1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/stringTable.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  35 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  36 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  37 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  38 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  41 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  42 #include "gc_implementation/g1/g1EvacFailure.hpp"
  43 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  44 #include "gc_implementation/g1/g1Log.hpp"
  45 #include "gc_implementation/g1/g1MarkSweep.hpp"
  46 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  47 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  48 #include "gc_implementation/g1/g1StringDedup.hpp"
  49 #include "gc_implementation/g1/g1YCTypes.hpp"
  50 #include "gc_implementation/g1/heapRegion.inline.hpp"
  51 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  52 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  53 #include "gc_implementation/g1/vm_operations_g1.hpp"
  54 #include "gc_implementation/shared/gcHeapSummary.hpp"
  55 #include "gc_implementation/shared/gcTimer.hpp"
  56 #include "gc_implementation/shared/gcTrace.hpp"
  57 #include "gc_implementation/shared/gcTraceTime.hpp"
  58 #include "gc_implementation/shared/isGCActiveMark.hpp"
  59 #include "memory/gcLocker.inline.hpp"
  60 #include "memory/generationSpec.hpp"
  61 #include "memory/iterator.hpp"
  62 #include "memory/referenceProcessor.hpp"
  63 #include "oops/oop.inline.hpp"
  64 #include "oops/oop.pcgc.inline.hpp"
  65 #include "runtime/atomic.inline.hpp"
  66 #include "runtime/prefetch.inline.hpp"
  67 #include "runtime/orderAccess.inline.hpp"
  68 #include "runtime/vmThread.hpp"
  69 #include "utilities/globalDefinitions.hpp"
  70 #include "utilities/ticks.hpp"
  71 
  72 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  73 
  74 // turn it on so that the contents of the young list (scan-only /
  75 // to-be-collected) are printed at "strategic" points before / during
  76 // / after the collection --- this is useful for debugging
  77 #define YOUNG_LIST_VERBOSE 0
  78 // CURRENT STATUS
  79 // This file is under construction.  Search for "FIXME".
  80 
  81 // INVARIANTS/NOTES
  82 //
  83 // All allocation activity covered by the G1CollectedHeap interface is
  84 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  85 // and allocate_new_tlab, which are the "entry" points to the
  86 // allocation code from the rest of the JVM.  (Note that this does not
  87 // apply to TLAB allocation, which is not part of this interface: it
  88 // is done by clients of this interface.)
  89 
  90 // Notes on implementation of parallelism in different tasks.
  91 //
  92 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  93 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  94 // It does use run_task() which sets _n_workers in the task.
  95 // G1ParTask executes g1_process_strong_roots() ->
  96 // SharedHeap::process_strong_roots() which calls eventually to
  97 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  98 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  99 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
 100 //
 101 
 102 // Local to this file.
 103 
 104 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 105   bool _concurrent;
 106 public:
 107   RefineCardTableEntryClosure() : _concurrent(true) { }
 108 
 109   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 110     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 111     // This path is executed by the concurrent refine or mutator threads,
 112     // concurrently, and so we do not care if card_ptr contains references
 113     // that point into the collection set.
 114     assert(!oops_into_cset, "should be");
 115 
 116     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 117       // Caller will actually yield.
 118       return false;
 119     }
 120     // Otherwise, we finished successfully; return true.
 121     return true;
 122   }
 123 
 124   void set_concurrent(bool b) { _concurrent = b; }
 125 };
 126 
 127 
 128 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 129   size_t _num_processed;
 130   CardTableModRefBS* _ctbs;
 131   int _histo[256];
 132 
 133  public:
 134   ClearLoggedCardTableEntryClosure() :
 135     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
 136   {
 137     for (int i = 0; i < 256; i++) _histo[i] = 0;
 138   }
 139 
 140   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 141     unsigned char* ujb = (unsigned char*)card_ptr;
 142     int ind = (int)(*ujb);
 143     _histo[ind]++;
 144 
 145     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
 146     _num_processed++;
 147 
 148     return true;
 149   }
 150 
 151   size_t num_processed() { return _num_processed; }
 152 
 153   void print_histo() {
 154     gclog_or_tty->print_cr("Card table value histogram:");
 155     for (int i = 0; i < 256; i++) {
 156       if (_histo[i] != 0) {
 157         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 158       }
 159     }
 160   }
 161 };
 162 
 163 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 164  private:
 165   size_t _num_processed;
 166 
 167  public:
 168   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 169 
 170   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 171     *card_ptr = CardTableModRefBS::dirty_card_val();
 172     _num_processed++;
 173     return true;
 174   }
 175 
 176   size_t num_processed() const { return _num_processed; }
 177 };
 178 
 179 YoungList::YoungList(G1CollectedHeap* g1h) :
 180     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 181     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 182   guarantee(check_list_empty(false), "just making sure...");
 183 }
 184 
 185 void YoungList::push_region(HeapRegion *hr) {
 186   assert(!hr->is_young(), "should not already be young");
 187   assert(hr->get_next_young_region() == NULL, "cause it should!");
 188 
 189   hr->set_next_young_region(_head);
 190   _head = hr;
 191 
 192   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 193   ++_length;
 194 }
 195 
 196 void YoungList::add_survivor_region(HeapRegion* hr) {
 197   assert(hr->is_survivor(), "should be flagged as survivor region");
 198   assert(hr->get_next_young_region() == NULL, "cause it should!");
 199 
 200   hr->set_next_young_region(_survivor_head);
 201   if (_survivor_head == NULL) {
 202     _survivor_tail = hr;
 203   }
 204   _survivor_head = hr;
 205   ++_survivor_length;
 206 }
 207 
 208 void YoungList::empty_list(HeapRegion* list) {
 209   while (list != NULL) {
 210     HeapRegion* next = list->get_next_young_region();
 211     list->set_next_young_region(NULL);
 212     list->uninstall_surv_rate_group();
 213     list->set_not_young();
 214     list = next;
 215   }
 216 }
 217 
 218 void YoungList::empty_list() {
 219   assert(check_list_well_formed(), "young list should be well formed");
 220 
 221   empty_list(_head);
 222   _head = NULL;
 223   _length = 0;
 224 
 225   empty_list(_survivor_head);
 226   _survivor_head = NULL;
 227   _survivor_tail = NULL;
 228   _survivor_length = 0;
 229 
 230   _last_sampled_rs_lengths = 0;
 231 
 232   assert(check_list_empty(false), "just making sure...");
 233 }
 234 
 235 bool YoungList::check_list_well_formed() {
 236   bool ret = true;
 237 
 238   uint length = 0;
 239   HeapRegion* curr = _head;
 240   HeapRegion* last = NULL;
 241   while (curr != NULL) {
 242     if (!curr->is_young()) {
 243       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 244                              "incorrectly tagged (y: %d, surv: %d)",
 245                              curr->bottom(), curr->end(),
 246                              curr->is_young(), curr->is_survivor());
 247       ret = false;
 248     }
 249     ++length;
 250     last = curr;
 251     curr = curr->get_next_young_region();
 252   }
 253   ret = ret && (length == _length);
 254 
 255   if (!ret) {
 256     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 257     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 258                            length, _length);
 259   }
 260 
 261   return ret;
 262 }
 263 
 264 bool YoungList::check_list_empty(bool check_sample) {
 265   bool ret = true;
 266 
 267   if (_length != 0) {
 268     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 269                   _length);
 270     ret = false;
 271   }
 272   if (check_sample && _last_sampled_rs_lengths != 0) {
 273     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 274     ret = false;
 275   }
 276   if (_head != NULL) {
 277     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 278     ret = false;
 279   }
 280   if (!ret) {
 281     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 282   }
 283 
 284   return ret;
 285 }
 286 
 287 void
 288 YoungList::rs_length_sampling_init() {
 289   _sampled_rs_lengths = 0;
 290   _curr               = _head;
 291 }
 292 
 293 bool
 294 YoungList::rs_length_sampling_more() {
 295   return _curr != NULL;
 296 }
 297 
 298 void
 299 YoungList::rs_length_sampling_next() {
 300   assert( _curr != NULL, "invariant" );
 301   size_t rs_length = _curr->rem_set()->occupied();
 302 
 303   _sampled_rs_lengths += rs_length;
 304 
 305   // The current region may not yet have been added to the
 306   // incremental collection set (it gets added when it is
 307   // retired as the current allocation region).
 308   if (_curr->in_collection_set()) {
 309     // Update the collection set policy information for this region
 310     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 311   }
 312 
 313   _curr = _curr->get_next_young_region();
 314   if (_curr == NULL) {
 315     _last_sampled_rs_lengths = _sampled_rs_lengths;
 316     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 317   }
 318 }
 319 
 320 void
 321 YoungList::reset_auxilary_lists() {
 322   guarantee( is_empty(), "young list should be empty" );
 323   assert(check_list_well_formed(), "young list should be well formed");
 324 
 325   // Add survivor regions to SurvRateGroup.
 326   _g1h->g1_policy()->note_start_adding_survivor_regions();
 327   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 328 
 329   int young_index_in_cset = 0;
 330   for (HeapRegion* curr = _survivor_head;
 331        curr != NULL;
 332        curr = curr->get_next_young_region()) {
 333     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 334 
 335     // The region is a non-empty survivor so let's add it to
 336     // the incremental collection set for the next evacuation
 337     // pause.
 338     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 339     young_index_in_cset += 1;
 340   }
 341   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 342   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 343 
 344   _head   = _survivor_head;
 345   _length = _survivor_length;
 346   if (_survivor_head != NULL) {
 347     assert(_survivor_tail != NULL, "cause it shouldn't be");
 348     assert(_survivor_length > 0, "invariant");
 349     _survivor_tail->set_next_young_region(NULL);
 350   }
 351 
 352   // Don't clear the survivor list handles until the start of
 353   // the next evacuation pause - we need it in order to re-tag
 354   // the survivor regions from this evacuation pause as 'young'
 355   // at the start of the next.
 356 
 357   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 358 
 359   assert(check_list_well_formed(), "young list should be well formed");
 360 }
 361 
 362 void YoungList::print() {
 363   HeapRegion* lists[] = {_head,   _survivor_head};
 364   const char* names[] = {"YOUNG", "SURVIVOR"};
 365 
 366   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 367     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 368     HeapRegion *curr = lists[list];
 369     if (curr == NULL)
 370       gclog_or_tty->print_cr("  empty");
 371     while (curr != NULL) {
 372       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 373                              HR_FORMAT_PARAMS(curr),
 374                              curr->prev_top_at_mark_start(),
 375                              curr->next_top_at_mark_start(),
 376                              curr->age_in_surv_rate_group_cond());
 377       curr = curr->get_next_young_region();
 378     }
 379   }
 380 
 381   gclog_or_tty->cr();
 382 }
 383 
 384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 385 {
 386   // Claim the right to put the region on the dirty cards region list
 387   // by installing a self pointer.
 388   HeapRegion* next = hr->get_next_dirty_cards_region();
 389   if (next == NULL) {
 390     HeapRegion* res = (HeapRegion*)
 391       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 392                           NULL);
 393     if (res == NULL) {
 394       HeapRegion* head;
 395       do {
 396         // Put the region to the dirty cards region list.
 397         head = _dirty_cards_region_list;
 398         next = (HeapRegion*)
 399           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 400         if (next == head) {
 401           assert(hr->get_next_dirty_cards_region() == hr,
 402                  "hr->get_next_dirty_cards_region() != hr");
 403           if (next == NULL) {
 404             // The last region in the list points to itself.
 405             hr->set_next_dirty_cards_region(hr);
 406           } else {
 407             hr->set_next_dirty_cards_region(next);
 408           }
 409         }
 410       } while (next != head);
 411     }
 412   }
 413 }
 414 
 415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 416 {
 417   HeapRegion* head;
 418   HeapRegion* hr;
 419   do {
 420     head = _dirty_cards_region_list;
 421     if (head == NULL) {
 422       return NULL;
 423     }
 424     HeapRegion* new_head = head->get_next_dirty_cards_region();
 425     if (head == new_head) {
 426       // The last region.
 427       new_head = NULL;
 428     }
 429     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 430                                           head);
 431   } while (hr != head);
 432   assert(hr != NULL, "invariant");
 433   hr->set_next_dirty_cards_region(NULL);
 434   return hr;
 435 }
 436 
 437 void G1CollectedHeap::stop_conc_gc_threads() {
 438   _cg1r->stop();
 439   _cmThread->stop();
 440   if (G1StringDedup::is_enabled()) {
 441     G1StringDedup::stop();
 442   }
 443 }
 444 
 445 #ifdef ASSERT
 446 // A region is added to the collection set as it is retired
 447 // so an address p can point to a region which will be in the
 448 // collection set but has not yet been retired.  This method
 449 // therefore is only accurate during a GC pause after all
 450 // regions have been retired.  It is used for debugging
 451 // to check if an nmethod has references to objects that can
 452 // be move during a partial collection.  Though it can be
 453 // inaccurate, it is sufficient for G1 because the conservative
 454 // implementation of is_scavengable() for G1 will indicate that
 455 // all nmethods must be scanned during a partial collection.
 456 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 457   if (p == NULL) {
 458     return false;
 459   }
 460   return heap_region_containing(p)->in_collection_set();
 461 }
 462 #endif
 463 
 464 // Returns true if the reference points to an object that
 465 // can move in an incremental collection.
 466 bool G1CollectedHeap::is_scavengable(const void* p) {
 467   HeapRegion* hr = heap_region_containing(p);
 468   return !hr->isHumongous();
 469 }
 470 
 471 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 472   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 473   CardTableModRefBS* ct_bs = g1_barrier_set();
 474 
 475   // Count the dirty cards at the start.
 476   CountNonCleanMemRegionClosure count1(this);
 477   ct_bs->mod_card_iterate(&count1);
 478   int orig_count = count1.n();
 479 
 480   // First clear the logged cards.
 481   ClearLoggedCardTableEntryClosure clear;
 482   dcqs.apply_closure_to_all_completed_buffers(&clear);
 483   dcqs.iterate_closure_all_threads(&clear, false);
 484   clear.print_histo();
 485 
 486   // Now ensure that there's no dirty cards.
 487   CountNonCleanMemRegionClosure count2(this);
 488   ct_bs->mod_card_iterate(&count2);
 489   if (count2.n() != 0) {
 490     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 491                            count2.n(), orig_count);
 492   }
 493   guarantee(count2.n() == 0, "Card table should be clean.");
 494 
 495   RedirtyLoggedCardTableEntryClosure redirty;
 496   dcqs.apply_closure_to_all_completed_buffers(&redirty);
 497   dcqs.iterate_closure_all_threads(&redirty, false);
 498   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 499                          clear.num_processed(), orig_count);
 500   guarantee(redirty.num_processed() == clear.num_processed(),
 501             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
 502                     redirty.num_processed(), clear.num_processed()));
 503 
 504   CountNonCleanMemRegionClosure count3(this);
 505   ct_bs->mod_card_iterate(&count3);
 506   if (count3.n() != orig_count) {
 507     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 508                            orig_count, count3.n());
 509     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 510   }
 511 }
 512 
 513 // Private class members.
 514 
 515 G1CollectedHeap* G1CollectedHeap::_g1h;
 516 
 517 // Private methods.
 518 
 519 HeapRegion*
 520 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 521   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 522   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 523     if (!_secondary_free_list.is_empty()) {
 524       if (G1ConcRegionFreeingVerbose) {
 525         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 526                                "secondary_free_list has %u entries",
 527                                _secondary_free_list.length());
 528       }
 529       // It looks as if there are free regions available on the
 530       // secondary_free_list. Let's move them to the free_list and try
 531       // again to allocate from it.
 532       append_secondary_free_list();
 533 
 534       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 535              "empty we should have moved at least one entry to the free_list");
 536       HeapRegion* res = _free_list.remove_region(is_old);
 537       if (G1ConcRegionFreeingVerbose) {
 538         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 539                                "allocated "HR_FORMAT" from secondary_free_list",
 540                                HR_FORMAT_PARAMS(res));
 541       }
 542       return res;
 543     }
 544 
 545     // Wait here until we get notified either when (a) there are no
 546     // more free regions coming or (b) some regions have been moved on
 547     // the secondary_free_list.
 548     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 549   }
 550 
 551   if (G1ConcRegionFreeingVerbose) {
 552     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 553                            "could not allocate from secondary_free_list");
 554   }
 555   return NULL;
 556 }
 557 
 558 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 559   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 560          "the only time we use this to allocate a humongous region is "
 561          "when we are allocating a single humongous region");
 562 
 563   HeapRegion* res;
 564   if (G1StressConcRegionFreeing) {
 565     if (!_secondary_free_list.is_empty()) {
 566       if (G1ConcRegionFreeingVerbose) {
 567         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 568                                "forced to look at the secondary_free_list");
 569       }
 570       res = new_region_try_secondary_free_list(is_old);
 571       if (res != NULL) {
 572         return res;
 573       }
 574     }
 575   }
 576 
 577   res = _free_list.remove_region(is_old);
 578 
 579   if (res == NULL) {
 580     if (G1ConcRegionFreeingVerbose) {
 581       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 582                              "res == NULL, trying the secondary_free_list");
 583     }
 584     res = new_region_try_secondary_free_list(is_old);
 585   }
 586   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 587     // Currently, only attempts to allocate GC alloc regions set
 588     // do_expand to true. So, we should only reach here during a
 589     // safepoint. If this assumption changes we might have to
 590     // reconsider the use of _expand_heap_after_alloc_failure.
 591     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 592 
 593     ergo_verbose1(ErgoHeapSizing,
 594                   "attempt heap expansion",
 595                   ergo_format_reason("region allocation request failed")
 596                   ergo_format_byte("allocation request"),
 597                   word_size * HeapWordSize);
 598     if (expand(word_size * HeapWordSize)) {
 599       // Given that expand() succeeded in expanding the heap, and we
 600       // always expand the heap by an amount aligned to the heap
 601       // region size, the free list should in theory not be empty.
 602       // In either case remove_region() will check for NULL.
 603       res = _free_list.remove_region(is_old);
 604     } else {
 605       _expand_heap_after_alloc_failure = false;
 606     }
 607   }
 608   return res;
 609 }
 610 
 611 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 612                                                         size_t word_size) {
 613   assert(isHumongous(word_size), "word_size should be humongous");
 614   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 615 
 616   uint first = G1_NULL_HRS_INDEX;
 617   if (num_regions == 1) {
 618     // Only one region to allocate, no need to go through the slower
 619     // path. The caller will attempt the expansion if this fails, so
 620     // let's not try to expand here too.
 621     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 622     if (hr != NULL) {
 623       first = hr->hrs_index();
 624     } else {
 625       first = G1_NULL_HRS_INDEX;
 626     }
 627   } else {
 628     // We can't allocate humongous regions while cleanupComplete() is
 629     // running, since some of the regions we find to be empty might not
 630     // yet be added to the free list and it is not straightforward to
 631     // know which list they are on so that we can remove them. Note
 632     // that we only need to do this if we need to allocate more than
 633     // one region to satisfy the current humongous allocation
 634     // request. If we are only allocating one region we use the common
 635     // region allocation code (see above).
 636     wait_while_free_regions_coming();
 637     append_secondary_free_list_if_not_empty_with_lock();
 638 
 639     if (free_regions() >= num_regions) {
 640       first = _hrs.find_contiguous(num_regions);
 641       if (first != G1_NULL_HRS_INDEX) {
 642         for (uint i = first; i < first + num_regions; ++i) {
 643           HeapRegion* hr = region_at(i);
 644           assert(hr->is_empty(), "sanity");
 645           assert(is_on_master_free_list(hr), "sanity");
 646           hr->set_pending_removal(true);
 647         }
 648         _free_list.remove_all_pending(num_regions);
 649       }
 650     }
 651   }
 652   return first;
 653 }
 654 
 655 HeapWord*
 656 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 657                                                            uint num_regions,
 658                                                            size_t word_size) {
 659   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 660   assert(isHumongous(word_size), "word_size should be humongous");
 661   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 662 
 663   // Index of last region in the series + 1.
 664   uint last = first + num_regions;
 665 
 666   // We need to initialize the region(s) we just discovered. This is
 667   // a bit tricky given that it can happen concurrently with
 668   // refinement threads refining cards on these regions and
 669   // potentially wanting to refine the BOT as they are scanning
 670   // those cards (this can happen shortly after a cleanup; see CR
 671   // 6991377). So we have to set up the region(s) carefully and in
 672   // a specific order.
 673 
 674   // The word size sum of all the regions we will allocate.
 675   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 676   assert(word_size <= word_size_sum, "sanity");
 677 
 678   // This will be the "starts humongous" region.
 679   HeapRegion* first_hr = region_at(first);
 680   // The header of the new object will be placed at the bottom of
 681   // the first region.
 682   HeapWord* new_obj = first_hr->bottom();
 683   // This will be the new end of the first region in the series that
 684   // should also match the end of the last region in the series.
 685   HeapWord* new_end = new_obj + word_size_sum;
 686   // This will be the new top of the first region that will reflect
 687   // this allocation.
 688   HeapWord* new_top = new_obj + word_size;
 689 
 690   // First, we need to zero the header of the space that we will be
 691   // allocating. When we update top further down, some refinement
 692   // threads might try to scan the region. By zeroing the header we
 693   // ensure that any thread that will try to scan the region will
 694   // come across the zero klass word and bail out.
 695   //
 696   // NOTE: It would not have been correct to have used
 697   // CollectedHeap::fill_with_object() and make the space look like
 698   // an int array. The thread that is doing the allocation will
 699   // later update the object header to a potentially different array
 700   // type and, for a very short period of time, the klass and length
 701   // fields will be inconsistent. This could cause a refinement
 702   // thread to calculate the object size incorrectly.
 703   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 704 
 705   // We will set up the first region as "starts humongous". This
 706   // will also update the BOT covering all the regions to reflect
 707   // that there is a single object that starts at the bottom of the
 708   // first region.
 709   first_hr->set_startsHumongous(new_top, new_end);
 710 
 711   // Then, if there are any, we will set up the "continues
 712   // humongous" regions.
 713   HeapRegion* hr = NULL;
 714   for (uint i = first + 1; i < last; ++i) {
 715     hr = region_at(i);
 716     hr->set_continuesHumongous(first_hr);
 717   }
 718   // If we have "continues humongous" regions (hr != NULL), then the
 719   // end of the last one should match new_end.
 720   assert(hr == NULL || hr->end() == new_end, "sanity");
 721 
 722   // Up to this point no concurrent thread would have been able to
 723   // do any scanning on any region in this series. All the top
 724   // fields still point to bottom, so the intersection between
 725   // [bottom,top] and [card_start,card_end] will be empty. Before we
 726   // update the top fields, we'll do a storestore to make sure that
 727   // no thread sees the update to top before the zeroing of the
 728   // object header and the BOT initialization.
 729   OrderAccess::storestore();
 730 
 731   // Now that the BOT and the object header have been initialized,
 732   // we can update top of the "starts humongous" region.
 733   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 734          "new_top should be in this region");
 735   first_hr->set_top(new_top);
 736   if (_hr_printer.is_active()) {
 737     HeapWord* bottom = first_hr->bottom();
 738     HeapWord* end = first_hr->orig_end();
 739     if ((first + 1) == last) {
 740       // the series has a single humongous region
 741       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 742     } else {
 743       // the series has more than one humongous regions
 744       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 745     }
 746   }
 747 
 748   // Now, we will update the top fields of the "continues humongous"
 749   // regions. The reason we need to do this is that, otherwise,
 750   // these regions would look empty and this will confuse parts of
 751   // G1. For example, the code that looks for a consecutive number
 752   // of empty regions will consider them empty and try to
 753   // re-allocate them. We can extend is_empty() to also include
 754   // !continuesHumongous(), but it is easier to just update the top
 755   // fields here. The way we set top for all regions (i.e., top ==
 756   // end for all regions but the last one, top == new_top for the
 757   // last one) is actually used when we will free up the humongous
 758   // region in free_humongous_region().
 759   hr = NULL;
 760   for (uint i = first + 1; i < last; ++i) {
 761     hr = region_at(i);
 762     if ((i + 1) == last) {
 763       // last continues humongous region
 764       assert(hr->bottom() < new_top && new_top <= hr->end(),
 765              "new_top should fall on this region");
 766       hr->set_top(new_top);
 767       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 768     } else {
 769       // not last one
 770       assert(new_top > hr->end(), "new_top should be above this region");
 771       hr->set_top(hr->end());
 772       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 773     }
 774   }
 775   // If we have continues humongous regions (hr != NULL), then the
 776   // end of the last one should match new_end and its top should
 777   // match new_top.
 778   assert(hr == NULL ||
 779          (hr->end() == new_end && hr->top() == new_top), "sanity");
 780   check_bitmaps("Humongous Region Allocation", first_hr);
 781 
 782   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 783   _summary_bytes_used += first_hr->used();
 784   _humongous_set.add(first_hr);
 785 
 786   return new_obj;
 787 }
 788 
 789 // If could fit into free regions w/o expansion, try.
 790 // Otherwise, if can expand, do so.
 791 // Otherwise, if using ex regions might help, try with ex given back.
 792 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 793   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 794 
 795   verify_region_sets_optional();
 796 
 797   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 798   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 799   uint x_num = expansion_regions();
 800   uint fs = _hrs.free_suffix();
 801   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 802   if (first == G1_NULL_HRS_INDEX) {
 803     // The only thing we can do now is attempt expansion.
 804     if (fs + x_num >= num_regions) {
 805       // If the number of regions we're trying to allocate for this
 806       // object is at most the number of regions in the free suffix,
 807       // then the call to humongous_obj_allocate_find_first() above
 808       // should have succeeded and we wouldn't be here.
 809       //
 810       // We should only be trying to expand when the free suffix is
 811       // not sufficient for the object _and_ we have some expansion
 812       // room available.
 813       assert(num_regions > fs, "earlier allocation should have succeeded");
 814 
 815       ergo_verbose1(ErgoHeapSizing,
 816                     "attempt heap expansion",
 817                     ergo_format_reason("humongous allocation request failed")
 818                     ergo_format_byte("allocation request"),
 819                     word_size * HeapWordSize);
 820       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 821         // Even though the heap was expanded, it might not have
 822         // reached the desired size. So, we cannot assume that the
 823         // allocation will succeed.
 824         first = humongous_obj_allocate_find_first(num_regions, word_size);
 825       }
 826     }
 827   }
 828 
 829   HeapWord* result = NULL;
 830   if (first != G1_NULL_HRS_INDEX) {
 831     result =
 832       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 833     assert(result != NULL, "it should always return a valid result");
 834 
 835     // A successful humongous object allocation changes the used space
 836     // information of the old generation so we need to recalculate the
 837     // sizes and update the jstat counters here.
 838     g1mm()->update_sizes();
 839   }
 840 
 841   verify_region_sets_optional();
 842 
 843   return result;
 844 }
 845 
 846 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 847   assert_heap_not_locked_and_not_at_safepoint();
 848   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 849 
 850   unsigned int dummy_gc_count_before;
 851   int dummy_gclocker_retry_count = 0;
 852   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 853 }
 854 
 855 HeapWord*
 856 G1CollectedHeap::mem_allocate(size_t word_size,
 857                               bool*  gc_overhead_limit_was_exceeded) {
 858   assert_heap_not_locked_and_not_at_safepoint();
 859 
 860   // Loop until the allocation is satisfied, or unsatisfied after GC.
 861   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 862     unsigned int gc_count_before;
 863 
 864     HeapWord* result = NULL;
 865     if (!isHumongous(word_size)) {
 866       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 867     } else {
 868       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 869     }
 870     if (result != NULL) {
 871       return result;
 872     }
 873 
 874     // Create the garbage collection operation...
 875     VM_G1CollectForAllocation op(gc_count_before, word_size);
 876     // ...and get the VM thread to execute it.
 877     VMThread::execute(&op);
 878 
 879     if (op.prologue_succeeded() && op.pause_succeeded()) {
 880       // If the operation was successful we'll return the result even
 881       // if it is NULL. If the allocation attempt failed immediately
 882       // after a Full GC, it's unlikely we'll be able to allocate now.
 883       HeapWord* result = op.result();
 884       if (result != NULL && !isHumongous(word_size)) {
 885         // Allocations that take place on VM operations do not do any
 886         // card dirtying and we have to do it here. We only have to do
 887         // this for non-humongous allocations, though.
