2324         assert(strstr(p, "/libjvm") == p, "invalid library name");
2325 
2326         rp = realpath(java_home_var, buf);
2327         if (rp == NULL)
2328           return;
2329 
2330         // determine if this is a legacy image or modules image
2331         // modules image doesn't have "jre" subdirectory
2332         len = strlen(buf);
2333         jrelib_p = buf + len;
2334         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2335         if (0 != access(buf, F_OK)) {
2336           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2337         }
2338 
2339         if (0 == access(buf, F_OK)) {
2340           // Use current module name "libjvm.so"
2341           len = strlen(buf);
2342           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2343         } else {
2344           // Go back to path of .so
2345           rp = realpath(dli_fname, buf);
2346           if (rp == NULL)
2347             return;
2348         }
2349       }
2350     }
2351   }
2352 
2353   strcpy(saved_jvm_path, buf);
2354 }
2355 
2356 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2357   // no prefix required, not even "_"
2358 }
2359 
2360 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2361   // no suffix required
2362 }
2363 
2364 ////////////////////////////////////////////////////////////////////////////////
2365 // sun.misc.Signal support
2366 
2367 static volatile jint sigint_count = 0;
2368 
2369 static void
2370 UserHandler(int sig, void *siginfo, void *context) {
2371   // 4511530 - sem_post is serialized and handled by the manager thread. When
2372   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2373   // don't want to flood the manager thread with sem_post requests.
2374   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2375       return;
2376 
2377   // Ctrl-C is pressed during error reporting, likely because the error
2378   // handler fails to abort. Let VM die immediately.
2379   if (sig == SIGINT && is_error_reported()) {
2380      os::die();
2381   }
2382 
2383   os::signal_notify(sig);
2384 }
2385 
2386 void* os::user_handler() {
2387   return CAST_FROM_FN_PTR(void*, UserHandler);
2388 }
2389 
2390 class Semaphore : public StackObj {
2391   public:
2392     Semaphore();
2393     ~Semaphore();
2394     void signal();
2395     void wait();
2396     bool trywait();
2397     bool timedwait(unsigned int sec, int nsec);
2398   private:
2399     sem_t _semaphore;
2400 };
2401 
2402 
2403 Semaphore::Semaphore() {
2404   sem_init(&_semaphore, 0, 0);
2405 }
2406 
2407 Semaphore::~Semaphore() {
2408   sem_destroy(&_semaphore);
2409 }
2410 
2411 void Semaphore::signal() {
2412   sem_post(&_semaphore);
2413 }
2414 
2415 void Semaphore::wait() {
2416   sem_wait(&_semaphore);
2417 }
2418 
2419 bool Semaphore::trywait() {
2420   return sem_trywait(&_semaphore) == 0;
2421 }
2422 
2423 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2424   struct timespec ts;
2425   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2426 
2427   while (1) {
2428     int result = sem_timedwait(&_semaphore, &ts);
2429     if (result == 0) {
2430       return true;
2431     } else if (errno == EINTR) {
2432       continue;
2433     } else if (errno == ETIMEDOUT) {
2434       return false;
2435     } else {
2436       return false;
2437     }
2438   }
2439 }
2440 
2441 extern "C" {
2442   typedef void (*sa_handler_t)(int);
2443   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2444 }
2445 
2446 void* os::signal(int signal_number, void* handler) {
2447   struct sigaction sigAct, oldSigAct;
2448 
2449   sigfillset(&(sigAct.sa_mask));
2450   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2451   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2452 
2453   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2454     // -1 means registration failed
2455     return (void *)-1;
2456   }
2457 
2458   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2459 }
2460 
2461 void os::signal_raise(int signal_number) {
2462   ::raise(signal_number);
2463 }
2464 
2465 /*
2466  * The following code is moved from os.cpp for making this
2467  * code platform specific, which it is by its very nature.
2468  */
2469 
2470 // Will be modified when max signal is changed to be dynamic
2471 int os::sigexitnum_pd() {
2472   return NSIG;
2473 }
2474 
2475 // a counter for each possible signal value
2476 static volatile jint pending_signals[NSIG+1] = { 0 };
2477 
2478 // Linux(POSIX) specific hand shaking semaphore.
2479 static sem_t sig_sem;
2480 static Semaphore sr_semaphore;
2481 
2482 void os::signal_init_pd() {
2483   // Initialize signal structures
2484   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2485 
2486   // Initialize signal semaphore
2487   ::sem_init(&sig_sem, 0, 0);
2488 }
2489 
2490 void os::signal_notify(int sig) {
2491   Atomic::inc(&pending_signals[sig]);
2492   ::sem_post(&sig_sem);
2493 }
2494 
2495 static int check_pending_signals(bool wait) {
2496   Atomic::store(0, &sigint_count);
2497   for (;;) {
2498     for (int i = 0; i < NSIG + 1; i++) {
2499       jint n = pending_signals[i];
2500       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2501         return i;
2502       }
2503     }
2504     if (!wait) {
2505       return -1;
2506     }
2507     JavaThread *thread = JavaThread::current();
2508     ThreadBlockInVM tbivm(thread);
2509 
2510     bool threadIsSuspended;
2511     do {
2512       thread->set_suspend_equivalent();
2513       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2514       ::sem_wait(&sig_sem);
2515 
2516       // were we externally suspended while we were waiting?
2517       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2518       if (threadIsSuspended) {
2519         //
2520         // The semaphore has been incremented, but while we were waiting
2521         // another thread suspended us. We don't want to continue running
2522         // while suspended because that would surprise the thread that
2523         // suspended us.
2524         //
2525         ::sem_post(&sig_sem);
2526 
2527         thread->java_suspend_self();
2528       }
2529     } while (threadIsSuspended);
2530   }
2531 }
2532 
2533 int os::signal_lookup() {
2534   return check_pending_signals(false);
2535 }
2536 
2537 int os::signal_wait() {
2538   return check_pending_signals(true);
2539 }
2540 
2541 ////////////////////////////////////////////////////////////////////////////////
2542 // Virtual Memory
2543 
2544 int os::vm_page_size() {
2545   // Seems redundant as all get out
2546   assert(os::Linux::page_size() != -1, "must call os::init");
2547   return os::Linux::page_size();
2548 }
2549 
2550 // Solaris allocates memory by pages.
2551 int os::vm_allocation_granularity() {
2552   assert(os::Linux::page_size() != -1, "must call os::init");
2553   return os::Linux::page_size();
2554 }
2555 
2556 // Rationale behind this function:
2557 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2558 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2559 //  samples for JITted code. Here we create private executable mapping over the code cache
2560 //  and then we can use standard (well, almost, as mapping can change) way to provide
2561 //  info for the reporting script by storing timestamp and location of symbol
2562 void linux_wrap_code(char* base, size_t size) {
2563   static volatile jint cnt = 0;
2564 
2565   if (!UseOprofile) {
2566     return;
2567   }
2568 
2569   char buf[PATH_MAX+1];
2570   int num = Atomic::add(1, &cnt);
2571 
2572   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2573            os::get_temp_directory(), os::current_process_id(), num);
2574   unlink(buf);
2575 
2576   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2577 
2578   if (fd != -1) {
2579     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2580     if (rv != (off_t)-1) {
2581       if (::write(fd, "", 1) == 1) {
2582         mmap(base, size,
2583              PROT_READ|PROT_WRITE|PROT_EXEC,
2584              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2585       }
2586     }
2587     ::close(fd);
2588     unlink(buf);
2589   }
2590 }
2591 
2592 static bool recoverable_mmap_error(int err) {
2593   // See if the error is one we can let the caller handle. This
2594   // list of errno values comes from JBS-6843484. I can't find a
2595   // Linux man page that documents this specific set of errno
2596   // values so while this list currently matches Solaris, it may
2597   // change as we gain experience with this failure mode.
2598   switch (err) {
2599   case EBADF:
2600   case EINVAL:
2601   case ENOTSUP:
2602     // let the caller deal with these errors
2603     return true;
2604 
2605   default:
2606     // Any remaining errors on this OS can cause our reserved mapping
2607     // to be lost. That can cause confusion where different data
2608     // structures think they have the same memory mapped. The worst
2609     // scenario is if both the VM and a library think they have the
2610     // same memory mapped.
2611     return false;
2612   }
2613 }
2614 
2615 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2616                                     int err) {
2617   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2618           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2619           strerror(err), err);
2620 }
2621 
2622 static void warn_fail_commit_memory(char* addr, size_t size,
2623                                     size_t alignment_hint, bool exec,
2624                                     int err) {
2625   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2626           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2627           alignment_hint, exec, strerror(err), err);
2628 }
2629 
2630 // NOTE: Linux kernel does not really reserve the pages for us.
2631 //       All it does is to check if there are enough free pages
2632 //       left at the time of mmap(). This could be a potential
2633 //       problem.
2634 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2635   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2636   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2637                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2638   if (res != (uintptr_t) MAP_FAILED) {
2639     if (UseNUMAInterleaving) {
2640       numa_make_global(addr, size);
2641     }
2642     return 0;
2643   }
2644 
2645   int err = errno;  // save errno from mmap() call above
2646 
2647   if (!recoverable_mmap_error(err)) {
2648     warn_fail_commit_memory(addr, size, exec, err);
2649     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2650   }
2651 
2652   return err;
2653 }
2654 
2655 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2656   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2657 }
2658 
2659 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2660                                   const char* mesg) {
2661   assert(mesg != NULL, "mesg must be specified");
2662   int err = os::Linux::commit_memory_impl(addr, size, exec);
2663   if (err != 0) {
2664     // the caller wants all commit errors to exit with the specified mesg:
2665     warn_fail_commit_memory(addr, size, exec, err);
2666     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2667   }
2668 }
2669 
2670 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2671 #ifndef MAP_HUGETLB
2672 #define MAP_HUGETLB 0x40000
2673 #endif
2674 
2675 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2676 #ifndef MADV_HUGEPAGE
2677 #define MADV_HUGEPAGE 14
2678 #endif
2679 
2680 int os::Linux::commit_memory_impl(char* addr, size_t size,
2681                                   size_t alignment_hint, bool exec) {
2682   int err = os::Linux::commit_memory_impl(addr, size, exec);
2683   if (err == 0) {
2684     realign_memory(addr, size, alignment_hint);
2685   }
2686   return err;
2687 }
2688 
2689 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2690                           bool exec) {
2691   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2692 }
2693 
2694 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2695                                   size_t alignment_hint, bool exec,
2696                                   const char* mesg) {
2697   assert(mesg != NULL, "mesg must be specified");
2698   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2699   if (err != 0) {
2700     // the caller wants all commit errors to exit with the specified mesg:
2701     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2702     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2703   }
2704 }
2705 
2706 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2707   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2708     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2709     // be supported or the memory may already be backed by huge pages.
2710     ::madvise(addr, bytes, MADV_HUGEPAGE);
2711   }
2712 }
2713 
2714 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2715   // This method works by doing an mmap over an existing mmaping and effectively discarding
2716   // the existing pages. However it won't work for SHM-based large pages that cannot be
2717   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2718   // small pages on top of the SHM segment. This method always works for small pages, so we
2719   // allow that in any case.
2720   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2721     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2722   }
2723 }
2724 
2725 void os::numa_make_global(char *addr, size_t bytes) {
2726   Linux::numa_interleave_memory(addr, bytes);
2727 }
2728 
2729 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2730 // bind policy to MPOL_PREFERRED for the current thread.
2731 #define USE_MPOL_PREFERRED 0
2732 
2733 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2734   // To make NUMA and large pages more robust when both enabled, we need to ease
2735   // the requirements on where the memory should be allocated. MPOL_BIND is the
2736   // default policy and it will force memory to be allocated on the specified
2737   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2738   // the specified node, but will not force it. Using this policy will prevent
2739   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2740   // free large pages.
2741   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2742   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2743 }
2744 
2745 bool os::numa_topology_changed()   { return false; }
2746 
2747 size_t os::numa_get_groups_num() {
2748   int max_node = Linux::numa_max_node();
2749   return max_node > 0 ? max_node + 1 : 1;
2750 }
2751 
2752 int os::numa_get_group_id() {
2753   int cpu_id = Linux::sched_getcpu();
2754   if (cpu_id != -1) {
2755     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2756     if (lgrp_id != -1) {
2757       return lgrp_id;
2758     }
2759   }
2760   return 0;
2761 }
2762 
2763 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2764   for (size_t i = 0; i < size; i++) {
2765     ids[i] = i;
2766   }
2767   return size;
2768 }
2769 
2770 bool os::get_page_info(char *start, page_info* info) {
2771   return false;
2772 }
2773 
2774 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2775   return end;
2776 }
2777 
2778 
2779 int os::Linux::sched_getcpu_syscall(void) {
2780   unsigned int cpu;
2781   int retval = -1;
2782 
2783 #if defined(IA32)
2784 # ifndef SYS_getcpu
2785 # define SYS_getcpu 318
2786 # endif
2787   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2788 #elif defined(AMD64)
2789 // Unfortunately we have to bring all these macros here from vsyscall.h
2790 // to be able to compile on old linuxes.
2791 # define __NR_vgetcpu 2
2792 # define VSYSCALL_START (-10UL << 20)
2793 # define VSYSCALL_SIZE 1024
2794 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2795   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2796   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2797   retval = vgetcpu(&cpu, NULL, NULL);
2798 #endif
2799 
2800   return (retval == -1) ? retval : cpu;
2801 }
2802 
2803 // Something to do with the numa-aware allocator needs these symbols
2804 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2805 extern "C" JNIEXPORT void numa_error(char *where) { }
2806 extern "C" JNIEXPORT int fork1() { return fork(); }
2807 
2808 
2809 // If we are running with libnuma version > 2, then we should
2810 // be trying to use symbols with versions 1.1
2811 // If we are running with earlier version, which did not have symbol versions,
2812 // we should use the base version.
2813 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2814   void *f = dlvsym(handle, name, "libnuma_1.1");
2815   if (f == NULL) {
2816     f = dlsym(handle, name);
2817   }
2818   return f;
2819 }
2820 
2821 bool os::Linux::libnuma_init() {
2822   // sched_getcpu() should be in libc.
2823   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2824                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2825 
2826   // If it's not, try a direct syscall.
2827   if (sched_getcpu() == -1)
2828     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2829 
2830   if (sched_getcpu() != -1) { // Does it work?
