1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/osThread.hpp"
  53 #include "runtime/perfMemory.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/statSampler.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/thread.inline.hpp"
  58 #include "runtime/threadCritical.hpp"
  59 #include "runtime/timer.hpp"
  60 #include "services/attachListener.hpp"
  61 #include "services/memTracker.hpp"
  62 #include "services/runtimeService.hpp"
  63 #include "utilities/decoder.hpp"
  64 #include "utilities/defaultStream.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/elfFile.hpp"
  67 #include "utilities/growableArray.hpp"
  68 #include "utilities/vmError.hpp"
  69 
  70 // put OS-includes here
  71 # include <sys/types.h>
  72 # include <sys/mman.h>
  73 # include <sys/stat.h>
  74 # include <sys/select.h>
  75 # include <pthread.h>
  76 # include <signal.h>
  77 # include <errno.h>
  78 # include <dlfcn.h>
  79 # include <stdio.h>
  80 # include <unistd.h>
  81 # include <sys/resource.h>
  82 # include <pthread.h>
  83 # include <sys/stat.h>
  84 # include <sys/time.h>
  85 # include <sys/times.h>
  86 # include <sys/utsname.h>
  87 # include <sys/socket.h>
  88 # include <sys/wait.h>
  89 # include <pwd.h>
  90 # include <poll.h>
  91 # include <semaphore.h>
  92 # include <fcntl.h>
  93 # include <string.h>
  94 # include <syscall.h>
  95 # include <sys/sysinfo.h>
  96 # include <gnu/libc-version.h>
  97 # include <sys/ipc.h>
  98 # include <sys/shm.h>
  99 # include <link.h>
 100 # include <stdint.h>
 101 # include <inttypes.h>
 102 # include <sys/ioctl.h>
 103 
 104 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 105 // getrusage() is prepared to handle the associated failure.
 106 #ifndef RUSAGE_THREAD
 107 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 108 #endif
 109 
 110 #define MAX_PATH    (2 * K)
 111 
 112 // for timer info max values which include all bits
 113 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 114 
 115 #define LARGEPAGES_BIT (1 << 6)
 116 ////////////////////////////////////////////////////////////////////////////////
 117 // global variables
 118 julong os::Linux::_physical_memory = 0;
 119 
 120 address   os::Linux::_initial_thread_stack_bottom = NULL;
 121 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 122 
 123 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 124 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 125 Mutex* os::Linux::_createThread_lock = NULL;
 126 pthread_t os::Linux::_main_thread;
 127 int os::Linux::_page_size = -1;
 128 const int os::Linux::_vm_default_page_size = (8 * K);
 129 bool os::Linux::_is_floating_stack = false;
 130 bool os::Linux::_is_NPTL = false;
 131 bool os::Linux::_supports_fast_thread_cpu_time = false;
 132 const char * os::Linux::_glibc_version = NULL;
 133 const char * os::Linux::_libpthread_version = NULL;
 134 pthread_condattr_t os::Linux::_condattr[1];
 135 
 136 static jlong initial_time_count=0;
 137 
 138 static int clock_tics_per_sec = 100;
 139 
 140 // For diagnostics to print a message once. see run_periodic_checks
 141 static sigset_t check_signal_done;
 142 static bool check_signals = true;
 143 
 144 static pid_t _initial_pid = 0;
 145 
 146 /* Signal number used to suspend/resume a thread */
 147 
 148 /* do not use any signal number less than SIGSEGV, see 4355769 */
 149 static int SR_signum = SIGUSR2;
 150 sigset_t SR_sigset;
 151 
 152 /* Used to protect dlsym() calls */
 153 static pthread_mutex_t dl_mutex;
 154 
 155 // Declarations
 156 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 157 
 158 #ifdef JAVASE_EMBEDDED
 159 class MemNotifyThread: public Thread {
 160   friend class VMStructs;
 161  public:
 162   virtual void run();
 163 
 164  private:
 165   static MemNotifyThread* _memnotify_thread;
 166   int _fd;
 167 
 168  public:
 169 
 170   // Constructor
 171   MemNotifyThread(int fd);
 172 
 173   // Tester
 174   bool is_memnotify_thread() const { return true; }
 175 
 176   // Printing
 177   char* name() const { return (char*)"Linux MemNotify Thread"; }
 178 
 179   // Returns the single instance of the MemNotifyThread
 180   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 181 
 182   // Create and start the single instance of MemNotifyThread
 183   static void start();
 184 };
 185 #endif // JAVASE_EMBEDDED
 186 
 187 // utility functions
 188 
 189 static int SR_initialize();
 190 
 191 julong os::available_memory() {
 192   return Linux::available_memory();
 193 }
 194 
 195 julong os::Linux::available_memory() {
 196   // values in struct sysinfo are "unsigned long"
 197   struct sysinfo si;
 198   sysinfo(&si);
 199 
 200   return (julong)si.freeram * si.mem_unit;
 201 }
 202 
 203 julong os::physical_memory() {
 204   return Linux::physical_memory();
 205 }
 206 
 207 ////////////////////////////////////////////////////////////////////////////////
 208 // environment support
 209 
 210 bool os::getenv(const char* name, char* buf, int len) {
 211   const char* val = ::getenv(name);
 212   if (val != NULL && strlen(val) < (size_t)len) {
 213     strcpy(buf, val);
 214     return true;
 215   }
 216   if (len > 0) buf[0] = 0;  // return a null string
 217   return false;
 218 }
 219 
 220 
 221 // Return true if user is running as root.
 222 
 223 bool os::have_special_privileges() {
 224   static bool init = false;
 225   static bool privileges = false;
 226   if (!init) {
 227     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 228     init = true;
 229   }
 230   return privileges;
 231 }
 232 
 233 
 234 #ifndef SYS_gettid
 235 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 236 #ifdef __ia64__
 237 #define SYS_gettid 1105
 238 #elif __i386__
 239 #define SYS_gettid 224
 240 #elif __amd64__
 241 #define SYS_gettid 186
 242 #elif __sparc__
 243 #define SYS_gettid 143
 244 #else
 245 #error define gettid for the arch
 246 #endif
 247 #endif
 248 
 249 // Cpu architecture string
 250 #if   defined(ZERO)
 251 static char cpu_arch[] = ZERO_LIBARCH;
 252 #elif defined(IA64)
 253 static char cpu_arch[] = "ia64";
 254 #elif defined(IA32)
 255 static char cpu_arch[] = "i386";
 256 #elif defined(AMD64)
 257 static char cpu_arch[] = "amd64";
 258 #elif defined(ARM)
 259 static char cpu_arch[] = "arm";
 260 #elif defined(PPC32)
 261 static char cpu_arch[] = "ppc";
 262 #elif defined(PPC64)
 263 static char cpu_arch[] = "ppc64";
 264 #elif defined(SPARC)
 265 #  ifdef _LP64
 266 static char cpu_arch[] = "sparcv9";
 267 #  else
 268 static char cpu_arch[] = "sparc";
 269 #  endif
 270 #else
 271 #error Add appropriate cpu_arch setting
 272 #endif
 273 
 274 
 275 // pid_t gettid()
 276 //
 277 // Returns the kernel thread id of the currently running thread. Kernel
 278 // thread id is used to access /proc.
 279 //
 280 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 281 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 282 //
 283 pid_t os::Linux::gettid() {
 284   int rslt = syscall(SYS_gettid);
 285   if (rslt == -1) {
 286      // old kernel, no NPTL support
 287      return getpid();
 288   } else {
 289      return (pid_t)rslt;
 290   }
 291 }
 292 
 293 // Most versions of linux have a bug where the number of processors are
 294 // determined by looking at the /proc file system.  In a chroot environment,
 295 // the system call returns 1.  This causes the VM to act as if it is
 296 // a single processor and elide locking (see is_MP() call).
 297 static bool unsafe_chroot_detected = false;
 298 static const char *unstable_chroot_error = "/proc file system not found.\n"
 299                      "Java may be unstable running multithreaded in a chroot "
 300                      "environment on Linux when /proc filesystem is not mounted.";
 301 
 302 void os::Linux::initialize_system_info() {
 303   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 304   if (processor_count() == 1) {
 305     pid_t pid = os::Linux::gettid();
 306     char fname[32];
 307     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 308     FILE *fp = fopen(fname, "r");
 309     if (fp == NULL) {
 310       unsafe_chroot_detected = true;
 311     } else {
 312       fclose(fp);
 313     }
 314   }
 315   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 316   assert(processor_count() > 0, "linux error");
 317 }
 318 
 319 void os::init_system_properties_values() {
 320   // The next steps are taken in the product version:
 321   //
 322   // Obtain the JAVA_HOME value from the location of libjvm.so.
 323   // This library should be located at:
 324   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 325   //
 326   // If "/jre/lib/" appears at the right place in the path, then we
 327   // assume libjvm.so is installed in a JDK and we use this path.
 328   //
 329   // Otherwise exit with message: "Could not create the Java virtual machine."
 330   //
 331   // The following extra steps are taken in the debugging version:
 332   //
 333   // If "/jre/lib/" does NOT appear at the right place in the path
 334   // instead of exit check for $JAVA_HOME environment variable.
 335   //
 336   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 337   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 338   // it looks like libjvm.so is installed there
 339   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 340   //
 341   // Otherwise exit.
 342   //
 343   // Important note: if the location of libjvm.so changes this
 344   // code needs to be changed accordingly.
 345 
 346 // See ld(1):
 347 //      The linker uses the following search paths to locate required
 348 //      shared libraries:
 349 //        1: ...
 350 //        ...
 351 //        7: The default directories, normally /lib and /usr/lib.
 352 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 353 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 354 #else
 355 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 356 #endif
 357 
 358 // Base path of extensions installed on the system.
 359 #define SYS_EXT_DIR     "/usr/java/packages"
 360 #define EXTENSIONS_DIR  "/lib/ext"
 361 #define ENDORSED_DIR    "/lib/endorsed"
 362 
 363   // Buffer that fits several sprintfs.
 364   // Note that the space for the colon and the trailing null are provided
 365   // by the nulls included by the sizeof operator.
 366   const size_t bufsize =
 367     MAX4((size_t)MAXPATHLEN,  // For dll_dir & friends.
 368          sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH), // invariant ld_library_path
 369          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 370          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 371   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 372 
 373   // sysclasspath, java_home, dll_dir
 374   {
 375     char *pslash;
 376     os::jvm_path(buf, bufsize);
 377 
 378     // Found the full path to libjvm.so.
 379     // Now cut the path to <java_home>/jre if we can.
 380     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 381     pslash = strrchr(buf, '/');
 382     if (pslash != NULL) {
 383       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 384     }
 385     Arguments::set_dll_dir(buf);
 386 
 387     if (pslash != NULL) {
 388       pslash = strrchr(buf, '/');
 389       if (pslash != NULL) {
 390         *pslash = '\0';          // Get rid of /<arch>.
 391         pslash = strrchr(buf, '/');
 392         if (pslash != NULL) {
 393           *pslash = '\0';        // Get rid of /lib.
 394         }
 395       }
 396     }
 397     Arguments::set_java_home(buf);
 398 
 399     if (!set_boot_path('/', ':')) {
 400       return;
 401     }
 402   }
 403 
 404   // Where to look for native libraries.
 405   //
 406   // Note: Due to a legacy implementation, most of the library path
 407   // is set in the launcher. This was to accomodate linking restrictions
 408   // on legacy Linux implementations (which are no longer supported).
 409   // Eventually, all the library path setting will be done here.
 410   //
 411   // However, to prevent the proliferation of improperly built native
 412   // libraries, the new path component /usr/java/packages is added here.
 413   // Eventually, all the library path setting will be done here.
 414   {
 415     char *ld_library_path_inv = buf;
 416 
 417     // Construct the invariant part of ld_library_path.
 418     sprintf(ld_library_path_inv, SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 419 
 420     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 421     // should always exist (until the legacy problem cited above is
 422     // addressed).
 423     char *v = ::getenv("LD_LIBRARY_PATH");
 424     if (v != NULL) {
 425       // That's +1 for the colon and +1 for the trailing '\0'.
 426       char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char, strlen(v) + 1 + strlen(ld_library_path_inv) + 1, mtInternal);
 427       sprintf(ld_library_path, "%s:%s", v, ld_library_path_inv);
 428       Arguments::set_library_path(ld_library_path);
 429       FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 430     } else {
 431       Arguments::set_library_path(ld_library_path_inv);
 432     }
 433   }
 434 
 435   // Extensions directories.
 436   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 437   Arguments::set_ext_dirs(buf);
 438 
 439   // Endorsed standards default directory.
 440   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 441   Arguments::set_endorsed_dirs(buf);
 442 
 443   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 444 
 445 #undef DEFAULT_LIBPATH
 446 #undef SYS_EXT_DIR
 447 #undef EXTENSIONS_DIR
 448 #undef ENDORSED_DIR
 449 }
 450 
 451 ////////////////////////////////////////////////////////////////////////////////
 452 // breakpoint support
 453 
 454 void os::breakpoint() {
 455   BREAKPOINT;
 456 }
 457 
 458 extern "C" void breakpoint() {
 459   // use debugger to set breakpoint here
 460 }
 461 
 462 ////////////////////////////////////////////////////////////////////////////////
 463 // signal support
 464 
 465 debug_only(static bool signal_sets_initialized = false);
 466 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 467 
 468 bool os::Linux::is_sig_ignored(int sig) {
 469       struct sigaction oact;
 470       sigaction(sig, (struct sigaction*)NULL, &oact);
 471       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 472                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 473       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 474            return true;
 475       else
 476            return false;
 477 }
 478 
 479 void os::Linux::signal_sets_init() {
 480   // Should also have an assertion stating we are still single-threaded.
 481   assert(!signal_sets_initialized, "Already initialized");
 482   // Fill in signals that are necessarily unblocked for all threads in
 483   // the VM. Currently, we unblock the following signals:
 484   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 485   //                         by -Xrs (=ReduceSignalUsage));
 486   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 487   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 488   // the dispositions or masks wrt these signals.
 489   // Programs embedding the VM that want to use the above signals for their
 490   // own purposes must, at this time, use the "-Xrs" option to prevent
 491   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 492   // (See bug 4345157, and other related bugs).
 493   // In reality, though, unblocking these signals is really a nop, since
 494   // these signals are not blocked by default.
 495   sigemptyset(&unblocked_sigs);
 496   sigemptyset(&allowdebug_blocked_sigs);
 497   sigaddset(&unblocked_sigs, SIGILL);
 498   sigaddset(&unblocked_sigs, SIGSEGV);
 499   sigaddset(&unblocked_sigs, SIGBUS);
 500   sigaddset(&unblocked_sigs, SIGFPE);
 501 #if defined(PPC64)
 502   sigaddset(&unblocked_sigs, SIGTRAP);
 503 #endif
 504   sigaddset(&unblocked_sigs, SR_signum);
 505 
 506   if (!ReduceSignalUsage) {
 507    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 508       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 509       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 510    }
 511    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 512       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 513       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 514    }
 515    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 516       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 517       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 518    }
 519   }
 520   // Fill in signals that are blocked by all but the VM thread.
 521   sigemptyset(&vm_sigs);
 522   if (!ReduceSignalUsage)
 523     sigaddset(&vm_sigs, BREAK_SIGNAL);
 524   debug_only(signal_sets_initialized = true);
 525 
 526 }
 527 
 528 // These are signals that are unblocked while a thread is running Java.
 529 // (For some reason, they get blocked by default.)
 530 sigset_t* os::Linux::unblocked_signals() {
 531   assert(signal_sets_initialized, "Not initialized");
 532   return &unblocked_sigs;
 533 }
 534 
 535 // These are the signals that are blocked while a (non-VM) thread is
 536 // running Java. Only the VM thread handles these signals.
 537 sigset_t* os::Linux::vm_signals() {
 538   assert(signal_sets_initialized, "Not initialized");
 539   return &vm_sigs;
 540 }
 541 
 542 // These are signals that are blocked during cond_wait to allow debugger in
 543 sigset_t* os::Linux::allowdebug_blocked_signals() {
 544   assert(signal_sets_initialized, "Not initialized");
 545   return &allowdebug_blocked_sigs;
 546 }
 547 
 548 void os::Linux::hotspot_sigmask(Thread* thread) {
 549 
 550   //Save caller's signal mask before setting VM signal mask
 551   sigset_t caller_sigmask;
 552   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 553 
 554   OSThread* osthread = thread->osthread();
 555   osthread->set_caller_sigmask(caller_sigmask);
 556 
 557   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 558 
 559   if (!ReduceSignalUsage) {
 560     if (thread->is_VM_thread()) {
 561       // Only the VM thread handles BREAK_SIGNAL ...
 562       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 563     } else {
 564       // ... all other threads block BREAK_SIGNAL
 565       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 566     }
 567   }
 568 }
 569 
 570 //////////////////////////////////////////////////////////////////////////////
 571 // detecting pthread library
 572 
 573 void os::Linux::libpthread_init() {
 574   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 575   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 576   // generic name for earlier versions.
 577   // Define macros here so we can build HotSpot on old systems.
 578 # ifndef _CS_GNU_LIBC_VERSION
 579 # define _CS_GNU_LIBC_VERSION 2
 580 # endif
 581 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 582 # define _CS_GNU_LIBPTHREAD_VERSION 3
 583 # endif
 584 
 585   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 586   if (n > 0) {
 587      char *str = (char *)malloc(n, mtInternal);
 588      confstr(_CS_GNU_LIBC_VERSION, str, n);
 589      os::Linux::set_glibc_version(str);
 590   } else {
 591      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 592      static char _gnu_libc_version[32];
 593      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 594               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 595      os::Linux::set_glibc_version(_gnu_libc_version);
 596   }
 597 
 598   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 599   if (n > 0) {
 600      char *str = (char *)malloc(n, mtInternal);
 601      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 602      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 603      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 604      // is the case. LinuxThreads has a hard limit on max number of threads.
 605      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 606      // On the other hand, NPTL does not have such a limit, sysconf()
 607      // will return -1 and errno is not changed. Check if it is really NPTL.
 608      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 609          strstr(str, "NPTL") &&
 610          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 611        free(str);
 612        os::Linux::set_libpthread_version("linuxthreads");
 613      } else {
 614        os::Linux::set_libpthread_version(str);
 615      }
 616   } else {
 617     // glibc before 2.3.2 only has LinuxThreads.
 618     os::Linux::set_libpthread_version("linuxthreads");
 619   }
 620 
 621   if (strstr(libpthread_version(), "NPTL")) {
 622      os::Linux::set_is_NPTL();
 623   } else {
 624      os::Linux::set_is_LinuxThreads();
 625   }
 626 
 627   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 628   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 629   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 630      os::Linux::set_is_floating_stack();
 631   }
 632 }
 633 
 634 /////////////////////////////////////////////////////////////////////////////
 635 // thread stack
 636 
 637 // Force Linux kernel to expand current thread stack. If "bottom" is close
 638 // to the stack guard, caller should block all signals.
 639 //
 640 // MAP_GROWSDOWN:
 641 //   A special mmap() flag that is used to implement thread stacks. It tells
 642 //   kernel that the memory region should extend downwards when needed. This
 643 //   allows early versions of LinuxThreads to only mmap the first few pages
 644 //   when creating a new thread. Linux kernel will automatically expand thread
 645 //   stack as needed (on page faults).
 646 //
 647 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 648 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 649 //   region, it's hard to tell if the fault is due to a legitimate stack
 650 //   access or because of reading/writing non-exist memory (e.g. buffer
 651 //   overrun). As a rule, if the fault happens below current stack pointer,
 652 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 653 //   application (see Linux kernel fault.c).
 654 //
 655 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 656 //   stack overflow detection.
 657 //
 658 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 659 //   not use this flag. However, the stack of initial thread is not created
 660 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 661 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 662 //   and then attach the thread to JVM.
 663 //
 664 // To get around the problem and allow stack banging on Linux, we need to
 665 // manually expand thread stack after receiving the SIGSEGV.
 666 //
 667 // There are two ways to expand thread stack to address "bottom", we used
 668 // both of them in JVM before 1.5:
 669 //   1. adjust stack pointer first so that it is below "bottom", and then
 670 //      touch "bottom"
 671 //   2. mmap() the page in question
 672 //
 673 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 674 // if current sp is already near the lower end of page 101, and we need to
 675 // call mmap() to map page 100, it is possible that part of the mmap() frame
 676 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 677 // That will destroy the mmap() frame and cause VM to crash.
 678 //
 679 // The following code works by adjusting sp first, then accessing the "bottom"
 680 // page to force a page fault. Linux kernel will then automatically expand the
 681 // stack mapping.
 682 //
 683 // _expand_stack_to() assumes its frame size is less than page size, which
 684 // should always be true if the function is not inlined.
 685 
 686 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 687 #define NOINLINE
 688 #else
 689 #define NOINLINE __attribute__ ((noinline))
 690 #endif
 691 
 692 static void _expand_stack_to(address bottom) NOINLINE;
 693 
 694 static void _expand_stack_to(address bottom) {
 695   address sp;
 696   size_t size;
 697   volatile char *p;
 698 
 699   // Adjust bottom to point to the largest address within the same page, it
 700   // gives us a one-page buffer if alloca() allocates slightly more memory.
 701   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 702   bottom += os::Linux::page_size() - 1;
 703 
 704   // sp might be slightly above current stack pointer; if that's the case, we
 705   // will alloca() a little more space than necessary, which is OK. Don't use
 706   // os::current_stack_pointer(), as its result can be slightly below current
 707   // stack pointer, causing us to not alloca enough to reach "bottom".
 708   sp = (address)&sp;
 709 
 710   if (sp > bottom) {
 711     size = sp - bottom;
 712     p = (volatile char *)alloca(size);
 713     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 714     p[0] = '\0';
 715   }
 716 }
 717 
 718 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 719   assert(t!=NULL, "just checking");
 720   assert(t->osthread()->expanding_stack(), "expand should be set");
 721   assert(t->stack_base() != NULL, "stack_base was not initialized");
 722 
 723   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 724     sigset_t mask_all, old_sigset;
 725     sigfillset(&mask_all);
 726     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 727     _expand_stack_to(addr);
 728     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 729     return true;
 730   }
 731   return false;
 732 }
 733 
 734 //////////////////////////////////////////////////////////////////////////////
 735 // create new thread
 736 
 737 static address highest_vm_reserved_address();
 738 
 739 // check if it's safe to start a new thread
 740 static bool _thread_safety_check(Thread* thread) {
 741   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 742     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 743     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 744     //   allocated (MAP_FIXED) from high address space. Every thread stack
 745     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 746     //   it to other values if they rebuild LinuxThreads).
 747     //
 748     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 749     // the memory region has already been mmap'ed. That means if we have too
 750     // many threads and/or very large heap, eventually thread stack will
 751     // collide with heap.
 752     //
 753     // Here we try to prevent heap/stack collision by comparing current
 754     // stack bottom with the highest address that has been mmap'ed by JVM
 755     // plus a safety margin for memory maps created by native code.
 756     //
 757     // This feature can be disabled by setting ThreadSafetyMargin to 0
 758     //
 759     if (ThreadSafetyMargin > 0) {
 760       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 761 
 762       // not safe if our stack extends below the safety margin
 763       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 764     } else {
 765       return true;
 766     }
 767   } else {
 768     // Floating stack LinuxThreads or NPTL:
 769     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 770     //   there's not enough space left, pthread_create() will fail. If we come
 771     //   here, that means enough space has been reserved for stack.
