1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP
  27 
  28 #include "gc_implementation/g1/concurrentMark.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.hpp"
  30 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  31 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  32 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  33 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  34 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  35 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  36 #include "utilities/taskqueue.hpp"
  37 
  38 // Inline functions for G1CollectedHeap
  39 
  40 // Return the region with the given index. It assumes the index is valid.
  41 inline HeapRegion* G1CollectedHeap::region_at(uint index) const { return _hrs.at(index); }
  42 
  43 template <class T>
  44 inline HeapRegion*
  45 G1CollectedHeap::heap_region_containing(const T addr) const {
  46   HeapRegion* hr = _hrs.addr_to_region((HeapWord*) addr);
  47   // hr can be null if addr in perm_gen
  48   if (hr != NULL && hr->continuesHumongous()) {
  49     hr = hr->humongous_start_region();
  50   }
  51   return hr;
  52 }
  53 
  54 template <class T>
  55 inline HeapRegion*
  56 G1CollectedHeap::heap_region_containing_raw(const T addr) const {
  57   assert(_g1_reserved.contains((const void*) addr), "invariant");
  58   HeapRegion* res = _hrs.addr_to_region_unsafe((HeapWord*) addr);
  59   return res;
  60 }
  61 
  62 inline void G1CollectedHeap::old_set_remove(HeapRegion* hr) {
  63   _old_set.remove(hr);
  64 }
  65 
  66 inline bool G1CollectedHeap::obj_in_cs(oop obj) {
  67   HeapRegion* r = _hrs.addr_to_region((HeapWord*) obj);
  68   return r != NULL && r->in_collection_set();
  69 }
  70 
  71 inline HeapWord*
  72 G1CollectedHeap::attempt_allocation(size_t word_size,
  73                                     unsigned int* gc_count_before_ret,
  74                                     int* gclocker_retry_count_ret) {
  75   assert_heap_not_locked_and_not_at_safepoint();
  76   assert(!isHumongous(word_size), "attempt_allocation() should not "
  77          "be called for humongous allocation requests");
  78 
  79   HeapWord* result = _mutator_alloc_region.attempt_allocation(word_size,
  80                                                       false /* bot_updates */);
  81   if (result == NULL) {
  82     result = attempt_allocation_slow(word_size,
  83                                      gc_count_before_ret,
  84                                      gclocker_retry_count_ret);
  85   }
  86   assert_heap_not_locked();
  87   if (result != NULL) {
  88     dirty_young_block(result, word_size);
  89   }
  90   return result;
  91 }
  92 
  93 inline HeapWord* G1CollectedHeap::survivor_attempt_allocation(size_t
  94                                                               word_size) {
  95   assert(!isHumongous(word_size),
  96          "we should not be seeing humongous-size allocations in this path");
  97 
  98   HeapWord* result = _survivor_gc_alloc_region.attempt_allocation(word_size,
  99                                                       false /* bot_updates */);
 100   if (result == NULL) {
 101     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
 102     result = _survivor_gc_alloc_region.attempt_allocation_locked(word_size,
 103                                                       false /* bot_updates */);
 104   }
 105   if (result != NULL) {
 106     dirty_young_block(result, word_size);
 107   }
 108   return result;
 109 }
 110 
 111 inline HeapWord* G1CollectedHeap::old_attempt_allocation(size_t word_size) {
 112   assert(!isHumongous(word_size),
 113          "we should not be seeing humongous-size allocations in this path");
 114 
 115   HeapWord* result = _old_gc_alloc_region.attempt_allocation(word_size,
 116                                                        true /* bot_updates */);
 117   if (result == NULL) {
 118     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
 119     result = _old_gc_alloc_region.attempt_allocation_locked(word_size,
 120                                                        true /* bot_updates */);
 121   }
 122   return result;
 123 }
 124 
 125 // It dirties the cards that cover the block so that so that the post
 126 // write barrier never queues anything when updating objects on this
 127 // block. It is assumed (and in fact we assert) that the block
 128 // belongs to a young region.
 129 inline void
 130 G1CollectedHeap::dirty_young_block(HeapWord* start, size_t word_size) {
 131   assert_heap_not_locked();
 132 
 133   // Assign the containing region to containing_hr so that we don't
 134   // have to keep calling heap_region_containing_raw() in the
 135   // asserts below.