2831     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2832     if (handle != NULL) {
2833       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2834                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2835       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2836                                        libnuma_dlsym(handle, "numa_max_node")));
2837       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2838                                         libnuma_dlsym(handle, "numa_available")));
2839       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2840                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2841       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2842                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2843       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2844                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
2845 
2846 
2847       if (numa_available() != -1) {
2848         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2849         // Create a cpu -> node mapping
2850         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2851         rebuild_cpu_to_node_map();
2852         return true;
2853       }
2854     }
2855   }
2856   return false;
2857 }
2858 
2859 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2860 // The table is later used in get_node_by_cpu().
2861 void os::Linux::rebuild_cpu_to_node_map() {
2862   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2863                               // in libnuma (possible values are starting from 16,
2864                               // and continuing up with every other power of 2, but less
2865                               // than the maximum number of CPUs supported by kernel), and
2866                               // is a subject to change (in libnuma version 2 the requirements
2867                               // are more reasonable) we'll just hardcode the number they use
2868                               // in the library.
2869   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2870 
2871   size_t cpu_num = os::active_processor_count();
2872   size_t cpu_map_size = NCPUS / BitsPerCLong;
2873   size_t cpu_map_valid_size =
2874     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2875 
2876   cpu_to_node()->clear();
2877   cpu_to_node()->at_grow(cpu_num - 1);
2878   size_t node_num = numa_get_groups_num();
2879 
2880   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2881   for (size_t i = 0; i < node_num; i++) {
2882     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2883       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2884         if (cpu_map[j] != 0) {
2885           for (size_t k = 0; k < BitsPerCLong; k++) {
2886             if (cpu_map[j] & (1UL << k)) {
2887               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2888             }
2889           }
2890         }
2891       }
2892     }
2893   }
2894   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2895 }
2896 
2897 int os::Linux::get_node_by_cpu(int cpu_id) {
2898   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2899     return cpu_to_node()->at(cpu_id);
2900   }
2901   return -1;
2902 }
2903 
2904 GrowableArray<int>* os::Linux::_cpu_to_node;
2905 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2906 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2907 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2908 os::Linux::numa_available_func_t os::Linux::_numa_available;
2909 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2910 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2911 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2912 unsigned long* os::Linux::_numa_all_nodes;
2913 
2914 bool os::pd_uncommit_memory(char* addr, size_t size) {
2915   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2916                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2917   return res  != (uintptr_t) MAP_FAILED;
2918 }
2919 
2920 static
2921 address get_stack_commited_bottom(address bottom, size_t size) {
2922   address nbot = bottom;
2923   address ntop = bottom + size;
2924 
2925   size_t page_sz = os::vm_page_size();
2926   unsigned pages = size / page_sz;
2927 
2928   unsigned char vec[1];
2929   unsigned imin = 1, imax = pages + 1, imid;
2930   int mincore_return_value = 0;
2931 
2932   assert(imin <= imax, "Unexpected page size");
2933 
2934   while (imin < imax) {
2935     imid = (imax + imin) / 2;
2936     nbot = ntop - (imid * page_sz);
2937 
2938     // Use a trick with mincore to check whether the page is mapped or not.
2939     // mincore sets vec to 1 if page resides in memory and to 0 if page
2940     // is swapped output but if page we are asking for is unmapped
2941     // it returns -1,ENOMEM
2942     mincore_return_value = mincore(nbot, page_sz, vec);
2943 
2944     if (mincore_return_value == -1) {
2945       // Page is not mapped go up
2946       // to find first mapped page
2947       if (errno != EAGAIN) {
2948         assert(errno == ENOMEM, "Unexpected mincore errno");
2949         imax = imid;
2950       }
2951     } else {
2952       // Page is mapped go down
2953       // to find first not mapped page
2954       imin = imid + 1;
2955     }
2956   }
2957 
2958   nbot = nbot + page_sz;
2959 
2960   // Adjust stack bottom one page up if last checked page is not mapped
2961   if (mincore_return_value == -1) {
2962     nbot = nbot + page_sz;
2963   }
2964 
2965   return nbot;
2966 }
2967 
2968 
2969 // Linux uses a growable mapping for the stack, and if the mapping for
2970 // the stack guard pages is not removed when we detach a thread the
2971 // stack cannot grow beyond the pages where the stack guard was
2972 // mapped.  If at some point later in the process the stack expands to
2973 // that point, the Linux kernel cannot expand the stack any further
2974 // because the guard pages are in the way, and a segfault occurs.
2975 //
2976 // However, it's essential not to split the stack region by unmapping
2977 // a region (leaving a hole) that's already part of the stack mapping,
2978 // so if the stack mapping has already grown beyond the guard pages at
2979 // the time we create them, we have to truncate the stack mapping.
2980 // So, we need to know the extent of the stack mapping when
2981 // create_stack_guard_pages() is called.
2982 
2983 // We only need this for stacks that are growable: at the time of
2984 // writing thread stacks don't use growable mappings (i.e. those
2985 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2986 // only applies to the main thread.
2987 
2988 // If the (growable) stack mapping already extends beyond the point
2989 // where we're going to put our guard pages, truncate the mapping at
2990 // that point by munmap()ping it.  This ensures that when we later
2991 // munmap() the guard pages we don't leave a hole in the stack
2992 // mapping. This only affects the main/initial thread
2993 
2994 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2995 
2996   if (os::Linux::is_initial_thread()) {
2997     // As we manually grow stack up to bottom inside create_attached_thread(),
2998     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2999     // we don't need to do anything special.
3000     // Check it first, before calling heavy function.
3001     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3002     unsigned char vec[1];
3003 
3004     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3005       // Fallback to slow path on all errors, including EAGAIN
3006       stack_extent = (uintptr_t) get_stack_commited_bottom(
3007                                     os::Linux::initial_thread_stack_bottom(),
3008                                     (size_t)addr - stack_extent);
3009     }
3010 
3011     if (stack_extent < (uintptr_t)addr) {
3012       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3013     }
3014   }
3015 
3016   return os::commit_memory(addr, size, !ExecMem);
3017 }
3018 
3019 // If this is a growable mapping, remove the guard pages entirely by
3020 // munmap()ping them.  If not, just call uncommit_memory(). This only
3021 // affects the main/initial thread, but guard against future OS changes
3022 // It's safe to always unmap guard pages for initial thread because we
3023 // always place it right after end of the mapped region
3024 
3025 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3026   uintptr_t stack_extent, stack_base;
3027 
3028   if (os::Linux::is_initial_thread()) {
3029     return ::munmap(addr, size) == 0;
3030   }
3031 
3032   return os::uncommit_memory(addr, size);
3033 }
3034 
3035 static address _highest_vm_reserved_address = NULL;
3036 
3037 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3038 // at 'requested_addr'. If there are existing memory mappings at the same
3039 // location, however, they will be overwritten. If 'fixed' is false,
3040 // 'requested_addr' is only treated as a hint, the return value may or
3041 // may not start from the requested address. Unlike Linux mmap(), this
3042 // function returns NULL to indicate failure.
3043 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3044   char * addr;
3045   int flags;
3046 
3047   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3048   if (fixed) {
3049     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3050     flags |= MAP_FIXED;
3051   }
3052 
3053   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3054   // touch an uncommitted page. Otherwise, the read/write might
3055   // succeed if we have enough swap space to back the physical page.
3056   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3057                        flags, -1, 0);
3058 
3059   if (addr != MAP_FAILED) {
3060     // anon_mmap() should only get called during VM initialization,
3061     // don't need lock (actually we can skip locking even it can be called
3062     // from multiple threads, because _highest_vm_reserved_address is just a
3063     // hint about the upper limit of non-stack memory regions.)
3064     if ((address)addr + bytes > _highest_vm_reserved_address) {
3065       _highest_vm_reserved_address = (address)addr + bytes;
3066     }
3067   }
3068 
3069   return addr == MAP_FAILED ? NULL : addr;
3070 }
3071 
3072 // Don't update _highest_vm_reserved_address, because there might be memory
3073 // regions above addr + size. If so, releasing a memory region only creates
3074 // a hole in the address space, it doesn't help prevent heap-stack collision.
3075 //
3076 static int anon_munmap(char * addr, size_t size) {
3077   return ::munmap(addr, size) == 0;
3078 }
3079 
3080 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3081                          size_t alignment_hint) {
3082   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3083 }
3084 
3085 bool os::pd_release_memory(char* addr, size_t size) {
3086   return anon_munmap(addr, size);
3087 }
3088 
3089 static address highest_vm_reserved_address() {
3090   return _highest_vm_reserved_address;
3091 }
3092 
3093 static bool linux_mprotect(char* addr, size_t size, int prot) {
3094   // Linux wants the mprotect address argument to be page aligned.
3095   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3096 
3097   // According to SUSv3, mprotect() should only be used with mappings
3098   // established by mmap(), and mmap() always maps whole pages. Unaligned
3099   // 'addr' likely indicates problem in the VM (e.g. trying to change
3100   // protection of malloc'ed or statically allocated memory). Check the
3101   // caller if you hit this assert.
3102   assert(addr == bottom, "sanity check");
3103 
3104   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3105   return ::mprotect(bottom, size, prot) == 0;
3106 }
3107 
3108 // Set protections specified
3109 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3110                         bool is_committed) {
3111   unsigned int p = 0;
3112   switch (prot) {
3113   case MEM_PROT_NONE: p = PROT_NONE; break;
3114   case MEM_PROT_READ: p = PROT_READ; break;
3115   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3116   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3117   default:
3118     ShouldNotReachHere();
3119   }
3120   // is_committed is unused.
3121   return linux_mprotect(addr, bytes, p);
3122 }
3123 
3124 bool os::guard_memory(char* addr, size_t size) {
3125   return linux_mprotect(addr, size, PROT_NONE);
3126 }
3127 
3128 bool os::unguard_memory(char* addr, size_t size) {
3129   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3130 }
3131 
3132 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3133   bool result = false;
3134   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3135                  MAP_ANONYMOUS|MAP_PRIVATE,
3136                  -1, 0);
3137   if (p != MAP_FAILED) {
3138     void *aligned_p = align_ptr_up(p, page_size);
3139 
3140     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3141 
3142     munmap(p, page_size * 2);
3143   }
3144 
3145   if (warn && !result) {
3146     warning("TransparentHugePages is not supported by the operating system.");
3147   }
3148 
3149   return result;
3150 }
3151 
3152 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3153   bool result = false;
3154   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3155                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3156                  -1, 0);
3157 
3158   if (p != MAP_FAILED) {
3159     // We don't know if this really is a huge page or not.
3160     FILE *fp = fopen("/proc/self/maps", "r");
3161     if (fp) {
3162       while (!feof(fp)) {
3163         char chars[257];
3164         long x = 0;
3165         if (fgets(chars, sizeof(chars), fp)) {
3166           if (sscanf(chars, "%lx-%*x", &x) == 1
3167               && x == (long)p) {
3168             if (strstr (chars, "hugepage")) {
3169               result = true;
3170               break;
3171             }
3172           }
3173         }
3174       }
3175       fclose(fp);
3176     }
3177     munmap(p, page_size);
3178   }
3179 
3180   if (warn && !result) {
3181     warning("HugeTLBFS is not supported by the operating system.");
3182   }
3183 
3184   return result;
3185 }
3186 
3187 /*
3188 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3189 *
3190 * From the coredump_filter documentation:
3191 *
3192 * - (bit 0) anonymous private memory
3193 * - (bit 1) anonymous shared memory
3194 * - (bit 2) file-backed private memory
3195 * - (bit 3) file-backed shared memory
3196 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3197 *           effective only if the bit 2 is cleared)
3198 * - (bit 5) hugetlb private memory
3199 * - (bit 6) hugetlb shared memory
3200 */
3201 static void set_coredump_filter(void) {
3202   FILE *f;
3203   long cdm;
3204 
3205   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3206     return;
3207   }
3208 
3209   if (fscanf(f, "%lx", &cdm) != 1) {
3210     fclose(f);
3211     return;
3212   }
3213 
3214   rewind(f);
3215 
3216   if ((cdm & LARGEPAGES_BIT) == 0) {
3217     cdm |= LARGEPAGES_BIT;
3218     fprintf(f, "%#lx", cdm);
3219   }
3220 
3221   fclose(f);
3222 }
3223 
3224 // Large page support
3225 
3226 static size_t _large_page_size = 0;
3227 
3228 size_t os::Linux::find_large_page_size() {
3229   size_t large_page_size = 0;
3230 
3231   // large_page_size on Linux is used to round up heap size. x86 uses either
3232   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3233   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3234   // page as large as 256M.
3235   //
3236   // Here we try to figure out page size by parsing /proc/meminfo and looking
3237   // for a line with the following format:
3238   //    Hugepagesize:     2048 kB
3239   //
3240   // If we can't determine the value (e.g. /proc is not mounted, or the text
3241   // format has been changed), we'll use the largest page size supported by
3242   // the processor.
3243 
3244 #ifndef ZERO
3245   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3246                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3247 #endif // ZERO
3248 
3249   FILE *fp = fopen("/proc/meminfo", "r");
3250   if (fp) {
3251     while (!feof(fp)) {
3252       int x = 0;
3253       char buf[16];
3254       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3255         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3256           large_page_size = x * K;
3257           break;
3258         }
3259       } else {
3260         // skip to next line
3261         for (;;) {
3262           int ch = fgetc(fp);
3263           if (ch == EOF || ch == (int)'\n') break;
3264         }
3265       }
3266     }
3267     fclose(fp);
3268   }
3269 
3270   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3271     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3272         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3273         proper_unit_for_byte_size(large_page_size));
3274   }
3275 
3276   return large_page_size;
3277 }
3278 
3279 size_t os::Linux::setup_large_page_size() {
3280   _large_page_size = Linux::find_large_page_size();
3281   const size_t default_page_size = (size_t)Linux::page_size();
3282   if (_large_page_size > default_page_size) {
3283     _page_sizes[0] = _large_page_size;
3284     _page_sizes[1] = default_page_size;
3285     _page_sizes[2] = 0;
3286   }
3287 
3288   return _large_page_size;
3289 }
3290 
3291 bool os::Linux::setup_large_page_type(size_t page_size) {
3292   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3293       FLAG_IS_DEFAULT(UseSHM) &&
3294       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3295 
3296     // The type of large pages has not been specified by the user.
3297 
3298     // Try UseHugeTLBFS and then UseSHM.