 888         dirty_young_block(result, word_size);
 889       }
 890       return result;
 891     } else {
 892       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 893         return NULL;
 894       }
 895       assert(op.result() == NULL,
 896              "the result should be NULL if the VM op did not succeed");
 897     }
 898 
 899     // Give a warning if we seem to be looping forever.
 900     if ((QueuedAllocationWarningCount > 0) &&
 901         (try_count % QueuedAllocationWarningCount == 0)) {
 902       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 903     }
 904   }
 905 
 906   ShouldNotReachHere();
 907   return NULL;
 908 }
 909 
 910 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 911                                            unsigned int *gc_count_before_ret,
 912                                            int* gclocker_retry_count_ret) {
 913   // Make sure you read the note in attempt_allocation_humongous().
 914 
 915   assert_heap_not_locked_and_not_at_safepoint();
 916   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 917          "be called for humongous allocation requests");
 918 
 919   // We should only get here after the first-level allocation attempt
 920   // (attempt_allocation()) failed to allocate.
 921 
 922   // We will loop until a) we manage to successfully perform the
 923   // allocation or b) we successfully schedule a collection which
 924   // fails to perform the allocation. b) is the only case when we'll
 925   // return NULL.
 926   HeapWord* result = NULL;
 927   for (int try_count = 1; /* we'll return */; try_count += 1) {
 928     bool should_try_gc;
 929     unsigned int gc_count_before;
 930 
 931     {
 932       MutexLockerEx x(Heap_lock);
 933 
 934       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 935                                                       false /* bot_updates */);
 936       if (result != NULL) {
 937         return result;
 938       }
 939 
 940       // If we reach here, attempt_allocation_locked() above failed to
 941       // allocate a new region. So the mutator alloc region should be NULL.
 942       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 943 
 944       if (GC_locker::is_active_and_needs_gc()) {
 945         if (g1_policy()->can_expand_young_list()) {
 946           // No need for an ergo verbose message here,
 947           // can_expand_young_list() does this when it returns true.
 948           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 949                                                       false /* bot_updates */);
 950           if (result != NULL) {
 951             return result;
 952           }
 953         }
 954         should_try_gc = false;
 955       } else {
 956         // The GCLocker may not be active but the GCLocker initiated
 957         // GC may not yet have been performed (GCLocker::needs_gc()
 958         // returns true). In this case we do not try this GC and
 959         // wait until the GCLocker initiated GC is performed, and
 960         // then retry the allocation.
 961         if (GC_locker::needs_gc()) {
 962           should_try_gc = false;
 963         } else {
 964           // Read the GC count while still holding the Heap_lock.
 965           gc_count_before = total_collections();
 966           should_try_gc = true;
 967         }
 968       }
 969     }
 970 
 971     if (should_try_gc) {
 972       bool succeeded;
 973       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 974           GCCause::_g1_inc_collection_pause);
 975       if (result != NULL) {
 976         assert(succeeded, "only way to get back a non-NULL result");
 977         return result;
 978       }
 979 
 980       if (succeeded) {
 981         // If we get here we successfully scheduled a collection which
 982         // failed to allocate. No point in trying to allocate
 983         // further. We'll just return NULL.
 984         MutexLockerEx x(Heap_lock);
 985         *gc_count_before_ret = total_collections();
 986         return NULL;
 987       }
 988     } else {
 989       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 990         MutexLockerEx x(Heap_lock);
 991         *gc_count_before_ret = total_collections();
 992         return NULL;
 993       }
 994       // The GCLocker is either active or the GCLocker initiated
 995       // GC has not yet been performed. Stall until it is and
 996       // then retry the allocation.
 997       GC_locker::stall_until_clear();
 998       (*gclocker_retry_count_ret) += 1;
 999     }
1000 
1001     // We can reach here if we were unsuccessful in scheduling a
1002     // collection (because another thread beat us to it) or if we were
1003     // stalled due to the GC locker. In either can we should retry the
1004     // allocation attempt in case another thread successfully
1005     // performed a collection and reclaimed enough space. We do the
1006     // first attempt (without holding the Heap_lock) here and the
1007     // follow-on attempt will be at the start of the next loop
1008     // iteration (after taking the Heap_lock).
1009     result = _mutator_alloc_region.attempt_allocation(word_size,
1010                                                       false /* bot_updates */);
1011     if (result != NULL) {
1012       return result;
1013     }
1014 
1015     // Give a warning if we seem to be looping forever.
1016     if ((QueuedAllocationWarningCount > 0) &&
1017         (try_count % QueuedAllocationWarningCount == 0)) {
1018       warning("G1CollectedHeap::attempt_allocation_slow() "
1019               "retries %d times", try_count);
1020     }
1021   }
1022 
1023   ShouldNotReachHere();
1024   return NULL;
1025 }
1026 
1027 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1028                                           unsigned int * gc_count_before_ret,
1029                                           int* gclocker_retry_count_ret) {
1030   // The structure of this method has a lot of similarities to
1031   // attempt_allocation_slow(). The reason these two were not merged
1032   // into a single one is that such a method would require several "if
1033   // allocation is not humongous do this, otherwise do that"
1034   // conditional paths which would obscure its flow. In fact, an early
1035   // version of this code did use a unified method which was harder to
1036   // follow and, as a result, it had subtle bugs that were hard to
1037   // track down. So keeping these two methods separate allows each to
1038   // be more readable. It will be good to keep these two in sync as
1039   // much as possible.
1040 
1041   assert_heap_not_locked_and_not_at_safepoint();
1042   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1043          "should only be called for humongous allocations");
1044 
1045   // Humongous objects can exhaust the heap quickly, so we should check if we
1046   // need to start a marking cycle at each humongous object allocation. We do
1047   // the check before we do the actual allocation. The reason for doing it
1048   // before the allocation is that we avoid having to keep track of the newly
1049   // allocated memory while we do a GC.
1050   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1051                                            word_size)) {
1052     collect(GCCause::_g1_humongous_allocation);
1053   }
1054 
1055   // We will loop until a) we manage to successfully perform the
1056   // allocation or b) we successfully schedule a collection which
1057   // fails to perform the allocation. b) is the only case when we'll
1058   // return NULL.
1059   HeapWord* result = NULL;
1060   for (int try_count = 1; /* we'll return */; try_count += 1) {
1061     bool should_try_gc;
1062     unsigned int gc_count_before;
1063 
1064     {
1065       MutexLockerEx x(Heap_lock);
1066 
1067       // Given that humongous objects are not allocated in young
1068       // regions, we'll first try to do the allocation without doing a
1069       // collection hoping that there's enough space in the heap.
1070       result = humongous_obj_allocate(word_size);
1071       if (result != NULL) {
1072         return result;
1073       }
1074 
1075       if (GC_locker::is_active_and_needs_gc()) {
1076         should_try_gc = false;
1077       } else {
1078          // The GCLocker may not be active but the GCLocker initiated
1079         // GC may not yet have been performed (GCLocker::needs_gc()
1080         // returns true). In this case we do not try this GC and
1081         // wait until the GCLocker initiated GC is performed, and
1082         // then retry the allocation.
1083         if (GC_locker::needs_gc()) {
1084           should_try_gc = false;
1085         } else {
1086           // Read the GC count while still holding the Heap_lock.
1087           gc_count_before = total_collections();
1088           should_try_gc = true;
1089         }
1090       }
1091     }
1092 
1093     if (should_try_gc) {
1094       // If we failed to allocate the humongous object, we should try to
1095       // do a collection pause (if we're allowed) in case it reclaims
1096       // enough space for the allocation to succeed after the pause.
1097 
1098       bool succeeded;
1099       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1100           GCCause::_g1_humongous_allocation);
1101       if (result != NULL) {
1102         assert(succeeded, "only way to get back a non-NULL result");
1103         return result;
1104       }
1105 
1106       if (succeeded) {
1107         // If we get here we successfully scheduled a collection which
1108         // failed to allocate. No point in trying to allocate
1109         // further. We'll just return NULL.
1110         MutexLockerEx x(Heap_lock);
1111         *gc_count_before_ret = total_collections();
1112         return NULL;
1113       }
1114     } else {
1115       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1116         MutexLockerEx x(Heap_lock);
1117         *gc_count_before_ret = total_collections();
1118         return NULL;
1119       }
1120       // The GCLocker is either active or the GCLocker initiated
1121       // GC has not yet been performed. Stall until it is and
1122       // then retry the allocation.
1123       GC_locker::stall_until_clear();
1124       (*gclocker_retry_count_ret) += 1;
1125     }
1126 
1127     // We can reach here if we were unsuccessful in scheduling a
1128     // collection (because another thread beat us to it) or if we were
1129     // stalled due to the GC locker. In either can we should retry the
1130     // allocation attempt in case another thread successfully
1131     // performed a collection and reclaimed enough space.  Give a
1132     // warning if we seem to be looping forever.
1133 
1134     if ((QueuedAllocationWarningCount > 0) &&
1135         (try_count % QueuedAllocationWarningCount == 0)) {
1136       warning("G1CollectedHeap::attempt_allocation_humongous() "
1137               "retries %d times", try_count);
1138     }
1139   }
1140 
1141   ShouldNotReachHere();
1142   return NULL;
1143 }
1144 
1145 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1146                                        bool expect_null_mutator_alloc_region) {
1147   assert_at_safepoint(true /* should_be_vm_thread */);
1148   assert(_mutator_alloc_region.get() == NULL ||
1149                                              !expect_null_mutator_alloc_region,
1150          "the current alloc region was unexpectedly found to be non-NULL");
1151 
1152   if (!isHumongous(word_size)) {
1153     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1154                                                       false /* bot_updates */);
1155   } else {
1156     HeapWord* result = humongous_obj_allocate(word_size);
1157     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1158       g1_policy()->set_initiate_conc_mark_if_possible();
1159     }
1160     return result;
1161   }
1162 
1163   ShouldNotReachHere();
1164 }
1165 
1166 class PostMCRemSetClearClosure: public HeapRegionClosure {
1167   G1CollectedHeap* _g1h;
1168   ModRefBarrierSet* _mr_bs;
1169 public:
1170   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1171     _g1h(g1h), _mr_bs(mr_bs) {}
1172 
1173   bool doHeapRegion(HeapRegion* r) {
1174     HeapRegionRemSet* hrrs = r->rem_set();
1175 
1176     if (r->continuesHumongous()) {
1177       // We'll assert that the strong code root list and RSet is empty
1178       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1179       assert(hrrs->occupied() == 0, "RSet should be empty");
1180       return false;
1181     }
1182 
1183     _g1h->reset_gc_time_stamps(r);
1184     hrrs->clear();
1185     // You might think here that we could clear just the cards
1186     // corresponding to the used region.  But no: if we leave a dirty card
1187     // in a region we might allocate into, then it would prevent that card
1188     // from being enqueued, and cause it to be missed.
1189     // Re: the performance cost: we shouldn't be doing full GC anyway!
1190     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1191 
1192     return false;
1193   }
1194 };
1195 
1196 void G1CollectedHeap::clear_rsets_post_compaction() {
1197   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1198   heap_region_iterate(&rs_clear);
1199 }
1200 
1201 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1202   G1CollectedHeap*   _g1h;
1203   UpdateRSOopClosure _cl;
1204   int                _worker_i;
1205 public:
1206   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1207     _cl(g1->g1_rem_set(), worker_i),
1208     _worker_i(worker_i),
1209     _g1h(g1)
1210   { }
1211 
1212   bool doHeapRegion(HeapRegion* r) {
1213     if (!r->continuesHumongous()) {
1214       _cl.set_from(r);
1215       r->oop_iterate(&_cl);
1216     }
1217     return false;
1218   }
1219 };
1220 
1221 class ParRebuildRSTask: public AbstractGangTask {
1222   G1CollectedHeap* _g1;
1223 public:
1224   ParRebuildRSTask(G1CollectedHeap* g1)
1225     : AbstractGangTask("ParRebuildRSTask"),
1226       _g1(g1)
1227   { }
1228 
1229   void work(uint worker_id) {
1230     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1231     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1232                                           _g1->workers()->active_workers(),
1233                                          HeapRegion::RebuildRSClaimValue);
1234   }
1235 };
1236 
1237 class PostCompactionPrinterClosure: public HeapRegionClosure {
1238 private:
1239   G1HRPrinter* _hr_printer;
1240 public:
1241   bool doHeapRegion(HeapRegion* hr) {
1242     assert(!hr->is_young(), "not expecting to find young regions");
1243     // We only generate output for non-empty regions.
1244     if (!hr->is_empty()) {
1245       if (!hr->isHumongous()) {
1246         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1247       } else if (hr->startsHumongous()) {
1248         if (hr->region_num() == 1) {
1249           // single humongous region
1250           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1251         } else {
1252           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1253         }
1254       } else {
1255         assert(hr->continuesHumongous(), "only way to get here");
1256         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1257       }
1258     }
1259     return false;
1260   }
1261 
1262   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1263     : _hr_printer(hr_printer) { }
1264 };
1265 
1266 void G1CollectedHeap::print_hrs_post_compaction() {
1267   PostCompactionPrinterClosure cl(hr_printer());
1268   heap_region_iterate(&cl);
1269 }
1270 
1271 bool G1CollectedHeap::do_collection(bool explicit_gc,
1272                                     bool clear_all_soft_refs,
1273                                     size_t word_size) {
1274   assert_at_safepoint(true /* should_be_vm_thread */);
1275 
1276   if (GC_locker::check_active_before_gc()) {
1277     return false;
1278   }
1279 
1280   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1281   gc_timer->register_gc_start();
1282 
1283   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1284   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1285 
1286   SvcGCMarker sgcm(SvcGCMarker::FULL);
1287   ResourceMark rm;
1288 
1289   print_heap_before_gc();
1290   trace_heap_before_gc(gc_tracer);
1291 
1292   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1293 
1294   verify_region_sets_optional();
1295 
1296   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1297                            collector_policy()->should_clear_all_soft_refs();
1298 
1299   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1300 
1301   {
1302     IsGCActiveMark x;
1303 
1304     // Timing
1305     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1306     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1307     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1308 
1309     {
1310       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1311       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1312       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1313 
1314       double start = os::elapsedTime();
1315       g1_policy()->record_full_collection_start();
1316 
1317       // Note: When we have a more flexible GC logging framework that
1318       // allows us to add optional attributes to a GC log record we
1319       // could consider timing and reporting how long we wait in the
1320       // following two methods.
1321       wait_while_free_regions_coming();
1322       // If we start the compaction before the CM threads finish
1323       // scanning the root regions we might trip them over as we'll
1324       // be moving objects / updating references. So let's wait until
1325       // they are done. By telling them to abort, they should complete
1326       // early.
1327       _cm->root_regions()->abort();
1328       _cm->root_regions()->wait_until_scan_finished();
1329       append_secondary_free_list_if_not_empty_with_lock();
1330 
1331       gc_prologue(true);
1332       increment_total_collections(true /* full gc */);
1333       increment_old_marking_cycles_started();
1334 
1335       assert(used() == recalculate_used(), "Should be equal");
1336 
1337       verify_before_gc();
1338 
1339       check_bitmaps("Full GC Start");
1340       pre_full_gc_dump(gc_timer);
1341 
1342       COMPILER2_PRESENT(DerivedPointerTable::clear());
1343 
1344       // Disable discovery and empty the discovered lists
1345       // for the CM ref processor.
1346       ref_processor_cm()->disable_discovery();
1347       ref_processor_cm()->abandon_partial_discovery();
1348       ref_processor_cm()->verify_no_references_recorded();
1349 
1350       // Abandon current iterations of concurrent marking and concurrent
1351       // refinement, if any are in progress. We have to do this before
1352       // wait_until_scan_finished() below.
1353       concurrent_mark()->abort();
1354 
1355       // Make sure we'll choose a new allocation region afterwards.
1356       release_mutator_alloc_region();
1357       abandon_gc_alloc_regions();
1358       g1_rem_set()->cleanupHRRS();
1359 
1360       // We should call this after we retire any currently active alloc
1361       // regions so that all the ALLOC / RETIRE events are generated
1362       // before the start GC event.
1363       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1364 
1365       // We may have added regions to the current incremental collection
1366       // set between the last GC or pause and now. We need to clear the
1367       // incremental collection set and then start rebuilding it afresh
1368       // after this full GC.
1369       abandon_collection_set(g1_policy()->inc_cset_head());
1370       g1_policy()->clear_incremental_cset();
1371       g1_policy()->stop_incremental_cset_building();
1372 
1373       tear_down_region_sets(false /* free_list_only */);
1374       g1_policy()->set_gcs_are_young(true);
1375 
1376       // See the comments in g1CollectedHeap.hpp and
1377       // G1CollectedHeap::ref_processing_init() about
1378       // how reference processing currently works in G1.
1379 
1380       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1381       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1382 
1383       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1384       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1385 
1386       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1387       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1388 
1389       // Do collection work
1390       {
1391         HandleMark hm;  // Discard invalid handles created during gc
1392         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1393       }
1394 
1395       assert(free_regions() == 0, "we should not have added any free regions");
1396       rebuild_region_sets(false /* free_list_only */);
1397 
1398       // Enqueue any discovered reference objects that have
1399       // not been removed from the discovered lists.
1400       ref_processor_stw()->enqueue_discovered_references();
1401 
1402       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1403 
1404       MemoryService::track_memory_usage();
1405 
1406       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1407       ref_processor_stw()->verify_no_references_recorded();
1408 
1409       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1410       ClassLoaderDataGraph::purge();
1411       MetaspaceAux::verify_metrics();
1412 
1413       // Note: since we've just done a full GC, concurrent
1414       // marking is no longer active. Therefore we need not
1415       // re-enable reference discovery for the CM ref processor.
1416       // That will be done at the start of the next marking cycle.
1417       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1418       ref_processor_cm()->verify_no_references_recorded();
1419 
1420       reset_gc_time_stamp();
1421       // Since everything potentially moved, we will clear all remembered
1422       // sets, and clear all cards.  Later we will rebuild remembered
1423       // sets. We will also reset the GC time stamps of the regions.
1424       clear_rsets_post_compaction();
1425       check_gc_time_stamps();
1426 
1427       // Resize the heap if necessary.
1428       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1429 
1430       if (_hr_printer.is_active()) {
1431         // We should do this after we potentially resize the heap so
1432         // that all the COMMIT / UNCOMMIT events are generated before
1433         // the end GC event.
1434 
1435         print_hrs_post_compaction();
1436         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1437       }
1438 
1439       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1440       if (hot_card_cache->use_cache()) {
1441         hot_card_cache->reset_card_counts();
1442         hot_card_cache->reset_hot_cache();
1443       }
1444 
1445       // Rebuild remembered sets of all regions.
1446       if (G1CollectedHeap::use_parallel_gc_threads()) {
1447         uint n_workers =
1448           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1449                                                   workers()->active_workers(),
1450                                                   Threads::number_of_non_daemon_threads());
1451         assert(UseDynamicNumberOfGCThreads ||
1452                n_workers == workers()->total_workers(),
1453                "If not dynamic should be using all the  workers");
1454         workers()->set_active_workers(n_workers);
1455         // Set parallel threads in the heap (_n_par_threads) only
1456         // before a parallel phase and always reset it to 0 after
1457         // the phase so that the number of parallel threads does
1458         // no get carried forward to a serial phase where there
1459         // may be code that is "possibly_parallel".
1460         set_par_threads(n_workers);
1461 
1462         ParRebuildRSTask rebuild_rs_task(this);
1463         assert(check_heap_region_claim_values(
1464                HeapRegion::InitialClaimValue), "sanity check");
1465         assert(UseDynamicNumberOfGCThreads ||
1466                workers()->active_workers() == workers()->total_workers(),
1467                "Unless dynamic should use total workers");
1468         // Use the most recent number of  active workers
1469         assert(workers()->active_workers() > 0,
1470                "Active workers not properly set");
1471         set_par_threads(workers()->active_workers());
1472         workers()->run_task(&rebuild_rs_task);
1473         set_par_threads(0);
1474         assert(check_heap_region_claim_values(
1475                HeapRegion::RebuildRSClaimValue), "sanity check");
1476         reset_heap_region_claim_values();
1477       } else {
1478         RebuildRSOutOfRegionClosure rebuild_rs(this);
1479         heap_region_iterate(&rebuild_rs);
1480       }
1481 
1482       // Rebuild the strong code root lists for each region
1483       rebuild_strong_code_roots();
1484 
1485       if (true) { // FIXME
1486         MetaspaceGC::compute_new_size();
1487       }
1488 
1489 #ifdef TRACESPINNING
1490       ParallelTaskTerminator::print_termination_counts();
1491 #endif
1492 
1493       // Discard all rset updates
1494       JavaThread::dirty_card_queue_set().abandon_logs();
1495       assert(!G1DeferredRSUpdate
1496              || (G1DeferredRSUpdate &&
1497                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1498 
1499       _young_list->reset_sampled_info();
1500       // At this point there should be no regions in the
1501       // entire heap tagged as young.
1502       assert(check_young_list_empty(true /* check_heap */),
1503              "young list should be empty at this point");
1504 
1505       // Update the number of full collections that have been completed.
1506       increment_old_marking_cycles_completed(false /* concurrent */);
1507 
1508       _hrs.verify_optional();
1509       verify_region_sets_optional();
1510 
1511       verify_after_gc();
1512 
1513       // Clear the previous marking bitmap, if needed for bitmap verification.
1514       // Note we cannot do this when we clear the next marking bitmap in
1515       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1516       // objects marked during a full GC against the previous bitmap.
1517       // But we need to clear it before calling check_bitmaps below since
1518       // the full GC has compacted objects and updated TAMS but not updated
1519       // the prev bitmap.
1520       if (G1VerifyBitmaps) {
1521         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1522       }
1523       check_bitmaps("Full GC End");
1524 
1525       // Start a new incremental collection set for the next pause
1526       assert(g1_policy()->collection_set() == NULL, "must be");
1527       g1_policy()->start_incremental_cset_building();
1528 
1529       clear_cset_fast_test();
1530 
1531       init_mutator_alloc_region();
1532 
1533       double end = os::elapsedTime();
1534       g1_policy()->record_full_collection_end();
1535 
1536       if (G1Log::fine()) {
1537         g1_policy()->print_heap_transition();
1538       }
1539 
1540       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1541       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1542       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1543       // before any GC notifications are raised.
1544       g1mm()->update_sizes();
1545 
1546       gc_epilogue(true);
1547     }
1548 
1549     if (G1Log::finer()) {
1550       g1_policy()->print_detailed_heap_transition(true /* full */);
1551     }
1552 
1553     print_heap_after_gc();
1554     trace_heap_after_gc(gc_tracer);
1555 
1556     post_full_gc_dump(gc_timer);
1557 
1558     gc_timer->register_gc_end();
1559     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1560   }
1561 
1562   return true;
1563 }
1564 
1565 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1566   // do_collection() will return whether it succeeded in performing
1567   // the GC. Currently, there is no facility on the
1568   // do_full_collection() API to notify the caller than the collection
1569   // did not succeed (e.g., because it was locked out by the GC
1570   // locker). So, right now, we'll ignore the return value.
1571   bool dummy = do_collection(true,                /* explicit_gc */
1572                              clear_all_soft_refs,
1573                              0                    /* word_size */);
1574 }
1575 
1576 // This code is mostly copied from TenuredGeneration.
1577 void
1578 G1CollectedHeap::
1579 resize_if_necessary_after_full_collection(size_t word_size) {
1580   // Include the current allocation, if any, and bytes that will be
1581   // pre-allocated to support collections, as "used".
1582   const size_t used_after_gc = used();
1583   const size_t capacity_after_gc = capacity();
1584   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1585 
1586   // This is enforced in arguments.cpp.
1587   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1588          "otherwise the code below doesn't make sense");
1589 
1590   // We don't have floating point command-line arguments
1591   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1592   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1593   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1594   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1595 
1596   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1597   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1598 
1599   // We have to be careful here as these two calculations can overflow
1600   // 32-bit size_t's.
1601   double used_after_gc_d = (double) used_after_gc;
1602   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1603   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1604 
1605   // Let's make sure that they are both under the max heap size, which
1606   // by default will make them fit into a size_t.
1607   double desired_capacity_upper_bound = (double) max_heap_size;
1608   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1609                                     desired_capacity_upper_bound);
1610   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1611                                     desired_capacity_upper_bound);
1612 
1613   // We can now safely turn them into size_t's.
1614   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1615   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1616 
1617   // This assert only makes sense here, before we adjust them
1618   // with respect to the min and max heap size.
1619   assert(minimum_desired_capacity <= maximum_desired_capacity,
1620          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1621                  "maximum_desired_capacity = "SIZE_FORMAT,
1622                  minimum_desired_capacity, maximum_desired_capacity));
1623 
1624   // Should not be greater than the heap max size. No need to adjust
1625   // it with respect to the heap min size as it's a lower bound (i.e.,
1626   // we'll try to make the capacity larger than it, not smaller).
1627   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1628   // Should not be less than the heap min size. No need to adjust it
1629   // with respect to the heap max size as it's an upper bound (i.e.,
1630   // we'll try to make the capacity smaller than it, not greater).
1631   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1632 
1633   if (capacity_after_gc < minimum_desired_capacity) {
1634     // Don't expand unless it's significant
1635     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1636     ergo_verbose4(ErgoHeapSizing,
1637                   "attempt heap expansion",
1638                   ergo_format_reason("capacity lower than "
1639                                      "min desired capacity after Full GC")
1640                   ergo_format_byte("capacity")
1641                   ergo_format_byte("occupancy")
1642                   ergo_format_byte_perc("min desired capacity"),
1643                   capacity_after_gc, used_after_gc,
1644                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1645     expand(expand_bytes);
1646 
1647     // No expansion, now see if we want to shrink
1648   } else if (capacity_after_gc > maximum_desired_capacity) {
1649     // Capacity too large, compute shrinking size
1650     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1651     ergo_verbose4(ErgoHeapSizing,
1652                   "attempt heap shrinking",
1653                   ergo_format_reason("capacity higher than "
1654                                      "max desired capacity after Full GC")
1655                   ergo_format_byte("capacity")
1656                   ergo_format_byte("occupancy")
1657                   ergo_format_byte_perc("max desired capacity"),
1658                   capacity_after_gc, used_after_gc,
1659                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1660     shrink(shrink_bytes);
1661   }
1662 }
1663 
1664 
1665 HeapWord*
1666 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1667                                            bool* succeeded) {
1668   assert_at_safepoint(true /* should_be_vm_thread */);
1669 
1670   *succeeded = true;
1671   // Let's attempt the allocation first.
1672   HeapWord* result =
1673     attempt_allocation_at_safepoint(word_size,
1674                                  false /* expect_null_mutator_alloc_region */);
1675   if (result != NULL) {
1676     assert(*succeeded, "sanity");
1677     return result;
1678   }
1679 
1680   // In a G1 heap, we're supposed to keep allocation from failing by
1681   // incremental pauses.  Therefore, at least for now, we'll favor
1682   // expansion over collection.  (This might change in the future if we can
1683   // do something smarter than full collection to satisfy a failed alloc.)
1684   result = expand_and_allocate(word_size);
1685   if (result != NULL) {
1686     assert(*succeeded, "sanity");
1687     return result;
1688   }
1689 
1690   // Expansion didn't work, we'll try to do a Full GC.
1691   bool gc_succeeded = do_collection(false, /* explicit_gc */
1692                                     false, /* clear_all_soft_refs */
1693                                     word_size);
1694   if (!gc_succeeded) {
1695     *succeeded = false;
1696     return NULL;
1697   }
1698 
1699   // Retry the allocation
1700   result = attempt_allocation_at_safepoint(word_size,
1701                                   true /* expect_null_mutator_alloc_region */);
1702   if (result != NULL) {
1703     assert(*succeeded, "sanity");
1704     return result;
1705   }
1706 
1707   // Then, try a Full GC that will collect all soft references.
