1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  30 #include "gc_implementation/g1/heapRegion.inline.hpp"
  31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  32 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  33 #include "memory/genOopClosures.inline.hpp"
  34 #include "memory/iterator.hpp"
  35 #include "memory/space.inline.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.inline.hpp"
  38 #include "runtime/orderAccess.inline.hpp"
  39 
  40 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  41 
  42 int    HeapRegion::LogOfHRGrainBytes = 0;
  43 int    HeapRegion::LogOfHRGrainWords = 0;
  44 size_t HeapRegion::GrainBytes        = 0;
  45 size_t HeapRegion::GrainWords        = 0;
  46 size_t HeapRegion::CardsPerRegion    = 0;
  47 
  48 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  49                                  HeapRegion* hr, ExtendedOopClosure* cl,
  50                                  CardTableModRefBS::PrecisionStyle precision,
  51                                  FilterKind fk) :
  52   ContiguousSpaceDCTOC(hr, cl, precision, NULL),
  53   _hr(hr), _fk(fk), _g1(g1) { }
  54 
  55 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  56                                                    OopClosure* oc) :
  57   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  58 
  59 template<class ClosureType>
  60 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
  61                                HeapRegion* hr,
  62                                HeapWord* cur, HeapWord* top) {
  63   oop cur_oop = oop(cur);
  64   int oop_size = cur_oop->size();
  65   HeapWord* next_obj = cur + oop_size;
  66   while (next_obj < top) {
  67     // Keep filtering the remembered set.
  68     if (!g1h->is_obj_dead(cur_oop, hr)) {
  69       // Bottom lies entirely below top, so we can call the
  70       // non-memRegion version of oop_iterate below.
  71       cur_oop->oop_iterate(cl);
  72     }
  73     cur = next_obj;
  74     cur_oop = oop(cur);
  75     oop_size = cur_oop->size();
  76     next_obj = cur + oop_size;
  77   }
  78   return cur;
  79 }
  80 
  81 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
  82                                               HeapWord* bottom,
  83                                               HeapWord* top,
  84                                               ExtendedOopClosure* cl) {
  85   G1CollectedHeap* g1h = _g1;
  86   int oop_size;
  87   ExtendedOopClosure* cl2 = NULL;
  88 
  89   FilterIntoCSClosure intoCSFilt(this, g1h, cl);
  90   FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
  91 
  92   switch (_fk) {
  93   case NoFilterKind:          cl2 = cl; break;
  94   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
  95   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
  96   default:                    ShouldNotReachHere();
  97   }
  98 
  99   // Start filtering what we add to the remembered set. If the object is
 100   // not considered dead, either because it is marked (in the mark bitmap)
 101   // or it was allocated after marking finished, then we add it. Otherwise
 102   // we can safely ignore the object.
 103   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 104     oop_size = oop(bottom)->oop_iterate(cl2, mr);
 105   } else {
 106     oop_size = oop(bottom)->size();
 107   }
 108 
 109   bottom += oop_size;
 110 
 111   if (bottom < top) {
 112     // We replicate the loop below for several kinds of possible filters.
 113     switch (_fk) {
 114     case NoFilterKind:
 115       bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
 116       break;
 117 
 118     case IntoCSFilterKind: {
 119       FilterIntoCSClosure filt(this, g1h, cl);
 120       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 121       break;
 122     }
 123 
 124     case OutOfRegionFilterKind: {
 125       FilterOutOfRegionClosure filt(_hr, cl);
 126       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 127       break;
 128     }
 129 
 130     default:
 131       ShouldNotReachHere();
 132     }
 133 
 134     // Last object. Need to do dead-obj filtering here too.
 135     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 136       oop(bottom)->oop_iterate(cl2, mr);
 137     }
 138   }
 139 }
 140 
 141 // Minimum region size; we won't go lower than that.
 142 // We might want to decrease this in the future, to deal with small
 143 // heaps a bit more efficiently.
 144 #define MIN_REGION_SIZE  (      1024 * 1024 )
 145 
 146 // Maximum region size; we don't go higher than that. There's a good
 147 // reason for having an upper bound. We don't want regions to get too
 148 // large, otherwise cleanup's effectiveness would decrease as there
 149 // will be fewer opportunities to find totally empty regions after
 150 // marking.
 151 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
 152 
 153 // The automatic region size calculation will try to have around this
 154 // many regions in the heap (based on the min heap size).