 772     return true;
 773   }
 774 }
 775 
 776 // Thread start routine for all newly created threads
 777 static void *java_start(Thread *thread) {
 778   // Try to randomize the cache line index of hot stack frames.
 779   // This helps when threads of the same stack traces evict each other's
 780   // cache lines. The threads can be either from the same JVM instance, or
 781   // from different JVM instances. The benefit is especially true for
 782   // processors with hyperthreading technology.
 783   static int counter = 0;
 784   int pid = os::current_process_id();
 785   alloca(((pid ^ counter++) & 7) * 128);
 786 
 787   ThreadLocalStorage::set_thread(thread);
 788 
 789   OSThread* osthread = thread->osthread();
 790   Monitor* sync = osthread->startThread_lock();
 791 
 792   // non floating stack LinuxThreads needs extra check, see above
 793   if (!_thread_safety_check(thread)) {
 794     // notify parent thread
 795     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 796     osthread->set_state(ZOMBIE);
 797     sync->notify_all();
 798     return NULL;
 799   }
 800 
 801   // thread_id is kernel thread id (similar to Solaris LWP id)
 802   osthread->set_thread_id(os::Linux::gettid());
 803 
 804   if (UseNUMA) {
 805     int lgrp_id = os::numa_get_group_id();
 806     if (lgrp_id != -1) {
 807       thread->set_lgrp_id(lgrp_id);
 808     }
 809   }
 810   // initialize signal mask for this thread
 811   os::Linux::hotspot_sigmask(thread);
 812 
 813   // initialize floating point control register
 814   os::Linux::init_thread_fpu_state();
 815 
 816   // handshaking with parent thread
 817   {
 818     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 819 
 820     // notify parent thread
 821     osthread->set_state(INITIALIZED);
 822     sync->notify_all();
 823 
 824     // wait until os::start_thread()
 825     while (osthread->get_state() == INITIALIZED) {
 826       sync->wait(Mutex::_no_safepoint_check_flag);
 827     }
 828   }
 829 
 830   // call one more level start routine
 831   thread->run();
 832 
 833   return 0;
 834 }
 835 
 836 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 837   assert(thread->osthread() == NULL, "caller responsible");
 838 
 839   // Allocate the OSThread object
 840   OSThread* osthread = new OSThread(NULL, NULL);
 841   if (osthread == NULL) {
 842     return false;
 843   }
 844 
 845   // set the correct thread state
 846   osthread->set_thread_type(thr_type);
 847 
 848   // Initial state is ALLOCATED but not INITIALIZED
 849   osthread->set_state(ALLOCATED);
 850 
 851   thread->set_osthread(osthread);
 852 
 853   // init thread attributes
 854   pthread_attr_t attr;
 855   pthread_attr_init(&attr);
 856   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 857 
 858   // stack size
 859   if (os::Linux::supports_variable_stack_size()) {
 860     // calculate stack size if it's not specified by caller
 861     if (stack_size == 0) {
 862       stack_size = os::Linux::default_stack_size(thr_type);
 863 
 864       switch (thr_type) {
 865       case os::java_thread:
 866         // Java threads use ThreadStackSize which default value can be
 867         // changed with the flag -Xss
 868         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 869         stack_size = JavaThread::stack_size_at_create();
 870         break;
 871       case os::compiler_thread:
 872         if (CompilerThreadStackSize > 0) {
 873           stack_size = (size_t)(CompilerThreadStackSize * K);
 874           break;
 875         } // else fall through:
 876           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 877       case os::vm_thread:
 878       case os::pgc_thread:
 879       case os::cgc_thread:
 880       case os::watcher_thread:
 881         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 882         break;
 883       }
 884     }
 885 
 886     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 887     pthread_attr_setstacksize(&attr, stack_size);
 888   } else {
 889     // let pthread_create() pick the default value.
 890   }
 891 
 892   // glibc guard page
 893   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 894 
 895   ThreadState state;
 896 
 897   {
 898     // Serialize thread creation if we are running with fixed stack LinuxThreads
 899     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 900     if (lock) {
 901       os::Linux::createThread_lock()->lock_without_safepoint_check();
 902     }
 903 
 904     pthread_t tid;
 905     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 906 
 907     pthread_attr_destroy(&attr);
 908 
 909     if (ret != 0) {
 910       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 911         perror("pthread_create()");
 912       }
 913       // Need to clean up stuff we've allocated so far
 914       thread->set_osthread(NULL);
 915       delete osthread;
 916       if (lock) os::Linux::createThread_lock()->unlock();
 917       return false;
 918     }
 919 
 920     // Store pthread info into the OSThread
 921     osthread->set_pthread_id(tid);
 922 
 923     // Wait until child thread is either initialized or aborted
 924     {
 925       Monitor* sync_with_child = osthread->startThread_lock();
 926       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 927       while ((state = osthread->get_state()) == ALLOCATED) {
 928         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 929       }
 930     }
 931 
 932     if (lock) {
 933       os::Linux::createThread_lock()->unlock();
 934     }
 935   }
 936 
 937   // Aborted due to thread limit being reached
 938   if (state == ZOMBIE) {
 939       thread->set_osthread(NULL);
 940       delete osthread;
 941       return false;
 942   }
 943 
 944   // The thread is returned suspended (in state INITIALIZED),
 945   // and is started higher up in the call chain
 946   assert(state == INITIALIZED, "race condition");
 947   return true;
 948 }
 949 
 950 /////////////////////////////////////////////////////////////////////////////
 951 // attach existing thread
 952 
 953 // bootstrap the main thread
 954 bool os::create_main_thread(JavaThread* thread) {
 955   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 956   return create_attached_thread(thread);
 957 }
 958 
 959 bool os::create_attached_thread(JavaThread* thread) {
 960 #ifdef ASSERT
 961     thread->verify_not_published();
 962 #endif
 963 
 964   // Allocate the OSThread object
 965   OSThread* osthread = new OSThread(NULL, NULL);
 966 
 967   if (osthread == NULL) {
 968     return false;
 969   }
 970 
 971   // Store pthread info into the OSThread
 972   osthread->set_thread_id(os::Linux::gettid());
 973   osthread->set_pthread_id(::pthread_self());
 974 
 975   // initialize floating point control register
 976   os::Linux::init_thread_fpu_state();
 977 
 978   // Initial thread state is RUNNABLE
 979   osthread->set_state(RUNNABLE);
 980 
 981   thread->set_osthread(osthread);
 982 
 983   if (UseNUMA) {
 984     int lgrp_id = os::numa_get_group_id();
 985     if (lgrp_id != -1) {
 986       thread->set_lgrp_id(lgrp_id);
 987     }
 988   }
 989 
 990   if (os::Linux::is_initial_thread()) {
 991     // If current thread is initial thread, its stack is mapped on demand,
 992     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 993     // the entire stack region to avoid SEGV in stack banging.
 994     // It is also useful to get around the heap-stack-gap problem on SuSE
 995     // kernel (see 4821821 for details). We first expand stack to the top
 996     // of yellow zone, then enable stack yellow zone (order is significant,
 997     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 998     // is no gap between the last two virtual memory regions.
 999 
1000     JavaThread *jt = (JavaThread *)thread;
1001     address addr = jt->stack_yellow_zone_base();
1002     assert(addr != NULL, "initialization problem?");
1003     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1004 
1005     osthread->set_expanding_stack();
1006     os::Linux::manually_expand_stack(jt, addr);
1007     osthread->clear_expanding_stack();
1008   }
1009 
1010   // initialize signal mask for this thread
1011   // and save the caller's signal mask
1012   os::Linux::hotspot_sigmask(thread);
1013 
1014   return true;
1015 }
1016 
1017 void os::pd_start_thread(Thread* thread) {
1018   OSThread * osthread = thread->osthread();
1019   assert(osthread->get_state() != INITIALIZED, "just checking");
1020   Monitor* sync_with_child = osthread->startThread_lock();
1021   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1022   sync_with_child->notify();
1023 }
1024 
1025 // Free Linux resources related to the OSThread
1026 void os::free_thread(OSThread* osthread) {
1027   assert(osthread != NULL, "osthread not set");
1028 
1029   if (Thread::current()->osthread() == osthread) {
1030     // Restore caller's signal mask
1031     sigset_t sigmask = osthread->caller_sigmask();
1032     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1033    }
1034 
1035   delete osthread;
1036 }
1037 
1038 //////////////////////////////////////////////////////////////////////////////
1039 // thread local storage
1040 
1041 int os::allocate_thread_local_storage() {
1042   pthread_key_t key;
1043   int rslt = pthread_key_create(&key, NULL);
1044   assert(rslt == 0, "cannot allocate thread local storage");
1045   return (int)key;
1046 }
1047 
1048 // Note: This is currently not used by VM, as we don't destroy TLS key
1049 // on VM exit.
1050 void os::free_thread_local_storage(int index) {
1051   int rslt = pthread_key_delete((pthread_key_t)index);
1052   assert(rslt == 0, "invalid index");
1053 }
1054 
1055 void os::thread_local_storage_at_put(int index, void* value) {
1056   int rslt = pthread_setspecific((pthread_key_t)index, value);
1057   assert(rslt == 0, "pthread_setspecific failed");
1058 }
1059 
1060 extern "C" Thread* get_thread() {
1061   return ThreadLocalStorage::thread();
1062 }
1063 
1064 //////////////////////////////////////////////////////////////////////////////
1065 // initial thread
1066 
1067 // Check if current thread is the initial thread, similar to Solaris thr_main.
1068 bool os::Linux::is_initial_thread(void) {
1069   char dummy;
1070   // If called before init complete, thread stack bottom will be null.
1071   // Can be called if fatal error occurs before initialization.
1072   if (initial_thread_stack_bottom() == NULL) return false;
1073   assert(initial_thread_stack_bottom() != NULL &&
1074          initial_thread_stack_size()   != 0,
1075          "os::init did not locate initial thread's stack region");
1076   if ((address)&dummy >= initial_thread_stack_bottom() &&
1077       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1078        return true;
1079   else return false;
1080 }
1081 
1082 // Find the virtual memory area that contains addr
1083 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1084   FILE *fp = fopen("/proc/self/maps", "r");
1085   if (fp) {
1086     address low, high;
1087     while (!feof(fp)) {
1088       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1089         if (low <= addr && addr < high) {
1090            if (vma_low)  *vma_low  = low;
1091            if (vma_high) *vma_high = high;
1092            fclose (fp);
1093            return true;
1094         }
1095       }
1096       for (;;) {
1097         int ch = fgetc(fp);
1098         if (ch == EOF || ch == (int)'\n') break;
1099       }
1100     }
1101     fclose(fp);
1102   }
1103   return false;
1104 }
1105 
1106 // Locate initial thread stack. This special handling of initial thread stack
1107 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1108 // bogus value for initial thread.
1109 void os::Linux::capture_initial_stack(size_t max_size) {
1110   // stack size is the easy part, get it from RLIMIT_STACK
1111   size_t stack_size;
1112   struct rlimit rlim;
1113   getrlimit(RLIMIT_STACK, &rlim);
1114   stack_size = rlim.rlim_cur;
1115 
1116   // 6308388: a bug in ld.so will relocate its own .data section to the
1117   //   lower end of primordial stack; reduce ulimit -s value a little bit
1118   //   so we won't install guard page on ld.so's data section.
1119   stack_size -= 2 * page_size();
1120 
1121   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1122   //   7.1, in both cases we will get 2G in return value.
1123   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1124   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1125   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1126   //   in case other parts in glibc still assumes 2M max stack size.
1127   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1128   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1129   if (stack_size > 2 * K * K IA64_ONLY(*2))
1130       stack_size = 2 * K * K IA64_ONLY(*2);
1131   // Try to figure out where the stack base (top) is. This is harder.
1132   //
1133   // When an application is started, glibc saves the initial stack pointer in
1134   // a global variable "__libc_stack_end", which is then used by system
1135   // libraries. __libc_stack_end should be pretty close to stack top. The
1136   // variable is available since the very early days. However, because it is
1137   // a private interface, it could disappear in the future.
1138   //
1139   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1140   // to __libc_stack_end, it is very close to stack top, but isn't the real
1141   // stack top. Note that /proc may not exist if VM is running as a chroot
1142   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1143   // /proc/<pid>/stat could change in the future (though unlikely).
1144   //
1145   // We try __libc_stack_end first. If that doesn't work, look for
1146   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1147   // as a hint, which should work well in most cases.
1148 
1149   uintptr_t stack_start;
1150 
1151   // try __libc_stack_end first
1152   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1153   if (p && *p) {
1154     stack_start = *p;
1155   } else {
1156     // see if we can get the start_stack field from /proc/self/stat
1157     FILE *fp;
1158     int pid;
1159     char state;
1160     int ppid;
1161     int pgrp;
1162     int session;
1163     int nr;
1164     int tpgrp;
1165     unsigned long flags;
1166     unsigned long minflt;
1167     unsigned long cminflt;
1168     unsigned long majflt;
1169     unsigned long cmajflt;
1170     unsigned long utime;
1171     unsigned long stime;
1172     long cutime;
1173     long cstime;
1174     long prio;
1175     long nice;
1176     long junk;
1177     long it_real;
1178     uintptr_t start;
1179     uintptr_t vsize;
1180     intptr_t rss;
1181     uintptr_t rsslim;
1182     uintptr_t scodes;
1183     uintptr_t ecode;
1184     int i;
1185 
1186     // Figure what the primordial thread stack base is. Code is inspired
1187     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1188     // followed by command name surrounded by parentheses, state, etc.
1189     char stat[2048];
1190     int statlen;
1191 
1192     fp = fopen("/proc/self/stat", "r");
1193     if (fp) {
1194       statlen = fread(stat, 1, 2047, fp);
1195       stat[statlen] = '\0';
1196       fclose(fp);
1197 
1198       // Skip pid and the command string. Note that we could be dealing with
1199       // weird command names, e.g. user could decide to rename java launcher
1200       // to "java 1.4.2 :)", then the stat file would look like
1201       //                1234 (java 1.4.2 :)) R ... ...
1202       // We don't really need to know the command string, just find the last
1203       // occurrence of ")" and then start parsing from there. See bug 4726580.
1204       char * s = strrchr(stat, ')');
1205 
1206       i = 0;
1207       if (s) {
1208         // Skip blank chars
1209         do s++; while (isspace(*s));
1210 
1211 #define _UFM UINTX_FORMAT
1212 #define _DFM INTX_FORMAT
1213 
1214         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1215         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1216         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1217              &state,          /* 3  %c  */
1218              &ppid,           /* 4  %d  */
1219              &pgrp,           /* 5  %d  */
1220              &session,        /* 6  %d  */
1221              &nr,             /* 7  %d  */
1222              &tpgrp,          /* 8  %d  */
1223              &flags,          /* 9  %lu  */
1224              &minflt,         /* 10 %lu  */
1225              &cminflt,        /* 11 %lu  */
1226              &majflt,         /* 12 %lu  */
1227              &cmajflt,        /* 13 %lu  */
1228              &utime,          /* 14 %lu  */
1229              &stime,          /* 15 %lu  */
1230              &cutime,         /* 16 %ld  */
1231              &cstime,         /* 17 %ld  */
1232              &prio,           /* 18 %ld  */
1233              &nice,           /* 19 %ld  */
1234              &junk,           /* 20 %ld  */
1235              &it_real,        /* 21 %ld  */
1236              &start,          /* 22 UINTX_FORMAT */
1237              &vsize,          /* 23 UINTX_FORMAT */
1238              &rss,            /* 24 INTX_FORMAT  */
1239              &rsslim,         /* 25 UINTX_FORMAT */
1240              &scodes,         /* 26 UINTX_FORMAT */
1241              &ecode,          /* 27 UINTX_FORMAT */
1242              &stack_start);   /* 28 UINTX_FORMAT */
1243       }
1244 
1245 #undef _UFM
1246 #undef _DFM
1247 
1248       if (i != 28 - 2) {
1249          assert(false, "Bad conversion from /proc/self/stat");
1250          // product mode - assume we are the initial thread, good luck in the
1251          // embedded case.
1252          warning("Can't detect initial thread stack location - bad conversion");
1253          stack_start = (uintptr_t) &rlim;
1254       }
1255     } else {
1256       // For some reason we can't open /proc/self/stat (for example, running on
1257       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1258       // most cases, so don't abort:
1259       warning("Can't detect initial thread stack location - no /proc/self/stat");
1260       stack_start = (uintptr_t) &rlim;
1261     }
1262   }
1263 
1264   // Now we have a pointer (stack_start) very close to the stack top, the
1265   // next thing to do is to figure out the exact location of stack top. We
1266   // can find out the virtual memory area that contains stack_start by
1267   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1268   // and its upper limit is the real stack top. (again, this would fail if
1269   // running inside chroot, because /proc may not exist.)
1270 
1271   uintptr_t stack_top;
1272   address low, high;
1273   if (find_vma((address)stack_start, &low, &high)) {
1274     // success, "high" is the true stack top. (ignore "low", because initial
1275     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1276     stack_top = (uintptr_t)high;
1277   } else {
1278     // failed, likely because /proc/self/maps does not exist
1279     warning("Can't detect initial thread stack location - find_vma failed");
1280     // best effort: stack_start is normally within a few pages below the real
1281     // stack top, use it as stack top, and reduce stack size so we won't put
1282     // guard page outside stack.
1283     stack_top = stack_start;
1284     stack_size -= 16 * page_size();
1285   }
1286 
1287   // stack_top could be partially down the page so align it
1288   stack_top = align_size_up(stack_top, page_size());
1289 
1290   if (max_size && stack_size > max_size) {
1291      _initial_thread_stack_size = max_size;
1292   } else {
1293      _initial_thread_stack_size = stack_size;
1294   }
1295 
1296   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1297   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1298 }
1299 
1300 ////////////////////////////////////////////////////////////////////////////////
1301 // time support
1302 
1303 // Time since start-up in seconds to a fine granularity.
1304 // Used by VMSelfDestructTimer and the MemProfiler.
1305 double os::elapsedTime() {
1306 
1307   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1308 }
1309 
1310 jlong os::elapsed_counter() {
1311   return javaTimeNanos() - initial_time_count;
1312 }
1313 
1314 jlong os::elapsed_frequency() {
1315   return NANOSECS_PER_SEC; // nanosecond resolution
1316 }
1317 
1318 bool os::supports_vtime() { return true; }
1319 bool os::enable_vtime()   { return false; }
1320 bool os::vtime_enabled()  { return false; }
1321 
1322 double os::elapsedVTime() {
1323   struct rusage usage;
1324   int retval = getrusage(RUSAGE_THREAD, &usage);
1325   if (retval == 0) {
1326     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1327   } else {
1328     // better than nothing, but not much
1329     return elapsedTime();
1330   }
1331 }
1332 
1333 jlong os::javaTimeMillis() {
1334   timeval time;
1335   int status = gettimeofday(&time, NULL);
1336   assert(status != -1, "linux error");
1337   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1338 }
1339 
1340 #ifndef CLOCK_MONOTONIC
1341 #define CLOCK_MONOTONIC (1)
1342 #endif
1343 
1344 void os::Linux::clock_init() {
1345   // we do dlopen's in this particular order due to bug in linux
1346   // dynamical loader (see 6348968) leading to crash on exit
1347   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1348   if (handle == NULL) {
1349     handle = dlopen("librt.so", RTLD_LAZY);
1350   }
1351 
1352   if (handle) {
1353     int (*clock_getres_func)(clockid_t, struct timespec*) =
1354            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1355     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1356            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1357     if (clock_getres_func && clock_gettime_func) {
1358       // See if monotonic clock is supported by the kernel. Note that some
1359       // early implementations simply return kernel jiffies (updated every
1360       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1361       // for nano time (though the monotonic property is still nice to have).
1362       // It's fixed in newer kernels, however clock_getres() still returns
1363       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1364       // resolution for now. Hopefully as people move to new kernels, this
1365       // won't be a problem.
1366       struct timespec res;
1367       struct timespec tp;
1368       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1369           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1370         // yes, monotonic clock is supported
1371         _clock_gettime = clock_gettime_func;
1372         return;
1373       } else {
1374         // close librt if there is no monotonic clock
1375         dlclose(handle);
1376       }
1377     }
1378   }
1379   warning("No monotonic clock was available - timed services may " \
1380           "be adversely affected if the time-of-day clock changes");
1381 }
1382 
1383 #ifndef SYS_clock_getres
1384 
1385 #if defined(IA32) || defined(AMD64)
1386 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1387 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1388 #else
1389 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1390 #define sys_clock_getres(x,y)  -1
1391 #endif
1392 
1393 #else
1394 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1395 #endif
1396 
1397 void os::Linux::fast_thread_clock_init() {
1398   if (!UseLinuxPosixThreadCPUClocks) {
1399     return;
1400   }
1401   clockid_t clockid;
1402   struct timespec tp;
1403   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1404       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1405 
1406   // Switch to using fast clocks for thread cpu time if
1407   // the sys_clock_getres() returns 0 error code.
1408   // Note, that some kernels may support the current thread
1409   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1410   // returned by the pthread_getcpuclockid().
1411   // If the fast Posix clocks are supported then the sys_clock_getres()
1412   // must return at least tp.tv_sec == 0 which means a resolution
1413   // better than 1 sec. This is extra check for reliability.
1414 
1415   if(pthread_getcpuclockid_func &&
1416      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1417      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1418 
1419     _supports_fast_thread_cpu_time = true;
1420     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1421   }
1422 }
1423 
1424 jlong os::javaTimeNanos() {
1425   if (os::supports_monotonic_clock()) {
1426     struct timespec tp;
1427     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1428     assert(status == 0, "gettime error");
1429     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1430     return result;
1431   } else {
1432     timeval time;
1433     int status = gettimeofday(&time, NULL);
1434     assert(status != -1, "linux error");
1435     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1436     return 1000 * usecs;
1437   }
1438 }
1439 
1440 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1441   if (os::supports_monotonic_clock()) {
1442     info_ptr->max_value = ALL_64_BITS;
1443 
1444     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1445     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1446     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1447   } else {
1448     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1449     info_ptr->max_value = ALL_64_BITS;
1450 
1451     // gettimeofday is a real time clock so it skips
1452     info_ptr->may_skip_backward = true;
1453     info_ptr->may_skip_forward = true;
1454   }
1455 
1456   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1457 }
1458 
1459 // Return the real, user, and system times in seconds from an
1460 // arbitrary fixed point in the past.
1461 bool os::getTimesSecs(double* process_real_time,
1462                       double* process_user_time,
1463                       double* process_system_time) {
1464   struct tms ticks;
1465   clock_t real_ticks = times(&ticks);
1466 
1467   if (real_ticks == (clock_t) (-1)) {
1468     return false;
1469   } else {
1470     double ticks_per_second = (double) clock_tics_per_sec;
1471     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1472     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1473     *process_real_time = ((double) real_ticks) / ticks_per_second;
1474 
1475     return true;
1476   }
1477 }
1478 
1479 
1480 char * os::local_time_string(char *buf, size_t buflen) {
1481   struct tm t;
1482   time_t long_time;
1483   time(&long_time);
1484   localtime_r(&long_time, &t);
1485   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1486                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1487                t.tm_hour, t.tm_min, t.tm_sec);
1488   return buf;
1489 }
1490 
1491 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1492   return localtime_r(clock, res);
1493 }
1494 
1495 ////////////////////////////////////////////////////////////////////////////////
1496 // runtime exit support
1497 
1498 // Note: os::shutdown() might be called very early during initialization, or
1499 // called from signal handler. Before adding something to os::shutdown(), make
1500 // sure it is async-safe and can handle partially initialized VM.