3299     UseHugeTLBFS = UseSHM = true;
3300 
3301     // Don't try UseTransparentHugePages since there are known
3302     // performance issues with it turned on. This might change in the future.
3303     UseTransparentHugePages = false;
3304   }
3305 
3306   if (UseTransparentHugePages) {
3307     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3308     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3309       UseHugeTLBFS = false;
3310       UseSHM = false;
3311       return true;
3312     }
3313     UseTransparentHugePages = false;
3314   }
3315 
3316   if (UseHugeTLBFS) {
3317     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3318     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3319       UseSHM = false;
3320       return true;
3321     }
3322     UseHugeTLBFS = false;
3323   }
3324 
3325   return UseSHM;
3326 }
3327 
3328 void os::large_page_init() {
3329   if (!UseLargePages &&
3330       !UseTransparentHugePages &&
3331       !UseHugeTLBFS &&
3332       !UseSHM) {
3333     // Not using large pages.
3334     return;
3335   }
3336 
3337   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3338     // The user explicitly turned off large pages.
3339     // Ignore the rest of the large pages flags.
3340     UseTransparentHugePages = false;
3341     UseHugeTLBFS = false;
3342     UseSHM = false;
3343     return;
3344   }
3345 
3346   size_t large_page_size = Linux::setup_large_page_size();
3347   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3348 
3349   set_coredump_filter();
3350 }
3351 
3352 #ifndef SHM_HUGETLB
3353 #define SHM_HUGETLB 04000
3354 #endif
3355 
3356 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3357   // "exec" is passed in but not used.  Creating the shared image for
3358   // the code cache doesn't have an SHM_X executable permission to check.
3359   assert(UseLargePages && UseSHM, "only for SHM large pages");
3360   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3361 
3362   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3363     return NULL; // Fallback to small pages.
3364   }
3365 
3366   key_t key = IPC_PRIVATE;
3367   char *addr;
3368 
3369   bool warn_on_failure = UseLargePages &&
3370                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3371                          !FLAG_IS_DEFAULT(UseSHM) ||
3372                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3373                         );
3374   char msg[128];
3375 
3376   // Create a large shared memory region to attach to based on size.
3377   // Currently, size is the total size of the heap
3378   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3379   if (shmid == -1) {
3380      // Possible reasons for shmget failure:
3381      // 1. shmmax is too small for Java heap.
3382      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3383      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3384      // 2. not enough large page memory.
3385      //    > check available large pages: cat /proc/meminfo
3386      //    > increase amount of large pages:
3387      //          echo new_value > /proc/sys/vm/nr_hugepages
3388      //      Note 1: different Linux may use different name for this property,
3389      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3390      //      Note 2: it's possible there's enough physical memory available but
3391      //            they are so fragmented after a long run that they can't
3392      //            coalesce into large pages. Try to reserve large pages when
3393      //            the system is still "fresh".
3394      if (warn_on_failure) {
3395        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3396        warning(msg);
3397      }
3398      return NULL;
3399   }
3400 
3401   // attach to the region
3402   addr = (char*)shmat(shmid, req_addr, 0);
3403   int err = errno;
3404 
3405   // Remove shmid. If shmat() is successful, the actual shared memory segment
3406   // will be deleted when it's detached by shmdt() or when the process
3407   // terminates. If shmat() is not successful this will remove the shared
3408   // segment immediately.
3409   shmctl(shmid, IPC_RMID, NULL);
3410 
3411   if ((intptr_t)addr == -1) {
3412      if (warn_on_failure) {
3413        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3414        warning(msg);
3415      }
3416      return NULL;
3417   }
3418 
3419   return addr;
3420 }
3421 
3422 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3423   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3424 
3425   bool warn_on_failure = UseLargePages &&
3426       (!FLAG_IS_DEFAULT(UseLargePages) ||
3427        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3428        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3429 
3430   if (warn_on_failure) {
3431     char msg[128];
3432     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3433         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3434     warning(msg);
3435   }
3436 }
3437 
3438 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3439   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3440   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3441   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3442 
3443   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3444   char* addr = (char*)::mmap(req_addr, bytes, prot,
3445                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3446                              -1, 0);
3447 
3448   if (addr == MAP_FAILED) {
3449     warn_on_large_pages_failure(req_addr, bytes, errno);
3450     return NULL;
3451   }
3452 
3453   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3454 
3455   return addr;
3456 }
3457 
3458 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3459   size_t large_page_size = os::large_page_size();
3460 
3461   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3462 
3463   // Allocate small pages.
3464 
3465   char* start;
3466   if (req_addr != NULL) {
3467     assert(is_ptr_aligned(req_addr, alignment), "Must be");
3468     assert(is_size_aligned(bytes, alignment), "Must be");
3469     start = os::reserve_memory(bytes, req_addr);
3470     assert(start == NULL || start == req_addr, "Must be");
3471   } else {
3472     start = os::reserve_memory_aligned(bytes, alignment);
3473   }
3474 
3475   if (start == NULL) {
3476     return NULL;
3477   }
3478 
3479   assert(is_ptr_aligned(start, alignment), "Must be");
3480 
3481   // os::reserve_memory_special will record this memory area.
3482   // Need to release it here to prevent overlapping reservations.
3483   MemTracker::record_virtual_memory_release((address)start, bytes);
3484 
3485   char* end = start + bytes;
3486 
3487   // Find the regions of the allocated chunk that can be promoted to large pages.
3488   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3489   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3490 
3491   size_t lp_bytes = lp_end - lp_start;
3492 
3493   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3494 
3495   if (lp_bytes == 0) {
3496     // The mapped region doesn't even span the start and the end of a large page.
3497     // Fall back to allocate a non-special area.
3498     ::munmap(start, end - start);
3499     return NULL;
3500   }
3501 
3502   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3503 
3504 
3505   void* result;
3506 
3507   if (start != lp_start) {
3508     result = ::mmap(start, lp_start - start, prot,
3509                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3510                     -1, 0);
3511     if (result == MAP_FAILED) {
3512       ::munmap(lp_start, end - lp_start);
3513       return NULL;
3514     }
3515   }
3516 
3517   result = ::mmap(lp_start, lp_bytes, prot,
3518                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3519                   -1, 0);
3520   if (result == MAP_FAILED) {
3521     warn_on_large_pages_failure(req_addr, bytes, errno);
3522     // If the mmap above fails, the large pages region will be unmapped and we
3523     // have regions before and after with small pages. Release these regions.
3524     //
3525     // |  mapped  |  unmapped  |  mapped  |
3526     // ^          ^            ^          ^
3527     // start      lp_start     lp_end     end
3528     //
3529     ::munmap(start, lp_start - start);
3530     ::munmap(lp_end, end - lp_end);
3531     return NULL;
3532   }
3533 
3534   if (lp_end != end) {
3535       result = ::mmap(lp_end, end - lp_end, prot,
3536                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3537                       -1, 0);
3538     if (result == MAP_FAILED) {
3539       ::munmap(start, lp_end - start);
3540       return NULL;
3541     }
3542   }
3543 
3544   return start;
3545 }
3546 
3547 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3548   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3549   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3550   assert(is_power_of_2(alignment), "Must be");
3551   assert(is_power_of_2(os::large_page_size()), "Must be");
3552   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3553 
3554   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3555     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3556   } else {
3557     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3558   }
3559 }
3560 
3561 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3562   assert(UseLargePages, "only for large pages");
3563 
3564   char* addr;
3565   if (UseSHM) {
3566     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3567   } else {
3568     assert(UseHugeTLBFS, "must be");
3569     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3570   }
3571 
3572   if (addr != NULL) {
3573     if (UseNUMAInterleaving) {
3574       numa_make_global(addr, bytes);
3575     }
3576 
3577     // The memory is committed
3578     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
3579   }
3580 
3581   return addr;
3582 }
3583 
3584 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3585   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3586   return shmdt(base) == 0;
3587 }
3588 
3589 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3590   return pd_release_memory(base, bytes);
3591 }
3592 
3593 bool os::release_memory_special(char* base, size_t bytes) {
3594   assert(UseLargePages, "only for large pages");
3595 
3596   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3597 
3598   bool res;
3599   if (UseSHM) {
3600     res = os::Linux::release_memory_special_shm(base, bytes);
3601   } else {
3602     assert(UseHugeTLBFS, "must be");
3603     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3604   }
3605 
3606   if (res) {
3607     tkr.record((address)base, bytes);
3608   } else {
3609     tkr.discard();
3610   }
3611 
3612   return res;
3613 }
3614 
3615 size_t os::large_page_size() {
3616   return _large_page_size;
3617 }
3618 
3619 // With SysV SHM the entire memory region must be allocated as shared
3620 // memory.
3621 // HugeTLBFS allows application to commit large page memory on demand.
3622 // However, when committing memory with HugeTLBFS fails, the region
3623 // that was supposed to be committed will lose the old reservation
3624 // and allow other threads to steal that memory region. Because of this
3625 // behavior we can't commit HugeTLBFS memory.
3626 bool os::can_commit_large_page_memory() {
3627   return UseTransparentHugePages;
3628 }
3629 
3630 bool os::can_execute_large_page_memory() {
3631   return UseTransparentHugePages || UseHugeTLBFS;
3632 }
3633 
3634 // Reserve memory at an arbitrary address, only if that area is
3635 // available (and not reserved for something else).
3636 
3637 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3638   const int max_tries = 10;
3639   char* base[max_tries];
3640   size_t size[max_tries];
3641   const size_t gap = 0x000000;
3642 
3643   // Assert only that the size is a multiple of the page size, since
3644   // that's all that mmap requires, and since that's all we really know
3645   // about at this low abstraction level.  If we need higher alignment,
3646   // we can either pass an alignment to this method or verify alignment
3647   // in one of the methods further up the call chain.  See bug 5044738.
3648   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3649 
3650   // Repeatedly allocate blocks until the block is allocated at the
3651   // right spot. Give up after max_tries. Note that reserve_memory() will
3652   // automatically update _highest_vm_reserved_address if the call is
3653   // successful. The variable tracks the highest memory address every reserved
3654   // by JVM. It is used to detect heap-stack collision if running with
3655   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3656   // space than needed, it could confuse the collision detecting code. To
3657   // solve the problem, save current _highest_vm_reserved_address and
3658   // calculate the correct value before return.
3659   address old_highest = _highest_vm_reserved_address;
3660 
3661   // Linux mmap allows caller to pass an address as hint; give it a try first,
3662   // if kernel honors the hint then we can return immediately.
3663   char * addr = anon_mmap(requested_addr, bytes, false);
3664   if (addr == requested_addr) {
3665      return requested_addr;
3666   }
3667 
3668   if (addr != NULL) {
3669      // mmap() is successful but it fails to reserve at the requested address
3670      anon_munmap(addr, bytes);
3671   }
3672 
3673   int i;
3674   for (i = 0; i < max_tries; ++i) {
3675     base[i] = reserve_memory(bytes);
3676 
3677     if (base[i] != NULL) {
3678       // Is this the block we wanted?
3679       if (base[i] == requested_addr) {
3680         size[i] = bytes;
3681         break;
3682       }
3683 
3684       // Does this overlap the block we wanted? Give back the overlapped
3685       // parts and try again.
3686 
3687       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3688       if (top_overlap >= 0 && top_overlap < bytes) {
3689         unmap_memory(base[i], top_overlap);
3690         base[i] += top_overlap;
3691         size[i] = bytes - top_overlap;
3692       } else {
3693         size_t bottom_overlap = base[i] + bytes - requested_addr;
3694         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3695           unmap_memory(requested_addr, bottom_overlap);
3696           size[i] = bytes - bottom_overlap;
3697         } else {
3698           size[i] = bytes;
3699         }
3700       }
3701     }
3702   }
3703 
3704   // Give back the unused reserved pieces.
3705 
3706   for (int j = 0; j < i; ++j) {
3707     if (base[j] != NULL) {
3708       unmap_memory(base[j], size[j]);
3709     }
3710   }
3711 
3712   if (i < max_tries) {
3713     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3714     return requested_addr;
3715   } else {
3716     _highest_vm_reserved_address = old_highest;
3717     return NULL;
3718   }
3719 }
3720 
3721 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3722   return ::read(fd, buf, nBytes);
3723 }
3724 
3725 //
3726 // Short sleep, direct OS call.
3727 //
3728 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3729 // sched_yield(2) will actually give up the CPU:
3730 //
3731 //   * Alone on this pariticular CPU, keeps running.
3732 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3733 //     (pre 2.6.39).
3734 //
3735 // So calling this with 0 is an alternative.
3736 //
3737 void os::naked_short_sleep(jlong ms) {
3738   struct timespec req;
3739 
3740   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3741   req.tv_sec = 0;
3742   if (ms > 0) {
3743     req.tv_nsec = (ms % 1000) * 1000000;
3744   }
3745   else {
3746     req.tv_nsec = 1;
3747   }
3748 
3749   nanosleep(&req, NULL);
3750 
3751   return;
3752 }
3753 
3754 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3755 void os::infinite_sleep() {
3756   while (true) {    // sleep forever ...
3757     ::sleep(100);   // ... 100 seconds at a time
3758   }
3759 }
3760 
3761 // Used to convert frequent JVM_Yield() to nops
3762 bool os::dont_yield() {
3763   return DontYieldALot;
3764 }
3765 
3766 void os::yield() {
3767   sched_yield();
3768 }
3769 
3770 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3771 
3772 void os::yield_all(int attempts) {
3773   // Yields to all threads, including threads with lower priorities
3774   // Threads on Linux are all with same priority. The Solaris style
3775   // os::yield_all() with nanosleep(1ms) is not necessary.
3776   sched_yield();
3777 }
3778 
3779 // Called from the tight loops to possibly influence time-sharing heuristics
3780 void os::loop_breaker(int attempts) {
3781   os::yield_all(attempts);
3782 }
3783 
3784 ////////////////////////////////////////////////////////////////////////////////
3785 // thread priority support
3786 
3787 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3788 // only supports dynamic priority, static priority must be zero. For real-time
3789 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3790 // However, for large multi-threaded applications, SCHED_RR is not only slower
3791 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3792 // of 5 runs - Sep 2005).