 155 #define TARGET_REGION_NUMBER          2048
 156 
 157 size_t HeapRegion::max_region_size() {
 158   return (size_t)MAX_REGION_SIZE;
 159 }
 160 
 161 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 162   uintx region_size = G1HeapRegionSize;
 163   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 164     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 165     region_size = MAX2(average_heap_size / TARGET_REGION_NUMBER,
 166                        (uintx) MIN_REGION_SIZE);
 167   }
 168 
 169   int region_size_log = log2_long((jlong) region_size);
 170   // Recalculate the region size to make sure it's a power of
 171   // 2. This means that region_size is the largest power of 2 that's
 172   // <= what we've calculated so far.
 173   region_size = ((uintx)1 << region_size_log);
 174 
 175   // Now make sure that we don't go over or under our limits.
 176   if (region_size < MIN_REGION_SIZE) {
 177     region_size = MIN_REGION_SIZE;
 178   } else if (region_size > MAX_REGION_SIZE) {
 179     region_size = MAX_REGION_SIZE;
 180   }
 181 
 182   // And recalculate the log.
 183   region_size_log = log2_long((jlong) region_size);
 184 
 185   // Now, set up the globals.
 186   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 187   LogOfHRGrainBytes = region_size_log;
 188 
 189   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 190   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 191 
 192   guarantee(GrainBytes == 0, "we should only set it once");
 193   // The cast to int is safe, given that we've bounded region_size by
 194   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 195   GrainBytes = (size_t)region_size;
 196 
 197   guarantee(GrainWords == 0, "we should only set it once");
 198   GrainWords = GrainBytes >> LogHeapWordSize;
 199   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 200 
 201   guarantee(CardsPerRegion == 0, "we should only set it once");
 202   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 203 }
 204 
 205 void HeapRegion::reset_after_compaction() {
 206   G1OffsetTableContigSpace::reset_after_compaction();
 207   // After a compaction the mark bitmap is invalid, so we must
 208   // treat all objects as being inside the unmarked area.
 209   zero_marked_bytes();
 210   init_top_at_mark_start();
 211 }
 212 
 213 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
 214   assert(_humongous_type == NotHumongous,
 215          "we should have already filtered out humongous regions");
 216   assert(_humongous_start_region == NULL,
 217          "we should have already filtered out humongous regions");
 218   assert(_end == _orig_end,
 219          "we should have already filtered out humongous regions");
 220 
 221   _in_collection_set = false;
 222 
 223   set_young_index_in_cset(-1);
 224   uninstall_surv_rate_group();
 225   set_young_type(NotYoung);
 226   reset_pre_dummy_top();
 227 
 228   if (!par) {
 229     // If this is parallel, this will be done later.
 230     HeapRegionRemSet* hrrs = rem_set();
 231     if (locked) {
 232       hrrs->clear_locked();
 233     } else {
 234       hrrs->clear();
 235     }
 236     _claimed = InitialClaimValue;
 237   }
 238   zero_marked_bytes();
 239 
 240   _offsets.resize(HeapRegion::GrainWords);
 241   init_top_at_mark_start();
 242   if (clear_space) clear(SpaceDecorator::Mangle);
 243 }
 244 
 245 void HeapRegion::par_clear() {
 246   assert(used() == 0, "the region should have been already cleared");
 247   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 248   HeapRegionRemSet* hrrs = rem_set();
 249   hrrs->clear();
 250   CardTableModRefBS* ct_bs =
 251                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
 252   ct_bs->clear(MemRegion(bottom(), end()));
 253 }
 254 
 255 void HeapRegion::calc_gc_efficiency() {
 256   // GC efficiency is the ratio of how much space would be
 257   // reclaimed over how long we predict it would take to reclaim it.
 258   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 259   G1CollectorPolicy* g1p = g1h->g1_policy();
 260 
 261   // Retrieve a prediction of the elapsed time for this region for
 262   // a mixed gc because the region will only be evacuated during a
 263   // mixed gc.