1501 void os::shutdown() {
1502 
1503   // allow PerfMemory to attempt cleanup of any persistent resources
1504   perfMemory_exit();
1505 
1506   // needs to remove object in file system
1507   AttachListener::abort();
1508 
1509   // flush buffered output, finish log files
1510   ostream_abort();
1511 
1512   // Check for abort hook
1513   abort_hook_t abort_hook = Arguments::abort_hook();
1514   if (abort_hook != NULL) {
1515     abort_hook();
1516   }
1517 
1518 }
1519 
1520 // Note: os::abort() might be called very early during initialization, or
1521 // called from signal handler. Before adding something to os::abort(), make
1522 // sure it is async-safe and can handle partially initialized VM.
1523 void os::abort(bool dump_core) {
1524   os::shutdown();
1525   if (dump_core) {
1526 #ifndef PRODUCT
1527     fdStream out(defaultStream::output_fd());
1528     out.print_raw("Current thread is ");
1529     char buf[16];
1530     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1531     out.print_raw_cr(buf);
1532     out.print_raw_cr("Dumping core ...");
1533 #endif
1534     ::abort(); // dump core
1535   }
1536 
1537   ::exit(1);
1538 }
1539 
1540 // Die immediately, no exit hook, no abort hook, no cleanup.
1541 void os::die() {
1542   // _exit() on LinuxThreads only kills current thread
1543   ::abort();
1544 }
1545 
1546 // unused on linux for now.
1547 void os::set_error_file(const char *logfile) {}
1548 
1549 
1550 // This method is a copy of JDK's sysGetLastErrorString
1551 // from src/solaris/hpi/src/system_md.c
1552 
1553 size_t os::lasterror(char *buf, size_t len) {
1554 
1555   if (errno == 0)  return 0;
1556 
1557   const char *s = ::strerror(errno);
1558   size_t n = ::strlen(s);
1559   if (n >= len) {
1560     n = len - 1;
1561   }
1562   ::strncpy(buf, s, n);
1563   buf[n] = '\0';
1564   return n;
1565 }
1566 
1567 intx os::current_thread_id() { return (intx)pthread_self(); }
1568 int os::current_process_id() {
1569 
1570   // Under the old linux thread library, linux gives each thread
1571   // its own process id. Because of this each thread will return
1572   // a different pid if this method were to return the result
1573   // of getpid(2). Linux provides no api that returns the pid
1574   // of the launcher thread for the vm. This implementation
1575   // returns a unique pid, the pid of the launcher thread
1576   // that starts the vm 'process'.
1577 
1578   // Under the NPTL, getpid() returns the same pid as the
1579   // launcher thread rather than a unique pid per thread.
1580   // Use gettid() if you want the old pre NPTL behaviour.
1581 
1582   // if you are looking for the result of a call to getpid() that
1583   // returns a unique pid for the calling thread, then look at the
1584   // OSThread::thread_id() method in osThread_linux.hpp file
1585 
1586   return (int)(_initial_pid ? _initial_pid : getpid());
1587 }
1588 
1589 // DLL functions
1590 
1591 const char* os::dll_file_extension() { return ".so"; }
1592 
1593 // This must be hard coded because it's the system's temporary
1594 // directory not the java application's temp directory, ala java.io.tmpdir.
1595 const char* os::get_temp_directory() { return "/tmp"; }
1596 
1597 static bool file_exists(const char* filename) {
1598   struct stat statbuf;
1599   if (filename == NULL || strlen(filename) == 0) {
1600     return false;
1601   }
1602   return os::stat(filename, &statbuf) == 0;
1603 }
1604 
1605 bool os::dll_build_name(char* buffer, size_t buflen,
1606                         const char* pname, const char* fname) {
1607   bool retval = false;
1608   // Copied from libhpi
1609   const size_t pnamelen = pname ? strlen(pname) : 0;
1610 
1611   // Return error on buffer overflow.
1612   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1613     return retval;
1614   }
1615 
1616   if (pnamelen == 0) {
1617     snprintf(buffer, buflen, "lib%s.so", fname);
1618     retval = true;
1619   } else if (strchr(pname, *os::path_separator()) != NULL) {
1620     int n;
1621     char** pelements = split_path(pname, &n);
1622     if (pelements == NULL) {
1623       return false;
1624     }
1625     for (int i = 0 ; i < n ; i++) {
1626       // Really shouldn't be NULL, but check can't hurt
1627       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1628         continue; // skip the empty path values
1629       }
1630       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1631       if (file_exists(buffer)) {
1632         retval = true;
1633         break;
1634       }
1635     }
1636     // release the storage
1637     for (int i = 0 ; i < n ; i++) {
1638       if (pelements[i] != NULL) {
1639         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1640       }
1641     }
1642     if (pelements != NULL) {
1643       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1644     }
1645   } else {
1646     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1647     retval = true;
1648   }
1649   return retval;
1650 }
1651 
1652 // check if addr is inside libjvm.so
1653 bool os::address_is_in_vm(address addr) {
1654   static address libjvm_base_addr;
1655   Dl_info dlinfo;
1656 
1657   if (libjvm_base_addr == NULL) {
1658     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1659       libjvm_base_addr = (address)dlinfo.dli_fbase;
1660     }
1661     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1662   }
1663 
1664   if (dladdr((void *)addr, &dlinfo) != 0) {
1665     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1666   }
1667 
1668   return false;
1669 }
1670 
1671 bool os::dll_address_to_function_name(address addr, char *buf,
1672                                       int buflen, int *offset) {
1673   // buf is not optional, but offset is optional
1674   assert(buf != NULL, "sanity check");
1675 
1676   Dl_info dlinfo;
1677 
1678   if (dladdr((void*)addr, &dlinfo) != 0) {
1679     // see if we have a matching symbol
1680     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1681       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1682         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1683       }
1684       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1685       return true;
1686     }
1687     // no matching symbol so try for just file info
1688     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1689       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1690                           buf, buflen, offset, dlinfo.dli_fname)) {
1691         return true;
1692       }
1693     }
1694   }
1695 
1696   buf[0] = '\0';
1697   if (offset != NULL) *offset = -1;
1698   return false;
1699 }
1700 
1701 struct _address_to_library_name {
1702   address addr;          // input : memory address
1703   size_t  buflen;        //         size of fname
1704   char*   fname;         // output: library name
1705   address base;          //         library base addr
1706 };
1707 
1708 static int address_to_library_name_callback(struct dl_phdr_info *info,
1709                                             size_t size, void *data) {
1710   int i;
1711   bool found = false;
1712   address libbase = NULL;
1713   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1714 
1715   // iterate through all loadable segments
1716   for (i = 0; i < info->dlpi_phnum; i++) {
1717     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1718     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1719       // base address of a library is the lowest address of its loaded
1720       // segments.
1721       if (libbase == NULL || libbase > segbase) {
1722         libbase = segbase;
1723       }
1724       // see if 'addr' is within current segment
1725       if (segbase <= d->addr &&
1726           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1727         found = true;
1728       }
1729     }
1730   }
1731 
1732   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1733   // so dll_address_to_library_name() can fall through to use dladdr() which
1734   // can figure out executable name from argv[0].
1735   if (found && info->dlpi_name && info->dlpi_name[0]) {
1736     d->base = libbase;
1737     if (d->fname) {
1738       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1739     }
1740     return 1;
1741   }
1742   return 0;
1743 }
1744 
1745 bool os::dll_address_to_library_name(address addr, char* buf,
1746                                      int buflen, int* offset) {
1747   // buf is not optional, but offset is optional
1748   assert(buf != NULL, "sanity check");
1749 
1750   Dl_info dlinfo;
1751   struct _address_to_library_name data;
1752 
1753   // There is a bug in old glibc dladdr() implementation that it could resolve
1754   // to wrong library name if the .so file has a base address != NULL. Here
1755   // we iterate through the program headers of all loaded libraries to find
1756   // out which library 'addr' really belongs to. This workaround can be
1757   // removed once the minimum requirement for glibc is moved to 2.3.x.
1758   data.addr = addr;
1759   data.fname = buf;
1760   data.buflen = buflen;
1761   data.base = NULL;
1762   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1763 
1764   if (rslt) {
1765      // buf already contains library name
1766      if (offset) *offset = addr - data.base;
1767      return true;
1768   }
1769   if (dladdr((void*)addr, &dlinfo) != 0) {
1770     if (dlinfo.dli_fname != NULL) {
1771       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1772     }
1773     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1774       *offset = addr - (address)dlinfo.dli_fbase;
1775     }
1776     return true;
1777   }
1778 
1779   buf[0] = '\0';
1780   if (offset) *offset = -1;
1781   return false;
1782 }
1783 
1784   // Loads .dll/.so and
1785   // in case of error it checks if .dll/.so was built for the
1786   // same architecture as Hotspot is running on
1787 
1788 
1789 // Remember the stack's state. The Linux dynamic linker will change
1790 // the stack to 'executable' at most once, so we must safepoint only once.
1791 bool os::Linux::_stack_is_executable = false;
1792 
1793 // VM operation that loads a library.  This is necessary if stack protection
1794 // of the Java stacks can be lost during loading the library.  If we
1795 // do not stop the Java threads, they can stack overflow before the stacks
1796 // are protected again.
1797 class VM_LinuxDllLoad: public VM_Operation {
1798  private:
1799   const char *_filename;
1800   char *_ebuf;
1801   int _ebuflen;
1802   void *_lib;
1803  public:
1804   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1805     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1806   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1807   void doit() {
1808     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1809     os::Linux::_stack_is_executable = true;
1810   }
1811   void* loaded_library() { return _lib; }
1812 };
1813 
1814 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1815 {
1816   void * result = NULL;
1817   bool load_attempted = false;
1818 
1819   // Check whether the library to load might change execution rights
1820   // of the stack. If they are changed, the protection of the stack
1821   // guard pages will be lost. We need a safepoint to fix this.
1822   //
1823   // See Linux man page execstack(8) for more info.
1824   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1825     ElfFile ef(filename);
1826     if (!ef.specifies_noexecstack()) {
1827       if (!is_init_completed()) {
1828         os::Linux::_stack_is_executable = true;
1829         // This is OK - No Java threads have been created yet, and hence no
1830         // stack guard pages to fix.
1831         //
1832         // This should happen only when you are building JDK7 using a very
1833         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1834         //
1835         // Dynamic loader will make all stacks executable after
1836         // this function returns, and will not do that again.
1837         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1838       } else {
1839         warning("You have loaded library %s which might have disabled stack guard. "
1840                 "The VM will try to fix the stack guard now.\n"
1841                 "It's highly recommended that you fix the library with "
1842                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1843                 filename);
1844 
1845         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1846         JavaThread *jt = JavaThread::current();
1847         if (jt->thread_state() != _thread_in_native) {
1848           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1849           // that requires ExecStack. Cannot enter safe point. Let's give up.
1850           warning("Unable to fix stack guard. Giving up.");
1851         } else {
1852           if (!LoadExecStackDllInVMThread) {
1853             // This is for the case where the DLL has an static
1854             // constructor function that executes JNI code. We cannot
1855             // load such DLLs in the VMThread.
1856             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1857           }
1858 
1859           ThreadInVMfromNative tiv(jt);
1860           debug_only(VMNativeEntryWrapper vew;)
1861 
1862           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1863           VMThread::execute(&op);
1864           if (LoadExecStackDllInVMThread) {
1865             result = op.loaded_library();
1866           }
1867           load_attempted = true;
1868         }
1869       }
1870     }
1871   }
1872 
1873   if (!load_attempted) {
1874     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1875   }
1876 
1877   if (result != NULL) {
1878     // Successful loading
1879     return result;
1880   }
1881 
1882   Elf32_Ehdr elf_head;
1883   int diag_msg_max_length=ebuflen-strlen(ebuf);
1884   char* diag_msg_buf=ebuf+strlen(ebuf);
1885 
1886   if (diag_msg_max_length==0) {
1887     // No more space in ebuf for additional diagnostics message
1888     return NULL;
1889   }
1890 
1891 
1892   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1893 
1894   if (file_descriptor < 0) {
1895     // Can't open library, report dlerror() message
1896     return NULL;
1897   }
1898 
1899   bool failed_to_read_elf_head=
1900     (sizeof(elf_head)!=
1901         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1902 
1903   ::close(file_descriptor);
1904   if (failed_to_read_elf_head) {
1905     // file i/o error - report dlerror() msg
1906     return NULL;
1907   }
1908 
1909   typedef struct {
1910     Elf32_Half  code;         // Actual value as defined in elf.h
1911     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1912     char        elf_class;    // 32 or 64 bit
1913     char        endianess;    // MSB or LSB
1914     char*       name;         // String representation
1915   } arch_t;
1916 
1917   #ifndef EM_486
1918   #define EM_486          6               /* Intel 80486 */
1919   #endif
1920 
1921   static const arch_t arch_array[]={
1922     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1923     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1924     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1925     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1926     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1927     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1928     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1929     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1930     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1931     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1932     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1933     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1934     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1935     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1936     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1937     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1938   };
1939 
1940   #if  (defined IA32)
1941     static  Elf32_Half running_arch_code=EM_386;
1942   #elif   (defined AMD64)
1943     static  Elf32_Half running_arch_code=EM_X86_64;
1944   #elif  (defined IA64)
1945     static  Elf32_Half running_arch_code=EM_IA_64;
1946   #elif  (defined __sparc) && (defined _LP64)
1947     static  Elf32_Half running_arch_code=EM_SPARCV9;
1948   #elif  (defined __sparc) && (!defined _LP64)
1949     static  Elf32_Half running_arch_code=EM_SPARC;
1950   #elif  (defined __powerpc64__)
1951     static  Elf32_Half running_arch_code=EM_PPC64;
1952   #elif  (defined __powerpc__)
1953     static  Elf32_Half running_arch_code=EM_PPC;
1954   #elif  (defined ARM)
1955     static  Elf32_Half running_arch_code=EM_ARM;
1956   #elif  (defined S390)
1957     static  Elf32_Half running_arch_code=EM_S390;
1958   #elif  (defined ALPHA)
1959     static  Elf32_Half running_arch_code=EM_ALPHA;
1960   #elif  (defined MIPSEL)
1961     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1962   #elif  (defined PARISC)
1963     static  Elf32_Half running_arch_code=EM_PARISC;
1964   #elif  (defined MIPS)
1965     static  Elf32_Half running_arch_code=EM_MIPS;
1966   #elif  (defined M68K)
1967     static  Elf32_Half running_arch_code=EM_68K;
1968   #else
1969     #error Method os::dll_load requires that one of following is defined:\
1970          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1971   #endif
1972 
1973   // Identify compatability class for VM's architecture and library's architecture
1974   // Obtain string descriptions for architectures
1975 
1976   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1977   int running_arch_index=-1;
1978 
1979   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1980     if (running_arch_code == arch_array[i].code) {
1981       running_arch_index    = i;
1982     }
1983     if (lib_arch.code == arch_array[i].code) {
1984       lib_arch.compat_class = arch_array[i].compat_class;
1985       lib_arch.name         = arch_array[i].name;
1986     }
1987   }
1988 
1989   assert(running_arch_index != -1,
1990     "Didn't find running architecture code (running_arch_code) in arch_array");
1991   if (running_arch_index == -1) {
1992     // Even though running architecture detection failed
1993     // we may still continue with reporting dlerror() message
1994     return NULL;
1995   }
1996 
1997   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1998     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1999     return NULL;
2000   }
2001 
2002 #ifndef S390
2003   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2004     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2005     return NULL;
2006   }
2007 #endif // !S390
2008 
2009   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2010     if ( lib_arch.name!=NULL ) {
2011       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2012         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2013         lib_arch.name, arch_array[running_arch_index].name);
2014     } else {
2015       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2016       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2017         lib_arch.code,
2018         arch_array[running_arch_index].name);
2019     }
2020   }
2021 
2022   return NULL;
2023 }
2024 
2025 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2026   void * result = ::dlopen(filename, RTLD_LAZY);
2027   if (result == NULL) {
2028     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2029     ebuf[ebuflen-1] = '\0';
2030   }
2031   return result;
2032 }
2033 
2034 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2035   void * result = NULL;
2036   if (LoadExecStackDllInVMThread) {
2037     result = dlopen_helper(filename, ebuf, ebuflen);
2038   }
2039 
2040   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2041   // library that requires an executable stack, or which does not have this
2042   // stack attribute set, dlopen changes the stack attribute to executable. The
2043   // read protection of the guard pages gets lost.
2044   //
2045   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2046   // may have been queued at the same time.
2047 
2048   if (!_stack_is_executable) {
2049     JavaThread *jt = Threads::first();
2050 
2051     while (jt) {
2052       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2053           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2054         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2055                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2056           warning("Attempt to reguard stack yellow zone failed.");
2057         }
2058       }
2059       jt = jt->next();
2060     }
2061   }
2062 
2063   return result;
2064 }
2065 
2066 /*
2067  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2068  * chances are you might want to run the generated bits against glibc-2.0
2069  * libdl.so, so always use locking for any version of glibc.
2070  */
2071 void* os::dll_lookup(void* handle, const char* name) {
2072   pthread_mutex_lock(&dl_mutex);
2073   void* res = dlsym(handle, name);
2074   pthread_mutex_unlock(&dl_mutex);
2075   return res;
2076 }
2077 
2078 void* os::get_default_process_handle() {
2079   return (void*)::dlopen(NULL, RTLD_LAZY);
2080 }
2081 
2082 static bool _print_ascii_file(const char* filename, outputStream* st) {
2083   int fd = ::open(filename, O_RDONLY);
2084   if (fd == -1) {
2085      return false;
2086   }
2087 
2088   char buf[32];
2089   int bytes;
2090   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2091     st->print_raw(buf, bytes);
2092   }
2093 
2094   ::close(fd);
2095 
2096   return true;
2097 }
2098 
2099 void os::print_dll_info(outputStream *st) {
2100    st->print_cr("Dynamic libraries:");
2101 
2102    char fname[32];
2103    pid_t pid = os::Linux::gettid();
2104 
2105    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2106 
2107    if (!_print_ascii_file(fname, st)) {
2108      st->print("Can not get library information for pid = %d\n", pid);
2109    }
2110 }
2111 
2112 void os::print_os_info_brief(outputStream* st) {
2113   os::Linux::print_distro_info(st);
2114 
2115   os::Posix::print_uname_info(st);
2116 
2117   os::Linux::print_libversion_info(st);
2118 
2119 }
2120 
2121 void os::print_os_info(outputStream* st) {
2122   st->print("OS:");
2123 
2124   os::Linux::print_distro_info(st);
2125 
2126   os::Posix::print_uname_info(st);
2127 
2128   // Print warning if unsafe chroot environment detected
2129   if (unsafe_chroot_detected) {
2130     st->print("WARNING!! ");
2131     st->print_cr(unstable_chroot_error);
2132   }
2133 
2134   os::Linux::print_libversion_info(st);
2135 
2136   os::Posix::print_rlimit_info(st);
2137 
2138   os::Posix::print_load_average(st);
2139 
2140   os::Linux::print_full_memory_info(st);
2141 }
2142 
2143 // Try to identify popular distros.
2144 // Most Linux distributions have a /etc/XXX-release file, which contains
2145 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2146 // file that also contains the OS version string. Some have more than one
2147 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2148 // /etc/redhat-release.), so the order is important.
2149 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2150 // their own specific XXX-release file as well as a redhat-release file.
2151 // Because of this the XXX-release file needs to be searched for before the
2152 // redhat-release file.
2153 // Since Red Hat has a lsb-release file that is not very descriptive the
2154 // search for redhat-release needs to be before lsb-release.
2155 // Since the lsb-release file is the new standard it needs to be searched
2156 // before the older style release files.
2157 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2158 // next to last resort.  The os-release file is a new standard that contains
2159 // distribution information and the system-release file seems to be an old
2160 // standard that has been replaced by the lsb-release and os-release files.
2161 // Searching for the debian_version file is the last resort.  It contains
2162 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2163 // "Debian " is printed before the contents of the debian_version file.
2164 void os::Linux::print_distro_info(outputStream* st) {
2165    if (!_print_ascii_file("/etc/oracle-release", st) &&
2166        !_print_ascii_file("/etc/mandriva-release", st) &&
2167        !_print_ascii_file("/etc/mandrake-release", st) &&
2168        !_print_ascii_file("/etc/sun-release", st) &&
2169        !_print_ascii_file("/etc/redhat-release", st) &&
2170        !_print_ascii_file("/etc/lsb-release", st) &&
2171        !_print_ascii_file("/etc/SuSE-release", st) &&
2172        !_print_ascii_file("/etc/turbolinux-release", st) &&
2173        !_print_ascii_file("/etc/gentoo-release", st) &&
2174        !_print_ascii_file("/etc/ltib-release", st) &&
2175        !_print_ascii_file("/etc/angstrom-version", st) &&
2176        !_print_ascii_file("/etc/system-release", st) &&
2177        !_print_ascii_file("/etc/os-release", st)) {
2178 
2179        if (file_exists("/etc/debian_version")) {
2180          st->print("Debian ");
2181          _print_ascii_file("/etc/debian_version", st);
2182        } else {
2183          st->print("Linux");
2184        }
2185    }
2186    st->cr();
2187 }
2188 
2189 void os::Linux::print_libversion_info(outputStream* st) {
2190   // libc, pthread
2191   st->print("libc:");
2192   st->print(os::Linux::glibc_version()); st->print(" ");
2193   st->print(os::Linux::libpthread_version()); st->print(" ");
2194   if (os::Linux::is_LinuxThreads()) {
2195      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2196   }
2197   st->cr();
2198 }
2199 
2200 void os::Linux::print_full_memory_info(outputStream* st) {
2201    st->print("\n/proc/meminfo:\n");
2202    _print_ascii_file("/proc/meminfo", st);
2203    st->cr();
2204 }
2205 
2206 void os::print_memory_info(outputStream* st) {
2207 
2208   st->print("Memory:");
2209   st->print(" %dk page", os::vm_page_size()>>10);
2210 
2211   // values in struct sysinfo are "unsigned long"
2212   struct sysinfo si;
2213   sysinfo(&si);
2214 
2215   st->print(", physical " UINT64_FORMAT "k",
2216             os::physical_memory() >> 10);
2217   st->print("(" UINT64_FORMAT "k free)",
2218             os::available_memory() >> 10);
2219   st->print(", swap " UINT64_FORMAT "k",
2220             ((jlong)si.totalswap * si.mem_unit) >> 10);
2221   st->print("(" UINT64_FORMAT "k free)",
2222             ((jlong)si.freeswap * si.mem_unit) >> 10);
2223   st->cr();
2224 }
2225 
2226 void os::pd_print_cpu_info(outputStream* st) {
2227   st->print("\n/proc/cpuinfo:\n");
2228   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2229     st->print("  <Not Available>");
2230   }
2231   st->cr();
2232 }
2233 
2234 void os::print_siginfo(outputStream* st, void* siginfo) {
2235   const siginfo_t* si = (const siginfo_t*)siginfo;
2236 
2237   os::Posix::print_siginfo_brief(st, si);
2238 
2239   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2240       UseSharedSpaces) {
2241     FileMapInfo* mapinfo = FileMapInfo::current_info();
2242     if (mapinfo->is_in_shared_space(si->si_addr)) {
2243       st->print("\n\nError accessing class data sharing archive."   \
2244                 " Mapped file inaccessible during execution, "      \
2245                 " possible disk/network problem.");
2246     }
2247   }
2248   st->cr();
2249 }
2250 
2251 
2252 static void print_signal_handler(outputStream* st, int sig,
2253                                  char* buf, size_t buflen);
2254 
2255 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2256   st->print_cr("Signal Handlers:");
2257   print_signal_handler(st, SIGSEGV, buf, buflen);
2258   print_signal_handler(st, SIGBUS , buf, buflen);
2259   print_signal_handler(st, SIGFPE , buf, buflen);
2260   print_signal_handler(st, SIGPIPE, buf, buflen);
2261   print_signal_handler(st, SIGXFSZ, buf, buflen);
2262   print_signal_handler(st, SIGILL , buf, buflen);
2263   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2264   print_signal_handler(st, SR_signum, buf, buflen);
2265   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2266   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2267   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2268   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2269 #if defined(PPC64)
2270   print_signal_handler(st, SIGTRAP, buf, buflen);
2271 #endif
2272 }
2273 
2274 static char saved_jvm_path[MAXPATHLEN] = {0};
2275 
2276 // Find the full path to the current module, libjvm.so
2277 void os::jvm_path(char *buf, jint buflen) {
2278   // Error checking.
