1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/g1/concurrentMark.hpp"
  29 #include "gc_implementation/g1/evacuationInfo.hpp"
  30 #include "gc_implementation/g1/g1AllocRegion.hpp"
  31 #include "gc_implementation/g1/g1HRPrinter.hpp"
  32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
  33 #include "gc_implementation/g1/g1RemSet.hpp"
  34 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  35 #include "gc_implementation/g1/g1YCTypes.hpp"
  36 #include "gc_implementation/g1/heapRegionSeq.hpp"
  37 #include "gc_implementation/g1/heapRegionSet.hpp"
  38 #include "gc_implementation/shared/hSpaceCounters.hpp"
  39 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
  40 #include "memory/barrierSet.hpp"
  41 #include "memory/memRegion.hpp"
  42 #include "memory/sharedHeap.hpp"
  43 #include "utilities/stack.hpp"
  44 
  45 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  46 // It uses the "Garbage First" heap organization and algorithm, which
  47 // may combine concurrent marking with parallel, incremental compaction of
  48 // heap subsets that will yield large amounts of garbage.
  49 
  50 // Forward declarations
  51 class HeapRegion;
  52 class HRRSCleanupTask;
  53 class GenerationSpec;
  54 class OopsInHeapRegionClosure;
  55 class G1KlassScanClosure;
  56 class G1ScanHeapEvacClosure;
  57 class ObjectClosure;
  58 class SpaceClosure;
  59 class CompactibleSpaceClosure;
  60 class Space;
  61 class G1CollectorPolicy;
  62 class GenRemSet;
  63 class G1RemSet;
  64 class HeapRegionRemSetIterator;
  65 class ConcurrentMark;
  66 class ConcurrentMarkThread;
  67 class ConcurrentG1Refine;
  68 class ConcurrentGCTimer;
  69 class GenerationCounters;
  70 class STWGCTimer;
  71 class G1NewTracer;
  72 class G1OldTracer;
  73 class EvacuationFailedInfo;
  74 class nmethod;
  75 class Ticks;
  76 
  77 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  78 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  79 
  80 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  81 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  82 
  83 enum GCAllocPurpose {
  84   GCAllocForTenured,
  85   GCAllocForSurvived,
  86   GCAllocPurposeCount
  87 };
  88 
  89 class YoungList : public CHeapObj<mtGC> {
  90 private:
  91   G1CollectedHeap* _g1h;
  92 
  93   HeapRegion* _head;
  94 
  95   HeapRegion* _survivor_head;
  96   HeapRegion* _survivor_tail;
  97 
  98   HeapRegion* _curr;
  99 
 100   uint        _length;
 101   uint        _survivor_length;
 102 
 103   size_t      _last_sampled_rs_lengths;
 104   size_t      _sampled_rs_lengths;
 105 
 106   void         empty_list(HeapRegion* list);
 107 
 108 public:
 109   YoungList(G1CollectedHeap* g1h);
 110 
 111   void         push_region(HeapRegion* hr);
 112   void         add_survivor_region(HeapRegion* hr);
 113 
 114   void         empty_list();
 115   bool         is_empty() { return _length == 0; }
 116   uint         length() { return _length; }
 117   uint         survivor_length() { return _survivor_length; }
 118 
 119   // Currently we do not keep track of the used byte sum for the
 120   // young list and the survivors and it'd be quite a lot of work to
 121   // do so. When we'll eventually replace the young list with
 122   // instances of HeapRegionLinkedList we'll get that for free. So,
 123   // we'll report the more accurate information then.
 124   size_t       eden_used_bytes() {
 125     assert(length() >= survivor_length(), "invariant");
 126     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
 127   }
 128   size_t       survivor_used_bytes() {
 129     return (size_t) survivor_length() * HeapRegion::GrainBytes;
 130   }
 131 
 132   void rs_length_sampling_init();
 133   bool rs_length_sampling_more();
 134   void rs_length_sampling_next();
 135 
 136   void reset_sampled_info() {
 137     _last_sampled_rs_lengths =   0;
 138   }
 139   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 140 
 141   // for development purposes
 142   void reset_auxilary_lists();
 143   void clear() { _head = NULL; _length = 0; }
 144 
 145   void clear_survivors() {
 146     _survivor_head    = NULL;
 147     _survivor_tail    = NULL;
 148     _survivor_length  = 0;
 149   }
 150 
 151   HeapRegion* first_region() { return _head; }
 152   HeapRegion* first_survivor_region() { return _survivor_head; }
 153   HeapRegion* last_survivor_region() { return _survivor_tail; }
 154 
 155   // debugging
 156   bool          check_list_well_formed();
 157   bool          check_list_empty(bool check_sample = true);
 158   void          print();
 159 };
 160 
 161 class MutatorAllocRegion : public G1AllocRegion {
 162 protected:
 163   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 164   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 165 public:
 166   MutatorAllocRegion()
 167     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
 168 };
 169 
 170 class SurvivorGCAllocRegion : public G1AllocRegion {
 171 protected:
 172   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 173   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 174 public:
 175   SurvivorGCAllocRegion()
 176   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
 177 };
 178 
 179 class OldGCAllocRegion : public G1AllocRegion {
 180 protected:
 181   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 182   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 183 public:
 184   OldGCAllocRegion()
 185   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
 186 };
 187 
 188 // The G1 STW is alive closure.
 189 // An instance is embedded into the G1CH and used as the
 190 // (optional) _is_alive_non_header closure in the STW
 191 // reference processor. It is also extensively used during
 192 // reference processing during STW evacuation pauses.
 193 class G1STWIsAliveClosure: public BoolObjectClosure {
 194   G1CollectedHeap* _g1;
 195 public:
 196   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 197   bool do_object_b(oop p);
 198 };
 199 
 200 class RefineCardTableEntryClosure;
 201 
 202 class G1CollectedHeap : public SharedHeap {
 203   friend class VM_G1CollectForAllocation;
 204   friend class VM_G1CollectFull;
 205   friend class VM_G1IncCollectionPause;
 206   friend class VMStructs;
 207   friend class MutatorAllocRegion;
 208   friend class SurvivorGCAllocRegion;
 209   friend class OldGCAllocRegion;
 210 
 211   // Closures used in implementation.
 212   template <G1Barrier barrier, bool do_mark_object>
 213   friend class G1ParCopyClosure;
 214   friend class G1IsAliveClosure;
 215   friend class G1EvacuateFollowersClosure;
 216   friend class G1ParScanThreadState;
 217   friend class G1ParScanClosureSuper;
 218   friend class G1ParEvacuateFollowersClosure;
 219   friend class G1ParTask;
 220   friend class G1FreeGarbageRegionClosure;
 221   friend class RefineCardTableEntryClosure;
 222   friend class G1PrepareCompactClosure;
 223   friend class RegionSorter;
 224   friend class RegionResetter;
 225   friend class CountRCClosure;
 226   friend class EvacPopObjClosure;
 227   friend class G1ParCleanupCTTask;
 228 
 229   // Other related classes.
 230   friend class G1MarkSweep;
 231 
 232 private:
 233   // The one and only G1CollectedHeap, so static functions can find it.
 234   static G1CollectedHeap* _g1h;
 235 
 236   static size_t _humongous_object_threshold_in_words;
 237 
 238   // Storage for the G1 heap.
 239   VirtualSpace _g1_storage;
 240   MemRegion    _g1_reserved;
 241 
 242   // The part of _g1_storage that is currently committed.
 243   MemRegion _g1_committed;
 244 
 245   // The master free list. It will satisfy all new region allocations.
 246   FreeRegionList _free_list;
 247 
 248   // The secondary free list which contains regions that have been
 249   // freed up during the cleanup process. This will be appended to the
 250   // master free list when appropriate.
 251   FreeRegionList _secondary_free_list;
 252 
 253   // It keeps track of the old regions.
 254   HeapRegionSet _old_set;
 255 
 256   // It keeps track of the humongous regions.
 257   HeapRegionSet _humongous_set;
 258 
 259   // The number of regions we could create by expansion.
 260   uint _expansion_regions;
 261 
 262   // The block offset table for the G1 heap.
 263   G1BlockOffsetSharedArray* _bot_shared;
 264 
 265   // Tears down the region sets / lists so that they are empty and the
 266   // regions on the heap do not belong to a region set / list. The
 267   // only exception is the humongous set which we leave unaltered. If
 268   // free_list_only is true, it will only tear down the master free
 269   // list. It is called before a Full GC (free_list_only == false) or
 270   // before heap shrinking (free_list_only == true).
 271   void tear_down_region_sets(bool free_list_only);
 272 
 273   // Rebuilds the region sets / lists so that they are repopulated to
 274   // reflect the contents of the heap. The only exception is the
 275   // humongous set which was not torn down in the first place. If
 276   // free_list_only is true, it will only rebuild the master free
 277   // list. It is called after a Full GC (free_list_only == false) or
 278   // after heap shrinking (free_list_only == true).
 279   void rebuild_region_sets(bool free_list_only);
 280 
 281   // The sequence of all heap regions in the heap.
 282   HeapRegionSeq _hrs;
 283 
 284   // Alloc region used to satisfy mutator allocation requests.
 285   MutatorAllocRegion _mutator_alloc_region;
 286 
 287   // Alloc region used to satisfy allocation requests by the GC for
 288   // survivor objects.
 289   SurvivorGCAllocRegion _survivor_gc_alloc_region;
 290 
 291   // PLAB sizing policy for survivors.
 292   PLABStats _survivor_plab_stats;
 293 
 294   // Alloc region used to satisfy allocation requests by the GC for
 295   // old objects.
 296   OldGCAllocRegion _old_gc_alloc_region;
 297 
 298   // PLAB sizing policy for tenured objects.