 264   double region_elapsed_time_ms =
 265     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 266   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 267 }
 268 
 269 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
 270   assert(!isHumongous(), "sanity / pre-condition");
 271   assert(end() == _orig_end,
 272          "Should be normal before the humongous object allocation");
 273   assert(top() == bottom(), "should be empty");
 274   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 275 
 276   _humongous_type = StartsHumongous;
 277   _humongous_start_region = this;
 278 
 279   set_end(new_end);
 280   _offsets.set_for_starts_humongous(new_top);
 281 }
 282 
 283 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
 284   assert(!isHumongous(), "sanity / pre-condition");
 285   assert(end() == _orig_end,
 286          "Should be normal before the humongous object allocation");
 287   assert(top() == bottom(), "should be empty");
 288   assert(first_hr->startsHumongous(), "pre-condition");
 289 
 290   _humongous_type = ContinuesHumongous;
 291   _humongous_start_region = first_hr;
 292 }
 293 
 294 void HeapRegion::set_notHumongous() {
 295   assert(isHumongous(), "pre-condition");
 296 
 297   if (startsHumongous()) {
 298     assert(top() <= end(), "pre-condition");
 299     set_end(_orig_end);
 300     if (top() > end()) {
 301       // at least one "continues humongous" region after it
 302       set_top(end());
 303     }
 304   } else {
 305     // continues humongous
 306     assert(end() == _orig_end, "sanity");
 307   }
 308 
 309   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 310   _humongous_type = NotHumongous;
 311   _humongous_start_region = NULL;
 312 }
 313 
 314 bool HeapRegion::claimHeapRegion(jint claimValue) {
 315   jint current = _claimed;
 316   if (current != claimValue) {
 317     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
 318     if (res == current) {
 319       return true;
 320     }
 321   }
 322   return false;
 323 }
 324 
 325 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
 326   HeapWord* low = addr;
 327   HeapWord* high = end();
 328   while (low < high) {
 329     size_t diff = pointer_delta(high, low);
 330     // Must add one below to bias toward the high amount.  Otherwise, if
 331   // "high" were at the desired value, and "low" were one less, we
 332     // would not converge on "high".  This is not symmetric, because
 333     // we set "high" to a block start, which might be the right one,
 334     // which we don't do for "low".
 335     HeapWord* middle = low + (diff+1)/2;
 336     if (middle == high) return high;
 337     HeapWord* mid_bs = block_start_careful(middle);
 338     if (mid_bs < addr) {
 339       low = middle;
 340     } else {
 341       high = mid_bs;
 342     }
 343   }
 344   assert(low == high && low >= addr, "Didn't work.");
 345   return low;
 346 }
 347 
 348 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 349 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 350 #endif // _MSC_VER
 351 
 352 
 353 HeapRegion::HeapRegion(uint hrs_index,
 354                        G1BlockOffsetSharedArray* sharedOffsetArray,
 355                        MemRegion mr) :
 356     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 357     _hrs_index(hrs_index),
 358     _humongous_type(NotHumongous), _humongous_start_region(NULL),
 359     _in_collection_set(false),
 360     _next_in_special_set(NULL), _orig_end(NULL),
 361     _claimed(InitialClaimValue), _evacuation_failed(false),
 362     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 363     _young_type(NotYoung), _next_young_region(NULL),
 364     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL), _pending_removal(false),
 365 #ifdef ASSERT
 366     _containing_set(NULL),
 367 #endif // ASSERT
 368      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 369     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 370     _predicted_bytes_to_copy(0)
 371 {
 372   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
 373   _orig_end = mr.end();
 374   // Note that initialize() will set the start of the unmarked area of the
 375   // region.
 376   hr_clear(false /*par*/, false /*clear_space*/);
 377   set_top(bottom());
 378   set_saved_mark();
 379 
 380   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 381 }
 382 
 383 CompactibleSpace* HeapRegion::next_compaction_space() const {
 384   // We're not using an iterator given that it will wrap around when
 385   // it reaches the last region and this is not what we want here.
 386   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 387   uint index = hrs_index() + 1;
 388   while (index < g1h->n_regions()) {
 389     HeapRegion* hr = g1h->region_at(index);
 390     if (!hr->isHumongous()) {
 391       return hr;
 392     }
 393     index += 1;
 394   }
 395   return NULL;
 396 }
 397 
 398 void HeapRegion::save_marks() {
 399   set_saved_mark();
 400 }
 401 
 402 void HeapRegion::oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl) {
 403   HeapWord* p = mr.start();
 404   HeapWord* e = mr.end();
 405   oop obj;
 406   while (p < e) {
 407     obj = oop(p);
 408     p += obj->oop_iterate(cl);
 409   }
 410   assert(p == e, "bad memregion: doesn't end on obj boundary");
 411 }
 412 
 413 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 414 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
 415   ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
 416 }
 417 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
 418 
 419 
 420 void HeapRegion::oop_before_save_marks_iterate(ExtendedOopClosure* cl) {
 421   oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
 422 }
 423 
 424 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 425                                                     bool during_conc_mark) {
 426   // We always recreate the prev marking info and we'll explicitly
 427   // mark all objects we find to be self-forwarded on the prev
 428   // bitmap. So all objects need to be below PTAMS.
 429   _prev_top_at_mark_start = top();
 430   _prev_marked_bytes = 0;
 431 
 432   if (during_initial_mark) {
 433     // During initial-mark, we'll also explicitly mark all objects
 434     // we find to be self-forwarded on the next bitmap. So all
 435     // objects need to be below NTAMS.
 436     _next_top_at_mark_start = top();
 437     _next_marked_bytes = 0;
 438   } else if (during_conc_mark) {
 439     // During concurrent mark, all objects in the CSet (including
 440     // the ones we find to be self-forwarded) are implicitly live.
