1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "gc_implementation/shared/vmGCOperations.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/allocation.inline.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/jvm.h"
  37 #include "prims/jvm_misc.hpp"
  38 #include "prims/privilegedStack.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/atomic.inline.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/interfaceSupport.hpp"
  43 #include "runtime/java.hpp"
  44 #include "runtime/javaCalls.hpp"
  45 #include "runtime/mutexLocker.hpp"
  46 #include "runtime/os.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/thread.inline.hpp"
  49 #include "services/attachListener.hpp"
  50 #include "services/memTracker.hpp"
  51 #include "services/threadService.hpp"
  52 #include "utilities/defaultStream.hpp"
  53 #include "utilities/events.hpp"
  54 #ifdef TARGET_OS_FAMILY_linux
  55 # include "os_linux.inline.hpp"
  56 #endif
  57 #ifdef TARGET_OS_FAMILY_solaris
  58 # include "os_solaris.inline.hpp"
  59 #endif
  60 #ifdef TARGET_OS_FAMILY_windows
  61 # include "os_windows.inline.hpp"
  62 #endif
  63 #ifdef TARGET_OS_FAMILY_bsd
  64 # include "os_bsd.inline.hpp"
  65 #endif
  66 
  67 # include <signal.h>
  68 
  69 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  70 
  71 OSThread*         os::_starting_thread    = NULL;
  72 address           os::_polling_page       = NULL;
  73 volatile int32_t* os::_mem_serialize_page = NULL;
  74 uintptr_t         os::_serialize_page_mask = 0;
  75 long              os::_rand_seed          = 1;
  76 int               os::_processor_count    = 0;
  77 size_t            os::_page_sizes[os::page_sizes_max];
  78 
  79 #ifndef PRODUCT
  80 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
  81 julong os::alloc_bytes = 0;         // # of bytes allocated
  82 julong os::num_frees = 0;           // # of calls to free
  83 julong os::free_bytes = 0;          // # of bytes freed
  84 #endif
  85 
  86 static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
  87 
  88 void os_init_globals() {
  89   // Called from init_globals().
  90   // See Threads::create_vm() in thread.cpp, and init.cpp.
  91   os::init_globals();
  92 }
  93 
  94 // Fill in buffer with current local time as an ISO-8601 string.
  95 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
  96 // Returns buffer, or NULL if it failed.
  97 // This would mostly be a call to
  98 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
  99 // except that on Windows the %z behaves badly, so we do it ourselves.
 100 // Also, people wanted milliseconds on there,
 101 // and strftime doesn't do milliseconds.
 102 char* os::iso8601_time(char* buffer, size_t buffer_length) {
 103   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
 104   //                                      1         2
 105   //                             12345678901234567890123456789
 106   static const char* iso8601_format =
 107     "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
 108   static const size_t needed_buffer = 29;
 109 
 110   // Sanity check the arguments
 111   if (buffer == NULL) {
 112     assert(false, "NULL buffer");
 113     return NULL;
 114   }
 115   if (buffer_length < needed_buffer) {
 116     assert(false, "buffer_length too small");
 117     return NULL;
 118   }
 119   // Get the current time
 120   jlong milliseconds_since_19700101 = javaTimeMillis();
 121   const int milliseconds_per_microsecond = 1000;
 122   const time_t seconds_since_19700101 =
 123     milliseconds_since_19700101 / milliseconds_per_microsecond;
 124   const int milliseconds_after_second =
 125     milliseconds_since_19700101 % milliseconds_per_microsecond;
 126   // Convert the time value to a tm and timezone variable
 127   struct tm time_struct;
 128   if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
 129     assert(false, "Failed localtime_pd");
 130     return NULL;
 131   }
 132 #if defined(_ALLBSD_SOURCE)
 133   const time_t zone = (time_t) time_struct.tm_gmtoff;
 134 #else
 135   const time_t zone = timezone;
 136 #endif
 137 
 138   // If daylight savings time is in effect,
 139   // we are 1 hour East of our time zone
 140   const time_t seconds_per_minute = 60;
 141   const time_t minutes_per_hour = 60;
 142   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
 143   time_t UTC_to_local = zone;
 144   if (time_struct.tm_isdst > 0) {
 145     UTC_to_local = UTC_to_local - seconds_per_hour;
 146   }
 147   // Compute the time zone offset.
 148   //    localtime_pd() sets timezone to the difference (in seconds)
 149   //    between UTC and and local time.
 150   //    ISO 8601 says we need the difference between local time and UTC,
 151   //    we change the sign of the localtime_pd() result.
 152   const time_t local_to_UTC = -(UTC_to_local);
 153   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
 154   char sign_local_to_UTC = '+';
 155   time_t abs_local_to_UTC = local_to_UTC;
 156   if (local_to_UTC < 0) {
 157     sign_local_to_UTC = '-';
 158     abs_local_to_UTC = -(abs_local_to_UTC);
 159   }
 160   // Convert time zone offset seconds to hours and minutes.
 161   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
 162   const time_t zone_min =
 163     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
 164 
 165   // Print an ISO 8601 date and time stamp into the buffer
 166   const int year = 1900 + time_struct.tm_year;
 167   const int month = 1 + time_struct.tm_mon;
 168   const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
 169                                    year,
 170                                    month,
 171                                    time_struct.tm_mday,
 172                                    time_struct.tm_hour,
 173                                    time_struct.tm_min,
 174                                    time_struct.tm_sec,
 175                                    milliseconds_after_second,
 176                                    sign_local_to_UTC,
 177                                    zone_hours,
 178                                    zone_min);
 179   if (printed == 0) {
 180     assert(false, "Failed jio_printf");
 181     return NULL;
 182   }
 183   return buffer;
 184 }
 185 
 186 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
 187 #ifdef ASSERT
 188   if (!(!thread->is_Java_thread() ||
 189          Thread::current() == thread  ||
 190          Threads_lock->owned_by_self()
 191          || thread->is_Compiler_thread()
 192         )) {
 193     assert(false, "possibility of dangling Thread pointer");
 194   }
 195 #endif
 196 
 197   if (p >= MinPriority && p <= MaxPriority) {
 198     int priority = java_to_os_priority[p];
 199     return set_native_priority(thread, priority);
 200   } else {
 201     assert(false, "Should not happen");
 202     return OS_ERR;
 203   }
 204 }
 205 
 206 // The mapping from OS priority back to Java priority may be inexact because
 207 // Java priorities can map M:1 with native priorities. If you want the definite
 208 // Java priority then use JavaThread::java_priority()
 209 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
 210   int p;
 211   int os_prio;
 212   OSReturn ret = get_native_priority(thread, &os_prio);
 213   if (ret != OS_OK) return ret;
 214 
 215   if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
 216     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
 217   } else {
 218     // niceness values are in reverse order
 219     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
 220   }
 221   priority = (ThreadPriority)p;
 222   return OS_OK;
 223 }
 224 
 225 
 226 // --------------------- sun.misc.Signal (optional) ---------------------
 227 
 228 
 229 // SIGBREAK is sent by the keyboard to query the VM state
 230 #ifndef SIGBREAK
 231 #define SIGBREAK SIGQUIT
 232 #endif
 233 
 234 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
 235 
 236 
 237 static void signal_thread_entry(JavaThread* thread, TRAPS) {
 238   os::set_priority(thread, NearMaxPriority);
 239   while (true) {
 240     int sig;
 241     {
 242       // FIXME : Currently we have not decided what should be the status
 243       //         for this java thread blocked here. Once we decide about
 244       //         that we should fix this.