 299   PLABStats _old_plab_stats;
 300 
 301   PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
 302     PLABStats* stats = NULL;
 303 
 304     switch (purpose) {
 305     case GCAllocForSurvived:
 306       stats = &_survivor_plab_stats;
 307       break;
 308     case GCAllocForTenured:
 309       stats = &_old_plab_stats;
 310       break;
 311     default:
 312       assert(false, "unrecognized GCAllocPurpose");
 313     }
 314 
 315     return stats;
 316   }
 317 
 318   // The last old region we allocated to during the last GC.
 319   // Typically, it is not full so we should re-use it during the next GC.
 320   HeapRegion* _retained_old_gc_alloc_region;
 321 
 322   // It specifies whether we should attempt to expand the heap after a
 323   // region allocation failure. If heap expansion fails we set this to
 324   // false so that we don't re-attempt the heap expansion (it's likely
 325   // that subsequent expansion attempts will also fail if one fails).
 326   // Currently, it is only consulted during GC and it's reset at the
 327   // start of each GC.
 328   bool _expand_heap_after_alloc_failure;
 329 
 330   // It resets the mutator alloc region before new allocations can take place.
 331   void init_mutator_alloc_region();
 332 
 333   // It releases the mutator alloc region.
 334   void release_mutator_alloc_region();
 335 
 336   // It initializes the GC alloc regions at the start of a GC.
 337   void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
 338 
 339   // It releases the GC alloc regions at the end of a GC.
 340   void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
 341 
 342   // It does any cleanup that needs to be done on the GC alloc regions
 343   // before a Full GC.
 344   void abandon_gc_alloc_regions();
 345 
 346   // Helper for monitoring and management support.
 347   G1MonitoringSupport* _g1mm;
 348 
 349   // Determines PLAB size for a particular allocation purpose.
 350   size_t desired_plab_sz(GCAllocPurpose purpose);
 351 
 352   // Outside of GC pauses, the number of bytes used in all regions other
 353   // than the current allocation region.
 354   size_t _summary_bytes_used;
 355 
 356   // This is used for a quick test on whether a reference points into
 357   // the collection set or not. Basically, we have an array, with one
 358   // byte per region, and that byte denotes whether the corresponding
 359   // region is in the collection set or not. The entry corresponding
 360   // the bottom of the heap, i.e., region 0, is pointed to by
 361   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
 362   // biased so that it actually points to address 0 of the address
 363   // space, to make the test as fast as possible (we can simply shift
 364   // the address to address into it, instead of having to subtract the
 365   // bottom of the heap from the address before shifting it; basically
 366   // it works in the same way the card table works).
 367   bool* _in_cset_fast_test;
 368 
 369   // The allocated array used for the fast test on whether a reference
 370   // points into the collection set or not. This field is also used to
 371   // free the array.
 372   bool* _in_cset_fast_test_base;
 373 
 374   // The length of the _in_cset_fast_test_base array.
 375   uint _in_cset_fast_test_length;
 376 
 377   volatile unsigned _gc_time_stamp;
 378 
 379   size_t* _surviving_young_words;
 380 
 381   G1HRPrinter _hr_printer;
 382 
 383   void setup_surviving_young_words();
 384   void update_surviving_young_words(size_t* surv_young_words);
 385   void cleanup_surviving_young_words();
 386 
 387   // It decides whether an explicit GC should start a concurrent cycle
 388   // instead of doing a STW GC. Currently, a concurrent cycle is
 389   // explicitly started if:
 390   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 391   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 392   // (c) cause == _g1_humongous_allocation
 393   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 394 
 395   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 396   // concurrent cycles) we have started.
 397   volatile unsigned int _old_marking_cycles_started;
 398 
 399   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 400   // concurrent cycles) we have completed.
 401   volatile unsigned int _old_marking_cycles_completed;
 402 
 403   bool _concurrent_cycle_started;
 404 
 405   // This is a non-product method that is helpful for testing. It is
 406   // called at the end of a GC and artificially expands the heap by
 407   // allocating a number of dead regions. This way we can induce very
 408   // frequent marking cycles and stress the cleanup / concurrent
 409   // cleanup code more (as all the regions that will be allocated by
 410   // this method will be found dead by the marking cycle).
 411   void allocate_dummy_regions() PRODUCT_RETURN;
 412 
 413   // Clear RSets after a compaction. It also resets the GC time stamps.
 414   void clear_rsets_post_compaction();
 415 
 416   // If the HR printer is active, dump the state of the regions in the
 417   // heap after a compaction.
 418   void print_hrs_post_compaction();
 419 
 420   double verify(bool guard, const char* msg);
 421   void verify_before_gc();
 422   void verify_after_gc();
 423 
 424   void log_gc_header();
 425   void log_gc_footer(double pause_time_sec);
 426 
 427   // These are macros so that, if the assert fires, we get the correct
 428   // line number, file, etc.
 429 
 430 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 431   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 432           (_extra_message_),                                                  \
 433           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 434           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 435           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 436 
 437 #define assert_heap_locked()                                                  \
 438   do {                                                                        \
 439     assert(Heap_lock->owned_by_self(),                                        \
 440            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 441   } while (0)
 442 
 443 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 444   do {                                                                        \
 445     assert(Heap_lock->owned_by_self() ||                                      \
 446            (SafepointSynchronize::is_at_safepoint() &&                        \
 447              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 448            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 449                                         "should be at a safepoint"));         \
 450   } while (0)
 451 
 452 #define assert_heap_locked_and_not_at_safepoint()                             \
 453   do {                                                                        \
 454     assert(Heap_lock->owned_by_self() &&                                      \
 455                                     !SafepointSynchronize::is_at_safepoint(), \
 456           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 457                                        "should not be at a safepoint"));      \
 458   } while (0)
 459 
 460 #define assert_heap_not_locked()                                              \
 461   do {                                                                        \
 462     assert(!Heap_lock->owned_by_self(),                                       \
 463         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 464   } while (0)
 465 
 466 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 467   do {                                                                        \
 468     assert(!Heap_lock->owned_by_self() &&                                     \
 469                                     !SafepointSynchronize::is_at_safepoint(), \
 470       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 471                                    "should not be at a safepoint"));          \
 472   } while (0)
 473 
 474 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 475   do {                                                                        \
 476     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 477               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 478            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 479   } while (0)
 480 
 481 #define assert_not_at_safepoint()                                             \
 482   do {                                                                        \
 483     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 484            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 485   } while (0)
 486 
 487 protected:
 488 
 489   // The young region list.
 490   YoungList*  _young_list;
 491 
 492   // The current policy object for the collector.
 493   G1CollectorPolicy* _g1_policy;
 494 
 495   // This is the second level of trying to allocate a new region. If
 496   // new_region() didn't find a region on the free_list, this call will
 497   // check whether there's anything available on the
 498   // secondary_free_list and/or wait for more regions to appear on
 499   // that list, if _free_regions_coming is set.
 500   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 501 
 502   // Try to allocate a single non-humongous HeapRegion sufficient for
 503   // an allocation of the given word_size. If do_expand is true,
 504   // attempt to expand the heap if necessary to satisfy the allocation
 505   // request. If the region is to be used as an old region or for a
 506   // humongous object, set is_old to true. If not, to false.
 507   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 508 
 509   // Attempt to satisfy a humongous allocation request of the given
 510   // size by finding a contiguous set of free regions of num_regions
 511   // length and remove them from the master free list. Return the
 512   // index of the first region or G1_NULL_HRS_INDEX if the search
 513   // was unsuccessful.
 514   uint humongous_obj_allocate_find_first(uint num_regions,
 515                                          size_t word_size);
 516 
 517   // Initialize a contiguous set of free regions of length num_regions
 518   // and starting at index first so that they appear as a single
 519   // humongous region.
 520   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 521                                                       uint num_regions,
 522                                                       size_t word_size);
 523 
 524   // Attempt to allocate a humongous object of the given size. Return
 525   // NULL if unsuccessful.
 526   HeapWord* humongous_obj_allocate(size_t word_size);
 527 
 528   // The following two methods, allocate_new_tlab() and
 529   // mem_allocate(), are the two main entry points from the runtime
 530   // into the G1's allocation routines. They have the following
 531   // assumptions:
 532   //
 533   // * They should both be called outside safepoints.
 534   //
 535   // * They should both be called without holding the Heap_lock.
 536   //
 537   // * All allocation requests for new TLABs should go to
 538   //   allocate_new_tlab().
 539   //
 540   // * All non-TLAB allocation requests should go to mem_allocate().
 541   //
 542   // * If either call cannot satisfy the allocation request using the
 543   //   current allocating region, they will try to get a new one. If
 544   //   this fails, they will attempt to do an evacuation pause and
 545   //   retry the allocation.
 546   //
 547   // * If all allocation attempts fail, even after trying to schedule
 548   //   an evacuation pause, allocate_new_tlab() will return NULL,
 549   //   whereas mem_allocate() will attempt a heap expansion and/or
 550   //   schedule a Full GC.
 551   //
 552   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 553   //   should never be called with word_size being humongous. All
 554   //   humongous allocation requests should go to mem_allocate() which
 555   //   will satisfy them with a special path.
 556 
 557   virtual HeapWord* allocate_new_tlab(size_t word_size);
 558 
 559   virtual HeapWord* mem_allocate(size_t word_size,
 560                                  bool*  gc_overhead_limit_was_exceeded);
 561 
 562   // The following three methods take a gc_count_before_ret
 563   // parameter which is used to return the GC count if the method
 564   // returns NULL. Given that we are required to read the GC count
 565   // while holding the Heap_lock, and these paths will take the
 566   // Heap_lock at some point, it's easier to get them to read the GC
 567   // count while holding the Heap_lock before they return NULL instead
 568   // of the caller (namely: mem_allocate()) having to also take the
 569   // Heap_lock just to read the GC count.