3793 //
3794 // The following code actually changes the niceness of kernel-thread/LWP. It
3795 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3796 // not the entire user process, and user level threads are 1:1 mapped to kernel
3797 // threads. It has always been the case, but could change in the future. For
3798 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3799 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3800 
3801 int os::java_to_os_priority[CriticalPriority + 1] = {
3802   19,              // 0 Entry should never be used
3803 
3804    4,              // 1 MinPriority
3805    3,              // 2
3806    2,              // 3
3807 
3808    1,              // 4
3809    0,              // 5 NormPriority
3810   -1,              // 6
3811 
3812   -2,              // 7
3813   -3,              // 8
3814   -4,              // 9 NearMaxPriority
3815 
3816   -5,              // 10 MaxPriority
3817 
3818   -5               // 11 CriticalPriority
3819 };
3820 
3821 static int prio_init() {
3822   if (ThreadPriorityPolicy == 1) {
3823     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3824     // if effective uid is not root. Perhaps, a more elegant way of doing
3825     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3826     if (geteuid() != 0) {
3827       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3828         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3829       }
3830       ThreadPriorityPolicy = 0;
3831     }
3832   }
3833   if (UseCriticalJavaThreadPriority) {
3834     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3835   }
3836   return 0;
3837 }
3838 
3839 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3840   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3841 
3842   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3843   return (ret == 0) ? OS_OK : OS_ERR;
3844 }
3845 
3846 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3847   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3848     *priority_ptr = java_to_os_priority[NormPriority];
3849     return OS_OK;
3850   }
3851 
3852   errno = 0;
3853   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3854   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3855 }
3856 
3857 // Hint to the underlying OS that a task switch would not be good.
3858 // Void return because it's a hint and can fail.
3859 void os::hint_no_preempt() {}
3860 
3861 ////////////////////////////////////////////////////////////////////////////////
3862 // suspend/resume support
3863 
3864 //  the low-level signal-based suspend/resume support is a remnant from the
3865 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3866 //  within hotspot. Now there is a single use-case for this:
3867 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3868 //      that runs in the watcher thread.
3869 //  The remaining code is greatly simplified from the more general suspension
3870 //  code that used to be used.
3871 //
3872 //  The protocol is quite simple:
3873 //  - suspend:
3874 //      - sends a signal to the target thread
3875 //      - polls the suspend state of the osthread using a yield loop
3876 //      - target thread signal handler (SR_handler) sets suspend state
3877 //        and blocks in sigsuspend until continued
3878 //  - resume:
3879 //      - sets target osthread state to continue
3880 //      - sends signal to end the sigsuspend loop in the SR_handler
3881 //
3882 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3883 //
3884 
3885 static void resume_clear_context(OSThread *osthread) {
3886   osthread->set_ucontext(NULL);
3887   osthread->set_siginfo(NULL);
3888 }
3889 
3890 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3891   osthread->set_ucontext(context);
3892   osthread->set_siginfo(siginfo);
3893 }
3894 
3895 //
3896 // Handler function invoked when a thread's execution is suspended or
3897 // resumed. We have to be careful that only async-safe functions are
3898 // called here (Note: most pthread functions are not async safe and
3899 // should be avoided.)
3900 //
3901 // Note: sigwait() is a more natural fit than sigsuspend() from an
3902 // interface point of view, but sigwait() prevents the signal hander
3903 // from being run. libpthread would get very confused by not having
3904 // its signal handlers run and prevents sigwait()'s use with the
3905 // mutex granting granting signal.
3906 //
3907 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3908 //
3909 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3910   // Save and restore errno to avoid confusing native code with EINTR
3911   // after sigsuspend.
3912   int old_errno = errno;
3913 
3914   Thread* thread = Thread::current();
3915   OSThread* osthread = thread->osthread();
3916   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3917 
3918   os::SuspendResume::State current = osthread->sr.state();
3919   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3920     suspend_save_context(osthread, siginfo, context);
3921 
3922     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3923     os::SuspendResume::State state = osthread->sr.suspended();
3924     if (state == os::SuspendResume::SR_SUSPENDED) {
3925       sigset_t suspend_set;  // signals for sigsuspend()
3926 
3927       // get current set of blocked signals and unblock resume signal
3928       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3929       sigdelset(&suspend_set, SR_signum);
3930 
3931       sr_semaphore.signal();
3932       // wait here until we are resumed
3933       while (1) {
3934         sigsuspend(&suspend_set);
3935 
3936         os::SuspendResume::State result = osthread->sr.running();
3937         if (result == os::SuspendResume::SR_RUNNING) {
3938           sr_semaphore.signal();
3939           break;
3940         }
3941       }
3942 
3943     } else if (state == os::SuspendResume::SR_RUNNING) {
3944       // request was cancelled, continue
3945     } else {
3946       ShouldNotReachHere();
3947     }
3948 
3949     resume_clear_context(osthread);
3950   } else if (current == os::SuspendResume::SR_RUNNING) {
3951     // request was cancelled, continue
3952   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3953     // ignore
3954   } else {
3955     // ignore
3956   }
3957 
3958   errno = old_errno;
3959 }
3960 
3961 
3962 static int SR_initialize() {
3963   struct sigaction act;
3964   char *s;
3965   /* Get signal number to use for suspend/resume */
3966   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3967     int sig = ::strtol(s, 0, 10);
3968     if (sig > 0 || sig < _NSIG) {
3969         SR_signum = sig;
3970     }
3971   }
3972 
3973   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3974         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3975 
3976   sigemptyset(&SR_sigset);
3977   sigaddset(&SR_sigset, SR_signum);
3978 
3979   /* Set up signal handler for suspend/resume */
3980   act.sa_flags = SA_RESTART|SA_SIGINFO;
3981   act.sa_handler = (void (*)(int)) SR_handler;
3982 
3983   // SR_signum is blocked by default.
3984   // 4528190 - We also need to block pthread restart signal (32 on all
3985   // supported Linux platforms). Note that LinuxThreads need to block
3986   // this signal for all threads to work properly. So we don't have
3987   // to use hard-coded signal number when setting up the mask.
3988   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3989 
3990   if (sigaction(SR_signum, &act, 0) == -1) {
3991     return -1;
3992   }
3993 
3994   // Save signal flag
3995   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3996   return 0;
3997 }
3998 
3999 static int sr_notify(OSThread* osthread) {
4000   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4001   assert_status(status == 0, status, "pthread_kill");
4002   return status;
4003 }
4004 
4005 // "Randomly" selected value for how long we want to spin
4006 // before bailing out on suspending a thread, also how often
4007 // we send a signal to a thread we want to resume
4008 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4009 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4010 
4011 // returns true on success and false on error - really an error is fatal
4012 // but this seems the normal response to library errors
4013 static bool do_suspend(OSThread* osthread) {
4014   assert(osthread->sr.is_running(), "thread should be running");
4015   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4016 
4017   // mark as suspended and send signal
4018   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4019     // failed to switch, state wasn't running?
4020     ShouldNotReachHere();
4021     return false;
4022   }
4023 
4024   if (sr_notify(osthread) != 0) {
4025     ShouldNotReachHere();
4026   }
4027 
4028   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4029   while (true) {
4030     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4031       break;
4032     } else {
4033       // timeout
4034       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4035       if (cancelled == os::SuspendResume::SR_RUNNING) {
4036         return false;
4037       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4038         // make sure that we consume the signal on the semaphore as well
4039         sr_semaphore.wait();
4040         break;
4041       } else {
4042         ShouldNotReachHere();
4043         return false;
4044       }
4045     }
4046   }
4047 
4048   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4049   return true;
4050 }
4051 
4052 static void do_resume(OSThread* osthread) {
4053   assert(osthread->sr.is_suspended(), "thread should be suspended");
4054   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4055 
4056   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4057     // failed to switch to WAKEUP_REQUEST
4058     ShouldNotReachHere();
4059     return;
4060   }
4061 
4062   while (true) {
4063     if (sr_notify(osthread) == 0) {
4064       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4065         if (osthread->sr.is_running()) {
4066           return;
4067         }
4068       }
4069     } else {
4070       ShouldNotReachHere();
4071     }
4072   }
4073 
4074   guarantee(osthread->sr.is_running(), "Must be running!");
4075 }
4076 
4077 ///////////////////////////////////////////////////////////////////////////////////
4078 // signal handling (except suspend/resume)
4079 
4080 // This routine may be used by user applications as a "hook" to catch signals.
4081 // The user-defined signal handler must pass unrecognized signals to this
4082 // routine, and if it returns true (non-zero), then the signal handler must
4083 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4084 // routine will never retun false (zero), but instead will execute a VM panic
4085 // routine kill the process.
4086 //
4087 // If this routine returns false, it is OK to call it again.  This allows
4088 // the user-defined signal handler to perform checks either before or after
4089 // the VM performs its own checks.  Naturally, the user code would be making
4090 // a serious error if it tried to handle an exception (such as a null check
4091 // or breakpoint) that the VM was generating for its own correct operation.
4092 //
4093 // This routine may recognize any of the following kinds of signals:
4094 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4095 // It should be consulted by handlers for any of those signals.
4096 //
4097 // The caller of this routine must pass in the three arguments supplied
4098 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4099 // field of the structure passed to sigaction().  This routine assumes that
4100 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4101 //
4102 // Note that the VM will print warnings if it detects conflicting signal
4103 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4104 //
4105 extern "C" JNIEXPORT int
4106 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4107                         void* ucontext, int abort_if_unrecognized);
4108 
4109 void signalHandler(int sig, siginfo_t* info, void* uc) {
4110   assert(info != NULL && uc != NULL, "it must be old kernel");
4111   int orig_errno = errno;  // Preserve errno value over signal handler.
4112   JVM_handle_linux_signal(sig, info, uc, true);
4113   errno = orig_errno;
4114 }
4115 
4116 
4117 // This boolean allows users to forward their own non-matching signals
4118 // to JVM_handle_linux_signal, harmlessly.
4119 bool os::Linux::signal_handlers_are_installed = false;
4120 
4121 // For signal-chaining
4122 struct sigaction os::Linux::sigact[MAXSIGNUM];
4123 unsigned int os::Linux::sigs = 0;
4124 bool os::Linux::libjsig_is_loaded = false;
4125 typedef struct sigaction *(*get_signal_t)(int);
4126 get_signal_t os::Linux::get_signal_action = NULL;
4127 
4128 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4129   struct sigaction *actp = NULL;
4130 
4131   if (libjsig_is_loaded) {
4132     // Retrieve the old signal handler from libjsig
4133     actp = (*get_signal_action)(sig);
4134   }
4135   if (actp == NULL) {
4136     // Retrieve the preinstalled signal handler from jvm
4137     actp = get_preinstalled_handler(sig);
4138   }
4139 
4140   return actp;
4141 }
4142 
4143 static bool call_chained_handler(struct sigaction *actp, int sig,
4144                                  siginfo_t *siginfo, void *context) {
4145   // Call the old signal handler
4146   if (actp->sa_handler == SIG_DFL) {
4147     // It's more reasonable to let jvm treat it as an unexpected exception
4148     // instead of taking the default action.
4149     return false;
4150   } else if (actp->sa_handler != SIG_IGN) {
4151     if ((actp->sa_flags & SA_NODEFER) == 0) {
4152       // automaticlly block the signal
4153       sigaddset(&(actp->sa_mask), sig);
4154     }
4155 
4156     sa_handler_t hand;
4157     sa_sigaction_t sa;
4158     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4159     // retrieve the chained handler
4160     if (siginfo_flag_set) {
4161       sa = actp->sa_sigaction;
4162     } else {
4163       hand = actp->sa_handler;
4164     }
4165 
4166     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4167       actp->sa_handler = SIG_DFL;
4168     }
4169 
4170     // try to honor the signal mask
4171     sigset_t oset;
4172     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4173 
4174     // call into the chained handler
4175     if (siginfo_flag_set) {
4176       (*sa)(sig, siginfo, context);
4177     } else {
4178       (*hand)(sig);
4179     }
4180 
4181     // restore the signal mask
4182     pthread_sigmask(SIG_SETMASK, &oset, 0);
4183   }
4184   // Tell jvm's signal handler the signal is taken care of.
4185   return true;
4186 }
4187 
4188 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4189   bool chained = false;
4190   // signal-chaining
4191   if (UseSignalChaining) {
4192     struct sigaction *actp = get_chained_signal_action(sig);
4193     if (actp != NULL) {
4194       chained = call_chained_handler(actp, sig, siginfo, context);
4195     }
4196   }
4197   return chained;
4198 }
4199 
4200 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4201   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4202     return &sigact[sig];
4203   }
4204   return NULL;
4205 }
4206 
4207 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4208   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4209   sigact[sig] = oldAct;
4210   sigs |= (unsigned int)1 << sig;
4211 }
4212 
4213 // for diagnostic
4214 int os::Linux::sigflags[MAXSIGNUM];
4215 
4216 int os::Linux::get_our_sigflags(int sig) {
4217   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4218   return sigflags[sig];
4219 }
4220 
4221 void os::Linux::set_our_sigflags(int sig, int flags) {
4222   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4223   sigflags[sig] = flags;
4224 }
4225 
4226 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4227   // Check for overwrite.
4228   struct sigaction oldAct;
4229   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4230 
4231   void* oldhand = oldAct.sa_sigaction
4232                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4233                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4234   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4235       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4236       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4237     if (AllowUserSignalHandlers || !set_installed) {
4238       // Do not overwrite; user takes responsibility to forward to us.
4239       return;
4240     } else if (UseSignalChaining) {
4241       // save the old handler in jvm
4242       save_preinstalled_handler(sig, oldAct);
4243       // libjsig also interposes the sigaction() call below and saves the
4244       // old sigaction on it own.
4245     } else {
4246       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4247                     "%#lx for signal %d.", (long)oldhand, sig));
4248     }
4249   }
4250 
4251   struct sigaction sigAct;
4252   sigfillset(&(sigAct.sa_mask));
4253   sigAct.sa_handler = SIG_DFL;
4254   if (!set_installed) {
4255     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4256   } else {
4257     sigAct.sa_sigaction = signalHandler;
4258     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4259   }
4260   // Save flags, which are set by ours
4261   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4262   sigflags[sig] = sigAct.sa_flags;
4263 
4264   int ret = sigaction(sig, &sigAct, &oldAct);
4265   assert(ret == 0, "check");
4266 
4267   void* oldhand2  = oldAct.sa_sigaction
4268                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4269                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4270   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4271 }
4272 
4273 // install signal handlers for signals that HotSpot needs to
4274 // handle in order to support Java-level exception handling.