 441     // So all objects need to be above NTAMS.
 442     _next_top_at_mark_start = bottom();
 443     _next_marked_bytes = 0;
 444   }
 445 }
 446 
 447 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 448                                                   bool during_conc_mark,
 449                                                   size_t marked_bytes) {
 450   assert(0 <= marked_bytes && marked_bytes <= used(),
 451          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
 452                  marked_bytes, used()));
 453   _prev_marked_bytes = marked_bytes;
 454 }
 455 
 456 HeapWord*
 457 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 458                                                  ObjectClosure* cl) {
 459   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 460   // We used to use "block_start_careful" here.  But we're actually happy
 461   // to update the BOT while we do this...
 462   HeapWord* cur = block_start(mr.start());
 463   mr = mr.intersection(used_region());
 464   if (mr.is_empty()) return NULL;
 465   // Otherwise, find the obj that extends onto mr.start().
 466 
 467   assert(cur <= mr.start()
 468          && (oop(cur)->klass_or_null() == NULL ||
 469              cur + oop(cur)->size() > mr.start()),
 470          "postcondition of block_start");
 471   oop obj;
 472   while (cur < mr.end()) {
 473     obj = oop(cur);
 474     if (obj->klass_or_null() == NULL) {
 475       // Ran into an unparseable point.
 476       return cur;
 477     } else if (!g1h->is_obj_dead(obj)) {
 478       cl->do_object(obj);
 479     }
 480     cur += obj->size();
 481   }
 482   return NULL;
 483 }
 484 
 485 HeapWord*
 486 HeapRegion::
 487 oops_on_card_seq_iterate_careful(MemRegion mr,
 488                                  FilterOutOfRegionClosure* cl,
 489                                  bool filter_young,
 490                                  jbyte* card_ptr) {
 491   // Currently, we should only have to clean the card if filter_young
 492   // is true and vice versa.
 493   if (filter_young) {
 494     assert(card_ptr != NULL, "pre-condition");
 495   } else {
 496     assert(card_ptr == NULL, "pre-condition");
 497   }
 498   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 499 
 500   // If we're within a stop-world GC, then we might look at a card in a
 501   // GC alloc region that extends onto a GC LAB, which may not be
 502   // parseable.  Stop such at the "saved_mark" of the region.
 503   if (g1h->is_gc_active()) {
 504     mr = mr.intersection(used_region_at_save_marks());
 505   } else {
 506     mr = mr.intersection(used_region());
 507   }
 508   if (mr.is_empty()) return NULL;
 509   // Otherwise, find the obj that extends onto mr.start().
 510 
 511   // The intersection of the incoming mr (for the card) and the
 512   // allocated part of the region is non-empty. This implies that
 513   // we have actually allocated into this region. The code in
 514   // G1CollectedHeap.cpp that allocates a new region sets the
 515   // is_young tag on the region before allocating. Thus we
 516   // safely know if this region is young.
 517   if (is_young() && filter_young) {
 518     return NULL;
 519   }
 520 
 521   assert(!is_young(), "check value of filter_young");
 522 
 523   // We can only clean the card here, after we make the decision that
 524   // the card is not young. And we only clean the card if we have been
 525   // asked to (i.e., card_ptr != NULL).
 526   if (card_ptr != NULL) {
 527     *card_ptr = CardTableModRefBS::clean_card_val();
 528     // We must complete this write before we do any of the reads below.
 529     OrderAccess::storeload();
 530   }
 531 
 532   // Cache the boundaries of the memory region in some const locals
 533   HeapWord* const start = mr.start();
 534   HeapWord* const end = mr.end();
 535 
 536   // We used to use "block_start_careful" here.  But we're actually happy
 537   // to update the BOT while we do this...
 538   HeapWord* cur = block_start(start);
 539   assert(cur <= start, "Postcondition");
 540 
 541   oop obj;
 542 
 543   HeapWord* next = cur;
 544   while (next <= start) {
 545     cur = next;
 546     obj = oop(cur);
 547     if (obj->klass_or_null() == NULL) {
 548       // Ran into an unparseable point.
 549       return cur;
 550     }
 551     // Otherwise...
 552     next = (cur + obj->size());
 553   }
 554 
 555   // If we finish the above loop...We have a parseable object that
 556   // begins on or before the start of the memory region, and ends
 557   // inside or spans the entire region.
 558 
 559   assert(obj == oop(cur), "sanity");
 560   assert(cur <= start &&
 561          obj->klass_or_null() != NULL &&
 562          (cur + obj->size()) > start,
 563          "Loop postcondition");
 564 
 565   if (!g1h->is_obj_dead(obj)) {
 566     obj->oop_iterate(cl, mr);
 567   }
 568 
 569   while (cur < end) {
 570     obj = oop(cur);
 571     if (obj->klass_or_null() == NULL) {
 572       // Ran into an unparseable point.