 570 
 571   // First-level mutator allocation attempt: try to allocate out of
 572   // the mutator alloc region without taking the Heap_lock. This
 573   // should only be used for non-humongous allocations.
 574   inline HeapWord* attempt_allocation(size_t word_size,
 575                                       unsigned int* gc_count_before_ret,
 576                                       int* gclocker_retry_count_ret);
 577 
 578   // Second-level mutator allocation attempt: take the Heap_lock and
 579   // retry the allocation attempt, potentially scheduling a GC
 580   // pause. This should only be used for non-humongous allocations.
 581   HeapWord* attempt_allocation_slow(size_t word_size,
 582                                     unsigned int* gc_count_before_ret,
 583                                     int* gclocker_retry_count_ret);
 584 
 585   // Takes the Heap_lock and attempts a humongous allocation. It can
 586   // potentially schedule a GC pause.
 587   HeapWord* attempt_allocation_humongous(size_t word_size,
 588                                          unsigned int* gc_count_before_ret,
 589                                          int* gclocker_retry_count_ret);
 590 
 591   // Allocation attempt that should be called during safepoints (e.g.,
 592   // at the end of a successful GC). expect_null_mutator_alloc_region
 593   // specifies whether the mutator alloc region is expected to be NULL
 594   // or not.
 595   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 596                                        bool expect_null_mutator_alloc_region);
 597 
 598   // It dirties the cards that cover the block so that so that the post
 599   // write barrier never queues anything when updating objects on this
 600   // block. It is assumed (and in fact we assert) that the block
 601   // belongs to a young region.
 602   inline void dirty_young_block(HeapWord* start, size_t word_size);
 603 
 604   // Allocate blocks during garbage collection. Will ensure an
 605   // allocation region, either by picking one or expanding the
 606   // heap, and then allocate a block of the given size. The block
 607   // may not be a humongous - it must fit into a single heap region.
 608   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
 609 
 610   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
 611                                     HeapRegion*    alloc_region,
 612                                     bool           par,
 613                                     size_t         word_size);
 614 
 615   // Ensure that no further allocations can happen in "r", bearing in mind
 616   // that parallel threads might be attempting allocations.
 617   void par_allocate_remaining_space(HeapRegion* r);
 618 
 619   // Allocation attempt during GC for a survivor object / PLAB.
 620   inline HeapWord* survivor_attempt_allocation(size_t word_size);
 621 
 622   // Allocation attempt during GC for an old object / PLAB.
 623   inline HeapWord* old_attempt_allocation(size_t word_size);
 624 
 625   // These methods are the "callbacks" from the G1AllocRegion class.
 626 
 627   // For mutator alloc regions.
 628   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 629   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 630                                    size_t allocated_bytes);
 631 
 632   // For GC alloc regions.
 633   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
 634                                   GCAllocPurpose ap);
 635   void retire_gc_alloc_region(HeapRegion* alloc_region,
 636                               size_t allocated_bytes, GCAllocPurpose ap);
 637 
 638   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 639   //   inspection request and should collect the entire heap
 640   // - if clear_all_soft_refs is true, all soft references should be
 641   //   cleared during the GC
 642   // - if explicit_gc is false, word_size describes the allocation that
 643   //   the GC should attempt (at least) to satisfy
 644   // - it returns false if it is unable to do the collection due to the
 645   //   GC locker being active, true otherwise
 646   bool do_collection(bool explicit_gc,
 647                      bool clear_all_soft_refs,
 648                      size_t word_size);
 649 
 650   // Callback from VM_G1CollectFull operation.
 651   // Perform a full collection.
 652   virtual void do_full_collection(bool clear_all_soft_refs);
 653 
 654   // Resize the heap if necessary after a full collection.  If this is
 655   // after a collect-for allocation, "word_size" is the allocation size,
 656   // and will be considered part of the used portion of the heap.
 657   void resize_if_necessary_after_full_collection(size_t word_size);
 658 
 659   // Callback from VM_G1CollectForAllocation operation.
 660   // This function does everything necessary/possible to satisfy a
 661   // failed allocation request (including collection, expansion, etc.)
 662   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
 663 
 664   // Attempting to expand the heap sufficiently
 665   // to support an allocation of the given "word_size".  If
 666   // successful, perform the allocation and return the address of the
 667   // allocated block, or else "NULL".
 668   HeapWord* expand_and_allocate(size_t word_size);
 669 
 670   // Process any reference objects discovered during
 671   // an incremental evacuation pause.
 672   void process_discovered_references(uint no_of_gc_workers);
 673 
 674   // Enqueue any remaining discovered references
 675   // after processing.
 676   void enqueue_discovered_references(uint no_of_gc_workers);
 677 
 678 public:
 679 
 680   G1MonitoringSupport* g1mm() {
 681     assert(_g1mm != NULL, "should have been initialized");
 682     return _g1mm;
 683   }
 684 
 685   // Expand the garbage-first heap by at least the given size (in bytes!).
 686   // Returns true if the heap was expanded by the requested amount;
 687   // false otherwise.
 688   // (Rounds up to a HeapRegion boundary.)
 689   bool expand(size_t expand_bytes);
 690 
 691   // Do anything common to GC's.
 692   virtual void gc_prologue(bool full);
 693   virtual void gc_epilogue(bool full);
 694 
 695   // We register a region with the fast "in collection set" test. We
 696   // simply set to true the array slot corresponding to this region.
 697   void register_region_with_in_cset_fast_test(HeapRegion* r) {
 698     assert(_in_cset_fast_test_base != NULL, "sanity");
 699     assert(r->in_collection_set(), "invariant");
 700     uint index = r->hrs_index();
 701     assert(index < _in_cset_fast_test_length, "invariant");
 702     assert(!_in_cset_fast_test_base[index], "invariant");
 703     _in_cset_fast_test_base[index] = true;
 704   }
 705 
 706   // This is a fast test on whether a reference points into the
 707   // collection set or not. Assume that the reference
 708   // points into the heap.
 709   bool in_cset_fast_test(oop obj) {
 710     assert(_in_cset_fast_test != NULL, "sanity");
 711     assert(_g1_committed.contains((HeapWord*) obj), err_msg("Given reference outside of heap, is "PTR_FORMAT, (HeapWord*)obj));
 712     // no need to subtract the bottom of the heap from obj,
 713     // _in_cset_fast_test is biased
 714     uintx index = cast_from_oop<uintx>(obj) >> HeapRegion::LogOfHRGrainBytes;
 715     bool ret = _in_cset_fast_test[index];
 716     // let's make sure the result is consistent with what the slower
 717     // test returns
 718     assert( ret || !obj_in_cs(obj), "sanity");
 719     assert(!ret ||  obj_in_cs(obj), "sanity");
 720     return ret;
 721   }
 722 
 723   void clear_cset_fast_test() {
 724     assert(_in_cset_fast_test_base != NULL, "sanity");
 725     memset(_in_cset_fast_test_base, false,
 726            (size_t) _in_cset_fast_test_length * sizeof(bool));
 727   }
 728 
 729   // This is called at the start of either a concurrent cycle or a Full
 730   // GC to update the number of old marking cycles started.
 731   void increment_old_marking_cycles_started();
 732 
 733   // This is called at the end of either a concurrent cycle or a Full
 734   // GC to update the number of old marking cycles completed. Those two
 735   // can happen in a nested fashion, i.e., we start a concurrent
 736   // cycle, a Full GC happens half-way through it which ends first,
 737   // and then the cycle notices that a Full GC happened and ends
 738   // too. The concurrent parameter is a boolean to help us do a bit
 739   // tighter consistency checking in the method. If concurrent is
 740   // false, the caller is the inner caller in the nesting (i.e., the
 741   // Full GC). If concurrent is true, the caller is the outer caller
 742   // in this nesting (i.e., the concurrent cycle). Further nesting is
 743   // not currently supported. The end of this call also notifies
 744   // the FullGCCount_lock in case a Java thread is waiting for a full
 745   // GC to happen (e.g., it called System.gc() with
 746   // +ExplicitGCInvokesConcurrent).
 747   void increment_old_marking_cycles_completed(bool concurrent);
 748 
 749   unsigned int old_marking_cycles_completed() {
 750     return _old_marking_cycles_completed;
 751   }
 752 
 753   void register_concurrent_cycle_start(const Ticks& start_time);
 754   void register_concurrent_cycle_end();
 755   void trace_heap_after_concurrent_cycle();
 756 
 757   G1YCType yc_type();
 758 
 759   G1HRPrinter* hr_printer() { return &_hr_printer; }
 760 
 761   // Frees a non-humongous region by initializing its contents and
 762   // adding it to the free list that's passed as a parameter (this is
 763   // usually a local list which will be appended to the master free
 764   // list later). The used bytes of freed regions are accumulated in
 765   // pre_used. If par is true, the region's RSet will not be freed
 766   // up. The assumption is that this will be done later.
 767   // The locked parameter indicates if the caller has already taken
 768   // care of proper synchronization. This may allow some optimizations.
 769   void free_region(HeapRegion* hr,
 770                    FreeRegionList* free_list,
 771                    bool par,
 772                    bool locked = false);
 773 
 774   // Frees a humongous region by collapsing it into individual regions
 775   // and calling free_region() for each of them. The freed regions
 776   // will be added to the free list that's passed as a parameter (this
 777   // is usually a local list which will be appended to the master free
 778   // list later). The used bytes of freed regions are accumulated in
 779   // pre_used. If par is true, the region's RSet will not be freed
 780   // up. The assumption is that this will be done later.