4275 
4276 void os::Linux::install_signal_handlers() {
4277   if (!signal_handlers_are_installed) {
4278     signal_handlers_are_installed = true;
4279 
4280     // signal-chaining
4281     typedef void (*signal_setting_t)();
4282     signal_setting_t begin_signal_setting = NULL;
4283     signal_setting_t end_signal_setting = NULL;
4284     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4285                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4286     if (begin_signal_setting != NULL) {
4287       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4288                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4289       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4290                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4291       libjsig_is_loaded = true;
4292       assert(UseSignalChaining, "should enable signal-chaining");
4293     }
4294     if (libjsig_is_loaded) {
4295       // Tell libjsig jvm is setting signal handlers
4296       (*begin_signal_setting)();
4297     }
4298 
4299     set_signal_handler(SIGSEGV, true);
4300     set_signal_handler(SIGPIPE, true);
4301     set_signal_handler(SIGBUS, true);
4302     set_signal_handler(SIGILL, true);
4303     set_signal_handler(SIGFPE, true);
4304 #if defined(PPC64)
4305     set_signal_handler(SIGTRAP, true);
4306 #endif
4307     set_signal_handler(SIGXFSZ, true);
4308 
4309     if (libjsig_is_loaded) {
4310       // Tell libjsig jvm finishes setting signal handlers
4311       (*end_signal_setting)();
4312     }
4313 
4314     // We don't activate signal checker if libjsig is in place, we trust ourselves
4315     // and if UserSignalHandler is installed all bets are off.
4316     // Log that signal checking is off only if -verbose:jni is specified.
4317     if (CheckJNICalls) {
4318       if (libjsig_is_loaded) {
4319         if (PrintJNIResolving) {
4320           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4321         }
4322         check_signals = false;
4323       }
4324       if (AllowUserSignalHandlers) {
4325         if (PrintJNIResolving) {
4326           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4327         }
4328         check_signals = false;
4329       }
4330     }
4331   }
4332 }
4333 
4334 // This is the fastest way to get thread cpu time on Linux.
4335 // Returns cpu time (user+sys) for any thread, not only for current.
4336 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4337 // It might work on 2.6.10+ with a special kernel/glibc patch.
4338 // For reference, please, see IEEE Std 1003.1-2004:
4339 //   http://www.unix.org/single_unix_specification
4340 
4341 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4342   struct timespec tp;
4343   int rc = os::Linux::clock_gettime(clockid, &tp);
4344   assert(rc == 0, "clock_gettime is expected to return 0 code");
4345 
4346   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4347 }
4348 
4349 /////
4350 // glibc on Linux platform uses non-documented flag
4351 // to indicate, that some special sort of signal
4352 // trampoline is used.
4353 // We will never set this flag, and we should
4354 // ignore this flag in our diagnostic
4355 #ifdef SIGNIFICANT_SIGNAL_MASK
4356 #undef SIGNIFICANT_SIGNAL_MASK
4357 #endif
4358 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4359 
4360 static const char* get_signal_handler_name(address handler,
4361                                            char* buf, int buflen) {
4362   int offset;
4363   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4364   if (found) {
4365     // skip directory names
4366     const char *p1, *p2;
4367     p1 = buf;
4368     size_t len = strlen(os::file_separator());
4369     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4370     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4371   } else {
4372     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4373   }
4374   return buf;
4375 }
4376 
4377 static void print_signal_handler(outputStream* st, int sig,
4378                                  char* buf, size_t buflen) {
4379   struct sigaction sa;
4380 
4381   sigaction(sig, NULL, &sa);
4382 
4383   // See comment for SIGNIFICANT_SIGNAL_MASK define
4384   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4385 
4386   st->print("%s: ", os::exception_name(sig, buf, buflen));
4387 
4388   address handler = (sa.sa_flags & SA_SIGINFO)
4389     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4390     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4391 
4392   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4393     st->print("SIG_DFL");
4394   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4395     st->print("SIG_IGN");
4396   } else {
4397     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4398   }
4399 
4400   st->print(", sa_mask[0]=");
4401   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4402 
4403   address rh = VMError::get_resetted_sighandler(sig);
4404   // May be, handler was resetted by VMError?
4405   if(rh != NULL) {
4406     handler = rh;
4407     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4408   }
4409 
4410   st->print(", sa_flags=");
4411   os::Posix::print_sa_flags(st, sa.sa_flags);
4412 
4413   // Check: is it our handler?
4414   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4415      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4416     // It is our signal handler
4417     // check for flags, reset system-used one!
4418     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4419       st->print(
4420                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4421                 os::Linux::get_our_sigflags(sig));
4422     }
4423   }
4424   st->cr();
4425 }
4426 
4427 
4428 #define DO_SIGNAL_CHECK(sig) \
4429   if (!sigismember(&check_signal_done, sig)) \
4430     os::Linux::check_signal_handler(sig)
4431 
4432 // This method is a periodic task to check for misbehaving JNI applications
4433 // under CheckJNI, we can add any periodic checks here
4434 
4435 void os::run_periodic_checks() {
4436 
4437   if (check_signals == false) return;
4438 
4439   // SEGV and BUS if overridden could potentially prevent
4440   // generation of hs*.log in the event of a crash, debugging
4441   // such a case can be very challenging, so we absolutely
4442   // check the following for a good measure:
4443   DO_SIGNAL_CHECK(SIGSEGV);
4444   DO_SIGNAL_CHECK(SIGILL);
4445   DO_SIGNAL_CHECK(SIGFPE);
4446   DO_SIGNAL_CHECK(SIGBUS);
4447   DO_SIGNAL_CHECK(SIGPIPE);
4448   DO_SIGNAL_CHECK(SIGXFSZ);
4449 #if defined(PPC64)
4450   DO_SIGNAL_CHECK(SIGTRAP);
4451 #endif
4452 
4453   // ReduceSignalUsage allows the user to override these handlers
4454   // see comments at the very top and jvm_solaris.h
4455   if (!ReduceSignalUsage) {
4456     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4457     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4458     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4459     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4460   }
4461 
4462   DO_SIGNAL_CHECK(SR_signum);
4463   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4464 }
4465 
4466 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4467 
4468 static os_sigaction_t os_sigaction = NULL;
4469 
4470 void os::Linux::check_signal_handler(int sig) {
4471   char buf[O_BUFLEN];
4472   address jvmHandler = NULL;
4473 
4474 
4475   struct sigaction act;
4476   if (os_sigaction == NULL) {
4477     // only trust the default sigaction, in case it has been interposed
4478     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4479     if (os_sigaction == NULL) return;
4480   }
4481 
4482   os_sigaction(sig, (struct sigaction*)NULL, &act);
4483 
4484 
4485   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4486 
4487   address thisHandler = (act.sa_flags & SA_SIGINFO)
4488     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4489     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4490 
4491 
4492   switch(sig) {
4493   case SIGSEGV:
4494   case SIGBUS:
4495   case SIGFPE:
4496   case SIGPIPE:
4497   case SIGILL:
4498   case SIGXFSZ:
4499     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4500     break;
4501 
4502   case SHUTDOWN1_SIGNAL:
4503   case SHUTDOWN2_SIGNAL:
4504   case SHUTDOWN3_SIGNAL:
4505   case BREAK_SIGNAL:
4506     jvmHandler = (address)user_handler();
4507     break;
4508 
4509   case INTERRUPT_SIGNAL:
4510     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4511     break;
4512 
4513   default:
4514     if (sig == SR_signum) {
4515       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4516     } else {
4517       return;
4518     }
4519     break;
4520   }
4521 
4522   if (thisHandler != jvmHandler) {
4523     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4524     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4525     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4526     // No need to check this sig any longer
4527     sigaddset(&check_signal_done, sig);
4528   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4529     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4530     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4531     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4532     // No need to check this sig any longer
4533     sigaddset(&check_signal_done, sig);
4534   }
4535 
4536   // Dump all the signal
4537   if (sigismember(&check_signal_done, sig)) {
4538     print_signal_handlers(tty, buf, O_BUFLEN);
4539   }
4540 }
4541 
4542 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4543 
4544 extern bool signal_name(int signo, char* buf, size_t len);
4545 
4546 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4547   if (0 < exception_code && exception_code <= SIGRTMAX) {
4548     // signal
4549     if (!signal_name(exception_code, buf, size)) {
4550       jio_snprintf(buf, size, "SIG%d", exception_code);
4551     }
4552     return buf;
4553   } else {
4554     return NULL;
4555   }
4556 }
4557 
4558 // this is called _before_ the most of global arguments have been parsed
4559 void os::init(void) {
4560   char dummy;   /* used to get a guess on initial stack address */
4561 //  first_hrtime = gethrtime();
4562 
4563   // With LinuxThreads the JavaMain thread pid (primordial thread)
4564   // is different than the pid of the java launcher thread.
4565   // So, on Linux, the launcher thread pid is passed to the VM
4566   // via the sun.java.launcher.pid property.
4567   // Use this property instead of getpid() if it was correctly passed.
4568   // See bug 6351349.
4569   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4570 
4571   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4572 
4573   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4574 
4575   init_random(1234567);
4576 
4577   ThreadCritical::initialize();
4578 
4579   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4580   if (Linux::page_size() == -1) {
4581     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4582                   strerror(errno)));
4583   }
4584   init_page_sizes((size_t) Linux::page_size());
4585 
4586   Linux::initialize_system_info();
4587 
4588   // main_thread points to the aboriginal thread
4589   Linux::_main_thread = pthread_self();
4590 
4591   Linux::clock_init();
4592   initial_time_count = javaTimeNanos();
4593 
4594   // pthread_condattr initialization for monotonic clock
4595   int status;
4596   pthread_condattr_t* _condattr = os::Linux::condAttr();
4597   if ((status = pthread_condattr_init(_condattr)) != 0) {
4598     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4599   }
4600   // Only set the clock if CLOCK_MONOTONIC is available
4601   if (os::supports_monotonic_clock()) {
4602     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4603       if (status == EINVAL) {
4604         warning("Unable to use monotonic clock with relative timed-waits" \
4605                 " - changes to the time-of-day clock may have adverse affects");
4606       } else {
4607         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4608       }
4609     }
4610   }
4611   // else it defaults to CLOCK_REALTIME
4612 
4613   pthread_mutex_init(&dl_mutex, NULL);
4614 
4615   // If the pagesize of the VM is greater than 8K determine the appropriate
4616   // number of initial guard pages.  The user can change this with the
4617   // command line arguments, if needed.
4618   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4619     StackYellowPages = 1;
4620     StackRedPages = 1;
4621     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4622   }
4623 }
4624 
4625 // To install functions for atexit system call
4626 extern "C" {
4627   static void perfMemory_exit_helper() {
4628     perfMemory_exit();
4629   }
4630 }
4631 
4632 // this is called _after_ the global arguments have been parsed
4633 jint os::init_2(void)
4634 {
4635   Linux::fast_thread_clock_init();
4636 
4637   // Allocate a single page and mark it as readable for safepoint polling
4638   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4639   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4640 
4641   os::set_polling_page( polling_page );
4642 
4643 #ifndef PRODUCT
4644   if(Verbose && PrintMiscellaneous)
4645     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4646 #endif
4647 
4648   if (!UseMembar) {
4649     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4650     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4651     os::set_memory_serialize_page( mem_serialize_page );
4652 
4653 #ifndef PRODUCT
4654     if(Verbose && PrintMiscellaneous)
4655       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4656 #endif
4657   }
4658 
4659   // initialize suspend/resume support - must do this before signal_sets_init()
4660   if (SR_initialize() != 0) {
4661     perror("SR_initialize failed");
4662     return JNI_ERR;
4663   }
4664 
4665   Linux::signal_sets_init();
4666   Linux::install_signal_handlers();
4667 
4668   // Check minimum allowable stack size for thread creation and to initialize
4669   // the java system classes, including StackOverflowError - depends on page
4670   // size.  Add a page for compiler2 recursion in main thread.
4671   // Add in 2*BytesPerWord times page size to account for VM stack during
4672   // class initialization depending on 32 or 64 bit VM.
4673   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4674             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4675                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4676 
4677   size_t threadStackSizeInBytes = ThreadStackSize * K;
4678   if (threadStackSizeInBytes != 0 &&
4679       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4680         tty->print_cr("\nThe stack size specified is too small, "
4681                       "Specify at least %dk",
4682                       os::Linux::min_stack_allowed/ K);
4683         return JNI_ERR;
4684   }
4685 
4686   // Make the stack size a multiple of the page size so that
4687   // the yellow/red zones can be guarded.
4688   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4689         vm_page_size()));
4690 
4691   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4692 
4693 #if defined(IA32)
4694   workaround_expand_exec_shield_cs_limit();
4695 #endif
4696 
4697   Linux::libpthread_init();
4698   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4699      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4700           Linux::glibc_version(), Linux::libpthread_version(),
4701           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4702   }
4703 
4704   if (UseNUMA) {
4705     if (!Linux::libnuma_init()) {
4706       UseNUMA = false;
4707     } else {
4708       if ((Linux::numa_max_node() < 1)) {
4709         // There's only one node(they start from 0), disable NUMA.
4710         UseNUMA = false;
4711       }
4712     }
4713     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4714     // we can make the adaptive lgrp chunk resizing work. If the user specified
4715     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4716     // disable adaptive resizing.
4717     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4718       if (FLAG_IS_DEFAULT(UseNUMA)) {
4719         UseNUMA = false;
4720       } else {
4721         if (FLAG_IS_DEFAULT(UseLargePages) &&
4722             FLAG_IS_DEFAULT(UseSHM) &&
4723             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4724           UseLargePages = false;
4725         } else {
4726           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4727           UseAdaptiveSizePolicy = false;
4728           UseAdaptiveNUMAChunkSizing = false;
4729         }
4730       }
4731     }
4732     if (!UseNUMA && ForceNUMA) {
4733       UseNUMA = true;
4734     }
4735   }
4736 
4737   if (MaxFDLimit) {
4738     // set the number of file descriptors to max. print out error
4739     // if getrlimit/setrlimit fails but continue regardless.
4740     struct rlimit nbr_files;
4741     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4742     if (status != 0) {
4743       if (PrintMiscellaneous && (Verbose || WizardMode))
4744         perror("os::init_2 getrlimit failed");
4745     } else {
4746       nbr_files.rlim_cur = nbr_files.rlim_max;
4747       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4748       if (status != 0) {
4749         if (PrintMiscellaneous && (Verbose || WizardMode))
4750           perror("os::init_2 setrlimit failed");
4751       }
4752     }
4753   }
4754 
4755   // Initialize lock used to serialize thread creation (see os::create_thread)
4756   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4757 
4758   // at-exit methods are called in the reverse order of their registration.