 573       return cur;
 574     };
 575 
 576     // Otherwise:
 577     next = (cur + obj->size());
 578 
 579     if (!g1h->is_obj_dead(obj)) {
 580       if (next < end || !obj->is_objArray()) {
 581         // This object either does not span the MemRegion
 582         // boundary, or if it does it's not an array.
 583         // Apply closure to whole object.
 584         obj->oop_iterate(cl);
 585       } else {
 586         // This obj is an array that spans the boundary.
 587         // Stop at the boundary.
 588         obj->oop_iterate(cl, mr);
 589       }
 590     }
 591     cur = next;
 592   }
 593   return NULL;
 594 }
 595 
 596 // Code roots support
 597 
 598 void HeapRegion::add_strong_code_root(nmethod* nm) {
 599   HeapRegionRemSet* hrrs = rem_set();
 600   hrrs->add_strong_code_root(nm);
 601 }
 602 
 603 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 604   HeapRegionRemSet* hrrs = rem_set();
 605   hrrs->remove_strong_code_root(nm);
 606 }
 607 
 608 void HeapRegion::migrate_strong_code_roots() {
 609   assert(in_collection_set(), "only collection set regions");
 610   assert(!isHumongous(),
 611           err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
 612                   HR_FORMAT_PARAMS(this)));
 613 
 614   HeapRegionRemSet* hrrs = rem_set();
 615   hrrs->migrate_strong_code_roots();
 616 }
 617 
 618 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 619   HeapRegionRemSet* hrrs = rem_set();
 620   hrrs->strong_code_roots_do(blk);
 621 }
 622 
 623 class VerifyStrongCodeRootOopClosure: public OopClosure {
 624   const HeapRegion* _hr;
 625   nmethod* _nm;
 626   bool _failures;
 627   bool _has_oops_in_region;
 628 
 629   template <class T> void do_oop_work(T* p) {
 630     T heap_oop = oopDesc::load_heap_oop(p);
 631     if (!oopDesc::is_null(heap_oop)) {
 632       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 633 
 634       // Note: not all the oops embedded in the nmethod are in the
 635       // current region. We only look at those which are.
 636       if (_hr->is_in(obj)) {
 637         // Object is in the region. Check that its less than top
 638         if (_hr->top() <= (HeapWord*)obj) {
 639           // Object is above top
 640           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
 641                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
 642                                  "top "PTR_FORMAT,
 643                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
 644           _failures = true;
 645           return;
 646         }
 647         // Nmethod has at least one oop in the current region
 648         _has_oops_in_region = true;
 649       }
 650     }
 651   }
 652 
 653 public:
 654   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 655     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 656 
 657   void do_oop(narrowOop* p) { do_oop_work(p); }
 658   void do_oop(oop* p)       { do_oop_work(p); }
 659 
 660   bool failures()           { return _failures; }
 661   bool has_oops_in_region() { return _has_oops_in_region; }
 662 };
 663 
 664 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 665   const HeapRegion* _hr;
 666   bool _failures;
 667 public:
 668   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 669     _hr(hr), _failures(false) {}
 670 
 671   void do_code_blob(CodeBlob* cb) {
 672     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 673     if (nm != NULL) {
 674       // Verify that the nemthod is live
 675       if (!nm->is_alive()) {
 676         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
 677                                PTR_FORMAT" in its strong code roots",
 678                                _hr->bottom(), _hr->end(), nm);
 679         _failures = true;
 680       } else {
 681         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 682         nm->oops_do(&oop_cl);
 683         if (!oop_cl.has_oops_in_region()) {
 684           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
 685                                  PTR_FORMAT" in its strong code roots "
 686                                  "with no pointers into region",
 687                                  _hr->bottom(), _hr->end(), nm);
 688           _failures = true;
 689         } else if (oop_cl.failures()) {
 690           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
 691                                  "failures for nmethod "PTR_FORMAT,
 692                                  _hr->bottom(), _hr->end(), nm);
 693           _failures = true;
 694         }
 695       }
 696     }
 697   }
 698 
 699   bool failures()       { return _failures; }
 700 };
 701 
 702 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 703   if (!G1VerifyHeapRegionCodeRoots) {
 704     // We're not verifying code roots.
 705     return;
 706   }
 707   if (vo == VerifyOption_G1UseMarkWord) {
 708     // Marking verification during a full GC is performed after class
 709     // unloading, code cache unloading, etc so the strong code roots
 710     // attached to each heap region are in an inconsistent state. They won't
 711     // be consistent until the strong code roots are rebuilt after the
 712     // actual GC. Skip verifying the strong code roots in this particular
 713     // time.