1708   gc_succeeded = do_collection(false, /* explicit_gc */
1709                                true,  /* clear_all_soft_refs */
1710                                word_size);
1711   if (!gc_succeeded) {
1712     *succeeded = false;
1713     return NULL;
1714   }
1715 
1716   // Retry the allocation once more
1717   result = attempt_allocation_at_safepoint(word_size,
1718                                   true /* expect_null_mutator_alloc_region */);
1719   if (result != NULL) {
1720     assert(*succeeded, "sanity");
1721     return result;
1722   }
1723 
1724   assert(!collector_policy()->should_clear_all_soft_refs(),
1725          "Flag should have been handled and cleared prior to this point");
1726 
1727   // What else?  We might try synchronous finalization later.  If the total
1728   // space available is large enough for the allocation, then a more
1729   // complete compaction phase than we've tried so far might be
1730   // appropriate.
1731   assert(*succeeded, "sanity");
1732   return NULL;
1733 }
1734 
1735 // Attempting to expand the heap sufficiently
1736 // to support an allocation of the given "word_size".  If
1737 // successful, perform the allocation and return the address of the
1738 // allocated block, or else "NULL".
1739 
1740 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1741   assert_at_safepoint(true /* should_be_vm_thread */);
1742 
1743   verify_region_sets_optional();
1744 
1745   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1746   ergo_verbose1(ErgoHeapSizing,
1747                 "attempt heap expansion",
1748                 ergo_format_reason("allocation request failed")
1749                 ergo_format_byte("allocation request"),
1750                 word_size * HeapWordSize);
1751   if (expand(expand_bytes)) {
1752     _hrs.verify_optional();
1753     verify_region_sets_optional();
1754     return attempt_allocation_at_safepoint(word_size,
1755                                  false /* expect_null_mutator_alloc_region */);
1756   }
1757   return NULL;
1758 }
1759 
1760 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1761                                              HeapWord* new_end) {
1762   assert(old_end != new_end, "don't call this otherwise");
1763   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1764 
1765   // Update the committed mem region.
1766   _g1_committed.set_end(new_end);
1767   // Tell the card table about the update.
1768   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1769   // Tell the BOT about the update.
1770   _bot_shared->resize(_g1_committed.word_size());
1771   // Tell the hot card cache about the update
1772   _cg1r->hot_card_cache()->resize_card_counts(capacity());
1773 }
1774 
1775 bool G1CollectedHeap::expand(size_t expand_bytes) {
1776   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1777   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1778                                        HeapRegion::GrainBytes);
1779   ergo_verbose2(ErgoHeapSizing,
1780                 "expand the heap",
1781                 ergo_format_byte("requested expansion amount")
1782                 ergo_format_byte("attempted expansion amount"),
1783                 expand_bytes, aligned_expand_bytes);
1784 
1785   if (_g1_storage.uncommitted_size() == 0) {
1786     ergo_verbose0(ErgoHeapSizing,
1787                       "did not expand the heap",
1788                       ergo_format_reason("heap already fully expanded"));
1789     return false;
1790   }
1791 
1792   // First commit the memory.
1793   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1794   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1795   if (successful) {
1796     // Then propagate this update to the necessary data structures.
1797     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1798     update_committed_space(old_end, new_end);
1799 
1800     FreeRegionList expansion_list("Local Expansion List");
1801     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1802     assert(mr.start() == old_end, "post-condition");
1803     // mr might be a smaller region than what was requested if
1804     // expand_by() was unable to allocate the HeapRegion instances
1805     assert(mr.end() <= new_end, "post-condition");
1806 
1807     size_t actual_expand_bytes = mr.byte_size();
1808     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1809     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1810            "post-condition");
1811     if (actual_expand_bytes < aligned_expand_bytes) {
1812       // We could not expand _hrs to the desired size. In this case we
1813       // need to shrink the committed space accordingly.
1814       assert(mr.end() < new_end, "invariant");
1815 
1816       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1817       // First uncommit the memory.
1818       _g1_storage.shrink_by(diff_bytes);
1819       // Then propagate this update to the necessary data structures.
1820       update_committed_space(new_end, mr.end());
1821     }
1822     _free_list.add_as_tail(&expansion_list);
1823 
1824     if (_hr_printer.is_active()) {
1825       HeapWord* curr = mr.start();
1826       while (curr < mr.end()) {
1827         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1828         _hr_printer.commit(curr, curr_end);
1829         curr = curr_end;
1830       }
1831       assert(curr == mr.end(), "post-condition");
1832     }
1833     g1_policy()->record_new_heap_size(n_regions());
1834   } else {
1835     ergo_verbose0(ErgoHeapSizing,
1836                   "did not expand the heap",
1837                   ergo_format_reason("heap expansion operation failed"));
1838     // The expansion of the virtual storage space was unsuccessful.
1839     // Let's see if it was because we ran out of swap.
1840     if (G1ExitOnExpansionFailure &&
1841         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1842       // We had head room...
1843       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1844     }
1845   }
1846   return successful;
1847 }
1848 
1849 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1850   size_t aligned_shrink_bytes =
1851     ReservedSpace::page_align_size_down(shrink_bytes);
1852   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1853                                          HeapRegion::GrainBytes);
1854   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1855 
1856   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1857   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1858   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1859 
1860   ergo_verbose3(ErgoHeapSizing,
1861                 "shrink the heap",
1862                 ergo_format_byte("requested shrinking amount")
1863                 ergo_format_byte("aligned shrinking amount")
1864                 ergo_format_byte("attempted shrinking amount"),
1865                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1866   if (num_regions_removed > 0) {
1867     _g1_storage.shrink_by(shrunk_bytes);
1868     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1869 
1870     if (_hr_printer.is_active()) {
1871       HeapWord* curr = old_end;
1872       while (curr > new_end) {
1873         HeapWord* curr_end = curr;
1874         curr -= HeapRegion::GrainWords;
1875         _hr_printer.uncommit(curr, curr_end);
1876       }
1877     }
1878 
1879     _expansion_regions += num_regions_removed;
1880     update_committed_space(old_end, new_end);
1881     HeapRegionRemSet::shrink_heap(n_regions());
1882     g1_policy()->record_new_heap_size(n_regions());
1883   } else {
1884     ergo_verbose0(ErgoHeapSizing,
1885                   "did not shrink the heap",
1886                   ergo_format_reason("heap shrinking operation failed"));
1887   }
1888 }
1889 
1890 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1891   verify_region_sets_optional();
1892 
1893   // We should only reach here at the end of a Full GC which means we
1894   // should not not be holding to any GC alloc regions. The method
1895   // below will make sure of that and do any remaining clean up.
1896   abandon_gc_alloc_regions();
1897 
1898   // Instead of tearing down / rebuilding the free lists here, we
1899   // could instead use the remove_all_pending() method on free_list to
1900   // remove only the ones that we need to remove.
1901   tear_down_region_sets(true /* free_list_only */);
1902   shrink_helper(shrink_bytes);
1903   rebuild_region_sets(true /* free_list_only */);
1904 
1905   _hrs.verify_optional();
1906   verify_region_sets_optional();
1907 }
1908 
1909 // Public methods.
1910 
1911 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1912 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1913 #endif // _MSC_VER
1914 
1915 
1916 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1917   SharedHeap(policy_),
1918   _g1_policy(policy_),
1919   _dirty_card_queue_set(false),
1920   _into_cset_dirty_card_queue_set(false),
1921   _is_alive_closure_cm(this),
1922   _is_alive_closure_stw(this),
1923   _ref_processor_cm(NULL),
1924   _ref_processor_stw(NULL),
1925   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1926   _bot_shared(NULL),
1927   _evac_failure_scan_stack(NULL),
1928   _mark_in_progress(false),
1929   _cg1r(NULL), _summary_bytes_used(0),
1930   _g1mm(NULL),
1931   _refine_cte_cl(NULL),
1932   _full_collection(false),
1933   _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
1934   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1935   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1936   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1937   _free_regions_coming(false),
1938   _young_list(new YoungList(this)),
1939   _gc_time_stamp(0),
1940   _retained_old_gc_alloc_region(NULL),
1941   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1942   _old_plab_stats(OldPLABSize, PLABWeight),
1943   _expand_heap_after_alloc_failure(true),
1944   _surviving_young_words(NULL),
1945   _old_marking_cycles_started(0),
1946   _old_marking_cycles_completed(0),
1947   _concurrent_cycle_started(false),
1948   _in_cset_fast_test(),
1949   _dirty_cards_region_list(NULL),
1950   _worker_cset_start_region(NULL),
1951   _worker_cset_start_region_time_stamp(NULL),
1952   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1953   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1954   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1955   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1956 
1957   _g1h = this;
1958   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1959     vm_exit_during_initialization("Failed necessary allocation.");
1960   }
1961 
1962   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1963 
1964   int n_queues = MAX2((int)ParallelGCThreads, 1);
1965   _task_queues = new RefToScanQueueSet(n_queues);
1966 
1967   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1968   assert(n_rem_sets > 0, "Invariant.");
1969 
1970   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1971   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1972   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1973 
1974   for (int i = 0; i < n_queues; i++) {
1975     RefToScanQueue* q = new RefToScanQueue();
1976     q->initialize();
1977     _task_queues->register_queue(i, q);
1978     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1979   }
1980   clear_cset_start_regions();
1981 
1982   // Initialize the G1EvacuationFailureALot counters and flags.
1983   NOT_PRODUCT(reset_evacuation_should_fail();)
1984 
1985   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1986 }
1987 
1988 jint G1CollectedHeap::initialize() {
1989   CollectedHeap::pre_initialize();
1990   os::enable_vtime();
1991 
1992   G1Log::init();
1993 
1994   // Necessary to satisfy locking discipline assertions.
1995 
1996   MutexLocker x(Heap_lock);
1997 
1998   // We have to initialize the printer before committing the heap, as
1999   // it will be used then.
2000   _hr_printer.set_active(G1PrintHeapRegions);
2001 
2002   // While there are no constraints in the GC code that HeapWordSize
2003   // be any particular value, there are multiple other areas in the
2004   // system which believe this to be true (e.g. oop->object_size in some
2005   // cases incorrectly returns the size in wordSize units rather than
2006   // HeapWordSize).
2007   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2008 
2009   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2010   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2011   size_t heap_alignment = collector_policy()->heap_alignment();
2012 
2013   // Ensure that the sizes are properly aligned.
2014   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2015   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2016   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2017 
2018   _refine_cte_cl = new RefineCardTableEntryClosure();
2019 
2020   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
2021 
2022   // Reserve the maximum.
2023 
2024   // When compressed oops are enabled, the preferred heap base
2025   // is calculated by subtracting the requested size from the
2026   // 32Gb boundary and using the result as the base address for
2027   // heap reservation. If the requested size is not aligned to
2028   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2029   // into the ReservedHeapSpace constructor) then the actual
2030   // base of the reserved heap may end up differing from the
2031   // address that was requested (i.e. the preferred heap base).
2032   // If this happens then we could end up using a non-optimal
2033   // compressed oops mode.
2034 
2035   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2036                                                  heap_alignment);
2037 
2038   // It is important to do this in a way such that concurrent readers can't
2039   // temporarily think something is in the heap.  (I've actually seen this
2040   // happen in asserts: DLD.)
2041   _reserved.set_word_size(0);
2042   _reserved.set_start((HeapWord*)heap_rs.base());
2043   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2044 
2045   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2046 
2047   // Create the gen rem set (and barrier set) for the entire reserved region.
2048   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2049   set_barrier_set(rem_set()->bs());
2050   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
2051     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
2052     return JNI_ENOMEM;
2053   }
2054 
2055   // Also create a G1 rem set.
2056   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2057 
2058   // Carve out the G1 part of the heap.
2059 
2060   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2061   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2062                            g1_rs.size()/HeapWordSize);
2063 
2064   _g1_storage.initialize(g1_rs, 0);
2065   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2066   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2067                   (HeapWord*) _g1_reserved.end());
2068   assert(_hrs.max_length() == _expansion_regions,
2069          err_msg("max length: %u expansion regions: %u",
2070                  _hrs.max_length(), _expansion_regions));
2071 
2072   // Do later initialization work for concurrent refinement.
2073   _cg1r->init();
2074 
2075   // 6843694 - ensure that the maximum region index can fit
2076   // in the remembered set structures.
2077   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2078   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2079 
2080   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2081   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2082   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2083             "too many cards per region");
2084 
2085   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2086 
2087   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2088                                              heap_word_size(init_byte_size));
2089 
2090   _g1h = this;
2091 
2092   _in_cset_fast_test.initialize(_g1_reserved.start(), _g1_reserved.end(), HeapRegion::GrainBytes);
2093 
2094   // Create the ConcurrentMark data structure and thread.
2095   // (Must do this late, so that "max_regions" is defined.)
2096   _cm = new ConcurrentMark(this, heap_rs);
2097   if (_cm == NULL || !_cm->completed_initialization()) {
2098     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2099     return JNI_ENOMEM;
2100   }
2101   _cmThread = _cm->cmThread();
2102 
2103   // Initialize the from_card cache structure of HeapRegionRemSet.
2104   HeapRegionRemSet::init_heap(max_regions());
2105 
2106   // Now expand into the initial heap size.
2107   if (!expand(init_byte_size)) {
2108     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2109     return JNI_ENOMEM;
2110   }
2111 
2112   // Perform any initialization actions delegated to the policy.
2113   g1_policy()->init();
2114 
2115   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2116                                                SATB_Q_FL_lock,
2117                                                G1SATBProcessCompletedThreshold,
2118                                                Shared_SATB_Q_lock);
2119 
2120   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2121                                                 DirtyCardQ_CBL_mon,
2122                                                 DirtyCardQ_FL_lock,
2123                                                 concurrent_g1_refine()->yellow_zone(),
2124                                                 concurrent_g1_refine()->red_zone(),
2125                                                 Shared_DirtyCardQ_lock);
2126 
2127   if (G1DeferredRSUpdate) {
2128     dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2129                                       DirtyCardQ_CBL_mon,
2130                                       DirtyCardQ_FL_lock,
2131                                       -1, // never trigger processing
2132                                       -1, // no limit on length
2133                                       Shared_DirtyCardQ_lock,
2134                                       &JavaThread::dirty_card_queue_set());
2135   }
2136 
2137   // Initialize the card queue set used to hold cards containing
2138   // references into the collection set.
2139   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2140                                              DirtyCardQ_CBL_mon,
2141                                              DirtyCardQ_FL_lock,
2142                                              -1, // never trigger processing
2143                                              -1, // no limit on length
2144                                              Shared_DirtyCardQ_lock,
2145                                              &JavaThread::dirty_card_queue_set());
2146 
2147   // In case we're keeping closure specialization stats, initialize those
2148   // counts and that mechanism.
2149   SpecializationStats::clear();
2150 
2151   // Here we allocate the dummy full region that is required by the
2152   // G1AllocRegion class. If we don't pass an address in the reserved
2153   // space here, lots of asserts fire.
2154 
2155   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2156                                              _g1_reserved.start());
2157   // We'll re-use the same region whether the alloc region will
2158   // require BOT updates or not and, if it doesn't, then a non-young
2159   // region will complain that it cannot support allocations without
2160   // BOT updates. So we'll tag the dummy region as young to avoid that.
2161   dummy_region->set_young();
2162   // Make sure it's full.
2163   dummy_region->set_top(dummy_region->end());
2164   G1AllocRegion::setup(this, dummy_region);
2165 
2166   init_mutator_alloc_region();
2167 
2168   // Do create of the monitoring and management support so that
2169   // values in the heap have been properly initialized.
2170   _g1mm = new G1MonitoringSupport(this);
2171 
2172   G1StringDedup::initialize();
2173 
2174   return JNI_OK;
2175 }
2176 
2177 void G1CollectedHeap::stop() {
2178 #if 0
2179   // Stopping concurrent worker threads is currently disabled until
2180   // some bugs in concurrent mark has been resolve. Without fixing
2181   // those bugs first we risk haning during VM exit when trying to
2182   // stop these threads.
2183 
2184   // Abort any ongoing concurrent root region scanning and stop all
2185   // concurrent threads. We do this to make sure these threads do
2186   // not continue to execute and access resources (e.g. gclog_or_tty)
2187   // that are destroyed during shutdown.
2188   _cm->root_regions()->abort();
2189   _cm->root_regions()->wait_until_scan_finished();
2190   stop_conc_gc_threads();
2191 #endif
2192 }
2193 
2194 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2195   return HeapRegion::max_region_size();
2196 }
2197 
2198 void G1CollectedHeap::ref_processing_init() {
2199   // Reference processing in G1 currently works as follows:
2200   //
2201   // * There are two reference processor instances. One is
2202   //   used to record and process discovered references
2203   //   during concurrent marking; the other is used to
2204   //   record and process references during STW pauses
2205   //   (both full and incremental).
2206   // * Both ref processors need to 'span' the entire heap as
2207   //   the regions in the collection set may be dotted around.
2208   //
2209   // * For the concurrent marking ref processor:
2210   //   * Reference discovery is enabled at initial marking.
2211   //   * Reference discovery is disabled and the discovered
2212   //     references processed etc during remarking.
2213   //   * Reference discovery is MT (see below).
2214   //   * Reference discovery requires a barrier (see below).
2215   //   * Reference processing may or may not be MT
2216   //     (depending on the value of ParallelRefProcEnabled
2217   //     and ParallelGCThreads).
2218   //   * A full GC disables reference discovery by the CM
2219   //     ref processor and abandons any entries on it's
2220   //     discovered lists.
2221   //
2222   // * For the STW processor:
2223   //   * Non MT discovery is enabled at the start of a full GC.
2224   //   * Processing and enqueueing during a full GC is non-MT.
2225   //   * During a full GC, references are processed after marking.
2226   //
2227   //   * Discovery (may or may not be MT) is enabled at the start
2228   //     of an incremental evacuation pause.
2229   //   * References are processed near the end of a STW evacuation pause.
2230   //   * For both types of GC:
2231   //     * Discovery is atomic - i.e. not concurrent.
2232   //     * Reference discovery will not need a barrier.
2233 
2234   SharedHeap::ref_processing_init();
2235   MemRegion mr = reserved_region();
2236 
2237   // Concurrent Mark ref processor
2238   _ref_processor_cm =
2239     new ReferenceProcessor(mr,    // span
2240                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2241                                 // mt processing
2242                            (int) ParallelGCThreads,
2243                                 // degree of mt processing
2244                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2245                                 // mt discovery
2246                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2247                                 // degree of mt discovery
2248                            false,
2249                                 // Reference discovery is not atomic
2250                            &_is_alive_closure_cm,
2251                                 // is alive closure
2252                                 // (for efficiency/performance)
2253                            true);
2254                                 // Setting next fields of discovered
2255                                 // lists requires a barrier.
2256 
2257   // STW ref processor
2258   _ref_processor_stw =
2259     new ReferenceProcessor(mr,    // span
2260                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2261                                 // mt processing
2262                            MAX2((int)ParallelGCThreads, 1),
2263                                 // degree of mt processing
2264                            (ParallelGCThreads > 1),
2265                                 // mt discovery
2266                            MAX2((int)ParallelGCThreads, 1),
2267                                 // degree of mt discovery
2268                            true,
2269                                 // Reference discovery is atomic
2270                            &_is_alive_closure_stw,
2271                                 // is alive closure
2272                                 // (for efficiency/performance)
2273                            false);
2274                                 // Setting next fields of discovered
2275                                 // lists does not require a barrier.
2276 }
2277 
2278 size_t G1CollectedHeap::capacity() const {
2279   return _g1_committed.byte_size();
2280 }
2281 
2282 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2283   assert(!hr->continuesHumongous(), "pre-condition");
2284   hr->reset_gc_time_stamp();
2285   if (hr->startsHumongous()) {
2286     uint first_index = hr->hrs_index() + 1;
2287     uint last_index = hr->last_hc_index();
2288     for (uint i = first_index; i < last_index; i += 1) {
2289       HeapRegion* chr = region_at(i);
2290       assert(chr->continuesHumongous(), "sanity");
2291       chr->reset_gc_time_stamp();
2292     }
2293   }
2294 }
2295 
2296 #ifndef PRODUCT
2297 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2298 private:
2299   unsigned _gc_time_stamp;
2300   bool _failures;
2301 
2302 public:
2303   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2304     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2305 
2306   virtual bool doHeapRegion(HeapRegion* hr) {
2307     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2308     if (_gc_time_stamp != region_gc_time_stamp) {
2309       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2310                              "expected %d", HR_FORMAT_PARAMS(hr),
2311                              region_gc_time_stamp, _gc_time_stamp);
2312       _failures = true;
2313     }
2314     return false;
2315   }
2316 
2317   bool failures() { return _failures; }
2318 };
2319 
2320 void G1CollectedHeap::check_gc_time_stamps() {
2321   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2322   heap_region_iterate(&cl);
2323   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2324 }
2325 #endif // PRODUCT
2326 
2327 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2328                                                  DirtyCardQueue* into_cset_dcq,
2329                                                  bool concurrent,
2330                                                  uint worker_i) {
2331   // Clean cards in the hot card cache
2332   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2333   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2334 
2335   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2336   int n_completed_buffers = 0;
2337   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2338     n_completed_buffers++;
2339   }
2340   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2341   dcqs.clear_n_completed_buffers();
2342   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2343 }
2344 
2345 
2346 // Computes the sum of the storage used by the various regions.
2347 
2348 size_t G1CollectedHeap::used() const {
2349   assert(Heap_lock->owner() != NULL,
2350          "Should be owned on this thread's behalf.");
2351   size_t result = _summary_bytes_used;
2352   // Read only once in case it is set to NULL concurrently
2353   HeapRegion* hr = _mutator_alloc_region.get();
2354   if (hr != NULL)
2355     result += hr->used();
2356   return result;
2357 }
2358 
2359 size_t G1CollectedHeap::used_unlocked() const {
2360   size_t result = _summary_bytes_used;
2361   return result;
2362 }
2363 
2364 class SumUsedClosure: public HeapRegionClosure {
2365   size_t _used;
2366 public:
2367   SumUsedClosure() : _used(0) {}
2368   bool doHeapRegion(HeapRegion* r) {
2369     if (!r->continuesHumongous()) {
2370       _used += r->used();
2371     }
2372     return false;
2373   }
2374   size_t result() { return _used; }
2375 };
2376 
2377 size_t G1CollectedHeap::recalculate_used() const {
2378   double recalculate_used_start = os::elapsedTime();
2379 
2380   SumUsedClosure blk;
2381   heap_region_iterate(&blk);
2382 
2383   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2384   return blk.result();
2385 }
2386 
2387 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2388   switch (cause) {
2389     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2390     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2391     case GCCause::_g1_humongous_allocation: return true;
2392     default:                                return false;
2393   }
2394 }
2395 
2396 #ifndef PRODUCT
2397 void G1CollectedHeap::allocate_dummy_regions() {
2398   // Let's fill up most of the region
2399   size_t word_size = HeapRegion::GrainWords - 1024;
2400   // And as a result the region we'll allocate will be humongous.
2401   guarantee(isHumongous(word_size), "sanity");
2402 
2403   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2404     // Let's use the existing mechanism for the allocation
2405     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2406     if (dummy_obj != NULL) {
2407       MemRegion mr(dummy_obj, word_size);
2408       CollectedHeap::fill_with_object(mr);
2409     } else {
2410       // If we can't allocate once, we probably cannot allocate
2411       // again. Let's get out of the loop.
2412       break;
2413     }
2414   }
2415 }
2416 #endif // !PRODUCT
2417 
2418 void G1CollectedHeap::increment_old_marking_cycles_started() {
2419   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2420     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2421     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2422     _old_marking_cycles_started, _old_marking_cycles_completed));
2423 
2424   _old_marking_cycles_started++;
2425 }
2426 
2427 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2428   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2429 
2430   // We assume that if concurrent == true, then the caller is a
2431   // concurrent thread that was joined the Suspendible Thread
2432   // Set. If there's ever a cheap way to check this, we should add an
2433   // assert here.
2434 
2435   // Given that this method is called at the end of a Full GC or of a
2436   // concurrent cycle, and those can be nested (i.e., a Full GC can
2437   // interrupt a concurrent cycle), the number of full collections
2438   // completed should be either one (in the case where there was no
2439   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2440   // behind the number of full collections started.
2441 
2442   // This is the case for the inner caller, i.e. a Full GC.
2443   assert(concurrent ||
2444          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2445          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2446          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2447                  "is inconsistent with _old_marking_cycles_completed = %u",
2448                  _old_marking_cycles_started, _old_marking_cycles_completed));
2449 
2450   // This is the case for the outer caller, i.e. the concurrent cycle.
2451   assert(!concurrent ||
2452          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2453          err_msg("for outer caller (concurrent cycle): "
2454                  "_old_marking_cycles_started = %u "
2455                  "is inconsistent with _old_marking_cycles_completed = %u",
2456                  _old_marking_cycles_started, _old_marking_cycles_completed));
2457 
2458   _old_marking_cycles_completed += 1;
2459 
2460   // We need to clear the "in_progress" flag in the CM thread before
2461   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2462   // is set) so that if a waiter requests another System.gc() it doesn't
2463   // incorrectly see that a marking cycle is still in progress.
2464   if (concurrent) {
2465     _cmThread->clear_in_progress();
2466   }
2467 
2468   // This notify_all() will ensure that a thread that called
2469   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2470   // and it's waiting for a full GC to finish will be woken up. It is
2471   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2472   FullGCCount_lock->notify_all();
2473 }
2474 
2475 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2476   _concurrent_cycle_started = true;
2477   _gc_timer_cm->register_gc_start(start_time);
2478 
2479   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2480   trace_heap_before_gc(_gc_tracer_cm);
2481 }
2482 
2483 void G1CollectedHeap::register_concurrent_cycle_end() {
2484   if (_concurrent_cycle_started) {
2485     if (_cm->has_aborted()) {
2486       _gc_tracer_cm->report_concurrent_mode_failure();
2487     }
2488 
2489     _gc_timer_cm->register_gc_end();
2490     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2491 
2492     _concurrent_cycle_started = false;
2493   }
2494 }
2495 
2496 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2497   if (_concurrent_cycle_started) {
2498     trace_heap_after_gc(_gc_tracer_cm);
2499   }
2500 }
2501 
2502 G1YCType G1CollectedHeap::yc_type() {
2503   bool is_young = g1_policy()->gcs_are_young();
2504   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2505   bool is_during_mark = mark_in_progress();
2506 
2507   if (is_initial_mark) {
2508     return InitialMark;
2509   } else if (is_during_mark) {
2510     return DuringMark;
2511   } else if (is_young) {
2512     return Normal;
2513   } else {
2514     return Mixed;
2515   }
2516 }
2517 
2518 void G1CollectedHeap::collect(GCCause::Cause cause) {
2519   assert_heap_not_locked();
2520 
2521   unsigned int gc_count_before;
2522   unsigned int old_marking_count_before;
2523   bool retry_gc;
2524 
2525   do {
2526     retry_gc = false;
2527 
2528     {
2529       MutexLocker ml(Heap_lock);
2530 
2531       // Read the GC count while holding the Heap_lock
2532       gc_count_before = total_collections();
2533       old_marking_count_before = _old_marking_cycles_started;
2534     }
2535 
2536     if (should_do_concurrent_full_gc(cause)) {
2537       // Schedule an initial-mark evacuation pause that will start a
2538       // concurrent cycle. We're setting word_size to 0 which means that
2539       // we are not requesting a post-GC allocation.
2540       VM_G1IncCollectionPause op(gc_count_before,
2541                                  0,     /* word_size */
2542                                  true,  /* should_initiate_conc_mark */
2543                                  g1_policy()->max_pause_time_ms(),
2544                                  cause);
2545 
2546       VMThread::execute(&op);
2547       if (!op.pause_succeeded()) {
2548         if (old_marking_count_before == _old_marking_cycles_started) {
2549           retry_gc = op.should_retry_gc();
2550         } else {
2551           // A Full GC happened while we were trying to schedule the
2552           // initial-mark GC. No point in starting a new cycle given
2553           // that the whole heap was collected anyway.
2554         }
2555 
2556         if (retry_gc) {
2557           if (GC_locker::is_active_and_needs_gc()) {
2558             GC_locker::stall_until_clear();
2559           }
2560         }
2561       }
2562     } else {
2563       if (cause == GCCause::_gc_locker
2564           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2565 
2566         // Schedule a standard evacuation pause. We're setting word_size
2567         // to 0 which means that we are not requesting a post-GC allocation.