4759   // atexit functions are called on return from main or as a result of a
4760   // call to exit(3C). There can be only 32 of these functions registered
4761   // and atexit() does not set errno.
4762 
4763   if (PerfAllowAtExitRegistration) {
4764     // only register atexit functions if PerfAllowAtExitRegistration is set.
4765     // atexit functions can be delayed until process exit time, which
4766     // can be problematic for embedded VM situations. Embedded VMs should
4767     // call DestroyJavaVM() to assure that VM resources are released.
4768 
4769     // note: perfMemory_exit_helper atexit function may be removed in
4770     // the future if the appropriate cleanup code can be added to the
4771     // VM_Exit VMOperation's doit method.
4772     if (atexit(perfMemory_exit_helper) != 0) {
4773       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4774     }
4775   }
4776 
4777   // initialize thread priority policy
4778   prio_init();
4779 
4780   return JNI_OK;
4781 }
4782 
4783 // this is called at the end of vm_initialization
4784 void os::init_3(void) {
4785 #ifdef JAVASE_EMBEDDED
4786   // Start the MemNotifyThread
4787   if (LowMemoryProtection) {
4788     MemNotifyThread::start();
4789   }
4790   return;
4791 #endif
4792 }
4793 
4794 // Mark the polling page as unreadable
4795 void os::make_polling_page_unreadable(void) {
4796   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4797     fatal("Could not disable polling page");
4798 };
4799 
4800 // Mark the polling page as readable
4801 void os::make_polling_page_readable(void) {
4802   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4803     fatal("Could not enable polling page");
4804   }
4805 };
4806 
4807 int os::active_processor_count() {
4808   // Linux doesn't yet have a (official) notion of processor sets,
4809   // so just return the number of online processors.
4810   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4811   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4812   return online_cpus;
4813 }
4814 
4815 void os::set_native_thread_name(const char *name) {
4816   // Not yet implemented.
4817   return;
4818 }
4819 
4820 bool os::distribute_processes(uint length, uint* distribution) {
4821   // Not yet implemented.
4822   return false;
4823 }
4824 
4825 bool os::bind_to_processor(uint processor_id) {
4826   // Not yet implemented.
4827   return false;
4828 }
4829 
4830 ///
4831 
4832 void os::SuspendedThreadTask::internal_do_task() {
4833   if (do_suspend(_thread->osthread())) {
4834     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4835     do_task(context);
4836     do_resume(_thread->osthread());
4837   }
4838 }
4839 
4840 class PcFetcher : public os::SuspendedThreadTask {
4841 public:
4842   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4843   ExtendedPC result();
4844 protected:
4845   void do_task(const os::SuspendedThreadTaskContext& context);
4846 private:
4847   ExtendedPC _epc;
4848 };
4849 
4850 ExtendedPC PcFetcher::result() {
4851   guarantee(is_done(), "task is not done yet.");
4852   return _epc;
4853 }
4854 
4855 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4856   Thread* thread = context.thread();
4857   OSThread* osthread = thread->osthread();
4858   if (osthread->ucontext() != NULL) {
4859     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4860   } else {
4861     // NULL context is unexpected, double-check this is the VMThread
4862     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4863   }
4864 }
4865 
4866 // Suspends the target using the signal mechanism and then grabs the PC before
4867 // resuming the target. Used by the flat-profiler only
4868 ExtendedPC os::get_thread_pc(Thread* thread) {
4869   // Make sure that it is called by the watcher for the VMThread
4870   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4871   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4872 
4873   PcFetcher fetcher(thread);
4874   fetcher.run();
4875   return fetcher.result();
4876 }
4877 
4878 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4879 {
4880    if (is_NPTL()) {
4881       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4882    } else {
4883       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4884       // word back to default 64bit precision if condvar is signaled. Java
4885       // wants 53bit precision.  Save and restore current value.
4886       int fpu = get_fpu_control_word();
4887       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4888       set_fpu_control_word(fpu);
4889       return status;
4890    }
4891 }
4892 
4893 ////////////////////////////////////////////////////////////////////////////////
4894 // debug support
4895 
4896 bool os::find(address addr, outputStream* st) {
4897   Dl_info dlinfo;
4898   memset(&dlinfo, 0, sizeof(dlinfo));
4899   if (dladdr(addr, &dlinfo) != 0) {
4900     st->print(PTR_FORMAT ": ", addr);
4901     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4902       st->print("%s+%#x", dlinfo.dli_sname,
4903                  addr - (intptr_t)dlinfo.dli_saddr);
4904     } else if (dlinfo.dli_fbase != NULL) {
4905       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4906     } else {
4907       st->print("<absolute address>");
4908     }
4909     if (dlinfo.dli_fname != NULL) {
4910       st->print(" in %s", dlinfo.dli_fname);
4911     }
4912     if (dlinfo.dli_fbase != NULL) {
4913       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4914     }
4915     st->cr();
4916 
4917     if (Verbose) {
4918       // decode some bytes around the PC
4919       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4920       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4921       address       lowest = (address) dlinfo.dli_sname;
4922       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4923       if (begin < lowest)  begin = lowest;
4924       Dl_info dlinfo2;
4925       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4926           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4927         end = (address) dlinfo2.dli_saddr;
4928       Disassembler::decode(begin, end, st);
4929     }
4930     return true;
4931   }
4932   return false;
4933 }
4934 
4935 ////////////////////////////////////////////////////////////////////////////////
4936 // misc
4937 
4938 // This does not do anything on Linux. This is basically a hook for being
4939 // able to use structured exception handling (thread-local exception filters)
4940 // on, e.g., Win32.
4941 void
4942 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4943                          JavaCallArguments* args, Thread* thread) {
4944   f(value, method, args, thread);
4945 }
4946 
4947 void os::print_statistics() {
4948 }
4949 
4950 int os::message_box(const char* title, const char* message) {
4951   int i;
4952   fdStream err(defaultStream::error_fd());
4953   for (i = 0; i < 78; i++) err.print_raw("=");
4954   err.cr();
4955   err.print_raw_cr(title);
4956   for (i = 0; i < 78; i++) err.print_raw("-");
4957   err.cr();
4958   err.print_raw_cr(message);
4959   for (i = 0; i < 78; i++) err.print_raw("=");
4960   err.cr();
4961 
4962   char buf[16];
4963   // Prevent process from exiting upon "read error" without consuming all CPU
4964   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4965 
4966   return buf[0] == 'y' || buf[0] == 'Y';
4967 }
4968 
4969 int os::stat(const char *path, struct stat *sbuf) {
4970   char pathbuf[MAX_PATH];
4971   if (strlen(path) > MAX_PATH - 1) {
4972     errno = ENAMETOOLONG;
4973     return -1;
4974   }
4975   os::native_path(strcpy(pathbuf, path));
4976   return ::stat(pathbuf, sbuf);
4977 }
4978 
4979 bool os::check_heap(bool force) {
4980   return true;
4981 }
4982 
4983 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4984   return ::vsnprintf(buf, count, format, args);
4985 }
4986 
4987 // Is a (classpath) directory empty?
4988 bool os::dir_is_empty(const char* path) {
4989   DIR *dir = NULL;
4990   struct dirent *ptr;
4991 
4992   dir = opendir(path);
4993   if (dir == NULL) return true;
4994 
4995   /* Scan the directory */
4996   bool result = true;
4997   char buf[sizeof(struct dirent) + MAX_PATH];
4998   while (result && (ptr = ::readdir(dir)) != NULL) {
4999     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5000       result = false;
5001     }
5002   }
5003   closedir(dir);
5004   return result;
5005 }
5006 
5007 // This code originates from JDK's sysOpen and open64_w
5008 // from src/solaris/hpi/src/system_md.c
5009 
5010 #ifndef O_DELETE
5011 #define O_DELETE 0x10000
5012 #endif
5013 
5014 // Open a file. Unlink the file immediately after open returns
5015 // if the specified oflag has the O_DELETE flag set.
5016 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5017 
5018 int os::open(const char *path, int oflag, int mode) {
5019 
5020   if (strlen(path) > MAX_PATH - 1) {
5021     errno = ENAMETOOLONG;
5022     return -1;
5023   }
5024   int fd;
5025   int o_delete = (oflag & O_DELETE);
5026   oflag = oflag & ~O_DELETE;
5027 
5028   fd = ::open64(path, oflag, mode);
5029   if (fd == -1) return -1;
5030 
5031   //If the open succeeded, the file might still be a directory
5032   {
5033     struct stat64 buf64;
5034     int ret = ::fstat64(fd, &buf64);
5035     int st_mode = buf64.st_mode;
5036 
5037     if (ret != -1) {
5038       if ((st_mode & S_IFMT) == S_IFDIR) {
5039         errno = EISDIR;
5040         ::close(fd);
5041         return -1;
5042       }
5043     } else {
5044       ::close(fd);
5045       return -1;
5046     }
5047   }
5048 
5049     /*
5050      * All file descriptors that are opened in the JVM and not
5051      * specifically destined for a subprocess should have the
5052      * close-on-exec flag set.  If we don't set it, then careless 3rd
5053      * party native code might fork and exec without closing all
5054      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5055      * UNIXProcess.c), and this in turn might:
5056      *
5057      * - cause end-of-file to fail to be detected on some file
5058      *   descriptors, resulting in mysterious hangs, or
5059      *
5060      * - might cause an fopen in the subprocess to fail on a system
5061      *   suffering from bug 1085341.
5062      *
5063      * (Yes, the default setting of the close-on-exec flag is a Unix
5064      * design flaw)
5065      *
5066      * See:
5067      * 1085341: 32-bit stdio routines should support file descriptors >255
5068      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5069      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5070      */
5071 #ifdef FD_CLOEXEC
5072     {
5073         int flags = ::fcntl(fd, F_GETFD);
5074         if (flags != -1)
5075             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5076     }
5077 #endif
5078 
5079   if (o_delete != 0) {
5080     ::unlink(path);
5081   }
5082   return fd;
5083 }
5084 
5085 
5086 // create binary file, rewriting existing file if required
5087 int os::create_binary_file(const char* path, bool rewrite_existing) {
5088   int oflags = O_WRONLY | O_CREAT;
5089   if (!rewrite_existing) {
5090     oflags |= O_EXCL;
5091   }
5092   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5093 }
5094 
5095 // return current position of file pointer
5096 jlong os::current_file_offset(int fd) {
5097   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5098 }
5099 
5100 // move file pointer to the specified offset
5101 jlong os::seek_to_file_offset(int fd, jlong offset) {
5102   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5103 }
5104 
5105 // This code originates from JDK's sysAvailable
5106 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5107 
5108 int os::available(int fd, jlong *bytes) {
5109   jlong cur, end;
5110   int mode;
5111   struct stat64 buf64;
5112 
5113   if (::fstat64(fd, &buf64) >= 0) {
5114     mode = buf64.st_mode;
5115     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5116       /*
5117       * XXX: is the following call interruptible? If so, this might
5118       * need to go through the INTERRUPT_IO() wrapper as for other
5119       * blocking, interruptible calls in this file.
5120       */
5121       int n;
5122       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5123         *bytes = n;
5124         return 1;
5125       }
5126     }
5127   }
5128   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5129     return 0;
5130   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5131     return 0;
5132   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5133     return 0;
5134   }
5135   *bytes = end - cur;
5136   return 1;
5137 }
5138 
5139 int os::socket_available(int fd, jint *pbytes) {
5140   // Linux doc says EINTR not returned, unlike Solaris
5141   int ret = ::ioctl(fd, FIONREAD, pbytes);
5142 
5143   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5144   // is expected to return 0 on failure and 1 on success to the jdk.
5145   return (ret < 0) ? 0 : 1;
5146 }
5147 
5148 // Map a block of memory.
5149 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5150                      char *addr, size_t bytes, bool read_only,
5151                      bool allow_exec) {
5152   int prot;
5153   int flags = MAP_PRIVATE;
5154 
5155   if (read_only) {
5156     prot = PROT_READ;
5157   } else {
5158     prot = PROT_READ | PROT_WRITE;
5159   }
5160 
5161   if (allow_exec) {
5162     prot |= PROT_EXEC;
5163   }
5164 
5165   if (addr != NULL) {
5166     flags |= MAP_FIXED;
5167   }
5168 
5169   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5170                                      fd, file_offset);
5171   if (mapped_address == MAP_FAILED) {
5172     return NULL;
5173   }
5174   return mapped_address;
5175 }
5176 
5177 
5178 // Remap a block of memory.
5179 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5180                        char *addr, size_t bytes, bool read_only,
5181                        bool allow_exec) {
5182   // same as map_memory() on this OS
5183   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5184                         allow_exec);
5185 }
5186 
5187 
5188 // Unmap a block of memory.
5189 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5190   return munmap(addr, bytes) == 0;
5191 }
5192 
5193 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5194 
5195 static clockid_t thread_cpu_clockid(Thread* thread) {
5196   pthread_t tid = thread->osthread()->pthread_id();
5197   clockid_t clockid;
5198 
5199   // Get thread clockid
5200   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5201   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5202   return clockid;
5203 }
5204 
5205 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5206 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5207 // of a thread.
5208 //
5209 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5210 // the fast estimate available on the platform.
5211 
5212 jlong os::current_thread_cpu_time() {
5213   if (os::Linux::supports_fast_thread_cpu_time()) {
5214     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5215   } else {
5216     // return user + sys since the cost is the same
5217     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5218   }
5219 }
5220 
5221 jlong os::thread_cpu_time(Thread* thread) {
5222   // consistent with what current_thread_cpu_time() returns
5223   if (os::Linux::supports_fast_thread_cpu_time()) {
5224     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5225   } else {
5226     return slow_thread_cpu_time(thread, true /* user + sys */);
5227   }
5228 }
5229 
5230 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5231   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5232     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5233   } else {
5234     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5235   }
5236 }
5237 
5238 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5239   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5240     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5241   } else {
5242     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5243   }
5244 }
5245 
5246 //
5247 //  -1 on error.