2279   if (buflen < MAXPATHLEN) {
2280     assert(false, "must use a large-enough buffer");
2281     buf[0] = '\0';
2282     return;
2283   }
2284   // Lazy resolve the path to current module.
2285   if (saved_jvm_path[0] != 0) {
2286     strcpy(buf, saved_jvm_path);
2287     return;
2288   }
2289 
2290   char dli_fname[MAXPATHLEN];
2291   bool ret = dll_address_to_library_name(
2292                 CAST_FROM_FN_PTR(address, os::jvm_path),
2293                 dli_fname, sizeof(dli_fname), NULL);
2294   assert(ret, "cannot locate libjvm");
2295   char *rp = NULL;
2296   if (ret && dli_fname[0] != '\0') {
2297     rp = realpath(dli_fname, buf);
2298   }
2299   if (rp == NULL)
2300     return;
2301 
2302   if (Arguments::sun_java_launcher_is_altjvm()) {
2303     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2304     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2305     // If "/jre/lib/" appears at the right place in the string, then
2306     // assume we are installed in a JDK and we're done. Otherwise, check
2307     // for a JAVA_HOME environment variable and fix up the path so it
2308     // looks like libjvm.so is installed there (append a fake suffix
2309     // hotspot/libjvm.so).
2310     const char *p = buf + strlen(buf) - 1;
2311     for (int count = 0; p > buf && count < 5; ++count) {
2312       for (--p; p > buf && *p != '/'; --p)
2313         /* empty */ ;
2314     }
2315 
2316     if (strncmp(p, "/jre/lib/", 9) != 0) {
2317       // Look for JAVA_HOME in the environment.
2318       char* java_home_var = ::getenv("JAVA_HOME");
2319       if (java_home_var != NULL && java_home_var[0] != 0) {
2320         char* jrelib_p;
2321         int len;
2322 
2323         // Check the current module name "libjvm.so".
2324         p = strrchr(buf, '/');
2325         assert(strstr(p, "/libjvm") == p, "invalid library name");
2326 
2327         rp = realpath(java_home_var, buf);
2328         if (rp == NULL)
2329           return;
2330 
2331         // determine if this is a legacy image or modules image
2332         // modules image doesn't have "jre" subdirectory
2333         len = strlen(buf);
2334         jrelib_p = buf + len;
2335         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2336         if (0 != access(buf, F_OK)) {
2337           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2338         }
2339 
2340         if (0 == access(buf, F_OK)) {
2341           // Use current module name "libjvm.so"
2342           len = strlen(buf);
2343           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2344         } else {
2345           // Go back to path of .so
2346           rp = realpath(dli_fname, buf);
2347           if (rp == NULL)
2348             return;
2349         }
2350       }
2351     }
2352   }
2353 
2354   strcpy(saved_jvm_path, buf);
2355 }
2356 
2357 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2358   // no prefix required, not even "_"
2359 }
2360 
2361 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2362   // no suffix required
2363 }
2364 
2365 ////////////////////////////////////////////////////////////////////////////////
2366 // sun.misc.Signal support
2367 
2368 static volatile jint sigint_count = 0;
2369 
2370 static void
2371 UserHandler(int sig, void *siginfo, void *context) {
2372   // 4511530 - sem_post is serialized and handled by the manager thread. When
2373   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2374   // don't want to flood the manager thread with sem_post requests.
2375   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2376       return;
2377 
2378   // Ctrl-C is pressed during error reporting, likely because the error
2379   // handler fails to abort. Let VM die immediately.
2380   if (sig == SIGINT && is_error_reported()) {
2381      os::die();
2382   }
2383 
2384   os::signal_notify(sig);
2385 }
2386 
2387 void* os::user_handler() {
2388   return CAST_FROM_FN_PTR(void*, UserHandler);
2389 }
2390 
2391 class Semaphore : public StackObj {
2392   public:
2393     Semaphore();
2394     ~Semaphore();
2395     void signal();
2396     void wait();
2397     bool trywait();
2398     bool timedwait(unsigned int sec, int nsec);
2399   private:
2400     sem_t _semaphore;
2401 };
2402 
2403 
2404 Semaphore::Semaphore() {
2405   sem_init(&_semaphore, 0, 0);
2406 }
2407 
2408 Semaphore::~Semaphore() {
2409   sem_destroy(&_semaphore);
2410 }
2411 
2412 void Semaphore::signal() {
2413   sem_post(&_semaphore);
2414 }
2415 
2416 void Semaphore::wait() {
2417   sem_wait(&_semaphore);
2418 }
2419 
2420 bool Semaphore::trywait() {
2421   return sem_trywait(&_semaphore) == 0;
2422 }
2423 
2424 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2425   struct timespec ts;
2426   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2427 
2428   while (1) {
2429     int result = sem_timedwait(&_semaphore, &ts);
2430     if (result == 0) {
2431       return true;
2432     } else if (errno == EINTR) {
2433       continue;
2434     } else if (errno == ETIMEDOUT) {
2435       return false;
2436     } else {
2437       return false;
2438     }
2439   }
2440 }
2441 
2442 extern "C" {
2443   typedef void (*sa_handler_t)(int);
2444   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2445 }
2446 
2447 void* os::signal(int signal_number, void* handler) {
2448   struct sigaction sigAct, oldSigAct;
2449 
2450   sigfillset(&(sigAct.sa_mask));
2451   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2452   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2453 
2454   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2455     // -1 means registration failed
2456     return (void *)-1;
2457   }
2458 
2459   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2460 }
2461 
2462 void os::signal_raise(int signal_number) {
2463   ::raise(signal_number);
2464 }
2465 
2466 /*
2467  * The following code is moved from os.cpp for making this
2468  * code platform specific, which it is by its very nature.
2469  */
2470 
2471 // Will be modified when max signal is changed to be dynamic
2472 int os::sigexitnum_pd() {
2473   return NSIG;
2474 }
2475 
2476 // a counter for each possible signal value
2477 static volatile jint pending_signals[NSIG+1] = { 0 };
2478 
2479 // Linux(POSIX) specific hand shaking semaphore.
2480 static sem_t sig_sem;
2481 static Semaphore sr_semaphore;
2482 
2483 void os::signal_init_pd() {
2484   // Initialize signal structures
2485   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2486 
2487   // Initialize signal semaphore
2488   ::sem_init(&sig_sem, 0, 0);
2489 }
2490 
2491 void os::signal_notify(int sig) {
2492   Atomic::inc(&pending_signals[sig]);
2493   ::sem_post(&sig_sem);
2494 }
2495 
2496 static int check_pending_signals(bool wait) {
2497   Atomic::store(0, &sigint_count);
2498   for (;;) {
2499     for (int i = 0; i < NSIG + 1; i++) {
2500       jint n = pending_signals[i];
2501       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2502         return i;
2503       }
2504     }
2505     if (!wait) {
2506       return -1;
2507     }
2508     JavaThread *thread = JavaThread::current();
2509     ThreadBlockInVM tbivm(thread);
2510 
2511     bool threadIsSuspended;
2512     do {
2513       thread->set_suspend_equivalent();
2514       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2515       ::sem_wait(&sig_sem);
2516 
2517       // were we externally suspended while we were waiting?
2518       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2519       if (threadIsSuspended) {
2520         //
2521         // The semaphore has been incremented, but while we were waiting
2522         // another thread suspended us. We don't want to continue running
2523         // while suspended because that would surprise the thread that
2524         // suspended us.
2525         //
2526         ::sem_post(&sig_sem);
2527 
2528         thread->java_suspend_self();
2529       }
2530     } while (threadIsSuspended);
2531   }
2532 }
2533 
2534 int os::signal_lookup() {
2535   return check_pending_signals(false);
2536 }
2537 
2538 int os::signal_wait() {
2539   return check_pending_signals(true);
2540 }
2541 
2542 ////////////////////////////////////////////////////////////////////////////////
2543 // Virtual Memory
2544 
2545 int os::vm_page_size() {
2546   // Seems redundant as all get out
2547   assert(os::Linux::page_size() != -1, "must call os::init");
2548   return os::Linux::page_size();
2549 }
2550 
2551 // Solaris allocates memory by pages.
2552 int os::vm_allocation_granularity() {
2553   assert(os::Linux::page_size() != -1, "must call os::init");
2554   return os::Linux::page_size();
2555 }
2556 
2557 // Rationale behind this function:
2558 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2559 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2560 //  samples for JITted code. Here we create private executable mapping over the code cache
2561 //  and then we can use standard (well, almost, as mapping can change) way to provide
2562 //  info for the reporting script by storing timestamp and location of symbol
2563 void linux_wrap_code(char* base, size_t size) {
2564   static volatile jint cnt = 0;
2565 
2566   if (!UseOprofile) {
2567     return;
2568   }
2569 
2570   char buf[PATH_MAX+1];
2571   int num = Atomic::add(1, &cnt);
2572 
2573   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2574            os::get_temp_directory(), os::current_process_id(), num);
2575   unlink(buf);
2576 
2577   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2578 
2579   if (fd != -1) {
2580     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2581     if (rv != (off_t)-1) {
2582       if (::write(fd, "", 1) == 1) {
2583         mmap(base, size,
2584              PROT_READ|PROT_WRITE|PROT_EXEC,
2585              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2586       }
2587     }
2588     ::close(fd);
2589     unlink(buf);
2590   }
2591 }
2592 
2593 static bool recoverable_mmap_error(int err) {
2594   // See if the error is one we can let the caller handle. This
2595   // list of errno values comes from JBS-6843484. I can't find a
2596   // Linux man page that documents this specific set of errno
2597   // values so while this list currently matches Solaris, it may
2598   // change as we gain experience with this failure mode.
2599   switch (err) {
2600   case EBADF:
2601   case EINVAL:
2602   case ENOTSUP:
2603     // let the caller deal with these errors
2604     return true;
2605 
2606   default:
2607     // Any remaining errors on this OS can cause our reserved mapping
2608     // to be lost. That can cause confusion where different data
2609     // structures think they have the same memory mapped. The worst
2610     // scenario is if both the VM and a library think they have the
2611     // same memory mapped.
2612     return false;
2613   }
2614 }
2615 
2616 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2617                                     int err) {
2618   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2619           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2620           strerror(err), err);
2621 }
2622 
2623 static void warn_fail_commit_memory(char* addr, size_t size,
2624                                     size_t alignment_hint, bool exec,
2625                                     int err) {
2626   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2627           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2628           alignment_hint, exec, strerror(err), err);
2629 }
2630 
2631 // NOTE: Linux kernel does not really reserve the pages for us.
2632 //       All it does is to check if there are enough free pages
2633 //       left at the time of mmap(). This could be a potential
2634 //       problem.
2635 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2636   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2637   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2638                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2639   if (res != (uintptr_t) MAP_FAILED) {
2640     if (UseNUMAInterleaving) {
2641       numa_make_global(addr, size);
2642     }
2643     return 0;
2644   }
2645 
2646   int err = errno;  // save errno from mmap() call above
2647 
2648   if (!recoverable_mmap_error(err)) {
2649     warn_fail_commit_memory(addr, size, exec, err);
2650     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2651   }
2652 
2653   return err;
2654 }
2655 
2656 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2657   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2658 }
2659 
2660 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2661                                   const char* mesg) {
2662   assert(mesg != NULL, "mesg must be specified");
2663   int err = os::Linux::commit_memory_impl(addr, size, exec);
2664   if (err != 0) {
2665     // the caller wants all commit errors to exit with the specified mesg:
2666     warn_fail_commit_memory(addr, size, exec, err);
2667     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2668   }
2669 }
2670 
2671 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2672 #ifndef MAP_HUGETLB
2673 #define MAP_HUGETLB 0x40000
2674 #endif
2675 
2676 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2677 #ifndef MADV_HUGEPAGE
2678 #define MADV_HUGEPAGE 14
2679 #endif
2680 
2681 int os::Linux::commit_memory_impl(char* addr, size_t size,
2682                                   size_t alignment_hint, bool exec) {
2683   int err = os::Linux::commit_memory_impl(addr, size, exec);
2684   if (err == 0) {
2685     realign_memory(addr, size, alignment_hint);
2686   }
2687   return err;
2688 }
2689 
2690 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2691                           bool exec) {
2692   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2693 }
2694 
2695 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2696                                   size_t alignment_hint, bool exec,
2697                                   const char* mesg) {
2698   assert(mesg != NULL, "mesg must be specified");
2699   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2700   if (err != 0) {
2701     // the caller wants all commit errors to exit with the specified mesg:
2702     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2703     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2704   }
2705 }
2706 
2707 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2708   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2709     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2710     // be supported or the memory may already be backed by huge pages.
2711     ::madvise(addr, bytes, MADV_HUGEPAGE);
2712   }
2713 }
2714 
2715 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2716   // This method works by doing an mmap over an existing mmaping and effectively discarding
2717   // the existing pages. However it won't work for SHM-based large pages that cannot be
2718   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2719   // small pages on top of the SHM segment. This method always works for small pages, so we
2720   // allow that in any case.
2721   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2722     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2723   }
2724 }
2725 
2726 void os::numa_make_global(char *addr, size_t bytes) {
2727   Linux::numa_interleave_memory(addr, bytes);
2728 }
2729 
2730 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2731 // bind policy to MPOL_PREFERRED for the current thread.
2732 #define USE_MPOL_PREFERRED 0
2733 
2734 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2735   // To make NUMA and large pages more robust when both enabled, we need to ease
2736   // the requirements on where the memory should be allocated. MPOL_BIND is the
2737   // default policy and it will force memory to be allocated on the specified
2738   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2739   // the specified node, but will not force it. Using this policy will prevent
2740   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2741   // free large pages.
2742   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2743   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2744 }
2745 
2746 bool os::numa_topology_changed()   { return false; }
2747 
2748 size_t os::numa_get_groups_num() {
2749   int max_node = Linux::numa_max_node();
2750   return max_node > 0 ? max_node + 1 : 1;
2751 }
2752 
2753 int os::numa_get_group_id() {
2754   int cpu_id = Linux::sched_getcpu();
2755   if (cpu_id != -1) {
2756     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2757     if (lgrp_id != -1) {
2758       return lgrp_id;
2759     }
2760   }
2761   return 0;
2762 }
2763 
2764 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2765   for (size_t i = 0; i < size; i++) {
2766     ids[i] = i;
2767   }
2768   return size;
2769 }
2770 
2771 bool os::get_page_info(char *start, page_info* info) {
2772   return false;
2773 }
2774 
2775 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2776   return end;
2777 }
2778 
2779 
2780 int os::Linux::sched_getcpu_syscall(void) {
2781   unsigned int cpu;
2782   int retval = -1;
2783 
2784 #if defined(IA32)
2785 # ifndef SYS_getcpu
2786 # define SYS_getcpu 318
2787 # endif
2788   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2789 #elif defined(AMD64)
2790 // Unfortunately we have to bring all these macros here from vsyscall.h
2791 // to be able to compile on old linuxes.
2792 # define __NR_vgetcpu 2
2793 # define VSYSCALL_START (-10UL << 20)
2794 # define VSYSCALL_SIZE 1024
2795 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2796   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2797   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2798   retval = vgetcpu(&cpu, NULL, NULL);
2799 #endif
2800 
2801   return (retval == -1) ? retval : cpu;
2802 }
2803 
2804 // Something to do with the numa-aware allocator needs these symbols
2805 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2806 extern "C" JNIEXPORT void numa_error(char *where) { }
2807 extern "C" JNIEXPORT int fork1() { return fork(); }
2808 
2809 
2810 // If we are running with libnuma version > 2, then we should
2811 // be trying to use symbols with versions 1.1
2812 // If we are running with earlier version, which did not have symbol versions,
2813 // we should use the base version.
2814 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2815   void *f = dlvsym(handle, name, "libnuma_1.1");
2816   if (f == NULL) {
2817     f = dlsym(handle, name);
2818   }
2819   return f;
2820 }
2821 
2822 bool os::Linux::libnuma_init() {
2823   // sched_getcpu() should be in libc.
2824   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2825                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2826 
2827   // If it's not, try a direct syscall.
2828   if (sched_getcpu() == -1)
2829     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2830 
2831   if (sched_getcpu() != -1) { // Does it work?
2832     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2833     if (handle != NULL) {
2834       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2835                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2836       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2837                                        libnuma_dlsym(handle, "numa_max_node")));
2838       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2839                                         libnuma_dlsym(handle, "numa_available")));
2840       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2841                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2842       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2843                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2844       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2845                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
2846 
2847 
2848       if (numa_available() != -1) {
2849         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2850         // Create a cpu -> node mapping
2851         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2852         rebuild_cpu_to_node_map();
2853         return true;
2854       }
2855     }
2856   }
2857   return false;
2858 }
2859 
2860 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2861 // The table is later used in get_node_by_cpu().
2862 void os::Linux::rebuild_cpu_to_node_map() {
2863   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2864                               // in libnuma (possible values are starting from 16,
2865                               // and continuing up with every other power of 2, but less
2866                               // than the maximum number of CPUs supported by kernel), and
2867                               // is a subject to change (in libnuma version 2 the requirements
2868                               // are more reasonable) we'll just hardcode the number they use
2869                               // in the library.
2870   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2871 
2872   size_t cpu_num = os::active_processor_count();
2873   size_t cpu_map_size = NCPUS / BitsPerCLong;
2874   size_t cpu_map_valid_size =
2875     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2876 
2877   cpu_to_node()->clear();
2878   cpu_to_node()->at_grow(cpu_num - 1);
2879   size_t node_num = numa_get_groups_num();
2880 
2881   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2882   for (size_t i = 0; i < node_num; i++) {
2883     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2884       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2885         if (cpu_map[j] != 0) {
2886           for (size_t k = 0; k < BitsPerCLong; k++) {
2887             if (cpu_map[j] & (1UL << k)) {
2888               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2889             }
2890           }
2891         }
2892       }
2893     }
2894   }
2895   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2896 }
2897 
2898 int os::Linux::get_node_by_cpu(int cpu_id) {
2899   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2900     return cpu_to_node()->at(cpu_id);
2901   }
2902   return -1;
2903 }
2904 
2905 GrowableArray<int>* os::Linux::_cpu_to_node;
2906 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2907 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2908 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2909 os::Linux::numa_available_func_t os::Linux::_numa_available;
2910 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2911 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2912 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2913 unsigned long* os::Linux::_numa_all_nodes;
2914 
2915 bool os::pd_uncommit_memory(char* addr, size_t size) {
2916   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2917                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2918   return res  != (uintptr_t) MAP_FAILED;
2919 }
2920 
2921 static
2922 address get_stack_commited_bottom(address bottom, size_t size) {
2923   address nbot = bottom;
2924   address ntop = bottom + size;
2925 
2926   size_t page_sz = os::vm_page_size();
2927   unsigned pages = size / page_sz;
2928 
2929   unsigned char vec[1];
2930   unsigned imin = 1, imax = pages + 1, imid;
2931   int mincore_return_value = 0;
2932 
2933   assert(imin <= imax, "Unexpected page size");
2934 
2935   while (imin < imax) {
2936     imid = (imax + imin) / 2;
2937     nbot = ntop - (imid * page_sz);
2938 
2939     // Use a trick with mincore to check whether the page is mapped or not.
2940     // mincore sets vec to 1 if page resides in memory and to 0 if page
2941     // is swapped output but if page we are asking for is unmapped
2942     // it returns -1,ENOMEM
2943     mincore_return_value = mincore(nbot, page_sz, vec);
2944 
2945     if (mincore_return_value == -1) {
2946       // Page is not mapped go up
2947       // to find first mapped page
2948       if (errno != EAGAIN) {
2949         assert(errno == ENOMEM, "Unexpected mincore errno");
2950         imax = imid;
2951       }
2952     } else {
2953       // Page is mapped go down
2954       // to find first not mapped page
2955       imin = imid + 1;
2956     }
2957   }
2958 
2959   nbot = nbot + page_sz;
2960 
2961   // Adjust stack bottom one page up if last checked page is not mapped
2962   if (mincore_return_value == -1) {
2963     nbot = nbot + page_sz;
2964   }
2965 
2966   return nbot;
2967 }
2968 
2969 
2970 // Linux uses a growable mapping for the stack, and if the mapping for
2971 // the stack guard pages is not removed when we detach a thread the
2972 // stack cannot grow beyond the pages where the stack guard was
2973 // mapped.  If at some point later in the process the stack expands to
2974 // that point, the Linux kernel cannot expand the stack any further
2975 // because the guard pages are in the way, and a segfault occurs.
2976 //
2977 // However, it's essential not to split the stack region by unmapping
2978 // a region (leaving a hole) that's already part of the stack mapping,
2979 // so if the stack mapping has already grown beyond the guard pages at
2980 // the time we create them, we have to truncate the stack mapping.
2981 // So, we need to know the extent of the stack mapping when
2982 // create_stack_guard_pages() is called.
2983 
2984 // We only need this for stacks that are growable: at the time of
2985 // writing thread stacks don't use growable mappings (i.e. those
2986 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2987 // only applies to the main thread.
2988 
2989 // If the (growable) stack mapping already extends beyond the point
2990 // where we're going to put our guard pages, truncate the mapping at
2991 // that point by munmap()ping it.  This ensures that when we later
2992 // munmap() the guard pages we don't leave a hole in the stack
2993 // mapping. This only affects the main/initial thread
2994 
2995 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2996 
2997   if (os::Linux::is_initial_thread()) {
2998     // As we manually grow stack up to bottom inside create_attached_thread(),
2999     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3000     // we don't need to do anything special.
3001     // Check it first, before calling heavy function.