2568         VM_G1IncCollectionPause op(gc_count_before,
2569                                    0,     /* word_size */
2570                                    false, /* should_initiate_conc_mark */
2571                                    g1_policy()->max_pause_time_ms(),
2572                                    cause);
2573         VMThread::execute(&op);
2574       } else {
2575         // Schedule a Full GC.
2576         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2577         VMThread::execute(&op);
2578       }
2579     }
2580   } while (retry_gc);
2581 }
2582 
2583 bool G1CollectedHeap::is_in(const void* p) const {
2584   if (_g1_committed.contains(p)) {
2585     // Given that we know that p is in the committed space,
2586     // heap_region_containing_raw() should successfully
2587     // return the containing region.
2588     HeapRegion* hr = heap_region_containing_raw(p);
2589     return hr->is_in(p);
2590   } else {
2591     return false;
2592   }
2593 }
2594 
2595 // Iteration functions.
2596 
2597 // Iterates an OopClosure over all ref-containing fields of objects
2598 // within a HeapRegion.
2599 
2600 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2601   MemRegion _mr;
2602   ExtendedOopClosure* _cl;
2603 public:
2604   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2605     : _mr(mr), _cl(cl) {}
2606   bool doHeapRegion(HeapRegion* r) {
2607     if (!r->continuesHumongous()) {
2608       r->oop_iterate(_cl);
2609     }
2610     return false;
2611   }
2612 };
2613 
2614 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2615   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2616   heap_region_iterate(&blk);
2617 }
2618 
2619 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2620   IterateOopClosureRegionClosure blk(mr, cl);
2621   heap_region_iterate(&blk);
2622 }
2623 
2624 // Iterates an ObjectClosure over all objects within a HeapRegion.
2625 
2626 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2627   ObjectClosure* _cl;
2628 public:
2629   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2630   bool doHeapRegion(HeapRegion* r) {
2631     if (! r->continuesHumongous()) {
2632       r->object_iterate(_cl);
2633     }
2634     return false;
2635   }
2636 };
2637 
2638 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2639   IterateObjectClosureRegionClosure blk(cl);
2640   heap_region_iterate(&blk);
2641 }
2642 
2643 // Calls a SpaceClosure on a HeapRegion.
2644 
2645 class SpaceClosureRegionClosure: public HeapRegionClosure {
2646   SpaceClosure* _cl;
2647 public:
2648   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2649   bool doHeapRegion(HeapRegion* r) {
2650     _cl->do_space(r);
2651     return false;
2652   }
2653 };
2654 
2655 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2656   SpaceClosureRegionClosure blk(cl);
2657   heap_region_iterate(&blk);
2658 }
2659 
2660 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2661   _hrs.iterate(cl);
2662 }
2663 
2664 void
2665 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2666                                                  uint worker_id,
2667                                                  uint no_of_par_workers,
2668                                                  jint claim_value) {
2669   const uint regions = n_regions();
2670   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2671                              no_of_par_workers :
2672                              1);
2673   assert(UseDynamicNumberOfGCThreads ||
2674          no_of_par_workers == workers()->total_workers(),
2675          "Non dynamic should use fixed number of workers");
2676   // try to spread out the starting points of the workers
2677   const HeapRegion* start_hr =
2678                         start_region_for_worker(worker_id, no_of_par_workers);
2679   const uint start_index = start_hr->hrs_index();
2680 
2681   // each worker will actually look at all regions
2682   for (uint count = 0; count < regions; ++count) {
2683     const uint index = (start_index + count) % regions;
2684     assert(0 <= index && index < regions, "sanity");
2685     HeapRegion* r = region_at(index);
2686     // we'll ignore "continues humongous" regions (we'll process them
2687     // when we come across their corresponding "start humongous"
2688     // region) and regions already claimed
2689     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2690       continue;
2691     }
2692     // OK, try to claim it
2693     if (r->claimHeapRegion(claim_value)) {
2694       // success!
2695       assert(!r->continuesHumongous(), "sanity");
2696       if (r->startsHumongous()) {
2697         // If the region is "starts humongous" we'll iterate over its
2698         // "continues humongous" first; in fact we'll do them
2699         // first. The order is important. In on case, calling the
2700         // closure on the "starts humongous" region might de-allocate
2701         // and clear all its "continues humongous" regions and, as a
2702         // result, we might end up processing them twice. So, we'll do
2703         // them first (notice: most closures will ignore them anyway) and
2704         // then we'll do the "starts humongous" region.
2705         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2706           HeapRegion* chr = region_at(ch_index);
2707 
2708           // if the region has already been claimed or it's not
2709           // "continues humongous" we're done
2710           if (chr->claim_value() == claim_value ||
2711               !chr->continuesHumongous()) {
2712             break;
2713           }
2714 
2715           // No one should have claimed it directly. We can given
2716           // that we claimed its "starts humongous" region.
2717           assert(chr->claim_value() != claim_value, "sanity");
2718           assert(chr->humongous_start_region() == r, "sanity");
2719 
2720           if (chr->claimHeapRegion(claim_value)) {
2721             // we should always be able to claim it; no one else should
2722             // be trying to claim this region
2723 
2724             bool res2 = cl->doHeapRegion(chr);
2725             assert(!res2, "Should not abort");
2726 
2727             // Right now, this holds (i.e., no closure that actually
2728             // does something with "continues humongous" regions
2729             // clears them). We might have to weaken it in the future,
2730             // but let's leave these two asserts here for extra safety.
2731             assert(chr->continuesHumongous(), "should still be the case");
2732             assert(chr->humongous_start_region() == r, "sanity");
2733           } else {
2734             guarantee(false, "we should not reach here");
2735           }
2736         }
2737       }
2738 
2739       assert(!r->continuesHumongous(), "sanity");
2740       bool res = cl->doHeapRegion(r);
2741       assert(!res, "Should not abort");
2742     }
2743   }
2744 }
2745 
2746 class ResetClaimValuesClosure: public HeapRegionClosure {
2747 public:
2748   bool doHeapRegion(HeapRegion* r) {
2749     r->set_claim_value(HeapRegion::InitialClaimValue);
2750     return false;
2751   }
2752 };
2753 
2754 void G1CollectedHeap::reset_heap_region_claim_values() {
2755   ResetClaimValuesClosure blk;
2756   heap_region_iterate(&blk);
2757 }
2758 
2759 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2760   ResetClaimValuesClosure blk;
2761   collection_set_iterate(&blk);
2762 }
2763 
2764 #ifdef ASSERT
2765 // This checks whether all regions in the heap have the correct claim
2766 // value. I also piggy-backed on this a check to ensure that the
2767 // humongous_start_region() information on "continues humongous"
2768 // regions is correct.
2769 
2770 class CheckClaimValuesClosure : public HeapRegionClosure {
2771 private:
2772   jint _claim_value;
2773   uint _failures;
2774   HeapRegion* _sh_region;
2775 
2776 public:
2777   CheckClaimValuesClosure(jint claim_value) :
2778     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2779   bool doHeapRegion(HeapRegion* r) {
2780     if (r->claim_value() != _claim_value) {
2781       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2782                              "claim value = %d, should be %d",
2783                              HR_FORMAT_PARAMS(r),
2784                              r->claim_value(), _claim_value);
2785       ++_failures;
2786     }
2787     if (!r->isHumongous()) {
2788       _sh_region = NULL;
2789     } else if (r->startsHumongous()) {
2790       _sh_region = r;
2791     } else if (r->continuesHumongous()) {
2792       if (r->humongous_start_region() != _sh_region) {
2793         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2794                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2795                                HR_FORMAT_PARAMS(r),
2796                                r->humongous_start_region(),
2797                                _sh_region);
2798         ++_failures;
2799       }
2800     }
2801     return false;
2802   }
2803   uint failures() { return _failures; }
2804 };
2805 
2806 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2807   CheckClaimValuesClosure cl(claim_value);
2808   heap_region_iterate(&cl);
2809   return cl.failures() == 0;
2810 }
2811 
2812 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2813 private:
2814   jint _claim_value;
2815   uint _failures;
2816 
2817 public:
2818   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2819     _claim_value(claim_value), _failures(0) { }
2820 
2821   uint failures() { return _failures; }
2822 
2823   bool doHeapRegion(HeapRegion* hr) {
2824     assert(hr->in_collection_set(), "how?");
2825     assert(!hr->isHumongous(), "H-region in CSet");
2826     if (hr->claim_value() != _claim_value) {
2827       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2828                              "claim value = %d, should be %d",
2829                              HR_FORMAT_PARAMS(hr),
2830                              hr->claim_value(), _claim_value);
2831       _failures += 1;
2832     }
2833     return false;
2834   }
2835 };
2836 
2837 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2838   CheckClaimValuesInCSetHRClosure cl(claim_value);
2839   collection_set_iterate(&cl);
2840   return cl.failures() == 0;
2841 }
2842 #endif // ASSERT
2843 
2844 // Clear the cached CSet starting regions and (more importantly)
2845 // the time stamps. Called when we reset the GC time stamp.
2846 void G1CollectedHeap::clear_cset_start_regions() {
2847   assert(_worker_cset_start_region != NULL, "sanity");
2848   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2849 
2850   int n_queues = MAX2((int)ParallelGCThreads, 1);
2851   for (int i = 0; i < n_queues; i++) {
2852     _worker_cset_start_region[i] = NULL;
2853     _worker_cset_start_region_time_stamp[i] = 0;
2854   }
2855 }
2856 
2857 // Given the id of a worker, obtain or calculate a suitable
2858 // starting region for iterating over the current collection set.
2859 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2860   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2861 
2862   HeapRegion* result = NULL;
2863   unsigned gc_time_stamp = get_gc_time_stamp();
2864 
2865   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2866     // Cached starting region for current worker was set
2867     // during the current pause - so it's valid.
2868     // Note: the cached starting heap region may be NULL
2869     // (when the collection set is empty).
2870     result = _worker_cset_start_region[worker_i];
2871     assert(result == NULL || result->in_collection_set(), "sanity");
2872     return result;
2873   }
2874 
2875   // The cached entry was not valid so let's calculate
2876   // a suitable starting heap region for this worker.
2877 
2878   // We want the parallel threads to start their collection
2879   // set iteration at different collection set regions to
2880   // avoid contention.
2881   // If we have:
2882   //          n collection set regions
2883   //          p threads
2884   // Then thread t will start at region floor ((t * n) / p)
2885 
2886   result = g1_policy()->collection_set();
2887   if (G1CollectedHeap::use_parallel_gc_threads()) {
2888     uint cs_size = g1_policy()->cset_region_length();
2889     uint active_workers = workers()->active_workers();
2890     assert(UseDynamicNumberOfGCThreads ||
2891              active_workers == workers()->total_workers(),
2892              "Unless dynamic should use total workers");
2893 
2894     uint end_ind   = (cs_size * worker_i) / active_workers;
2895     uint start_ind = 0;
2896 
2897     if (worker_i > 0 &&
2898         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2899       // Previous workers starting region is valid
2900       // so let's iterate from there
2901       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2902       result = _worker_cset_start_region[worker_i - 1];
2903     }
2904 
2905     for (uint i = start_ind; i < end_ind; i++) {
2906       result = result->next_in_collection_set();
2907     }
2908   }
2909 
2910   // Note: the calculated starting heap region may be NULL
2911   // (when the collection set is empty).
2912   assert(result == NULL || result->in_collection_set(), "sanity");
2913   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2914          "should be updated only once per pause");
2915   _worker_cset_start_region[worker_i] = result;
2916   OrderAccess::storestore();
2917   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2918   return result;
2919 }
2920 
2921 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2922                                                      uint no_of_par_workers) {
2923   uint worker_num =
2924            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2925   assert(UseDynamicNumberOfGCThreads ||
2926          no_of_par_workers == workers()->total_workers(),
2927          "Non dynamic should use fixed number of workers");
2928   const uint start_index = n_regions() * worker_i / worker_num;
2929   return region_at(start_index);
2930 }
2931 
2932 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2933   HeapRegion* r = g1_policy()->collection_set();
2934   while (r != NULL) {
2935     HeapRegion* next = r->next_in_collection_set();
2936     if (cl->doHeapRegion(r)) {
2937       cl->incomplete();
2938       return;
2939     }
2940     r = next;
2941   }
2942 }
2943 
2944 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2945                                                   HeapRegionClosure *cl) {
2946   if (r == NULL) {
2947     // The CSet is empty so there's nothing to do.
2948     return;
2949   }
2950 
2951   assert(r->in_collection_set(),
2952          "Start region must be a member of the collection set.");
2953   HeapRegion* cur = r;
2954   while (cur != NULL) {
2955     HeapRegion* next = cur->next_in_collection_set();
2956     if (cl->doHeapRegion(cur) && false) {
2957       cl->incomplete();
2958       return;
2959     }
2960     cur = next;
2961   }
2962   cur = g1_policy()->collection_set();
2963   while (cur != r) {
2964     HeapRegion* next = cur->next_in_collection_set();
2965     if (cl->doHeapRegion(cur) && false) {
2966       cl->incomplete();
2967       return;
2968     }
2969     cur = next;
2970   }
2971 }
2972 
2973 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2974   return n_regions() > 0 ? region_at(0) : NULL;
2975 }
2976 
2977 
2978 Space* G1CollectedHeap::space_containing(const void* addr) const {
2979   return heap_region_containing(addr);
2980 }
2981 
2982 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2983   Space* sp = space_containing(addr);
2984   return sp->block_start(addr);
2985 }
2986 
2987 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2988   Space* sp = space_containing(addr);
2989   return sp->block_size(addr);
2990 }
2991 
2992 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2993   Space* sp = space_containing(addr);
2994   return sp->block_is_obj(addr);
2995 }
2996 
2997 bool G1CollectedHeap::supports_tlab_allocation() const {
2998   return true;
2999 }
3000 
3001 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
3002   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
3003 }
3004 
3005 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
3006   return young_list()->eden_used_bytes();
3007 }
3008 
3009 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
3010 // must be smaller than the humongous object limit.
3011 size_t G1CollectedHeap::max_tlab_size() const {
3012   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
3013 }
3014 
3015 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
3016   // Return the remaining space in the cur alloc region, but not less than
3017   // the min TLAB size.
3018 
3019   // Also, this value can be at most the humongous object threshold,
3020   // since we can't allow tlabs to grow big enough to accommodate
3021   // humongous objects.
3022 
3023   HeapRegion* hr = _mutator_alloc_region.get();
3024   size_t max_tlab = max_tlab_size() * wordSize;
3025   if (hr == NULL) {
3026     return max_tlab;
3027   } else {
3028     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
3029   }
3030 }
3031 
3032 size_t G1CollectedHeap::max_capacity() const {
3033   return _g1_reserved.byte_size();
3034 }
3035 
3036 jlong G1CollectedHeap::millis_since_last_gc() {
3037   // assert(false, "NYI");
3038   return 0;
3039 }
3040 
3041 void G1CollectedHeap::prepare_for_verify() {
3042   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3043     ensure_parsability(false);
3044   }
3045   g1_rem_set()->prepare_for_verify();
3046 }
3047 
3048 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3049                                               VerifyOption vo) {
3050   switch (vo) {
3051   case VerifyOption_G1UsePrevMarking:
3052     return hr->obj_allocated_since_prev_marking(obj);
3053   case VerifyOption_G1UseNextMarking:
3054     return hr->obj_allocated_since_next_marking(obj);
3055   case VerifyOption_G1UseMarkWord:
3056     return false;
3057   default:
3058     ShouldNotReachHere();
3059   }
3060   return false; // keep some compilers happy
3061 }
3062 
3063 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3064   switch (vo) {
3065   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3066   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3067   case VerifyOption_G1UseMarkWord:    return NULL;
3068   default:                            ShouldNotReachHere();
3069   }
3070   return NULL; // keep some compilers happy
3071 }
3072 
3073 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3074   switch (vo) {
3075   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3076   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3077   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3078   default:                            ShouldNotReachHere();
3079   }
3080   return false; // keep some compilers happy
3081 }
3082 
3083 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3084   switch (vo) {
3085   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3086   case VerifyOption_G1UseNextMarking: return "NTAMS";
3087   case VerifyOption_G1UseMarkWord:    return "NONE";
3088   default:                            ShouldNotReachHere();
3089   }
3090   return NULL; // keep some compilers happy
3091 }
3092 
3093 class VerifyRootsClosure: public OopClosure {
3094 private:
3095   G1CollectedHeap* _g1h;
3096   VerifyOption     _vo;
3097   bool             _failures;
3098 public:
3099   // _vo == UsePrevMarking -> use "prev" marking information,
3100   // _vo == UseNextMarking -> use "next" marking information,
3101   // _vo == UseMarkWord    -> use mark word from object header.
3102   VerifyRootsClosure(VerifyOption vo) :
3103     _g1h(G1CollectedHeap::heap()),
3104     _vo(vo),
3105     _failures(false) { }
3106 
3107   bool failures() { return _failures; }
3108 
3109   template <class T> void do_oop_nv(T* p) {
3110     T heap_oop = oopDesc::load_heap_oop(p);
3111     if (!oopDesc::is_null(heap_oop)) {
3112       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3113       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3114         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3115                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3116         if (_vo == VerifyOption_G1UseMarkWord) {
3117           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3118         }
3119         obj->print_on(gclog_or_tty);
3120         _failures = true;
3121       }
3122     }
3123   }
3124 
3125   void do_oop(oop* p)       { do_oop_nv(p); }
3126   void do_oop(narrowOop* p) { do_oop_nv(p); }
3127 };
3128 
3129 class G1VerifyCodeRootOopClosure: public OopClosure {
3130   G1CollectedHeap* _g1h;
3131   OopClosure* _root_cl;
3132   nmethod* _nm;
3133   VerifyOption _vo;
3134   bool _failures;
3135 
3136   template <class T> void do_oop_work(T* p) {
3137     // First verify that this root is live
3138     _root_cl->do_oop(p);
3139 
3140     if (!G1VerifyHeapRegionCodeRoots) {
3141       // We're not verifying the code roots attached to heap region.
3142       return;
3143     }
3144 
3145     // Don't check the code roots during marking verification in a full GC
3146     if (_vo == VerifyOption_G1UseMarkWord) {
3147       return;
3148     }
3149 
3150     // Now verify that the current nmethod (which contains p) is
3151     // in the code root list of the heap region containing the
3152     // object referenced by p.
3153 
3154     T heap_oop = oopDesc::load_heap_oop(p);
3155     if (!oopDesc::is_null(heap_oop)) {
3156       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3157 
3158       // Now fetch the region containing the object
3159       HeapRegion* hr = _g1h->heap_region_containing(obj);
3160       HeapRegionRemSet* hrrs = hr->rem_set();
3161       // Verify that the strong code root list for this region
3162       // contains the nmethod
3163       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3164         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
3165                               "from nmethod "PTR_FORMAT" not in strong "
3166                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3167                               p, _nm, hr->bottom(), hr->end());
3168         _failures = true;
3169       }
3170     }
3171   }
3172 
3173 public:
3174   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3175     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3176 
3177   void do_oop(oop* p) { do_oop_work(p); }
3178   void do_oop(narrowOop* p) { do_oop_work(p); }
3179 
3180   void set_nmethod(nmethod* nm) { _nm = nm; }
3181   bool failures() { return _failures; }
3182 };
3183 
3184 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3185   G1VerifyCodeRootOopClosure* _oop_cl;
3186 
3187 public:
3188   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3189     _oop_cl(oop_cl) {}
3190 
3191   void do_code_blob(CodeBlob* cb) {
3192     nmethod* nm = cb->as_nmethod_or_null();
3193     if (nm != NULL) {
3194       _oop_cl->set_nmethod(nm);
3195       nm->oops_do(_oop_cl);
3196     }
3197   }
3198 };
3199 
3200 class YoungRefCounterClosure : public OopClosure {
3201   G1CollectedHeap* _g1h;
3202   int              _count;
3203  public:
3204   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3205   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3206   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3207 
3208   int count() { return _count; }
3209   void reset_count() { _count = 0; };
3210 };
3211 
3212 class VerifyKlassClosure: public KlassClosure {
3213   YoungRefCounterClosure _young_ref_counter_closure;
3214   OopClosure *_oop_closure;
3215  public:
3216   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3217   void do_klass(Klass* k) {
3218     k->oops_do(_oop_closure);
3219 
3220     _young_ref_counter_closure.reset_count();
3221     k->oops_do(&_young_ref_counter_closure);
3222     if (_young_ref_counter_closure.count() > 0) {
3223       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
3224     }
3225   }
3226 };
3227 
3228 class VerifyLivenessOopClosure: public OopClosure {
3229   G1CollectedHeap* _g1h;
3230   VerifyOption _vo;
3231 public:
3232   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3233     _g1h(g1h), _vo(vo)
3234   { }
3235   void do_oop(narrowOop *p) { do_oop_work(p); }
3236   void do_oop(      oop *p) { do_oop_work(p); }
3237 
3238   template <class T> void do_oop_work(T *p) {
3239     oop obj = oopDesc::load_decode_heap_oop(p);
3240     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3241               "Dead object referenced by a not dead object");
3242   }
3243 };
3244 
3245 class VerifyObjsInRegionClosure: public ObjectClosure {
3246 private:
3247   G1CollectedHeap* _g1h;
3248   size_t _live_bytes;
3249   HeapRegion *_hr;
3250   VerifyOption _vo;
3251 public:
3252   // _vo == UsePrevMarking -> use "prev" marking information,
3253   // _vo == UseNextMarking -> use "next" marking information,
3254   // _vo == UseMarkWord    -> use mark word from object header.
3255   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3256     : _live_bytes(0), _hr(hr), _vo(vo) {
3257     _g1h = G1CollectedHeap::heap();
3258   }
3259   void do_object(oop o) {
3260     VerifyLivenessOopClosure isLive(_g1h, _vo);
3261     assert(o != NULL, "Huh?");
3262     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3263       // If the object is alive according to the mark word,
3264       // then verify that the marking information agrees.
3265       // Note we can't verify the contra-positive of the
3266       // above: if the object is dead (according to the mark
3267       // word), it may not be marked, or may have been marked
3268       // but has since became dead, or may have been allocated
3269       // since the last marking.
3270       if (_vo == VerifyOption_G1UseMarkWord) {
3271         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3272       }
3273 
3274       o->oop_iterate_no_header(&isLive);
3275       if (!_hr->obj_allocated_since_prev_marking(o)) {
3276         size_t obj_size = o->size();    // Make sure we don't overflow
3277         _live_bytes += (obj_size * HeapWordSize);
3278       }
3279     }
3280   }
3281   size_t live_bytes() { return _live_bytes; }
3282 };
3283 
3284 class PrintObjsInRegionClosure : public ObjectClosure {
3285   HeapRegion *_hr;
3286   G1CollectedHeap *_g1;
3287 public:
3288   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3289     _g1 = G1CollectedHeap::heap();
3290   };
3291 
3292   void do_object(oop o) {
3293     if (o != NULL) {
3294       HeapWord *start = (HeapWord *) o;
3295       size_t word_sz = o->size();
3296       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3297                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3298                           (void*) o, word_sz,
3299                           _g1->isMarkedPrev(o),
3300                           _g1->isMarkedNext(o),
3301                           _hr->obj_allocated_since_prev_marking(o));
3302       HeapWord *end = start + word_sz;
3303       HeapWord *cur;
3304       int *val;
3305       for (cur = start; cur < end; cur++) {
3306         val = (int *) cur;
3307         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
3308       }
3309     }
3310   }
3311 };
3312 
3313 class VerifyRegionClosure: public HeapRegionClosure {
3314 private:
3315   bool             _par;
3316   VerifyOption     _vo;
3317   bool             _failures;
3318 public:
3319   // _vo == UsePrevMarking -> use "prev" marking information,
3320   // _vo == UseNextMarking -> use "next" marking information,
3321   // _vo == UseMarkWord    -> use mark word from object header.
3322   VerifyRegionClosure(bool par, VerifyOption vo)
3323     : _par(par),
3324       _vo(vo),
3325       _failures(false) {}
3326 
3327   bool failures() {
3328     return _failures;
3329   }
3330 
3331   bool doHeapRegion(HeapRegion* r) {
3332     if (!r->continuesHumongous()) {
3333       bool failures = false;
3334       r->verify(_vo, &failures);
3335       if (failures) {
3336         _failures = true;
3337       } else {
3338         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3339         r->object_iterate(&not_dead_yet_cl);
3340         if (_vo != VerifyOption_G1UseNextMarking) {
3341           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3342             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3343                                    "max_live_bytes "SIZE_FORMAT" "
3344                                    "< calculated "SIZE_FORMAT,
3345                                    r->bottom(), r->end(),
3346                                    r->max_live_bytes(),
3347                                  not_dead_yet_cl.live_bytes());
3348             _failures = true;
3349           }
3350         } else {
3351           // When vo == UseNextMarking we cannot currently do a sanity
3352           // check on the live bytes as the calculation has not been
3353           // finalized yet.
3354         }
3355       }
3356     }
3357     return false; // stop the region iteration if we hit a failure
3358   }
3359 };
3360 
3361 // This is the task used for parallel verification of the heap regions
3362 
3363 class G1ParVerifyTask: public AbstractGangTask {
3364 private:
3365   G1CollectedHeap* _g1h;
3366   VerifyOption     _vo;
3367   bool             _failures;
3368 
3369 public:
3370   // _vo == UsePrevMarking -> use "prev" marking information,
3371   // _vo == UseNextMarking -> use "next" marking information,
3372   // _vo == UseMarkWord    -> use mark word from object header.
3373   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3374     AbstractGangTask("Parallel verify task"),
3375     _g1h(g1h),
3376     _vo(vo),
3377     _failures(false) { }
3378 
3379   bool failures() {
3380     return _failures;
3381   }
3382 
3383   void work(uint worker_id) {
3384     HandleMark hm;
3385     VerifyRegionClosure blk(true, _vo);
3386     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3387                                           _g1h->workers()->active_workers(),
3388                                           HeapRegion::ParVerifyClaimValue);
3389     if (blk.failures()) {
3390       _failures = true;
3391     }
3392   }
3393 };
3394 
3395 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3396   if (SafepointSynchronize::is_at_safepoint()) {
3397     assert(Thread::current()->is_VM_thread(),
3398            "Expected to be executed serially by the VM thread at this point");
3399 
3400     if (!silent) { gclog_or_tty->print("Roots "); }
3401     VerifyRootsClosure rootsCl(vo);
3402     VerifyKlassClosure klassCl(this, &rootsCl);
3403 
3404     // We apply the relevant closures to all the oops in the
3405     // system dictionary, class loader data graph and the string table.
3406     // Don't verify the code cache here, since it's verified below.
3407     const int so = SO_AllClasses | SO_Strings;
3408 
3409     // Need cleared claim bits for the strong roots processing
3410     ClassLoaderDataGraph::clear_claimed_marks();
3411 
3412     process_strong_roots(true,      // activate StrongRootsScope
3413                          ScanningOption(so),  // roots scanning options
3414                          &rootsCl,
3415                          &klassCl
3416                          );
3417 
3418     // Verify the nmethods in the code cache.
3419     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3420     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3421     CodeCache::blobs_do(&blobsCl);
3422 
3423     bool failures = rootsCl.failures() || codeRootsCl.failures();
3424 
3425     if (vo != VerifyOption_G1UseMarkWord) {
3426       // If we're verifying during a full GC then the region sets
3427       // will have been torn down at the start of the GC. Therefore
3428       // verifying the region sets will fail. So we only verify
3429       // the region sets when not in a full GC.
3430       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3431       verify_region_sets();
3432     }
3433 
3434     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3435     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3436       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3437              "sanity check");
3438 
3439       G1ParVerifyTask task(this, vo);
3440       assert(UseDynamicNumberOfGCThreads ||
3441         workers()->active_workers() == workers()->total_workers(),
3442         "If not dynamic should be using all the workers");
3443       int n_workers = workers()->active_workers();
3444       set_par_threads(n_workers);
3445       workers()->run_task(&task);
3446       set_par_threads(0);
3447       if (task.failures()) {
3448         failures = true;
3449       }
3450 
3451       // Checks that the expected amount of parallel work was done.
3452       // The implication is that n_workers is > 0.