5248 //
5249 
5250 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5251   static bool proc_task_unchecked = true;
5252   pid_t  tid = thread->osthread()->thread_id();
5253   char *s;
5254   char stat[2048];
5255   int statlen;
5256   char proc_name[64];
5257   int count;
5258   long sys_time, user_time;
5259   char cdummy;
5260   int idummy;
5261   long ldummy;
5262   FILE *fp;
5263 
5264   snprintf(proc_name, 64, "/proc/%d/stat", tid);
5265 
5266   // The /proc/<tid>/stat aggregates per-process usage on
5267   // new Linux kernels 2.6+ where NPTL is supported.
5268   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5269   // See bug 6328462.
5270   // There possibly can be cases where there is no directory
5271   // /proc/self/task, so we check its availability.
5272   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5273     // This is executed only once
5274     proc_task_unchecked = false;
5275     fp = fopen("/proc/self/task", "r");
5276     if (fp != NULL) {
5277       snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5278       fclose(fp);
5279     }
5280   }
5281 
5282   fp = fopen(proc_name, "r");
5283   if ( fp == NULL ) return -1;
5284   statlen = fread(stat, 1, 2047, fp);
5285   stat[statlen] = '\0';
5286   fclose(fp);
5287 
5288   // Skip pid and the command string. Note that we could be dealing with
5289   // weird command names, e.g. user could decide to rename java launcher
5290   // to "java 1.4.2 :)", then the stat file would look like
5291   //                1234 (java 1.4.2 :)) R ... ...
5292   // We don't really need to know the command string, just find the last
5293   // occurrence of ")" and then start parsing from there. See bug 4726580.
5294   s = strrchr(stat, ')');
5295   if (s == NULL ) return -1;
5296 
5297   // Skip blank chars
5298   do s++; while (isspace(*s));
5299 
5300   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5301                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5302                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5303                  &user_time, &sys_time);
5304   if ( count != 13 ) return -1;
5305   if (user_sys_cpu_time) {
5306     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5307   } else {
5308     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5309   }
5310 }
5311 
5312 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5313   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5314   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5315   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5316   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5317 }
5318 
5319 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5320   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5321   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5322   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5323   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5324 }
5325 
5326 bool os::is_thread_cpu_time_supported() {
5327   return true;
5328 }
5329 
5330 // System loadavg support.  Returns -1 if load average cannot be obtained.
5331 // Linux doesn't yet have a (official) notion of processor sets,
5332 // so just return the system wide load average.
5333 int os::loadavg(double loadavg[], int nelem) {
5334   return ::getloadavg(loadavg, nelem);
5335 }
5336 
5337 void os::pause() {
5338   char filename[MAX_PATH];
5339   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5340     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5341   } else {
5342     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5343   }
5344 
5345   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5346   if (fd != -1) {
5347     struct stat buf;
5348     ::close(fd);
5349     while (::stat(filename, &buf) == 0) {
5350       (void)::poll(NULL, 0, 100);
5351     }
5352   } else {
5353     jio_fprintf(stderr,
5354       "Could not open pause file '%s', continuing immediately.\n", filename);
5355   }
5356 }
5357 
5358 
5359 // Refer to the comments in os_solaris.cpp park-unpark.
5360 //
5361 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5362 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5363 // For specifics regarding the bug see GLIBC BUGID 261237 :
5364 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5365 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5366 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5367 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5368 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5369 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5370 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5371 // of libpthread avoids the problem, but isn't practical.
5372 //
5373 // Possible remedies:
5374 //
5375 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5376 //      This is palliative and probabilistic, however.  If the thread is preempted
5377 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5378 //      than the minimum period may have passed, and the abstime may be stale (in the
5379 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5380 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5381 //
5382 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5383 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5384 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5385 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5386 //      thread.
5387 //
5388 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5389 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5390 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5391 //      This also works well.  In fact it avoids kernel-level scalability impediments
5392 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5393 //      timers in a graceful fashion.
5394 //
5395 // 4.   When the abstime value is in the past it appears that control returns
5396 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5397 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5398 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5399 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5400 //      It may be possible to avoid reinitialization by checking the return
5401 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5402 //      condvar we must establish the invariant that cond_signal() is only called
5403 //      within critical sections protected by the adjunct mutex.  This prevents
5404 //      cond_signal() from "seeing" a condvar that's in the midst of being
5405 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5406 //      desirable signal-after-unlock optimization that avoids futile context switching.
5407 //
5408 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5409 //      structure when a condvar is used or initialized.  cond_destroy()  would
5410 //      release the helper structure.  Our reinitialize-after-timedwait fix
5411 //      put excessive stress on malloc/free and locks protecting the c-heap.
5412 //
5413 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5414 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5415 // and only enabling the work-around for vulnerable environments.
5416 
5417 // utility to compute the abstime argument to timedwait:
5418 // millis is the relative timeout time
5419 // abstime will be the absolute timeout time
5420 // TODO: replace compute_abstime() with unpackTime()
5421 
5422 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5423   if (millis < 0)  millis = 0;
5424 
5425   jlong seconds = millis / 1000;
5426   millis %= 1000;
5427   if (seconds > 50000000) { // see man cond_timedwait(3T)
5428     seconds = 50000000;
5429   }
5430 
5431   if (os::supports_monotonic_clock()) {
5432     struct timespec now;
5433     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5434     assert_status(status == 0, status, "clock_gettime");
5435     abstime->tv_sec = now.tv_sec  + seconds;
5436     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5437     if (nanos >= NANOSECS_PER_SEC) {
5438       abstime->tv_sec += 1;
5439       nanos -= NANOSECS_PER_SEC;
5440     }
5441     abstime->tv_nsec = nanos;
5442   } else {
5443     struct timeval now;
5444     int status = gettimeofday(&now, NULL);
5445     assert(status == 0, "gettimeofday");
5446     abstime->tv_sec = now.tv_sec  + seconds;
5447     long usec = now.tv_usec + millis * 1000;
5448     if (usec >= 1000000) {
5449       abstime->tv_sec += 1;
5450       usec -= 1000000;
5451     }
5452     abstime->tv_nsec = usec * 1000;
5453   }
5454   return abstime;
5455 }
5456 
5457 
5458 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5459 // Conceptually TryPark() should be equivalent to park(0).
5460 
5461 int os::PlatformEvent::TryPark() {
5462   for (;;) {
5463     const int v = _Event ;
5464     guarantee ((v == 0) || (v == 1), "invariant") ;
5465     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5466   }
5467 }
5468 
5469 void os::PlatformEvent::park() {       // AKA "down()"
5470   // Invariant: Only the thread associated with the Event/PlatformEvent
5471   // may call park().
5472   // TODO: assert that _Assoc != NULL or _Assoc == Self
5473   int v ;
5474   for (;;) {
5475       v = _Event ;
5476       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5477   }
5478   guarantee (v >= 0, "invariant") ;
5479   if (v == 0) {
5480      // Do this the hard way by blocking ...
5481      int status = pthread_mutex_lock(_mutex);
5482      assert_status(status == 0, status, "mutex_lock");
5483      guarantee (_nParked == 0, "invariant") ;
5484      ++ _nParked ;
5485      while (_Event < 0) {
5486         status = pthread_cond_wait(_cond, _mutex);
5487         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5488         // Treat this the same as if the wait was interrupted
5489         if (status == ETIME) { status = EINTR; }
5490         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5491      }
5492      -- _nParked ;
5493 
5494     _Event = 0 ;
5495      status = pthread_mutex_unlock(_mutex);
5496      assert_status(status == 0, status, "mutex_unlock");
5497     // Paranoia to ensure our locked and lock-free paths interact
5498     // correctly with each other.
5499     OrderAccess::fence();
5500   }
5501   guarantee (_Event >= 0, "invariant") ;
5502 }
5503 
5504 int os::PlatformEvent::park(jlong millis) {
5505   guarantee (_nParked == 0, "invariant") ;
5506 
5507   int v ;
5508   for (;;) {
5509       v = _Event ;
5510       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5511   }
5512   guarantee (v >= 0, "invariant") ;
5513   if (v != 0) return OS_OK ;
5514 
5515   // We do this the hard way, by blocking the thread.
5516   // Consider enforcing a minimum timeout value.
5517   struct timespec abst;
5518   compute_abstime(&abst, millis);
5519 
5520   int ret = OS_TIMEOUT;
5521   int status = pthread_mutex_lock(_mutex);
5522   assert_status(status == 0, status, "mutex_lock");
5523   guarantee (_nParked == 0, "invariant") ;
5524   ++_nParked ;
5525 
5526   // Object.wait(timo) will return because of
5527   // (a) notification
5528   // (b) timeout
5529   // (c) thread.interrupt
5530   //
5531   // Thread.interrupt and object.notify{All} both call Event::set.
5532   // That is, we treat thread.interrupt as a special case of notification.
5533   // The underlying Solaris implementation, cond_timedwait, admits
5534   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5535   // JVM from making those visible to Java code.  As such, we must
5536   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5537   //
5538   // TODO: properly differentiate simultaneous notify+interrupt.
5539   // In that case, we should propagate the notify to another waiter.
5540 
5541   while (_Event < 0) {
5542     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5543     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5544       pthread_cond_destroy (_cond);
5545       pthread_cond_init (_cond, os::Linux::condAttr()) ;
5546     }
5547     assert_status(status == 0 || status == EINTR ||
5548                   status == ETIME || status == ETIMEDOUT,
5549                   status, "cond_timedwait");
5550     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5551     if (status == ETIME || status == ETIMEDOUT) break ;
5552     // We consume and ignore EINTR and spurious wakeups.
5553   }
5554   --_nParked ;
5555   if (_Event >= 0) {
5556      ret = OS_OK;
5557   }
5558   _Event = 0 ;
5559   status = pthread_mutex_unlock(_mutex);
5560   assert_status(status == 0, status, "mutex_unlock");
5561   assert (_nParked == 0, "invariant") ;
5562   // Paranoia to ensure our locked and lock-free paths interact
5563   // correctly with each other.
5564   OrderAccess::fence();
5565   return ret;
5566 }
5567 
5568 void os::PlatformEvent::unpark() {
5569   // Transitions for _Event:
5570   //    0 :=> 1
5571   //    1 :=> 1
5572   //   -1 :=> either 0 or 1; must signal target thread
5573   //          That is, we can safely transition _Event from -1 to either
5574   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5575   //          unpark() calls.
5576   // See also: "Semaphores in Plan 9" by Mullender & Cox
5577   //
5578   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5579   // that it will take two back-to-back park() calls for the owning
5580   // thread to block. This has the benefit of forcing a spurious return
5581   // from the first park() call after an unpark() call which will help
5582   // shake out uses of park() and unpark() without condition variables.
5583 
5584   if (Atomic::xchg(1, &_Event) >= 0) return;
5585 
5586   // Wait for the thread associated with the event to vacate
5587   int status = pthread_mutex_lock(_mutex);
5588   assert_status(status == 0, status, "mutex_lock");
5589   int AnyWaiters = _nParked;
5590   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5591   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5592     AnyWaiters = 0;
5593     pthread_cond_signal(_cond);
5594   }
5595   status = pthread_mutex_unlock(_mutex);
5596   assert_status(status == 0, status, "mutex_unlock");
5597   if (AnyWaiters != 0) {
5598     status = pthread_cond_signal(_cond);
5599     assert_status(status == 0, status, "cond_signal");
5600   }
5601 
5602   // Note that we signal() _after dropping the lock for "immortal" Events.
5603   // This is safe and avoids a common class of  futile wakeups.  In rare
5604   // circumstances this can cause a thread to return prematurely from
5605   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5606   // simply re-test the condition and re-park itself.
5607 }
5608 
5609 
5610 // JSR166
5611 // -------------------------------------------------------
5612 
5613 /*
5614  * The solaris and linux implementations of park/unpark are fairly
5615  * conservative for now, but can be improved. They currently use a
5616  * mutex/condvar pair, plus a a count.
5617  * Park decrements count if > 0, else does a condvar wait.  Unpark
5618  * sets count to 1 and signals condvar.  Only one thread ever waits
5619  * on the condvar. Contention seen when trying to park implies that someone
5620  * is unparking you, so don't wait. And spurious returns are fine, so there
5621  * is no need to track notifications.
5622  */
5623 
5624 #define MAX_SECS 100000000
5625 /*
5626  * This code is common to linux and solaris and will be moved to a
5627  * common place in dolphin.
5628  *
5629  * The passed in time value is either a relative time in nanoseconds
5630  * or an absolute time in milliseconds. Either way it has to be unpacked
5631  * into suitable seconds and nanoseconds components and stored in the
5632  * given timespec structure.
5633  * Given time is a 64-bit value and the time_t used in the timespec is only
5634  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5635  * overflow if times way in the future are given. Further on Solaris versions
5636  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5637  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5638  * As it will be 28 years before "now + 100000000" will overflow we can
5639  * ignore overflow and just impose a hard-limit on seconds using the value
5640  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5641  * years from "now".
5642  */
5643 
5644 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5645   assert (time > 0, "convertTime");
5646   time_t max_secs = 0;
5647 
5648   if (!os::supports_monotonic_clock() || isAbsolute) {
5649     struct timeval now;
5650     int status = gettimeofday(&now, NULL);
5651     assert(status == 0, "gettimeofday");
5652 
5653     max_secs = now.tv_sec + MAX_SECS;
5654 
5655     if (isAbsolute) {
5656       jlong secs = time / 1000;
5657       if (secs > max_secs) {
5658         absTime->tv_sec = max_secs;
5659       } else {
5660         absTime->tv_sec = secs;
5661       }
5662       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5663     } else {
5664       jlong secs = time / NANOSECS_PER_SEC;
5665       if (secs >= MAX_SECS) {
5666         absTime->tv_sec = max_secs;
5667         absTime->tv_nsec = 0;
5668       } else {
5669         absTime->tv_sec = now.tv_sec + secs;
5670         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5671         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5672           absTime->tv_nsec -= NANOSECS_PER_SEC;
5673           ++absTime->tv_sec; // note: this must be <= max_secs
5674         }
5675       }
5676     }
5677   } else {
5678     // must be relative using monotonic clock
5679     struct timespec now;
5680     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5681     assert_status(status == 0, status, "clock_gettime");
5682     max_secs = now.tv_sec + MAX_SECS;
5683     jlong secs = time / NANOSECS_PER_SEC;
5684     if (secs >= MAX_SECS) {
5685       absTime->tv_sec = max_secs;
5686       absTime->tv_nsec = 0;
5687     } else {
5688       absTime->tv_sec = now.tv_sec + secs;
5689       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5690       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5691         absTime->tv_nsec -= NANOSECS_PER_SEC;
5692         ++absTime->tv_sec; // note: this must be <= max_secs
5693       }
5694     }
5695   }
5696   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5697   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5698   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5699   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5700 }
5701 
5702 void Parker::park(bool isAbsolute, jlong time) {
5703   // Ideally we'd do something useful while spinning, such
5704   // as calling unpackTime().