 781   void free_humongous_region(HeapRegion* hr,
 782                              FreeRegionList* free_list,
 783                              bool par);
 784 protected:
 785 
 786   // Shrink the garbage-first heap by at most the given size (in bytes!).
 787   // (Rounds down to a HeapRegion boundary.)
 788   virtual void shrink(size_t expand_bytes);
 789   void shrink_helper(size_t expand_bytes);
 790 
 791   #if TASKQUEUE_STATS
 792   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 793   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 794   void reset_taskqueue_stats();
 795   #endif // TASKQUEUE_STATS
 796 
 797   // Schedule the VM operation that will do an evacuation pause to
 798   // satisfy an allocation request of word_size. *succeeded will
 799   // return whether the VM operation was successful (it did do an
 800   // evacuation pause) or not (another thread beat us to it or the GC
 801   // locker was active). Given that we should not be holding the
 802   // Heap_lock when we enter this method, we will pass the
 803   // gc_count_before (i.e., total_collections()) as a parameter since
 804   // it has to be read while holding the Heap_lock. Currently, both
 805   // methods that call do_collection_pause() release the Heap_lock
 806   // before the call, so it's easy to read gc_count_before just before.
 807   HeapWord* do_collection_pause(size_t         word_size,
 808                                 unsigned int   gc_count_before,
 809                                 bool*          succeeded,
 810                                 GCCause::Cause gc_cause);
 811 
 812   // The guts of the incremental collection pause, executed by the vm
 813   // thread. It returns false if it is unable to do the collection due
 814   // to the GC locker being active, true otherwise
 815   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 816 
 817   // Actually do the work of evacuating the collection set.
 818   void evacuate_collection_set(EvacuationInfo& evacuation_info);
 819 
 820   // The g1 remembered set of the heap.
 821   G1RemSet* _g1_rem_set;
 822 
 823   // A set of cards that cover the objects for which the Rsets should be updated
 824   // concurrently after the collection.
 825   DirtyCardQueueSet _dirty_card_queue_set;
 826 
 827   // The closure used to refine a single card.
 828   RefineCardTableEntryClosure* _refine_cte_cl;
 829 
 830   // A function to check the consistency of dirty card logs.
 831   void check_ct_logs_at_safepoint();
 832 
 833   // A DirtyCardQueueSet that is used to hold cards that contain
 834   // references into the current collection set. This is used to
 835   // update the remembered sets of the regions in the collection
 836   // set in the event of an evacuation failure.
 837   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 838 
 839   // After a collection pause, make the regions in the CS into free
 840   // regions.
 841   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
 842 
 843   // Abandon the current collection set without recording policy
 844   // statistics or updating free lists.
 845   void abandon_collection_set(HeapRegion* cs_head);
 846 
 847   // Applies "scan_non_heap_roots" to roots outside the heap,
 848   // "scan_rs" to roots inside the heap (having done "set_region" to
 849   // indicate the region in which the root resides),
 850   // and does "scan_metadata" If "scan_rs" is
 851   // NULL, then this step is skipped.  The "worker_i"
 852   // param is for use with parallel roots processing, and should be
 853   // the "i" of the calling parallel worker thread's work(i) function.
 854   // In the sequential case this param will be ignored.
 855   void g1_process_strong_roots(bool is_scavenging,
 856                                ScanningOption so,
 857                                OopClosure* scan_non_heap_roots,
 858                                OopsInHeapRegionClosure* scan_rs,
 859                                G1KlassScanClosure* scan_klasses,
 860                                int worker_i);
 861 
 862   // Notifies all the necessary spaces that the committed space has
 863   // been updated (either expanded or shrunk). It should be called
 864   // after _g1_storage is updated.
 865   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
 866 
 867   // The concurrent marker (and the thread it runs in.)
 868   ConcurrentMark* _cm;
 869   ConcurrentMarkThread* _cmThread;
 870   bool _mark_in_progress;
 871 
 872   // The concurrent refiner.
 873   ConcurrentG1Refine* _cg1r;
 874 
 875   // The parallel task queues
 876   RefToScanQueueSet *_task_queues;
 877 
 878   // True iff a evacuation has failed in the current collection.
 879   bool _evacuation_failed;
 880 
 881   EvacuationFailedInfo* _evacuation_failed_info_array;
 882 
 883   // Failed evacuations cause some logical from-space objects to have
 884   // forwarding pointers to themselves.  Reset them.
 885   void remove_self_forwarding_pointers();
 886 
 887   // Together, these store an object with a preserved mark, and its mark value.
 888   Stack<oop, mtGC>     _objs_with_preserved_marks;
 889   Stack<markOop, mtGC> _preserved_marks_of_objs;
 890 
 891   // Preserve the mark of "obj", if necessary, in preparation for its mark
 892   // word being overwritten with a self-forwarding-pointer.
 893   void preserve_mark_if_necessary(oop obj, markOop m);
 894 
 895   // The stack of evac-failure objects left to be scanned.
 896   GrowableArray<oop>*    _evac_failure_scan_stack;
 897   // The closure to apply to evac-failure objects.
 898 
 899   OopsInHeapRegionClosure* _evac_failure_closure;
 900   // Set the field above.
 901   void
 902   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
 903     _evac_failure_closure = evac_failure_closure;
 904   }
 905 
 906   // Push "obj" on the scan stack.
 907   void push_on_evac_failure_scan_stack(oop obj);
 908   // Process scan stack entries until the stack is empty.
 909   void drain_evac_failure_scan_stack();
 910   // True iff an invocation of "drain_scan_stack" is in progress; to
 911   // prevent unnecessary recursion.
 912   bool _drain_in_progress;
 913 
 914   // Do any necessary initialization for evacuation-failure handling.
 915   // "cl" is the closure that will be used to process evac-failure
 916   // objects.
 917   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
 918   // Do any necessary cleanup for evacuation-failure handling data
 919   // structures.
 920   void finalize_for_evac_failure();
 921 
 922   // An attempt to evacuate "obj" has failed; take necessary steps.
 923   oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
 924   void handle_evacuation_failure_common(oop obj, markOop m);
 925 
 926 #ifndef PRODUCT
 927   // Support for forcing evacuation failures. Analogous to
 928   // PromotionFailureALot for the other collectors.
 929 
 930   // Records whether G1EvacuationFailureALot should be in effect
 931   // for the current GC
 932   bool _evacuation_failure_alot_for_current_gc;
 933 
 934   // Used to record the GC number for interval checking when
 935   // determining whether G1EvaucationFailureALot is in effect
 936   // for the current GC.
 937   size_t _evacuation_failure_alot_gc_number;
 938 
 939   // Count of the number of evacuations between failures.
 940   volatile size_t _evacuation_failure_alot_count;
 941 
 942   // Set whether G1EvacuationFailureALot should be in effect
 943   // for the current GC (based upon the type of GC and which
 944   // command line flags are set);
 945   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 946                                                   bool during_initial_mark,
 947                                                   bool during_marking);
 948 
 949   inline void set_evacuation_failure_alot_for_current_gc();
 950 
 951   // Return true if it's time to cause an evacuation failure.
 952   inline bool evacuation_should_fail();
 953 
 954   // Reset the G1EvacuationFailureALot counters.  Should be called at
 955   // the end of an evacuation pause in which an evacuation failure occurred.
 956   inline void reset_evacuation_should_fail();
 957 #endif // !PRODUCT
 958 
 959   // ("Weak") Reference processing support.
 960   //
 961   // G1 has 2 instances of the reference processor class. One
 962   // (_ref_processor_cm) handles reference object discovery
 963   // and subsequent processing during concurrent marking cycles.
 964   //
 965   // The other (_ref_processor_stw) handles reference object
 966   // discovery and processing during full GCs and incremental
 967   // evacuation pauses.
 968   //
 969   // During an incremental pause, reference discovery will be
 970   // temporarily disabled for _ref_processor_cm and will be
 971   // enabled for _ref_processor_stw. At the end of the evacuation
 972   // pause references discovered by _ref_processor_stw will be
 973   // processed and discovery will be disabled. The previous
 974   // setting for reference object discovery for _ref_processor_cm
 975   // will be re-instated.
 976   //
 977   // At the start of marking:
 978   //  * Discovery by the CM ref processor is verified to be inactive
 979   //    and it's discovered lists are empty.
 980   //  * Discovery by the CM ref processor is then enabled.
 981   //
 982   // At the end of marking:
 983   //  * Any references on the CM ref processor's discovered
 984   //    lists are processed (possibly MT).
 985   //
 986   // At the start of full GC we:
 987   //  * Disable discovery by the CM ref processor and
 988   //    empty CM ref processor's discovered lists
 989   //    (without processing any entries).
 990   //  * Verify that the STW ref processor is inactive and it's
 991   //    discovered lists are empty.
 992   //  * Temporarily set STW ref processor discovery as single threaded.
 993   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 994   //    field.
 995   //  * Finally enable discovery by the STW ref processor.
 996   //
 997   // The STW ref processor is used to record any discovered
 998   // references during the full GC.
 999   //
1000   // At the end of a full GC we:
1001   //  * Enqueue any reference objects discovered by the STW ref processor
1002   //    that have non-live referents. This has the side-effect of
1003   //    making the STW ref processor inactive by disabling discovery.
1004   //  * Verify that the CM ref processor is still inactive
1005   //    and no references have been placed on it's discovered
1006   //    lists (also checked as a precondition during initial marking).
1007 
1008   // The (stw) reference processor...