3453       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3454              "sanity check");
3455 
3456       reset_heap_region_claim_values();
3457 
3458       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3459              "sanity check");
3460     } else {
3461       VerifyRegionClosure blk(false, vo);
3462       heap_region_iterate(&blk);
3463       if (blk.failures()) {
3464         failures = true;
3465       }
3466     }
3467     if (!silent) gclog_or_tty->print("RemSet ");
3468     rem_set()->verify();
3469 
3470     if (G1StringDedup::is_enabled()) {
3471       if (!silent) gclog_or_tty->print("StrDedup ");
3472       G1StringDedup::verify();
3473     }
3474 
3475     if (failures) {
3476       gclog_or_tty->print_cr("Heap:");
3477       // It helps to have the per-region information in the output to
3478       // help us track down what went wrong. This is why we call
3479       // print_extended_on() instead of print_on().
3480       print_extended_on(gclog_or_tty);
3481       gclog_or_tty->cr();
3482 #ifndef PRODUCT
3483       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3484         concurrent_mark()->print_reachable("at-verification-failure",
3485                                            vo, false /* all */);
3486       }
3487 #endif
3488       gclog_or_tty->flush();
3489     }
3490     guarantee(!failures, "there should not have been any failures");
3491   } else {
3492     if (!silent) {
3493       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3494       if (G1StringDedup::is_enabled()) {
3495         gclog_or_tty->print(", StrDedup");
3496       }
3497       gclog_or_tty->print(") ");
3498     }
3499   }
3500 }
3501 
3502 void G1CollectedHeap::verify(bool silent) {
3503   verify(silent, VerifyOption_G1UsePrevMarking);
3504 }
3505 
3506 double G1CollectedHeap::verify(bool guard, const char* msg) {
3507   double verify_time_ms = 0.0;
3508 
3509   if (guard && total_collections() >= VerifyGCStartAt) {
3510     double verify_start = os::elapsedTime();
3511     HandleMark hm;  // Discard invalid handles created during verification
3512     prepare_for_verify();
3513     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3514     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3515   }
3516 
3517   return verify_time_ms;
3518 }
3519 
3520 void G1CollectedHeap::verify_before_gc() {
3521   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3522   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3523 }
3524 
3525 void G1CollectedHeap::verify_after_gc() {
3526   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3527   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3528 }
3529 
3530 class PrintRegionClosure: public HeapRegionClosure {
3531   outputStream* _st;
3532 public:
3533   PrintRegionClosure(outputStream* st) : _st(st) {}
3534   bool doHeapRegion(HeapRegion* r) {
3535     r->print_on(_st);
3536     return false;
3537   }
3538 };
3539 
3540 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3541                                        const HeapRegion* hr,
3542                                        const VerifyOption vo) const {
3543   switch (vo) {
3544   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3545   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3546   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3547   default:                            ShouldNotReachHere();
3548   }
3549   return false; // keep some compilers happy
3550 }
3551 
3552 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3553                                        const VerifyOption vo) const {
3554   switch (vo) {
3555   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3556   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3557   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3558   default:                            ShouldNotReachHere();
3559   }
3560   return false; // keep some compilers happy
3561 }
3562 
3563 void G1CollectedHeap::print_on(outputStream* st) const {
3564   st->print(" %-20s", "garbage-first heap");
3565   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3566             capacity()/K, used_unlocked()/K);
3567   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3568             _g1_storage.low_boundary(),
3569             _g1_storage.high(),
3570             _g1_storage.high_boundary());
3571   st->cr();
3572   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3573   uint young_regions = _young_list->length();
3574   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3575             (size_t) young_regions * HeapRegion::GrainBytes / K);
3576   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3577   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3578             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3579   st->cr();
3580   MetaspaceAux::print_on(st);
3581 }
3582 
3583 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3584   print_on(st);
3585 
3586   // Print the per-region information.
3587   st->cr();
3588   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3589                "HS=humongous(starts), HC=humongous(continues), "
3590                "CS=collection set, F=free, TS=gc time stamp, "
3591                "PTAMS=previous top-at-mark-start, "
3592                "NTAMS=next top-at-mark-start)");
3593   PrintRegionClosure blk(st);
3594   heap_region_iterate(&blk);
3595 }
3596 
3597 void G1CollectedHeap::print_on_error(outputStream* st) const {
3598   this->CollectedHeap::print_on_error(st);
3599 
3600   if (_cm != NULL) {
3601     st->cr();
3602     _cm->print_on_error(st);
3603   }
3604 }
3605 
3606 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3607   if (G1CollectedHeap::use_parallel_gc_threads()) {
3608     workers()->print_worker_threads_on(st);
3609   }
3610   _cmThread->print_on(st);
3611   st->cr();
3612   _cm->print_worker_threads_on(st);
3613   _cg1r->print_worker_threads_on(st);
3614   if (G1StringDedup::is_enabled()) {
3615     G1StringDedup::print_worker_threads_on(st);
3616   }
3617 }
3618 
3619 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3620   if (G1CollectedHeap::use_parallel_gc_threads()) {
3621     workers()->threads_do(tc);
3622   }
3623   tc->do_thread(_cmThread);
3624   _cg1r->threads_do(tc);
3625   if (G1StringDedup::is_enabled()) {
3626     G1StringDedup::threads_do(tc);
3627   }
3628 }
3629 
3630 void G1CollectedHeap::print_tracing_info() const {
3631   // We'll overload this to mean "trace GC pause statistics."
3632   if (TraceGen0Time || TraceGen1Time) {
3633     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3634     // to that.
3635     g1_policy()->print_tracing_info();
3636   }
3637   if (G1SummarizeRSetStats) {
3638     g1_rem_set()->print_summary_info();
3639   }
3640   if (G1SummarizeConcMark) {
3641     concurrent_mark()->print_summary_info();
3642   }
3643   g1_policy()->print_yg_surv_rate_info();
3644   SpecializationStats::print();
3645 }
3646 
3647 #ifndef PRODUCT
3648 // Helpful for debugging RSet issues.
3649 
3650 class PrintRSetsClosure : public HeapRegionClosure {
3651 private:
3652   const char* _msg;
3653   size_t _occupied_sum;
3654 
3655 public:
3656   bool doHeapRegion(HeapRegion* r) {
3657     HeapRegionRemSet* hrrs = r->rem_set();
3658     size_t occupied = hrrs->occupied();
3659     _occupied_sum += occupied;
3660 
3661     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3662                            HR_FORMAT_PARAMS(r));
3663     if (occupied == 0) {
3664       gclog_or_tty->print_cr("  RSet is empty");
3665     } else {
3666       hrrs->print();
3667     }
3668     gclog_or_tty->print_cr("----------");
3669     return false;
3670   }
3671 
3672   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3673     gclog_or_tty->cr();
3674     gclog_or_tty->print_cr("========================================");
3675     gclog_or_tty->print_cr("%s", msg);
3676     gclog_or_tty->cr();
3677   }
3678 
3679   ~PrintRSetsClosure() {
3680     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3681     gclog_or_tty->print_cr("========================================");
3682     gclog_or_tty->cr();
3683   }
3684 };
3685 
3686 void G1CollectedHeap::print_cset_rsets() {
3687   PrintRSetsClosure cl("Printing CSet RSets");
3688   collection_set_iterate(&cl);
3689 }
3690 
3691 void G1CollectedHeap::print_all_rsets() {
3692   PrintRSetsClosure cl("Printing All RSets");;
3693   heap_region_iterate(&cl);
3694 }
3695 #endif // PRODUCT
3696 
3697 G1CollectedHeap* G1CollectedHeap::heap() {
3698   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3699          "not a garbage-first heap");
3700   return _g1h;
3701 }
3702 
3703 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3704   // always_do_update_barrier = false;
3705   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3706   // Fill TLAB's and such
3707   accumulate_statistics_all_tlabs();
3708   ensure_parsability(true);
3709 
3710   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3711       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3712     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3713   }
3714 }
3715 
3716 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3717 
3718   if (G1SummarizeRSetStats &&
3719       (G1SummarizeRSetStatsPeriod > 0) &&
3720       // we are at the end of the GC. Total collections has already been increased.
3721       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3722     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3723   }
3724 
3725   // FIXME: what is this about?
3726   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3727   // is set.
3728   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3729                         "derived pointer present"));
3730   // always_do_update_barrier = true;
3731 
3732   resize_all_tlabs();
3733 
3734   // We have just completed a GC. Update the soft reference
3735   // policy with the new heap occupancy
3736   Universe::update_heap_info_at_gc();
3737 }
3738 
3739 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3740                                                unsigned int gc_count_before,
3741                                                bool* succeeded,
3742                                                GCCause::Cause gc_cause) {
3743   assert_heap_not_locked_and_not_at_safepoint();
3744   g1_policy()->record_stop_world_start();
3745   VM_G1IncCollectionPause op(gc_count_before,
3746                              word_size,
3747                              false, /* should_initiate_conc_mark */
3748                              g1_policy()->max_pause_time_ms(),
3749                              gc_cause);
3750   VMThread::execute(&op);
3751 
3752   HeapWord* result = op.result();
3753   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3754   assert(result == NULL || ret_succeeded,
3755          "the result should be NULL if the VM did not succeed");
3756   *succeeded = ret_succeeded;
3757 
3758   assert_heap_not_locked();
3759   return result;
3760 }
3761 
3762 void
3763 G1CollectedHeap::doConcurrentMark() {
3764   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3765   if (!_cmThread->in_progress()) {
3766     _cmThread->set_started();
3767     CGC_lock->notify();
3768   }
3769 }
3770 
3771 size_t G1CollectedHeap::pending_card_num() {
3772   size_t extra_cards = 0;
3773   JavaThread *curr = Threads::first();
3774   while (curr != NULL) {
3775     DirtyCardQueue& dcq = curr->dirty_card_queue();
3776     extra_cards += dcq.size();
3777     curr = curr->next();
3778   }
3779   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3780   size_t buffer_size = dcqs.buffer_size();
3781   size_t buffer_num = dcqs.completed_buffers_num();
3782 
3783   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3784   // in bytes - not the number of 'entries'. We need to convert
3785   // into a number of cards.
3786   return (buffer_size * buffer_num + extra_cards) / oopSize;
3787 }
3788 
3789 size_t G1CollectedHeap::cards_scanned() {
3790   return g1_rem_set()->cardsScanned();
3791 }
3792 
3793 void
3794 G1CollectedHeap::setup_surviving_young_words() {
3795   assert(_surviving_young_words == NULL, "pre-condition");
3796   uint array_length = g1_policy()->young_cset_region_length();
3797   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3798   if (_surviving_young_words == NULL) {
3799     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3800                           "Not enough space for young surv words summary.");
3801   }
3802   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3803 #ifdef ASSERT
3804   for (uint i = 0;  i < array_length; ++i) {
3805     assert( _surviving_young_words[i] == 0, "memset above" );
3806   }
3807 #endif // !ASSERT
3808 }
3809 
3810 void
3811 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3812   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3813   uint array_length = g1_policy()->young_cset_region_length();
3814   for (uint i = 0; i < array_length; ++i) {
3815     _surviving_young_words[i] += surv_young_words[i];
3816   }
3817 }
3818 
3819 void
3820 G1CollectedHeap::cleanup_surviving_young_words() {
3821   guarantee( _surviving_young_words != NULL, "pre-condition" );
3822   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3823   _surviving_young_words = NULL;
3824 }
3825 
3826 #ifdef ASSERT
3827 class VerifyCSetClosure: public HeapRegionClosure {
3828 public:
3829   bool doHeapRegion(HeapRegion* hr) {
3830     // Here we check that the CSet region's RSet is ready for parallel
3831     // iteration. The fields that we'll verify are only manipulated
3832     // when the region is part of a CSet and is collected. Afterwards,
3833     // we reset these fields when we clear the region's RSet (when the
3834     // region is freed) so they are ready when the region is
3835     // re-allocated. The only exception to this is if there's an
3836     // evacuation failure and instead of freeing the region we leave
3837     // it in the heap. In that case, we reset these fields during
3838     // evacuation failure handling.
3839     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3840 
3841     // Here's a good place to add any other checks we'd like to
3842     // perform on CSet regions.
3843     return false;
3844   }
3845 };
3846 #endif // ASSERT
3847 
3848 #if TASKQUEUE_STATS
3849 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3850   st->print_raw_cr("GC Task Stats");
3851   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3852   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3853 }
3854 
3855 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3856   print_taskqueue_stats_hdr(st);
3857 
3858   TaskQueueStats totals;
3859   const int n = workers() != NULL ? workers()->total_workers() : 1;
3860   for (int i = 0; i < n; ++i) {
3861     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3862     totals += task_queue(i)->stats;
3863   }
3864   st->print_raw("tot "); totals.print(st); st->cr();
3865 
3866   DEBUG_ONLY(totals.verify());
3867 }
3868 
3869 void G1CollectedHeap::reset_taskqueue_stats() {
3870   const int n = workers() != NULL ? workers()->total_workers() : 1;
3871   for (int i = 0; i < n; ++i) {
3872     task_queue(i)->stats.reset();
3873   }
3874 }
3875 #endif // TASKQUEUE_STATS
3876 
3877 void G1CollectedHeap::log_gc_header() {
3878   if (!G1Log::fine()) {
3879     return;
3880   }
3881 
3882   gclog_or_tty->date_stamp(PrintGCDateStamps);
3883   gclog_or_tty->stamp(PrintGCTimeStamps);
3884 
3885   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3886     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3887     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3888 
3889   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3890 }
3891 
3892 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3893   if (!G1Log::fine()) {
3894     return;
3895   }
3896 
3897   if (G1Log::finer()) {
3898     if (evacuation_failed()) {
3899       gclog_or_tty->print(" (to-space exhausted)");
3900     }
3901     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3902     g1_policy()->phase_times()->note_gc_end();
3903     g1_policy()->phase_times()->print(pause_time_sec);
3904     g1_policy()->print_detailed_heap_transition();
3905   } else {
3906     if (evacuation_failed()) {
3907       gclog_or_tty->print("--");
3908     }
3909     g1_policy()->print_heap_transition();
3910     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3911   }
3912   gclog_or_tty->flush();
3913 }
3914 
3915 bool
3916 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3917   assert_at_safepoint(true /* should_be_vm_thread */);
3918   guarantee(!is_gc_active(), "collection is not reentrant");
3919 
3920   if (GC_locker::check_active_before_gc()) {
3921     return false;
3922   }
3923 
3924   _gc_timer_stw->register_gc_start();
3925 
3926   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3927 
3928   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3929   ResourceMark rm;
3930 
3931   print_heap_before_gc();
3932   trace_heap_before_gc(_gc_tracer_stw);
3933 
3934   verify_region_sets_optional();
3935   verify_dirty_young_regions();
3936 
3937   // This call will decide whether this pause is an initial-mark
3938   // pause. If it is, during_initial_mark_pause() will return true
3939   // for the duration of this pause.
3940   g1_policy()->decide_on_conc_mark_initiation();
3941 
3942   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3943   assert(!g1_policy()->during_initial_mark_pause() ||
3944           g1_policy()->gcs_are_young(), "sanity");
3945 
3946   // We also do not allow mixed GCs during marking.
3947   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3948 
3949   // Record whether this pause is an initial mark. When the current
3950   // thread has completed its logging output and it's safe to signal
3951   // the CM thread, the flag's value in the policy has been reset.
3952   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3953 
3954   // Inner scope for scope based logging, timers, and stats collection
3955   {
3956     EvacuationInfo evacuation_info;
3957 
3958     if (g1_policy()->during_initial_mark_pause()) {
3959       // We are about to start a marking cycle, so we increment the
3960       // full collection counter.
3961       increment_old_marking_cycles_started();
3962       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3963     }
3964 
3965     _gc_tracer_stw->report_yc_type(yc_type());
3966 
3967     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3968 
3969     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3970                                 workers()->active_workers() : 1);
3971     double pause_start_sec = os::elapsedTime();
3972     g1_policy()->phase_times()->note_gc_start(active_workers);
3973     log_gc_header();
3974 
3975     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3976     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3977 
3978     // If the secondary_free_list is not empty, append it to the
3979     // free_list. No need to wait for the cleanup operation to finish;
3980     // the region allocation code will check the secondary_free_list
3981     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3982     // set, skip this step so that the region allocation code has to
3983     // get entries from the secondary_free_list.
3984     if (!G1StressConcRegionFreeing) {
3985       append_secondary_free_list_if_not_empty_with_lock();
3986     }
3987 
3988     assert(check_young_list_well_formed(), "young list should be well formed");
3989     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3990            "sanity check");
3991 
3992     // Don't dynamically change the number of GC threads this early.  A value of
3993     // 0 is used to indicate serial work.  When parallel work is done,
3994     // it will be set.
3995 
3996     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3997       IsGCActiveMark x;
3998 
3999       gc_prologue(false);
4000       increment_total_collections(false /* full gc */);
4001       increment_gc_time_stamp();
4002 
4003       verify_before_gc();
4004       check_bitmaps("GC Start");
4005 
4006       COMPILER2_PRESENT(DerivedPointerTable::clear());
4007 
4008       // Please see comment in g1CollectedHeap.hpp and
4009       // G1CollectedHeap::ref_processing_init() to see how
4010       // reference processing currently works in G1.
4011 
4012       // Enable discovery in the STW reference processor
4013       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
4014                                             true /*verify_no_refs*/);
4015 
4016       {
4017         // We want to temporarily turn off discovery by the
4018         // CM ref processor, if necessary, and turn it back on
4019         // on again later if we do. Using a scoped
4020         // NoRefDiscovery object will do this.
4021         NoRefDiscovery no_cm_discovery(ref_processor_cm());
4022 
4023         // Forget the current alloc region (we might even choose it to be part
4024         // of the collection set!).
4025         release_mutator_alloc_region();
4026 
4027         // We should call this after we retire the mutator alloc
4028         // region(s) so that all the ALLOC / RETIRE events are generated
4029         // before the start GC event.
4030         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4031 
4032         // This timing is only used by the ergonomics to handle our pause target.
4033         // It is unclear why this should not include the full pause. We will
4034         // investigate this in CR 7178365.
4035         //
4036         // Preserving the old comment here if that helps the investigation:
4037         //
4038         // The elapsed time induced by the start time below deliberately elides
4039         // the possible verification above.
4040         double sample_start_time_sec = os::elapsedTime();
4041 
4042 #if YOUNG_LIST_VERBOSE
4043         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4044         _young_list->print();
4045         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4046 #endif // YOUNG_LIST_VERBOSE
4047 
4048         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4049 
4050         double scan_wait_start = os::elapsedTime();
4051         // We have to wait until the CM threads finish scanning the
4052         // root regions as it's the only way to ensure that all the
4053         // objects on them have been correctly scanned before we start
4054         // moving them during the GC.
4055         bool waited = _cm->root_regions()->wait_until_scan_finished();
4056         double wait_time_ms = 0.0;
4057         if (waited) {
4058           double scan_wait_end = os::elapsedTime();
4059           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4060         }
4061         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4062 
4063 #if YOUNG_LIST_VERBOSE
4064         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4065         _young_list->print();
4066 #endif // YOUNG_LIST_VERBOSE
4067 
4068         if (g1_policy()->during_initial_mark_pause()) {
4069           concurrent_mark()->checkpointRootsInitialPre();
4070         }
4071 
4072 #if YOUNG_LIST_VERBOSE
4073         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4074         _young_list->print();
4075         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4076 #endif // YOUNG_LIST_VERBOSE
4077 
4078         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4079 
4080         _cm->note_start_of_gc();
4081         // We should not verify the per-thread SATB buffers given that
4082         // we have not filtered them yet (we'll do so during the
4083         // GC). We also call this after finalize_cset() to
4084         // ensure that the CSet has been finalized.
4085         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4086                                  true  /* verify_enqueued_buffers */,
4087                                  false /* verify_thread_buffers */,
4088                                  true  /* verify_fingers */);
4089 
4090         if (_hr_printer.is_active()) {
4091           HeapRegion* hr = g1_policy()->collection_set();
4092           while (hr != NULL) {
4093             G1HRPrinter::RegionType type;
4094             if (!hr->is_young()) {
4095               type = G1HRPrinter::Old;
4096             } else if (hr->is_survivor()) {
4097               type = G1HRPrinter::Survivor;
4098             } else {
4099               type = G1HRPrinter::Eden;
4100             }
4101             _hr_printer.cset(hr);
4102             hr = hr->next_in_collection_set();
4103           }
4104         }
4105 
4106 #ifdef ASSERT
4107         VerifyCSetClosure cl;
4108         collection_set_iterate(&cl);
4109 #endif // ASSERT
4110 
4111         setup_surviving_young_words();
4112 
4113         // Initialize the GC alloc regions.
4114         init_gc_alloc_regions(evacuation_info);
4115 
4116         // Actually do the work...
4117         evacuate_collection_set(evacuation_info);
4118 
4119         // We do this to mainly verify the per-thread SATB buffers
4120         // (which have been filtered by now) since we didn't verify
4121         // them earlier. No point in re-checking the stacks / enqueued
4122         // buffers given that the CSet has not changed since last time
4123         // we checked.
4124         _cm->verify_no_cset_oops(false /* verify_stacks */,
4125                                  false /* verify_enqueued_buffers */,
4126                                  true  /* verify_thread_buffers */,
4127                                  true  /* verify_fingers */);
4128 
4129         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4130         g1_policy()->clear_collection_set();
4131 
4132         cleanup_surviving_young_words();
4133 
4134         // Start a new incremental collection set for the next pause.
4135         g1_policy()->start_incremental_cset_building();
4136 
4137         clear_cset_fast_test();
4138 
4139         _young_list->reset_sampled_info();
4140 
4141         // Don't check the whole heap at this point as the
4142         // GC alloc regions from this pause have been tagged
4143         // as survivors and moved on to the survivor list.
4144         // Survivor regions will fail the !is_young() check.
4145         assert(check_young_list_empty(false /* check_heap */),
4146           "young list should be empty");
4147 
4148 #if YOUNG_LIST_VERBOSE
4149         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4150         _young_list->print();
4151 #endif // YOUNG_LIST_VERBOSE
4152 
4153         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4154                                              _young_list->first_survivor_region(),
4155                                              _young_list->last_survivor_region());
4156 
4157         _young_list->reset_auxilary_lists();
4158 
4159         if (evacuation_failed()) {
4160           _summary_bytes_used = recalculate_used();
4161           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4162           for (uint i = 0; i < n_queues; i++) {
4163             if (_evacuation_failed_info_array[i].has_failed()) {
4164               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4165             }
4166           }
4167         } else {
4168           // The "used" of the the collection set have already been subtracted
4169           // when they were freed.  Add in the bytes evacuated.
4170           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4171         }
4172 
4173         if (g1_policy()->during_initial_mark_pause()) {
4174           // We have to do this before we notify the CM threads that
4175           // they can start working to make sure that all the
4176           // appropriate initialization is done on the CM object.
4177           concurrent_mark()->checkpointRootsInitialPost();
4178           set_marking_started();
4179           // Note that we don't actually trigger the CM thread at
4180           // this point. We do that later when we're sure that
4181           // the current thread has completed its logging output.
4182         }
4183 
4184         allocate_dummy_regions();
4185 
4186 #if YOUNG_LIST_VERBOSE
4187         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4188         _young_list->print();
4189         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4190 #endif // YOUNG_LIST_VERBOSE
4191 
4192         init_mutator_alloc_region();
4193 
4194         {
4195           size_t expand_bytes = g1_policy()->expansion_amount();
4196           if (expand_bytes > 0) {
4197             size_t bytes_before = capacity();
4198             // No need for an ergo verbose message here,
4199             // expansion_amount() does this when it returns a value > 0.
4200             if (!expand(expand_bytes)) {
4201               // We failed to expand the heap so let's verify that
4202               // committed/uncommitted amount match the backing store
4203               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4204               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4205             }
4206           }
4207         }
4208 
4209         // We redo the verification but now wrt to the new CSet which
4210         // has just got initialized after the previous CSet was freed.
4211         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4212                                  true  /* verify_enqueued_buffers */,
4213                                  true  /* verify_thread_buffers */,
4214                                  true  /* verify_fingers */);
4215         _cm->note_end_of_gc();
4216 
4217         // This timing is only used by the ergonomics to handle our pause target.
4218         // It is unclear why this should not include the full pause. We will
4219         // investigate this in CR 7178365.
4220         double sample_end_time_sec = os::elapsedTime();
4221         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4222         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4223 
4224         MemoryService::track_memory_usage();
4225 
4226         // In prepare_for_verify() below we'll need to scan the deferred
4227         // update buffers to bring the RSets up-to-date if
4228         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4229         // the update buffers we'll probably need to scan cards on the
4230         // regions we just allocated to (i.e., the GC alloc
4231         // regions). However, during the last GC we called
4232         // set_saved_mark() on all the GC alloc regions, so card
4233         // scanning might skip the [saved_mark_word()...top()] area of
4234         // those regions (i.e., the area we allocated objects into
4235         // during the last GC). But it shouldn't. Given that
4236         // saved_mark_word() is conditional on whether the GC time stamp
4237         // on the region is current or not, by incrementing the GC time
4238         // stamp here we invalidate all the GC time stamps on all the
4239         // regions and saved_mark_word() will simply return top() for
4240         // all the regions. This is a nicer way of ensuring this rather
4241         // than iterating over the regions and fixing them. In fact, the
4242         // GC time stamp increment here also ensures that
4243         // saved_mark_word() will return top() between pauses, i.e.,
4244         // during concurrent refinement. So we don't need the
4245         // is_gc_active() check to decided which top to use when
4246         // scanning cards (see CR 7039627).
4247         increment_gc_time_stamp();
4248 
4249         verify_after_gc();
4250         check_bitmaps("GC End");
4251 
4252         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4253         ref_processor_stw()->verify_no_references_recorded();
4254 
4255         // CM reference discovery will be re-enabled if necessary.
4256       }
4257 
4258       // We should do this after we potentially expand the heap so
4259       // that all the COMMIT events are generated before the end GC
4260       // event, and after we retire the GC alloc regions so that all
4261       // RETIRE events are generated before the end GC event.
4262       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4263 
4264       if (mark_in_progress()) {
4265         concurrent_mark()->update_g1_committed();
4266       }
4267 
4268 #ifdef TRACESPINNING
4269       ParallelTaskTerminator::print_termination_counts();
4270 #endif
4271 
4272       gc_epilogue(false);
4273     }
4274 
4275     // Print the remainder of the GC log output.
4276     log_gc_footer(os::elapsedTime() - pause_start_sec);
4277 
4278     // It is not yet to safe to tell the concurrent mark to
4279     // start as we have some optional output below. We don't want the
4280     // output from the concurrent mark thread interfering with this
4281     // logging output either.
4282 
4283     _hrs.verify_optional();
4284     verify_region_sets_optional();
4285 
4286     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4287     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4288 
4289     print_heap_after_gc();
4290     trace_heap_after_gc(_gc_tracer_stw);
4291 
4292     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4293     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4294     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4295     // before any GC notifications are raised.
4296     g1mm()->update_sizes();
4297 
4298     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4299     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4300     _gc_timer_stw->register_gc_end();
4301     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4302   }
4303   // It should now be safe to tell the concurrent mark thread to start
4304   // without its logging output interfering with the logging output
4305   // that came from the pause.
4306 
4307   if (should_start_conc_mark) {
4308     // CAUTION: after the doConcurrentMark() call below,
4309     // the concurrent marking thread(s) could be running
4310     // concurrently with us. Make sure that anything after
4311     // this point does not assume that we are the only GC thread
4312     // running. Note: of course, the actual marking work will
4313     // not start until the safepoint itself is released in
4314     // SuspendibleThreadSet::desynchronize().