3002     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3003     unsigned char vec[1];
3004 
3005     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3006       // Fallback to slow path on all errors, including EAGAIN
3007       stack_extent = (uintptr_t) get_stack_commited_bottom(
3008                                     os::Linux::initial_thread_stack_bottom(),
3009                                     (size_t)addr - stack_extent);
3010     }
3011 
3012     if (stack_extent < (uintptr_t)addr) {
3013       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3014     }
3015   }
3016 
3017   return os::commit_memory(addr, size, !ExecMem);
3018 }
3019 
3020 // If this is a growable mapping, remove the guard pages entirely by
3021 // munmap()ping them.  If not, just call uncommit_memory(). This only
3022 // affects the main/initial thread, but guard against future OS changes
3023 // It's safe to always unmap guard pages for initial thread because we
3024 // always place it right after end of the mapped region
3025 
3026 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3027   uintptr_t stack_extent, stack_base;
3028 
3029   if (os::Linux::is_initial_thread()) {
3030     return ::munmap(addr, size) == 0;
3031   }
3032 
3033   return os::uncommit_memory(addr, size);
3034 }
3035 
3036 static address _highest_vm_reserved_address = NULL;
3037 
3038 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3039 // at 'requested_addr'. If there are existing memory mappings at the same
3040 // location, however, they will be overwritten. If 'fixed' is false,
3041 // 'requested_addr' is only treated as a hint, the return value may or
3042 // may not start from the requested address. Unlike Linux mmap(), this
3043 // function returns NULL to indicate failure.
3044 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3045   char * addr;
3046   int flags;
3047 
3048   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3049   if (fixed) {
3050     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3051     flags |= MAP_FIXED;
3052   }
3053 
3054   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3055   // touch an uncommitted page. Otherwise, the read/write might
3056   // succeed if we have enough swap space to back the physical page.
3057   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3058                        flags, -1, 0);
3059 
3060   if (addr != MAP_FAILED) {
3061     // anon_mmap() should only get called during VM initialization,
3062     // don't need lock (actually we can skip locking even it can be called
3063     // from multiple threads, because _highest_vm_reserved_address is just a
3064     // hint about the upper limit of non-stack memory regions.)
3065     if ((address)addr + bytes > _highest_vm_reserved_address) {
3066       _highest_vm_reserved_address = (address)addr + bytes;
3067     }
3068   }
3069 
3070   return addr == MAP_FAILED ? NULL : addr;
3071 }
3072 
3073 // Don't update _highest_vm_reserved_address, because there might be memory
3074 // regions above addr + size. If so, releasing a memory region only creates
3075 // a hole in the address space, it doesn't help prevent heap-stack collision.
3076 //
3077 static int anon_munmap(char * addr, size_t size) {
3078   return ::munmap(addr, size) == 0;
3079 }
3080 
3081 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3082                          size_t alignment_hint) {
3083   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3084 }
3085 
3086 bool os::pd_release_memory(char* addr, size_t size) {
3087   return anon_munmap(addr, size);
3088 }
3089 
3090 static address highest_vm_reserved_address() {
3091   return _highest_vm_reserved_address;
3092 }
3093 
3094 static bool linux_mprotect(char* addr, size_t size, int prot) {
3095   // Linux wants the mprotect address argument to be page aligned.
3096   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3097 
3098   // According to SUSv3, mprotect() should only be used with mappings
3099   // established by mmap(), and mmap() always maps whole pages. Unaligned
3100   // 'addr' likely indicates problem in the VM (e.g. trying to change
3101   // protection of malloc'ed or statically allocated memory). Check the
3102   // caller if you hit this assert.
3103   assert(addr == bottom, "sanity check");
3104 
3105   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3106   return ::mprotect(bottom, size, prot) == 0;
3107 }
3108 
3109 // Set protections specified
3110 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3111                         bool is_committed) {
3112   unsigned int p = 0;
3113   switch (prot) {
3114   case MEM_PROT_NONE: p = PROT_NONE; break;
3115   case MEM_PROT_READ: p = PROT_READ; break;
3116   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3117   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3118   default:
3119     ShouldNotReachHere();
3120   }
3121   // is_committed is unused.
3122   return linux_mprotect(addr, bytes, p);
3123 }
3124 
3125 bool os::guard_memory(char* addr, size_t size) {
3126   return linux_mprotect(addr, size, PROT_NONE);
3127 }
3128 
3129 bool os::unguard_memory(char* addr, size_t size) {
3130   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3131 }
3132 
3133 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3134   bool result = false;
3135   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3136                  MAP_ANONYMOUS|MAP_PRIVATE,
3137                  -1, 0);
3138   if (p != MAP_FAILED) {
3139     void *aligned_p = align_ptr_up(p, page_size);
3140 
3141     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3142 
3143     munmap(p, page_size * 2);
3144   }
3145 
3146   if (warn && !result) {
3147     warning("TransparentHugePages is not supported by the operating system.");
3148   }
3149 
3150   return result;
3151 }
3152 
3153 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3154   bool result = false;
3155   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3156                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3157                  -1, 0);
3158 
3159   if (p != MAP_FAILED) {
3160     // We don't know if this really is a huge page or not.
3161     FILE *fp = fopen("/proc/self/maps", "r");
3162     if (fp) {
3163       while (!feof(fp)) {
3164         char chars[257];
3165         long x = 0;
3166         if (fgets(chars, sizeof(chars), fp)) {
3167           if (sscanf(chars, "%lx-%*x", &x) == 1
3168               && x == (long)p) {
3169             if (strstr (chars, "hugepage")) {
3170               result = true;
3171               break;
3172             }
3173           }
3174         }
3175       }
3176       fclose(fp);
3177     }
3178     munmap(p, page_size);
3179   }
3180 
3181   if (warn && !result) {
3182     warning("HugeTLBFS is not supported by the operating system.");
3183   }
3184 
3185   return result;
3186 }
3187 
3188 /*
3189 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3190 *
3191 * From the coredump_filter documentation:
3192 *
3193 * - (bit 0) anonymous private memory
3194 * - (bit 1) anonymous shared memory
3195 * - (bit 2) file-backed private memory
3196 * - (bit 3) file-backed shared memory
3197 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3198 *           effective only if the bit 2 is cleared)
3199 * - (bit 5) hugetlb private memory
3200 * - (bit 6) hugetlb shared memory
3201 */
3202 static void set_coredump_filter(void) {
3203   FILE *f;
3204   long cdm;
3205 
3206   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3207     return;
3208   }
3209 
3210   if (fscanf(f, "%lx", &cdm) != 1) {
3211     fclose(f);
3212     return;
3213   }
3214 
3215   rewind(f);
3216 
3217   if ((cdm & LARGEPAGES_BIT) == 0) {
3218     cdm |= LARGEPAGES_BIT;
3219     fprintf(f, "%#lx", cdm);
3220   }
3221 
3222   fclose(f);
3223 }
3224 
3225 // Large page support
3226 
3227 static size_t _large_page_size = 0;
3228 
3229 size_t os::Linux::find_large_page_size() {
3230   size_t large_page_size = 0;
3231 
3232   // large_page_size on Linux is used to round up heap size. x86 uses either
3233   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3234   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3235   // page as large as 256M.
3236   //
3237   // Here we try to figure out page size by parsing /proc/meminfo and looking
3238   // for a line with the following format:
3239   //    Hugepagesize:     2048 kB
3240   //
3241   // If we can't determine the value (e.g. /proc is not mounted, or the text
3242   // format has been changed), we'll use the largest page size supported by
3243   // the processor.
3244 
3245 #ifndef ZERO
3246   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3247                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3248 #endif // ZERO
3249 
3250   FILE *fp = fopen("/proc/meminfo", "r");
3251   if (fp) {
3252     while (!feof(fp)) {
3253       int x = 0;
3254       char buf[16];
3255       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3256         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3257           large_page_size = x * K;
3258           break;
3259         }
3260       } else {
3261         // skip to next line
3262         for (;;) {
3263           int ch = fgetc(fp);
3264           if (ch == EOF || ch == (int)'\n') break;
3265         }
3266       }
3267     }
3268     fclose(fp);
3269   }
3270 
3271   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3272     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3273         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3274         proper_unit_for_byte_size(large_page_size));
3275   }
3276 
3277   return large_page_size;
3278 }
3279 
3280 size_t os::Linux::setup_large_page_size() {
3281   _large_page_size = Linux::find_large_page_size();
3282   const size_t default_page_size = (size_t)Linux::page_size();
3283   if (_large_page_size > default_page_size) {
3284     _page_sizes[0] = _large_page_size;
3285     _page_sizes[1] = default_page_size;
3286     _page_sizes[2] = 0;
3287   }
3288 
3289   return _large_page_size;
3290 }
3291 
3292 bool os::Linux::setup_large_page_type(size_t page_size) {
3293   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3294       FLAG_IS_DEFAULT(UseSHM) &&
3295       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3296 
3297     // The type of large pages has not been specified by the user.
3298 
3299     // Try UseHugeTLBFS and then UseSHM.
3300     UseHugeTLBFS = UseSHM = true;
3301 
3302     // Don't try UseTransparentHugePages since there are known
3303     // performance issues with it turned on. This might change in the future.
3304     UseTransparentHugePages = false;
3305   }
3306 
3307   if (UseTransparentHugePages) {
3308     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3309     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3310       UseHugeTLBFS = false;
3311       UseSHM = false;
3312       return true;
3313     }
3314     UseTransparentHugePages = false;
3315   }
3316 
3317   if (UseHugeTLBFS) {
3318     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3319     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3320       UseSHM = false;
3321       return true;
3322     }
3323     UseHugeTLBFS = false;
3324   }
3325 
3326   return UseSHM;
3327 }
3328 
3329 void os::large_page_init() {
3330   if (!UseLargePages &&
3331       !UseTransparentHugePages &&
3332       !UseHugeTLBFS &&
3333       !UseSHM) {
3334     // Not using large pages.
3335     return;
3336   }
3337 
3338   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3339     // The user explicitly turned off large pages.
3340     // Ignore the rest of the large pages flags.
3341     UseTransparentHugePages = false;
3342     UseHugeTLBFS = false;
3343     UseSHM = false;
3344     return;
3345   }
3346 
3347   size_t large_page_size = Linux::setup_large_page_size();
3348   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3349 
3350   set_coredump_filter();
3351 }
3352 
3353 #ifndef SHM_HUGETLB
3354 #define SHM_HUGETLB 04000
3355 #endif
3356 
3357 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3358   // "exec" is passed in but not used.  Creating the shared image for
3359   // the code cache doesn't have an SHM_X executable permission to check.
3360   assert(UseLargePages && UseSHM, "only for SHM large pages");
3361   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3362 
3363   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3364     return NULL; // Fallback to small pages.
3365   }
3366 
3367   key_t key = IPC_PRIVATE;
3368   char *addr;
3369 
3370   bool warn_on_failure = UseLargePages &&
3371                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3372                          !FLAG_IS_DEFAULT(UseSHM) ||
3373                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3374                         );
3375   char msg[128];
3376 
3377   // Create a large shared memory region to attach to based on size.
3378   // Currently, size is the total size of the heap
3379   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3380   if (shmid == -1) {
3381      // Possible reasons for shmget failure:
3382      // 1. shmmax is too small for Java heap.
3383      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3384      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3385      // 2. not enough large page memory.
3386      //    > check available large pages: cat /proc/meminfo
3387      //    > increase amount of large pages:
3388      //          echo new_value > /proc/sys/vm/nr_hugepages
3389      //      Note 1: different Linux may use different name for this property,
3390      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3391      //      Note 2: it's possible there's enough physical memory available but
3392      //            they are so fragmented after a long run that they can't
3393      //            coalesce into large pages. Try to reserve large pages when
3394      //            the system is still "fresh".
3395      if (warn_on_failure) {
3396        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3397        warning(msg);
3398      }
3399      return NULL;
3400   }
3401 
3402   // attach to the region
3403   addr = (char*)shmat(shmid, req_addr, 0);
3404   int err = errno;
3405 
3406   // Remove shmid. If shmat() is successful, the actual shared memory segment
3407   // will be deleted when it's detached by shmdt() or when the process
3408   // terminates. If shmat() is not successful this will remove the shared
3409   // segment immediately.
3410   shmctl(shmid, IPC_RMID, NULL);
3411 
3412   if ((intptr_t)addr == -1) {
3413      if (warn_on_failure) {
3414        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3415        warning(msg);
3416      }
3417      return NULL;
3418   }
3419 
3420   return addr;
3421 }
3422 
3423 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3424   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3425 
3426   bool warn_on_failure = UseLargePages &&
3427       (!FLAG_IS_DEFAULT(UseLargePages) ||
3428        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3429        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3430 
3431   if (warn_on_failure) {
3432     char msg[128];
3433     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3434         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3435     warning(msg);
3436   }
3437 }
3438 
3439 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3440   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3441   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3442   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3443 
3444   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3445   char* addr = (char*)::mmap(req_addr, bytes, prot,
3446                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3447                              -1, 0);
3448 
3449   if (addr == MAP_FAILED) {
3450     warn_on_large_pages_failure(req_addr, bytes, errno);
3451     return NULL;
3452   }
3453 
3454   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3455 
3456   return addr;
3457 }
3458 
3459 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3460   size_t large_page_size = os::large_page_size();
3461 
3462   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3463 
3464   // Allocate small pages.
3465 
3466   char* start;
3467   if (req_addr != NULL) {
3468     assert(is_ptr_aligned(req_addr, alignment), "Must be");
3469     assert(is_size_aligned(bytes, alignment), "Must be");
3470     start = os::reserve_memory(bytes, req_addr);
3471     assert(start == NULL || start == req_addr, "Must be");
3472   } else {
3473     start = os::reserve_memory_aligned(bytes, alignment);
3474   }
3475 
3476   if (start == NULL) {
3477     return NULL;
3478   }
3479 
3480   assert(is_ptr_aligned(start, alignment), "Must be");
3481 
3482   // os::reserve_memory_special will record this memory area.
3483   // Need to release it here to prevent overlapping reservations.
3484   MemTracker::record_virtual_memory_release((address)start, bytes);
3485 
3486   char* end = start + bytes;
3487 
3488   // Find the regions of the allocated chunk that can be promoted to large pages.
3489   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3490   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3491 
3492   size_t lp_bytes = lp_end - lp_start;
3493 
3494   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3495 
3496   if (lp_bytes == 0) {
3497     // The mapped region doesn't even span the start and the end of a large page.
3498     // Fall back to allocate a non-special area.
3499     ::munmap(start, end - start);
3500     return NULL;
3501   }
3502 
3503   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3504 
3505 
3506   void* result;
3507 
3508   if (start != lp_start) {
3509     result = ::mmap(start, lp_start - start, prot,
3510                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3511                     -1, 0);
3512     if (result == MAP_FAILED) {
3513       ::munmap(lp_start, end - lp_start);
3514       return NULL;
3515     }
3516   }
3517 
3518   result = ::mmap(lp_start, lp_bytes, prot,
3519                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3520                   -1, 0);
3521   if (result == MAP_FAILED) {
3522     warn_on_large_pages_failure(req_addr, bytes, errno);
3523     // If the mmap above fails, the large pages region will be unmapped and we
3524     // have regions before and after with small pages. Release these regions.
3525     //
3526     // |  mapped  |  unmapped  |  mapped  |
3527     // ^          ^            ^          ^
3528     // start      lp_start     lp_end     end
3529     //
3530     ::munmap(start, lp_start - start);
3531     ::munmap(lp_end, end - lp_end);
3532     return NULL;
3533   }
3534 
3535   if (lp_end != end) {
3536       result = ::mmap(lp_end, end - lp_end, prot,
3537                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3538                       -1, 0);
3539     if (result == MAP_FAILED) {
3540       ::munmap(start, lp_end - start);
3541       return NULL;
3542     }
3543   }
3544 
3545   return start;
3546 }
3547 
3548 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3549   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3550   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3551   assert(is_power_of_2(alignment), "Must be");
3552   assert(is_power_of_2(os::large_page_size()), "Must be");
3553   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3554 
3555   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3556     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3557   } else {
3558     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3559   }
3560 }
3561 
3562 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3563   assert(UseLargePages, "only for large pages");
3564 
3565   char* addr;
3566   if (UseSHM) {
3567     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3568   } else {
3569     assert(UseHugeTLBFS, "must be");
3570     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3571   }
3572 
3573   if (addr != NULL) {
3574     if (UseNUMAInterleaving) {
3575       numa_make_global(addr, bytes);
3576     }
3577 
3578     // The memory is committed
3579     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
3580   }
3581 
3582   return addr;
3583 }
3584 
3585 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3586   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3587   return shmdt(base) == 0;
3588 }
3589 
3590 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3591   return pd_release_memory(base, bytes);
3592 }
3593 
3594 bool os::release_memory_special(char* base, size_t bytes) {
3595   assert(UseLargePages, "only for large pages");
3596 
3597   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3598 
3599   bool res;
3600   if (UseSHM) {
3601     res = os::Linux::release_memory_special_shm(base, bytes);
3602   } else {
3603     assert(UseHugeTLBFS, "must be");
3604     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3605   }
3606 
3607   if (res) {
3608     tkr.record((address)base, bytes);
3609   } else {
3610     tkr.discard();
3611   }
3612 
3613   return res;
3614 }
3615 
3616 size_t os::large_page_size() {
3617   return _large_page_size;
3618 }
3619 
3620 // With SysV SHM the entire memory region must be allocated as shared
3621 // memory.
3622 // HugeTLBFS allows application to commit large page memory on demand.
3623 // However, when committing memory with HugeTLBFS fails, the region
3624 // that was supposed to be committed will lose the old reservation
3625 // and allow other threads to steal that memory region. Because of this
3626 // behavior we can't commit HugeTLBFS memory.
3627 bool os::can_commit_large_page_memory() {
3628   return UseTransparentHugePages;
3629 }
3630 
3631 bool os::can_execute_large_page_memory() {
3632   return UseTransparentHugePages || UseHugeTLBFS;
3633 }
3634 
3635 // Reserve memory at an arbitrary address, only if that area is
3636 // available (and not reserved for something else).
3637 
3638 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3639   const int max_tries = 10;
3640   char* base[max_tries];
3641   size_t size[max_tries];
3642   const size_t gap = 0x000000;
3643 
3644   // Assert only that the size is a multiple of the page size, since
3645   // that's all that mmap requires, and since that's all we really know
3646   // about at this low abstraction level.  If we need higher alignment,
3647   // we can either pass an alignment to this method or verify alignment
3648   // in one of the methods further up the call chain.  See bug 5044738.
3649   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3650 
3651   // Repeatedly allocate blocks until the block is allocated at the
3652   // right spot. Give up after max_tries. Note that reserve_memory() will
3653   // automatically update _highest_vm_reserved_address if the call is
3654   // successful. The variable tracks the highest memory address every reserved
3655   // by JVM. It is used to detect heap-stack collision if running with
3656   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3657   // space than needed, it could confuse the collision detecting code. To
3658   // solve the problem, save current _highest_vm_reserved_address and
3659   // calculate the correct value before return.
3660   address old_highest = _highest_vm_reserved_address;
3661 
3662   // Linux mmap allows caller to pass an address as hint; give it a try first,
3663   // if kernel honors the hint then we can return immediately.
3664   char * addr = anon_mmap(requested_addr, bytes, false);
3665   if (addr == requested_addr) {
3666      return requested_addr;
3667   }
3668 
3669   if (addr != NULL) {
3670      // mmap() is successful but it fails to reserve at the requested address
3671      anon_munmap(addr, bytes);
3672   }
3673 
3674   int i;
3675   for (i = 0; i < max_tries; ++i) {
3676     base[i] = reserve_memory(bytes);
3677 
3678     if (base[i] != NULL) {
3679       // Is this the block we wanted?
3680       if (base[i] == requested_addr) {
3681         size[i] = bytes;
3682         break;
3683       }
3684 
3685       // Does this overlap the block we wanted? Give back the overlapped
3686       // parts and try again.
3687 
3688       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3689       if (top_overlap >= 0 && top_overlap < bytes) {
3690         unmap_memory(base[i], top_overlap);
3691         base[i] += top_overlap;
3692         size[i] = bytes - top_overlap;
3693       } else {
3694         size_t bottom_overlap = base[i] + bytes - requested_addr;
3695         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3696           unmap_memory(requested_addr, bottom_overlap);
3697           size[i] = bytes - bottom_overlap;
3698         } else {
3699           size[i] = bytes;
3700         }
3701       }
3702     }
3703   }
3704 
3705   // Give back the unused reserved pieces.
3706 
3707   for (int j = 0; j < i; ++j) {
3708     if (base[j] != NULL) {
3709       unmap_memory(base[j], size[j]);
3710     }
3711   }
3712 
3713   if (i < max_tries) {
3714     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3715     return requested_addr;
3716   } else {
3717     _highest_vm_reserved_address = old_highest;
3718     return NULL;
3719   }
3720 }
3721 
3722 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3723   return ::read(fd, buf, nBytes);
3724 }
3725 
3726 //
3727 // Short sleep, direct OS call.
3728 //
3729 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3730 // sched_yield(2) will actually give up the CPU:
3731 //
3732 //   * Alone on this pariticular CPU, keeps running.
3733 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3734 //     (pre 2.6.39).
3735 //
3736 // So calling this with 0 is an alternative.
3737 //
3738 void os::naked_short_sleep(jlong ms) {
3739   struct timespec req;
3740 
3741   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3742   req.tv_sec = 0;
3743   if (ms > 0) {
3744     req.tv_nsec = (ms % 1000) * 1000000;
3745   }
3746   else {
3747     req.tv_nsec = 1;
3748   }
3749 
3750   nanosleep(&req, NULL);
3751 
3752   return;
3753 }
3754 
3755 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3756 void os::infinite_sleep() {
3757   while (true) {    // sleep forever ...
3758     ::sleep(100);   // ... 100 seconds at a time
3759   }
3760 }
3761 
3762 // Used to convert frequent JVM_Yield() to nops
3763 bool os::dont_yield() {
3764   return DontYieldALot;
3765 }
3766 
3767 void os::yield() {
3768   sched_yield();
3769 }
3770 
3771 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3772 
3773 void os::yield_all(int attempts) {
3774   // Yields to all threads, including threads with lower priorities
3775   // Threads on Linux are all with same priority. The Solaris style
3776   // os::yield_all() with nanosleep(1ms) is not necessary.
3777   sched_yield();
3778 }
3779 
3780 // Called from the tight loops to possibly influence time-sharing heuristics
3781 void os::loop_breaker(int attempts) {
3782   os::yield_all(attempts);
3783 }
3784 
3785 ////////////////////////////////////////////////////////////////////////////////
3786 // thread priority support
3787 
3788 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3789 // only supports dynamic priority, static priority must be zero. For real-time
3790 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3791 // However, for large multi-threaded applications, SCHED_RR is not only slower
3792 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3793 // of 5 runs - Sep 2005).
3794 //
3795 // The following code actually changes the niceness of kernel-thread/LWP. It
3796 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3797 // not the entire user process, and user level threads are 1:1 mapped to kernel
3798 // threads. It has always been the case, but could change in the future. For
3799 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3800 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3801 
3802 int os::java_to_os_priority[CriticalPriority + 1] = {
3803   19,              // 0 Entry should never be used
3804 
3805    4,              // 1 MinPriority
3806    3,              // 2
3807    2,              // 3
3808 
3809    1,              // 4
3810    0,              // 5 NormPriority
3811   -1,              // 6
3812 
3813   -2,              // 7
3814   -3,              // 8
3815   -4,              // 9 NearMaxPriority
3816 
3817   -5,              // 10 MaxPriority
3818 
3819   -5               // 11 CriticalPriority
3820 };
3821 
3822 static int prio_init() {
3823   if (ThreadPriorityPolicy == 1) {
3824     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3825     // if effective uid is not root. Perhaps, a more elegant way of doing
3826     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3827     if (geteuid() != 0) {
3828       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3829         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3830       }
3831       ThreadPriorityPolicy = 0;
3832     }
3833   }
3834   if (UseCriticalJavaThreadPriority) {
3835     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3836   }
3837   return 0;
3838 }
3839 
3840 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3841   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3842 
3843   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3844   return (ret == 0) ? OS_OK : OS_ERR;
3845 }
3846 
3847 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3848   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3849     *priority_ptr = java_to_os_priority[NormPriority];
3850     return OS_OK;
3851   }
3852 
3853   errno = 0;
3854   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3855   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3856 }
3857 
3858 // Hint to the underlying OS that a task switch would not be good.