1009   ReferenceProcessor* _ref_processor_stw;
1010 
1011   STWGCTimer* _gc_timer_stw;
1012   ConcurrentGCTimer* _gc_timer_cm;
1013 
1014   G1OldTracer* _gc_tracer_cm;
1015   G1NewTracer* _gc_tracer_stw;
1016 
1017   // During reference object discovery, the _is_alive_non_header
1018   // closure (if non-null) is applied to the referent object to
1019   // determine whether the referent is live. If so then the
1020   // reference object does not need to be 'discovered' and can
1021   // be treated as a regular oop. This has the benefit of reducing
1022   // the number of 'discovered' reference objects that need to
1023   // be processed.
1024   //
1025   // Instance of the is_alive closure for embedding into the
1026   // STW reference processor as the _is_alive_non_header field.
1027   // Supplying a value for the _is_alive_non_header field is
1028   // optional but doing so prevents unnecessary additions to
1029   // the discovered lists during reference discovery.
1030   G1STWIsAliveClosure _is_alive_closure_stw;
1031 
1032   // The (concurrent marking) reference processor...
1033   ReferenceProcessor* _ref_processor_cm;
1034 
1035   // Instance of the concurrent mark is_alive closure for embedding
1036   // into the Concurrent Marking reference processor as the
1037   // _is_alive_non_header field. Supplying a value for the
1038   // _is_alive_non_header field is optional but doing so prevents
1039   // unnecessary additions to the discovered lists during reference
1040   // discovery.
1041   G1CMIsAliveClosure _is_alive_closure_cm;
1042 
1043   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
1044   HeapRegion** _worker_cset_start_region;
1045 
1046   // Time stamp to validate the regions recorded in the cache
1047   // used by G1CollectedHeap::start_cset_region_for_worker().
1048   // The heap region entry for a given worker is valid iff
1049   // the associated time stamp value matches the current value
1050   // of G1CollectedHeap::_gc_time_stamp.
1051   unsigned int* _worker_cset_start_region_time_stamp;
1052 
1053   enum G1H_process_strong_roots_tasks {
1054     G1H_PS_filter_satb_buffers,
1055     G1H_PS_refProcessor_oops_do,
1056     // Leave this one last.
1057     G1H_PS_NumElements
1058   };
1059 
1060   SubTasksDone* _process_strong_tasks;
1061 
1062   volatile bool _free_regions_coming;
1063 
1064 public:
1065 
1066   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
1067 
1068   void set_refine_cte_cl_concurrency(bool concurrent);
1069 
1070   RefToScanQueue *task_queue(int i) const;
1071 
1072   // A set of cards where updates happened during the GC
1073   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
1074 
1075   // A DirtyCardQueueSet that is used to hold cards that contain
1076   // references into the current collection set. This is used to
1077   // update the remembered sets of the regions in the collection
1078   // set in the event of an evacuation failure.
1079   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
1080         { return _into_cset_dirty_card_queue_set; }
1081 
1082   // Create a G1CollectedHeap with the specified policy.
1083   // Must call the initialize method afterwards.
1084   // May not return if something goes wrong.
1085   G1CollectedHeap(G1CollectorPolicy* policy);
1086 
1087   // Initialize the G1CollectedHeap to have the initial and
1088   // maximum sizes and remembered and barrier sets
1089   // specified by the policy object.
1090   jint initialize();
1091 
1092   // Return the (conservative) maximum heap alignment for any G1 heap
1093   static size_t conservative_max_heap_alignment();
1094 
1095   // Initialize weak reference processing.
1096   virtual void ref_processing_init();
1097 
1098   void set_par_threads(uint t) {
1099     SharedHeap::set_par_threads(t);
1100     // Done in SharedHeap but oddly there are
1101     // two _process_strong_tasks's in a G1CollectedHeap
1102     // so do it here too.
1103     _process_strong_tasks->set_n_threads(t);
1104   }
1105 
1106   // Set _n_par_threads according to a policy TBD.
1107   void set_par_threads();
1108 
1109   void set_n_termination(int t) {
1110     _process_strong_tasks->set_n_threads(t);
1111   }
1112 
1113   virtual CollectedHeap::Name kind() const {
1114     return CollectedHeap::G1CollectedHeap;
1115   }
1116 
1117   // The current policy object for the collector.
1118   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
1119 
1120   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
1121 
1122   // Adaptive size policy.  No such thing for g1.
1123   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1124 
1125   // The rem set and barrier set.
1126   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1127 
1128   unsigned get_gc_time_stamp() {
1129     return _gc_time_stamp;
1130   }
1131 
1132   void reset_gc_time_stamp() {
1133     _gc_time_stamp = 0;
1134     OrderAccess::fence();
1135     // Clear the cached CSet starting regions and time stamps.
1136     // Their validity is dependent on the GC timestamp.
1137     clear_cset_start_regions();
1138   }
1139 
1140   void check_gc_time_stamps() PRODUCT_RETURN;
1141 
1142   void increment_gc_time_stamp() {
1143     ++_gc_time_stamp;
1144     OrderAccess::fence();
1145   }
1146 
1147   // Reset the given region's GC timestamp. If it's starts humongous,
1148   // also reset the GC timestamp of its corresponding
1149   // continues humongous regions too.
1150   void reset_gc_time_stamps(HeapRegion* hr);
1151 
1152   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1153                                   DirtyCardQueue* into_cset_dcq,
1154                                   bool concurrent, int worker_i);
1155 
1156   // The shared block offset table array.
1157   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1158 
1159   // Reference Processing accessors
1160 
1161   // The STW reference processor....
1162   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1163 
1164   // The Concurrent Marking reference processor...
1165   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1166 
1167   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
1168   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
1169 
1170   virtual size_t capacity() const;
1171   virtual size_t used() const;
1172   // This should be called when we're not holding the heap lock. The
1173   // result might be a bit inaccurate.
1174   size_t used_unlocked() const;
1175   size_t recalculate_used() const;
1176 
1177   // These virtual functions do the actual allocation.
1178   // Some heaps may offer a contiguous region for shared non-blocking
1179   // allocation, via inlined code (by exporting the address of the top and
1180   // end fields defining the extent of the contiguous allocation region.)
1181   // But G1CollectedHeap doesn't yet support this.
1182 
1183   virtual bool is_maximal_no_gc() const {
1184     return _g1_storage.uncommitted_size() == 0;
1185   }
1186 
1187   // The total number of regions in the heap.
1188   uint n_regions() { return _hrs.length(); }
1189 
1190   // The max number of regions in the heap.
1191   uint max_regions() { return _hrs.max_length(); }
1192 
1193   // The number of regions that are completely free.
1194   uint free_regions() { return _free_list.length(); }
1195 
1196   // The number of regions that are not completely free.
1197   uint used_regions() { return n_regions() - free_regions(); }
1198 
1199   // The number of regions available for "regular" expansion.
1200   uint expansion_regions() { return _expansion_regions; }
1201 
1202   // Factory method for HeapRegion instances. It will return NULL if
1203   // the allocation fails.
1204   HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
1205 
1206   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1207   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1208   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1209   void verify_dirty_young_regions() PRODUCT_RETURN;
1210 
1211   // verify_region_sets() performs verification over the region
1212   // lists. It will be compiled in the product code to be used when
1213   // necessary (i.e., during heap verification).
1214   void verify_region_sets();
1215 
1216   // verify_region_sets_optional() is planted in the code for
1217   // list verification in non-product builds (and it can be enabled in
1218   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
1219 #if HEAP_REGION_SET_FORCE_VERIFY
1220   void verify_region_sets_optional() {
1221     verify_region_sets();
1222   }
1223 #else // HEAP_REGION_SET_FORCE_VERIFY
1224   void verify_region_sets_optional() { }
1225 #endif // HEAP_REGION_SET_FORCE_VERIFY
1226 
1227 #ifdef ASSERT
1228   bool is_on_master_free_list(HeapRegion* hr) {
1229     return hr->containing_set() == &_free_list;
1230   }
1231 #endif // ASSERT
1232 
1233   // Wrapper for the region list operations that can be called from
1234   // methods outside this class.
1235 
1236   void secondary_free_list_add(FreeRegionList* list) {
1237     _secondary_free_list.add_ordered(list);
1238   }
1239 
1240   void append_secondary_free_list() {
1241     _free_list.add_ordered(&_secondary_free_list);
1242   }
1243 
1244   void append_secondary_free_list_if_not_empty_with_lock() {
1245     // If the secondary free list looks empty there's no reason to
1246     // take the lock and then try to append it.
1247     if (!_secondary_free_list.is_empty()) {
1248       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1249       append_secondary_free_list();
1250     }
1251   }
1252 
1253   void old_set_remove(HeapRegion* hr) {
1254     _old_set.remove(hr);
1255   }
1256 
1257   size_t non_young_capacity_bytes() {
1258     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
1259   }
1260 
1261   void set_free_regions_coming();
1262   void reset_free_regions_coming();
1263   bool free_regions_coming() { return _free_regions_coming; }
1264   void wait_while_free_regions_coming();
1265 
1266   // Determine whether the given region is one that we are using as an
1267   // old GC alloc region.
1268   bool is_old_gc_alloc_region(HeapRegion* hr) {
1269     return hr == _retained_old_gc_alloc_region;
1270   }
1271 
1272   // Perform a collection of the heap; intended for use in implementing
1273   // "System.gc".  This probably implies as full a collection as the
1274   // "CollectedHeap" supports.
1275   virtual void collect(GCCause::Cause cause);
1276 
1277   // The same as above but assume that the caller holds the Heap_lock.
1278   void collect_locked(GCCause::Cause cause);
1279 
1280   // True iff an evacuation has failed in the most-recent collection.
1281   bool evacuation_failed() { return _evacuation_failed; }
1282 
1283   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
1284   void prepend_to_freelist(FreeRegionList* list);
1285   void decrement_summary_bytes(size_t bytes);
1286 
1287   // Returns "TRUE" iff "p" points into the committed areas of the heap.