 245       sig = os::signal_wait();
 246     }
 247     if (sig == os::sigexitnum_pd()) {
 248        // Terminate the signal thread
 249        return;
 250     }
 251 
 252     switch (sig) {
 253       case SIGBREAK: {
 254         // Check if the signal is a trigger to start the Attach Listener - in that
 255         // case don't print stack traces.
 256         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
 257           continue;
 258         }
 259         // Print stack traces
 260         // Any SIGBREAK operations added here should make sure to flush
 261         // the output stream (e.g. tty->flush()) after output.  See 4803766.
 262         // Each module also prints an extra carriage return after its output.
 263         VM_PrintThreads op;
 264         VMThread::execute(&op);
 265         VM_PrintJNI jni_op;
 266         VMThread::execute(&jni_op);
 267         VM_FindDeadlocks op1(tty);
 268         VMThread::execute(&op1);
 269         Universe::print_heap_at_SIGBREAK();
 270         if (PrintClassHistogram) {
 271           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
 272           VMThread::execute(&op1);
 273         }
 274         if (JvmtiExport::should_post_data_dump()) {
 275           JvmtiExport::post_data_dump();
 276         }
 277         break;
 278       }
 279       default: {
 280         // Dispatch the signal to java
 281         HandleMark hm(THREAD);
 282         Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
 283         KlassHandle klass (THREAD, k);
 284         if (klass.not_null()) {
 285           JavaValue result(T_VOID);
 286           JavaCallArguments args;
 287           args.push_int(sig);
 288           JavaCalls::call_static(
 289             &result,
 290             klass,
 291             vmSymbols::dispatch_name(),
 292             vmSymbols::int_void_signature(),
 293             &args,
 294             THREAD
 295           );
 296         }
 297         if (HAS_PENDING_EXCEPTION) {
 298           // tty is initialized early so we don't expect it to be null, but
 299           // if it is we can't risk doing an initialization that might
 300           // trigger additional out-of-memory conditions
 301           if (tty != NULL) {
 302             char klass_name[256];
 303             char tmp_sig_name[16];
 304             const char* sig_name = "UNKNOWN";
 305             InstanceKlass::cast(PENDING_EXCEPTION->klass())->
 306               name()->as_klass_external_name(klass_name, 256);
 307             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
 308               sig_name = tmp_sig_name;
 309             warning("Exception %s occurred dispatching signal %s to handler"
 310                     "- the VM may need to be forcibly terminated",
 311                     klass_name, sig_name );
 312           }
 313           CLEAR_PENDING_EXCEPTION;
 314         }
 315       }
 316     }
 317   }
 318 }
 319 
 320 void os::init_before_ergo() {
 321   // We need to initialize large page support here because ergonomics takes some
 322   // decisions depending on large page support and the calculated large page size.
 323   large_page_init();
 324 }
 325 
 326 void os::signal_init() {
 327   if (!ReduceSignalUsage) {
 328     // Setup JavaThread for processing signals
 329     EXCEPTION_MARK;
 330     Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
 331     instanceKlassHandle klass (THREAD, k);
 332     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
 333 
 334     const char thread_name[] = "Signal Dispatcher";
 335     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
 336 
 337     // Initialize thread_oop to put it into the system threadGroup
 338     Handle thread_group (THREAD, Universe::system_thread_group());
 339     JavaValue result(T_VOID);
 340     JavaCalls::call_special(&result, thread_oop,
 341                            klass,
 342                            vmSymbols::object_initializer_name(),
 343                            vmSymbols::threadgroup_string_void_signature(),
 344                            thread_group,
 345                            string,
 346                            CHECK);
 347 
 348     KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
 349     JavaCalls::call_special(&result,
 350                             thread_group,
 351                             group,
 352                             vmSymbols::add_method_name(),
 353                             vmSymbols::thread_void_signature(),
 354                             thread_oop,         // ARG 1
 355                             CHECK);
 356 
 357     os::signal_init_pd();
 358 
 359     { MutexLocker mu(Threads_lock);
 360       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
 361 
 362       // At this point it may be possible that no osthread was created for the
 363       // JavaThread due to lack of memory. We would have to throw an exception
 364       // in that case. However, since this must work and we do not allow
 365       // exceptions anyway, check and abort if this fails.
 366       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
 367         vm_exit_during_initialization("java.lang.OutOfMemoryError",
 368                                       os::native_thread_creation_failed_msg());
 369       }
 370 
 371       java_lang_Thread::set_thread(thread_oop(), signal_thread);
 372       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
 373       java_lang_Thread::set_daemon(thread_oop());
 374 
 375       signal_thread->set_threadObj(thread_oop());
 376       Threads::add(signal_thread);
 377       Thread::start(signal_thread);
 378     }
 379     // Handle ^BREAK
 380     os::signal(SIGBREAK, os::user_handler());
 381   }
 382 }
 383 
 384 
 385 void os::terminate_signal_thread() {
 386   if (!ReduceSignalUsage)
 387     signal_notify(sigexitnum_pd());
 388 }
 389 
 390 
 391 // --------------------- loading libraries ---------------------
 392 
 393 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
 394 extern struct JavaVM_ main_vm;
 395 
 396 static void* _native_java_library = NULL;
 397 
 398 void* os::native_java_library() {
 399   if (_native_java_library == NULL) {
 400     char buffer[JVM_MAXPATHLEN];
 401     char ebuf[1024];
 402 
 403     // Try to load verify dll first. In 1.3 java dll depends on it and is not
 404     // always able to find it when the loading executable is outside the JDK.
 405     // In order to keep working with 1.2 we ignore any loading errors.