 136   DEBUG_ONLY(HeapRegion* containing_hr = heap_region_containing_raw(start);)
 137   assert(containing_hr != NULL && start != NULL && word_size > 0,
 138          "pre-condition");
 139   assert(containing_hr->is_in(start), "it should contain start");
 140   assert(containing_hr->is_young(), "it should be young");
 141   assert(!containing_hr->isHumongous(), "it should not be humongous");
 142 
 143   HeapWord* end = start + word_size;
 144   assert(containing_hr->is_in(end - 1), "it should also contain end - 1");
 145 
 146   MemRegion mr(start, end);
 147   g1_barrier_set()->g1_mark_as_young(mr);
 148 }
 149 
 150 inline RefToScanQueue* G1CollectedHeap::task_queue(int i) const {
 151   return _task_queues->queue(i);
 152 }
 153 
 154 inline bool G1CollectedHeap::isMarkedPrev(oop obj) const {
 155   return _cm->prevMarkBitMap()->isMarked((HeapWord *)obj);
 156 }
 157 
 158 inline bool G1CollectedHeap::isMarkedNext(oop obj) const {
 159   return _cm->nextMarkBitMap()->isMarked((HeapWord *)obj);
 160 }
 161 
 162 
 163 // This is a fast test on whether a reference points into the
 164 // collection set or not. Assume that the reference
 165 // points into the heap.
 166 inline bool G1CollectedHeap::in_cset_fast_test(oop obj) {
 167   assert(_in_cset_fast_test != NULL, "sanity");
 168   assert(_g1_committed.contains((HeapWord*) obj), err_msg("Given reference outside of heap, is "PTR_FORMAT, (HeapWord*)obj));
 169   // no need to subtract the bottom of the heap from obj,
 170   // _in_cset_fast_test is biased
 171   uintx index = cast_from_oop<uintx>(obj) >> HeapRegion::LogOfHRGrainBytes;
 172   bool ret = _in_cset_fast_test[index];
 173   // let's make sure the result is consistent with what the slower
 174   // test returns
 175   assert( ret || !obj_in_cs(obj), "sanity");
 176   assert(!ret ||  obj_in_cs(obj), "sanity");
 177   return ret;
 178 }
 179 
 180 #ifndef PRODUCT
 181 // Support for G1EvacuationFailureALot
 182 
 183 inline bool
 184 G1CollectedHeap::evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 185                                                      bool during_initial_mark,
 186                                                      bool during_marking) {
 187   bool res = false;
 188   if (during_marking) {
 189     res |= G1EvacuationFailureALotDuringConcMark;
 190   }
 191   if (during_initial_mark) {
 192     res |= G1EvacuationFailureALotDuringInitialMark;
 193   }
 194   if (gcs_are_young) {
 195     res |= G1EvacuationFailureALotDuringYoungGC;
 196   } else {
 197     // GCs are mixed
 198     res |= G1EvacuationFailureALotDuringMixedGC;
 199   }
 200   return res;
 201 }
 202 
 203 inline void
 204 G1CollectedHeap::set_evacuation_failure_alot_for_current_gc() {
 205   if (G1EvacuationFailureALot) {
 206     // Note we can't assert that _evacuation_failure_alot_for_current_gc
 207     // is clear here. It may have been set during a previous GC but that GC
 208     // did not copy enough objects (i.e. G1EvacuationFailureALotCount) to
 209     // trigger an evacuation failure and clear the flags and and counts.
 210 
 211     // Check if we have gone over the interval.
 212     const size_t gc_num = total_collections();
 213     const size_t elapsed_gcs = gc_num - _evacuation_failure_alot_gc_number;
 214 
 215     _evacuation_failure_alot_for_current_gc = (elapsed_gcs >= G1EvacuationFailureALotInterval);
 216 
 217     // Now check if G1EvacuationFailureALot is enabled for the current GC type.
 218     const bool gcs_are_young = g1_policy()->gcs_are_young();
 219     const bool during_im = g1_policy()->during_initial_mark_pause();
 220     const bool during_marking = mark_in_progress();
 221 
 222     _evacuation_failure_alot_for_current_gc &=
 223       evacuation_failure_alot_for_gc_type(gcs_are_young,
 224                                           during_im,
 225                                           during_marking);
 226   }
 227 }
 228 
 229 inline bool
 230 G1CollectedHeap::evacuation_should_fail() {
 231   if (!G1EvacuationFailureALot || !_evacuation_failure_alot_for_current_gc) {
 232     return false;
 233   }
 234   // G1EvacuationFailureALot is in effect for current GC
 235   // Access to _evacuation_failure_alot_count is not atomic;
 236   // the value does not have to be exact.
 237   if (++_evacuation_failure_alot_count < G1EvacuationFailureALotCount) {
 238     return false;
 239   }
 240   _evacuation_failure_alot_count = 0;
 241   return true;
 242 }
 243 
 244 inline void G1CollectedHeap::reset_evacuation_should_fail() {
 245   if (G1EvacuationFailureALot) {
 246     _evacuation_failure_alot_gc_number = total_collections();
 247     _evacuation_failure_alot_count = 0;
 248     _evacuation_failure_alot_for_current_gc = false;
 249   }
 250 }
 251 #endif  // #ifndef PRODUCT
 252 
 253 inline bool G1CollectedHeap::is_in_young(const oop obj) {
 254   HeapRegion* hr = heap_region_containing(obj);
 255   return hr != NULL && hr->is_young();
 256 }
 257 
 258 // We don't need barriers for initializing stores to objects
 259 // in the young gen: for the SATB pre-barrier, there is no
 260 // pre-value that needs to be remembered; for the remembered-set
 261 // update logging post-barrier, we don't maintain remembered set
 262 // information for young gen objects.