1288   virtual bool is_in(const void* p) const;
1289 
1290   // Return "TRUE" iff the given object address is within the collection
1291   // set.
1292   inline bool obj_in_cs(oop obj);
1293 
1294   // Return "TRUE" iff the given object address is in the reserved
1295   // region of g1.
1296   bool is_in_g1_reserved(const void* p) const {
1297     return _g1_reserved.contains(p);
1298   }
1299 
1300   // Returns a MemRegion that corresponds to the space that has been
1301   // reserved for the heap
1302   MemRegion g1_reserved() {
1303     return _g1_reserved;
1304   }
1305 
1306   // Returns a MemRegion that corresponds to the space that has been
1307   // committed in the heap
1308   MemRegion g1_committed() {
1309     return _g1_committed;
1310   }
1311 
1312   virtual bool is_in_closed_subset(const void* p) const;
1313 
1314   G1SATBCardTableModRefBS* g1_barrier_set() {
1315     return (G1SATBCardTableModRefBS*) barrier_set();
1316   }
1317 
1318   // This resets the card table to all zeros.  It is used after
1319   // a collection pause which used the card table to claim cards.
1320   void cleanUpCardTable();
1321 
1322   // Iteration functions.
1323 
1324   // Iterate over all the ref-containing fields of all objects, calling
1325   // "cl.do_oop" on each.
1326   virtual void oop_iterate(ExtendedOopClosure* cl);
1327 
1328   // Same as above, restricted to a memory region.
1329   void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
1330 
1331   // Iterate over all objects, calling "cl.do_object" on each.
1332   virtual void object_iterate(ObjectClosure* cl);
1333 
1334   virtual void safe_object_iterate(ObjectClosure* cl) {
1335     object_iterate(cl);
1336   }
1337 
1338   // Iterate over all spaces in use in the heap, in ascending address order.
1339   virtual void space_iterate(SpaceClosure* cl);
1340 
1341   // Iterate over heap regions, in address order, terminating the
1342   // iteration early if the "doHeapRegion" method returns "true".
1343   void heap_region_iterate(HeapRegionClosure* blk) const;
1344 
1345   // Return the region with the given index. It assumes the index is valid.
1346   HeapRegion* region_at(uint index) const { return _hrs.at(index); }
1347 
1348   // Divide the heap region sequence into "chunks" of some size (the number
1349   // of regions divided by the number of parallel threads times some
1350   // overpartition factor, currently 4).  Assumes that this will be called
1351   // in parallel by ParallelGCThreads worker threads with distinct worker
1352   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
1353   // calls will use the same "claim_value", and that that claim value is
1354   // different from the claim_value of any heap region before the start of
1355   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
1356   // attempting to claim the first region in each chunk, and, if
1357   // successful, applying the closure to each region in the chunk (and
1358   // setting the claim value of the second and subsequent regions of the
1359   // chunk.)  For now requires that "doHeapRegion" always returns "false",
1360   // i.e., that a closure never attempt to abort a traversal.
1361   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
1362                                        uint worker,
1363                                        uint no_of_par_workers,
1364                                        jint claim_value);
1365 
1366   // It resets all the region claim values to the default.
1367   void reset_heap_region_claim_values();
1368 
1369   // Resets the claim values of regions in the current
1370   // collection set to the default.
1371   void reset_cset_heap_region_claim_values();
1372 
1373 #ifdef ASSERT
1374   bool check_heap_region_claim_values(jint claim_value);
1375 
1376   // Same as the routine above but only checks regions in the
1377   // current collection set.
1378   bool check_cset_heap_region_claim_values(jint claim_value);
1379 #endif // ASSERT
1380 
1381   // Clear the cached cset start regions and (more importantly)
1382   // the time stamps. Called when we reset the GC time stamp.
1383   void clear_cset_start_regions();
1384 
1385   // Given the id of a worker, obtain or calculate a suitable
1386   // starting region for iterating over the current collection set.
1387   HeapRegion* start_cset_region_for_worker(int worker_i);
1388 
1389   // This is a convenience method that is used by the
1390   // HeapRegionIterator classes to calculate the starting region for
1391   // each worker so that they do not all start from the same region.
1392   HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
1393 
1394   // Iterate over the regions (if any) in the current collection set.
1395   void collection_set_iterate(HeapRegionClosure* blk);
1396 
1397   // As above but starting from region r
1398   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1399 
1400   // Returns the first (lowest address) compactible space in the heap.
1401   virtual CompactibleSpace* first_compactible_space();
1402 
1403   // A CollectedHeap will contain some number of spaces.  This finds the
1404   // space containing a given address, or else returns NULL.
1405   virtual Space* space_containing(const void* addr) const;
1406 
1407   // A G1CollectedHeap will contain some number of heap regions.  This
1408   // finds the region containing a given address, or else returns NULL.
1409   template <class T>
1410   inline HeapRegion* heap_region_containing(const T addr) const;
1411 
1412   // Like the above, but requires "addr" to be in the heap (to avoid a
1413   // null-check), and unlike the above, may return an continuing humongous
1414   // region.
1415   template <class T>
1416   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1417 
1418   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1419   // each address in the (reserved) heap is a member of exactly
1420   // one block.  The defining characteristic of a block is that it is
1421   // possible to find its size, and thus to progress forward to the next
1422   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1423   // represent Java objects, or they might be free blocks in a
1424   // free-list-based heap (or subheap), as long as the two kinds are
1425   // distinguishable and the size of each is determinable.
1426 
1427   // Returns the address of the start of the "block" that contains the
1428   // address "addr".  We say "blocks" instead of "object" since some heaps
1429   // may not pack objects densely; a chunk may either be an object or a
1430   // non-object.
1431   virtual HeapWord* block_start(const void* addr) const;
1432 
1433   // Requires "addr" to be the start of a chunk, and returns its size.
1434   // "addr + size" is required to be the start of a new chunk, or the end
1435   // of the active area of the heap.
1436   virtual size_t block_size(const HeapWord* addr) const;
1437 
1438   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1439   // the block is an object.
1440   virtual bool block_is_obj(const HeapWord* addr) const;
1441 
1442   // Does this heap support heap inspection? (+PrintClassHistogram)
1443   virtual bool supports_heap_inspection() const { return true; }
1444 
1445   // Section on thread-local allocation buffers (TLABs)
1446   // See CollectedHeap for semantics.
1447 
1448   bool supports_tlab_allocation() const;
1449   size_t tlab_capacity(Thread* ignored) const;
1450   size_t tlab_used(Thread* ignored) const;
1451   size_t max_tlab_size() const;
1452   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1453 
1454   // Can a compiler initialize a new object without store barriers?
1455   // This permission only extends from the creation of a new object
1456   // via a TLAB up to the first subsequent safepoint. If such permission
1457   // is granted for this heap type, the compiler promises to call
1458   // defer_store_barrier() below on any slow path allocation of
1459   // a new object for which such initializing store barriers will
1460   // have been elided. G1, like CMS, allows this, but should be
1461   // ready to provide a compensating write barrier as necessary
1462   // if that storage came out of a non-young region. The efficiency
1463   // of this implementation depends crucially on being able to
1464   // answer very efficiently in constant time whether a piece of
1465   // storage in the heap comes from a young region or not.
1466   // See ReduceInitialCardMarks.
1467   virtual bool can_elide_tlab_store_barriers() const {
1468     return true;
1469   }
1470 
1471   virtual bool card_mark_must_follow_store() const {
1472     return true;
1473   }
1474 
1475   bool is_in_young(const oop obj) {
1476     HeapRegion* hr = heap_region_containing(obj);
1477     return hr != NULL && hr->is_young();
1478   }
1479 
1480 #ifdef ASSERT
1481   virtual bool is_in_partial_collection(const void* p);
1482 #endif
1483 
1484   virtual bool is_scavengable(const void* addr);
1485 
1486   // We don't need barriers for initializing stores to objects
1487   // in the young gen: for the SATB pre-barrier, there is no
1488   // pre-value that needs to be remembered; for the remembered-set
1489   // update logging post-barrier, we don't maintain remembered set
1490   // information for young gen objects.
1491   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
1492     return is_in_young(new_obj);
1493   }
1494 
1495   // Returns "true" iff the given word_size is "very large".
1496   static bool isHumongous(size_t word_size) {
1497     // Note this has to be strictly greater-than as the TLABs
1498     // are capped at the humongous threshold and we want to
1499     // ensure that we don't try to allocate a TLAB as
1500     // humongous and that we don't allocate a humongous
1501     // object in a TLAB.
1502     return word_size > _humongous_object_threshold_in_words;
1503   }
1504 
1505   // Update mod union table with the set of dirty cards.
1506   void updateModUnion();
1507 
1508   // Set the mod union bits corresponding to the given memRegion.  Note
1509   // that this is always a safe operation, since it doesn't clear any
1510   // bits.
1511   void markModUnionRange(MemRegion mr);
1512 
1513   // Records the fact that a marking phase is no longer in progress.
1514   void set_marking_complete() {
1515     _mark_in_progress = false;
1516   }
1517   void set_marking_started() {
1518     _mark_in_progress = true;
1519   }
1520   bool mark_in_progress() {
1521     return _mark_in_progress;
1522   }
1523 
1524   // Print the maximum heap capacity.
1525   virtual size_t max_capacity() const;
1526 
1527   virtual jlong millis_since_last_gc();
1528 
1529 
1530   // Convenience function to be used in situations where the heap type can be
1531   // asserted to be this type.