3859 // Void return because it's a hint and can fail.
3860 void os::hint_no_preempt() {}
3861 
3862 ////////////////////////////////////////////////////////////////////////////////
3863 // suspend/resume support
3864 
3865 //  the low-level signal-based suspend/resume support is a remnant from the
3866 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3867 //  within hotspot. Now there is a single use-case for this:
3868 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3869 //      that runs in the watcher thread.
3870 //  The remaining code is greatly simplified from the more general suspension
3871 //  code that used to be used.
3872 //
3873 //  The protocol is quite simple:
3874 //  - suspend:
3875 //      - sends a signal to the target thread
3876 //      - polls the suspend state of the osthread using a yield loop
3877 //      - target thread signal handler (SR_handler) sets suspend state
3878 //        and blocks in sigsuspend until continued
3879 //  - resume:
3880 //      - sets target osthread state to continue
3881 //      - sends signal to end the sigsuspend loop in the SR_handler
3882 //
3883 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3884 //
3885 
3886 static void resume_clear_context(OSThread *osthread) {
3887   osthread->set_ucontext(NULL);
3888   osthread->set_siginfo(NULL);
3889 }
3890 
3891 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3892   osthread->set_ucontext(context);
3893   osthread->set_siginfo(siginfo);
3894 }
3895 
3896 //
3897 // Handler function invoked when a thread's execution is suspended or
3898 // resumed. We have to be careful that only async-safe functions are
3899 // called here (Note: most pthread functions are not async safe and
3900 // should be avoided.)
3901 //
3902 // Note: sigwait() is a more natural fit than sigsuspend() from an
3903 // interface point of view, but sigwait() prevents the signal hander
3904 // from being run. libpthread would get very confused by not having
3905 // its signal handlers run and prevents sigwait()'s use with the
3906 // mutex granting granting signal.
3907 //
3908 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3909 //
3910 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3911   // Save and restore errno to avoid confusing native code with EINTR
3912   // after sigsuspend.
3913   int old_errno = errno;
3914 
3915   Thread* thread = Thread::current();
3916   OSThread* osthread = thread->osthread();
3917   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3918 
3919   os::SuspendResume::State current = osthread->sr.state();
3920   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3921     suspend_save_context(osthread, siginfo, context);
3922 
3923     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3924     os::SuspendResume::State state = osthread->sr.suspended();
3925     if (state == os::SuspendResume::SR_SUSPENDED) {
3926       sigset_t suspend_set;  // signals for sigsuspend()
3927 
3928       // get current set of blocked signals and unblock resume signal
3929       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3930       sigdelset(&suspend_set, SR_signum);
3931 
3932       sr_semaphore.signal();
3933       // wait here until we are resumed
3934       while (1) {
3935         sigsuspend(&suspend_set);
3936 
3937         os::SuspendResume::State result = osthread->sr.running();
3938         if (result == os::SuspendResume::SR_RUNNING) {
3939           sr_semaphore.signal();
3940           break;
3941         }
3942       }
3943 
3944     } else if (state == os::SuspendResume::SR_RUNNING) {
3945       // request was cancelled, continue
3946     } else {
3947       ShouldNotReachHere();
3948     }
3949 
3950     resume_clear_context(osthread);
3951   } else if (current == os::SuspendResume::SR_RUNNING) {
3952     // request was cancelled, continue
3953   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3954     // ignore
3955   } else {
3956     // ignore
3957   }
3958 
3959   errno = old_errno;
3960 }
3961 
3962 
3963 static int SR_initialize() {
3964   struct sigaction act;
3965   char *s;
3966   /* Get signal number to use for suspend/resume */
3967   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3968     int sig = ::strtol(s, 0, 10);
3969     if (sig > 0 || sig < _NSIG) {
3970         SR_signum = sig;
3971     }
3972   }
3973 
3974   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3975         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3976 
3977   sigemptyset(&SR_sigset);
3978   sigaddset(&SR_sigset, SR_signum);
3979 
3980   /* Set up signal handler for suspend/resume */
3981   act.sa_flags = SA_RESTART|SA_SIGINFO;
3982   act.sa_handler = (void (*)(int)) SR_handler;
3983 
3984   // SR_signum is blocked by default.
3985   // 4528190 - We also need to block pthread restart signal (32 on all
3986   // supported Linux platforms). Note that LinuxThreads need to block
3987   // this signal for all threads to work properly. So we don't have
3988   // to use hard-coded signal number when setting up the mask.
3989   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3990 
3991   if (sigaction(SR_signum, &act, 0) == -1) {
3992     return -1;
3993   }
3994 
3995   // Save signal flag
3996   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3997   return 0;
3998 }
3999 
4000 static int sr_notify(OSThread* osthread) {
4001   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4002   assert_status(status == 0, status, "pthread_kill");
4003   return status;
4004 }
4005 
4006 // "Randomly" selected value for how long we want to spin
4007 // before bailing out on suspending a thread, also how often
4008 // we send a signal to a thread we want to resume
4009 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4010 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4011 
4012 // returns true on success and false on error - really an error is fatal
4013 // but this seems the normal response to library errors
4014 static bool do_suspend(OSThread* osthread) {
4015   assert(osthread->sr.is_running(), "thread should be running");
4016   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4017 
4018   // mark as suspended and send signal
4019   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4020     // failed to switch, state wasn't running?
4021     ShouldNotReachHere();
4022     return false;
4023   }
4024 
4025   if (sr_notify(osthread) != 0) {
4026     ShouldNotReachHere();
4027   }
4028 
4029   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4030   while (true) {
4031     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4032       break;
4033     } else {
4034       // timeout
4035       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4036       if (cancelled == os::SuspendResume::SR_RUNNING) {
4037         return false;
4038       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4039         // make sure that we consume the signal on the semaphore as well
4040         sr_semaphore.wait();
4041         break;
4042       } else {
4043         ShouldNotReachHere();
4044         return false;
4045       }
4046     }
4047   }
4048 
4049   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4050   return true;
4051 }
4052 
4053 static void do_resume(OSThread* osthread) {
4054   assert(osthread->sr.is_suspended(), "thread should be suspended");
4055   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4056 
4057   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4058     // failed to switch to WAKEUP_REQUEST
4059     ShouldNotReachHere();
4060     return;
4061   }
4062 
4063   while (true) {
4064     if (sr_notify(osthread) == 0) {
4065       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4066         if (osthread->sr.is_running()) {
4067           return;
4068         }
4069       }
4070     } else {
4071       ShouldNotReachHere();
4072     }
4073   }
4074 
4075   guarantee(osthread->sr.is_running(), "Must be running!");
4076 }
4077 
4078 ///////////////////////////////////////////////////////////////////////////////////
4079 // signal handling (except suspend/resume)
4080 
4081 // This routine may be used by user applications as a "hook" to catch signals.
4082 // The user-defined signal handler must pass unrecognized signals to this
4083 // routine, and if it returns true (non-zero), then the signal handler must
4084 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4085 // routine will never retun false (zero), but instead will execute a VM panic
4086 // routine kill the process.
4087 //
4088 // If this routine returns false, it is OK to call it again.  This allows
4089 // the user-defined signal handler to perform checks either before or after
4090 // the VM performs its own checks.  Naturally, the user code would be making
4091 // a serious error if it tried to handle an exception (such as a null check
4092 // or breakpoint) that the VM was generating for its own correct operation.
4093 //
4094 // This routine may recognize any of the following kinds of signals:
4095 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4096 // It should be consulted by handlers for any of those signals.
4097 //
4098 // The caller of this routine must pass in the three arguments supplied
4099 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4100 // field of the structure passed to sigaction().  This routine assumes that
4101 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4102 //
4103 // Note that the VM will print warnings if it detects conflicting signal
4104 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4105 //
4106 extern "C" JNIEXPORT int
4107 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4108                         void* ucontext, int abort_if_unrecognized);
4109 
4110 void signalHandler(int sig, siginfo_t* info, void* uc) {
4111   assert(info != NULL && uc != NULL, "it must be old kernel");
4112   int orig_errno = errno;  // Preserve errno value over signal handler.
4113   JVM_handle_linux_signal(sig, info, uc, true);
4114   errno = orig_errno;
4115 }
4116 
4117 
4118 // This boolean allows users to forward their own non-matching signals
4119 // to JVM_handle_linux_signal, harmlessly.
4120 bool os::Linux::signal_handlers_are_installed = false;
4121 
4122 // For signal-chaining
4123 struct sigaction os::Linux::sigact[MAXSIGNUM];
4124 unsigned int os::Linux::sigs = 0;
4125 bool os::Linux::libjsig_is_loaded = false;
4126 typedef struct sigaction *(*get_signal_t)(int);
4127 get_signal_t os::Linux::get_signal_action = NULL;
4128 
4129 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4130   struct sigaction *actp = NULL;
4131 
4132   if (libjsig_is_loaded) {
4133     // Retrieve the old signal handler from libjsig
4134     actp = (*get_signal_action)(sig);
4135   }
4136   if (actp == NULL) {
4137     // Retrieve the preinstalled signal handler from jvm
4138     actp = get_preinstalled_handler(sig);
4139   }
4140 
4141   return actp;
4142 }
4143 
4144 static bool call_chained_handler(struct sigaction *actp, int sig,
4145                                  siginfo_t *siginfo, void *context) {
4146   // Call the old signal handler
4147   if (actp->sa_handler == SIG_DFL) {
4148     // It's more reasonable to let jvm treat it as an unexpected exception
4149     // instead of taking the default action.
4150     return false;
4151   } else if (actp->sa_handler != SIG_IGN) {
4152     if ((actp->sa_flags & SA_NODEFER) == 0) {
4153       // automaticlly block the signal
4154       sigaddset(&(actp->sa_mask), sig);
4155     }
4156 
4157     sa_handler_t hand;
4158     sa_sigaction_t sa;
4159     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4160     // retrieve the chained handler
4161     if (siginfo_flag_set) {
4162       sa = actp->sa_sigaction;
4163     } else {
4164       hand = actp->sa_handler;
4165     }
4166 
4167     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4168       actp->sa_handler = SIG_DFL;
4169     }
4170 
4171     // try to honor the signal mask
4172     sigset_t oset;
4173     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4174 
4175     // call into the chained handler
4176     if (siginfo_flag_set) {
4177       (*sa)(sig, siginfo, context);
4178     } else {
4179       (*hand)(sig);
4180     }
4181 
4182     // restore the signal mask
4183     pthread_sigmask(SIG_SETMASK, &oset, 0);
4184   }
4185   // Tell jvm's signal handler the signal is taken care of.
4186   return true;
4187 }
4188 
4189 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4190   bool chained = false;
4191   // signal-chaining
4192   if (UseSignalChaining) {
4193     struct sigaction *actp = get_chained_signal_action(sig);
4194     if (actp != NULL) {
4195       chained = call_chained_handler(actp, sig, siginfo, context);
4196     }
4197   }
4198   return chained;
4199 }
4200 
4201 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4202   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4203     return &sigact[sig];
4204   }
4205   return NULL;
4206 }
4207 
4208 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4209   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4210   sigact[sig] = oldAct;
4211   sigs |= (unsigned int)1 << sig;
4212 }
4213 
4214 // for diagnostic
4215 int os::Linux::sigflags[MAXSIGNUM];
4216 
4217 int os::Linux::get_our_sigflags(int sig) {
4218   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4219   return sigflags[sig];
4220 }
4221 
4222 void os::Linux::set_our_sigflags(int sig, int flags) {
4223   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4224   sigflags[sig] = flags;
4225 }
4226 
4227 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4228   // Check for overwrite.
4229   struct sigaction oldAct;
4230   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4231 
4232   void* oldhand = oldAct.sa_sigaction
4233                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4234                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4235   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4236       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4237       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4238     if (AllowUserSignalHandlers || !set_installed) {
4239       // Do not overwrite; user takes responsibility to forward to us.
4240       return;
4241     } else if (UseSignalChaining) {
4242       // save the old handler in jvm
4243       save_preinstalled_handler(sig, oldAct);
4244       // libjsig also interposes the sigaction() call below and saves the
4245       // old sigaction on it own.
4246     } else {
4247       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4248                     "%#lx for signal %d.", (long)oldhand, sig));
4249     }
4250   }
4251 
4252   struct sigaction sigAct;
4253   sigfillset(&(sigAct.sa_mask));
4254   sigAct.sa_handler = SIG_DFL;
4255   if (!set_installed) {
4256     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4257   } else {
4258     sigAct.sa_sigaction = signalHandler;
4259     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4260   }
4261   // Save flags, which are set by ours
4262   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4263   sigflags[sig] = sigAct.sa_flags;
4264 
4265   int ret = sigaction(sig, &sigAct, &oldAct);
4266   assert(ret == 0, "check");
4267 
4268   void* oldhand2  = oldAct.sa_sigaction
4269                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4270                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4271   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4272 }
4273 
4274 // install signal handlers for signals that HotSpot needs to
4275 // handle in order to support Java-level exception handling.
4276 
4277 void os::Linux::install_signal_handlers() {
4278   if (!signal_handlers_are_installed) {
4279     signal_handlers_are_installed = true;
4280 
4281     // signal-chaining
4282     typedef void (*signal_setting_t)();
4283     signal_setting_t begin_signal_setting = NULL;
4284     signal_setting_t end_signal_setting = NULL;
4285     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4286                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4287     if (begin_signal_setting != NULL) {
4288       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4289                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4290       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4291                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4292       libjsig_is_loaded = true;
4293       assert(UseSignalChaining, "should enable signal-chaining");
4294     }
4295     if (libjsig_is_loaded) {
4296       // Tell libjsig jvm is setting signal handlers
4297       (*begin_signal_setting)();
4298     }
4299 
4300     set_signal_handler(SIGSEGV, true);
4301     set_signal_handler(SIGPIPE, true);
4302     set_signal_handler(SIGBUS, true);
4303     set_signal_handler(SIGILL, true);
4304     set_signal_handler(SIGFPE, true);
4305 #if defined(PPC64)
4306     set_signal_handler(SIGTRAP, true);
4307 #endif
4308     set_signal_handler(SIGXFSZ, true);
4309 
4310     if (libjsig_is_loaded) {
4311       // Tell libjsig jvm finishes setting signal handlers
4312       (*end_signal_setting)();
4313     }
4314 
4315     // We don't activate signal checker if libjsig is in place, we trust ourselves
4316     // and if UserSignalHandler is installed all bets are off.
4317     // Log that signal checking is off only if -verbose:jni is specified.
4318     if (CheckJNICalls) {
4319       if (libjsig_is_loaded) {
4320         if (PrintJNIResolving) {
4321           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4322         }
4323         check_signals = false;
4324       }
4325       if (AllowUserSignalHandlers) {
4326         if (PrintJNIResolving) {
4327           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4328         }
4329         check_signals = false;
4330       }
4331     }
4332   }
4333 }
4334 
4335 // This is the fastest way to get thread cpu time on Linux.
4336 // Returns cpu time (user+sys) for any thread, not only for current.
4337 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4338 // It might work on 2.6.10+ with a special kernel/glibc patch.
4339 // For reference, please, see IEEE Std 1003.1-2004:
4340 //   http://www.unix.org/single_unix_specification
4341 
4342 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4343   struct timespec tp;
4344   int rc = os::Linux::clock_gettime(clockid, &tp);
4345   assert(rc == 0, "clock_gettime is expected to return 0 code");
4346 
4347   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4348 }
4349 
4350 /////
4351 // glibc on Linux platform uses non-documented flag
4352 // to indicate, that some special sort of signal
4353 // trampoline is used.
4354 // We will never set this flag, and we should
4355 // ignore this flag in our diagnostic
4356 #ifdef SIGNIFICANT_SIGNAL_MASK
4357 #undef SIGNIFICANT_SIGNAL_MASK
4358 #endif
4359 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4360 
4361 static const char* get_signal_handler_name(address handler,
4362                                            char* buf, int buflen) {
4363   int offset;
4364   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4365   if (found) {
4366     // skip directory names
4367     const char *p1, *p2;
4368     p1 = buf;
4369     size_t len = strlen(os::file_separator());
4370     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4371     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4372   } else {
4373     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4374   }
4375   return buf;
4376 }
4377 
4378 static void print_signal_handler(outputStream* st, int sig,
4379                                  char* buf, size_t buflen) {
4380   struct sigaction sa;
4381 
4382   sigaction(sig, NULL, &sa);
4383 
4384   // See comment for SIGNIFICANT_SIGNAL_MASK define
4385   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4386 
4387   st->print("%s: ", os::exception_name(sig, buf, buflen));
4388 
4389   address handler = (sa.sa_flags & SA_SIGINFO)
4390     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4391     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4392 
4393   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4394     st->print("SIG_DFL");
4395   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4396     st->print("SIG_IGN");
4397   } else {
4398     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4399   }
4400 
4401   st->print(", sa_mask[0]=");
4402   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4403 
4404   address rh = VMError::get_resetted_sighandler(sig);
4405   // May be, handler was resetted by VMError?
4406   if(rh != NULL) {
4407     handler = rh;
4408     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4409   }
4410 
4411   st->print(", sa_flags=");
4412   os::Posix::print_sa_flags(st, sa.sa_flags);
4413 
4414   // Check: is it our handler?
4415   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4416      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4417     // It is our signal handler
4418     // check for flags, reset system-used one!
4419     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4420       st->print(
4421                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4422                 os::Linux::get_our_sigflags(sig));
4423     }
4424   }
4425   st->cr();
4426 }
4427 
4428 
4429 #define DO_SIGNAL_CHECK(sig) \
4430   if (!sigismember(&check_signal_done, sig)) \
4431     os::Linux::check_signal_handler(sig)
4432 
4433 // This method is a periodic task to check for misbehaving JNI applications
4434 // under CheckJNI, we can add any periodic checks here
4435 
4436 void os::run_periodic_checks() {
4437 
4438   if (check_signals == false) return;
4439 
4440   // SEGV and BUS if overridden could potentially prevent
4441   // generation of hs*.log in the event of a crash, debugging
4442   // such a case can be very challenging, so we absolutely
4443   // check the following for a good measure:
4444   DO_SIGNAL_CHECK(SIGSEGV);
4445   DO_SIGNAL_CHECK(SIGILL);
4446   DO_SIGNAL_CHECK(SIGFPE);
4447   DO_SIGNAL_CHECK(SIGBUS);
4448   DO_SIGNAL_CHECK(SIGPIPE);
4449   DO_SIGNAL_CHECK(SIGXFSZ);
4450 #if defined(PPC64)
4451   DO_SIGNAL_CHECK(SIGTRAP);
4452 #endif
4453 
4454   // ReduceSignalUsage allows the user to override these handlers
4455   // see comments at the very top and jvm_solaris.h
4456   if (!ReduceSignalUsage) {
4457     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4458     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4459     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4460     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4461   }
4462 
4463   DO_SIGNAL_CHECK(SR_signum);
4464   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4465 }
4466 
4467 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4468 
4469 static os_sigaction_t os_sigaction = NULL;
4470 
4471 void os::Linux::check_signal_handler(int sig) {
4472   char buf[O_BUFLEN];
4473   address jvmHandler = NULL;
4474 
4475 
4476   struct sigaction act;
4477   if (os_sigaction == NULL) {
4478     // only trust the default sigaction, in case it has been interposed
4479     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4480     if (os_sigaction == NULL) return;
4481   }
4482 
4483   os_sigaction(sig, (struct sigaction*)NULL, &act);
4484 
4485 
4486   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4487 
4488   address thisHandler = (act.sa_flags & SA_SIGINFO)
4489     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4490     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4491 
4492 
4493   switch(sig) {
4494   case SIGSEGV:
4495   case SIGBUS:
4496   case SIGFPE:
4497   case SIGPIPE:
4498   case SIGILL:
4499   case SIGXFSZ:
4500     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4501     break;
4502 
4503   case SHUTDOWN1_SIGNAL:
4504   case SHUTDOWN2_SIGNAL:
4505   case SHUTDOWN3_SIGNAL:
4506   case BREAK_SIGNAL:
4507     jvmHandler = (address)user_handler();
4508     break;
4509 
4510   case INTERRUPT_SIGNAL:
4511     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4512     break;
4513 
4514   default:
4515     if (sig == SR_signum) {
4516       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4517     } else {
4518       return;
4519     }
4520     break;
4521   }
4522 
4523   if (thisHandler != jvmHandler) {
4524     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4525     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4526     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4527     // No need to check this sig any longer
4528     sigaddset(&check_signal_done, sig);
4529   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4530     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4531     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4532     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4533     // No need to check this sig any longer
4534     sigaddset(&check_signal_done, sig);
4535   }
4536 
4537   // Dump all the signal
4538   if (sigismember(&check_signal_done, sig)) {
4539     print_signal_handlers(tty, buf, O_BUFLEN);
4540   }
4541 }
4542 
4543 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4544 
4545 extern bool signal_name(int signo, char* buf, size_t len);
4546 
4547 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4548   if (0 < exception_code && exception_code <= SIGRTMAX) {
4549     // signal
4550     if (!signal_name(exception_code, buf, size)) {
4551       jio_snprintf(buf, size, "SIG%d", exception_code);
4552     }
4553     return buf;
4554   } else {
4555     return NULL;
4556   }
4557 }
4558 
4559 // this is called _before_ the most of global arguments have been parsed
4560 void os::init(void) {
4561   char dummy;   /* used to get a guess on initial stack address */
4562 //  first_hrtime = gethrtime();
4563 
4564   // With LinuxThreads the JavaMain thread pid (primordial thread)
4565   // is different than the pid of the java launcher thread.
4566   // So, on Linux, the launcher thread pid is passed to the VM
4567   // via the sun.java.launcher.pid property.
4568   // Use this property instead of getpid() if it was correctly passed.
4569   // See bug 6351349.
4570   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4571 
4572   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4573 
4574   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4575 
4576   init_random(1234567);
4577 
4578   ThreadCritical::initialize();
4579 
4580   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4581   if (Linux::page_size() == -1) {
4582     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4583                   strerror(errno)));
4584   }
4585   init_page_sizes((size_t) Linux::page_size());
4586 
4587   Linux::initialize_system_info();
4588 
4589   // main_thread points to the aboriginal thread
4590   Linux::_main_thread = pthread_self();
4591 
4592   Linux::clock_init();
4593   initial_time_count = javaTimeNanos();
4594 
4595   // pthread_condattr initialization for monotonic clock
4596   int status;
4597   pthread_condattr_t* _condattr = os::Linux::condAttr();
4598   if ((status = pthread_condattr_init(_condattr)) != 0) {
4599     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4600   }
4601   // Only set the clock if CLOCK_MONOTONIC is available
4602   if (os::supports_monotonic_clock()) {
4603     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4604       if (status == EINVAL) {
4605         warning("Unable to use monotonic clock with relative timed-waits" \
4606                 " - changes to the time-of-day clock may have adverse affects");
4607       } else {
4608         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4609       }
4610     }
4611   }
4612   // else it defaults to CLOCK_REALTIME
4613 
4614   pthread_mutex_init(&dl_mutex, NULL);
4615 
4616   // If the pagesize of the VM is greater than 8K determine the appropriate
4617   // number of initial guard pages.  The user can change this with the
4618   // command line arguments, if needed.
4619   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4620     StackYellowPages = 1;
4621     StackRedPages = 1;
4622     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4623   }
4624 }
4625 
4626 // To install functions for atexit system call
4627 extern "C" {
4628   static void perfMemory_exit_helper() {
4629     perfMemory_exit();
4630   }
4631 }
4632 
4633 // this is called _after_ the global arguments have been parsed
4634 jint os::init_2(void)
4635 {
4636   Linux::fast_thread_clock_init();
4637 
4638   // Allocate a single page and mark it as readable for safepoint polling
4639   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4640   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4641 
4642   os::set_polling_page( polling_page );
4643 
4644 #ifndef PRODUCT
4645   if(Verbose && PrintMiscellaneous)
4646     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4647 #endif
4648 
4649   if (!UseMembar) {
4650     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4651     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4652     os::set_memory_serialize_page( mem_serialize_page );
4653 
4654 #ifndef PRODUCT
4655     if(Verbose && PrintMiscellaneous)
4656       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4657 #endif
4658   }
4659 
4660   // initialize suspend/resume support - must do this before signal_sets_init()
4661   if (SR_initialize() != 0) {
4662     perror("SR_initialize failed");
4663     return JNI_ERR;
4664   }
4665 
4666   Linux::signal_sets_init();
4667   Linux::install_signal_handlers();
4668 
4669   // Check minimum allowable stack size for thread creation and to initialize
4670   // the java system classes, including StackOverflowError - depends on page
4671   // size.  Add a page for compiler2 recursion in main thread.
4672   // Add in 2*BytesPerWord times page size to account for VM stack during
4673   // class initialization depending on 32 or 64 bit VM.
4674   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4675             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4676                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4677 
4678   size_t threadStackSizeInBytes = ThreadStackSize * K;
4679   if (threadStackSizeInBytes != 0 &&
4680       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4681         tty->print_cr("\nThe stack size specified is too small, "
4682                       "Specify at least %dk",
4683                       os::Linux::min_stack_allowed/ K);
4684         return JNI_ERR;
4685   }
4686 
4687   // Make the stack size a multiple of the page size so that
4688   // the yellow/red zones can be guarded.
4689   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4690         vm_page_size()));
4691 
4692   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4693 
4694 #if defined(IA32)
4695   workaround_expand_exec_shield_cs_limit();
4696 #endif
4697 
4698   Linux::libpthread_init();
4699   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4700      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4701           Linux::glibc_version(), Linux::libpthread_version(),
4702           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4703   }
4704 
4705   if (UseNUMA) {
4706     if (!Linux::libnuma_init()) {
4707       UseNUMA = false;
4708     } else {
4709       if ((Linux::numa_max_node() < 1)) {
4710         // There's only one node(they start from 0), disable NUMA.
4711         UseNUMA = false;
4712       }
4713     }
4714     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4715     // we can make the adaptive lgrp chunk resizing work. If the user specified
4716     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4717     // disable adaptive resizing.
4718     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4719       if (FLAG_IS_DEFAULT(UseNUMA)) {
4720         UseNUMA = false;
4721       } else {
4722         if (FLAG_IS_DEFAULT(UseLargePages) &&
4723             FLAG_IS_DEFAULT(UseSHM) &&
4724             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4725           UseLargePages = false;
4726         } else {
4727           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4728           UseAdaptiveSizePolicy = false;
4729           UseAdaptiveNUMAChunkSizing = false;
4730         }
4731       }
4732     }
4733     if (!UseNUMA && ForceNUMA) {
4734       UseNUMA = true;
4735     }
4736   }
4737 
4738   if (MaxFDLimit) {
4739     // set the number of file descriptors to max. print out error
4740     // if getrlimit/setrlimit fails but continue regardless.
4741     struct rlimit nbr_files;
4742     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4743     if (status != 0) {
4744       if (PrintMiscellaneous && (Verbose || WizardMode))
4745         perror("os::init_2 getrlimit failed");
4746     } else {
4747       nbr_files.rlim_cur = nbr_files.rlim_max;
4748       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4749       if (status != 0) {
4750         if (PrintMiscellaneous && (Verbose || WizardMode))
4751           perror("os::init_2 setrlimit failed");
4752       }
4753     }
4754   }
4755 
4756   // Initialize lock used to serialize thread creation (see os::create_thread)
4757   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4758 
4759   // at-exit methods are called in the reverse order of their registration.
4760   // atexit functions are called on return from main or as a result of a
4761   // call to exit(3C). There can be only 32 of these functions registered
4762   // and atexit() does not set errno.
4763 
4764   if (PerfAllowAtExitRegistration) {
4765     // only register atexit functions if PerfAllowAtExitRegistration is set.
4766     // atexit functions can be delayed until process exit time, which
4767     // can be problematic for embedded VM situations. Embedded VMs should
4768     // call DestroyJavaVM() to assure that VM resources are released.
4769 
4770     // note: perfMemory_exit_helper atexit function may be removed in
4771     // the future if the appropriate cleanup code can be added to the
4772     // VM_Exit VMOperation's doit method.
4773     if (atexit(perfMemory_exit_helper) != 0) {
4774       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4775     }
4776   }
4777 
4778   // initialize thread priority policy
4779   prio_init();
4780 
4781   return JNI_OK;
4782 }
4783 
4784 // this is called at the end of vm_initialization
4785 void os::init_3(void) {
4786 #ifdef JAVASE_EMBEDDED
4787   // Start the MemNotifyThread
4788   if (LowMemoryProtection) {
4789     MemNotifyThread::start();
4790   }
4791   return;
4792 #endif
4793 }
4794 
4795 // Mark the polling page as unreadable
4796 void os::make_polling_page_unreadable(void) {
4797   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4798     fatal("Could not disable polling page");
4799 };
4800 
4801 // Mark the polling page as readable
4802 void os::make_polling_page_readable(void) {
4803   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4804     fatal("Could not enable polling page");
4805   }
4806 };
4807 
4808 int os::active_processor_count() {
4809   // Linux doesn't yet have a (official) notion of processor sets,
4810   // so just return the number of online processors.
4811   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4812   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4813   return online_cpus;
4814 }
4815 
4816 void os::set_native_thread_name(const char *name) {
4817   // Not yet implemented.
4818   return;
4819 }
4820 
4821 bool os::distribute_processes(uint length, uint* distribution) {
4822   // Not yet implemented.
4823   return false;
4824 }
4825 
4826 bool os::bind_to_processor(uint processor_id) {
4827   // Not yet implemented.
4828   return false;
4829 }
4830 
4831 ///
4832 
4833 void os::SuspendedThreadTask::internal_do_task() {
4834   if (do_suspend(_thread->osthread())) {
4835     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4836     do_task(context);
4837     do_resume(_thread->osthread());
4838   }
4839 }
4840 
4841 class PcFetcher : public os::SuspendedThreadTask {
4842 public:
4843   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4844   ExtendedPC result();
4845 protected:
4846   void do_task(const os::SuspendedThreadTaskContext& context);
4847 private:
4848   ExtendedPC _epc;
4849 };
4850 
4851 ExtendedPC PcFetcher::result() {
4852   guarantee(is_done(), "task is not done yet.");
4853   return _epc;
4854 }
4855 
4856 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4857   Thread* thread = context.thread();
4858   OSThread* osthread = thread->osthread();
4859   if (osthread->ucontext() != NULL) {
4860     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4861   } else {
4862     // NULL context is unexpected, double-check this is the VMThread
4863     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4864   }
4865 }
4866 
4867 // Suspends the target using the signal mechanism and then grabs the PC before
4868 // resuming the target. Used by the flat-profiler only
4869 ExtendedPC os::get_thread_pc(Thread* thread) {
4870   // Make sure that it is called by the watcher for the VMThread
4871   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4872   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4873 
4874   PcFetcher fetcher(thread);
4875   fetcher.run();
4876   return fetcher.result();
4877 }
4878 
4879 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4880 {
4881    if (is_NPTL()) {
4882       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4883    } else {
4884       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4885       // word back to default 64bit precision if condvar is signaled. Java
4886       // wants 53bit precision.  Save and restore current value.
4887       int fpu = get_fpu_control_word();
4888       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4889       set_fpu_control_word(fpu);
4890       return status;
4891    }
4892 }
4893 
4894 ////////////////////////////////////////////////////////////////////////////////
4895 // debug support
4896 
4897 bool os::find(address addr, outputStream* st) {
4898   Dl_info dlinfo;
4899   memset(&dlinfo, 0, sizeof(dlinfo));
4900   if (dladdr(addr, &dlinfo) != 0) {
4901     st->print(PTR_FORMAT ": ", addr);
4902     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4903       st->print("%s+%#x", dlinfo.dli_sname,
4904                  addr - (intptr_t)dlinfo.dli_saddr);
4905     } else if (dlinfo.dli_fbase != NULL) {
4906       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4907     } else {
4908       st->print("<absolute address>");
4909     }
4910     if (dlinfo.dli_fname != NULL) {
4911       st->print(" in %s", dlinfo.dli_fname);
4912     }
4913     if (dlinfo.dli_fbase != NULL) {
4914       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4915     }
4916     st->cr();
4917 
4918     if (Verbose) {
4919       // decode some bytes around the PC
4920       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4921       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4922       address       lowest = (address) dlinfo.dli_sname;
4923       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4924       if (begin < lowest)  begin = lowest;
4925       Dl_info dlinfo2;
4926       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4927           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4928         end = (address) dlinfo2.dli_saddr;
4929       Disassembler::decode(begin, end, st);
4930     }
4931     return true;
4932   }
4933   return false;
4934 }
4935 
4936 ////////////////////////////////////////////////////////////////////////////////
4937 // misc
4938 
4939 // This does not do anything on Linux. This is basically a hook for being
4940 // able to use structured exception handling (thread-local exception filters)
4941 // on, e.g., Win32.
4942 void
4943 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4944                          JavaCallArguments* args, Thread* thread) {
4945   f(value, method, args, thread);
4946 }
4947 
4948 void os::print_statistics() {
4949 }
4950 
4951 int os::message_box(const char* title, const char* message) {
4952   int i;
4953   fdStream err(defaultStream::error_fd());
4954   for (i = 0; i < 78; i++) err.print_raw("=");
4955   err.cr();
4956   err.print_raw_cr(title);
4957   for (i = 0; i < 78; i++) err.print_raw("-");
4958   err.cr();
4959   err.print_raw_cr(message);
4960   for (i = 0; i < 78; i++) err.print_raw("=");
4961   err.cr();
4962 
4963   char buf[16];
4964   // Prevent process from exiting upon "read error" without consuming all CPU
4965   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4966 
4967   return buf[0] == 'y' || buf[0] == 'Y';
4968 }
4969 
4970 int os::stat(const char *path, struct stat *sbuf) {
4971   char pathbuf[MAX_PATH];
4972   if (strlen(path) > MAX_PATH - 1) {
4973     errno = ENAMETOOLONG;
4974     return -1;
4975   }
4976   os::native_path(strcpy(pathbuf, path));
4977   return ::stat(pathbuf, sbuf);
4978 }
4979 
4980 bool os::check_heap(bool force) {
4981   return true;
4982 }
4983 
4984 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4985   return ::vsnprintf(buf, count, format, args);
4986 }
4987 
4988 // Is a (classpath) directory empty?
4989 bool os::dir_is_empty(const char* path) {
4990   DIR *dir = NULL;
4991   struct dirent *ptr;
4992 
4993   dir = opendir(path);
4994   if (dir == NULL) return true;
4995 
4996   /* Scan the directory */
4997   bool result = true;
4998   char buf[sizeof(struct dirent) + MAX_PATH];
4999   while (result && (ptr = ::readdir(dir)) != NULL) {
5000     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5001       result = false;
5002     }
5003   }
5004   closedir(dir);
5005   return result;
5006 }
5007 
5008 // This code originates from JDK's sysOpen and open64_w
5009 // from src/solaris/hpi/src/system_md.c
5010 
5011 #ifndef O_DELETE
5012 #define O_DELETE 0x10000
5013 #endif
5014 
5015 // Open a file. Unlink the file immediately after open returns
5016 // if the specified oflag has the O_DELETE flag set.
5017 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5018 
5019 int os::open(const char *path, int oflag, int mode) {
5020 
5021   if (strlen(path) > MAX_PATH - 1) {
5022     errno = ENAMETOOLONG;
5023     return -1;
5024   }
5025   int fd;
5026   int o_delete = (oflag & O_DELETE);
5027   oflag = oflag & ~O_DELETE;
5028 
5029   fd = ::open64(path, oflag, mode);
5030   if (fd == -1) return -1;
5031 
5032   //If the open succeeded, the file might still be a directory
5033   {
5034     struct stat64 buf64;
5035     int ret = ::fstat64(fd, &buf64);
5036     int st_mode = buf64.st_mode;
5037 
5038     if (ret != -1) {
5039       if ((st_mode & S_IFMT) == S_IFDIR) {
5040         errno = EISDIR;
5041         ::close(fd);
5042         return -1;
5043       }
5044     } else {
5045       ::close(fd);
5046       return -1;
5047     }
5048   }
5049 
5050     /*
5051      * All file descriptors that are opened in the JVM and not
5052      * specifically destined for a subprocess should have the
5053      * close-on-exec flag set.  If we don't set it, then careless 3rd
5054      * party native code might fork and exec without closing all
5055      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5056      * UNIXProcess.c), and this in turn might:
5057      *
5058      * - cause end-of-file to fail to be detected on some file
5059      *   descriptors, resulting in mysterious hangs, or
5060      *
5061      * - might cause an fopen in the subprocess to fail on a system
5062      *   suffering from bug 1085341.
5063      *
5064      * (Yes, the default setting of the close-on-exec flag is a Unix
5065      * design flaw)
5066      *
5067      * See:
5068      * 1085341: 32-bit stdio routines should support file descriptors >255
5069      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5070      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5071      */
5072 #ifdef FD_CLOEXEC
5073     {
5074         int flags = ::fcntl(fd, F_GETFD);
5075         if (flags != -1)
5076             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5077     }
5078 #endif
5079 
5080   if (o_delete != 0) {
5081     ::unlink(path);
5082   }
5083   return fd;
5084 }
5085 
5086 
5087 // create binary file, rewriting existing file if required
5088 int os::create_binary_file(const char* path, bool rewrite_existing) {
5089   int oflags = O_WRONLY | O_CREAT;
5090   if (!rewrite_existing) {
5091     oflags |= O_EXCL;
5092   }
5093   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5094 }
5095 
5096 // return current position of file pointer
5097 jlong os::current_file_offset(int fd) {
5098   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5099 }
5100 
5101 // move file pointer to the specified offset
5102 jlong os::seek_to_file_offset(int fd, jlong offset) {
5103   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5104 }
5105 
5106 // This code originates from JDK's sysAvailable
5107 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5108 
5109 int os::available(int fd, jlong *bytes) {
5110   jlong cur, end;
5111   int mode;
5112   struct stat64 buf64;
5113 
5114   if (::fstat64(fd, &buf64) >= 0) {
5115     mode = buf64.st_mode;
5116     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5117       /*
5118       * XXX: is the following call interruptible? If so, this might
5119       * need to go through the INTERRUPT_IO() wrapper as for other
5120       * blocking, interruptible calls in this file.
5121       */
5122       int n;
5123       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5124         *bytes = n;
5125         return 1;
5126       }
5127     }
5128   }
5129   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5130     return 0;
5131   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5132     return 0;
5133   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5134     return 0;
5135   }
5136   *bytes = end - cur;
5137   return 1;
5138 }
5139 
5140 int os::socket_available(int fd, jint *pbytes) {
5141   // Linux doc says EINTR not returned, unlike Solaris
5142   int ret = ::ioctl(fd, FIONREAD, pbytes);
5143 
5144   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5145   // is expected to return 0 on failure and 1 on success to the jdk.
5146   return (ret < 0) ? 0 : 1;
5147 }
5148 
5149 // Map a block of memory.
5150 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5151                      char *addr, size_t bytes, bool read_only,
5152                      bool allow_exec) {
5153   int prot;
5154   int flags = MAP_PRIVATE;
5155 
5156   if (read_only) {
5157     prot = PROT_READ;
5158   } else {
5159     prot = PROT_READ | PROT_WRITE;
5160   }
5161 
5162   if (allow_exec) {
5163     prot |= PROT_EXEC;
5164   }
5165 
5166   if (addr != NULL) {
5167     flags |= MAP_FIXED;
5168   }
5169 
5170   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5171                                      fd, file_offset);
5172   if (mapped_address == MAP_FAILED) {
5173     return NULL;
5174   }
5175   return mapped_address;
5176 }
5177 
5178 
5179 // Remap a block of memory.
5180 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5181                        char *addr, size_t bytes, bool read_only,
5182                        bool allow_exec) {
5183   // same as map_memory() on this OS
5184   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5185                         allow_exec);
5186 }
5187 
5188 
5189 // Unmap a block of memory.
5190 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5191   return munmap(addr, bytes) == 0;
5192 }
5193 
5194 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5195 
5196 static clockid_t thread_cpu_clockid(Thread* thread) {
5197   pthread_t tid = thread->osthread()->pthread_id();
5198   clockid_t clockid;
5199 
5200   // Get thread clockid
5201   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5202   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5203   return clockid;
5204 }
5205 
5206 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5207 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5208 // of a thread.
5209 //
5210 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5211 // the fast estimate available on the platform.
5212 
5213 jlong os::current_thread_cpu_time() {
5214   if (os::Linux::supports_fast_thread_cpu_time()) {
5215     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5216   } else {
5217     // return user + sys since the cost is the same
5218     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5219   }
5220 }
5221 
5222 jlong os::thread_cpu_time(Thread* thread) {
5223   // consistent with what current_thread_cpu_time() returns
5224   if (os::Linux::supports_fast_thread_cpu_time()) {
5225     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5226   } else {
5227     return slow_thread_cpu_time(thread, true /* user + sys */);
5228   }
5229 }
5230 
5231 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5232   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5233     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5234   } else {
5235     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5236   }
5237 }
5238 
5239 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5240   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5241     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5242   } else {
5243     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5244   }
5245 }
5246 
5247 //
5248 //  -1 on error.
5249 //
5250 
5251 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5252   static bool proc_task_unchecked = true;
5253   pid_t  tid = thread->osthread()->thread_id();
5254   char *s;
5255   char stat[2048];
5256   int statlen;
5257   char proc_name[64];
5258   int count;
5259   long sys_time, user_time;
5260   char cdummy;
5261   int idummy;
5262   long ldummy;
5263   FILE *fp;
5264 
5265   snprintf(proc_name, 64, "/proc/%d/stat", tid);
5266 
5267   // The /proc/<tid>/stat aggregates per-process usage on
5268   // new Linux kernels 2.6+ where NPTL is supported.
5269   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5270   // See bug 6328462.
5271   // There possibly can be cases where there is no directory
5272   // /proc/self/task, so we check its availability.
5273   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5274     // This is executed only once
5275     proc_task_unchecked = false;
5276     fp = fopen("/proc/self/task", "r");
5277     if (fp != NULL) {
5278       snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5279       fclose(fp);
5280     }
5281   }
5282 
5283   fp = fopen(proc_name, "r");
5284   if ( fp == NULL ) return -1;
5285   statlen = fread(stat, 1, 2047, fp);
5286   stat[statlen] = '\0';
5287   fclose(fp);
5288 
5289   // Skip pid and the command string. Note that we could be dealing with
5290   // weird command names, e.g. user could decide to rename java launcher
5291   // to "java 1.4.2 :)", then the stat file would look like
5292   //                1234 (java 1.4.2 :)) R ... ...
5293   // We don't really need to know the command string, just find the last
5294   // occurrence of ")" and then start parsing from there. See bug 4726580.
5295   s = strrchr(stat, ')');
5296   if (s == NULL ) return -1;
5297 
5298   // Skip blank chars
5299   do s++; while (isspace(*s));
5300 
5301   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5302                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5303                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5304                  &user_time, &sys_time);
5305   if ( count != 13 ) return -1;
5306   if (user_sys_cpu_time) {
5307     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5308   } else {
5309     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5310   }
5311 }
5312 
5313 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5314   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5315   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5316   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5317   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5318 }
5319 
5320 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5321   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5322   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5323   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5324   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5325 }
5326 
5327 bool os::is_thread_cpu_time_supported() {
5328   return true;
5329 }
5330 
5331 // System loadavg support.  Returns -1 if load average cannot be obtained.
5332 // Linux doesn't yet have a (official) notion of processor sets,
5333 // so just return the system wide load average.
5334 int os::loadavg(double loadavg[], int nelem) {
5335   return ::getloadavg(loadavg, nelem);
5336 }
5337 
5338 void os::pause() {
5339   char filename[MAX_PATH];
5340   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5341     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5342   } else {
5343     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5344   }
5345 
5346   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5347   if (fd != -1) {
5348     struct stat buf;
5349     ::close(fd);
5350     while (::stat(filename, &buf) == 0) {
5351       (void)::poll(NULL, 0, 100);
5352     }
5353   } else {
5354     jio_fprintf(stderr,
5355       "Could not open pause file '%s', continuing immediately.\n", filename);
5356   }
5357 }
5358 
5359 
5360 // Refer to the comments in os_solaris.cpp park-unpark.
5361 //
5362 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5363 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5364 // For specifics regarding the bug see GLIBC BUGID 261237 :
5365 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5366 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5367 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5368 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5369 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5370 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5371 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5372 // of libpthread avoids the problem, but isn't practical.
5373 //
5374 // Possible remedies:
5375 //
5376 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5377 //      This is palliative and probabilistic, however.  If the thread is preempted
5378 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5379 //      than the minimum period may have passed, and the abstime may be stale (in the
5380 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5381 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5382 //
5383 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5384 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5385 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5386 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5387 //      thread.
5388 //
5389 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5390 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5391 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5392 //      This also works well.  In fact it avoids kernel-level scalability impediments
5393 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5394 //      timers in a graceful fashion.
5395 //
5396 // 4.   When the abstime value is in the past it appears that control returns
5397 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5398 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5399 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5400 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5401 //      It may be possible to avoid reinitialization by checking the return
5402 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5403 //      condvar we must establish the invariant that cond_signal() is only called
5404 //      within critical sections protected by the adjunct mutex.  This prevents
5405 //      cond_signal() from "seeing" a condvar that's in the midst of being
5406 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5407 //      desirable signal-after-unlock optimization that avoids futile context switching.
5408 //
5409 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5410 //      structure when a condvar is used or initialized.  cond_destroy()  would
5411 //      release the helper structure.  Our reinitialize-after-timedwait fix
5412 //      put excessive stress on malloc/free and locks protecting the c-heap.
5413 //
5414 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5415 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5416 // and only enabling the work-around for vulnerable environments.