5705 
5706   // Optional fast-path check:
5707   // Return immediately if a permit is available.
5708   // We depend on Atomic::xchg() having full barrier semantics
5709   // since we are doing a lock-free update to _counter.
5710   if (Atomic::xchg(0, &_counter) > 0) return;
5711 
5712   Thread* thread = Thread::current();
5713   assert(thread->is_Java_thread(), "Must be JavaThread");
5714   JavaThread *jt = (JavaThread *)thread;
5715 
5716   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5717   // Check interrupt before trying to wait
5718   if (Thread::is_interrupted(thread, false)) {
5719     return;
5720   }
5721 
5722   // Next, demultiplex/decode time arguments
5723   timespec absTime;
5724   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5725     return;
5726   }
5727   if (time > 0) {
5728     unpackTime(&absTime, isAbsolute, time);
5729   }
5730 
5731 
5732   // Enter safepoint region
5733   // Beware of deadlocks such as 6317397.
5734   // The per-thread Parker:: mutex is a classic leaf-lock.
5735   // In particular a thread must never block on the Threads_lock while
5736   // holding the Parker:: mutex.  If safepoints are pending both the
5737   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5738   ThreadBlockInVM tbivm(jt);
5739 
5740   // Don't wait if cannot get lock since interference arises from
5741   // unblocking.  Also. check interrupt before trying wait
5742   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5743     return;
5744   }
5745 
5746   int status ;
5747   if (_counter > 0)  { // no wait needed
5748     _counter = 0;
5749     status = pthread_mutex_unlock(_mutex);
5750     assert (status == 0, "invariant") ;
5751     // Paranoia to ensure our locked and lock-free paths interact
5752     // correctly with each other and Java-level accesses.
5753     OrderAccess::fence();
5754     return;
5755   }
5756 
5757 #ifdef ASSERT
5758   // Don't catch signals while blocked; let the running threads have the signals.
5759   // (This allows a debugger to break into the running thread.)
5760   sigset_t oldsigs;
5761   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5762   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5763 #endif
5764 
5765   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5766   jt->set_suspend_equivalent();
5767   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5768 
5769   assert(_cur_index == -1, "invariant");
5770   if (time == 0) {
5771     _cur_index = REL_INDEX; // arbitrary choice when not timed
5772     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
5773   } else {
5774     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5775     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
5776     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5777       pthread_cond_destroy (&_cond[_cur_index]) ;
5778       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5779     }
5780   }
5781   _cur_index = -1;
5782   assert_status(status == 0 || status == EINTR ||
5783                 status == ETIME || status == ETIMEDOUT,
5784                 status, "cond_timedwait");
5785 
5786 #ifdef ASSERT
5787   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5788 #endif
5789 
5790   _counter = 0 ;
5791   status = pthread_mutex_unlock(_mutex) ;
5792   assert_status(status == 0, status, "invariant") ;
5793   // Paranoia to ensure our locked and lock-free paths interact
5794   // correctly with each other and Java-level accesses.
5795   OrderAccess::fence();
5796 
5797   // If externally suspended while waiting, re-suspend
5798   if (jt->handle_special_suspend_equivalent_condition()) {
5799     jt->java_suspend_self();
5800   }
5801 }
5802 
5803 void Parker::unpark() {
5804   int s, status ;
5805   status = pthread_mutex_lock(_mutex);
5806   assert (status == 0, "invariant") ;
5807   s = _counter;
5808   _counter = 1;
5809   if (s < 1) {
5810     // thread might be parked
5811     if (_cur_index != -1) {
5812       // thread is definitely parked
5813       if (WorkAroundNPTLTimedWaitHang) {
5814         status = pthread_cond_signal (&_cond[_cur_index]);
5815         assert (status == 0, "invariant");
5816         status = pthread_mutex_unlock(_mutex);
5817         assert (status == 0, "invariant");
5818       } else {
5819         status = pthread_mutex_unlock(_mutex);
5820         assert (status == 0, "invariant");
5821         status = pthread_cond_signal (&_cond[_cur_index]);
5822         assert (status == 0, "invariant");
5823       }
5824     } else {
5825       pthread_mutex_unlock(_mutex);
5826       assert (status == 0, "invariant") ;
5827     }
5828   } else {
5829     pthread_mutex_unlock(_mutex);
5830     assert (status == 0, "invariant") ;
5831   }
5832 }
5833 
5834 
5835 extern char** environ;
5836 
5837 #ifndef __NR_fork
5838 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5839 #endif
5840 
5841 #ifndef __NR_execve
5842 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5843 #endif
5844 
5845 // Run the specified command in a separate process. Return its exit value,
5846 // or -1 on failure (e.g. can't fork a new process).
5847 // Unlike system(), this function can be called from signal handler. It
5848 // doesn't block SIGINT et al.
5849 int os::fork_and_exec(char* cmd) {
5850   const char * argv[4] = {"sh", "-c", cmd, NULL};
5851 
5852   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5853   // pthread_atfork handlers and reset pthread library. All we need is a
5854   // separate process to execve. Make a direct syscall to fork process.
5855   // On IA64 there's no fork syscall, we have to use fork() and hope for
5856   // the best...
5857   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5858               IA64_ONLY(fork();)
5859 
5860   if (pid < 0) {
5861     // fork failed
5862     return -1;
5863 
5864   } else if (pid == 0) {
5865     // child process
5866 
5867     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5868     // first to kill every thread on the thread list. Because this list is
5869     // not reset by fork() (see notes above), execve() will instead kill
5870     // every thread in the parent process. We know this is the only thread
5871     // in the new process, so make a system call directly.
5872     // IA64 should use normal execve() from glibc to match the glibc fork()
5873     // above.
5874     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5875     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5876 
5877     // execve failed
5878     _exit(-1);
5879 
5880   } else  {
5881     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5882     // care about the actual exit code, for now.
5883 
5884     int status;
5885 
5886     // Wait for the child process to exit.  This returns immediately if
5887     // the child has already exited. */
5888     while (waitpid(pid, &status, 0) < 0) {
5889         switch (errno) {
5890         case ECHILD: return 0;
5891         case EINTR: break;
5892         default: return -1;
5893         }
5894     }
5895 
5896     if (WIFEXITED(status)) {
5897        // The child exited normally; get its exit code.
5898        return WEXITSTATUS(status);
5899     } else if (WIFSIGNALED(status)) {
5900        // The child exited because of a signal
5901        // The best value to return is 0x80 + signal number,
5902        // because that is what all Unix shells do, and because
5903        // it allows callers to distinguish between process exit and
5904        // process death by signal.
5905        return 0x80 + WTERMSIG(status);
5906     } else {
5907        // Unknown exit code; pass it through
5908        return status;
5909     }
5910   }
5911 }
5912 
5913 // is_headless_jre()
5914 //
5915 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5916 // in order to report if we are running in a headless jre
5917 //
5918 // Since JDK8 xawt/libmawt.so was moved into the same directory
5919 // as libawt.so, and renamed libawt_xawt.so
5920 //
5921 bool os::is_headless_jre() {
5922     struct stat statbuf;
5923     char buf[MAXPATHLEN];
5924     char libmawtpath[MAXPATHLEN];
5925     const char *xawtstr  = "/xawt/libmawt.so";
5926     const char *new_xawtstr = "/libawt_xawt.so";
5927     char *p;
5928 
5929     // Get path to libjvm.so
5930     os::jvm_path(buf, sizeof(buf));
5931 
5932     // Get rid of libjvm.so
5933     p = strrchr(buf, '/');
5934     if (p == NULL) return false;
5935     else *p = '\0';
5936 
5937     // Get rid of client or server
5938     p = strrchr(buf, '/');
5939     if (p == NULL) return false;
5940     else *p = '\0';
5941 
5942     // check xawt/libmawt.so
5943     strcpy(libmawtpath, buf);
5944     strcat(libmawtpath, xawtstr);
5945     if (::stat(libmawtpath, &statbuf) == 0) return false;
5946 
5947     // check libawt_xawt.so
5948     strcpy(libmawtpath, buf);
5949     strcat(libmawtpath, new_xawtstr);
5950     if (::stat(libmawtpath, &statbuf) == 0) return false;
5951 
5952     return true;
5953 }
5954 
5955 // Get the default path to the core file
5956 // Returns the length of the string
5957 int os::get_core_path(char* buffer, size_t bufferSize) {
5958   const char* p = get_current_directory(buffer, bufferSize);
5959 
5960   if (p == NULL) {
5961     assert(p != NULL, "failed to get current directory");
5962     return 0;
5963   }
5964 
5965   return strlen(buffer);
5966 }
5967 
5968 #ifdef JAVASE_EMBEDDED
5969 //
5970 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5971 //
5972 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5973 
5974 // ctor
5975 //
5976 MemNotifyThread::MemNotifyThread(int fd): Thread() {
5977   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5978   _fd = fd;
5979 
5980   if (os::create_thread(this, os::os_thread)) {
5981     _memnotify_thread = this;
5982     os::set_priority(this, NearMaxPriority);
5983     os::start_thread(this);
5984   }
5985 }
5986 
5987 // Where all the work gets done
5988 //
5989 void MemNotifyThread::run() {
5990   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5991 
5992   // Set up the select arguments
5993   fd_set rfds;
5994   if (_fd != -1) {
5995     FD_ZERO(&rfds);
5996     FD_SET(_fd, &rfds);
5997   }
5998 
5999   // Now wait for the mem_notify device to wake up
6000   while (1) {
6001     // Wait for the mem_notify device to signal us..
6002     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6003     if (rc == -1) {
6004       perror("select!\n");
6005       break;
6006     } else if (rc) {
6007       //ssize_t free_before = os::available_memory();
6008       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6009 
6010       // The kernel is telling us there is not much memory left...
6011       // try to do something about that
6012 
6013       // If we are not already in a GC, try one.
6014       if (!Universe::heap()->is_gc_active()) {
6015         Universe::heap()->collect(GCCause::_allocation_failure);
6016 
6017         //ssize_t free_after = os::available_memory();
6018         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6019         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6020       }
6021       // We might want to do something like the following if we find the GC's are not helping...
6022       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6023     }
6024   }
6025 }
6026 
6027 //
6028 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6029 //
6030 void MemNotifyThread::start() {
6031   int    fd;
6032   fd = open ("/dev/mem_notify", O_RDONLY, 0);
6033   if (fd < 0) {
6034       return;
6035   }
6036 
6037   if (memnotify_thread() == NULL) {
6038     new MemNotifyThread(fd);
6039   }
6040 }
6041 
6042 #endif // JAVASE_EMBEDDED
6043 
6044 
6045 /////////////// Unit tests ///////////////
6046 
6047 #ifndef PRODUCT
6048 
6049 #define test_log(...) \
6050   do {\
6051     if (VerboseInternalVMTests) { \
6052       tty->print_cr(__VA_ARGS__); \
6053       tty->flush(); \
6054     }\
6055   } while (false)
6056 
6057 class TestReserveMemorySpecial : AllStatic {
6058  public:
6059   static void small_page_write(void* addr, size_t size) {
6060     size_t page_size = os::vm_page_size();
6061 
6062     char* end = (char*)addr + size;
6063     for (char* p = (char*)addr; p < end; p += page_size) {
6064       *p = 1;
6065     }
6066   }
6067 
6068   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6069     if (!UseHugeTLBFS) {
6070       return;
6071     }
6072 
6073     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6074 
6075     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6076 
6077     if (addr != NULL) {
6078       small_page_write(addr, size);
6079 
6080       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6081     }
6082   }
6083 
6084   static void test_reserve_memory_special_huge_tlbfs_only() {
6085     if (!UseHugeTLBFS) {
6086       return;
6087     }
6088 
6089     size_t lp = os::large_page_size();
6090 
6091     for (size_t size = lp; size <= lp * 10; size += lp) {
6092       test_reserve_memory_special_huge_tlbfs_only(size);
6093     }
6094   }
6095 
6096   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6097     if (!UseHugeTLBFS) {
6098         return;
6099     }
6100 
6101     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6102         size, alignment);
6103 
6104     assert(size >= os::large_page_size(), "Incorrect input to test");
6105 
6106     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6107 
6108     if (addr != NULL) {
6109       small_page_write(addr, size);
6110 
6111       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6112     }
6113   }
6114 
6115   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6116     size_t lp = os::large_page_size();
6117     size_t ag = os::vm_allocation_granularity();
6118 
6119     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6120       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6121     }
6122   }
6123 
6124   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6125     size_t lp = os::large_page_size();
6126     size_t ag = os::vm_allocation_granularity();
6127 
6128     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6129     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6130     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6131     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6132     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6133     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6134     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6135     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6136     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6137   }
6138 
6139   static void test_reserve_memory_special_huge_tlbfs() {
6140     if (!UseHugeTLBFS) {
6141       return;
6142     }
6143 
6144     test_reserve_memory_special_huge_tlbfs_only();
6145     test_reserve_memory_special_huge_tlbfs_mixed();
6146   }
6147 
6148   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6149     if (!UseSHM) {
6150       return;
6151     }
6152 
6153     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6154 
6155     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6156 
6157     if (addr != NULL) {
6158       assert(is_ptr_aligned(addr, alignment), "Check");
6159       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6160 
6161       small_page_write(addr, size);
6162 
6163       os::Linux::release_memory_special_shm(addr, size);
6164     }
6165   }
6166 
6167   static void test_reserve_memory_special_shm() {
6168     size_t lp = os::large_page_size();
6169     size_t ag = os::vm_allocation_granularity();
6170 
6171     for (size_t size = ag; size < lp * 3; size += ag) {
6172       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6173         test_reserve_memory_special_shm(size, alignment);
6174       }
6175     }
6176   }
6177 
6178   static void test() {
6179     test_reserve_memory_special_huge_tlbfs();
6180     test_reserve_memory_special_shm();
6181   }
6182 };
6183 
6184 void TestReserveMemorySpecial_test() {
6185   TestReserveMemorySpecial::test();
6186 }
6187 
6188 #endif