4315     doConcurrentMark();
4316   }
4317 
4318   return true;
4319 }
4320 
4321 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4322 {
4323   size_t gclab_word_size;
4324   switch (purpose) {
4325     case GCAllocForSurvived:
4326       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4327       break;
4328     case GCAllocForTenured:
4329       gclab_word_size = _old_plab_stats.desired_plab_sz();
4330       break;
4331     default:
4332       assert(false, "unknown GCAllocPurpose");
4333       gclab_word_size = _old_plab_stats.desired_plab_sz();
4334       break;
4335   }
4336 
4337   // Prevent humongous PLAB sizes for two reasons:
4338   // * PLABs are allocated using a similar paths as oops, but should
4339   //   never be in a humongous region
4340   // * Allowing humongous PLABs needlessly churns the region free lists
4341   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4342 }
4343 
4344 void G1CollectedHeap::init_mutator_alloc_region() {
4345   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4346   _mutator_alloc_region.init();
4347 }
4348 
4349 void G1CollectedHeap::release_mutator_alloc_region() {
4350   _mutator_alloc_region.release();
4351   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4352 }
4353 
4354 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4355   assert_at_safepoint(true /* should_be_vm_thread */);
4356 
4357   _survivor_gc_alloc_region.init();
4358   _old_gc_alloc_region.init();
4359   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4360   _retained_old_gc_alloc_region = NULL;
4361 
4362   // We will discard the current GC alloc region if:
4363   // a) it's in the collection set (it can happen!),
4364   // b) it's already full (no point in using it),
4365   // c) it's empty (this means that it was emptied during
4366   // a cleanup and it should be on the free list now), or
4367   // d) it's humongous (this means that it was emptied
4368   // during a cleanup and was added to the free list, but
4369   // has been subsequently used to allocate a humongous
4370   // object that may be less than the region size).
4371   if (retained_region != NULL &&
4372       !retained_region->in_collection_set() &&
4373       !(retained_region->top() == retained_region->end()) &&
4374       !retained_region->is_empty() &&
4375       !retained_region->isHumongous()) {
4376     retained_region->set_saved_mark();
4377     // The retained region was added to the old region set when it was
4378     // retired. We have to remove it now, since we don't allow regions
4379     // we allocate to in the region sets. We'll re-add it later, when
4380     // it's retired again.
4381     _old_set.remove(retained_region);
4382     bool during_im = g1_policy()->during_initial_mark_pause();
4383     retained_region->note_start_of_copying(during_im);
4384     _old_gc_alloc_region.set(retained_region);
4385     _hr_printer.reuse(retained_region);
4386     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4387   }
4388 }
4389 
4390 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4391   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4392                                          _old_gc_alloc_region.count());
4393   _survivor_gc_alloc_region.release();
4394   // If we have an old GC alloc region to release, we'll save it in
4395   // _retained_old_gc_alloc_region. If we don't
4396   // _retained_old_gc_alloc_region will become NULL. This is what we
4397   // want either way so no reason to check explicitly for either
4398   // condition.
4399   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4400 
4401   if (ResizePLAB) {
4402     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4403     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4404   }
4405 }
4406 
4407 void G1CollectedHeap::abandon_gc_alloc_regions() {
4408   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4409   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4410   _retained_old_gc_alloc_region = NULL;
4411 }
4412 
4413 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4414   _drain_in_progress = false;
4415   set_evac_failure_closure(cl);
4416   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4417 }
4418 
4419 void G1CollectedHeap::finalize_for_evac_failure() {
4420   assert(_evac_failure_scan_stack != NULL &&
4421          _evac_failure_scan_stack->length() == 0,
4422          "Postcondition");
4423   assert(!_drain_in_progress, "Postcondition");
4424   delete _evac_failure_scan_stack;
4425   _evac_failure_scan_stack = NULL;
4426 }
4427 
4428 void G1CollectedHeap::remove_self_forwarding_pointers() {
4429   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4430 
4431   double remove_self_forwards_start = os::elapsedTime();
4432 
4433   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4434 
4435   if (G1CollectedHeap::use_parallel_gc_threads()) {
4436     set_par_threads();
4437     workers()->run_task(&rsfp_task);
4438     set_par_threads(0);
4439   } else {
4440     rsfp_task.work(0);
4441   }
4442 
4443   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4444 
4445   // Reset the claim values in the regions in the collection set.
4446   reset_cset_heap_region_claim_values();
4447 
4448   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4449 
4450   // Now restore saved marks, if any.
4451   assert(_objs_with_preserved_marks.size() ==
4452             _preserved_marks_of_objs.size(), "Both or none.");
4453   while (!_objs_with_preserved_marks.is_empty()) {
4454     oop obj = _objs_with_preserved_marks.pop();
4455     markOop m = _preserved_marks_of_objs.pop();
4456     obj->set_mark(m);
4457   }
4458   _objs_with_preserved_marks.clear(true);
4459   _preserved_marks_of_objs.clear(true);
4460 
4461   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4462 }
4463 
4464 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4465   _evac_failure_scan_stack->push(obj);
4466 }
4467 
4468 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4469   assert(_evac_failure_scan_stack != NULL, "precondition");
4470 
4471   while (_evac_failure_scan_stack->length() > 0) {
4472      oop obj = _evac_failure_scan_stack->pop();
4473      _evac_failure_closure->set_region(heap_region_containing(obj));
4474      obj->oop_iterate_backwards(_evac_failure_closure);
4475   }
4476 }
4477 
4478 oop
4479 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4480                                                oop old) {
4481   assert(obj_in_cs(old),
4482          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4483                  (HeapWord*) old));
4484   markOop m = old->mark();
4485   oop forward_ptr = old->forward_to_atomic(old);
4486   if (forward_ptr == NULL) {
4487     // Forward-to-self succeeded.
4488     assert(_par_scan_state != NULL, "par scan state");
4489     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4490     uint queue_num = _par_scan_state->queue_num();
4491 
4492     _evacuation_failed = true;
4493     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4494     if (_evac_failure_closure != cl) {
4495       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4496       assert(!_drain_in_progress,
4497              "Should only be true while someone holds the lock.");
4498       // Set the global evac-failure closure to the current thread's.
4499       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4500       set_evac_failure_closure(cl);
4501       // Now do the common part.
4502       handle_evacuation_failure_common(old, m);
4503       // Reset to NULL.
4504       set_evac_failure_closure(NULL);
4505     } else {
4506       // The lock is already held, and this is recursive.
4507       assert(_drain_in_progress, "This should only be the recursive case.");
4508       handle_evacuation_failure_common(old, m);
4509     }
4510     return old;
4511   } else {
4512     // Forward-to-self failed. Either someone else managed to allocate
4513     // space for this object (old != forward_ptr) or they beat us in
4514     // self-forwarding it (old == forward_ptr).
4515     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4516            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4517                    "should not be in the CSet",
4518                    (HeapWord*) old, (HeapWord*) forward_ptr));
4519     return forward_ptr;
4520   }
4521 }
4522 
4523 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4524   preserve_mark_if_necessary(old, m);
4525 
4526   HeapRegion* r = heap_region_containing(old);
4527   if (!r->evacuation_failed()) {
4528     r->set_evacuation_failed(true);
4529     _hr_printer.evac_failure(r);
4530   }
4531 
4532   push_on_evac_failure_scan_stack(old);
4533 
4534   if (!_drain_in_progress) {
4535     // prevent recursion in copy_to_survivor_space()
4536     _drain_in_progress = true;
4537     drain_evac_failure_scan_stack();
4538     _drain_in_progress = false;
4539   }
4540 }
4541 
4542 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4543   assert(evacuation_failed(), "Oversaving!");
4544   // We want to call the "for_promotion_failure" version only in the
4545   // case of a promotion failure.
4546   if (m->must_be_preserved_for_promotion_failure(obj)) {
4547     _objs_with_preserved_marks.push(obj);
4548     _preserved_marks_of_objs.push(m);
4549   }
4550 }
4551 
4552 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4553                                                   size_t word_size) {
4554   if (purpose == GCAllocForSurvived) {
4555     HeapWord* result = survivor_attempt_allocation(word_size);
4556     if (result != NULL) {
4557       return result;
4558     } else {
4559       // Let's try to allocate in the old gen in case we can fit the
4560       // object there.
4561       return old_attempt_allocation(word_size);
4562     }
4563   } else {
4564     assert(purpose ==  GCAllocForTenured, "sanity");
4565     HeapWord* result = old_attempt_allocation(word_size);
4566     if (result != NULL) {
4567       return result;
4568     } else {
4569       // Let's try to allocate in the survivors in case we can fit the
4570       // object there.
4571       return survivor_attempt_allocation(word_size);
4572     }
4573   }
4574 
4575   ShouldNotReachHere();
4576   // Trying to keep some compilers happy.
4577   return NULL;
4578 }
4579 
4580 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4581   ParGCAllocBuffer(gclab_word_size), _retired(true) { }
4582 
4583 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
4584   : _g1h(g1h),
4585     _refs(g1h->task_queue(queue_num)),
4586     _dcq(&g1h->dirty_card_queue_set()),
4587     _ct_bs(g1h->g1_barrier_set()),
4588     _g1_rem(g1h->g1_rem_set()),
4589     _hash_seed(17), _queue_num(queue_num),
4590     _term_attempts(0),
4591     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4592     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4593     _age_table(false), _scanner(g1h, this, rp),
4594     _strong_roots_time(0), _term_time(0),
4595     _alloc_buffer_waste(0), _undo_waste(0) {
4596   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4597   // we "sacrifice" entry 0 to keep track of surviving bytes for
4598   // non-young regions (where the age is -1)
4599   // We also add a few elements at the beginning and at the end in
4600   // an attempt to eliminate cache contention
4601   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4602   uint array_length = PADDING_ELEM_NUM +
4603                       real_length +
4604                       PADDING_ELEM_NUM;
4605   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4606   if (_surviving_young_words_base == NULL)
4607     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4608                           "Not enough space for young surv histo.");
4609   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4610   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4611 
4612   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4613   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4614 
4615   _start = os::elapsedTime();
4616 }
4617 
4618 void
4619 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4620 {
4621   st->print_raw_cr("GC Termination Stats");
4622   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4623                    " ------waste (KiB)------");
4624   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4625                    "  total   alloc    undo");
4626   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4627                    " ------- ------- -------");
4628 }
4629 
4630 void
4631 G1ParScanThreadState::print_termination_stats(int i,
4632                                               outputStream* const st) const
4633 {
4634   const double elapsed_ms = elapsed_time() * 1000.0;
4635   const double s_roots_ms = strong_roots_time() * 1000.0;
4636   const double term_ms    = term_time() * 1000.0;
4637   st->print_cr("%3d %9.2f %9.2f %6.2f "
4638                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4639                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4640                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4641                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4642                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4643                alloc_buffer_waste() * HeapWordSize / K,
4644                undo_waste() * HeapWordSize / K);
4645 }
4646 
4647 #ifdef ASSERT
4648 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4649   assert(ref != NULL, "invariant");
4650   assert(UseCompressedOops, "sanity");
4651   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4652   oop p = oopDesc::load_decode_heap_oop(ref);
4653   assert(_g1h->is_in_g1_reserved(p),
4654          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4655   return true;
4656 }
4657 
4658 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4659   assert(ref != NULL, "invariant");
4660   if (has_partial_array_mask(ref)) {
4661     // Must be in the collection set--it's already been copied.
4662     oop p = clear_partial_array_mask(ref);
4663     assert(_g1h->obj_in_cs(p),
4664            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4665   } else {
4666     oop p = oopDesc::load_decode_heap_oop(ref);
4667     assert(_g1h->is_in_g1_reserved(p),
4668            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4669   }
4670   return true;
4671 }
4672 
4673 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4674   if (ref.is_narrow()) {
4675     return verify_ref((narrowOop*) ref);
4676   } else {
4677     return verify_ref((oop*) ref);
4678   }
4679 }
4680 #endif // ASSERT
4681 
4682 void G1ParScanThreadState::trim_queue() {
4683   assert(_evac_failure_cl != NULL, "not set");
4684 
4685   StarTask ref;
4686   do {
4687     // Drain the overflow stack first, so other threads can steal.
4688     while (refs()->pop_overflow(ref)) {
4689       deal_with_reference(ref);
4690     }
4691 
4692     while (refs()->pop_local(ref)) {
4693       deal_with_reference(ref);
4694     }
4695   } while (!refs()->is_empty());
4696 }
4697 
4698 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4699                                      G1ParScanThreadState* par_scan_state) :
4700   _g1(g1), _par_scan_state(par_scan_state),
4701   _worker_id(par_scan_state->queue_num()) { }
4702 
4703 void G1ParCopyHelper::mark_object(oop obj) {
4704   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4705 
4706   // We know that the object is not moving so it's safe to read its size.
4707   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4708 }
4709 
4710 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4711   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4712   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4713   assert(from_obj != to_obj, "should not be self-forwarded");
4714 
4715   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4716   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4717 
4718   // The object might be in the process of being copied by another
4719   // worker so we cannot trust that its to-space image is
4720   // well-formed. So we have to read its size from its from-space
4721   // image which we know should not be changing.
4722   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4723 }
4724 
4725 oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
4726   size_t word_sz = old->size();
4727   HeapRegion* from_region = _g1h->heap_region_containing_raw(old);
4728   // +1 to make the -1 indexes valid...
4729   int       young_index = from_region->young_index_in_cset()+1;
4730   assert( (from_region->is_young() && young_index >  0) ||
4731          (!from_region->is_young() && young_index == 0), "invariant" );
4732   G1CollectorPolicy* g1p = _g1h->g1_policy();
4733   markOop m = old->mark();
4734   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4735                                            : m->age();
4736   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4737                                                              word_sz);
4738   HeapWord* obj_ptr = allocate(alloc_purpose, word_sz);
4739 #ifndef PRODUCT
4740   // Should this evacuation fail?
4741   if (_g1h->evacuation_should_fail()) {
4742     if (obj_ptr != NULL) {
4743       undo_allocation(alloc_purpose, obj_ptr, word_sz);
4744       obj_ptr = NULL;
4745     }
4746   }
4747 #endif // !PRODUCT
4748 
4749   if (obj_ptr == NULL) {
4750     // This will either forward-to-self, or detect that someone else has
4751     // installed a forwarding pointer.
4752     return _g1h->handle_evacuation_failure_par(this, old);
4753   }
4754 
4755   oop obj = oop(obj_ptr);
4756 
4757   // We're going to allocate linearly, so might as well prefetch ahead.
4758   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4759 
4760   oop forward_ptr = old->forward_to_atomic(obj);
4761   if (forward_ptr == NULL) {
4762     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4763 
4764     // alloc_purpose is just a hint to allocate() above, recheck the type of region
4765     // we actually allocated from and update alloc_purpose accordingly
4766     HeapRegion* to_region = _g1h->heap_region_containing_raw(obj_ptr);
4767     alloc_purpose = to_region->is_young() ? GCAllocForSurvived : GCAllocForTenured;
4768 
4769     if (g1p->track_object_age(alloc_purpose)) {
4770       // We could simply do obj->incr_age(). However, this causes a
4771       // performance issue. obj->incr_age() will first check whether
4772       // the object has a displaced mark by checking its mark word;
4773       // getting the mark word from the new location of the object
4774       // stalls. So, given that we already have the mark word and we
4775       // are about to install it anyway, it's better to increase the
4776       // age on the mark word, when the object does not have a
4777       // displaced mark word. We're not expecting many objects to have
4778       // a displaced marked word, so that case is not optimized
4779       // further (it could be...) and we simply call obj->incr_age().
4780 
4781       if (m->has_displaced_mark_helper()) {
4782         // in this case, we have to install the mark word first,
4783         // otherwise obj looks to be forwarded (the old mark word,
4784         // which contains the forward pointer, was copied)
4785         obj->set_mark(m);
4786         obj->incr_age();
4787       } else {
4788         m = m->incr_age();
4789         obj->set_mark(m);
4790       }
4791       age_table()->add(obj, word_sz);
4792     } else {
4793       obj->set_mark(m);
4794     }
4795 
4796     if (G1StringDedup::is_enabled()) {
4797       G1StringDedup::enqueue_from_evacuation(from_region->is_young(),
4798                                              to_region->is_young(),
4799                                              queue_num(),
4800                                              obj);
4801     }
4802 
4803     size_t* surv_young_words = surviving_young_words();
4804     surv_young_words[young_index] += word_sz;
4805 
4806     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4807       // We keep track of the next start index in the length field of
4808       // the to-space object. The actual length can be found in the
4809       // length field of the from-space object.
4810       arrayOop(obj)->set_length(0);
4811       oop* old_p = set_partial_array_mask(old);
4812       push_on_queue(old_p);
4813     } else {
4814       // No point in using the slower heap_region_containing() method,
4815       // given that we know obj is in the heap.
4816       _scanner.set_region(_g1h->heap_region_containing_raw(obj));
4817       obj->oop_iterate_backwards(&_scanner);
4818     }
4819   } else {
4820     undo_allocation(alloc_purpose, obj_ptr, word_sz);
4821     obj = forward_ptr;
4822   }
4823   return obj;
4824 }
4825 
4826 template <class T>
4827 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4828   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4829     _scanned_klass->record_modified_oops();
4830   }
4831 }
4832 
4833 template <G1Barrier barrier, bool do_mark_object>
4834 template <class T>
4835 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4836   T heap_oop = oopDesc::load_heap_oop(p);
4837 
4838   if (oopDesc::is_null(heap_oop)) {
4839     return;
4840   }
4841 
4842   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4843 
4844   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4845 
4846   if (_g1->in_cset_fast_test(obj)) {
4847     oop forwardee;
4848     if (obj->is_forwarded()) {
4849       forwardee = obj->forwardee();
4850     } else {
4851       forwardee = _par_scan_state->copy_to_survivor_space(obj);
4852     }
4853     assert(forwardee != NULL, "forwardee should not be NULL");
4854     oopDesc::encode_store_heap_oop(p, forwardee);
4855     if (do_mark_object && forwardee != obj) {
4856       // If the object is self-forwarded we don't need to explicitly
4857       // mark it, the evacuation failure protocol will do so.
4858       mark_forwarded_object(obj, forwardee);
4859     }
4860 
4861     if (barrier == G1BarrierKlass) {
4862       do_klass_barrier(p, forwardee);
4863     }
4864   } else {
4865     // The object is not in collection set. If we're a root scanning
4866     // closure during an initial mark pause (i.e. do_mark_object will
4867     // be true) then attempt to mark the object.
4868     if (do_mark_object) {
4869       mark_object(obj);
4870     }
4871   }
4872 
4873   if (barrier == G1BarrierEvac) {
4874     _par_scan_state->update_rs(_from, p, _worker_id);
4875   }
4876 }
4877 
4878 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p);
4879 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4880 
4881 class G1ParEvacuateFollowersClosure : public VoidClosure {
4882 protected:
4883   G1CollectedHeap*              _g1h;
4884   G1ParScanThreadState*         _par_scan_state;
4885   RefToScanQueueSet*            _queues;
4886   ParallelTaskTerminator*       _terminator;
4887 
4888   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4889   RefToScanQueueSet*      queues()         { return _queues; }
4890   ParallelTaskTerminator* terminator()     { return _terminator; }
4891 
4892 public:
4893   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4894                                 G1ParScanThreadState* par_scan_state,
4895                                 RefToScanQueueSet* queues,
4896                                 ParallelTaskTerminator* terminator)
4897     : _g1h(g1h), _par_scan_state(par_scan_state),
4898       _queues(queues), _terminator(terminator) {}
4899 
4900   void do_void();
4901 
4902 private:
4903   inline bool offer_termination();
4904 };
4905 
4906 bool G1ParEvacuateFollowersClosure::offer_termination() {
4907   G1ParScanThreadState* const pss = par_scan_state();
4908   pss->start_term_time();
4909   const bool res = terminator()->offer_termination();
4910   pss->end_term_time();
4911   return res;
4912 }
4913 
4914 void G1ParEvacuateFollowersClosure::do_void() {
4915   StarTask stolen_task;
4916   G1ParScanThreadState* const pss = par_scan_state();
4917   pss->trim_queue();
4918 
4919   do {
4920     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4921       assert(pss->verify_task(stolen_task), "sanity");
4922       if (stolen_task.is_narrow()) {
4923         pss->deal_with_reference((narrowOop*) stolen_task);
4924       } else {
4925         pss->deal_with_reference((oop*) stolen_task);
4926       }
4927 
4928       // We've just processed a reference and we might have made
4929       // available new entries on the queues. So we have to make sure
4930       // we drain the queues as necessary.
4931       pss->trim_queue();
4932     }
4933   } while (!offer_termination());
4934 }
4935 
4936 class G1KlassScanClosure : public KlassClosure {
4937  G1ParCopyHelper* _closure;
4938  bool             _process_only_dirty;
4939  int              _count;
4940  public:
4941   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4942       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4943   void do_klass(Klass* klass) {
4944     // If the klass has not been dirtied we know that there's
4945     // no references into  the young gen and we can skip it.
4946    if (!_process_only_dirty || klass->has_modified_oops()) {
4947       // Clean the klass since we're going to scavenge all the metadata.
4948       klass->clear_modified_oops();
4949 
4950       // Tell the closure that this klass is the Klass to scavenge
4951       // and is the one to dirty if oops are left pointing into the young gen.
4952       _closure->set_scanned_klass(klass);
4953 
4954       klass->oops_do(_closure);
4955 
4956       _closure->set_scanned_klass(NULL);
4957     }
4958     _count++;
4959   }
4960 };
4961 
4962 class G1ParTask : public AbstractGangTask {
4963 protected:
4964   G1CollectedHeap*       _g1h;
4965   RefToScanQueueSet      *_queues;
4966   ParallelTaskTerminator _terminator;
4967   uint _n_workers;
4968 
4969   Mutex _stats_lock;
4970   Mutex* stats_lock() { return &_stats_lock; }
4971 
4972   size_t getNCards() {
4973     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4974       / G1BlockOffsetSharedArray::N_bytes;
4975   }
4976 
4977 public:
4978   G1ParTask(G1CollectedHeap* g1h,
4979             RefToScanQueueSet *task_queues)
4980     : AbstractGangTask("G1 collection"),
4981       _g1h(g1h),
4982       _queues(task_queues),
4983       _terminator(0, _queues),
4984       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4985   {}
4986 
4987   RefToScanQueueSet* queues() { return _queues; }
4988 
4989   RefToScanQueue *work_queue(int i) {
4990     return queues()->queue(i);
4991   }
4992 
4993   ParallelTaskTerminator* terminator() { return &_terminator; }
4994 
4995   virtual void set_for_termination(int active_workers) {
4996     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4997     // in the young space (_par_seq_tasks) in the G1 heap
4998     // for SequentialSubTasksDone.
4999     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
5000     // both of which need setting by set_n_termination().
5001     _g1h->SharedHeap::set_n_termination(active_workers);
5002     _g1h->set_n_termination(active_workers);
5003     terminator()->reset_for_reuse(active_workers);
5004     _n_workers = active_workers;
5005   }
5006 
5007   void work(uint worker_id) {
5008     if (worker_id >= _n_workers) return;  // no work needed this round
5009 
5010     double start_time_ms = os::elapsedTime() * 1000.0;
5011     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
5012 
5013     {
5014       ResourceMark rm;
5015       HandleMark   hm;
5016 
5017       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
5018 
5019       G1ParScanThreadState            pss(_g1h, worker_id, rp);
5020       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
5021 
5022       pss.set_evac_failure_closure(&evac_failure_cl);
5023 
5024       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
5025       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
5026 
5027       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
5028       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
5029 
5030       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
5031       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
5032       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
5033 
5034       OopClosure*                    scan_root_cl = &only_scan_root_cl;
5035       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
5036 
5037       if (_g1h->g1_policy()->during_initial_mark_pause()) {
5038         // We also need to mark copied objects.
5039         scan_root_cl = &scan_mark_root_cl;
5040         scan_klasses_cl = &scan_mark_klasses_cl_s;
5041       }
5042 
5043       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
5044 
5045       // Don't scan the scavengable methods in the code cache as part
5046       // of strong root scanning. The code roots that point into a
5047       // region in the collection set are scanned when we scan the
5048       // region's RSet.
5049       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
5050 
5051       pss.start_strong_roots();
5052       _g1h->g1_process_strong_roots(/* is scavenging */ true,
5053                                     SharedHeap::ScanningOption(so),
5054                                     scan_root_cl,
5055                                     &push_heap_rs_cl,
5056                                     scan_klasses_cl,
5057                                     worker_id);
5058       pss.end_strong_roots();
5059 
5060       {
5061         double start = os::elapsedTime();
5062         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
5063         evac.do_void();
5064         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
5065         double term_ms = pss.term_time()*1000.0;
5066         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
5067         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
5068       }
5069       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
5070       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
5071 
5072       if (ParallelGCVerbose) {
5073         MutexLocker x(stats_lock());
5074         pss.print_termination_stats(worker_id);
5075       }
5076 
5077       assert(pss.refs()->is_empty(), "should be empty");
5078 
5079       // Close the inner scope so that the ResourceMark and HandleMark
5080       // destructors are executed here and are included as part of the
5081       // "GC Worker Time".
5082     }
5083 
5084     double end_time_ms = os::elapsedTime() * 1000.0;
5085     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5086   }
5087 };
5088 
5089 // *** Common G1 Evacuation Stuff
5090 
5091 // This method is run in a GC worker.
5092 
5093 void
5094 G1CollectedHeap::
5095 g1_process_strong_roots(bool is_scavenging,
5096                         ScanningOption so,
5097                         OopClosure* scan_non_heap_roots,
5098                         OopsInHeapRegionClosure* scan_rs,
5099                         G1KlassScanClosure* scan_klasses,
5100                         uint worker_i) {
5101 
5102   // First scan the strong roots
5103   double ext_roots_start = os::elapsedTime();
5104   double closure_app_time_sec = 0.0;
5105 
5106   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5107 
5108   process_strong_roots(false, // no scoping; this is parallel code
5109                        so,
5110                        &buf_scan_non_heap_roots,
5111                        scan_klasses
5112                        );
5113 
5114   // Now the CM ref_processor roots.
5115   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5116     // We need to treat the discovered reference lists of the
5117     // concurrent mark ref processor as roots and keep entries
5118     // (which are added by the marking threads) on them live
5119     // until they can be processed at the end of marking.
5120     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5121   }
5122 
5123   // Finish up any enqueued closure apps (attributed as object copy time).
5124   buf_scan_non_heap_roots.done();
5125 
5126   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5127 
5128   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5129 
5130   double ext_root_time_ms =
5131     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5132 
5133   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5134 
5135   // During conc marking we have to filter the per-thread SATB buffers
5136   // to make sure we remove any oops into the CSet (which will show up
5137   // as implicitly live).
5138   double satb_filtering_ms = 0.0;
5139   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5140     if (mark_in_progress()) {
5141       double satb_filter_start = os::elapsedTime();
5142 
5143       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5144 
5145       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5146     }
5147   }
5148   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5149 
5150   // If this is an initial mark pause, and we're not scanning
5151   // the entire code cache, we need to mark the oops in the
5152   // strong code root lists for the regions that are not in
5153   // the collection set.
5154   // Note all threads participate in this set of root tasks.
5155   double mark_strong_code_roots_ms = 0.0;
5156   if (g1_policy()->during_initial_mark_pause() && !(so & SO_AllCodeCache)) {
5157     double mark_strong_roots_start = os::elapsedTime();
5158     mark_strong_code_roots(worker_i);
5159     mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
5160   }
5161   g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);
5162 
5163   // Now scan the complement of the collection set.
5164   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
5165   g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
5166 
5167   _process_strong_tasks->all_tasks_completed();
5168 }
5169 
5170 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
5171 private:
5172   BoolObjectClosure* _is_alive;
5173   int _initial_string_table_size;
5174   int _initial_symbol_table_size;
5175 
5176   bool  _process_strings;
5177   int _strings_processed;
5178   int _strings_removed;
5179 
5180   bool  _process_symbols;
5181   int _symbols_processed;
5182   int _symbols_removed;
5183 
5184   bool _do_in_parallel;
5185 public:
5186   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
5187     AbstractGangTask("Par String/Symbol table unlink"), _is_alive(is_alive),
5188     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
5189     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
5190     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
5191 
5192     _initial_string_table_size = StringTable::the_table()->table_size();
5193     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
5194     if (process_strings) {
5195       StringTable::clear_parallel_claimed_index();
5196     }
5197     if (process_symbols) {
5198       SymbolTable::clear_parallel_claimed_index();
5199     }
5200   }
5201 
5202   ~G1StringSymbolTableUnlinkTask() {
5203     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
5204               err_msg("claim value %d after unlink less than initial string table size %d",
5205                       StringTable::parallel_claimed_index(), _initial_string_table_size));
5206     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
5207               err_msg("claim value %d after unlink less than initial symbol table size %d",
5208                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
5209   }
5210 
5211   void work(uint worker_id) {
5212     if (_do_in_parallel) {
5213       int strings_processed = 0;
5214       int strings_removed = 0;
5215       int symbols_processed = 0;
5216       int symbols_removed = 0;
5217       if (_process_strings) {
5218         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
5219         Atomic::add(strings_processed, &_strings_processed);
5220         Atomic::add(strings_removed, &_strings_removed);
5221       }
5222       if (_process_symbols) {
5223         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
5224         Atomic::add(symbols_processed, &_symbols_processed);
5225         Atomic::add(symbols_removed, &_symbols_removed);
5226       }
5227     } else {
5228       if (_process_strings) {
5229         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
5230       }
5231       if (_process_symbols) {
5232         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
5233       }
5234     }
5235   }
5236 
5237   size_t strings_processed() const { return (size_t)_strings_processed; }
5238   size_t strings_removed()   const { return (size_t)_strings_removed; }
5239 
5240   size_t symbols_processed() const { return (size_t)_symbols_processed; }
5241   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
5242 };
5243 
5244 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5245                                                      bool process_strings, bool process_symbols) {
5246   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5247                    _g1h->workers()->active_workers() : 1);
5248 
5249   G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5250   if (G1CollectedHeap::use_parallel_gc_threads()) {
5251     set_par_threads(n_workers);
5252     workers()->run_task(&g1_unlink_task);
5253     set_par_threads(0);
5254   } else {
5255     g1_unlink_task.work(0);
5256   }
5257   if (G1TraceStringSymbolTableScrubbing) {
5258     gclog_or_tty->print_cr("Cleaned string and symbol table, "
5259                            "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
5260                            "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
5261                            g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(),
5262                            g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed());
5263   }
5264 
5265   if (G1StringDedup::is_enabled()) {
5266     G1StringDedup::unlink(is_alive);
5267   }
5268 }
5269 
5270 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5271  private:
5272   DirtyCardQueueSet* _queue;
5273  public:
5274   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5275 
5276   virtual void work(uint worker_id) {
5277     double start_time = os::elapsedTime();
5278 
5279     RedirtyLoggedCardTableEntryClosure cl;
5280     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
5281       _queue->par_apply_closure_to_all_completed_buffers(&cl);
5282     } else {
5283       _queue->apply_closure_to_all_completed_buffers(&cl);
5284     }
5285 
5286     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
5287     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
5288     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
5289   }
5290 };
5291 
5292 void G1CollectedHeap::redirty_logged_cards() {
5293   guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
5294   double redirty_logged_cards_start = os::elapsedTime();
5295 
5296   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5297                    _g1h->workers()->active_workers() : 1);
5298 
5299   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5300   dirty_card_queue_set().reset_for_par_iteration();
5301   if (use_parallel_gc_threads()) {
5302     set_par_threads(n_workers);
5303     workers()->run_task(&redirty_task);
5304     set_par_threads(0);
5305   } else {
5306     redirty_task.work(0);
5307   }
5308 
5309   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5310   dcq.merge_bufferlists(&dirty_card_queue_set());
5311   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5312 
5313   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5314 }
5315 
5316 // Weak Reference Processing support
5317 
5318 // An always "is_alive" closure that is used to preserve referents.
5319 // If the object is non-null then it's alive.  Used in the preservation
5320 // of referent objects that are pointed to by reference objects
5321 // discovered by the CM ref processor.
5322 class G1AlwaysAliveClosure: public BoolObjectClosure {
5323   G1CollectedHeap* _g1;
5324 public:
5325   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5326   bool do_object_b(oop p) {
5327     if (p != NULL) {
5328       return true;
5329     }
5330     return false;
5331   }
5332 };
5333 
5334 bool G1STWIsAliveClosure::do_object_b(oop p) {
5335   // An object is reachable if it is outside the collection set,
5336   // or is inside and copied.
5337   return !_g1->obj_in_cs(p) || p->is_forwarded();
5338 }
5339 
5340 // Non Copying Keep Alive closure
5341 class G1KeepAliveClosure: public OopClosure {
5342   G1CollectedHeap* _g1;
5343 public:
5344   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5345   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5346   void do_oop(      oop* p) {
5347     oop obj = *p;
5348 
5349     if (_g1->obj_in_cs(obj)) {
5350       assert( obj->is_forwarded(), "invariant" );
5351       *p = obj->forwardee();
5352     }
5353   }
5354 };
5355 
5356 // Copying Keep Alive closure - can be called from both
5357 // serial and parallel code as long as different worker
5358 // threads utilize different G1ParScanThreadState instances
5359 // and different queues.
5360 
5361 class G1CopyingKeepAliveClosure: public OopClosure {
5362   G1CollectedHeap*         _g1h;
5363   OopClosure*              _copy_non_heap_obj_cl;
5364   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5365   G1ParScanThreadState*    _par_scan_state;
5366 
5367 public:
5368   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5369                             OopClosure* non_heap_obj_cl,
5370                             OopsInHeapRegionClosure* metadata_obj_cl,
5371                             G1ParScanThreadState* pss):
5372     _g1h(g1h),
5373     _copy_non_heap_obj_cl(non_heap_obj_cl),
5374     _copy_metadata_obj_cl(metadata_obj_cl),
5375     _par_scan_state(pss)
5376   {}
5377 
5378   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5379   virtual void do_oop(      oop* p) { do_oop_work(p); }
5380 
5381   template <class T> void do_oop_work(T* p) {
5382     oop obj = oopDesc::load_decode_heap_oop(p);
5383 
5384     if (_g1h->obj_in_cs(obj)) {
5385       // If the referent object has been forwarded (either copied
5386       // to a new location or to itself in the event of an
5387       // evacuation failure) then we need to update the reference
5388       // field and, if both reference and referent are in the G1
5389       // heap, update the RSet for the referent.
5390       //
5391       // If the referent has not been forwarded then we have to keep
5392       // it alive by policy. Therefore we have copy the referent.
5393       //
5394       // If the reference field is in the G1 heap then we can push
5395       // on the PSS queue. When the queue is drained (after each
5396       // phase of reference processing) the object and it's followers
5397       // will be copied, the reference field set to point to the
5398       // new location, and the RSet updated. Otherwise we need to
5399       // use the the non-heap or metadata closures directly to copy
5400       // the referent object and update the pointer, while avoiding
5401       // updating the RSet.
5402 
5403       if (_g1h->is_in_g1_reserved(p)) {
5404         _par_scan_state->push_on_queue(p);
5405       } else {
5406         assert(!Metaspace::contains((const void*)p),
5407                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
5408                               PTR_FORMAT, p));
5409           _copy_non_heap_obj_cl->do_oop(p);
5410         }
5411       }
5412     }
5413 };
5414 
5415 // Serial drain queue closure. Called as the 'complete_gc'
5416 // closure for each discovered list in some of the
5417 // reference processing phases.
5418 
5419 class G1STWDrainQueueClosure: public VoidClosure {
5420 protected:
5421   G1CollectedHeap* _g1h;
5422   G1ParScanThreadState* _par_scan_state;
5423 
5424   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5425 
5426 public:
5427   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5428     _g1h(g1h),
5429     _par_scan_state(pss)
5430   { }
5431 
5432   void do_void() {
5433     G1ParScanThreadState* const pss = par_scan_state();
5434     pss->trim_queue();
5435   }
5436 };
5437 
5438 // Parallel Reference Processing closures
5439 
5440 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5441 // processing during G1 evacuation pauses.
5442 
5443 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5444 private:
5445   G1CollectedHeap*   _g1h;
5446   RefToScanQueueSet* _queues;
5447   FlexibleWorkGang*  _workers;
5448   int                _active_workers;
5449 
5450 public:
5451   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5452                         FlexibleWorkGang* workers,
5453                         RefToScanQueueSet *task_queues,
5454                         int n_workers) :
5455     _g1h(g1h),
5456     _queues(task_queues),
5457     _workers(workers),
5458     _active_workers(n_workers)
5459   {
5460     assert(n_workers > 0, "shouldn't call this otherwise");
5461   }
5462 
5463   // Executes the given task using concurrent marking worker threads.
5464   virtual void execute(ProcessTask& task);
5465   virtual void execute(EnqueueTask& task);
5466 };
5467 
5468 // Gang task for possibly parallel reference processing
5469 
5470 class G1STWRefProcTaskProxy: public AbstractGangTask {
5471   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5472   ProcessTask&     _proc_task;
5473   G1CollectedHeap* _g1h;
5474   RefToScanQueueSet *_task_queues;
5475   ParallelTaskTerminator* _terminator;
5476 
5477 public:
5478   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5479                      G1CollectedHeap* g1h,
5480                      RefToScanQueueSet *task_queues,
5481                      ParallelTaskTerminator* terminator) :
5482     AbstractGangTask("Process reference objects in parallel"),
5483     _proc_task(proc_task),
5484     _g1h(g1h),
5485     _task_queues(task_queues),
5486     _terminator(terminator)
5487   {}
5488 
5489   virtual void work(uint worker_id) {
5490     // The reference processing task executed by a single worker.
5491     ResourceMark rm;
5492     HandleMark   hm;
5493 
5494     G1STWIsAliveClosure is_alive(_g1h);
5495 
5496     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5497     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5498 
5499     pss.set_evac_failure_closure(&evac_failure_cl);
5500 
5501     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5502     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5503 
5504     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5505     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5506 
5507     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5508     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5509 
5510     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5511       // We also need to mark copied objects.
5512       copy_non_heap_cl = &copy_mark_non_heap_cl;
5513       copy_metadata_cl = &copy_mark_metadata_cl;
5514     }
5515 
5516     // Keep alive closure.
5517     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5518 
5519     // Complete GC closure
5520     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5521 
5522     // Call the reference processing task's work routine.
5523     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5524 
5525     // Note we cannot assert that the refs array is empty here as not all
5526     // of the processing tasks (specifically phase2 - pp2_work) execute
5527     // the complete_gc closure (which ordinarily would drain the queue) so
5528     // the queue may not be empty.
5529   }
5530 };
5531 
5532 // Driver routine for parallel reference processing.
5533 // Creates an instance of the ref processing gang
5534 // task and has the worker threads execute it.
5535 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5536   assert(_workers != NULL, "Need parallel worker threads.");
5537 
5538   ParallelTaskTerminator terminator(_active_workers, _queues);
5539   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5540 
5541   _g1h->set_par_threads(_active_workers);
5542   _workers->run_task(&proc_task_proxy);
5543   _g1h->set_par_threads(0);
5544 }
5545 
5546 // Gang task for parallel reference enqueueing.
5547 
5548 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5549   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5550   EnqueueTask& _enq_task;
5551 
5552 public:
5553   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5554     AbstractGangTask("Enqueue reference objects in parallel"),
5555     _enq_task(enq_task)
5556   { }
5557 
5558   virtual void work(uint worker_id) {
5559     _enq_task.work(worker_id);
5560   }
5561 };
5562 
5563 // Driver routine for parallel reference enqueueing.
5564 // Creates an instance of the ref enqueueing gang
5565 // task and has the worker threads execute it.
5566 
5567 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5568   assert(_workers != NULL, "Need parallel worker threads.");
5569 
5570   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5571 
5572   _g1h->set_par_threads(_active_workers);
5573   _workers->run_task(&enq_task_proxy);
5574   _g1h->set_par_threads(0);
5575 }
5576 
5577 // End of weak reference support closures
5578 
5579 // Abstract task used to preserve (i.e. copy) any referent objects
5580 // that are in the collection set and are pointed to by reference
5581 // objects discovered by the CM ref processor.
5582 
5583 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5584 protected:
5585   G1CollectedHeap* _g1h;
5586   RefToScanQueueSet      *_queues;
5587   ParallelTaskTerminator _terminator;
5588   uint _n_workers;
5589 
5590 public:
5591   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5592     AbstractGangTask("ParPreserveCMReferents"),
5593     _g1h(g1h),
5594     _queues(task_queues),
5595     _terminator(workers, _queues),
5596     _n_workers(workers)
5597   { }
5598 
5599   void work(uint worker_id) {
5600     ResourceMark rm;
5601     HandleMark   hm;
5602 
5603     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5604     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5605 
5606     pss.set_evac_failure_closure(&evac_failure_cl);
5607 
5608     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5609 
5610 
5611     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5612     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5613 
5614     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5615     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5616 
5617     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5618     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5619 
5620     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5621       // We also need to mark copied objects.
5622       copy_non_heap_cl = &copy_mark_non_heap_cl;
5623       copy_metadata_cl = &copy_mark_metadata_cl;
5624     }
5625 
5626     // Is alive closure
5627     G1AlwaysAliveClosure always_alive(_g1h);
5628 
5629     // Copying keep alive closure. Applied to referent objects that need
5630     // to be copied.
5631     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5632 
5633     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5634 
5635     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5636     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5637 
5638     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5639     // So this must be true - but assert just in case someone decides to
5640     // change the worker ids.
5641     assert(0 <= worker_id && worker_id < limit, "sanity");
5642     assert(!rp->discovery_is_atomic(), "check this code");
5643 
5644     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5645     for (uint idx = worker_id; idx < limit; idx += stride) {
5646       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5647 
5648       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5649       while (iter.has_next()) {
5650         // Since discovery is not atomic for the CM ref processor, we
5651         // can see some null referent objects.
5652         iter.load_ptrs(DEBUG_ONLY(true));
5653         oop ref = iter.obj();
5654 
5655         // This will filter nulls.
5656         if (iter.is_referent_alive()) {
5657           iter.make_referent_alive();
5658         }
5659         iter.move_to_next();
5660       }
5661     }
5662 
5663     // Drain the queue - which may cause stealing
5664     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5665     drain_queue.do_void();
5666     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5667     assert(pss.refs()->is_empty(), "should be");
5668   }
5669 };
5670 
5671 // Weak Reference processing during an evacuation pause (part 1).
5672 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5673   double ref_proc_start = os::elapsedTime();
5674 
5675   ReferenceProcessor* rp = _ref_processor_stw;
5676   assert(rp->discovery_enabled(), "should have been enabled");
5677 
5678   // Any reference objects, in the collection set, that were 'discovered'
5679   // by the CM ref processor should have already been copied (either by
5680   // applying the external root copy closure to the discovered lists, or
5681   // by following an RSet entry).
5682   //
5683   // But some of the referents, that are in the collection set, that these
5684   // reference objects point to may not have been copied: the STW ref
5685   // processor would have seen that the reference object had already
5686   // been 'discovered' and would have skipped discovering the reference,
5687   // but would not have treated the reference object as a regular oop.
5688   // As a result the copy closure would not have been applied to the
5689   // referent object.
5690   //
5691   // We need to explicitly copy these referent objects - the references
5692   // will be processed at the end of remarking.
5693   //
5694   // We also need to do this copying before we process the reference
5695   // objects discovered by the STW ref processor in case one of these
5696   // referents points to another object which is also referenced by an
5697   // object discovered by the STW ref processor.
5698 
5699   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5700            no_of_gc_workers == workers()->active_workers(),
5701            "Need to reset active GC workers");
5702 
5703   set_par_threads(no_of_gc_workers);
5704   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5705                                                  no_of_gc_workers,
5706                                                  _task_queues);
5707 
5708   if (G1CollectedHeap::use_parallel_gc_threads()) {
5709     workers()->run_task(&keep_cm_referents);
5710   } else {
5711     keep_cm_referents.work(0);
5712   }
5713 
5714   set_par_threads(0);
5715 
5716   // Closure to test whether a referent is alive.
5717   G1STWIsAliveClosure is_alive(this);
5718 
5719   // Even when parallel reference processing is enabled, the processing
5720   // of JNI refs is serial and performed serially by the current thread
5721   // rather than by a worker. The following PSS will be used for processing
5722   // JNI refs.
5723 
5724   // Use only a single queue for this PSS.
5725   G1ParScanThreadState            pss(this, 0, NULL);
5726 
5727   // We do not embed a reference processor in the copying/scanning
5728   // closures while we're actually processing the discovered
5729   // reference objects.
5730   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5731 
5732   pss.set_evac_failure_closure(&evac_failure_cl);
5733 
5734   assert(pss.refs()->is_empty(), "pre-condition");
5735 
5736   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5737   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5738 
5739   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5740   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5741 
5742   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5743   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5744 
5745   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5746     // We also need to mark copied objects.
5747     copy_non_heap_cl = &copy_mark_non_heap_cl;
5748     copy_metadata_cl = &copy_mark_metadata_cl;
5749   }
5750 
5751   // Keep alive closure.
5752   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5753 
5754   // Serial Complete GC closure
5755   G1STWDrainQueueClosure drain_queue(this, &pss);
5756 
5757   // Setup the soft refs policy...
5758   rp->setup_policy(false);
5759 
5760   ReferenceProcessorStats stats;
5761   if (!rp->processing_is_mt()) {
5762     // Serial reference processing...
5763     stats = rp->process_discovered_references(&is_alive,
5764                                               &keep_alive,
5765                                               &drain_queue,
5766                                               NULL,
5767                                               _gc_timer_stw);
5768   } else {
5769     // Parallel reference processing
5770     assert(rp->num_q() == no_of_gc_workers, "sanity");
5771     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5772 
5773     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5774     stats = rp->process_discovered_references(&is_alive,
5775                                               &keep_alive,
5776                                               &drain_queue,
5777                                               &par_task_executor,
5778                                               _gc_timer_stw);
5779   }
5780 
5781   _gc_tracer_stw->report_gc_reference_stats(stats);
5782 
5783   // We have completed copying any necessary live referent objects.
5784   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5785 
5786   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5787   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5788 }
5789 
5790 // Weak Reference processing during an evacuation pause (part 2).
5791 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5792   double ref_enq_start = os::elapsedTime();
5793 
5794   ReferenceProcessor* rp = _ref_processor_stw;
5795   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5796 
5797   // Now enqueue any remaining on the discovered lists on to
5798   // the pending list.
5799   if (!rp->processing_is_mt()) {
5800     // Serial reference processing...
5801     rp->enqueue_discovered_references();
5802   } else {
5803     // Parallel reference enqueueing
5804 
5805     assert(no_of_gc_workers == workers()->active_workers(),
5806            "Need to reset active workers");
5807     assert(rp->num_q() == no_of_gc_workers, "sanity");
5808     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5809 
5810     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5811     rp->enqueue_discovered_references(&par_task_executor);
5812   }
5813 
5814   rp->verify_no_references_recorded();
5815   assert(!rp->discovery_enabled(), "should have been disabled");
5816 
5817   // FIXME
5818   // CM's reference processing also cleans up the string and symbol tables.
5819   // Should we do that here also? We could, but it is a serial operation
5820   // and could significantly increase the pause time.
5821 
5822   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5823   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5824 }
5825 
5826 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5827   _expand_heap_after_alloc_failure = true;
5828   _evacuation_failed = false;
5829 
5830   // Should G1EvacuationFailureALot be in effect for this GC?
5831   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5832 
5833   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5834 
5835   // Disable the hot card cache.
5836   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5837   hot_card_cache->reset_hot_cache_claimed_index();
5838   hot_card_cache->set_use_cache(false);
5839 
5840   uint n_workers;
5841   if (G1CollectedHeap::use_parallel_gc_threads()) {
5842     n_workers =
5843       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5844                                      workers()->active_workers(),
5845                                      Threads::number_of_non_daemon_threads());
5846     assert(UseDynamicNumberOfGCThreads ||
5847            n_workers == workers()->total_workers(),
5848            "If not dynamic should be using all the  workers");
5849     workers()->set_active_workers(n_workers);
5850     set_par_threads(n_workers);
5851   } else {
5852     assert(n_par_threads() == 0,
5853            "Should be the original non-parallel value");
5854     n_workers = 1;
5855   }
5856 
5857   G1ParTask g1_par_task(this, _task_queues);
5858 
5859   init_for_evac_failure(NULL);
5860 
5861   rem_set()->prepare_for_younger_refs_iterate(true);
5862 
5863   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5864   double start_par_time_sec = os::elapsedTime();
5865   double end_par_time_sec;
5866 
5867   {
5868     StrongRootsScope srs(this);
5869 
5870     if (G1CollectedHeap::use_parallel_gc_threads()) {
5871       // The individual threads will set their evac-failure closures.
5872       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5873       // These tasks use ShareHeap::_process_strong_tasks
5874       assert(UseDynamicNumberOfGCThreads ||
5875              workers()->active_workers() == workers()->total_workers(),
5876              "If not dynamic should be using all the  workers");
5877       workers()->run_task(&g1_par_task);
5878     } else {
5879       g1_par_task.set_for_termination(n_workers);
5880       g1_par_task.work(0);
5881     }
5882     end_par_time_sec = os::elapsedTime();
5883 
5884     // Closing the inner scope will execute the destructor
5885     // for the StrongRootsScope object. We record the current
5886     // elapsed time before closing the scope so that time
5887     // taken for the SRS destructor is NOT included in the
5888     // reported parallel time.
5889   }
5890 
5891   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5892   g1_policy()->phase_times()->record_par_time(par_time_ms);
5893 
5894   double code_root_fixup_time_ms =
5895         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5896   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5897 
5898   set_par_threads(0);
5899 
5900   // Process any discovered reference objects - we have
5901   // to do this _before_ we retire the GC alloc regions
5902   // as we may have to copy some 'reachable' referent
5903   // objects (and their reachable sub-graphs) that were
5904   // not copied during the pause.
5905   process_discovered_references(n_workers);
5906 
5907   // Weak root processing.
5908   {
5909     G1STWIsAliveClosure is_alive(this);
5910     G1KeepAliveClosure keep_alive(this);
5911     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5912     if (G1StringDedup::is_enabled()) {
5913       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
5914     }
5915   }
5916 
5917   release_gc_alloc_regions(n_workers, evacuation_info);
5918   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5919 
5920   // Reset and re-enable the hot card cache.
5921   // Note the counts for the cards in the regions in the
5922   // collection set are reset when the collection set is freed.
5923   hot_card_cache->reset_hot_cache();
5924   hot_card_cache->set_use_cache(true);
5925 
5926   // Migrate the strong code roots attached to each region in
5927   // the collection set. Ideally we would like to do this
5928   // after we have finished the scanning/evacuation of the
5929   // strong code roots for a particular heap region.
5930   migrate_strong_code_roots();
5931 
5932   purge_code_root_memory();
5933 
5934   if (g1_policy()->during_initial_mark_pause()) {
5935     // Reset the claim values set during marking the strong code roots
5936     reset_heap_region_claim_values();
5937   }
5938 
5939   finalize_for_evac_failure();
5940 
5941   if (evacuation_failed()) {
5942     remove_self_forwarding_pointers();
5943 
5944     // Reset the G1EvacuationFailureALot counters and flags
5945     // Note: the values are reset only when an actual
5946     // evacuation failure occurs.
5947     NOT_PRODUCT(reset_evacuation_should_fail();)
5948   }
5949 
5950   // Enqueue any remaining references remaining on the STW
5951   // reference processor's discovered lists. We need to do
5952   // this after the card table is cleaned (and verified) as
5953   // the act of enqueueing entries on to the pending list
5954   // will log these updates (and dirty their associated
5955   // cards). We need these updates logged to update any
5956   // RSets.
5957   enqueue_discovered_references(n_workers);
5958 
5959   if (G1DeferredRSUpdate) {
5960     redirty_logged_cards();
5961   }
5962   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5963 }
5964 
5965 void G1CollectedHeap::free_region(HeapRegion* hr,
5966                                   FreeRegionList* free_list,
5967                                   bool par,
5968                                   bool locked) {
5969   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5970   assert(!hr->is_empty(), "the region should not be empty");
5971   assert(free_list != NULL, "pre-condition");
5972 
5973   if (G1VerifyBitmaps) {
5974     MemRegion mr(hr->bottom(), hr->end());
5975     concurrent_mark()->clearRangePrevBitmap(mr);
5976   }
5977 
5978   // Clear the card counts for this region.
5979   // Note: we only need to do this if the region is not young
5980   // (since we don't refine cards in young regions).
5981   if (!hr->is_young()) {
5982     _cg1r->hot_card_cache()->reset_card_counts(hr);
5983   }
5984   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5985   free_list->add_ordered(hr);
5986 }
5987 
5988 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5989                                      FreeRegionList* free_list,
5990                                      bool par) {
5991   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5992   assert(free_list != NULL, "pre-condition");
5993 
5994   size_t hr_capacity = hr->capacity();
5995   // We need to read this before we make the region non-humongous,
5996   // otherwise the information will be gone.
5997   uint last_index = hr->last_hc_index();
5998   hr->set_notHumongous();
5999   free_region(hr, free_list, par);
6000 
6001   uint i = hr->hrs_index() + 1;
6002   while (i < last_index) {
6003     HeapRegion* curr_hr = region_at(i);
6004     assert(curr_hr->continuesHumongous(), "invariant");
6005     curr_hr->set_notHumongous();
6006     free_region(curr_hr, free_list, par);
6007     i += 1;
6008   }
6009 }
6010 
6011 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
6012                                        const HeapRegionSetCount& humongous_regions_removed) {
6013   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
6014     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
6015     _old_set.bulk_remove(old_regions_removed);
6016     _humongous_set.bulk_remove(humongous_regions_removed);
6017   }
6018 
6019 }
6020 
6021 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
6022   assert(list != NULL, "list can't be null");
6023   if (!list->is_empty()) {
6024     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
6025     _free_list.add_ordered(list);
6026   }
6027 }
6028 
6029 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
6030   assert(_summary_bytes_used >= bytes,
6031          err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
6032                   _summary_bytes_used, bytes));
6033   _summary_bytes_used -= bytes;
6034 }
6035 
6036 class G1ParCleanupCTTask : public AbstractGangTask {
6037   G1SATBCardTableModRefBS* _ct_bs;
6038   G1CollectedHeap* _g1h;
6039   HeapRegion* volatile _su_head;
6040 public:
6041   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6042                      G1CollectedHeap* g1h) :
6043     AbstractGangTask("G1 Par Cleanup CT Task"),
6044     _ct_bs(ct_bs), _g1h(g1h) { }
6045 
6046   void work(uint worker_id) {
6047     HeapRegion* r;
6048     while (r = _g1h->pop_dirty_cards_region()) {
6049       clear_cards(r);
6050     }
6051   }
6052 
6053   void clear_cards(HeapRegion* r) {
6054     // Cards of the survivors should have already been dirtied.
6055     if (!r->is_survivor()) {
6056       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
6057     }
6058   }
6059 };
6060 
6061 #ifndef PRODUCT
6062 class G1VerifyCardTableCleanup: public HeapRegionClosure {
6063   G1CollectedHeap* _g1h;
6064   G1SATBCardTableModRefBS* _ct_bs;
6065 public:
6066   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6067     : _g1h(g1h), _ct_bs(ct_bs) { }
6068   virtual bool doHeapRegion(HeapRegion* r) {
6069     if (r->is_survivor()) {
6070       _g1h->verify_dirty_region(r);
6071     } else {
6072       _g1h->verify_not_dirty_region(r);
6073     }
6074     return false;
6075   }
6076 };
6077 
6078 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6079   // All of the region should be clean.
6080   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6081   MemRegion mr(hr->bottom(), hr->end());
6082   ct_bs->verify_not_dirty_region(mr);
6083 }
6084 
6085 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6086   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
6087   // dirty allocated blocks as they allocate them. The thread that
6088   // retires each region and replaces it with a new one will do a
6089   // maximal allocation to fill in [pre_dummy_top(),end()] but will
6090   // not dirty that area (one less thing to have to do while holding
6091   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
6092   // is dirty.
6093   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6094   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6095   if (hr->is_young()) {
6096     ct_bs->verify_g1_young_region(mr);
6097   } else {
6098     ct_bs->verify_dirty_region(mr);
6099   }
6100 }
6101 
6102 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6103   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6104   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6105     verify_dirty_region(hr);
6106   }
6107 }
6108 
6109 void G1CollectedHeap::verify_dirty_young_regions() {
6110   verify_dirty_young_list(_young_list->first_region());
6111 }
6112 
6113 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
6114                                                HeapWord* tams, HeapWord* end) {
6115   guarantee(tams <= end,
6116             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
6117   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
6118   if (result < end) {
6119     gclog_or_tty->cr();
6120     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
6121                            bitmap_name, result);
6122     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
6123                            bitmap_name, tams, end);
6124     return false;
6125   }
6126   return true;
6127 }
6128 
6129 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
6130   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
6131   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
6132 
6133   HeapWord* bottom = hr->bottom();
6134   HeapWord* ptams  = hr->prev_top_at_mark_start();
6135   HeapWord* ntams  = hr->next_top_at_mark_start();
6136   HeapWord* end    = hr->end();
6137 
6138   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
6139 
6140   bool res_n = true;
6141   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
6142   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
6143   // if we happen to be in that state.