5417 
5418 // utility to compute the abstime argument to timedwait:
5419 // millis is the relative timeout time
5420 // abstime will be the absolute timeout time
5421 // TODO: replace compute_abstime() with unpackTime()
5422 
5423 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5424   if (millis < 0)  millis = 0;
5425 
5426   jlong seconds = millis / 1000;
5427   millis %= 1000;
5428   if (seconds > 50000000) { // see man cond_timedwait(3T)
5429     seconds = 50000000;
5430   }
5431 
5432   if (os::supports_monotonic_clock()) {
5433     struct timespec now;
5434     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5435     assert_status(status == 0, status, "clock_gettime");
5436     abstime->tv_sec = now.tv_sec  + seconds;
5437     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5438     if (nanos >= NANOSECS_PER_SEC) {
5439       abstime->tv_sec += 1;
5440       nanos -= NANOSECS_PER_SEC;
5441     }
5442     abstime->tv_nsec = nanos;
5443   } else {
5444     struct timeval now;
5445     int status = gettimeofday(&now, NULL);
5446     assert(status == 0, "gettimeofday");
5447     abstime->tv_sec = now.tv_sec  + seconds;
5448     long usec = now.tv_usec + millis * 1000;
5449     if (usec >= 1000000) {
5450       abstime->tv_sec += 1;
5451       usec -= 1000000;
5452     }
5453     abstime->tv_nsec = usec * 1000;
5454   }
5455   return abstime;
5456 }
5457 
5458 
5459 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5460 // Conceptually TryPark() should be equivalent to park(0).
5461 
5462 int os::PlatformEvent::TryPark() {
5463   for (;;) {
5464     const int v = _Event ;
5465     guarantee ((v == 0) || (v == 1), "invariant") ;
5466     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5467   }
5468 }
5469 
5470 void os::PlatformEvent::park() {       // AKA "down()"
5471   // Invariant: Only the thread associated with the Event/PlatformEvent
5472   // may call park().
5473   // TODO: assert that _Assoc != NULL or _Assoc == Self
5474   int v ;
5475   for (;;) {
5476       v = _Event ;
5477       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5478   }
5479   guarantee (v >= 0, "invariant") ;
5480   if (v == 0) {
5481      // Do this the hard way by blocking ...
5482      int status = pthread_mutex_lock(_mutex);
5483      assert_status(status == 0, status, "mutex_lock");
5484      guarantee (_nParked == 0, "invariant") ;
5485      ++ _nParked ;
5486      while (_Event < 0) {
5487         status = pthread_cond_wait(_cond, _mutex);
5488         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5489         // Treat this the same as if the wait was interrupted
5490         if (status == ETIME) { status = EINTR; }
5491         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5492      }
5493      -- _nParked ;
5494 
5495     _Event = 0 ;
5496      status = pthread_mutex_unlock(_mutex);
5497      assert_status(status == 0, status, "mutex_unlock");
5498     // Paranoia to ensure our locked and lock-free paths interact
5499     // correctly with each other.
5500     OrderAccess::fence();
5501   }
5502   guarantee (_Event >= 0, "invariant") ;
5503 }
5504 
5505 int os::PlatformEvent::park(jlong millis) {
5506   guarantee (_nParked == 0, "invariant") ;
5507 
5508   int v ;
5509   for (;;) {
5510       v = _Event ;
5511       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5512   }
5513   guarantee (v >= 0, "invariant") ;
5514   if (v != 0) return OS_OK ;
5515 
5516   // We do this the hard way, by blocking the thread.
5517   // Consider enforcing a minimum timeout value.
5518   struct timespec abst;
5519   compute_abstime(&abst, millis);
5520 
5521   int ret = OS_TIMEOUT;
5522   int status = pthread_mutex_lock(_mutex);
5523   assert_status(status == 0, status, "mutex_lock");
5524   guarantee (_nParked == 0, "invariant") ;
5525   ++_nParked ;
5526 
5527   // Object.wait(timo) will return because of
5528   // (a) notification
5529   // (b) timeout
5530   // (c) thread.interrupt
5531   //
5532   // Thread.interrupt and object.notify{All} both call Event::set.
5533   // That is, we treat thread.interrupt as a special case of notification.
5534   // The underlying Solaris implementation, cond_timedwait, admits
5535   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5536   // JVM from making those visible to Java code.  As such, we must
5537   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5538   //
5539   // TODO: properly differentiate simultaneous notify+interrupt.
5540   // In that case, we should propagate the notify to another waiter.
5541 
5542   while (_Event < 0) {
5543     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5544     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5545       pthread_cond_destroy (_cond);
5546       pthread_cond_init (_cond, os::Linux::condAttr()) ;
5547     }
5548     assert_status(status == 0 || status == EINTR ||
5549                   status == ETIME || status == ETIMEDOUT,
5550                   status, "cond_timedwait");
5551     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5552     if (status == ETIME || status == ETIMEDOUT) break ;
5553     // We consume and ignore EINTR and spurious wakeups.
5554   }
5555   --_nParked ;
5556   if (_Event >= 0) {
5557      ret = OS_OK;
5558   }
5559   _Event = 0 ;
5560   status = pthread_mutex_unlock(_mutex);
5561   assert_status(status == 0, status, "mutex_unlock");
5562   assert (_nParked == 0, "invariant") ;
5563   // Paranoia to ensure our locked and lock-free paths interact
5564   // correctly with each other.
5565   OrderAccess::fence();
5566   return ret;
5567 }
5568 
5569 void os::PlatformEvent::unpark() {
5570   // Transitions for _Event:
5571   //    0 :=> 1
5572   //    1 :=> 1
5573   //   -1 :=> either 0 or 1; must signal target thread
5574   //          That is, we can safely transition _Event from -1 to either
5575   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5576   //          unpark() calls.
5577   // See also: "Semaphores in Plan 9" by Mullender & Cox
5578   //
5579   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5580   // that it will take two back-to-back park() calls for the owning
5581   // thread to block. This has the benefit of forcing a spurious return
5582   // from the first park() call after an unpark() call which will help
5583   // shake out uses of park() and unpark() without condition variables.
5584 
5585   if (Atomic::xchg(1, &_Event) >= 0) return;
5586 
5587   // Wait for the thread associated with the event to vacate
5588   int status = pthread_mutex_lock(_mutex);
5589   assert_status(status == 0, status, "mutex_lock");
5590   int AnyWaiters = _nParked;
5591   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5592   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5593     AnyWaiters = 0;
5594     pthread_cond_signal(_cond);
5595   }
5596   status = pthread_mutex_unlock(_mutex);
5597   assert_status(status == 0, status, "mutex_unlock");
5598   if (AnyWaiters != 0) {
5599     status = pthread_cond_signal(_cond);
5600     assert_status(status == 0, status, "cond_signal");
5601   }
5602 
5603   // Note that we signal() _after dropping the lock for "immortal" Events.
5604   // This is safe and avoids a common class of  futile wakeups.  In rare
5605   // circumstances this can cause a thread to return prematurely from
5606   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5607   // simply re-test the condition and re-park itself.
5608 }
5609 
5610 
5611 // JSR166
5612 // -------------------------------------------------------
5613 
5614 /*
5615  * The solaris and linux implementations of park/unpark are fairly
5616  * conservative for now, but can be improved. They currently use a
5617  * mutex/condvar pair, plus a a count.
5618  * Park decrements count if > 0, else does a condvar wait.  Unpark
5619  * sets count to 1 and signals condvar.  Only one thread ever waits
5620  * on the condvar. Contention seen when trying to park implies that someone
5621  * is unparking you, so don't wait. And spurious returns are fine, so there
5622  * is no need to track notifications.
5623  */
5624 
5625 #define MAX_SECS 100000000
5626 /*
5627  * This code is common to linux and solaris and will be moved to a
5628  * common place in dolphin.
5629  *
5630  * The passed in time value is either a relative time in nanoseconds
5631  * or an absolute time in milliseconds. Either way it has to be unpacked
5632  * into suitable seconds and nanoseconds components and stored in the
5633  * given timespec structure.
5634  * Given time is a 64-bit value and the time_t used in the timespec is only
5635  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5636  * overflow if times way in the future are given. Further on Solaris versions
5637  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5638  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5639  * As it will be 28 years before "now + 100000000" will overflow we can
5640  * ignore overflow and just impose a hard-limit on seconds using the value
5641  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5642  * years from "now".
5643  */
5644 
5645 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5646   assert (time > 0, "convertTime");
5647   time_t max_secs = 0;
5648 
5649   if (!os::supports_monotonic_clock() || isAbsolute) {
5650     struct timeval now;
5651     int status = gettimeofday(&now, NULL);
5652     assert(status == 0, "gettimeofday");
5653 
5654     max_secs = now.tv_sec + MAX_SECS;
5655 
5656     if (isAbsolute) {
5657       jlong secs = time / 1000;
5658       if (secs > max_secs) {
5659         absTime->tv_sec = max_secs;
5660       } else {
5661         absTime->tv_sec = secs;
5662       }
5663       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5664     } else {
5665       jlong secs = time / NANOSECS_PER_SEC;
5666       if (secs >= MAX_SECS) {
5667         absTime->tv_sec = max_secs;
5668         absTime->tv_nsec = 0;
5669       } else {
5670         absTime->tv_sec = now.tv_sec + secs;
5671         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5672         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5673           absTime->tv_nsec -= NANOSECS_PER_SEC;
5674           ++absTime->tv_sec; // note: this must be <= max_secs
5675         }
5676       }
5677     }
5678   } else {
5679     // must be relative using monotonic clock
5680     struct timespec now;
5681     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5682     assert_status(status == 0, status, "clock_gettime");
5683     max_secs = now.tv_sec + MAX_SECS;
5684     jlong secs = time / NANOSECS_PER_SEC;
5685     if (secs >= MAX_SECS) {
5686       absTime->tv_sec = max_secs;
5687       absTime->tv_nsec = 0;
5688     } else {
5689       absTime->tv_sec = now.tv_sec + secs;
5690       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5691       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5692         absTime->tv_nsec -= NANOSECS_PER_SEC;
5693         ++absTime->tv_sec; // note: this must be <= max_secs
5694       }
5695     }
5696   }
5697   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5698   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5699   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5700   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5701 }
5702 
5703 void Parker::park(bool isAbsolute, jlong time) {
5704   // Ideally we'd do something useful while spinning, such
5705   // as calling unpackTime().
5706 
5707   // Optional fast-path check:
5708   // Return immediately if a permit is available.
5709   // We depend on Atomic::xchg() having full barrier semantics
5710   // since we are doing a lock-free update to _counter.
5711   if (Atomic::xchg(0, &_counter) > 0) return;
5712 
5713   Thread* thread = Thread::current();
5714   assert(thread->is_Java_thread(), "Must be JavaThread");
5715   JavaThread *jt = (JavaThread *)thread;
5716 
5717   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5718   // Check interrupt before trying to wait
5719   if (Thread::is_interrupted(thread, false)) {
5720     return;
5721   }
5722 
5723   // Next, demultiplex/decode time arguments
5724   timespec absTime;
5725   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5726     return;
5727   }
5728   if (time > 0) {
5729     unpackTime(&absTime, isAbsolute, time);
5730   }
5731 
5732 
5733   // Enter safepoint region
5734   // Beware of deadlocks such as 6317397.
5735   // The per-thread Parker:: mutex is a classic leaf-lock.
5736   // In particular a thread must never block on the Threads_lock while
5737   // holding the Parker:: mutex.  If safepoints are pending both the
5738   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5739   ThreadBlockInVM tbivm(jt);
5740 
5741   // Don't wait if cannot get lock since interference arises from
5742   // unblocking.  Also. check interrupt before trying wait
5743   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5744     return;
5745   }
5746 
5747   int status ;
5748   if (_counter > 0)  { // no wait needed
5749     _counter = 0;
5750     status = pthread_mutex_unlock(_mutex);
5751     assert (status == 0, "invariant") ;
5752     // Paranoia to ensure our locked and lock-free paths interact
5753     // correctly with each other and Java-level accesses.
5754     OrderAccess::fence();
5755     return;
5756   }
5757 
5758 #ifdef ASSERT
5759   // Don't catch signals while blocked; let the running threads have the signals.
5760   // (This allows a debugger to break into the running thread.)
5761   sigset_t oldsigs;
5762   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5763   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5764 #endif
5765 
5766   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5767   jt->set_suspend_equivalent();
5768   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5769 
5770   assert(_cur_index == -1, "invariant");
5771   if (time == 0) {
5772     _cur_index = REL_INDEX; // arbitrary choice when not timed
5773     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
5774   } else {
5775     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5776     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
5777     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5778       pthread_cond_destroy (&_cond[_cur_index]) ;
5779       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5780     }
5781   }
5782   _cur_index = -1;
5783   assert_status(status == 0 || status == EINTR ||
5784                 status == ETIME || status == ETIMEDOUT,
5785                 status, "cond_timedwait");
5786 
5787 #ifdef ASSERT
5788   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5789 #endif
5790 
5791   _counter = 0 ;
5792   status = pthread_mutex_unlock(_mutex) ;
5793   assert_status(status == 0, status, "invariant") ;
5794   // Paranoia to ensure our locked and lock-free paths interact
5795   // correctly with each other and Java-level accesses.
5796   OrderAccess::fence();
5797 
5798   // If externally suspended while waiting, re-suspend
5799   if (jt->handle_special_suspend_equivalent_condition()) {
5800     jt->java_suspend_self();
5801   }
5802 }
5803 
5804 void Parker::unpark() {
5805   int s, status ;
5806   status = pthread_mutex_lock(_mutex);
5807   assert (status == 0, "invariant") ;
5808   s = _counter;
5809   _counter = 1;
5810   if (s < 1) {
5811     // thread might be parked
5812     if (_cur_index != -1) {
5813       // thread is definitely parked
5814       if (WorkAroundNPTLTimedWaitHang) {
5815         status = pthread_cond_signal (&_cond[_cur_index]);
5816         assert (status == 0, "invariant");
5817         status = pthread_mutex_unlock(_mutex);
5818         assert (status == 0, "invariant");
5819       } else {
5820         status = pthread_mutex_unlock(_mutex);
5821         assert (status == 0, "invariant");
5822         status = pthread_cond_signal (&_cond[_cur_index]);
5823         assert (status == 0, "invariant");
5824       }
5825     } else {
5826       pthread_mutex_unlock(_mutex);
5827       assert (status == 0, "invariant") ;
5828     }
5829   } else {
5830     pthread_mutex_unlock(_mutex);
5831     assert (status == 0, "invariant") ;
5832   }
5833 }
5834 
5835 
5836 extern char** environ;
5837 
5838 #ifndef __NR_fork
5839 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5840 #endif
5841 
5842 #ifndef __NR_execve
5843 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5844 #endif
5845 
5846 // Run the specified command in a separate process. Return its exit value,
5847 // or -1 on failure (e.g. can't fork a new process).
5848 // Unlike system(), this function can be called from signal handler. It
5849 // doesn't block SIGINT et al.
5850 int os::fork_and_exec(char* cmd) {
5851   const char * argv[4] = {"sh", "-c", cmd, NULL};
5852 
5853   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5854   // pthread_atfork handlers and reset pthread library. All we need is a
5855   // separate process to execve. Make a direct syscall to fork process.
5856   // On IA64 there's no fork syscall, we have to use fork() and hope for
5857   // the best...
5858   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5859               IA64_ONLY(fork();)
5860 
5861   if (pid < 0) {
5862     // fork failed
5863     return -1;
5864 
5865   } else if (pid == 0) {
5866     // child process
5867 
5868     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5869     // first to kill every thread on the thread list. Because this list is
5870     // not reset by fork() (see notes above), execve() will instead kill
5871     // every thread in the parent process. We know this is the only thread
5872     // in the new process, so make a system call directly.
5873     // IA64 should use normal execve() from glibc to match the glibc fork()
5874     // above.
5875     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5876     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5877 
5878     // execve failed
5879     _exit(-1);
5880 
5881   } else  {
5882     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5883     // care about the actual exit code, for now.
5884 
5885     int status;
5886 
5887     // Wait for the child process to exit.  This returns immediately if
5888     // the child has already exited. */
5889     while (waitpid(pid, &status, 0) < 0) {
5890         switch (errno) {
5891         case ECHILD: return 0;
5892         case EINTR: break;
5893         default: return -1;
5894         }
5895     }
5896 
5897     if (WIFEXITED(status)) {
5898        // The child exited normally; get its exit code.
5899        return WEXITSTATUS(status);
5900     } else if (WIFSIGNALED(status)) {
5901        // The child exited because of a signal
5902        // The best value to return is 0x80 + signal number,
5903        // because that is what all Unix shells do, and because
5904        // it allows callers to distinguish between process exit and
5905        // process death by signal.
5906        return 0x80 + WTERMSIG(status);
5907     } else {
5908        // Unknown exit code; pass it through
5909        return status;
5910     }
5911   }
5912 }
5913 
5914 // is_headless_jre()
5915 //
5916 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5917 // in order to report if we are running in a headless jre
5918 //
5919 // Since JDK8 xawt/libmawt.so was moved into the same directory
5920 // as libawt.so, and renamed libawt_xawt.so
5921 //
5922 bool os::is_headless_jre() {
5923     struct stat statbuf;
5924     char buf[MAXPATHLEN];
5925     char libmawtpath[MAXPATHLEN];
5926     const char *xawtstr  = "/xawt/libmawt.so";
5927     const char *new_xawtstr = "/libawt_xawt.so";
5928     char *p;
5929 
5930     // Get path to libjvm.so
5931     os::jvm_path(buf, sizeof(buf));
5932 
5933     // Get rid of libjvm.so
5934     p = strrchr(buf, '/');
5935     if (p == NULL) return false;
5936     else *p = '\0';
5937 
5938     // Get rid of client or server
5939     p = strrchr(buf, '/');
5940     if (p == NULL) return false;
5941     else *p = '\0';
5942 
5943     // check xawt/libmawt.so
5944     strcpy(libmawtpath, buf);
5945     strcat(libmawtpath, xawtstr);
5946     if (::stat(libmawtpath, &statbuf) == 0) return false;
5947 
5948     // check libawt_xawt.so
5949     strcpy(libmawtpath, buf);
5950     strcat(libmawtpath, new_xawtstr);
5951     if (::stat(libmawtpath, &statbuf) == 0) return false;
5952 
5953     return true;
5954 }
5955 
5956 // Get the default path to the core file
5957 // Returns the length of the string
5958 int os::get_core_path(char* buffer, size_t bufferSize) {
5959   const char* p = get_current_directory(buffer, bufferSize);
5960 
5961   if (p == NULL) {
5962     assert(p != NULL, "failed to get current directory");
5963     return 0;
5964   }
5965 
5966   return strlen(buffer);
5967 }
5968 
5969 #ifdef JAVASE_EMBEDDED
5970 //
5971 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5972 //
5973 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5974 
5975 // ctor
5976 //
5977 MemNotifyThread::MemNotifyThread(int fd): Thread() {
5978   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5979   _fd = fd;
5980 
5981   if (os::create_thread(this, os::os_thread)) {
5982     _memnotify_thread = this;
5983     os::set_priority(this, NearMaxPriority);
5984     os::start_thread(this);
5985   }
5986 }
5987 
5988 // Where all the work gets done
5989 //
5990 void MemNotifyThread::run() {
5991   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5992 
5993   // Set up the select arguments
5994   fd_set rfds;
5995   if (_fd != -1) {
5996     FD_ZERO(&rfds);
5997     FD_SET(_fd, &rfds);
5998   }
5999 
6000   // Now wait for the mem_notify device to wake up
6001   while (1) {
6002     // Wait for the mem_notify device to signal us..
6003     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6004     if (rc == -1) {
6005       perror("select!\n");
6006       break;
6007     } else if (rc) {
6008       //ssize_t free_before = os::available_memory();
6009       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6010 
6011       // The kernel is telling us there is not much memory left...
6012       // try to do something about that
6013 
6014       // If we are not already in a GC, try one.
6015       if (!Universe::heap()->is_gc_active()) {
6016         Universe::heap()->collect(GCCause::_allocation_failure);
6017 
6018         //ssize_t free_after = os::available_memory();
6019         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6020         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6021       }
6022       // We might want to do something like the following if we find the GC's are not helping...
6023       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6024     }
6025   }
6026 }
6027 
6028 //
6029 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6030 //
6031 void MemNotifyThread::start() {
6032   int    fd;
6033   fd = open ("/dev/mem_notify", O_RDONLY, 0);
6034   if (fd < 0) {
6035       return;
6036   }
6037 
6038   if (memnotify_thread() == NULL) {
6039     new MemNotifyThread(fd);
6040   }
6041 }
6042 
6043 #endif // JAVASE_EMBEDDED
6044 
6045 
6046 /////////////// Unit tests ///////////////
6047 
6048 #ifndef PRODUCT
6049 
6050 #define test_log(...) \
6051   do {\
6052     if (VerboseInternalVMTests) { \
6053       tty->print_cr(__VA_ARGS__); \
6054       tty->flush(); \
6055     }\
6056   } while (false)
6057 
6058 class TestReserveMemorySpecial : AllStatic {
6059  public:
6060   static void small_page_write(void* addr, size_t size) {
6061     size_t page_size = os::vm_page_size();
6062 
6063     char* end = (char*)addr + size;
6064     for (char* p = (char*)addr; p < end; p += page_size) {
6065       *p = 1;
6066     }
6067   }
6068 
6069   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6070     if (!UseHugeTLBFS) {
6071       return;
6072     }
6073 
6074     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6075 
6076     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6077 
6078     if (addr != NULL) {
6079       small_page_write(addr, size);
6080 
6081       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6082     }
6083   }
6084 
6085   static void test_reserve_memory_special_huge_tlbfs_only() {
6086     if (!UseHugeTLBFS) {
6087       return;
6088     }
6089 
6090     size_t lp = os::large_page_size();
6091 
6092     for (size_t size = lp; size <= lp * 10; size += lp) {
6093       test_reserve_memory_special_huge_tlbfs_only(size);
6094     }
6095   }
6096 
6097   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6098     if (!UseHugeTLBFS) {
6099         return;
6100     }
6101 
6102     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6103         size, alignment);
6104 
6105     assert(size >= os::large_page_size(), "Incorrect input to test");
6106 
6107     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6108 
6109     if (addr != NULL) {
6110       small_page_write(addr, size);
6111 
6112       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6113     }
6114   }
6115 
6116   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6117     size_t lp = os::large_page_size();
6118     size_t ag = os::vm_allocation_granularity();
6119 
6120     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6121       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6122     }
6123   }
6124 
6125   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6126     size_t lp = os::large_page_size();
6127     size_t ag = os::vm_allocation_granularity();
6128 
6129     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6130     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6131     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6132     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6133     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6134     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6135     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6136     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6137     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6138   }
6139 
6140   static void test_reserve_memory_special_huge_tlbfs() {
6141     if (!UseHugeTLBFS) {
6142       return;
6143     }
6144 
6145     test_reserve_memory_special_huge_tlbfs_only();
6146     test_reserve_memory_special_huge_tlbfs_mixed();
6147   }
6148 
6149   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6150     if (!UseSHM) {
6151       return;
6152     }
6153 
6154     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6155 
6156     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6157 
6158     if (addr != NULL) {
6159       assert(is_ptr_aligned(addr, alignment), "Check");
6160       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6161 
6162       small_page_write(addr, size);
6163 
6164       os::Linux::release_memory_special_shm(addr, size);
6165     }
6166   }
6167 
6168   static void test_reserve_memory_special_shm() {
6169     size_t lp = os::large_page_size();
6170     size_t ag = os::vm_allocation_granularity();
6171 
6172     for (size_t size = ag; size < lp * 3; size += ag) {
6173       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6174         test_reserve_memory_special_shm(size, alignment);
6175       }
6176     }
6177   }
6178 
6179   static void test() {
6180     test_reserve_memory_special_huge_tlbfs();
6181     test_reserve_memory_special_shm();
6182   }
6183 };
6184 
6185 void TestReserveMemorySpecial_test() {
6186   TestReserveMemorySpecial::test();
6187 }
6188 
6189 #endif