 263 inline bool G1CollectedHeap::can_elide_initializing_store_barrier(oop new_obj) {
 264   return is_in_young(new_obj);
 265 }
 266 
 267 inline bool G1CollectedHeap::is_obj_dead(const oop obj) const {
 268   const HeapRegion* hr = heap_region_containing(obj);
 269   if (hr == NULL) {
 270     if (obj == NULL) return false;
 271     else return true;
 272   }
 273   else return is_obj_dead(obj, hr);
 274 }
 275 
 276 inline bool G1CollectedHeap::is_obj_ill(const oop obj) const {
 277   const HeapRegion* hr = heap_region_containing(obj);
 278   if (hr == NULL) {
 279     if (obj == NULL) return false;
 280     else return true;
 281   }
 282   else return is_obj_ill(obj, hr);
 283 }
 284 
 285 template <class T> inline void G1ParScanThreadState::immediate_rs_update(HeapRegion* from, T* p, int tid) {
 286   if (!from->is_survivor()) {
 287     _g1_rem->par_write_ref(from, p, tid);
 288   }
 289 }
 290 
 291 template <class T> void G1ParScanThreadState::update_rs(HeapRegion* from, T* p, int tid) {
 292   if (G1DeferredRSUpdate) {
 293     deferred_rs_update(from, p, tid);
 294   } else {
 295     immediate_rs_update(from, p, tid);
 296   }
 297 }
 298 
 299 
 300 inline void G1ParScanThreadState::do_oop_partial_array(oop* p) {
 301   assert(has_partial_array_mask(p), "invariant");
 302   oop from_obj = clear_partial_array_mask(p);
 303 
 304   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
 305   assert(from_obj->is_objArray(), "must be obj array");
 306   objArrayOop from_obj_array = objArrayOop(from_obj);
 307   // The from-space object contains the real length.
 308   int length                 = from_obj_array->length();
 309 
 310   assert(from_obj->is_forwarded(), "must be forwarded");
 311   oop to_obj                 = from_obj->forwardee();
 312   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
 313   objArrayOop to_obj_array   = objArrayOop(to_obj);
 314   // We keep track of the next start index in the length field of the
 315   // to-space object.
 316   int next_index             = to_obj_array->length();
 317   assert(0 <= next_index && next_index < length,
 318          err_msg("invariant, next index: %d, length: %d", next_index, length));
 319 
 320   int start                  = next_index;
 321   int end                    = length;
 322   int remainder              = end - start;
 323   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
 324   if (remainder > 2 * ParGCArrayScanChunk) {
 325     end = start + ParGCArrayScanChunk;
 326     to_obj_array->set_length(end);
 327     // Push the remainder before we process the range in case another
 328     // worker has run out of things to do and can steal it.
 329     oop* from_obj_p = set_partial_array_mask(from_obj);
 330     push_on_queue(from_obj_p);
 331   } else {
 332     assert(length == end, "sanity");
 333     // We'll process the final range for this object. Restore the length
 334     // so that the heap remains parsable in case of evacuation failure.
 335     to_obj_array->set_length(end);
 336   }
 337   _scanner.set_region(_g1h->heap_region_containing_raw(to_obj));
 338   // Process indexes [start,end). It will also process the header
 339   // along with the first chunk (i.e., the chunk with start == 0).
 340   // Note that at this point the length field of to_obj_array is not
 341   // correct given that we are using it to keep track of the next
 342   // start index. oop_iterate_range() (thankfully!) ignores the length
 343   // field and only relies on the start / end parameters.  It does
 344   // however return the size of the object which will be incorrect. So
 345   // we have to ignore it even if we wanted to use it.
 346   to_obj_array->oop_iterate_range(&_scanner, start, end);
 347 }
 348 
 349 template <class T> inline void G1ParScanThreadState::deal_with_reference(T* ref_to_scan) {
 350   if (!has_partial_array_mask(ref_to_scan)) {
 351     // Note: we can use "raw" versions of "region_containing" because
 352     // "obj_to_scan" is definitely in the heap, and is not in a
 353     // humongous region.
 354     HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
 355     do_oop_evac(ref_to_scan, r);
 356   } else {
 357     do_oop_partial_array((oop*)ref_to_scan);
 358   }
 359 }
 360 
 361 inline void G1ParScanThreadState::deal_with_reference(StarTask ref) {
 362   assert(verify_task(ref), "sanity");
 363   if (ref.is_narrow()) {
 364     deal_with_reference((narrowOop*)ref);
 365   } else {
 366     deal_with_reference((oop*)ref);
 367   }
 368 }
 369 
 370 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP