1 /*
   2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/atomic.inline.hpp"
  31 #include "runtime/handles.inline.hpp"
  32 #include "runtime/interfaceSupport.hpp"
  33 #include "runtime/mutexLocker.hpp"
  34 #include "runtime/objectMonitor.hpp"
  35 #include "runtime/objectMonitor.inline.hpp"
  36 #include "runtime/orderAccess.inline.hpp"
  37 #include "runtime/osThread.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "runtime/thread.inline.hpp"
  40 #include "services/threadService.hpp"
  41 #include "trace/tracing.hpp"
  42 #include "trace/traceMacros.hpp"
  43 #include "utilities/dtrace.hpp"
  44 #include "utilities/macros.hpp"
  45 #include "utilities/preserveException.hpp"
  46 #ifdef TARGET_OS_FAMILY_linux
  47 # include "os_linux.inline.hpp"
  48 #endif
  49 #ifdef TARGET_OS_FAMILY_solaris
  50 # include "os_solaris.inline.hpp"
  51 #endif
  52 #ifdef TARGET_OS_FAMILY_windows
  53 # include "os_windows.inline.hpp"
  54 #endif
  55 #ifdef TARGET_OS_FAMILY_bsd
  56 # include "os_bsd.inline.hpp"
  57 #endif
  58 
  59 #if defined(__GNUC__) && !defined(IA64) && !defined(PPC64)
  60   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  61   #define ATTR __attribute__((noinline))
  62 #else
  63   #define ATTR
  64 #endif
  65 
  66 
  67 #ifdef DTRACE_ENABLED
  68 
  69 // Only bother with this argument setup if dtrace is available
  70 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  71 
  72 
  73 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  74   char* bytes = NULL;                                                      \
  75   int len = 0;                                                             \
  76   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  77   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  78   if (klassname != NULL) {                                                 \
  79     bytes = (char*)klassname->bytes();                                     \
  80     len = klassname->utf8_length();                                        \
  81   }
  82 
  83 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  84   {                                                                        \
  85     if (DTraceMonitorProbes) {                                            \
  86       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  87       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  88                        (monitor), bytes, len, (millis));                   \
  89     }                                                                      \
  90   }
  91 
  92 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  93 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  94 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  95 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  96 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  97 
  98 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  99   {                                                                        \
 100     if (DTraceMonitorProbes) {                                            \
 101       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 102       HOTSPOT_MONITOR_##probe(jtid,                                               \
 103                        (uintptr_t)(monitor), bytes, len);                  \
 104     }                                                                      \
 105   }
 106 
 107 #else //  ndef DTRACE_ENABLED
 108 
 109 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 110 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 111 
 112 #endif // ndef DTRACE_ENABLED
 113 
 114 // Tunables ...
 115 // The knob* variables are effectively final.  Once set they should
 116 // never be modified hence.  Consider using __read_mostly with GCC.
 117 
 118 int ObjectMonitor::Knob_Verbose    = 0 ;
 119 int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
 120 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
 121 static int Knob_HandOff            = 0 ;
 122 static int Knob_ReportSettings     = 0 ;
 123 
 124 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
 125 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
 126 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
 127 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
 128 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
 129 static int Knob_SpinEarly          = 1 ;
 130 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
 131 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
 132 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
 133 static int Knob_Bonus              = 100 ;     // spin success bonus
 134 static int Knob_BonusB             = 100 ;     // spin success bonus
 135 static int Knob_Penalty            = 200 ;     // spin failure penalty
 136 static int Knob_Poverty            = 1000 ;
 137 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
 138 static int Knob_FixedSpin          = 0 ;
 139 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
 140 static int Knob_UsePause           = 1 ;
 141 static int Knob_ExitPolicy         = 0 ;
 142 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
 143 static int Knob_ResetEvent         = 0 ;
 144 static int BackOffMask             = 0 ;
 145 
 146 static int Knob_FastHSSEC          = 0 ;
 147 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
 148 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
 149 static volatile int InitDone       = 0 ;
 150 
 151 #define TrySpin TrySpin_VaryDuration
 152 
 153 // -----------------------------------------------------------------------------
 154 // Theory of operations -- Monitors lists, thread residency, etc:
 155 //
 156 // * A thread acquires ownership of a monitor by successfully
 157 //   CAS()ing the _owner field from null to non-null.
 158 //
 159 // * Invariant: A thread appears on at most one monitor list --
 160 //   cxq, EntryList or WaitSet -- at any one time.
 161 //
 162 // * Contending threads "push" themselves onto the cxq with CAS
 163 //   and then spin/park.
 164 //
 165 // * After a contending thread eventually acquires the lock it must
 166 //   dequeue itself from either the EntryList or the cxq.
 167 //
 168 // * The exiting thread identifies and unparks an "heir presumptive"
 169 //   tentative successor thread on the EntryList.  Critically, the
 170 //   exiting thread doesn't unlink the successor thread from the EntryList.
 171 //   After having been unparked, the wakee will recontend for ownership of
 172 //   the monitor.   The successor (wakee) will either acquire the lock or
 173 //   re-park itself.
 174 //
 175 //   Succession is provided for by a policy of competitive handoff.
 176 //   The exiting thread does _not_ grant or pass ownership to the
 177 //   successor thread.  (This is also referred to as "handoff" succession").
 178 //   Instead the exiting thread releases ownership and possibly wakes
 179 //   a successor, so the successor can (re)compete for ownership of the lock.
 180 //   If the EntryList is empty but the cxq is populated the exiting
 181 //   thread will drain the cxq into the EntryList.  It does so by
 182 //   by detaching the cxq (installing null with CAS) and folding
 183 //   the threads from the cxq into the EntryList.  The EntryList is
 184 //   doubly linked, while the cxq is singly linked because of the
 185 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 186 //
 187 // * Concurrency invariants:
 188 //
 189 //   -- only the monitor owner may access or mutate the EntryList.
 190 //      The mutex property of the monitor itself protects the EntryList
 191 //      from concurrent interference.
 192 //   -- Only the monitor owner may detach the cxq.
 193 //
 194 // * The monitor entry list operations avoid locks, but strictly speaking
 195 //   they're not lock-free.  Enter is lock-free, exit is not.
 196 //   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
 197 //
 198 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 199 //   detaching thread.  This mechanism is immune from the ABA corruption.
 200 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 201 //
 202 // * Taken together, the cxq and the EntryList constitute or form a
 203 //   single logical queue of threads stalled trying to acquire the lock.
 204 //   We use two distinct lists to improve the odds of a constant-time
 205 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 206 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 207 //   A key desideratum is to minimize queue & monitor metadata manipulation
 208 //   that occurs while holding the monitor lock -- that is, we want to
 209 //   minimize monitor lock holds times.  Note that even a small amount of
 210 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 211 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 212 //   locks and monitor metadata.
 213 //
 214 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
 215 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 216 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 217 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 218 //
 219 //   The EntryList is ordered by the prevailing queue discipline and
 220 //   can be organized in any convenient fashion, such as a doubly-linked list or
 221 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 222 //   to operate in constant-time.  If we need a priority queue then something akin
 223 //   to Solaris' sleepq would work nicely.  Viz.,
 224 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 225 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 226 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 227 //   EntryList accordingly.
 228 //
 229 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 230 //   somewhat similar to an elevator-scan.
 231 //
 232 // * The monitor synchronization subsystem avoids the use of native
 233 //   synchronization primitives except for the narrow platform-specific
 234 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 235 //   the semantics of park-unpark.  Put another way, this monitor implementation
 236 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 237 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 238 //   underlying OS manages the READY<->RUN transitions.
 239 //
 240 // * Waiting threads reside on the WaitSet list -- wait() puts
 241 //   the caller onto the WaitSet.
 242 //
 243 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 244 //   either the EntryList or cxq.  Subsequent exit() operations will
 245 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 246 //   it's likely the notifyee would simply impale itself on the lock held
 247 //   by the notifier.
 248 //
 249 // * An interesting alternative is to encode cxq as (List,LockByte) where
 250 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 251 //   variable, like _recursions, in the scheme.  The threads or Events that form
 252 //   the list would have to be aligned in 256-byte addresses.  A thread would
 253 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 254 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 255 //   Note that is is *not* word-tearing, but it does presume that full-word
 256 //   CAS operations are coherent with intermix with STB operations.  That's true
 257 //   on most common processors.
 258 //
 259 // * See also http://blogs.sun.com/dave
 260 
 261 
 262 // -----------------------------------------------------------------------------
 263 // Enter support
 264 
 265 bool ObjectMonitor::try_enter(Thread* THREAD) {
 266   if (THREAD != _owner) {
 267     if (THREAD->is_lock_owned ((address)_owner)) {
 268        assert(_recursions == 0, "internal state error");
 269        _owner = THREAD ;
 270        _recursions = 1 ;
 271        OwnerIsThread = 1 ;
 272        return true;
 273     }
 274     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
 275       return false;
 276     }
 277     return true;
 278   } else {
 279     _recursions++;
 280     return true;
 281   }
 282 }
 283 
 284 void ATTR ObjectMonitor::enter(TRAPS) {
 285   // The following code is ordered to check the most common cases first
 286   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 287   Thread * const Self = THREAD ;
 288   void * cur ;
 289 
 290   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
 291   if (cur == NULL) {
 292      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 293      assert (_recursions == 0   , "invariant") ;
 294      assert (_owner      == Self, "invariant") ;
 295      // CONSIDER: set or assert OwnerIsThread == 1
 296      return ;
 297   }
 298 
 299   if (cur == Self) {
 300      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 301      _recursions ++ ;
 302      return ;
 303   }
 304 
 305   if (Self->is_lock_owned ((address)cur)) {
 306     assert (_recursions == 0, "internal state error");
 307     _recursions = 1 ;
 308     // Commute owner from a thread-specific on-stack BasicLockObject address to
 309     // a full-fledged "Thread *".
 310     _owner = Self ;
 311     OwnerIsThread = 1 ;
 312     return ;
 313   }
 314 
 315   // We've encountered genuine contention.
 316   assert (Self->_Stalled == 0, "invariant") ;
 317   Self->_Stalled = intptr_t(this) ;
 318 
 319   // Try one round of spinning *before* enqueueing Self
 320   // and before going through the awkward and expensive state
 321   // transitions.  The following spin is strictly optional ...
 322   // Note that if we acquire the monitor from an initial spin
 323   // we forgo posting JVMTI events and firing DTRACE probes.
 324   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 325      assert (_owner == Self      , "invariant") ;
 326      assert (_recursions == 0    , "invariant") ;
 327      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 328      Self->_Stalled = 0 ;
 329      return ;
 330   }
 331 
 332   assert (_owner != Self          , "invariant") ;
 333   assert (_succ  != Self          , "invariant") ;
 334   assert (Self->is_Java_thread()  , "invariant") ;
 335   JavaThread * jt = (JavaThread *) Self ;
 336   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
 337   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
 338   assert (this->object() != NULL  , "invariant") ;
 339   assert (_count >= 0, "invariant") ;
 340 
 341   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 342   // Ensure the object-monitor relationship remains stable while there's contention.
 343   Atomic::inc_ptr(&_count);
 344 
 345   EventJavaMonitorEnter event;
 346 
 347   { // Change java thread status to indicate blocked on monitor enter.
 348     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 349 
 350     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 351     if (JvmtiExport::should_post_monitor_contended_enter()) {
 352       JvmtiExport::post_monitor_contended_enter(jt, this);
 353 
 354       // The current thread does not yet own the monitor and does not
 355       // yet appear on any queues that would get it made the successor.
 356       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 357       // handler cannot accidentally consume an unpark() meant for the
 358       // ParkEvent associated with this ObjectMonitor.
 359     }
 360 
 361     OSThreadContendState osts(Self->osthread());
 362     ThreadBlockInVM tbivm(jt);
 363 
 364     Self->set_current_pending_monitor(this);
 365 
 366     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 367     for (;;) {
 368       jt->set_suspend_equivalent();
 369       // cleared by handle_special_suspend_equivalent_condition()
 370       // or java_suspend_self()
 371 
 372       EnterI (THREAD) ;
 373 
 374       if (!ExitSuspendEquivalent(jt)) break ;
 375 
 376       //
 377       // We have acquired the contended monitor, but while we were
 378       // waiting another thread suspended us. We don't want to enter
 379       // the monitor while suspended because that would surprise the
 380       // thread that suspended us.
 381       //
 382           _recursions = 0 ;
 383       _succ = NULL ;
 384       exit (false, Self) ;
 385 
 386       jt->java_suspend_self();
 387     }
 388     Self->set_current_pending_monitor(NULL);
 389   }
 390 
 391   Atomic::dec_ptr(&_count);
 392   assert (_count >= 0, "invariant") ;
 393   Self->_Stalled = 0 ;
 394 
 395   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 396   assert (_recursions == 0     , "invariant") ;
 397   assert (_owner == Self       , "invariant") ;
 398   assert (_succ  != Self       , "invariant") ;
 399   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 400 
 401   // The thread -- now the owner -- is back in vm mode.
 402   // Report the glorious news via TI,DTrace and jvmstat.
 403   // The probe effect is non-trivial.  All the reportage occurs
 404   // while we hold the monitor, increasing the length of the critical
 405   // section.  Amdahl's parallel speedup law comes vividly into play.
 406   //
 407   // Another option might be to aggregate the events (thread local or
 408   // per-monitor aggregation) and defer reporting until a more opportune
 409   // time -- such as next time some thread encounters contention but has
 410   // yet to acquire the lock.  While spinning that thread could
 411   // spinning we could increment JVMStat counters, etc.
 412 
 413   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 414   if (JvmtiExport::should_post_monitor_contended_entered()) {
 415     JvmtiExport::post_monitor_contended_entered(jt, this);
 416 
 417     // The current thread already owns the monitor and is not going to
 418     // call park() for the remainder of the monitor enter protocol. So
 419     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 420     // event handler consumed an unpark() issued by the thread that
 421     // just exited the monitor.
 422   }
 423 
 424   if (event.should_commit()) {
 425     event.set_klass(((oop)this->object())->klass());
 426     event.set_previousOwner((TYPE_JAVALANGTHREAD)_previous_owner_tid);
 427     event.set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
 428     event.commit();
 429   }
 430 
 431   if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
 432      ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
 433   }
 434 }
 435 
 436 
 437 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 438 // Callers must compensate as needed.
 439 
 440 int ObjectMonitor::TryLock (Thread * Self) {
 441    for (;;) {
 442       void * own = _owner ;
 443       if (own != NULL) return 0 ;
 444       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
 445          // Either guarantee _recursions == 0 or set _recursions = 0.
 446          assert (_recursions == 0, "invariant") ;
 447          assert (_owner == Self, "invariant") ;
 448          // CONSIDER: set or assert that OwnerIsThread == 1
 449          return 1 ;
 450       }
 451       // The lock had been free momentarily, but we lost the race to the lock.
 452       // Interference -- the CAS failed.
 453       // We can either return -1 or retry.
 454       // Retry doesn't make as much sense because the lock was just acquired.
 455       if (true) return -1 ;
 456    }
 457 }
 458 
 459 void ATTR ObjectMonitor::EnterI (TRAPS) {
 460     Thread * Self = THREAD ;
 461     assert (Self->is_Java_thread(), "invariant") ;
 462     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
 463 
 464     // Try the lock - TATAS
 465     if (TryLock (Self) > 0) {
 466         assert (_succ != Self              , "invariant") ;
 467         assert (_owner == Self             , "invariant") ;
 468         assert (_Responsible != Self       , "invariant") ;
 469         return ;
 470     }
 471 
 472     DeferredInitialize () ;
 473 
 474     // We try one round of spinning *before* enqueueing Self.
 475     //
 476     // If the _owner is ready but OFFPROC we could use a YieldTo()
 477     // operation to donate the remainder of this thread's quantum
 478     // to the owner.  This has subtle but beneficial affinity
 479     // effects.
 480 
 481     if (TrySpin (Self) > 0) {
 482         assert (_owner == Self        , "invariant") ;
 483         assert (_succ != Self         , "invariant") ;
 484         assert (_Responsible != Self  , "invariant") ;
 485         return ;
 486     }
 487 
 488     // The Spin failed -- Enqueue and park the thread ...
 489     assert (_succ  != Self            , "invariant") ;
 490     assert (_owner != Self            , "invariant") ;
 491     assert (_Responsible != Self      , "invariant") ;
 492 
 493     // Enqueue "Self" on ObjectMonitor's _cxq.
 494     //
 495     // Node acts as a proxy for Self.
 496     // As an aside, if were to ever rewrite the synchronization code mostly
 497     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 498     // Java objects.  This would avoid awkward lifecycle and liveness issues,
 499     // as well as eliminate a subset of ABA issues.
 500     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 501     //
 502 
 503     ObjectWaiter node(Self) ;
 504     Self->_ParkEvent->reset() ;
 505     node._prev   = (ObjectWaiter *) 0xBAD ;
 506     node.TState  = ObjectWaiter::TS_CXQ ;
 507 
 508     // Push "Self" onto the front of the _cxq.
 509     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 510     // Note that spinning tends to reduce the rate at which threads
 511     // enqueue and dequeue on EntryList|cxq.
 512     ObjectWaiter * nxt ;
 513     for (;;) {
 514         node._next = nxt = _cxq ;
 515         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
 516 
 517         // Interference - the CAS failed because _cxq changed.  Just retry.
 518         // As an optional optimization we retry the lock.
 519         if (TryLock (Self) > 0) {
 520             assert (_succ != Self         , "invariant") ;
 521             assert (_owner == Self        , "invariant") ;
 522             assert (_Responsible != Self  , "invariant") ;
 523             return ;
 524         }
 525     }
 526 
 527     // Check for cxq|EntryList edge transition to non-null.  This indicates
 528     // the onset of contention.  While contention persists exiting threads
 529     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 530     // operations revert to the faster 1-0 mode.  This enter operation may interleave
 531     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 532     // arrange for one of the contending thread to use a timed park() operations
 533     // to detect and recover from the race.  (Stranding is form of progress failure
 534     // where the monitor is unlocked but all the contending threads remain parked).
 535     // That is, at least one of the contended threads will periodically poll _owner.
 536     // One of the contending threads will become the designated "Responsible" thread.
 537     // The Responsible thread uses a timed park instead of a normal indefinite park
 538     // operation -- it periodically wakes and checks for and recovers from potential
 539     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 540     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 541     // be responsible for a monitor.
 542     //
 543     // Currently, one of the contended threads takes on the added role of "Responsible".
 544     // A viable alternative would be to use a dedicated "stranding checker" thread
 545     // that periodically iterated over all the threads (or active monitors) and unparked
 546     // successors where there was risk of stranding.  This would help eliminate the
 547     // timer scalability issues we see on some platforms as we'd only have one thread
 548     // -- the checker -- parked on a timer.
 549 
 550     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
 551         // Try to assume the role of responsible thread for the monitor.
 552         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 553         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 554     }
 555 
 556     // The lock have been released while this thread was occupied queueing
 557     // itself onto _cxq.  To close the race and avoid "stranding" and
 558     // progress-liveness failure we must resample-retry _owner before parking.
 559     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 560     // In this case the ST-MEMBAR is accomplished with CAS().
 561     //
 562     // TODO: Defer all thread state transitions until park-time.
 563     // Since state transitions are heavy and inefficient we'd like
 564     // to defer the state transitions until absolutely necessary,
 565     // and in doing so avoid some transitions ...
 566 
 567     TEVENT (Inflated enter - Contention) ;
 568     int nWakeups = 0 ;
 569     int RecheckInterval = 1 ;
 570 
 571     for (;;) {
 572 
 573         if (TryLock (Self) > 0) break ;
 574         assert (_owner != Self, "invariant") ;
 575 
 576         if ((SyncFlags & 2) && _Responsible == NULL) {
 577            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 578         }
 579 
 580         // park self
 581         if (_Responsible == Self || (SyncFlags & 1)) {
 582             TEVENT (Inflated enter - park TIMED) ;
 583             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
 584             // Increase the RecheckInterval, but clamp the value.
 585             RecheckInterval *= 8 ;
 586             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
 587         } else {
 588             TEVENT (Inflated enter - park UNTIMED) ;
 589             Self->_ParkEvent->park() ;
 590         }
 591 
 592         if (TryLock(Self) > 0) break ;
 593 
 594         // The lock is still contested.
 595         // Keep a tally of the # of futile wakeups.
 596         // Note that the counter is not protected by a lock or updated by atomics.
 597         // That is by design - we trade "lossy" counters which are exposed to
 598         // races during updates for a lower probe effect.
 599         TEVENT (Inflated enter - Futile wakeup) ;
 600         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 601            ObjectMonitor::_sync_FutileWakeups->inc() ;
 602         }
 603         ++ nWakeups ;
 604 
 605         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 606         // We can defer clearing _succ until after the spin completes
 607         // TrySpin() must tolerate being called with _succ == Self.
 608         // Try yet another round of adaptive spinning.
 609         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
 610 
 611         // We can find that we were unpark()ed and redesignated _succ while
 612         // we were spinning.  That's harmless.  If we iterate and call park(),
 613         // park() will consume the event and return immediately and we'll
 614         // just spin again.  This pattern can repeat, leaving _succ to simply
 615         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 616         // Alternately, we can sample fired() here, and if set, forgo spinning
 617         // in the next iteration.
 618 
 619         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 620            Self->_ParkEvent->reset() ;
 621            OrderAccess::fence() ;
 622         }
 623         if (_succ == Self) _succ = NULL ;
 624 
 625         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 626         OrderAccess::fence() ;
 627     }
 628 
 629     // Egress :
 630     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 631     // Normally we'll find Self on the EntryList .
 632     // From the perspective of the lock owner (this thread), the
 633     // EntryList is stable and cxq is prepend-only.
 634     // The head of cxq is volatile but the interior is stable.
 635     // In addition, Self.TState is stable.
 636 
 637     assert (_owner == Self      , "invariant") ;
 638     assert (object() != NULL    , "invariant") ;
 639     // I'd like to write:
 640     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 641     // but as we're at a safepoint that's not safe.
 642 
 643     UnlinkAfterAcquire (Self, &node) ;
 644     if (_succ == Self) _succ = NULL ;
 645 
 646     assert (_succ != Self, "invariant") ;
 647     if (_Responsible == Self) {
 648         _Responsible = NULL ;
 649         OrderAccess::fence(); // Dekker pivot-point
 650 
 651         // We may leave threads on cxq|EntryList without a designated
 652         // "Responsible" thread.  This is benign.  When this thread subsequently
 653         // exits the monitor it can "see" such preexisting "old" threads --
 654         // threads that arrived on the cxq|EntryList before the fence, above --
 655         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 656         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 657         // non-null and elect a new "Responsible" timer thread.
 658         //
 659         // This thread executes:
 660         //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 661         //    LD cxq|EntryList               (in subsequent exit)
 662         //
 663         // Entering threads in the slow/contended path execute:
 664         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 665         //    The (ST cxq; MEMBAR) is accomplished with CAS().
 666         //
 667         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 668         // exit operation from floating above the ST Responsible=null.
 669     }
 670 
 671     // We've acquired ownership with CAS().
 672     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 673     // But since the CAS() this thread may have also stored into _succ,
 674     // EntryList, cxq or Responsible.  These meta-data updates must be
 675     // visible __before this thread subsequently drops the lock.
 676     // Consider what could occur if we didn't enforce this constraint --
 677     // STs to monitor meta-data and user-data could reorder with (become
 678     // visible after) the ST in exit that drops ownership of the lock.
 679     // Some other thread could then acquire the lock, but observe inconsistent
 680     // or old monitor meta-data and heap data.  That violates the JMM.
 681     // To that end, the 1-0 exit() operation must have at least STST|LDST
 682     // "release" barrier semantics.  Specifically, there must be at least a
 683     // STST|LDST barrier in exit() before the ST of null into _owner that drops
 684     // the lock.   The barrier ensures that changes to monitor meta-data and data
 685     // protected by the lock will be visible before we release the lock, and
 686     // therefore before some other thread (CPU) has a chance to acquire the lock.
 687     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 688     //
 689     // Critically, any prior STs to _succ or EntryList must be visible before
 690     // the ST of null into _owner in the *subsequent* (following) corresponding
 691     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 692     // execute a serializing instruction.
 693 
 694     if (SyncFlags & 8) {
 695        OrderAccess::fence() ;
 696     }
 697     return ;
 698 }
 699 
 700 // ReenterI() is a specialized inline form of the latter half of the
 701 // contended slow-path from EnterI().  We use ReenterI() only for
 702 // monitor reentry in wait().
 703 //
 704 // In the future we should reconcile EnterI() and ReenterI(), adding
 705 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 706 // loop accordingly.
 707 
 708 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
 709     assert (Self != NULL                , "invariant") ;
 710     assert (SelfNode != NULL            , "invariant") ;
 711     assert (SelfNode->_thread == Self   , "invariant") ;
 712     assert (_waiters > 0                , "invariant") ;
 713     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
 714     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
 715     JavaThread * jt = (JavaThread *) Self ;
 716 
 717     int nWakeups = 0 ;
 718     for (;;) {
 719         ObjectWaiter::TStates v = SelfNode->TState ;
 720         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
 721         assert    (_owner != Self, "invariant") ;
 722 
 723         if (TryLock (Self) > 0) break ;
 724         if (TrySpin (Self) > 0) break ;
 725 
 726         TEVENT (Wait Reentry - parking) ;
 727 
 728         // State transition wrappers around park() ...
 729         // ReenterI() wisely defers state transitions until
 730         // it's clear we must park the thread.
 731         {
 732            OSThreadContendState osts(Self->osthread());
 733            ThreadBlockInVM tbivm(jt);
 734 
 735            // cleared by handle_special_suspend_equivalent_condition()
 736            // or java_suspend_self()
 737            jt->set_suspend_equivalent();
 738            if (SyncFlags & 1) {
 739               Self->_ParkEvent->park ((jlong)1000) ;
 740            } else {
 741               Self->_ParkEvent->park () ;
 742            }
 743 
 744            // were we externally suspended while we were waiting?
 745            for (;;) {
 746               if (!ExitSuspendEquivalent (jt)) break ;
 747               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 748               jt->java_suspend_self();
 749               jt->set_suspend_equivalent();
 750            }
 751         }
 752 
 753         // Try again, but just so we distinguish between futile wakeups and
 754         // successful wakeups.  The following test isn't algorithmically
 755         // necessary, but it helps us maintain sensible statistics.
 756         if (TryLock(Self) > 0) break ;
 757 
 758         // The lock is still contested.
 759         // Keep a tally of the # of futile wakeups.
 760         // Note that the counter is not protected by a lock or updated by atomics.
 761         // That is by design - we trade "lossy" counters which are exposed to
 762         // races during updates for a lower probe effect.
 763         TEVENT (Wait Reentry - futile wakeup) ;
 764         ++ nWakeups ;
 765 
 766         // Assuming this is not a spurious wakeup we'll normally
 767         // find that _succ == Self.
 768         if (_succ == Self) _succ = NULL ;
 769 
 770         // Invariant: after clearing _succ a contending thread
 771         // *must* retry  _owner before parking.
 772         OrderAccess::fence() ;
 773 
 774         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 775           ObjectMonitor::_sync_FutileWakeups->inc() ;
 776         }
 777     }
 778 
 779     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 780     // Normally we'll find Self on the EntryList.
 781     // Unlinking from the EntryList is constant-time and atomic-free.
 782     // From the perspective of the lock owner (this thread), the
 783     // EntryList is stable and cxq is prepend-only.
 784     // The head of cxq is volatile but the interior is stable.
 785     // In addition, Self.TState is stable.
 786 
 787     assert (_owner == Self, "invariant") ;
 788     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 789     UnlinkAfterAcquire (Self, SelfNode) ;
 790     if (_succ == Self) _succ = NULL ;
 791     assert (_succ != Self, "invariant") ;
 792     SelfNode->TState = ObjectWaiter::TS_RUN ;
 793     OrderAccess::fence() ;      // see comments at the end of EnterI()
 794 }
 795 
 796 // after the thread acquires the lock in ::enter().  Equally, we could defer
 797 // unlinking the thread until ::exit()-time.
 798 
 799 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
 800 {
 801     assert (_owner == Self, "invariant") ;
 802     assert (SelfNode->_thread == Self, "invariant") ;
 803 
 804     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 805         // Normal case: remove Self from the DLL EntryList .
 806         // This is a constant-time operation.
 807         ObjectWaiter * nxt = SelfNode->_next ;
 808         ObjectWaiter * prv = SelfNode->_prev ;
 809         if (nxt != NULL) nxt->_prev = prv ;
 810         if (prv != NULL) prv->_next = nxt ;
 811         if (SelfNode == _EntryList ) _EntryList = nxt ;
 812         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 813         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 814         TEVENT (Unlink from EntryList) ;
 815     } else {
 816         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 817         // Inopportune interleaving -- Self is still on the cxq.
 818         // This usually means the enqueue of self raced an exiting thread.
 819         // Normally we'll find Self near the front of the cxq, so
 820         // dequeueing is typically fast.  If needbe we can accelerate
 821         // this with some MCS/CHL-like bidirectional list hints and advisory
 822         // back-links so dequeueing from the interior will normally operate
 823         // in constant-time.
 824         // Dequeue Self from either the head (with CAS) or from the interior
 825         // with a linear-time scan and normal non-atomic memory operations.
 826         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 827         // and then unlink Self from EntryList.  We have to drain eventually,
 828         // so it might as well be now.
 829 
 830         ObjectWaiter * v = _cxq ;
 831         assert (v != NULL, "invariant") ;
 832         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
 833             // The CAS above can fail from interference IFF a "RAT" arrived.
 834             // In that case Self must be in the interior and can no longer be
 835             // at the head of cxq.
 836             if (v == SelfNode) {
 837                 assert (_cxq != v, "invariant") ;
 838                 v = _cxq ;          // CAS above failed - start scan at head of list
 839             }
 840             ObjectWaiter * p ;
 841             ObjectWaiter * q = NULL ;
 842             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
 843                 q = p ;
 844                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 845             }
 846             assert (v != SelfNode,  "invariant") ;
 847             assert (p == SelfNode,  "Node not found on cxq") ;
 848             assert (p != _cxq,      "invariant") ;
 849             assert (q != NULL,      "invariant") ;
 850             assert (q->_next == p,  "invariant") ;
 851             q->_next = p->_next ;
 852         }
 853         TEVENT (Unlink from cxq) ;
 854     }
 855 
 856     // Diagnostic hygiene ...
 857     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
 858     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
 859     SelfNode->TState = ObjectWaiter::TS_RUN ;
 860 }
 861 
 862 // -----------------------------------------------------------------------------
 863 // Exit support
 864 //
 865 // exit()
 866 // ~~~~~~
 867 // Note that the collector can't reclaim the objectMonitor or deflate
 868 // the object out from underneath the thread calling ::exit() as the
 869 // thread calling ::exit() never transitions to a stable state.
 870 // This inhibits GC, which in turn inhibits asynchronous (and
 871 // inopportune) reclamation of "this".
 872 //
 873 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 874 // There's one exception to the claim above, however.  EnterI() can call
 875 // exit() to drop a lock if the acquirer has been externally suspended.
 876 // In that case exit() is called with _thread_state as _thread_blocked,
 877 // but the monitor's _count field is > 0, which inhibits reclamation.
 878 //
 879 // 1-0 exit
 880 // ~~~~~~~~
 881 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 882 // the fast-path operators have been optimized so the common ::exit()
 883 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
 884 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 885 // greatly improves latency -- MEMBAR and CAS having considerable local
 886 // latency on modern processors -- but at the cost of "stranding".  Absent the
 887 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 888 // ::enter() path, resulting in the entering thread being stranding
 889 // and a progress-liveness failure.   Stranding is extremely rare.
 890 // We use timers (timed park operations) & periodic polling to detect
 891 // and recover from stranding.  Potentially stranded threads periodically
 892 // wake up and poll the lock.  See the usage of the _Responsible variable.
 893 //
 894 // The CAS() in enter provides for safety and exclusion, while the CAS or
 895 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 896 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
 897 // We detect and recover from stranding with timers.
 898 //
 899 // If a thread transiently strands it'll park until (a) another
 900 // thread acquires the lock and then drops the lock, at which time the
 901 // exiting thread will notice and unpark the stranded thread, or, (b)
 902 // the timer expires.  If the lock is high traffic then the stranding latency
 903 // will be low due to (a).  If the lock is low traffic then the odds of
 904 // stranding are lower, although the worst-case stranding latency
 905 // is longer.  Critically, we don't want to put excessive load in the
 906 // platform's timer subsystem.  We want to minimize both the timer injection
 907 // rate (timers created/sec) as well as the number of timers active at
 908 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 909 // the integral of the # of active timers at any instant over time).
 910 // Both impinge on OS scalability.  Given that, at most one thread parked on
 911 // a monitor will use a timer.
 912 
 913 void ATTR ObjectMonitor::exit(bool not_suspended, TRAPS) {
 914    Thread * Self = THREAD ;
 915    if (THREAD != _owner) {
 916      if (THREAD->is_lock_owned((address) _owner)) {
 917        // Transmute _owner from a BasicLock pointer to a Thread address.
 918        // We don't need to hold _mutex for this transition.
 919        // Non-null to Non-null is safe as long as all readers can
 920        // tolerate either flavor.
 921        assert (_recursions == 0, "invariant") ;
 922        _owner = THREAD ;
 923        _recursions = 0 ;
 924        OwnerIsThread = 1 ;
 925      } else {
 926        // NOTE: we need to handle unbalanced monitor enter/exit
 927        // in native code by throwing an exception.
 928        // TODO: Throw an IllegalMonitorStateException ?
 929        TEVENT (Exit - Throw IMSX) ;
 930        assert(false, "Non-balanced monitor enter/exit!");
 931        if (false) {
 932           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 933        }
 934        return;
 935      }
 936    }
 937 
 938    if (_recursions != 0) {
 939      _recursions--;        // this is simple recursive enter
 940      TEVENT (Inflated exit - recursive) ;
 941      return ;
 942    }
 943 
 944    // Invariant: after setting Responsible=null an thread must execute
 945    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 946    if ((SyncFlags & 4) == 0) {
 947       _Responsible = NULL ;
 948    }
 949 
 950 #if INCLUDE_TRACE
 951    // get the owner's thread id for the MonitorEnter event
 952    // if it is enabled and the thread isn't suspended
 953    if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) {
 954      _previous_owner_tid = SharedRuntime::get_java_tid(Self);
 955    }
 956 #endif
 957 
 958    for (;;) {
 959       assert (THREAD == _owner, "invariant") ;
 960 
 961 
 962       if (Knob_ExitPolicy == 0) {
 963          // release semantics: prior loads and stores from within the critical section
 964          // must not float (reorder) past the following store that drops the lock.
 965          // On SPARC that requires MEMBAR #loadstore|#storestore.
 966          // But of course in TSO #loadstore|#storestore is not required.
 967          // I'd like to write one of the following:
 968          // A.  OrderAccess::release() ; _owner = NULL
 969          // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 970          // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 971          // store into a _dummy variable.  That store is not needed, but can result
 972          // in massive wasteful coherency traffic on classic SMP systems.
 973          // Instead, I use release_store(), which is implemented as just a simple
 974          // ST on x64, x86 and SPARC.
 975          OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
 976          OrderAccess::storeload() ;                         // See if we need to wake a successor
 977          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 978             TEVENT (Inflated exit - simple egress) ;
 979             return ;
 980          }
 981          TEVENT (Inflated exit - complex egress) ;
 982 
 983          // Normally the exiting thread is responsible for ensuring succession,
 984          // but if other successors are ready or other entering threads are spinning
 985          // then this thread can simply store NULL into _owner and exit without
 986          // waking a successor.  The existence of spinners or ready successors
 987          // guarantees proper succession (liveness).  Responsibility passes to the
 988          // ready or running successors.  The exiting thread delegates the duty.
 989          // More precisely, if a successor already exists this thread is absolved
 990          // of the responsibility of waking (unparking) one.
 991          //
 992          // The _succ variable is critical to reducing futile wakeup frequency.
 993          // _succ identifies the "heir presumptive" thread that has been made
 994          // ready (unparked) but that has not yet run.  We need only one such
 995          // successor thread to guarantee progress.
 996          // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
 997          // section 3.3 "Futile Wakeup Throttling" for details.
 998          //
 999          // Note that spinners in Enter() also set _succ non-null.
1000          // In the current implementation spinners opportunistically set
1001          // _succ so that exiting threads might avoid waking a successor.
1002          // Another less appealing alternative would be for the exiting thread
1003          // to drop the lock and then spin briefly to see if a spinner managed
1004          // to acquire the lock.  If so, the exiting thread could exit
1005          // immediately without waking a successor, otherwise the exiting
1006          // thread would need to dequeue and wake a successor.
1007          // (Note that we'd need to make the post-drop spin short, but no
1008          // shorter than the worst-case round-trip cache-line migration time.
1009          // The dropped lock needs to become visible to the spinner, and then
1010          // the acquisition of the lock by the spinner must become visible to
1011          // the exiting thread).
1012          //
1013 
1014          // It appears that an heir-presumptive (successor) must be made ready.
1015          // Only the current lock owner can manipulate the EntryList or
1016          // drain _cxq, so we need to reacquire the lock.  If we fail
1017          // to reacquire the lock the responsibility for ensuring succession
1018          // falls to the new owner.
1019          //
1020          if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1021             return ;
1022          }
1023          TEVENT (Exit - Reacquired) ;
1024       } else {
1025          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1026             OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
1027             OrderAccess::storeload() ;
1028             // Ratify the previously observed values.
1029             if (_cxq == NULL || _succ != NULL) {
1030                 TEVENT (Inflated exit - simple egress) ;
1031                 return ;
1032             }
1033 
1034             // inopportune interleaving -- the exiting thread (this thread)
1035             // in the fast-exit path raced an entering thread in the slow-enter
1036             // path.
1037             // We have two choices:
1038             // A.  Try to reacquire the lock.
1039             //     If the CAS() fails return immediately, otherwise
1040             //     we either restart/rerun the exit operation, or simply
1041             //     fall-through into the code below which wakes a successor.
1042             // B.  If the elements forming the EntryList|cxq are TSM
1043             //     we could simply unpark() the lead thread and return
1044             //     without having set _succ.
1045             if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1046                TEVENT (Inflated exit - reacquired succeeded) ;
1047                return ;
1048             }
1049             TEVENT (Inflated exit - reacquired failed) ;
1050          } else {
1051             TEVENT (Inflated exit - complex egress) ;
1052          }
1053       }
1054 
1055       guarantee (_owner == THREAD, "invariant") ;
1056 
1057       ObjectWaiter * w = NULL ;
1058       int QMode = Knob_QMode ;
1059 
1060       if (QMode == 2 && _cxq != NULL) {
1061           // QMode == 2 : cxq has precedence over EntryList.
1062           // Try to directly wake a successor from the cxq.
1063           // If successful, the successor will need to unlink itself from cxq.
1064           w = _cxq ;
1065           assert (w != NULL, "invariant") ;
1066           assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1067           ExitEpilog (Self, w) ;
1068           return ;
1069       }
1070 
1071       if (QMode == 3 && _cxq != NULL) {
1072           // Aggressively drain cxq into EntryList at the first opportunity.
1073           // This policy ensure that recently-run threads live at the head of EntryList.
1074           // Drain _cxq into EntryList - bulk transfer.
1075           // First, detach _cxq.
1076           // The following loop is tantamount to: w = swap (&cxq, NULL)
1077           w = _cxq ;
1078           for (;;) {
1079              assert (w != NULL, "Invariant") ;
1080              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1081              if (u == w) break ;
1082              w = u ;
1083           }
1084           assert (w != NULL              , "invariant") ;
1085 
1086           ObjectWaiter * q = NULL ;
1087           ObjectWaiter * p ;
1088           for (p = w ; p != NULL ; p = p->_next) {
1089               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1090               p->TState = ObjectWaiter::TS_ENTER ;
1091               p->_prev = q ;
1092               q = p ;
1093           }
1094 
1095           // Append the RATs to the EntryList
1096           // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1097           ObjectWaiter * Tail ;
1098           for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
1099           if (Tail == NULL) {
1100               _EntryList = w ;
1101           } else {
1102               Tail->_next = w ;
1103               w->_prev = Tail ;
1104           }
1105 
1106           // Fall thru into code that tries to wake a successor from EntryList
1107       }
1108 
1109       if (QMode == 4 && _cxq != NULL) {
1110           // Aggressively drain cxq into EntryList at the first opportunity.
1111           // This policy ensure that recently-run threads live at the head of EntryList.
1112 
1113           // Drain _cxq into EntryList - bulk transfer.
1114           // First, detach _cxq.
1115           // The following loop is tantamount to: w = swap (&cxq, NULL)
1116           w = _cxq ;
1117           for (;;) {
1118              assert (w != NULL, "Invariant") ;
1119              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1120              if (u == w) break ;
1121              w = u ;
1122           }
1123           assert (w != NULL              , "invariant") ;
1124 
1125           ObjectWaiter * q = NULL ;
1126           ObjectWaiter * p ;
1127           for (p = w ; p != NULL ; p = p->_next) {
1128               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1129               p->TState = ObjectWaiter::TS_ENTER ;
1130               p->_prev = q ;
1131               q = p ;
1132           }
1133 
1134           // Prepend the RATs to the EntryList
1135           if (_EntryList != NULL) {
1136               q->_next = _EntryList ;
1137               _EntryList->_prev = q ;
1138           }
1139           _EntryList = w ;
1140 
1141           // Fall thru into code that tries to wake a successor from EntryList
1142       }
1143 
1144       w = _EntryList  ;
1145       if (w != NULL) {
1146           // I'd like to write: guarantee (w->_thread != Self).
1147           // But in practice an exiting thread may find itself on the EntryList.
1148           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1149           // then calls exit().  Exit release the lock by setting O._owner to NULL.
1150           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
1151           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1152           // release the lock "O".  T2 resumes immediately after the ST of null into
1153           // _owner, above.  T2 notices that the EntryList is populated, so it
1154           // reacquires the lock and then finds itself on the EntryList.
1155           // Given all that, we have to tolerate the circumstance where "w" is
1156           // associated with Self.
1157           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1158           ExitEpilog (Self, w) ;
1159           return ;
1160       }
1161 
1162       // If we find that both _cxq and EntryList are null then just
1163       // re-run the exit protocol from the top.
1164       w = _cxq ;
1165       if (w == NULL) continue ;
1166 
1167       // Drain _cxq into EntryList - bulk transfer.
1168       // First, detach _cxq.
1169       // The following loop is tantamount to: w = swap (&cxq, NULL)
1170       for (;;) {
1171           assert (w != NULL, "Invariant") ;
1172           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1173           if (u == w) break ;
1174           w = u ;
1175       }
1176       TEVENT (Inflated exit - drain cxq into EntryList) ;
1177 
1178       assert (w != NULL              , "invariant") ;
1179       assert (_EntryList  == NULL    , "invariant") ;
1180 
1181       // Convert the LIFO SLL anchored by _cxq into a DLL.
1182       // The list reorganization step operates in O(LENGTH(w)) time.
1183       // It's critical that this step operate quickly as
1184       // "Self" still holds the outer-lock, restricting parallelism
1185       // and effectively lengthening the critical section.
1186       // Invariant: s chases t chases u.
1187       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1188       // we have faster access to the tail.
1189 
1190       if (QMode == 1) {
1191          // QMode == 1 : drain cxq to EntryList, reversing order
1192          // We also reverse the order of the list.
1193          ObjectWaiter * s = NULL ;
1194          ObjectWaiter * t = w ;
1195          ObjectWaiter * u = NULL ;
1196          while (t != NULL) {
1197              guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
1198              t->TState = ObjectWaiter::TS_ENTER ;
1199              u = t->_next ;
1200              t->_prev = u ;
1201              t->_next = s ;
1202              s = t;
1203              t = u ;
1204          }
1205          _EntryList  = s ;
1206          assert (s != NULL, "invariant") ;
1207       } else {
1208          // QMode == 0 or QMode == 2
1209          _EntryList = w ;
1210          ObjectWaiter * q = NULL ;
1211          ObjectWaiter * p ;
1212          for (p = w ; p != NULL ; p = p->_next) {
1213              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1214              p->TState = ObjectWaiter::TS_ENTER ;
1215              p->_prev = q ;
1216              q = p ;
1217          }
1218       }
1219 
1220       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1221       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1222 
1223       // See if we can abdicate to a spinner instead of waking a thread.
1224       // A primary goal of the implementation is to reduce the
1225       // context-switch rate.
1226       if (_succ != NULL) continue;
1227 
1228       w = _EntryList  ;
1229       if (w != NULL) {
1230           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1231           ExitEpilog (Self, w) ;
1232           return ;
1233       }
1234    }
1235 }
1236 
1237 // ExitSuspendEquivalent:
1238 // A faster alternate to handle_special_suspend_equivalent_condition()
1239 //
1240 // handle_special_suspend_equivalent_condition() unconditionally
1241 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1242 // operations have high latency.  Note that in ::enter() we call HSSEC
1243 // while holding the monitor, so we effectively lengthen the critical sections.
1244 //
1245 // There are a number of possible solutions:
1246 //
1247 // A.  To ameliorate the problem we might also defer state transitions
1248 //     to as late as possible -- just prior to parking.
1249 //     Given that, we'd call HSSEC after having returned from park(),
1250 //     but before attempting to acquire the monitor.  This is only a
1251 //     partial solution.  It avoids calling HSSEC while holding the
1252 //     monitor (good), but it still increases successor reacquisition latency --
1253 //     the interval between unparking a successor and the time the successor
1254 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1255 //     If we use this technique we can also avoid EnterI()-exit() loop
1256 //     in ::enter() where we iteratively drop the lock and then attempt
1257 //     to reacquire it after suspending.
1258 //
1259 // B.  In the future we might fold all the suspend bits into a
1260 //     composite per-thread suspend flag and then update it with CAS().
1261 //     Alternately, a Dekker-like mechanism with multiple variables
1262 //     would suffice:
1263 //       ST Self->_suspend_equivalent = false
1264 //       MEMBAR
1265 //       LD Self_>_suspend_flags
1266 //
1267 
1268 
1269 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
1270    int Mode = Knob_FastHSSEC ;
1271    if (Mode && !jSelf->is_external_suspend()) {
1272       assert (jSelf->is_suspend_equivalent(), "invariant") ;
1273       jSelf->clear_suspend_equivalent() ;
1274       if (2 == Mode) OrderAccess::storeload() ;
1275       if (!jSelf->is_external_suspend()) return false ;
1276       // We raced a suspension -- fall thru into the slow path
1277       TEVENT (ExitSuspendEquivalent - raced) ;
1278       jSelf->set_suspend_equivalent() ;
1279    }
1280    return jSelf->handle_special_suspend_equivalent_condition() ;
1281 }
1282 
1283 
1284 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
1285    assert (_owner == Self, "invariant") ;
1286 
1287    // Exit protocol:
1288    // 1. ST _succ = wakee
1289    // 2. membar #loadstore|#storestore;
1290    // 2. ST _owner = NULL
1291    // 3. unpark(wakee)
1292 
1293    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
1294    ParkEvent * Trigger = Wakee->_event ;
1295 
1296    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1297    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1298    // out-of-scope (non-extant).
1299    Wakee  = NULL ;
1300 
1301    // Drop the lock
1302    OrderAccess::release_store_ptr (&_owner, NULL) ;
1303    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
1304 
1305    if (SafepointSynchronize::do_call_back()) {
1306       TEVENT (unpark before SAFEPOINT) ;
1307    }
1308 
1309    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1310    Trigger->unpark() ;
1311 
1312    // Maintain stats and report events to JVMTI
1313    if (ObjectMonitor::_sync_Parks != NULL) {
1314       ObjectMonitor::_sync_Parks->inc() ;
1315    }
1316 }
1317 
1318 
1319 // -----------------------------------------------------------------------------
1320 // Class Loader deadlock handling.
1321 //
1322 // complete_exit exits a lock returning recursion count
1323 // complete_exit/reenter operate as a wait without waiting
1324 // complete_exit requires an inflated monitor
1325 // The _owner field is not always the Thread addr even with an
1326 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1327 // thread due to contention.
1328 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1329    Thread * const Self = THREAD;
1330    assert(Self->is_Java_thread(), "Must be Java thread!");
1331    JavaThread *jt = (JavaThread *)THREAD;
1332 
1333    DeferredInitialize();
1334 
1335    if (THREAD != _owner) {
1336     if (THREAD->is_lock_owned ((address)_owner)) {
1337        assert(_recursions == 0, "internal state error");
1338        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
1339        _recursions = 0 ;
1340        OwnerIsThread = 1 ;
1341     }
1342    }
1343 
1344    guarantee(Self == _owner, "complete_exit not owner");
1345    intptr_t save = _recursions; // record the old recursion count
1346    _recursions = 0;        // set the recursion level to be 0
1347    exit (true, Self) ;           // exit the monitor
1348    guarantee (_owner != Self, "invariant");
1349    return save;
1350 }
1351 
1352 // reenter() enters a lock and sets recursion count
1353 // complete_exit/reenter operate as a wait without waiting
1354 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1355    Thread * const Self = THREAD;
1356    assert(Self->is_Java_thread(), "Must be Java thread!");
1357    JavaThread *jt = (JavaThread *)THREAD;
1358 
1359    guarantee(_owner != Self, "reenter already owner");
1360    enter (THREAD);       // enter the monitor
1361    guarantee (_recursions == 0, "reenter recursion");
1362    _recursions = recursions;
1363    return;
1364 }
1365 
1366 
1367 // -----------------------------------------------------------------------------
1368 // A macro is used below because there may already be a pending
1369 // exception which should not abort the execution of the routines
1370 // which use this (which is why we don't put this into check_slow and
1371 // call it with a CHECK argument).
1372 
1373 #define CHECK_OWNER()                                                             \
1374   do {                                                                            \
1375     if (THREAD != _owner) {                                                       \
1376       if (THREAD->is_lock_owned((address) _owner)) {                              \
1377         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
1378         _recursions = 0;                                                          \
1379         OwnerIsThread = 1 ;                                                       \
1380       } else {                                                                    \
1381         TEVENT (Throw IMSX) ;                                                     \
1382         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
1383       }                                                                           \
1384     }                                                                             \
1385   } while (false)
1386 
1387 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1388 // TODO-FIXME: remove check_slow() -- it's likely dead.
1389 
1390 void ObjectMonitor::check_slow(TRAPS) {
1391   TEVENT (check_slow - throw IMSX) ;
1392   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1393   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1394 }
1395 
1396 static int Adjust (volatile int * adr, int dx) {
1397   int v ;
1398   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
1399   return v ;
1400 }
1401 
1402 // helper method for posting a monitor wait event
1403 void ObjectMonitor::post_monitor_wait_event(EventJavaMonitorWait* event,
1404                                                            jlong notifier_tid,
1405                                                            jlong timeout,
1406                                                            bool timedout) {
1407   event->set_klass(((oop)this->object())->klass());
1408   event->set_timeout((TYPE_ULONG)timeout);
1409   event->set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
1410   event->set_notifier((TYPE_OSTHREAD)notifier_tid);
1411   event->set_timedOut((TYPE_BOOLEAN)timedout);
1412   event->commit();
1413 }
1414 
1415 // -----------------------------------------------------------------------------
1416 // Wait/Notify/NotifyAll
1417 //
1418 // Note: a subset of changes to ObjectMonitor::wait()
1419 // will need to be replicated in complete_exit above
1420 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1421    Thread * const Self = THREAD ;
1422    assert(Self->is_Java_thread(), "Must be Java thread!");
1423    JavaThread *jt = (JavaThread *)THREAD;
1424 
1425    DeferredInitialize () ;
1426 
1427    // Throw IMSX or IEX.
1428    CHECK_OWNER();
1429 
1430    EventJavaMonitorWait event;
1431 
1432    // check for a pending interrupt
1433    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1434      // post monitor waited event.  Note that this is past-tense, we are done waiting.
1435      if (JvmtiExport::should_post_monitor_waited()) {
1436         // Note: 'false' parameter is passed here because the
1437         // wait was not timed out due to thread interrupt.
1438         JvmtiExport::post_monitor_waited(jt, this, false);
1439 
1440         // In this short circuit of the monitor wait protocol, the
1441         // current thread never drops ownership of the monitor and
1442         // never gets added to the wait queue so the current thread
1443         // cannot be made the successor. This means that the
1444         // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1445         // consume an unpark() meant for the ParkEvent associated with
1446         // this ObjectMonitor.
1447      }
1448      if (event.should_commit()) {
1449        post_monitor_wait_event(&event, 0, millis, false);
1450      }
1451      TEVENT (Wait - Throw IEX) ;
1452      THROW(vmSymbols::java_lang_InterruptedException());
1453      return ;
1454    }
1455 
1456    TEVENT (Wait) ;
1457 
1458    assert (Self->_Stalled == 0, "invariant") ;
1459    Self->_Stalled = intptr_t(this) ;
1460    jt->set_current_waiting_monitor(this);
1461 
1462    // create a node to be put into the queue
1463    // Critically, after we reset() the event but prior to park(), we must check
1464    // for a pending interrupt.
1465    ObjectWaiter node(Self);
1466    node.TState = ObjectWaiter::TS_WAIT ;
1467    Self->_ParkEvent->reset() ;
1468    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1469 
1470    // Enter the waiting queue, which is a circular doubly linked list in this case
1471    // but it could be a priority queue or any data structure.
1472    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1473    // by the the owner of the monitor *except* in the case where park()
1474    // returns because of a timeout of interrupt.  Contention is exceptionally rare
1475    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1476 
1477    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
1478    AddWaiter (&node) ;
1479    Thread::SpinRelease (&_WaitSetLock) ;
1480 
1481    if ((SyncFlags & 4) == 0) {
1482       _Responsible = NULL ;
1483    }
1484    intptr_t save = _recursions; // record the old recursion count
1485    _waiters++;                  // increment the number of waiters
1486    _recursions = 0;             // set the recursion level to be 1
1487    exit (true, Self) ;                    // exit the monitor
1488    guarantee (_owner != Self, "invariant") ;
1489 
1490    // The thread is on the WaitSet list - now park() it.
1491    // On MP systems it's conceivable that a brief spin before we park
1492    // could be profitable.
1493    //
1494    // TODO-FIXME: change the following logic to a loop of the form
1495    //   while (!timeout && !interrupted && _notified == 0) park()
1496 
1497    int ret = OS_OK ;
1498    int WasNotified = 0 ;
1499    { // State transition wrappers
1500      OSThread* osthread = Self->osthread();
1501      OSThreadWaitState osts(osthread, true);
1502      {
1503        ThreadBlockInVM tbivm(jt);
1504        // Thread is in thread_blocked state and oop access is unsafe.
1505        jt->set_suspend_equivalent();
1506 
1507        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1508            // Intentionally empty
1509        } else
1510        if (node._notified == 0) {
1511          if (millis <= 0) {
1512             Self->_ParkEvent->park () ;
1513          } else {
1514             ret = Self->_ParkEvent->park (millis) ;
1515          }
1516        }
1517 
1518        // were we externally suspended while we were waiting?
1519        if (ExitSuspendEquivalent (jt)) {
1520           // TODO-FIXME: add -- if succ == Self then succ = null.
1521           jt->java_suspend_self();
1522        }
1523 
1524      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1525 
1526 
1527      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1528      // from the WaitSet to the EntryList.
1529      // See if we need to remove Node from the WaitSet.
1530      // We use double-checked locking to avoid grabbing _WaitSetLock
1531      // if the thread is not on the wait queue.
1532      //
1533      // Note that we don't need a fence before the fetch of TState.
1534      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1535      // written by the is thread. (perhaps the fetch might even be satisfied
1536      // by a look-aside into the processor's own store buffer, although given
1537      // the length of the code path between the prior ST and this load that's
1538      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1539      // then we'll acquire the lock and then re-fetch a fresh TState value.
1540      // That is, we fail toward safety.
1541 
1542      if (node.TState == ObjectWaiter::TS_WAIT) {
1543          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
1544          if (node.TState == ObjectWaiter::TS_WAIT) {
1545             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
1546             assert(node._notified == 0, "invariant");
1547             node.TState = ObjectWaiter::TS_RUN ;
1548          }
1549          Thread::SpinRelease (&_WaitSetLock) ;
1550      }
1551 
1552      // The thread is now either on off-list (TS_RUN),
1553      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1554      // The Node's TState variable is stable from the perspective of this thread.
1555      // No other threads will asynchronously modify TState.
1556      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
1557      OrderAccess::loadload() ;
1558      if (_succ == Self) _succ = NULL ;
1559      WasNotified = node._notified ;
1560 
1561      // Reentry phase -- reacquire the monitor.
1562      // re-enter contended monitor after object.wait().
1563      // retain OBJECT_WAIT state until re-enter successfully completes
1564      // Thread state is thread_in_vm and oop access is again safe,
1565      // although the raw address of the object may have changed.