 714     assert(VerifyDuringGC, "only way to get here");
 715     return;
 716   }
 717 
 718   HeapRegionRemSet* hrrs = rem_set();
 719   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 720 
 721   // if this region is empty then there should be no entries
 722   // on its strong code root list
 723   if (is_empty()) {
 724     if (strong_code_roots_length > 0) {
 725       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
 726                              "but has "SIZE_FORMAT" code root entries",
 727                              bottom(), end(), strong_code_roots_length);
 728       *failures = true;
 729     }
 730     return;
 731   }
 732 
 733   if (continuesHumongous()) {
 734     if (strong_code_roots_length > 0) {
 735       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
 736                              "region but has "SIZE_FORMAT" code root entries",
 737                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
 738       *failures = true;
 739     }
 740     return;
 741   }
 742 
 743   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 744   strong_code_roots_do(&cb_cl);
 745 
 746   if (cb_cl.failures()) {
 747     *failures = true;
 748   }
 749 }
 750 
 751 void HeapRegion::print() const { print_on(gclog_or_tty); }
 752 void HeapRegion::print_on(outputStream* st) const {
 753   if (isHumongous()) {
 754     if (startsHumongous())
 755       st->print(" HS");
 756     else
 757       st->print(" HC");
 758   } else {
 759     st->print("   ");
 760   }
 761   if (in_collection_set())
 762     st->print(" CS");
 763   else
 764     st->print("   ");
 765   if (is_young())
 766     st->print(is_survivor() ? " SU" : " Y ");
 767   else
 768     st->print("   ");
 769   if (is_empty())
 770     st->print(" F");
 771   else
 772     st->print("  ");
 773   st->print(" TS %5d", _gc_time_stamp);
 774   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
 775             prev_top_at_mark_start(), next_top_at_mark_start());
 776   G1OffsetTableContigSpace::print_on(st);
 777 }
 778 
 779 class VerifyLiveClosure: public OopClosure {
 780 private:
 781   G1CollectedHeap* _g1h;
 782   CardTableModRefBS* _bs;
 783   oop _containing_obj;
 784   bool _failures;
 785   int _n_failures;
 786   VerifyOption _vo;
 787 public:
 788   // _vo == UsePrevMarking -> use "prev" marking information,
 789   // _vo == UseNextMarking -> use "next" marking information,
 790   // _vo == UseMarkWord    -> use mark word from object header.
 791   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 792     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
 793     _failures(false), _n_failures(0), _vo(vo)
 794   {
 795     BarrierSet* bs = _g1h->barrier_set();
 796     if (bs->is_a(BarrierSet::CardTableModRef))
 797       _bs = (CardTableModRefBS*)bs;
 798   }
 799 
 800   void set_containing_obj(oop obj) {
 801     _containing_obj = obj;
 802   }
 803 
 804   bool failures() { return _failures; }
 805   int n_failures() { return _n_failures; }
 806 
 807   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 808   virtual void do_oop(      oop* p) { do_oop_work(p); }
 809 
 810   void print_object(outputStream* out, oop obj) {
 811 #ifdef PRODUCT
 812     Klass* k = obj->klass();
 813     const char* class_name = InstanceKlass::cast(k)->external_name();
 814     out->print_cr("class name %s", class_name);
 815 #else // PRODUCT
 816     obj->print_on(out);
 817 #endif // PRODUCT
 818   }
 819 
 820   template <class T>
 821   void do_oop_work(T* p) {
 822     assert(_containing_obj != NULL, "Precondition");
 823     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 824            "Precondition");
 825     T heap_oop = oopDesc::load_heap_oop(p);
 826     if (!oopDesc::is_null(heap_oop)) {
 827       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 828       bool failed = false;
 829       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 830         MutexLockerEx x(ParGCRareEvent_lock,
 831                         Mutex::_no_safepoint_check_flag);
 832 
 833         if (!_failures) {
 834           gclog_or_tty->cr();
 835           gclog_or_tty->print_cr("----------");
 836         }
 837         if (!_g1h->is_in_closed_subset(obj)) {
 838           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 839           gclog_or_tty->print_cr("Field "PTR_FORMAT
 840                                  " of live obj "PTR_FORMAT" in region "
 841                                  "["PTR_FORMAT", "PTR_FORMAT")",
 842                                  p, (void*) _containing_obj,
 843                                  from->bottom(), from->end());
 844           print_object(gclog_or_tty, _containing_obj);
 845           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
 846                                  (void*) obj);
 847         } else {
 848           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 849           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 850           gclog_or_tty->print_cr("Field "PTR_FORMAT
 851                                  " of live obj "PTR_FORMAT" in region "
 852                                  "["PTR_FORMAT", "PTR_FORMAT")",
 853                                  p, (void*) _containing_obj,
 854                                  from->bottom(), from->end());
 855           print_object(gclog_or_tty, _containing_obj);
 856           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
 857                                  "["PTR_FORMAT", "PTR_FORMAT")",
 858                                  (void*) obj, to->bottom(), to->end());
 859           print_object(gclog_or_tty, obj);
 860         }
 861         gclog_or_tty->print_cr("----------");
 862         gclog_or_tty->flush();
 863         _failures = true;
 864         failed = true;
 865         _n_failures++;
 866       }
 867 
 868       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
 869         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 870         HeapRegion* to   = _g1h->heap_region_containing(obj);
 871         if (from != NULL && to != NULL &&
 872             from != to &&
 873             !to->isHumongous()) {
 874           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 875           jbyte cv_field = *_bs->byte_for_const(p);
 876           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 877 
 878           bool is_bad = !(from->is_young()
 879                           || to->rem_set()->contains_reference(p)
 880                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 881                               (_containing_obj->is_objArray() ?