1532   static G1CollectedHeap* heap();
1533 
1534   void set_region_short_lived_locked(HeapRegion* hr);
1535   // add appropriate methods for any other surv rate groups
1536 
1537   YoungList* young_list() const { return _young_list; }
1538 
1539   // debugging
1540   bool check_young_list_well_formed() {
1541     return _young_list->check_list_well_formed();
1542   }
1543 
1544   bool check_young_list_empty(bool check_heap,
1545                               bool check_sample = true);
1546 
1547   // *** Stuff related to concurrent marking.  It's not clear to me that so
1548   // many of these need to be public.
1549 
1550   // The functions below are helper functions that a subclass of
1551   // "CollectedHeap" can use in the implementation of its virtual
1552   // functions.
1553   // This performs a concurrent marking of the live objects in a
1554   // bitmap off to the side.
1555   void doConcurrentMark();
1556 
1557   bool isMarkedPrev(oop obj) const;
1558   bool isMarkedNext(oop obj) const;
1559 
1560   // Determine if an object is dead, given the object and also
1561   // the region to which the object belongs. An object is dead
1562   // iff a) it was not allocated since the last mark and b) it
1563   // is not marked.
1564 
1565   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1566     return
1567       !hr->obj_allocated_since_prev_marking(obj) &&
1568       !isMarkedPrev(obj);
1569   }
1570 
1571   // This function returns true when an object has been
1572   // around since the previous marking and hasn't yet
1573   // been marked during this marking.
1574 
1575   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1576     return
1577       !hr->obj_allocated_since_next_marking(obj) &&
1578       !isMarkedNext(obj);
1579   }
1580 
1581   // Determine if an object is dead, given only the object itself.
1582   // This will find the region to which the object belongs and
1583   // then call the region version of the same function.
1584 
1585   // Added if it is NULL it isn't dead.
1586 
1587   bool is_obj_dead(const oop obj) const {
1588     const HeapRegion* hr = heap_region_containing(obj);
1589     if (hr == NULL) {
1590       if (obj == NULL) return false;
1591       else return true;
1592     }
1593     else return is_obj_dead(obj, hr);
1594   }
1595 
1596   bool is_obj_ill(const oop obj) const {
1597     const HeapRegion* hr = heap_region_containing(obj);
1598     if (hr == NULL) {
1599       if (obj == NULL) return false;
1600       else return true;
1601     }
1602     else return is_obj_ill(obj, hr);
1603   }
1604 
1605   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
1606   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
1607   bool is_marked(oop obj, VerifyOption vo);
1608   const char* top_at_mark_start_str(VerifyOption vo);
1609 
1610   ConcurrentMark* concurrent_mark() const { return _cm; }
1611 
1612   // Refinement
1613 
1614   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1615 
1616   // The dirty cards region list is used to record a subset of regions
1617   // whose cards need clearing. The list if populated during the
1618   // remembered set scanning and drained during the card table
1619   // cleanup. Although the methods are reentrant, population/draining
1620   // phases must not overlap. For synchronization purposes the last
1621   // element on the list points to itself.
1622   HeapRegion* _dirty_cards_region_list;
1623   void push_dirty_cards_region(HeapRegion* hr);
1624   HeapRegion* pop_dirty_cards_region();
1625 
1626   // Optimized nmethod scanning support routines
1627 
1628   // Register the given nmethod with the G1 heap.
1629   virtual void register_nmethod(nmethod* nm);
1630 
1631   // Unregister the given nmethod from the G1 heap.
1632   virtual void unregister_nmethod(nmethod* nm);
1633 
1634   // Migrate the nmethods in the code root lists of the regions
1635   // in the collection set to regions in to-space. In the event
1636   // of an evacuation failure, nmethods that reference objects
1637   // that were not successfully evacuated are not migrated.
1638   void migrate_strong_code_roots();
1639 
1640   // Free up superfluous code root memory.
1641   void purge_code_root_memory();
1642 
1643   // During an initial mark pause, mark all the code roots that
1644   // point into regions *not* in the collection set.
1645   void mark_strong_code_roots(uint worker_id);
1646 
1647   // Rebuild the strong code root lists for each region
1648   // after a full GC.
1649   void rebuild_strong_code_roots();
1650 
1651   // Delete entries for dead interned string and clean up unreferenced symbols
1652   // in symbol table, possibly in parallel.
1653   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
1654 
1655   // Redirty logged cards in the refinement queue.
1656   void redirty_logged_cards();
1657   // Verification
1658 
1659   // The following is just to alert the verification code
1660   // that a full collection has occurred and that the
1661   // remembered sets are no longer up to date.
1662   bool _full_collection;
1663   void set_full_collection() { _full_collection = true;}
1664   void clear_full_collection() {_full_collection = false;}
1665   bool full_collection() {return _full_collection;}
1666 
1667   // Perform any cleanup actions necessary before allowing a verification.
1668   virtual void prepare_for_verify();
1669 
1670   // Perform verification.
1671 
1672   // vo == UsePrevMarking  -> use "prev" marking information,
1673   // vo == UseNextMarking -> use "next" marking information
1674   // vo == UseMarkWord    -> use the mark word in the object header
1675   //
1676   // NOTE: Only the "prev" marking information is guaranteed to be
1677   // consistent most of the time, so most calls to this should use
1678   // vo == UsePrevMarking.
1679   // Currently, there is only one case where this is called with
1680   // vo == UseNextMarking, which is to verify the "next" marking
1681   // information at the end of remark.
1682   // Currently there is only one place where this is called with
1683   // vo == UseMarkWord, which is to verify the marking during a
1684   // full GC.
1685   void verify(bool silent, VerifyOption vo);
1686 
1687   // Override; it uses the "prev" marking information
1688   virtual void verify(bool silent);
1689 
1690   // The methods below are here for convenience and dispatch the
1691   // appropriate method depending on value of the given VerifyOption
1692   // parameter. The values for that parameter, and their meanings,
1693   // are the same as those above.
1694 
1695   bool is_obj_dead_cond(const oop obj,
1696                         const HeapRegion* hr,
1697                         const VerifyOption vo) const {
1698     switch (vo) {
1699     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
1700     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
1701     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
1702     default:                            ShouldNotReachHere();
1703     }
1704     return false; // keep some compilers happy
1705   }
1706 
1707   bool is_obj_dead_cond(const oop obj,
1708                         const VerifyOption vo) const {
1709     switch (vo) {
1710     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
1711     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
1712     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
1713     default:                            ShouldNotReachHere();
1714     }
1715     return false; // keep some compilers happy
1716   }
1717 
1718   // Printing
1719 
1720   virtual void print_on(outputStream* st) const;
1721   virtual void print_extended_on(outputStream* st) const;
1722   virtual void print_on_error(outputStream* st) const;
1723 
1724   virtual void print_gc_threads_on(outputStream* st) const;
1725   virtual void gc_threads_do(ThreadClosure* tc) const;
1726 
1727   // Override
1728   void print_tracing_info() const;
1729 
1730   // The following two methods are helpful for debugging RSet issues.
1731   void print_cset_rsets() PRODUCT_RETURN;
1732   void print_all_rsets() PRODUCT_RETURN;
1733 
1734 public:
1735   void stop_conc_gc_threads();
1736 
1737   size_t pending_card_num();
1738   size_t cards_scanned();
1739 
1740 protected:
1741   size_t _max_heap_capacity;
1742 };
1743 
1744 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
1745 private:
1746   bool        _retired;
1747 
1748 public:
1749   G1ParGCAllocBuffer(size_t gclab_word_size);
1750 
1751   void set_buf(HeapWord* buf) {
1752     ParGCAllocBuffer::set_buf(buf);
1753     _retired = false;
1754   }
1755 
1756   void retire(bool end_of_gc, bool retain) {
1757     if (_retired)
1758       return;
1759     ParGCAllocBuffer::retire(end_of_gc, retain);
1760     _retired = true;
1761   }
1762 };
1763 
1764 class G1ParScanThreadState : public StackObj {
1765 protected:
1766   G1CollectedHeap* _g1h;
1767   RefToScanQueue*  _refs;
1768   DirtyCardQueue   _dcq;
1769   G1SATBCardTableModRefBS* _ct_bs;
1770   G1RemSet* _g1_rem;
1771 
1772   G1ParGCAllocBuffer  _surviving_alloc_buffer;
1773   G1ParGCAllocBuffer  _tenured_alloc_buffer;
1774   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
1775   ageTable            _age_table;
1776 
1777   G1ParScanClosure    _scanner;
1778 
1779   size_t           _alloc_buffer_waste;
1780   size_t           _undo_waste;
1781 
1782   OopsInHeapRegionClosure*      _evac_failure_cl;
1783 
1784   int  _hash_seed;
1785   uint _queue_num;
1786 
1787   size_t _term_attempts;
1788 
1789   double _start;
1790   double _start_strong_roots;
1791   double _strong_roots_time;
1792   double _start_term;
1793   double _term_time;
1794 
1795   // Map from young-age-index (0 == not young, 1 is youngest) to
1796   // surviving words. base is what we get back from the malloc call
1797   size_t* _surviving_young_words_base;
1798   // this points into the array, as we use the first few entries for padding
1799   size_t* _surviving_young_words;
1800 
1801 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
1802 
1803   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
1804 
1805   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
1806 
1807   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
1808   G1SATBCardTableModRefBS* ctbs()                { return _ct_bs; }
1809 
1810   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
1811     if (!from->is_survivor()) {
1812       _g1_rem->par_write_ref(from, p, tid);
1813     }
1814   }
1815 
1816   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
1817     // If the new value of the field points to the same region or
1818     // is the to-space, we don't need to include it in the Rset updates.
1819     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
1820       size_t card_index = ctbs()->index_for(p);
1821       // If the card hasn't been added to the buffer, do it.