1566      // (Don't cache naked oops over safepoints, of course).
1567 
1568      // post monitor waited event. Note that this is past-tense, we are done waiting.
1569      if (JvmtiExport::should_post_monitor_waited()) {
1570        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1571 
1572        if (node._notified != 0 && _succ == Self) {
1573          // In this part of the monitor wait-notify-reenter protocol it
1574          // is possible (and normal) for another thread to do a fastpath
1575          // monitor enter-exit while this thread is still trying to get
1576          // to the reenter portion of the protocol.
1577          //
1578          // The ObjectMonitor was notified and the current thread is
1579          // the successor which also means that an unpark() has already
1580          // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1581          // consume the unpark() that was done when the successor was
1582          // set because the same ParkEvent is shared between Java
1583          // monitors and JVM/TI RawMonitors (for now).
1584          //
1585          // We redo the unpark() to ensure forward progress, i.e., we
1586          // don't want all pending threads hanging (parked) with none
1587          // entering the unlocked monitor.
1588          node._event->unpark();
1589        }
1590      }
1591 
1592      if (event.should_commit()) {
1593        post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
1594      }
1595 
1596      OrderAccess::fence() ;
1597 
1598      assert (Self->_Stalled != 0, "invariant") ;
1599      Self->_Stalled = 0 ;
1600 
1601      assert (_owner != Self, "invariant") ;
1602      ObjectWaiter::TStates v = node.TState ;
1603      if (v == ObjectWaiter::TS_RUN) {
1604          enter (Self) ;
1605      } else {
1606          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
1607          ReenterI (Self, &node) ;
1608          node.wait_reenter_end(this);
1609      }
1610 
1611      // Self has reacquired the lock.
1612      // Lifecycle - the node representing Self must not appear on any queues.
1613      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1614      // want residual elements associated with this thread left on any lists.
1615      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
1616      assert    (_owner == Self, "invariant") ;
1617      assert    (_succ != Self , "invariant") ;
1618    } // OSThreadWaitState()
1619 
1620    jt->set_current_waiting_monitor(NULL);
1621 
1622    guarantee (_recursions == 0, "invariant") ;
1623    _recursions = save;     // restore the old recursion count
1624    _waiters--;             // decrement the number of waiters
1625 
1626    // Verify a few postconditions
1627    assert (_owner == Self       , "invariant") ;
1628    assert (_succ  != Self       , "invariant") ;
1629    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
1630 
1631    if (SyncFlags & 32) {
1632       OrderAccess::fence() ;
1633    }
1634 
1635    // check if the notification happened
1636    if (!WasNotified) {
1637      // no, it could be timeout or Thread.interrupt() or both
1638      // check for interrupt event, otherwise it is timeout
1639      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1640        TEVENT (Wait - throw IEX from epilog) ;
1641        THROW(vmSymbols::java_lang_InterruptedException());
1642      }
1643    }
1644 
1645    // NOTE: Spurious wake up will be consider as timeout.
1646    // Monitor notify has precedence over thread interrupt.
1647 }
1648 
1649 
1650 // Consider:
1651 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1652 // then instead of transferring a thread from the WaitSet to the EntryList
1653 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1654 
1655 void ObjectMonitor::notify(TRAPS) {
1656   CHECK_OWNER();
1657   if (_WaitSet == NULL) {
1658      TEVENT (Empty-Notify) ;
1659      return ;
1660   }
1661   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1662 
1663   int Policy = Knob_MoveNotifyee ;
1664 
1665   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
1666   ObjectWaiter * iterator = DequeueWaiter() ;
1667   if (iterator != NULL) {
1668      TEVENT (Notify1 - Transfer) ;
1669      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1670      guarantee (iterator->_notified == 0, "invariant") ;
1671      if (Policy != 4) {
1672         iterator->TState = ObjectWaiter::TS_ENTER ;
1673      }
1674      iterator->_notified = 1 ;
1675      Thread * Self = THREAD;
1676      iterator->_notifier_tid = Self->osthread()->thread_id();
1677 
1678      ObjectWaiter * List = _EntryList ;
1679      if (List != NULL) {
1680         assert (List->_prev == NULL, "invariant") ;
1681         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1682         assert (List != iterator, "invariant") ;
1683      }
1684 
1685      if (Policy == 0) {       // prepend to EntryList
1686          if (List == NULL) {
1687              iterator->_next = iterator->_prev = NULL ;
1688              _EntryList = iterator ;
1689          } else {
1690              List->_prev = iterator ;
1691              iterator->_next = List ;
1692              iterator->_prev = NULL ;
1693              _EntryList = iterator ;
1694         }
1695      } else
1696      if (Policy == 1) {      // append to EntryList
1697          if (List == NULL) {
1698              iterator->_next = iterator->_prev = NULL ;
1699              _EntryList = iterator ;
1700          } else {
1701             // CONSIDER:  finding the tail currently requires a linear-time walk of
1702             // the EntryList.  We can make tail access constant-time by converting to
1703             // a CDLL instead of using our current DLL.
1704             ObjectWaiter * Tail ;
1705             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1706             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1707             Tail->_next = iterator ;
1708             iterator->_prev = Tail ;
1709             iterator->_next = NULL ;
1710         }
1711      } else
1712      if (Policy == 2) {      // prepend to cxq
1713          // prepend to cxq
1714          if (List == NULL) {
1715              iterator->_next = iterator->_prev = NULL ;
1716              _EntryList = iterator ;
1717          } else {
1718             iterator->TState = ObjectWaiter::TS_CXQ ;
1719             for (;;) {
1720                 ObjectWaiter * Front = _cxq ;
1721                 iterator->_next = Front ;
1722                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1723                     break ;
1724                 }
1725             }
1726          }
1727      } else
1728      if (Policy == 3) {      // append to cxq
1729         iterator->TState = ObjectWaiter::TS_CXQ ;
1730         for (;;) {
1731             ObjectWaiter * Tail ;
1732             Tail = _cxq ;
1733             if (Tail == NULL) {
1734                 iterator->_next = NULL ;
1735                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1736                    break ;
1737                 }
1738             } else {
1739                 while (Tail->_next != NULL) Tail = Tail->_next ;
1740                 Tail->_next = iterator ;
1741                 iterator->_prev = Tail ;
1742                 iterator->_next = NULL ;
1743                 break ;
1744             }
1745         }
1746      } else {
1747         ParkEvent * ev = iterator->_event ;
1748         iterator->TState = ObjectWaiter::TS_RUN ;
1749         OrderAccess::fence() ;
1750         ev->unpark() ;
1751      }
1752 
1753      if (Policy < 4) {
1754        iterator->wait_reenter_begin(this);
1755      }
1756 
1757      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1758      // move the add-to-EntryList operation, above, outside the critical section
1759      // protected by _WaitSetLock.  In practice that's not useful.  With the
1760      // exception of  wait() timeouts and interrupts the monitor owner
1761      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1762      // on _WaitSetLock so it's not profitable to reduce the length of the
1763      // critical section.
1764   }
1765 
1766   Thread::SpinRelease (&_WaitSetLock) ;
1767 
1768   if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
1769      ObjectMonitor::_sync_Notifications->inc() ;
1770   }
1771 }
1772 
1773 
1774 void ObjectMonitor::notifyAll(TRAPS) {
1775   CHECK_OWNER();
1776   ObjectWaiter* iterator;
1777   if (_WaitSet == NULL) {
1778       TEVENT (Empty-NotifyAll) ;
1779       return ;
1780   }
1781   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1782 
1783   int Policy = Knob_MoveNotifyee ;
1784   int Tally = 0 ;
1785   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
1786 
1787   for (;;) {
1788      iterator = DequeueWaiter () ;
1789      if (iterator == NULL) break ;
1790      TEVENT (NotifyAll - Transfer1) ;
1791      ++Tally ;
1792 
1793      // Disposition - what might we do with iterator ?
1794      // a.  add it directly to the EntryList - either tail or head.
1795      // b.  push it onto the front of the _cxq.
1796      // For now we use (a).
1797 
1798      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1799      guarantee (iterator->_notified == 0, "invariant") ;
1800      iterator->_notified = 1 ;
1801      Thread * Self = THREAD;
1802      iterator->_notifier_tid = Self->osthread()->thread_id();
1803      if (Policy != 4) {
1804         iterator->TState = ObjectWaiter::TS_ENTER ;
1805      }
1806 
1807      ObjectWaiter * List = _EntryList ;
1808      if (List != NULL) {
1809         assert (List->_prev == NULL, "invariant") ;
1810         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1811         assert (List != iterator, "invariant") ;
1812      }
1813 
1814      if (Policy == 0) {       // prepend to EntryList
1815          if (List == NULL) {
1816              iterator->_next = iterator->_prev = NULL ;
1817              _EntryList = iterator ;
1818          } else {
1819              List->_prev = iterator ;
1820              iterator->_next = List ;
1821              iterator->_prev = NULL ;
1822              _EntryList = iterator ;
1823         }
1824      } else
1825      if (Policy == 1) {      // append to EntryList
1826          if (List == NULL) {
1827              iterator->_next = iterator->_prev = NULL ;
1828              _EntryList = iterator ;
1829          } else {
1830             // CONSIDER:  finding the tail currently requires a linear-time walk of
1831             // the EntryList.  We can make tail access constant-time by converting to
1832             // a CDLL instead of using our current DLL.
1833             ObjectWaiter * Tail ;
1834             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1835             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1836             Tail->_next = iterator ;
1837             iterator->_prev = Tail ;
1838             iterator->_next = NULL ;
1839         }
1840      } else
1841      if (Policy == 2) {      // prepend to cxq
1842          // prepend to cxq
1843          iterator->TState = ObjectWaiter::TS_CXQ ;
1844          for (;;) {
1845              ObjectWaiter * Front = _cxq ;
1846              iterator->_next = Front ;
1847              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1848                  break ;
1849              }
1850          }
1851      } else
1852      if (Policy == 3) {      // append to cxq
1853         iterator->TState = ObjectWaiter::TS_CXQ ;
1854         for (;;) {
1855             ObjectWaiter * Tail ;
1856             Tail = _cxq ;
1857             if (Tail == NULL) {
1858                 iterator->_next = NULL ;
1859                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1860                    break ;
1861                 }
1862             } else {
1863                 while (Tail->_next != NULL) Tail = Tail->_next ;
1864                 Tail->_next = iterator ;
1865                 iterator->_prev = Tail ;
1866                 iterator->_next = NULL ;
1867                 break ;
1868             }
1869         }
1870      } else {
1871         ParkEvent * ev = iterator->_event ;
1872         iterator->TState = ObjectWaiter::TS_RUN ;
1873         OrderAccess::fence() ;
1874         ev->unpark() ;
1875      }
1876 
1877      if (Policy < 4) {
1878        iterator->wait_reenter_begin(this);
1879      }
1880 
1881      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1882      // move the add-to-EntryList operation, above, outside the critical section
1883      // protected by _WaitSetLock.  In practice that's not useful.  With the
1884      // exception of  wait() timeouts and interrupts the monitor owner
1885      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1886      // on _WaitSetLock so it's not profitable to reduce the length of the
1887      // critical section.
1888   }
1889 
1890   Thread::SpinRelease (&_WaitSetLock) ;
1891 
1892   if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
1893      ObjectMonitor::_sync_Notifications->inc(Tally) ;
1894   }
1895 }
1896 
1897 // -----------------------------------------------------------------------------
1898 // Adaptive Spinning Support
1899 //
1900 // Adaptive spin-then-block - rational spinning
1901 //
1902 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1903 // algorithm.  On high order SMP systems it would be better to start with
1904 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1905 // a contending thread could enqueue itself on the cxq and then spin locally
1906 // on a thread-specific variable such as its ParkEvent._Event flag.
1907 // That's left as an exercise for the reader.  Note that global spinning is
1908 // not problematic on Niagara, as the L2$ serves the interconnect and has both
1909 // low latency and massive bandwidth.
1910 //
1911 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1912 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1913 // (duration) or we can fix the count at approximately the duration of
1914 // a context switch and vary the frequency.   Of course we could also
1915 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1916 // See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
1917 //
1918 // This implementation varies the duration "D", where D varies with
1919 // the success rate of recent spin attempts. (D is capped at approximately
1920 // length of a round-trip context switch).  The success rate for recent
1921 // spin attempts is a good predictor of the success rate of future spin
1922 // attempts.  The mechanism adapts automatically to varying critical
1923 // section length (lock modality), system load and degree of parallelism.
1924 // D is maintained per-monitor in _SpinDuration and is initialized
1925 // optimistically.  Spin frequency is fixed at 100%.
1926 //
1927 // Note that _SpinDuration is volatile, but we update it without locks
1928 // or atomics.  The code is designed so that _SpinDuration stays within
1929 // a reasonable range even in the presence of races.  The arithmetic
1930 // operations on _SpinDuration are closed over the domain of legal values,
1931 // so at worst a race will install and older but still legal value.
1932 // At the very worst this introduces some apparent non-determinism.
1933 // We might spin when we shouldn't or vice-versa, but since the spin
1934 // count are relatively short, even in the worst case, the effect is harmless.
1935 //
1936 // Care must be taken that a low "D" value does not become an
1937 // an absorbing state.  Transient spinning failures -- when spinning
1938 // is overall profitable -- should not cause the system to converge
1939 // on low "D" values.  We want spinning to be stable and predictable
1940 // and fairly responsive to change and at the same time we don't want
1941 // it to oscillate, become metastable, be "too" non-deterministic,
1942 // or converge on or enter undesirable stable absorbing states.
1943 //
1944 // We implement a feedback-based control system -- using past behavior
1945 // to predict future behavior.  We face two issues: (a) if the
1946 // input signal is random then the spin predictor won't provide optimal
1947 // results, and (b) if the signal frequency is too high then the control
1948 // system, which has some natural response lag, will "chase" the signal.
1949 // (b) can arise from multimodal lock hold times.  Transient preemption
1950 // can also result in apparent bimodal lock hold times.
1951 // Although sub-optimal, neither condition is particularly harmful, as
1952 // in the worst-case we'll spin when we shouldn't or vice-versa.
1953 // The maximum spin duration is rather short so the failure modes aren't bad.
1954 // To be conservative, I've tuned the gain in system to bias toward
1955 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1956 // "rings" or oscillates between spinning and not spinning.  This happens
1957 // when spinning is just on the cusp of profitability, however, so the
1958 // situation is not dire.  The state is benign -- there's no need to add
1959 // hysteresis control to damp the transition rate between spinning and
1960 // not spinning.
1961 //
1962 
1963 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
1964 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
1965 
1966 // Spinning: Fixed frequency (100%), vary duration
1967 
1968 
1969 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
1970 
1971     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1972     int ctr = Knob_FixedSpin ;
1973     if (ctr != 0) {
1974         while (--ctr >= 0) {
1975             if (TryLock (Self) > 0) return 1 ;
1976             SpinPause () ;
1977         }
1978         return 0 ;
1979     }
1980 
1981     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
1982       if (TryLock(Self) > 0) {
1983         // Increase _SpinDuration ...
1984         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1985         // Raising _SpurDuration to the poverty line is key.
1986         int x = _SpinDuration ;
1987         if (x < Knob_SpinLimit) {
1988            if (x < Knob_Poverty) x = Knob_Poverty ;
1989            _SpinDuration = x + Knob_BonusB ;
1990         }
1991         return 1 ;
1992       }
1993       SpinPause () ;
1994     }
1995 
1996     // Admission control - verify preconditions for spinning
1997     //
1998     // We always spin a little bit, just to prevent _SpinDuration == 0 from
1999     // becoming an absorbing state.  Put another way, we spin briefly to
2000     // sample, just in case the system load, parallelism, contention, or lock
2001     // modality changed.
2002     //
2003     // Consider the following alternative:
2004     // Periodically set _SpinDuration = _SpinLimit and try a long/full
2005     // spin attempt.  "Periodically" might mean after a tally of
2006     // the # of failed spin attempts (or iterations) reaches some threshold.
2007     // This takes us into the realm of 1-out-of-N spinning, where we
2008     // hold the duration constant but vary the frequency.
2009 
2010     ctr = _SpinDuration  ;
2011     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
2012     if (ctr <= 0) return 0 ;
2013 
2014     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
2015     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
2016        TEVENT (Spin abort - notrunnable [TOP]);
2017        return 0 ;
2018     }
2019 
2020     int MaxSpin = Knob_MaxSpinners ;
2021     if (MaxSpin >= 0) {
2022        if (_Spinner > MaxSpin) {
2023           TEVENT (Spin abort -- too many spinners) ;
2024           return 0 ;
2025        }
2026        // Slightly racy, but benign ...
2027        Adjust (&_Spinner, 1) ;
2028     }
2029 
2030     // We're good to spin ... spin ingress.
2031     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
2032     // when preparing to LD...CAS _owner, etc and the CAS is likely
2033     // to succeed.
2034     int hits    = 0 ;
2035     int msk     = 0 ;
2036     int caspty  = Knob_CASPenalty ;
2037     int oxpty   = Knob_OXPenalty ;
2038     int sss     = Knob_SpinSetSucc ;
2039     if (sss && _succ == NULL ) _succ = Self ;
2040     Thread * prv = NULL ;
2041 
2042     // There are three ways to exit the following loop:
2043     // 1.  A successful spin where this thread has acquired the lock.
2044     // 2.  Spin failure with prejudice
2045     // 3.  Spin failure without prejudice
2046 
2047     while (--ctr >= 0) {
2048 
2049       // Periodic polling -- Check for pending GC
2050       // Threads may spin while they're unsafe.
2051       // We don't want spinning threads to delay the JVM from reaching
2052       // a stop-the-world safepoint or to steal cycles from GC.
2053       // If we detect a pending safepoint we abort in order that
2054       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
2055       // this thread, if safe, doesn't steal cycles from GC.
2056       // This is in keeping with the "no loitering in runtime" rule.
2057       // We periodically check to see if there's a safepoint pending.
2058       if ((ctr & 0xFF) == 0) {
2059          if (SafepointSynchronize::do_call_back()) {
2060             TEVENT (Spin: safepoint) ;
2061             goto Abort ;           // abrupt spin egress
2062          }
2063          if (Knob_UsePause & 1) SpinPause () ;
2064 
2065          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
2066          if (hits > 50 && scb != NULL) {
2067             int abend = (*scb)(SpinCallbackArgument, 0) ;
2068          }
2069       }
2070 
2071       if (Knob_UsePause & 2) SpinPause() ;
2072 
2073       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
2074       // This is useful on classic SMP systems, but is of less utility on
2075       // N1-style CMT platforms.
2076       //
2077       // Trade-off: lock acquisition latency vs coherency bandwidth.
2078       // Lock hold times are typically short.  A histogram
2079       // of successful spin attempts shows that we usually acquire
2080       // the lock early in the spin.  That suggests we want to
2081       // sample _owner frequently in the early phase of the spin,
2082       // but then back-off and sample less frequently as the spin
2083       // progresses.  The back-off makes a good citizen on SMP big
2084       // SMP systems.  Oversampling _owner can consume excessive
2085       // coherency bandwidth.  Relatedly, if we _oversample _owner we
2086       // can inadvertently interfere with the the ST m->owner=null.
2087       // executed by the lock owner.
2088       if (ctr & msk) continue ;
2089       ++hits ;
2090       if ((hits & 0xF) == 0) {
2091         // The 0xF, above, corresponds to the exponent.
2092         // Consider: (msk+1)|msk
2093         msk = ((msk << 2)|3) & BackOffMask ;
2094       }
2095 
2096       // Probe _owner with TATAS
2097       // If this thread observes the monitor transition or flicker
2098       // from locked to unlocked to locked, then the odds that this
2099       // thread will acquire the lock in this spin attempt go down
2100       // considerably.  The same argument applies if the CAS fails
2101       // or if we observe _owner change from one non-null value to
2102       // another non-null value.   In such cases we might abort
2103       // the spin without prejudice or apply a "penalty" to the
2104       // spin count-down variable "ctr", reducing it by 100, say.
2105 
2106       Thread * ox = (Thread *) _owner ;
2107       if (ox == NULL) {
2108          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
2109          if (ox == NULL) {
2110             // The CAS succeeded -- this thread acquired ownership
2111             // Take care of some bookkeeping to exit spin state.
2112             if (sss && _succ == Self) {
2113                _succ = NULL ;
2114             }
2115             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
2116 
2117             // Increase _SpinDuration :
2118             // The spin was successful (profitable) so we tend toward
2119             // longer spin attempts in the future.
2120             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2121             // If we acquired the lock early in the spin cycle it
2122             // makes sense to increase _SpinDuration proportionally.
2123             // Note that we don't clamp SpinDuration precisely at SpinLimit.
2124             int x = _SpinDuration ;
2125             if (x < Knob_SpinLimit) {
2126                 if (x < Knob_Poverty) x = Knob_Poverty ;
2127                 _SpinDuration = x + Knob_Bonus ;
2128             }
2129             return 1 ;
2130          }
2131 
2132          // The CAS failed ... we can take any of the following actions:
2133          // * penalize: ctr -= Knob_CASPenalty
2134          // * exit spin with prejudice -- goto Abort;
2135          // * exit spin without prejudice.
2136          // * Since CAS is high-latency, retry again immediately.
2137          prv = ox ;
2138          TEVENT (Spin: cas failed) ;
2139          if (caspty == -2) break ;
2140          if (caspty == -1) goto Abort ;
2141          ctr -= caspty ;
2142          continue ;
2143       }
2144 
2145       // Did lock ownership change hands ?
2146       if (ox != prv && prv != NULL ) {
2147           TEVENT (spin: Owner changed)
2148           if (oxpty == -2) break ;
2149           if (oxpty == -1) goto Abort ;
2150           ctr -= oxpty ;
2151       }
2152       prv = ox ;
2153 
2154       // Abort the spin if the owner is not executing.
2155       // The owner must be executing in order to drop the lock.
2156       // Spinning while the owner is OFFPROC is idiocy.
2157       // Consider: ctr -= RunnablePenalty ;
2158       if (Knob_OState && NotRunnable (Self, ox)) {
2159          TEVENT (Spin abort - notrunnable);
2160          goto Abort ;
2161       }
2162       if (sss && _succ == NULL ) _succ = Self ;
2163    }
2164 
2165    // Spin failed with prejudice -- reduce _SpinDuration.
2166    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2167    // AIMD is globally stable.
2168    TEVENT (Spin failure) ;
2169    {
2170      int x = _SpinDuration ;
2171      if (x > 0) {
2172         // Consider an AIMD scheme like: x -= (x >> 3) + 100
2173         // This is globally sample and tends to damp the response.
2174         x -= Knob_Penalty ;
2175         if (x < 0) x = 0 ;
2176         _SpinDuration = x ;
2177      }
2178    }
2179 
2180  Abort:
2181    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
2182    if (sss && _succ == Self) {
2183       _succ = NULL ;
2184       // Invariant: after setting succ=null a contending thread
2185       // must recheck-retry _owner before parking.  This usually happens
2186       // in the normal usage of TrySpin(), but it's safest
2187       // to make TrySpin() as foolproof as possible.
2188       OrderAccess::fence() ;
2189       if (TryLock(Self) > 0) return 1 ;
2190    }
2191    return 0 ;
2192 }
2193 
2194 // NotRunnable() -- informed spinning
2195 //
2196 // Don't bother spinning if the owner is not eligible to drop the lock.
2197 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
2198 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2199 // The thread must be runnable in order to drop the lock in timely fashion.
2200 // If the _owner is not runnable then spinning will not likely be
2201 // successful (profitable).
2202 //
2203 // Beware -- the thread referenced by _owner could have died
2204 // so a simply fetch from _owner->_thread_state might trap.
2205 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2206 // Because of the lifecycle issues the schedctl and _thread_state values
2207 // observed by NotRunnable() might be garbage.  NotRunnable must
2208 // tolerate this and consider the observed _thread_state value
2209 // as advisory.
2210 //
2211 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2212 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
2213 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2214 // with the LSB of _owner.  Another option would be to probablistically probe
2215 // the putative _owner->TypeTag value.
2216 //
2217 // Checking _thread_state isn't perfect.  Even if the thread is
2218 // in_java it might be blocked on a page-fault or have been preempted
2219 // and sitting on a ready/dispatch queue.  _thread state in conjunction
2220 // with schedctl.sc_state gives us a good picture of what the
2221 // thread is doing, however.
2222 //
2223 // TODO: check schedctl.sc_state.
2224 // We'll need to use SafeFetch32() to read from the schedctl block.
2225 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2226 //
2227 // The return value from NotRunnable() is *advisory* -- the
2228 // result is based on sampling and is not necessarily coherent.
2229 // The caller must tolerate false-negative and false-positive errors.
2230 // Spinning, in general, is probabilistic anyway.
2231 
2232 
2233 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
2234     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
2235     if (!OwnerIsThread) return 0 ;
2236 
2237     if (ox == NULL) return 0 ;
2238 
2239     // Avoid transitive spinning ...
2240     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2241     // Immediately after T1 acquires L it's possible that T2, also
2242     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2243     // This occurs transiently after T1 acquired L but before
2244     // T1 managed to clear T1.Stalled.  T2 does not need to abort
2245     // its spin in this circumstance.
2246     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
2247 
2248     if (BlockedOn == 1) return 1 ;
2249     if (BlockedOn != 0) {
2250       return BlockedOn != intptr_t(this) && _owner == ox ;
2251     }
2252 
2253     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
2254     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
2255     // consider also: jst != _thread_in_Java -- but that's overspecific.
2256     return jst == _thread_blocked || jst == _thread_in_native ;
2257 }
2258 
2259 
2260 // -----------------------------------------------------------------------------
2261 // WaitSet management ...
2262 
2263 ObjectWaiter::ObjectWaiter(Thread* thread) {
2264   _next     = NULL;
2265   _prev     = NULL;
2266   _notified = 0;
2267   TState    = TS_RUN ;
2268   _thread   = thread;
2269   _event    = thread->_ParkEvent ;
2270   _active   = false;
2271   assert (_event != NULL, "invariant") ;
2272 }
2273 
2274 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
2275   JavaThread *jt = (JavaThread *)this->_thread;
2276   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2277 }
2278 
2279 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
2280   JavaThread *jt = (JavaThread *)this->_thread;
2281   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2282 }
2283 
2284 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2285   assert(node != NULL, "should not dequeue NULL node");
2286   assert(node->_prev == NULL, "node already in list");
2287   assert(node->_next == NULL, "node already in list");
2288   // put node at end of queue (circular doubly linked list)
2289   if (_WaitSet == NULL) {
2290     _WaitSet = node;
2291     node->_prev = node;
2292     node->_next = node;
2293   } else {
2294     ObjectWaiter* head = _WaitSet ;
2295     ObjectWaiter* tail = head->_prev;
2296     assert(tail->_next == head, "invariant check");
2297     tail->_next = node;
2298     head->_prev = node;
2299     node->_next = head;
2300     node->_prev = tail;
2301   }
2302 }
2303 
2304 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2305   // dequeue the very first waiter
2306   ObjectWaiter* waiter = _WaitSet;
2307   if (waiter) {
2308     DequeueSpecificWaiter(waiter);
2309   }
2310   return waiter;
2311 }
2312 
2313 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2314   assert(node != NULL, "should not dequeue NULL node");
2315   assert(node->_prev != NULL, "node already removed from list");
2316   assert(node->_next != NULL, "node already removed from list");
2317   // when the waiter has woken up because of interrupt,
2318   // timeout or other spurious wake-up, dequeue the
2319   // waiter from waiting list
2320   ObjectWaiter* next = node->_next;
2321   if (next == node) {
2322     assert(node->_prev == node, "invariant check");
2323     _WaitSet = NULL;
2324   } else {
2325     ObjectWaiter* prev = node->_prev;
2326     assert(prev->_next == node, "invariant check");
2327     assert(next->_prev == node, "invariant check");
2328     next->_prev = prev;
2329     prev->_next = next;
2330     if (_WaitSet == node) {
2331       _WaitSet = next;
2332     }
2333   }
2334   node->_next = NULL;
2335   node->_prev = NULL;
2336 }
2337 
2338 // -----------------------------------------------------------------------------
2339 // PerfData support
2340 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
2341 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
2342 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
2343 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
2344 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
2345 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
2346 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
2347 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
2348 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
2349 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
2350 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
2351 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
2352 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
2353 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
2354 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
2355 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
2356 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
2357 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
2358 
2359 // One-shot global initialization for the sync subsystem.
2360 // We could also defer initialization and initialize on-demand
2361 // the first time we call inflate().  Initialization would
2362 // be protected - like so many things - by the MonitorCache_lock.
2363 
2364 void ObjectMonitor::Initialize () {
2365   static int InitializationCompleted = 0 ;
2366   assert (InitializationCompleted == 0, "invariant") ;
2367   InitializationCompleted = 1 ;
2368   if (UsePerfData) {
2369       EXCEPTION_MARK ;
2370       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
2371       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
2372       NEWPERFCOUNTER(_sync_Inflations) ;
2373       NEWPERFCOUNTER(_sync_Deflations) ;
2374       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
2375       NEWPERFCOUNTER(_sync_FutileWakeups) ;
2376       NEWPERFCOUNTER(_sync_Parks) ;
2377       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
2378       NEWPERFCOUNTER(_sync_Notifications) ;
2379       NEWPERFCOUNTER(_sync_SlowEnter) ;
2380       NEWPERFCOUNTER(_sync_SlowExit) ;
2381       NEWPERFCOUNTER(_sync_SlowNotify) ;
2382       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
2383       NEWPERFCOUNTER(_sync_FailedSpins) ;
2384       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
2385       NEWPERFCOUNTER(_sync_PrivateA) ;
2386       NEWPERFCOUNTER(_sync_PrivateB) ;
2387       NEWPERFCOUNTER(_sync_MonInCirculation) ;
2388       NEWPERFCOUNTER(_sync_MonScavenged) ;
2389       NEWPERFVARIABLE(_sync_MonExtant) ;
2390       #undef NEWPERFCOUNTER
2391   }
2392 }
2393 
2394 
2395 // Compile-time asserts
2396 // When possible, it's better to catch errors deterministically at
2397 // compile-time than at runtime.  The down-side to using compile-time
2398 // asserts is that error message -- often something about negative array
2399 // indices -- is opaque.
2400 
2401 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
2402 
2403 void ObjectMonitor::ctAsserts() {
2404   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
2405 }
2406 
2407 
2408 static char * kvGet (char * kvList, const char * Key) {
2409     if (kvList == NULL) return NULL ;
2410     size_t n = strlen (Key) ;
2411     char * Search ;
2412     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
2413         if (strncmp (Search, Key, n) == 0) {
2414             if (Search[n] == '=') return Search + n + 1 ;
2415             if (Search[n] == 0)   return (char *) "1" ;
2416         }
2417     }
2418     return NULL ;
2419 }
2420 
2421 static int kvGetInt (char * kvList, const char * Key, int Default) {
2422     char * v = kvGet (kvList, Key) ;
2423     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
2424     if (Knob_ReportSettings && v != NULL) {
2425         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
2426         ::fflush (stdout) ;
2427     }
2428     return rslt ;
2429 }
2430 
2431 void ObjectMonitor::DeferredInitialize () {
2432   if (InitDone > 0) return ;
2433   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2434       while (InitDone != 1) ;
2435       return ;
2436   }
2437 
2438   // One-shot global initialization ...
2439   // The initialization is idempotent, so we don't need locks.
2440   // In the future consider doing this via os::init_2().
2441   // SyncKnobs consist of <Key>=<Value> pairs in the style
2442   // of environment variables.  Start by converting ':' to NUL.
2443 
2444   if (SyncKnobs == NULL) SyncKnobs = "" ;
2445 
2446   size_t sz = strlen (SyncKnobs) ;
2447   char * knobs = (char *) malloc (sz + 2) ;
2448   if (knobs == NULL) {
2449      vm_exit_out_of_memory (sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs") ;
2450      guarantee (0, "invariant") ;
2451   }
2452   strcpy (knobs, SyncKnobs) ;
2453   knobs[sz+1] = 0 ;
2454   for (char * p = knobs ; *p ; p++) {
2455      if (*p == ':') *p = 0 ;
2456   }
2457 
2458   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
2459   SETKNOB(ReportSettings) ;
2460   SETKNOB(Verbose) ;
2461   SETKNOB(FixedSpin) ;
2462   SETKNOB(SpinLimit) ;
2463   SETKNOB(SpinBase) ;
2464   SETKNOB(SpinBackOff);
2465   SETKNOB(CASPenalty) ;
2466   SETKNOB(OXPenalty) ;
2467   SETKNOB(LogSpins) ;
2468   SETKNOB(SpinSetSucc) ;
2469   SETKNOB(SuccEnabled) ;
2470   SETKNOB(SuccRestrict) ;
2471   SETKNOB(Penalty) ;
2472   SETKNOB(Bonus) ;
2473   SETKNOB(BonusB) ;
2474   SETKNOB(Poverty) ;
2475   SETKNOB(SpinAfterFutile) ;
2476   SETKNOB(UsePause) ;
2477   SETKNOB(SpinEarly) ;
2478   SETKNOB(OState) ;
2479   SETKNOB(MaxSpinners) ;
2480   SETKNOB(PreSpin) ;
2481   SETKNOB(ExitPolicy) ;
2482   SETKNOB(QMode);
2483   SETKNOB(ResetEvent) ;
2484   SETKNOB(MoveNotifyee) ;
2485   SETKNOB(FastHSSEC) ;
2486   #undef SETKNOB
2487 
2488   if (os::is_MP()) {
2489      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
2490      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
2491      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2492   } else {
2493      Knob_SpinLimit = 0 ;
2494      Knob_SpinBase  = 0 ;
2495      Knob_PreSpin   = 0 ;
2496      Knob_FixedSpin = -1 ;
2497   }
2498 
2499   if (Knob_LogSpins == 0) {
2500      ObjectMonitor::_sync_FailedSpins = NULL ;
2501   }
2502 
2503   free (knobs) ;
2504   OrderAccess::fence() ;
2505   InitDone = 1 ;
2506 }
2507 
2508 #ifndef PRODUCT
2509 void ObjectMonitor::verify() {
2510 }
2511 
2512 void ObjectMonitor::print() {
2513 }
2514 #endif