 406     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 407                        "verify")) {
 408       dll_load(buffer, ebuf, sizeof(ebuf));
 409     }
 410 
 411     // Load java dll
 412     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 413                        "java")) {
 414       _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
 415     }
 416     if (_native_java_library == NULL) {
 417       vm_exit_during_initialization("Unable to load native library", ebuf);
 418     }
 419 
 420 #if defined(__OpenBSD__)
 421     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
 422     // ignore errors
 423     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 424                        "net")) {
 425       dll_load(buffer, ebuf, sizeof(ebuf));
 426     }
 427 #endif
 428   }
 429   static jboolean onLoaded = JNI_FALSE;
 430   if (onLoaded) {
 431     // We may have to wait to fire OnLoad until TLS is initialized.
 432     if (ThreadLocalStorage::is_initialized()) {
 433       // The JNI_OnLoad handling is normally done by method load in
 434       // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
 435       // explicitly so we have to check for JNI_OnLoad as well
 436       const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
 437       JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
 438           JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
 439       if (JNI_OnLoad != NULL) {
 440         JavaThread* thread = JavaThread::current();
 441         ThreadToNativeFromVM ttn(thread);
 442         HandleMark hm(thread);
 443         jint ver = (*JNI_OnLoad)(&main_vm, NULL);
 444         onLoaded = JNI_TRUE;
 445         if (!Threads::is_supported_jni_version_including_1_1(ver)) {
 446           vm_exit_during_initialization("Unsupported JNI version");
 447         }
 448       }
 449     }
 450   }
 451   return _native_java_library;
 452 }
 453 
 454 /*
 455  * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
 456  * If check_lib == true then we are looking for an
 457  * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
 458  * this library is statically linked into the image.
 459  * If check_lib == false then we will look for the appropriate symbol in the
 460  * executable if agent_lib->is_static_lib() == true or in the shared library
 461  * referenced by 'handle'.
 462  */
 463 void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
 464                               const char *syms[], size_t syms_len) {
 465   assert(agent_lib != NULL, "sanity check");
 466   const char *lib_name;
 467   void *handle = agent_lib->os_lib();
 468   void *entryName = NULL;
 469   char *agent_function_name;
 470   size_t i;
 471 
 472   // If checking then use the agent name otherwise test is_static_lib() to
 473   // see how to process this lookup
 474   lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
 475   for (i = 0; i < syms_len; i++) {
 476     agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
 477     if (agent_function_name == NULL) {
 478       break;
 479     }
 480     entryName = dll_lookup(handle, agent_function_name);
 481     FREE_C_HEAP_ARRAY(char, agent_function_name, mtThread);
 482     if (entryName != NULL) {
 483       break;
 484     }
 485   }
 486   return entryName;
 487 }
 488 
 489 // See if the passed in agent is statically linked into the VM image.
 490 bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
 491                             size_t syms_len) {
 492   void *ret;
 493   void *proc_handle;
 494   void *save_handle;
 495 
 496   assert(agent_lib != NULL, "sanity check");
 497   if (agent_lib->name() == NULL) {
 498     return false;
 499   }
 500   proc_handle = get_default_process_handle();
 501   // Check for Agent_OnLoad/Attach_lib_name function
 502   save_handle = agent_lib->os_lib();
 503   // We want to look in this process' symbol table.
 504   agent_lib->set_os_lib(proc_handle);
 505   ret = find_agent_function(agent_lib, true, syms, syms_len);
 506   if (ret != NULL) {
 507     // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
 508     agent_lib->set_valid();
 509     agent_lib->set_static_lib(true);
 510     return true;
 511   }
 512   agent_lib->set_os_lib(save_handle);
 513   return false;
 514 }
 515 
 516 // --------------------- heap allocation utilities ---------------------
 517 
 518 char *os::strdup(const char *str, MEMFLAGS flags) {
 519   size_t size = strlen(str);
 520   char *dup_str = (char *)malloc(size + 1, flags);
 521   if (dup_str == NULL) return NULL;
 522   strcpy(dup_str, str);
 523   return dup_str;
 524 }
 525 
 526 
 527 
 528 #ifdef ASSERT
 529 #define space_before             (MallocCushion + sizeof(double))
 530 #define space_after              MallocCushion
 531 #define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
 532 #define size_addr_from_obj(p)    ((size_t*)p - 1)
 533 // MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
 534 // NB: cannot be debug variable, because these aren't set from the command line until
 535 // *after* the first few allocs already happened
 536 #define MallocCushion            16
 537 #else
 538 #define space_before             0
 539 #define space_after              0
 540 #define size_addr_from_base(p)   should not use w/o ASSERT
 541 #define size_addr_from_obj(p)    should not use w/o ASSERT
 542 #define MallocCushion            0
 543 #endif
 544 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
 545 
 546 #ifdef ASSERT
 547 inline size_t get_size(void* obj) {
 548   size_t size = *size_addr_from_obj(obj);
 549   if (size < 0) {
 550     fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
 551                   SIZE_FORMAT ")", obj, size));
 552   }
 553   return size;
 554 }
 555 
 556 u_char* find_cushion_backwards(u_char* start) {
 557   u_char* p = start;
 558   while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
 559          p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
 560   // ok, we have four consecutive marker bytes; find start
 561   u_char* q = p - 4;
 562   while (*q == badResourceValue) q--;
 563   return q + 1;
 564 }
 565 
 566 u_char* find_cushion_forwards(u_char* start) {
 567   u_char* p = start;
 568   while (p[0] != badResourceValue || p[1] != badResourceValue ||
 569          p[2] != badResourceValue || p[3] != badResourceValue) p++;
 570   // ok, we have four consecutive marker bytes; find end of cushion
 571   u_char* q = p + 4;
 572   while (*q == badResourceValue) q++;
 573   return q - MallocCushion;
 574 }
 575 
 576 void print_neighbor_blocks(void* ptr) {
 577   // find block allocated before ptr (not entirely crash-proof)
 578   if (MallocCushion < 4) {
 579     tty->print_cr("### cannot find previous block (MallocCushion < 4)");
 580     return;
 581   }
 582   u_char* start_of_this_block = (u_char*)ptr - space_before;
 583   u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
 584   // look for cushion in front of prev. block
 585   u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
 586   ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
 587   u_char* obj = start_of_prev_block + space_before;
 588   if (size <= 0 ) {
 589     // start is bad; may have been confused by OS data in between objects
 590     // search one more backwards
 591     start_of_prev_block = find_cushion_backwards(start_of_prev_block);
 592     size = *size_addr_from_base(start_of_prev_block);
 593     obj = start_of_prev_block + space_before;
 594   }
 595 
 596   if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
 597     tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
 598   } else {
 599     tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
 600   }
 601 
 602   // now find successor block
 603   u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
 604   start_of_next_block = find_cushion_forwards(start_of_next_block);
 605   u_char* next_obj = start_of_next_block + space_before;
 606   ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
 607   if (start_of_next_block[0] == badResourceValue &&
 608       start_of_next_block[1] == badResourceValue &&
 609       start_of_next_block[2] == badResourceValue &&
 610       start_of_next_block[3] == badResourceValue) {
 611     tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
 612   } else {
 613     tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
 614   }
 615 }
 616 
 617 
 618 void report_heap_error(void* memblock, void* bad, const char* where) {
 619   tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
 620   tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock);
 621   print_neighbor_blocks(memblock);
 622   fatal("memory stomping error");
 623 }
 624 
 625 void verify_block(void* memblock) {
 626   size_t size = get_size(memblock);
 627   if (MallocCushion) {
 628     u_char* ptr = (u_char*)memblock - space_before;
 629     for (int i = 0; i < MallocCushion; i++) {
 630       if (ptr[i] != badResourceValue) {
 631         report_heap_error(memblock, ptr+i, "in front of");
 632       }
 633     }
 634     u_char* end = (u_char*)memblock + size + space_after;
 635     for (int j = -MallocCushion; j < 0; j++) {
 636       if (end[j] != badResourceValue) {
 637         report_heap_error(memblock, end+j, "after");
 638       }
 639     }
 640   }
 641 }
 642 #endif
 643 
 644 //
 645 // This function supports testing of the malloc out of memory
 646 // condition without really running the system out of memory.
 647 //
 648 static u_char* testMalloc(size_t alloc_size) {
 649   assert(MallocMaxTestWords > 0, "sanity check");
 650 
 651   if ((cur_malloc_words + (alloc_size / BytesPerWord)) > MallocMaxTestWords) {
 652     return NULL;
 653   }
 654 
 655   u_char* ptr = (u_char*)::malloc(alloc_size);
 656 
 657   if (ptr != NULL) {
 658     Atomic::add(((jint) (alloc_size / BytesPerWord)),
 659                 (volatile jint *) &cur_malloc_words);
 660   }
 661   return ptr;
 662 }
 663 
 664 void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
 665   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 666   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 667 
 668 #ifdef ASSERT
 669   // checking for the WatcherThread and crash_protection first
 670   // since os::malloc can be called when the libjvm.{dll,so} is
 671   // first loaded and we don't have a thread yet.
 672   // try to find the thread after we see that the watcher thread
 673   // exists and has crash protection.
 674   WatcherThread *wt = WatcherThread::watcher_thread();
 675   if (wt != NULL && wt->has_crash_protection()) {
 676     Thread* thread = ThreadLocalStorage::get_thread_slow();
 677     if (thread == wt) {
 678       assert(!wt->has_crash_protection(),
 679           "Can't malloc with crash protection from WatcherThread");
 680     }
 681   }
 682 #endif
 683 
 684   if (size == 0) {
 685     // return a valid pointer if size is zero
 686     // if NULL is returned the calling functions assume out of memory.
 687     size = 1;
 688   }
 689 
 690   const size_t alloc_size = size + space_before + space_after;
 691 
 692   if (size > alloc_size) { // Check for rollover.
 693     return NULL;
 694   }
 695 
 696   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 697 
 698   u_char* ptr;
 699 
 700   if (MallocMaxTestWords > 0) {
 701     ptr = testMalloc(alloc_size);
 702   } else {
 703     ptr = (u_char*)::malloc(alloc_size);
 704   }
 705 
 706 #ifdef ASSERT
 707   if (ptr == NULL) return NULL;
 708   if (MallocCushion) {
 709     for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
 710     u_char* end = ptr + space_before + size;
 711     for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
 712     for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
 713   }
 714   // put size just before data
 715   *size_addr_from_base(ptr) = size;
 716 #endif
 717   u_char* memblock = ptr + space_before;
 718   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 719     tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
 720     breakpoint();
 721   }
 722   debug_only(if (paranoid) verify_block(memblock));
 723   if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
 724 
 725   // we do not track MallocCushion memory
 726     MemTracker::record_malloc((address)memblock, size, memflags, caller == 0 ? CALLER_PC : caller);
 727 
 728   return memblock;
 729 }
 730 
 731 
 732 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
 733 #ifndef ASSERT
 734   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 735   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 736   MemTracker::Tracker tkr = MemTracker::get_realloc_tracker();
 737   void* ptr = ::realloc(memblock, size);
 738   if (ptr != NULL) {
 739     tkr.record((address)memblock, (address)ptr, size, memflags,
 740      caller == 0 ? CALLER_PC : caller);
 741   } else {
 742     tkr.discard();
 743   }
 744   return ptr;
 745 #else
 746   if (memblock == NULL) {
 747     return malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
 748   }
 749   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 750     tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
 751     breakpoint();
 752   }
 753   verify_block(memblock);
 754   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 755   if (size == 0) return NULL;
 756   // always move the block
 757   void* ptr = malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
 758   if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
 759   // Copy to new memory if malloc didn't fail
 760   if ( ptr != NULL ) {
 761     memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
 762     if (paranoid) verify_block(ptr);
 763     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
 764       tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
 765       breakpoint();
 766     }
 767     free(memblock);
 768   }
 769   return ptr;
 770 #endif
 771 }
 772 
 773 
 774 void  os::free(void *memblock, MEMFLAGS memflags) {
 775   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
 776 #ifdef ASSERT
 777   if (memblock == NULL) return;
 778   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 779     if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
 780     breakpoint();
 781   }
 782   verify_block(memblock);
 783   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 784   // Added by detlefs.
 785   if (MallocCushion) {
 786     u_char* ptr = (u_char*)memblock - space_before;
 787     for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
 788       guarantee(*p == badResourceValue,
 789                 "Thing freed should be malloc result.");
 790       *p = (u_char)freeBlockPad;
 791     }
 792     size_t size = get_size(memblock);
 793     inc_stat_counter(&free_bytes, size);
 794     u_char* end = ptr + space_before + size;
 795     for (u_char* q = end; q < end + MallocCushion; q++) {
 796       guarantee(*q == badResourceValue,
 797                 "Thing freed should be malloc result.");
 798       *q = (u_char)freeBlockPad;
 799     }
 800     if (PrintMalloc && tty != NULL)
 801       fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
 802   } else if (PrintMalloc && tty != NULL) {
 803     // tty->print_cr("os::free %p", memblock);
 804     fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock);
 805   }
 806 #endif
 807   MemTracker::record_free((address)memblock, memflags);
 808 
 809   ::free((char*)memblock - space_before);
 810 }
 811 
 812 void os::init_random(long initval) {
 813   _rand_seed = initval;
 814 }
 815 
 816 
 817 long os::random() {
 818   /* standard, well-known linear congruential random generator with
 819    * next_rand = (16807*seed) mod (2**31-1)
 820    * see
 821    * (1) "Random Number Generators: Good Ones Are Hard to Find",
 822    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
 823    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
 824    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
 825   */
 826   const long a = 16807;
 827   const unsigned long m = 2147483647;
 828   const long q = m / a;        assert(q == 127773, "weird math");
 829   const long r = m % a;        assert(r == 2836, "weird math");
 830 
 831   // compute az=2^31p+q
 832   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
 833   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
 834   lo += (hi & 0x7FFF) << 16;
 835 
 836   // if q overflowed, ignore the overflow and increment q
 837   if (lo > m) {
 838     lo &= m;
 839     ++lo;
 840   }
 841   lo += hi >> 15;
 842 
 843   // if (p+q) overflowed, ignore the overflow and increment (p+q)
 844   if (lo > m) {
 845     lo &= m;
 846     ++lo;
 847   }
 848   return (_rand_seed = lo);
 849 }
 850 
 851 // The INITIALIZED state is distinguished from the SUSPENDED state because the
 852 // conditions in which a thread is first started are different from those in which
 853 // a suspension is resumed.  These differences make it hard for us to apply the
 854 // tougher checks when starting threads that we want to do when resuming them.
 855 // However, when start_thread is called as a result of Thread.start, on a Java
 856 // thread, the operation is synchronized on the Java Thread object.  So there
 857 // cannot be a race to start the thread and hence for the thread to exit while
 858 // we are working on it.  Non-Java threads that start Java threads either have
 859 // to do so in a context in which races are impossible, or should do appropriate
 860 // locking.
 861 
 862 void os::start_thread(Thread* thread) {
 863   // guard suspend/resume
 864   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
 865   OSThread* osthread = thread->osthread();
 866   osthread->set_state(RUNNABLE);
 867   pd_start_thread(thread);
 868 }
 869 
 870 //---------------------------------------------------------------------------
 871 // Helper functions for fatal error handler
 872 
 873 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
 874   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
 875 
 876   int cols = 0;
 877   int cols_per_line = 0;
 878   switch (unitsize) {
 879     case 1: cols_per_line = 16; break;
 880     case 2: cols_per_line = 8;  break;
 881     case 4: cols_per_line = 4;  break;
 882     case 8: cols_per_line = 2;  break;
 883     default: return;
 884   }
 885 
 886   address p = start;
 887   st->print(PTR_FORMAT ":   ", start);
 888   while (p < end) {
 889     switch (unitsize) {
 890       case 1: st->print("%02x", *(u1*)p); break;
 891       case 2: st->print("%04x", *(u2*)p); break;
 892       case 4: st->print("%08x", *(u4*)p); break;
 893       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
 894     }
 895     p += unitsize;
 896     cols++;
 897     if (cols >= cols_per_line && p < end) {
 898        cols = 0;
 899        st->cr();
 900        st->print(PTR_FORMAT ":   ", p);
 901     } else {
 902        st->print(" ");
 903     }
 904   }
 905   st->cr();
 906 }
 907 
 908 void os::print_environment_variables(outputStream* st, const char** env_list,
 909                                      char* buffer, int len) {
 910   if (env_list) {
 911     st->print_cr("Environment Variables:");
 912 
 913     for (int i = 0; env_list[i] != NULL; i++) {
 914       if (getenv(env_list[i], buffer, len)) {
 915         st->print("%s", env_list[i]);
 916         st->print("=");
 917         st->print_cr("%s", buffer);
 918       }
 919     }
 920   }
 921 }
 922 
 923 void os::print_cpu_info(outputStream* st) {
 924   // cpu
 925   st->print("CPU:");
 926   st->print("total %d", os::processor_count());
 927   // It's not safe to query number of active processors after crash
 928   // st->print("(active %d)", os::active_processor_count());
 929   st->print(" %s", VM_Version::cpu_features());
 930   st->cr();
 931   pd_print_cpu_info(st);
 932 }
 933 
 934 void os::print_date_and_time(outputStream *st) {
 935   const int secs_per_day  = 86400;
 936   const int secs_per_hour = 3600;
 937   const int secs_per_min  = 60;
 938 
 939   time_t tloc;
 940   (void)time(&tloc);
 941   st->print("time: %s", ctime(&tloc));  // ctime adds newline.
 942 
 943   double t = os::elapsedTime();
 944   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
 945   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
 946   //       before printf. We lost some precision, but who cares?
 947   int eltime = (int)t;  // elapsed time in seconds
 948 
 949   // print elapsed time in a human-readable format:
 950   int eldays = eltime / secs_per_day;
 951   int day_secs = eldays * secs_per_day;
 952   int elhours = (eltime - day_secs) / secs_per_hour;
 953   int hour_secs = elhours * secs_per_hour;
 954   int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
 955   int minute_secs = elmins * secs_per_min;
 956   int elsecs = (eltime - day_secs - hour_secs - minute_secs);
 957   st->print_cr("elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
 958 }
 959 
 960 // moved from debug.cpp (used to be find()) but still called from there
 961 // The verbose parameter is only set by the debug code in one case
 962 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
 963   address addr = (address)x;
 964   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
 965   if (b != NULL) {
 966     if (b->is_buffer_blob()) {
 967       // the interpreter is generated into a buffer blob
 968       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
 969       if (i != NULL) {
 970         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
 971         i->print_on(st);
 972         return;
 973       }
 974       if (Interpreter::contains(addr)) {
 975         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
 976                      " (not bytecode specific)", addr);
 977         return;
 978       }
 979       //
 980       if (AdapterHandlerLibrary::contains(b)) {
 981         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
 982         AdapterHandlerLibrary::print_handler_on(st, b);
 983       }
 984       // the stubroutines are generated into a buffer blob
 985       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
 986       if (d != NULL) {
 987         st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
 988         d->print_on(st);
 989         st->cr();
 990         return;
 991       }
 992       if (StubRoutines::contains(addr)) {
 993         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
 994                      "stub routine", addr);
 995         return;
 996       }
 997       // the InlineCacheBuffer is using stubs generated into a buffer blob
 998       if (InlineCacheBuffer::contains(addr)) {
 999         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
1000         return;
1001       }
1002       VtableStub* v = VtableStubs::stub_containing(addr);
1003       if (v != NULL) {
1004         st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
1005         v->print_on(st);
1006         st->cr();
1007         return;
1008       }
1009     }
1010     nmethod* nm = b->as_nmethod_or_null();
1011     if (nm != NULL) {
1012       ResourceMark rm;
1013       st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
1014                 addr, (int)(addr - nm->entry_point()), nm);
1015       if (verbose) {
1016         st->print(" for ");
1017         nm->method()->print_value_on(st);
1018       }
1019       st->cr();
1020       nm->print_nmethod(verbose);
1021       return;
1022     }
1023     st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
1024     b->print_on(st);
1025     return;
1026   }
1027 
1028   if (Universe::heap()->is_in(addr)) {
1029     HeapWord* p = Universe::heap()->block_start(addr);
1030     bool print = false;
1031     // If we couldn't find it it just may mean that heap wasn't parsable
1032     // See if we were just given an oop directly
1033     if (p != NULL && Universe::heap()->block_is_obj(p)) {
1034       print = true;
1035     } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
1036       p = (HeapWord*) addr;
1037       print = true;
1038     }
1039     if (print) {
1040       if (p == (HeapWord*) addr) {
1041         st->print_cr(INTPTR_FORMAT " is an oop", addr);
1042       } else {
1043         st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
1044       }
1045       oop(p)->print_on(st);
1046       return;
1047     }
1048   } else {
1049     if (Universe::heap()->is_in_reserved(addr)) {
1050       st->print_cr(INTPTR_FORMAT " is an unallocated location "
1051                    "in the heap", addr);
1052       return;
1053     }
1054   }
1055   if (JNIHandles::is_global_handle((jobject) addr)) {
1056     st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
1057     return;
1058   }
1059   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
1060     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
1061     return;
1062   }
1063 #ifndef PRODUCT
1064   // we don't keep the block list in product mode
1065   if (JNIHandleBlock::any_contains((jobject) addr)) {
1066     st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
1067     return;
1068   }
1069 #endif
1070 
1071   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
1072     // Check for privilege stack
1073     if (thread->privileged_stack_top() != NULL &&
1074         thread->privileged_stack_top()->contains(addr)) {
1075       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
1076                    "for thread: " INTPTR_FORMAT, addr, thread);
1077       if (verbose) thread->print_on(st);
1078       return;
1079     }
1080     // If the addr is a java thread print information about that.
1081     if (addr == (address)thread) {
1082       if (verbose) {
1083         thread->print_on(st);
1084       } else {
1085         st->print_cr(INTPTR_FORMAT " is a thread", addr);
1086       }
1087       return;
1088     }
1089     // If the addr is in the stack region for this thread then report that
1090     // and print thread info
1091     if (thread->stack_base() >= addr &&
1092         addr > (thread->stack_base() - thread->stack_size())) {
1093       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1094                    INTPTR_FORMAT, addr, thread);
1095       if (verbose) thread->print_on(st);
1096       return;
1097     }
1098 
1099   }
1100 
1101   // Check if in metaspace and print types that have vptrs (only method now)
1102   if (Metaspace::contains(addr)) {
1103     if (Method::has_method_vptr((const void*)addr)) {
1104       ((Method*)addr)->print_value_on(st);
1105       st->cr();
1106     } else {
1107       // Use addr->print() from the debugger instead (not here)
1108       st->print_cr(INTPTR_FORMAT " is pointing into metadata", addr);
1109     }
1110     return;
1111   }
1112 
1113   // Try an OS specific find
1114   if (os::find(addr, st)) {
1115     return;
1116   }
1117 
1118   st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
1119 }
1120 
1121 // Looks like all platforms except IA64 can use the same function to check
1122 // if C stack is walkable beyond current frame. The check for fp() is not
1123 // necessary on Sparc, but it's harmless.
1124 bool os::is_first_C_frame(frame* fr) {
1125 #if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
1126   // On IA64 we have to check if the callers bsp is still valid
1127   // (i.e. within the register stack bounds).
1128   // Notice: this only works for threads created by the VM and only if
1129   // we walk the current stack!!! If we want to be able to walk
1130   // arbitrary other threads, we'll have to somehow store the thread
1131   // object in the frame.
1132   Thread *thread = Thread::current();
1133   if ((address)fr->fp() <=
1134       thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1135     // This check is a little hacky, because on Linux the first C
1136     // frame's ('start_thread') register stack frame starts at
1137     // "register_stack_base + 0x48" while on HPUX, the first C frame's
1138     // ('__pthread_bound_body') register stack frame seems to really
1139     // start at "register_stack_base".
1140     return true;
1141   } else {
1142     return false;
1143   }
1144 #elif defined(IA64) && defined(_WIN32)
1145   return true;
1146 #else
1147   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1148   // Check usp first, because if that's bad the other accessors may fault
1149   // on some architectures.  Ditto ufp second, etc.
1150   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1151   // sp on amd can be 32 bit aligned.
1152   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1153 
1154   uintptr_t usp    = (uintptr_t)fr->sp();
1155   if ((usp & sp_align_mask) != 0) return true;
1156 
1157   uintptr_t ufp    = (uintptr_t)fr->fp();
1158   if ((ufp & fp_align_mask) != 0) return true;
1159 
1160   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1161   if ((old_sp & sp_align_mask) != 0) return true;
1162   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1163 
1164   uintptr_t old_fp = (uintptr_t)fr->link();
1165   if ((old_fp & fp_align_mask) != 0) return true;
1166   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1167 
1168   // stack grows downwards; if old_fp is below current fp or if the stack
1169   // frame is too large, either the stack is corrupted or fp is not saved
1170   // on stack (i.e. on x86, ebp may be used as general register). The stack
1171   // is not walkable beyond current frame.
1172   if (old_fp < ufp) return true;
1173   if (old_fp - ufp > 64 * K) return true;
1174 
1175   return false;
1176 #endif
1177 }
1178 
1179 #ifdef ASSERT
1180 extern "C" void test_random() {
1181   const double m = 2147483647;
1182   double mean = 0.0, variance = 0.0, t;
1183   long reps = 10000;
1184   unsigned long seed = 1;
1185 
1186   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1187   os::init_random(seed);
1188   long num;
1189   for (int k = 0; k < reps; k++) {
1190     num = os::random();
1191     double u = (double)num / m;
1192     assert(u >= 0.0 && u <= 1.0, "bad random number!");
1193 
1194     // calculate mean and variance of the random sequence
1195     mean += u;
1196     variance += (u*u);
1197   }
1198   mean /= reps;
1199   variance /= (reps - 1);
1200 
1201   assert(num == 1043618065, "bad seed");
1202   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1203   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1204   const double eps = 0.0001;
1205   t = fabsd(mean - 0.5018);
1206   assert(t < eps, "bad mean");
1207   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1208   assert(t < eps, "bad variance");
1209 }
1210 #endif
1211 
1212 
1213 // Set up the boot classpath.
1214 
1215 char* os::format_boot_path(const char* format_string,
1216                            const char* home,
1217                            int home_len,
1218                            char fileSep,
1219                            char pathSep) {
1220     assert((fileSep == '/' && pathSep == ':') ||
1221            (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1222 
1223     // Scan the format string to determine the length of the actual
1224     // boot classpath, and handle platform dependencies as well.
1225     int formatted_path_len = 0;
1226     const char* p;
1227     for (p = format_string; *p != 0; ++p) {
1228         if (*p == '%') formatted_path_len += home_len - 1;
1229         ++formatted_path_len;
1230     }
1231 
1232     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1233     if (formatted_path == NULL) {
1234         return NULL;
1235     }
1236 
1237     // Create boot classpath from format, substituting separator chars and
1238     // java home directory.
1239     char* q = formatted_path;
1240     for (p = format_string; *p != 0; ++p) {
1241         switch (*p) {
1242         case '%':
1243             strcpy(q, home);
1244             q += home_len;
1245             break;
1246         case '/':
1247             *q++ = fileSep;
1248             break;
1249         case ':':
1250             *q++ = pathSep;
1251             break;
1252         default:
1253             *q++ = *p;
1254         }
1255     }
1256     *q = '\0';
1257 
1258     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1259     return formatted_path;
1260 }
1261 
1262 
1263 bool os::set_boot_path(char fileSep, char pathSep) {
1264     const char* home = Arguments::get_java_home();
1265     int home_len = (int)strlen(home);
1266 
1267     static const char* meta_index_dir_format = "%/lib/";
1268     static const char* meta_index_format = "%/lib/meta-index";
1269     char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
1270     if (meta_index == NULL) return false;
1271     char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
1272     if (meta_index_dir == NULL) return false;
1273     Arguments::set_meta_index_path(meta_index, meta_index_dir);
1274 
1275     // Any modification to the JAR-file list, for the boot classpath must be
1276     // aligned with install/install/make/common/Pack.gmk. Note: boot class
1277     // path class JARs, are stripped for StackMapTable to reduce download size.
1278     static const char classpath_format[] =
1279         "%/lib/resources.jar:"
1280         "%/lib/rt.jar:"
1281         "%/lib/sunrsasign.jar:"
1282         "%/lib/jsse.jar:"
1283         "%/lib/jce.jar:"
1284         "%/lib/charsets.jar:"
1285         "%/lib/jfr.jar:"
1286         "%/classes";
1287     char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
1288     if (sysclasspath == NULL) return false;
1289     Arguments::set_sysclasspath(sysclasspath);
1290 
1291     return true;
1292 }
1293 
1294 /*
1295  * Splits a path, based on its separator, the number of
1296  * elements is returned back in n.
1297  * It is the callers responsibility to:
1298  *   a> check the value of n, and n may be 0.
1299  *   b> ignore any empty path elements
1300  *   c> free up the data.
1301  */
1302 char** os::split_path(const char* path, int* n) {
1303   *n = 0;
1304   if (path == NULL || strlen(path) == 0) {
1305     return NULL;
1306   }
1307   const char psepchar = *os::path_separator();
1308   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1309   if (inpath == NULL) {
1310     return NULL;
1311   }
1312   strcpy(inpath, path);
1313   int count = 1;
1314   char* p = strchr(inpath, psepchar);
1315   // Get a count of elements to allocate memory
1316   while (p != NULL) {
1317     count++;
1318     p++;
1319     p = strchr(p, psepchar);
1320   }
1321   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1322   if (opath == NULL) {
1323     return NULL;
1324   }
1325 
1326   // do the actual splitting
1327   p = inpath;
1328   for (int i = 0 ; i < count ; i++) {
1329     size_t len = strcspn(p, os::path_separator());
1330     if (len > JVM_MAXPATHLEN) {
1331       return NULL;
1332     }
1333     // allocate the string and add terminator storage
1334     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1335     if (s == NULL) {
1336       return NULL;
1337     }
1338     strncpy(s, p, len);
1339     s[len] = '\0';
1340     opath[i] = s;
1341     p += len + 1;
1342   }
1343   FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
1344   *n = count;
1345   return opath;
1346 }
1347 
1348 void os::set_memory_serialize_page(address page) {
1349   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1350   _mem_serialize_page = (volatile int32_t *)page;
1351   // We initialize the serialization page shift count here
1352   // We assume a cache line size of 64 bytes
1353   assert(SerializePageShiftCount == count,
1354          "thread size changed, fix SerializePageShiftCount constant");
1355   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1356 }
1357 
1358 static volatile intptr_t SerializePageLock = 0;
1359 
1360 // This method is called from signal handler when SIGSEGV occurs while the current
1361 // thread tries to store to the "read-only" memory serialize page during state
1362 // transition.
1363 void os::block_on_serialize_page_trap() {
1364   if (TraceSafepoint) {
1365     tty->print_cr("Block until the serialize page permission restored");
1366   }
1367   // When VMThread is holding the SerializePageLock during modifying the
1368   // access permission of the memory serialize page, the following call
1369   // will block until the permission of that page is restored to rw.
1370   // Generally, it is unsafe to manipulate locks in signal handlers, but in
1371   // this case, it's OK as the signal is synchronous and we know precisely when
1372   // it can occur.
1373   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1374   Thread::muxRelease(&SerializePageLock);
1375 }
1376 
1377 // Serialize all thread state variables
1378 void os::serialize_thread_states() {
1379   // On some platforms such as Solaris & Linux, the time duration of the page
1380   // permission restoration is observed to be much longer than expected  due to
1381   // scheduler starvation problem etc. To avoid the long synchronization
1382   // time and expensive page trap spinning, 'SerializePageLock' is used to block
1383   // the mutator thread if such case is encountered. See bug 6546278 for details.
1384   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1385   os::protect_memory((char *)os::get_memory_serialize_page(),
1386                      os::vm_page_size(), MEM_PROT_READ);
1387   os::protect_memory((char *)os::get_memory_serialize_page(),
1388                      os::vm_page_size(), MEM_PROT_RW);
1389   Thread::muxRelease(&SerializePageLock);
1390 }
1391 
1392 // Returns true if the current stack pointer is above the stack shadow
1393 // pages, false otherwise.
1394 
1395 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
1396   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1397   address sp = current_stack_pointer();
1398   // Check if we have StackShadowPages above the yellow zone.  This parameter
1399   // is dependent on the depth of the maximum VM call stack possible from
1400   // the handler for stack overflow.  'instanceof' in the stack overflow
1401   // handler or a println uses at least 8k stack of VM and native code
1402   // respectively.
1403   const int framesize_in_bytes =
1404     Interpreter::size_top_interpreter_activation(method()) * wordSize;
1405   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
1406                       * vm_page_size()) + framesize_in_bytes;
1407   // The very lower end of the stack
1408   address stack_limit = thread->stack_base() - thread->stack_size();
1409   return (sp > (stack_limit + reserved_area));
1410 }
1411 
1412 size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
1413                                 uint min_pages)
1414 {
1415   assert(min_pages > 0, "sanity");
1416   if (UseLargePages) {
1417     const size_t max_page_size = region_max_size / min_pages;
1418 
1419     for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
1420       const size_t sz = _page_sizes[i];
1421       const size_t mask = sz - 1;
1422       if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
1423         // The largest page size with no fragmentation.
1424         return sz;
1425       }
1426 
1427       if (sz <= max_page_size) {
1428         // The largest page size that satisfies the min_pages requirement.
1429         return sz;
1430       }
1431     }
1432   }
1433 
1434   return vm_page_size();
1435 }
1436 
1437 #ifndef PRODUCT
1438 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1439 {
1440   if (TracePageSizes) {
1441     tty->print("%s: ", str);
1442     for (int i = 0; i < count; ++i) {
1443       tty->print(" " SIZE_FORMAT, page_sizes[i]);
1444     }
1445     tty->cr();
1446   }
1447 }
1448 
1449 void os::trace_page_sizes(const char* str, const size_t region_min_size,
1450                           const size_t region_max_size, const size_t page_size,
1451                           const char* base, const size_t size)
1452 {
1453   if (TracePageSizes) {
1454     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1455                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1456                   " size=" SIZE_FORMAT,
1457                   str, region_min_size, region_max_size,
1458                   page_size, base, size);
1459   }
1460 }
1461 #endif  // #ifndef PRODUCT
1462 
1463 // This is the working definition of a server class machine:
1464 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
1465 // because the graphics memory (?) sometimes masks physical memory.
1466 // If you want to change the definition of a server class machine
1467 // on some OS or platform, e.g., >=4GB on Windows platforms,
1468 // then you'll have to parameterize this method based on that state,
1469 // as was done for logical processors here, or replicate and
1470 // specialize this method for each platform.  (Or fix os to have
1471 // some inheritance structure and use subclassing.  Sigh.)
1472 // If you want some platform to always or never behave as a server
1473 // class machine, change the setting of AlwaysActAsServerClassMachine
1474 // and NeverActAsServerClassMachine in globals*.hpp.
1475 bool os::is_server_class_machine() {
1476   // First check for the early returns
1477   if (NeverActAsServerClassMachine) {
1478     return false;
1479   }
1480   if (AlwaysActAsServerClassMachine) {
1481     return true;
1482   }
1483   // Then actually look at the machine
1484   bool         result            = false;
1485   const unsigned int    server_processors = 2;
1486   const julong server_memory     = 2UL * G;
1487   // We seem not to get our full complement of memory.
1488   //     We allow some part (1/8?) of the memory to be "missing",
1489   //     based on the sizes of DIMMs, and maybe graphics cards.
1490   const julong missing_memory   = 256UL * M;
1491 
1492   /* Is this a server class machine? */
1493   if ((os::active_processor_count() >= (int)server_processors) &&
1494       (os::physical_memory() >= (server_memory - missing_memory))) {
1495     const unsigned int logical_processors =
1496       VM_Version::logical_processors_per_package();
1497     if (logical_processors > 1) {
1498       const unsigned int physical_packages =
1499         os::active_processor_count() / logical_processors;
1500       if (physical_packages > server_processors) {
1501         result = true;
1502       }
1503     } else {
1504       result = true;
1505     }
1506   }
1507   return result;
1508 }
1509 
1510 void os::SuspendedThreadTask::run() {
1511   assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1512   internal_do_task();
1513   _done = true;
1514 }
1515 
1516 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1517   return os::pd_create_stack_guard_pages(addr, bytes);
1518 }
1519 
1520 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1521   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1522   if (result != NULL) {
1523     MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1524   }
1525 
1526   return result;
1527 }
1528 
1529 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1530    MEMFLAGS flags) {
1531   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1532   if (result != NULL) {
1533     MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1534     MemTracker::record_virtual_memory_type((address)result, flags);
1535   }
1536 
1537   return result;
1538 }
1539 
1540 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1541   char* result = pd_attempt_reserve_memory_at(bytes, addr);
1542   if (result != NULL) {
1543     MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1544   }
1545   return result;
1546 }
1547 
1548 void os::split_reserved_memory(char *base, size_t size,
1549                                  size_t split, bool realloc) {
1550   pd_split_reserved_memory(base, size, split, realloc);
1551 }
1552 
1553 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1554   bool res = pd_commit_memory(addr, bytes, executable);
1555   if (res) {
1556     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1557   }
1558   return res;
1559 }
1560 
1561 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1562                               bool executable) {
1563   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1564   if (res) {
1565     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1566   }
1567   return res;
1568 }
1569 
1570 void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1571                                const char* mesg) {
1572   pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1573   MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1574 }
1575 
1576 void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1577                                bool executable, const char* mesg) {
1578   os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1579   MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1580 }
1581 
1582 bool os::uncommit_memory(char* addr, size_t bytes) {
1583   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1584   bool res = pd_uncommit_memory(addr, bytes);
1585   if (res) {
1586     tkr.record((address)addr, bytes);
1587   } else {
1588     tkr.discard();
1589   }
1590   return res;
1591 }
1592 
1593 bool os::release_memory(char* addr, size_t bytes) {
1594   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1595   bool res = pd_release_memory(addr, bytes);
1596   if (res) {
1597     tkr.record((address)addr, bytes);
1598   } else {
1599     tkr.discard();
1600   }
1601   return res;
1602 }
1603 
1604 
1605 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1606                            char *addr, size_t bytes, bool read_only,
1607                            bool allow_exec) {
1608   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1609   if (result != NULL) {
1610     MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, mtNone, CALLER_PC);
1611   }
1612   return result;
1613 }
1614 
1615 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1616                              char *addr, size_t bytes, bool read_only,
1617                              bool allow_exec) {
1618   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1619                     read_only, allow_exec);
1620 }
1621 
1622 bool os::unmap_memory(char *addr, size_t bytes) {
1623   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1624   bool result = pd_unmap_memory(addr, bytes);
1625   if (result) {
1626     tkr.record((address)addr, bytes);
1627   } else {
1628     tkr.discard();
1629   }
1630   return result;
1631 }
1632 
1633 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1634   pd_free_memory(addr, bytes, alignment_hint);
1635 }
1636 
1637 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1638   pd_realign_memory(addr, bytes, alignment_hint);
1639 }
1640 
1641 #ifndef TARGET_OS_FAMILY_windows
1642 /* try to switch state from state "from" to state "to"
1643  * returns the state set after the method is complete
1644  */
1645 os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1646                                                          os::SuspendResume::State to)
1647 {
1648   os::SuspendResume::State result =
1649     (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1650   if (result == from) {
1651     // success
1652     return to;
1653   }
1654   return result;
1655 }
1656 #endif