 882                                   cv_field == dirty
 883                                : cv_obj == dirty || cv_field == dirty));
 884           if (is_bad) {
 885             MutexLockerEx x(ParGCRareEvent_lock,
 886                             Mutex::_no_safepoint_check_flag);
 887 
 888             if (!_failures) {
 889               gclog_or_tty->cr();
 890               gclog_or_tty->print_cr("----------");
 891             }
 892             gclog_or_tty->print_cr("Missing rem set entry:");
 893             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
 894                                    "of obj "PTR_FORMAT", "
 895                                    "in region "HR_FORMAT,
 896                                    p, (void*) _containing_obj,
 897                                    HR_FORMAT_PARAMS(from));
 898             _containing_obj->print_on(gclog_or_tty);
 899             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
 900                                    "in region "HR_FORMAT,
 901                                    (void*) obj,
 902                                    HR_FORMAT_PARAMS(to));
 903             obj->print_on(gclog_or_tty);
 904             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 905                           cv_obj, cv_field);
 906             gclog_or_tty->print_cr("----------");
 907             gclog_or_tty->flush();
 908             _failures = true;
 909             if (!failed) _n_failures++;
 910           }
 911         }
 912       }
 913     }
 914   }
 915 };
 916 
 917 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 918 // We would need a mechanism to make that code skip dead objects.
 919 
 920 void HeapRegion::verify(VerifyOption vo,
 921                         bool* failures) const {
 922   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 923   *failures = false;
 924   HeapWord* p = bottom();
 925   HeapWord* prev_p = NULL;
 926   VerifyLiveClosure vl_cl(g1, vo);
 927   bool is_humongous = isHumongous();
 928   bool do_bot_verify = !is_young();
 929   size_t object_num = 0;
 930   while (p < top()) {
 931     oop obj = oop(p);
 932     size_t obj_size = obj->size();
 933     object_num += 1;
 934 
 935     if (is_humongous != g1->isHumongous(obj_size)) {
 936       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
 937                              SIZE_FORMAT" words) in a %shumongous region",
 938                              p, g1->isHumongous(obj_size) ? "" : "non-",
 939                              obj_size, is_humongous ? "" : "non-");
 940        *failures = true;
 941        return;
 942     }
 943 
 944     // If it returns false, verify_for_object() will output the
 945     // appropriate messasge.
 946     if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
 947       *failures = true;
 948       return;
 949     }
 950 
 951     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 952       if (obj->is_oop()) {
 953         Klass* klass = obj->klass();
 954         if (!klass->is_metaspace_object()) {
 955           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 956                                  "not metadata", klass, (void *)obj);
 957           *failures = true;
 958           return;
 959         } else if (!klass->is_klass()) {
 960           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 961                                  "not a klass", klass, (void *)obj);
 962           *failures = true;
 963           return;
 964         } else {
 965           vl_cl.set_containing_obj(obj);
 966           obj->oop_iterate_no_header(&vl_cl);
 967           if (vl_cl.failures()) {
 968             *failures = true;
 969           }
 970           if (G1MaxVerifyFailures >= 0 &&
 971               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 972             return;
 973           }
 974         }
 975       } else {
 976         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
 977         *failures = true;
 978         return;
 979       }
 980     }
 981     prev_p = p;
 982     p += obj_size;
 983   }
 984 
 985   if (p != top()) {
 986     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
 987                            "does not match top "PTR_FORMAT, p, top());
 988     *failures = true;
 989     return;
 990   }
 991 
 992   HeapWord* the_end = end();
 993   assert(p == top(), "it should still hold");
 994   // Do some extra BOT consistency checking for addresses in the
 995   // range [top, end). BOT look-ups in this range should yield
 996   // top. No point in doing that if top == end (there's nothing there).
 997   if (p < the_end) {
 998     // Look up top
 999     HeapWord* addr_1 = p;
1000     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
1001     if (b_start_1 != p) {
1002       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
1003                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1004                              addr_1, b_start_1, p);
1005       *failures = true;
1006       return;
1007     }
1008 
1009     // Look up top + 1
1010     HeapWord* addr_2 = p + 1;
1011     if (addr_2 < the_end) {
1012       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
1013       if (b_start_2 != p) {
1014         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
1015                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1016                                addr_2, b_start_2, p);
1017         *failures = true;
1018         return;
1019       }
1020     }
1021 
1022     // Look up an address between top and end
1023     size_t diff = pointer_delta(the_end, p) / 2;
1024     HeapWord* addr_3 = p + diff;
1025     if (addr_3 < the_end) {
1026       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
1027       if (b_start_3 != p) {
1028         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
1029                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1030                                addr_3, b_start_3, p);
1031         *failures = true;
1032         return;
1033       }
1034     }
1035 
1036     // Look up end - 1
1037     HeapWord* addr_4 = the_end - 1;
1038     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
1039     if (b_start_4 != p) {
1040       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
1041                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1042                              addr_4, b_start_4, p);
1043       *failures = true;
1044       return;
1045     }
1046   }
1047 
1048   if (is_humongous && object_num > 1) {
1049     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
1050                            "but has "SIZE_FORMAT", objects",
1051                            bottom(), end(), object_num);
1052     *failures = true;
1053     return;
1054   }
1055 
1056   verify_strong_code_roots(vo, failures);
1057 }
1058 
1059 void HeapRegion::verify() const {
1060   bool dummy = false;
1061   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
1062 }
1063 
1064 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
1065 // away eventually.
1066 
1067 void G1OffsetTableContigSpace::clear(bool mangle_space) {
1068   ContiguousSpace::clear(mangle_space);
1069   _offsets.zero_bottom_entry();
1070   _offsets.initialize_threshold();
1071 }
1072 
1073 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
1074   Space::set_bottom(new_bottom);
1075   _offsets.set_bottom(new_bottom);
1076 }
1077 
1078 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
1079   Space::set_end(new_end);
1080   _offsets.resize(new_end - bottom());
1081 }
1082 
1083 void G1OffsetTableContigSpace::print() const {
1084   print_short();
1085   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
1086                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
1087                 bottom(), top(), _offsets.threshold(), end());
1088 }
1089 
1090 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
1091   return _offsets.initialize_threshold();
1092 }
1093 
1094 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
1095                                                     HeapWord* end) {
1096   _offsets.alloc_block(start, end);
1097   return _offsets.threshold();
1098 }
1099 
1100 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
1101   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1102   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
1103   if (_gc_time_stamp < g1h->get_gc_time_stamp())
1104     return top();
1105   else
1106     return ContiguousSpace::saved_mark_word();
1107 }
1108 
1109 void G1OffsetTableContigSpace::set_saved_mark() {
1110   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1111   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
1112 
1113   if (_gc_time_stamp < curr_gc_time_stamp) {
1114     // The order of these is important, as another thread might be
1115     // about to start scanning this region. If it does so after
1116     // set_saved_mark and before _gc_time_stamp = ..., then the latter
1117     // will be false, and it will pick up top() as the high water mark
1118     // of region. If it does so after _gc_time_stamp = ..., then it
1119     // will pick up the right saved_mark_word() as the high water mark
1120     // of the region. Either way, the behavior will be correct.
1121     ContiguousSpace::set_saved_mark();
1122     OrderAccess::storestore();
1123     _gc_time_stamp = curr_gc_time_stamp;
1124     // No need to do another barrier to flush the writes above. If
1125     // this is called in parallel with other threads trying to
1126     // allocate into the region, the caller should call this while
1127     // holding a lock and when the lock is released the writes will be
1128     // flushed.
1129   }
1130 }
1131 
1132 G1OffsetTableContigSpace::
1133 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
1134                          MemRegion mr) :
1135   _offsets(sharedOffsetArray, mr),
1136   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1137   _gc_time_stamp(0)
1138 {
1139   _offsets.set_space(this);
1140   // false ==> we'll do the clearing if there's clearing to be done.
1141   ContiguousSpace::initialize(mr, false, SpaceDecorator::Mangle);
1142   _offsets.zero_bottom_entry();
1143   _offsets.initialize_threshold();
1144 }