6144   if (mark_in_progress() || !_cmThread->in_progress()) {
6145     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
6146   }
6147   if (!res_p || !res_n) {
6148     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
6149                            HR_FORMAT_PARAMS(hr));
6150     gclog_or_tty->print_cr("#### Caller: %s", caller);
6151     return false;
6152   }
6153   return true;
6154 }
6155 
6156 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
6157   if (!G1VerifyBitmaps) return;
6158 
6159   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
6160 }
6161 
6162 class G1VerifyBitmapClosure : public HeapRegionClosure {
6163 private:
6164   const char* _caller;
6165   G1CollectedHeap* _g1h;
6166   bool _failures;
6167 
6168 public:
6169   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
6170     _caller(caller), _g1h(g1h), _failures(false) { }
6171 
6172   bool failures() { return _failures; }
6173 
6174   virtual bool doHeapRegion(HeapRegion* hr) {
6175     if (hr->continuesHumongous()) return false;
6176 
6177     bool result = _g1h->verify_bitmaps(_caller, hr);
6178     if (!result) {
6179       _failures = true;
6180     }
6181     return false;
6182   }
6183 };
6184 
6185 void G1CollectedHeap::check_bitmaps(const char* caller) {
6186   if (!G1VerifyBitmaps) return;
6187 
6188   G1VerifyBitmapClosure cl(caller, this);
6189   heap_region_iterate(&cl);
6190   guarantee(!cl.failures(), "bitmap verification");
6191 }
6192 #endif // PRODUCT
6193 
6194 void G1CollectedHeap::cleanUpCardTable() {
6195   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6196   double start = os::elapsedTime();
6197 
6198   {
6199     // Iterate over the dirty cards region list.
6200     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6201 
6202     if (G1CollectedHeap::use_parallel_gc_threads()) {
6203       set_par_threads();
6204       workers()->run_task(&cleanup_task);
6205       set_par_threads(0);
6206     } else {
6207       while (_dirty_cards_region_list) {
6208         HeapRegion* r = _dirty_cards_region_list;
6209         cleanup_task.clear_cards(r);
6210         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6211         if (_dirty_cards_region_list == r) {
6212           // The last region.
6213           _dirty_cards_region_list = NULL;
6214         }
6215         r->set_next_dirty_cards_region(NULL);
6216       }
6217     }
6218 #ifndef PRODUCT
6219     if (G1VerifyCTCleanup || VerifyAfterGC) {
6220       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6221       heap_region_iterate(&cleanup_verifier);
6222     }
6223 #endif
6224   }
6225 
6226   double elapsed = os::elapsedTime() - start;
6227   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6228 }
6229 
6230 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6231   size_t pre_used = 0;
6232   FreeRegionList local_free_list("Local List for CSet Freeing");
6233 
6234   double young_time_ms     = 0.0;
6235   double non_young_time_ms = 0.0;
6236 
6237   // Since the collection set is a superset of the the young list,
6238   // all we need to do to clear the young list is clear its
6239   // head and length, and unlink any young regions in the code below
6240   _young_list->clear();
6241 
6242   G1CollectorPolicy* policy = g1_policy();
6243 
6244   double start_sec = os::elapsedTime();
6245   bool non_young = true;
6246 
6247   HeapRegion* cur = cs_head;
6248   int age_bound = -1;
6249   size_t rs_lengths = 0;
6250 
6251   while (cur != NULL) {
6252     assert(!is_on_master_free_list(cur), "sanity");
6253     if (non_young) {
6254       if (cur->is_young()) {
6255         double end_sec = os::elapsedTime();
6256         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6257         non_young_time_ms += elapsed_ms;
6258 
6259         start_sec = os::elapsedTime();
6260         non_young = false;
6261       }
6262     } else {
6263       if (!cur->is_young()) {
6264         double end_sec = os::elapsedTime();
6265         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6266         young_time_ms += elapsed_ms;
6267 
6268         start_sec = os::elapsedTime();
6269         non_young = true;
6270       }
6271     }
6272 
6273     rs_lengths += cur->rem_set()->occupied_locked();
6274 
6275     HeapRegion* next = cur->next_in_collection_set();
6276     assert(cur->in_collection_set(), "bad CS");
6277     cur->set_next_in_collection_set(NULL);
6278     cur->set_in_collection_set(false);
6279 
6280     if (cur->is_young()) {
6281       int index = cur->young_index_in_cset();
6282       assert(index != -1, "invariant");
6283       assert((uint) index < policy->young_cset_region_length(), "invariant");
6284       size_t words_survived = _surviving_young_words[index];
6285       cur->record_surv_words_in_group(words_survived);
6286 
6287       // At this point the we have 'popped' cur from the collection set
6288       // (linked via next_in_collection_set()) but it is still in the
6289       // young list (linked via next_young_region()). Clear the
6290       // _next_young_region field.
6291       cur->set_next_young_region(NULL);
6292     } else {
6293       int index = cur->young_index_in_cset();
6294       assert(index == -1, "invariant");
6295     }
6296 
6297     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6298             (!cur->is_young() && cur->young_index_in_cset() == -1),
6299             "invariant" );
6300 
6301     if (!cur->evacuation_failed()) {
6302       MemRegion used_mr = cur->used_region();
6303 
6304       // And the region is empty.
6305       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6306       pre_used += cur->used();
6307       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6308     } else {
6309       cur->uninstall_surv_rate_group();
6310       if (cur->is_young()) {
6311         cur->set_young_index_in_cset(-1);
6312       }
6313       cur->set_not_young();
6314       cur->set_evacuation_failed(false);
6315       // The region is now considered to be old.
6316       _old_set.add(cur);
6317       evacuation_info.increment_collectionset_used_after(cur->used());
6318     }
6319     cur = next;
6320   }
6321 
6322   evacuation_info.set_regions_freed(local_free_list.length());
6323   policy->record_max_rs_lengths(rs_lengths);
6324   policy->cset_regions_freed();
6325 
6326   double end_sec = os::elapsedTime();
6327   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6328 
6329   if (non_young) {
6330     non_young_time_ms += elapsed_ms;
6331   } else {
6332     young_time_ms += elapsed_ms;
6333   }
6334 
6335   prepend_to_freelist(&local_free_list);
6336   decrement_summary_bytes(pre_used);
6337   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6338   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6339 }
6340 
6341 // This routine is similar to the above but does not record
6342 // any policy statistics or update free lists; we are abandoning
6343 // the current incremental collection set in preparation of a
6344 // full collection. After the full GC we will start to build up
6345 // the incremental collection set again.
6346 // This is only called when we're doing a full collection
6347 // and is immediately followed by the tearing down of the young list.
6348 
6349 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6350   HeapRegion* cur = cs_head;
6351 
6352   while (cur != NULL) {
6353     HeapRegion* next = cur->next_in_collection_set();
6354     assert(cur->in_collection_set(), "bad CS");
6355     cur->set_next_in_collection_set(NULL);
6356     cur->set_in_collection_set(false);
6357     cur->set_young_index_in_cset(-1);
6358     cur = next;
6359   }
6360 }
6361 
6362 void G1CollectedHeap::set_free_regions_coming() {
6363   if (G1ConcRegionFreeingVerbose) {
6364     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6365                            "setting free regions coming");
6366   }
6367 
6368   assert(!free_regions_coming(), "pre-condition");
6369   _free_regions_coming = true;
6370 }
6371 
6372 void G1CollectedHeap::reset_free_regions_coming() {
6373   assert(free_regions_coming(), "pre-condition");
6374 
6375   {
6376     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6377     _free_regions_coming = false;
6378     SecondaryFreeList_lock->notify_all();
6379   }
6380 
6381   if (G1ConcRegionFreeingVerbose) {
6382     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6383                            "reset free regions coming");
6384   }
6385 }
6386 
6387 void G1CollectedHeap::wait_while_free_regions_coming() {
6388   // Most of the time we won't have to wait, so let's do a quick test
6389   // first before we take the lock.
6390   if (!free_regions_coming()) {
6391     return;
6392   }
6393 
6394   if (G1ConcRegionFreeingVerbose) {
6395     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6396                            "waiting for free regions");
6397   }
6398 
6399   {
6400     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6401     while (free_regions_coming()) {
6402       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6403     }
6404   }
6405 
6406   if (G1ConcRegionFreeingVerbose) {
6407     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6408                            "done waiting for free regions");
6409   }
6410 }
6411 
6412 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6413   assert(heap_lock_held_for_gc(),
6414               "the heap lock should already be held by or for this thread");
6415   _young_list->push_region(hr);
6416 }
6417 
6418 class NoYoungRegionsClosure: public HeapRegionClosure {
6419 private:
6420   bool _success;
6421 public:
6422   NoYoungRegionsClosure() : _success(true) { }
6423   bool doHeapRegion(HeapRegion* r) {
6424     if (r->is_young()) {
6425       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6426                              r->bottom(), r->end());
6427       _success = false;
6428     }
6429     return false;
6430   }
6431   bool success() { return _success; }
6432 };
6433 
6434 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6435   bool ret = _young_list->check_list_empty(check_sample);
6436 
6437   if (check_heap) {
6438     NoYoungRegionsClosure closure;
6439     heap_region_iterate(&closure);
6440     ret = ret && closure.success();
6441   }
6442 
6443   return ret;
6444 }
6445 
6446 class TearDownRegionSetsClosure : public HeapRegionClosure {
6447 private:
6448   HeapRegionSet *_old_set;
6449 
6450 public:
6451   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6452 
6453   bool doHeapRegion(HeapRegion* r) {
6454     if (r->is_empty()) {
6455       // We ignore empty regions, we'll empty the free list afterwards
6456     } else if (r->is_young()) {
6457       // We ignore young regions, we'll empty the young list afterwards
6458     } else if (r->isHumongous()) {
6459       // We ignore humongous regions, we're not tearing down the
6460       // humongous region set
6461     } else {
6462       // The rest should be old
6463       _old_set->remove(r);
6464     }
6465     return false;
6466   }
6467 
6468   ~TearDownRegionSetsClosure() {
6469     assert(_old_set->is_empty(), "post-condition");
6470   }
6471 };
6472 
6473 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6474   assert_at_safepoint(true /* should_be_vm_thread */);
6475 
6476   if (!free_list_only) {
6477     TearDownRegionSetsClosure cl(&_old_set);
6478     heap_region_iterate(&cl);
6479 
6480     // Note that emptying the _young_list is postponed and instead done as
6481     // the first step when rebuilding the regions sets again. The reason for
6482     // this is that during a full GC string deduplication needs to know if
6483     // a collected region was young or old when the full GC was initiated.
6484   }
6485   _free_list.remove_all();
6486 }
6487 
6488 class RebuildRegionSetsClosure : public HeapRegionClosure {
6489 private:
6490   bool            _free_list_only;
6491   HeapRegionSet*   _old_set;
6492   FreeRegionList* _free_list;
6493   size_t          _total_used;
6494 
6495 public:
6496   RebuildRegionSetsClosure(bool free_list_only,
6497                            HeapRegionSet* old_set, FreeRegionList* free_list) :
6498     _free_list_only(free_list_only),
6499     _old_set(old_set), _free_list(free_list), _total_used(0) {
6500     assert(_free_list->is_empty(), "pre-condition");
6501     if (!free_list_only) {
6502       assert(_old_set->is_empty(), "pre-condition");
6503     }
6504   }
6505 
6506   bool doHeapRegion(HeapRegion* r) {
6507     if (r->continuesHumongous()) {
6508       return false;
6509     }
6510 
6511     if (r->is_empty()) {
6512       // Add free regions to the free list
6513       _free_list->add_as_tail(r);
6514     } else if (!_free_list_only) {
6515       assert(!r->is_young(), "we should not come across young regions");
6516 
6517       if (r->isHumongous()) {
6518         // We ignore humongous regions, we left the humongous set unchanged
6519       } else {
6520         // The rest should be old, add them to the old set
6521         _old_set->add(r);
6522       }
6523       _total_used += r->used();
6524     }
6525 
6526     return false;
6527   }
6528 
6529   size_t total_used() {
6530     return _total_used;
6531   }
6532 };
6533 
6534 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6535   assert_at_safepoint(true /* should_be_vm_thread */);
6536 
6537   if (!free_list_only) {
6538     _young_list->empty_list();
6539   }
6540 
6541   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6542   heap_region_iterate(&cl);
6543 
6544   if (!free_list_only) {
6545     _summary_bytes_used = cl.total_used();
6546   }
6547   assert(_summary_bytes_used == recalculate_used(),
6548          err_msg("inconsistent _summary_bytes_used, "
6549                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6550                  _summary_bytes_used, recalculate_used()));
6551 }
6552 
6553 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6554   _refine_cte_cl->set_concurrent(concurrent);
6555 }
6556 
6557 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6558   HeapRegion* hr = heap_region_containing(p);
6559   return hr->is_in(p);
6560 }
6561 
6562 // Methods for the mutator alloc region
6563 
6564 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6565                                                       bool force) {
6566   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6567   assert(!force || g1_policy()->can_expand_young_list(),
6568          "if force is true we should be able to expand the young list");
6569   bool young_list_full = g1_policy()->is_young_list_full();
6570   if (force || !young_list_full) {
6571     HeapRegion* new_alloc_region = new_region(word_size,
6572                                               false /* is_old */,
6573                                               false /* do_expand */);
6574     if (new_alloc_region != NULL) {
6575       set_region_short_lived_locked(new_alloc_region);
6576       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6577       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6578       return new_alloc_region;
6579     }
6580   }
6581   return NULL;
6582 }
6583 
6584 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6585                                                   size_t allocated_bytes) {
6586   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6587   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6588 
6589   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6590   _summary_bytes_used += allocated_bytes;
6591   _hr_printer.retire(alloc_region);
6592   // We update the eden sizes here, when the region is retired,
6593   // instead of when it's allocated, since this is the point that its
6594   // used space has been recored in _summary_bytes_used.
6595   g1mm()->update_eden_size();
6596 }
6597 
6598 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6599                                                     bool force) {
6600   return _g1h->new_mutator_alloc_region(word_size, force);
6601 }
6602 
6603 void G1CollectedHeap::set_par_threads() {
6604   // Don't change the number of workers.  Use the value previously set
6605   // in the workgroup.
6606   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6607   uint n_workers = workers()->active_workers();
6608   assert(UseDynamicNumberOfGCThreads ||
6609            n_workers == workers()->total_workers(),
6610       "Otherwise should be using the total number of workers");
6611   if (n_workers == 0) {
6612     assert(false, "Should have been set in prior evacuation pause.");
6613     n_workers = ParallelGCThreads;
6614     workers()->set_active_workers(n_workers);
6615   }
6616   set_par_threads(n_workers);
6617 }
6618 
6619 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6620                                        size_t allocated_bytes) {
6621   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6622 }
6623 
6624 // Methods for the GC alloc regions
6625 
6626 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6627                                                  uint count,
6628                                                  GCAllocPurpose ap) {
6629   assert(FreeList_lock->owned_by_self(), "pre-condition");
6630 
6631   if (count < g1_policy()->max_regions(ap)) {
6632     bool survivor = (ap == GCAllocForSurvived);
6633     HeapRegion* new_alloc_region = new_region(word_size,
6634                                               !survivor,
6635                                               true /* do_expand */);
6636     if (new_alloc_region != NULL) {
6637       // We really only need to do this for old regions given that we
6638       // should never scan survivors. But it doesn't hurt to do it
6639       // for survivors too.
6640       new_alloc_region->set_saved_mark();
6641       if (survivor) {
6642         new_alloc_region->set_survivor();
6643         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6644         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6645       } else {
6646         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6647         check_bitmaps("Old Region Allocation", new_alloc_region);
6648       }
6649       bool during_im = g1_policy()->during_initial_mark_pause();
6650       new_alloc_region->note_start_of_copying(during_im);
6651       return new_alloc_region;
6652     } else {
6653       g1_policy()->note_alloc_region_limit_reached(ap);
6654     }
6655   }
6656   return NULL;
6657 }
6658 
6659 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6660                                              size_t allocated_bytes,
6661                                              GCAllocPurpose ap) {
6662   bool during_im = g1_policy()->during_initial_mark_pause();
6663   alloc_region->note_end_of_copying(during_im);
6664   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6665   if (ap == GCAllocForSurvived) {
6666     young_list()->add_survivor_region(alloc_region);
6667   } else {
6668     _old_set.add(alloc_region);
6669   }
6670   _hr_printer.retire(alloc_region);
6671 }
6672 
6673 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6674                                                        bool force) {
6675   assert(!force, "not supported for GC alloc regions");
6676   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6677 }
6678 
6679 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6680                                           size_t allocated_bytes) {
6681   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6682                                GCAllocForSurvived);
6683 }
6684 
6685 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6686                                                   bool force) {
6687   assert(!force, "not supported for GC alloc regions");
6688   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6689 }
6690 
6691 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6692                                      size_t allocated_bytes) {
6693   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6694                                GCAllocForTenured);
6695 }
6696 // Heap region set verification
6697 
6698 class VerifyRegionListsClosure : public HeapRegionClosure {
6699 private:
6700   HeapRegionSet*   _old_set;
6701   HeapRegionSet*   _humongous_set;
6702   FreeRegionList*  _free_list;
6703 
6704 public:
6705   HeapRegionSetCount _old_count;
6706   HeapRegionSetCount _humongous_count;
6707   HeapRegionSetCount _free_count;
6708 
6709   VerifyRegionListsClosure(HeapRegionSet* old_set,
6710                            HeapRegionSet* humongous_set,
6711                            FreeRegionList* free_list) :
6712     _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
6713     _old_count(), _humongous_count(), _free_count(){ }
6714 
6715   bool doHeapRegion(HeapRegion* hr) {
6716     if (hr->continuesHumongous()) {
6717       return false;
6718     }
6719 
6720     if (hr->is_young()) {
6721       // TODO
6722     } else if (hr->startsHumongous()) {
6723       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrs_index()));
6724       _humongous_count.increment(1u, hr->capacity());
6725     } else if (hr->is_empty()) {
6726       assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->hrs_index()));
6727       _free_count.increment(1u, hr->capacity());
6728     } else {
6729       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrs_index()));
6730       _old_count.increment(1u, hr->capacity());
6731     }
6732     return false;
6733   }
6734 
6735   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) {
6736     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6737     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6738         old_set->total_capacity_bytes(), _old_count.capacity()));
6739 
6740     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6741     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6742         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6743 
6744     guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length()));
6745     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6746         free_list->total_capacity_bytes(), _free_count.capacity()));
6747   }
6748 };
6749 
6750 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6751                                              HeapWord* bottom) {
6752   HeapWord* end = bottom + HeapRegion::GrainWords;
6753   MemRegion mr(bottom, end);
6754   assert(_g1_reserved.contains(mr), "invariant");
6755   // This might return NULL if the allocation fails
6756   return new HeapRegion(hrs_index, _bot_shared, mr);
6757 }
6758 
6759 void G1CollectedHeap::verify_region_sets() {
6760   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6761 
6762   // First, check the explicit lists.
6763   _free_list.verify_list();
6764   {
6765     // Given that a concurrent operation might be adding regions to
6766     // the secondary free list we have to take the lock before
6767     // verifying it.
6768     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6769     _secondary_free_list.verify_list();
6770   }
6771 
6772   // If a concurrent region freeing operation is in progress it will
6773   // be difficult to correctly attributed any free regions we come
6774   // across to the correct free list given that they might belong to
6775   // one of several (free_list, secondary_free_list, any local lists,
6776   // etc.). So, if that's the case we will skip the rest of the
6777   // verification operation. Alternatively, waiting for the concurrent
6778   // operation to complete will have a non-trivial effect on the GC's
6779   // operation (no concurrent operation will last longer than the
6780   // interval between two calls to verification) and it might hide
6781   // any issues that we would like to catch during testing.
6782   if (free_regions_coming()) {
6783     return;
6784   }
6785 
6786   // Make sure we append the secondary_free_list on the free_list so
6787   // that all free regions we will come across can be safely
6788   // attributed to the free_list.
6789   append_secondary_free_list_if_not_empty_with_lock();
6790 
6791   // Finally, make sure that the region accounting in the lists is
6792   // consistent with what we see in the heap.
6793 
6794   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6795   heap_region_iterate(&cl);
6796   cl.verify_counts(&_old_set, &_humongous_set, &_free_list);
6797 }
6798 
6799 // Optimized nmethod scanning
6800 
6801 class RegisterNMethodOopClosure: public OopClosure {
6802   G1CollectedHeap* _g1h;
6803   nmethod* _nm;
6804 
6805   template <class T> void do_oop_work(T* p) {
6806     T heap_oop = oopDesc::load_heap_oop(p);
6807     if (!oopDesc::is_null(heap_oop)) {
6808       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6809       HeapRegion* hr = _g1h->heap_region_containing(obj);
6810       assert(!hr->continuesHumongous(),
6811              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6812                      " starting at "HR_FORMAT,
6813                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6814 
6815       // HeapRegion::add_strong_code_root() avoids adding duplicate
6816       // entries but having duplicates is  OK since we "mark" nmethods
6817       // as visited when we scan the strong code root lists during the GC.
6818       hr->add_strong_code_root(_nm);
6819       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
6820              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
6821                      _nm, HR_FORMAT_PARAMS(hr)));
6822     }
6823   }
6824 
6825 public:
6826   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6827     _g1h(g1h), _nm(nm) {}
6828 
6829   void do_oop(oop* p)       { do_oop_work(p); }
6830   void do_oop(narrowOop* p) { do_oop_work(p); }
6831 };
6832 
6833 class UnregisterNMethodOopClosure: public OopClosure {
6834   G1CollectedHeap* _g1h;
6835   nmethod* _nm;
6836 
6837   template <class T> void do_oop_work(T* p) {
6838     T heap_oop = oopDesc::load_heap_oop(p);
6839     if (!oopDesc::is_null(heap_oop)) {
6840       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6841       HeapRegion* hr = _g1h->heap_region_containing(obj);
6842       assert(!hr->continuesHumongous(),
6843              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6844                      " starting at "HR_FORMAT,
6845                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6846 
6847       hr->remove_strong_code_root(_nm);
6848       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
6849              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
6850                      _nm, HR_FORMAT_PARAMS(hr)));
6851     }
6852   }
6853 
6854 public:
6855   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6856     _g1h(g1h), _nm(nm) {}
6857 
6858   void do_oop(oop* p)       { do_oop_work(p); }
6859   void do_oop(narrowOop* p) { do_oop_work(p); }
6860 };
6861 
6862 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6863   CollectedHeap::register_nmethod(nm);
6864 
6865   guarantee(nm != NULL, "sanity");
6866   RegisterNMethodOopClosure reg_cl(this, nm);
6867   nm->oops_do(&reg_cl);
6868 }
6869 
6870 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6871   CollectedHeap::unregister_nmethod(nm);
6872 
6873   guarantee(nm != NULL, "sanity");
6874   UnregisterNMethodOopClosure reg_cl(this, nm);
6875   nm->oops_do(&reg_cl, true);
6876 }
6877 
6878 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
6879 public:
6880   bool doHeapRegion(HeapRegion *hr) {
6881     assert(!hr->isHumongous(),
6882            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
6883                    HR_FORMAT_PARAMS(hr)));
6884     hr->migrate_strong_code_roots();
6885     return false;
6886   }
6887 };
6888 
6889 void G1CollectedHeap::migrate_strong_code_roots() {
6890   MigrateCodeRootsHeapRegionClosure cl;
6891   double migrate_start = os::elapsedTime();
6892   collection_set_iterate(&cl);
6893   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
6894   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
6895 }
6896 
6897 void G1CollectedHeap::purge_code_root_memory() {
6898   double purge_start = os::elapsedTime();
6899   G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
6900   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6901   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6902 }
6903 
6904 // Mark all the code roots that point into regions *not* in the
6905 // collection set.
6906 //
6907 // Note we do not want to use a "marking" CodeBlobToOopClosure while
6908 // walking the the code roots lists of regions not in the collection
6909 // set. Suppose we have an nmethod (M) that points to objects in two
6910 // separate regions - one in the collection set (R1) and one not (R2).
6911 // Using a "marking" CodeBlobToOopClosure here would result in "marking"
6912 // nmethod M when walking the code roots for R1. When we come to scan
6913 // the code roots for R2, we would see that M is already marked and it
6914 // would be skipped and the objects in R2 that are referenced from M
6915 // would not be evacuated.
6916 
6917 class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
6918 
6919   class MarkStrongCodeRootOopClosure: public OopClosure {
6920     ConcurrentMark* _cm;
6921     HeapRegion* _hr;
6922     uint _worker_id;
6923 
6924     template <class T> void do_oop_work(T* p) {
6925       T heap_oop = oopDesc::load_heap_oop(p);
6926       if (!oopDesc::is_null(heap_oop)) {
6927         oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6928         // Only mark objects in the region (which is assumed
6929         // to be not in the collection set).
6930         if (_hr->is_in(obj)) {
6931           _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
6932         }
6933       }
6934     }
6935 
6936   public:
6937     MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
6938       _cm(cm), _hr(hr), _worker_id(worker_id) {
6939       assert(!_hr->in_collection_set(), "sanity");
6940     }
6941 
6942     void do_oop(narrowOop* p) { do_oop_work(p); }
6943     void do_oop(oop* p)       { do_oop_work(p); }
6944   };
6945 
6946   MarkStrongCodeRootOopClosure _oop_cl;
6947 
6948 public:
6949   MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
6950     _oop_cl(cm, hr, worker_id) {}
6951 
6952   void do_code_blob(CodeBlob* cb) {
6953     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
6954     if (nm != NULL) {
6955       nm->oops_do(&_oop_cl);
6956     }
6957   }
6958 };
6959 
6960 class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
6961   G1CollectedHeap* _g1h;
6962   uint _worker_id;
6963 
6964 public:
6965   MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
6966     _g1h(g1h), _worker_id(worker_id) {}
6967 
6968   bool doHeapRegion(HeapRegion *hr) {
6969     HeapRegionRemSet* hrrs = hr->rem_set();
6970     if (hr->continuesHumongous()) {
6971       // Code roots should never be attached to a continuation of a humongous region
6972       assert(hrrs->strong_code_roots_list_length() == 0,
6973              err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT
6974                      " starting at "HR_FORMAT", but has "SIZE_FORMAT,
6975                      HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()),
6976                      hrrs->strong_code_roots_list_length()));
6977       return false;
6978     }
6979 
6980     if (hr->in_collection_set()) {
6981       // Don't mark code roots into regions in the collection set here.
6982       // They will be marked when we scan them.
6983       return false;
6984     }
6985 
6986     MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
6987     hr->strong_code_roots_do(&cb_cl);
6988     return false;
6989   }
6990 };
6991 
6992 void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
6993   MarkStrongCodeRootsHRClosure cl(this, worker_id);
6994   if (G1CollectedHeap::use_parallel_gc_threads()) {
6995     heap_region_par_iterate_chunked(&cl,
6996                                     worker_id,
6997                                     workers()->active_workers(),
6998                                     HeapRegion::ParMarkRootClaimValue);
6999   } else {
7000     heap_region_iterate(&cl);
7001   }
7002 }
7003 
7004 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
7005   G1CollectedHeap* _g1h;
7006 
7007 public:
7008   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
7009     _g1h(g1h) {}
7010 
7011   void do_code_blob(CodeBlob* cb) {
7012     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
7013     if (nm == NULL) {
7014       return;
7015     }
7016 
7017     if (ScavengeRootsInCode && nm->detect_scavenge_root_oops()) {
7018       _g1h->register_nmethod(nm);
7019     }
7020   }
7021 };
7022 
7023 void G1CollectedHeap::rebuild_strong_code_roots() {
7024   RebuildStrongCodeRootClosure blob_cl(this);
7025   CodeCache::blobs_do(&blob_cl);
7026 }