1822       if (ctbs()->mark_card_deferred(card_index)) {
1823         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
1824       }
1825     }
1826   }
1827 
1828 public:
1829   G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp);
1830 
1831   ~G1ParScanThreadState() {
1832     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
1833   }
1834 
1835   RefToScanQueue*   refs()            { return _refs;             }
1836   ageTable*         age_table()       { return &_age_table;       }
1837 
1838   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
1839     return _alloc_buffers[purpose];
1840   }
1841 
1842   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
1843   size_t undo_waste() const                      { return _undo_waste; }
1844 
1845 #ifdef ASSERT
1846   bool verify_ref(narrowOop* ref) const;
1847   bool verify_ref(oop* ref) const;
1848   bool verify_task(StarTask ref) const;
1849 #endif // ASSERT
1850 
1851   template <class T> void push_on_queue(T* ref) {
1852     assert(verify_ref(ref), "sanity");
1853     refs()->push(ref);
1854   }
1855 
1856   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
1857     if (G1DeferredRSUpdate) {
1858       deferred_rs_update(from, p, tid);
1859     } else {
1860       immediate_rs_update(from, p, tid);
1861     }
1862   }
1863 
1864   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
1865     HeapWord* obj = NULL;
1866     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
1867     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
1868       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
1869       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
1870       alloc_buf->retire(false /* end_of_gc */, false /* retain */);
1871 
1872       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
1873       if (buf == NULL) return NULL; // Let caller handle allocation failure.
1874       // Otherwise.
1875       alloc_buf->set_word_size(gclab_word_size);
1876       alloc_buf->set_buf(buf);
1877 
1878       obj = alloc_buf->allocate(word_sz);
1879       assert(obj != NULL, "buffer was definitely big enough...");
1880     } else {
1881       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
1882     }
1883     return obj;
1884   }
1885 
1886   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
1887     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
1888     if (obj != NULL) return obj;
1889     return allocate_slow(purpose, word_sz);
1890   }
1891 
1892   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
1893     if (alloc_buffer(purpose)->contains(obj)) {
1894       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
1895              "should contain whole object");
1896       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
1897     } else {
1898       CollectedHeap::fill_with_object(obj, word_sz);
1899       add_to_undo_waste(word_sz);
1900     }
1901   }
1902 
1903   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
1904     _evac_failure_cl = evac_failure_cl;
1905   }
1906   OopsInHeapRegionClosure* evac_failure_closure() {
1907     return _evac_failure_cl;
1908   }
1909 
1910   int* hash_seed() { return &_hash_seed; }
1911   uint queue_num() { return _queue_num; }
1912 
1913   size_t term_attempts() const  { return _term_attempts; }
1914   void note_term_attempt() { _term_attempts++; }
1915 
1916   void start_strong_roots() {
1917     _start_strong_roots = os::elapsedTime();
1918   }
1919   void end_strong_roots() {
1920     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
1921   }
1922   double strong_roots_time() const { return _strong_roots_time; }
1923 
1924   void start_term_time() {
1925     note_term_attempt();
1926     _start_term = os::elapsedTime();
1927   }
1928   void end_term_time() {
1929     _term_time += (os::elapsedTime() - _start_term);
1930   }
1931   double term_time() const { return _term_time; }
1932 
1933   double elapsed_time() const {
1934     return os::elapsedTime() - _start;
1935   }
1936 
1937   static void
1938     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
1939   void
1940     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
1941 
1942   size_t* surviving_young_words() {
1943     // We add on to hide entry 0 which accumulates surviving words for
1944     // age -1 regions (i.e. non-young ones)
1945     return _surviving_young_words;
1946   }
1947 
1948   void retire_alloc_buffers() {
1949     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
1950       size_t waste = _alloc_buffers[ap]->words_remaining();
1951       add_to_alloc_buffer_waste(waste);
1952       _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
1953                                                  true /* end_of_gc */,
1954                                                  false /* retain */);
1955     }
1956   }
1957 private:
1958   #define G1_PARTIAL_ARRAY_MASK 0x2
1959 
1960   inline bool has_partial_array_mask(oop* ref) const {
1961     return ((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) == G1_PARTIAL_ARRAY_MASK;
1962   }
1963 
1964   // We never encode partial array oops as narrowOop*, so return false immediately.
1965   // This allows the compiler to create optimized code when popping references from
1966   // the work queue.
1967   inline bool has_partial_array_mask(narrowOop* ref) const {
1968     assert(((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) != G1_PARTIAL_ARRAY_MASK, "Partial array oop reference encoded as narrowOop*");
1969     return false;
1970   }
1971 
1972   // Only implement set_partial_array_mask() for regular oops, not for narrowOops.
1973   // We always encode partial arrays as regular oop, to allow the
1974   // specialization for has_partial_array_mask() for narrowOops above.
1975   // This means that unintentional use of this method with narrowOops are caught
1976   // by the compiler.
1977   inline oop* set_partial_array_mask(oop obj) const {
1978     assert(((uintptr_t)(void *)obj & G1_PARTIAL_ARRAY_MASK) == 0, "Information loss!");
1979     return (oop*) ((uintptr_t)(void *)obj | G1_PARTIAL_ARRAY_MASK);
1980   }
1981 
1982   inline oop clear_partial_array_mask(oop* ref) const {
1983     return cast_to_oop((intptr_t)ref & ~G1_PARTIAL_ARRAY_MASK);
1984   }
1985 
1986   void do_oop_partial_array(oop* p) {
1987     assert(has_partial_array_mask(p), "invariant");
1988     oop from_obj = clear_partial_array_mask(p);
1989 
1990     assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
1991     assert(from_obj->is_objArray(), "must be obj array");
1992     objArrayOop from_obj_array = objArrayOop(from_obj);
1993     // The from-space object contains the real length.
1994     int length                 = from_obj_array->length();
1995 
1996     assert(from_obj->is_forwarded(), "must be forwarded");
1997     oop to_obj                 = from_obj->forwardee();
1998     assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
1999     objArrayOop to_obj_array   = objArrayOop(to_obj);
2000     // We keep track of the next start index in the length field of the
2001     // to-space object.
2002     int next_index             = to_obj_array->length();
2003     assert(0 <= next_index && next_index < length,
2004            err_msg("invariant, next index: %d, length: %d", next_index, length));
2005 
2006     int start                  = next_index;
2007     int end                    = length;
2008     int remainder              = end - start;
2009     // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
2010     if (remainder > 2 * ParGCArrayScanChunk) {
2011       end = start + ParGCArrayScanChunk;
2012       to_obj_array->set_length(end);
2013       // Push the remainder before we process the range in case another
2014       // worker has run out of things to do and can steal it.
2015       oop* from_obj_p = set_partial_array_mask(from_obj);
2016       push_on_queue(from_obj_p);
2017     } else {
2018       assert(length == end, "sanity");
2019       // We'll process the final range for this object. Restore the length
2020       // so that the heap remains parsable in case of evacuation failure.
2021       to_obj_array->set_length(end);
2022     }
2023     _scanner.set_region(_g1h->heap_region_containing_raw(to_obj));
2024     // Process indexes [start,end). It will also process the header
2025     // along with the first chunk (i.e., the chunk with start == 0).
2026     // Note that at this point the length field of to_obj_array is not
2027     // correct given that we are using it to keep track of the next
2028     // start index. oop_iterate_range() (thankfully!) ignores the length
2029     // field and only relies on the start / end parameters.  It does
2030     // however return the size of the object which will be incorrect. So
2031     // we have to ignore it even if we wanted to use it.
2032     to_obj_array->oop_iterate_range(&_scanner, start, end);
2033   }
2034 
2035   // This method is applied to the fields of the objects that have just been copied.
2036   template <class T> void do_oop_evac(T* p, HeapRegion* from) {
2037     assert(!oopDesc::is_null(oopDesc::load_decode_heap_oop(p)),
2038            "Reference should not be NULL here as such are never pushed to the task queue.");
2039     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
2040 
2041     // Although we never intentionally push references outside of the collection
2042     // set, due to (benign) races in the claim mechanism during RSet scanning more
2043     // than one thread might claim the same card. So the same card may be
2044     // processed multiple times. So redo this check.
2045     if (_g1h->in_cset_fast_test(obj)) {
2046       oop forwardee;
2047       if (obj->is_forwarded()) {
2048         forwardee = obj->forwardee();
2049       } else {
2050         forwardee = copy_to_survivor_space(obj);
2051       }
2052       assert(forwardee != NULL, "forwardee should not be NULL");
2053       oopDesc::encode_store_heap_oop(p, forwardee);
2054     }
2055 
2056     assert(obj != NULL, "Must be");
2057     update_rs(from, p, queue_num());
2058   }
2059 public:
2060 
2061   oop copy_to_survivor_space(oop const obj);
2062 
2063   template <class T> void deal_with_reference(T* ref_to_scan) {
2064     if (!has_partial_array_mask(ref_to_scan)) {
2065       // Note: we can use "raw" versions of "region_containing" because
2066       // "obj_to_scan" is definitely in the heap, and is not in a
2067       // humongous region.
2068       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
2069       do_oop_evac(ref_to_scan, r);
2070     } else {
2071       do_oop_partial_array((oop*)ref_to_scan);
2072     }
2073   }
2074 
2075   void deal_with_reference(StarTask ref) {
2076     assert(verify_task(ref), "sanity");
2077     if (ref.is_narrow()) {
2078       deal_with_reference((narrowOop*)ref);
2079     } else {
2080       deal_with_reference((oop*)ref);
2081     }
2082   }
2083 
2084 public:
2085   void trim_queue();
2086 };
2087 
2088 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP