1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/interpreterRuntime.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/forte.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiRedefineClassesTrace.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "prims/nativeLookup.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/biasedLocking.hpp"
  48 #include "runtime/handles.inline.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/interfaceSupport.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/sharedRuntime.hpp"
  53 #include "runtime/stubRoutines.hpp"
  54 #include "runtime/vframe.hpp"
  55 #include "runtime/vframeArray.hpp"
  56 #include "utilities/copy.hpp"
  57 #include "utilities/dtrace.hpp"
  58 #include "utilities/events.hpp"
  59 #include "utilities/hashtable.inline.hpp"
  60 #include "utilities/macros.hpp"
  61 #include "utilities/xmlstream.hpp"
  62 #ifdef TARGET_ARCH_x86
  63 # include "nativeInst_x86.hpp"
  64 # include "vmreg_x86.inline.hpp"
  65 #endif
  66 #ifdef TARGET_ARCH_sparc
  67 # include "nativeInst_sparc.hpp"
  68 # include "vmreg_sparc.inline.hpp"
  69 #endif
  70 #ifdef TARGET_ARCH_zero
  71 # include "nativeInst_zero.hpp"
  72 # include "vmreg_zero.inline.hpp"
  73 #endif
  74 #ifdef TARGET_ARCH_arm
  75 # include "nativeInst_arm.hpp"
  76 # include "vmreg_arm.inline.hpp"
  77 #endif
  78 #ifdef TARGET_ARCH_ppc
  79 # include "nativeInst_ppc.hpp"
  80 # include "vmreg_ppc.inline.hpp"
  81 #endif
  82 #ifdef COMPILER1
  83 #include "c1/c1_Runtime1.hpp"
  84 #endif
  85 
  86 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  87 
  88 // Shared stub locations
  89 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  90 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  91 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  92 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  93 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  94 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  95 
  96 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  97 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  98 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  99 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
 100 
 101 #ifdef COMPILER2
 102 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 103 #endif // COMPILER2
 104 
 105 
 106 //----------------------------generate_stubs-----------------------------------
 107 void SharedRuntime::generate_stubs() {
 108   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 109   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 110   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 111   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 112   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 113   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 114 
 115 #ifdef COMPILER2
 116   // Vectors are generated only by C2.
 117   if (is_wide_vector(MaxVectorSize)) {
 118     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 119   }
 120 #endif // COMPILER2
 121   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 122   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 123 
 124   generate_deopt_blob();
 125 
 126 #ifdef COMPILER2
 127   generate_uncommon_trap_blob();
 128 #endif // COMPILER2
 129 }
 130 
 131 #include <math.h>
 132 
 133 // Implementation of SharedRuntime
 134 
 135 #ifndef PRODUCT
 136 // For statistics
 137 int SharedRuntime::_ic_miss_ctr = 0;
 138 int SharedRuntime::_wrong_method_ctr = 0;
 139 int SharedRuntime::_resolve_static_ctr = 0;
 140 int SharedRuntime::_resolve_virtual_ctr = 0;
 141 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 142 int SharedRuntime::_implicit_null_throws = 0;
 143 int SharedRuntime::_implicit_div0_throws = 0;
 144 int SharedRuntime::_throw_null_ctr = 0;
 145 
 146 int SharedRuntime::_nof_normal_calls = 0;
 147 int SharedRuntime::_nof_optimized_calls = 0;
 148 int SharedRuntime::_nof_inlined_calls = 0;
 149 int SharedRuntime::_nof_megamorphic_calls = 0;
 150 int SharedRuntime::_nof_static_calls = 0;
 151 int SharedRuntime::_nof_inlined_static_calls = 0;
 152 int SharedRuntime::_nof_interface_calls = 0;
 153 int SharedRuntime::_nof_optimized_interface_calls = 0;
 154 int SharedRuntime::_nof_inlined_interface_calls = 0;
 155 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 156 int SharedRuntime::_nof_removable_exceptions = 0;
 157 
 158 int SharedRuntime::_new_instance_ctr=0;
 159 int SharedRuntime::_new_array_ctr=0;
 160 int SharedRuntime::_multi1_ctr=0;
 161 int SharedRuntime::_multi2_ctr=0;
 162 int SharedRuntime::_multi3_ctr=0;
 163 int SharedRuntime::_multi4_ctr=0;
 164 int SharedRuntime::_multi5_ctr=0;
 165 int SharedRuntime::_mon_enter_stub_ctr=0;
 166 int SharedRuntime::_mon_exit_stub_ctr=0;
 167 int SharedRuntime::_mon_enter_ctr=0;
 168 int SharedRuntime::_mon_exit_ctr=0;
 169 int SharedRuntime::_partial_subtype_ctr=0;
 170 int SharedRuntime::_jbyte_array_copy_ctr=0;
 171 int SharedRuntime::_jshort_array_copy_ctr=0;
 172 int SharedRuntime::_jint_array_copy_ctr=0;
 173 int SharedRuntime::_jlong_array_copy_ctr=0;
 174 int SharedRuntime::_oop_array_copy_ctr=0;
 175 int SharedRuntime::_checkcast_array_copy_ctr=0;
 176 int SharedRuntime::_unsafe_array_copy_ctr=0;
 177 int SharedRuntime::_generic_array_copy_ctr=0;
 178 int SharedRuntime::_slow_array_copy_ctr=0;
 179 int SharedRuntime::_find_handler_ctr=0;
 180 int SharedRuntime::_rethrow_ctr=0;
 181 
 182 int     SharedRuntime::_ICmiss_index                    = 0;
 183 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 184 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 185 
 186 
 187 void SharedRuntime::trace_ic_miss(address at) {
 188   for (int i = 0; i < _ICmiss_index; i++) {
 189     if (_ICmiss_at[i] == at) {
 190       _ICmiss_count[i]++;
 191       return;
 192     }
 193   }
 194   int index = _ICmiss_index++;
 195   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 196   _ICmiss_at[index] = at;
 197   _ICmiss_count[index] = 1;
 198 }
 199 
 200 void SharedRuntime::print_ic_miss_histogram() {
 201   if (ICMissHistogram) {
 202     tty->print_cr ("IC Miss Histogram:");
 203     int tot_misses = 0;
 204     for (int i = 0; i < _ICmiss_index; i++) {
 205       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 206       tot_misses += _ICmiss_count[i];
 207     }
 208     tty->print_cr ("Total IC misses: %7d", tot_misses);
 209   }
 210 }
 211 #endif // PRODUCT
 212 
 213 #if INCLUDE_ALL_GCS
 214 
 215 // G1 write-barrier pre: executed before a pointer store.
 216 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 217   if (orig == NULL) {
 218     assert(false, "should be optimized out");
 219     return;
 220   }
 221   assert(orig->is_oop(true /* ignore mark word */), "Error");
 222   // store the original value that was in the field reference
 223   thread->satb_mark_queue().enqueue(orig);
 224 JRT_END
 225 
 226 // G1 write-barrier post: executed after a pointer store.
 227 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 228   thread->dirty_card_queue().enqueue(card_addr);
 229 JRT_END
 230 
 231 #endif // INCLUDE_ALL_GCS
 232 
 233 
 234 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 235   return x * y;
 236 JRT_END
 237 
 238 
 239 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 240   if (x == min_jlong && y == CONST64(-1)) {
 241     return x;
 242   } else {
 243     return x / y;
 244   }
 245 JRT_END
 246 
 247 
 248 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 249   if (x == min_jlong && y == CONST64(-1)) {
 250     return 0;
 251   } else {
 252     return x % y;
 253   }
 254 JRT_END
 255 
 256 
 257 const juint  float_sign_mask  = 0x7FFFFFFF;
 258 const juint  float_infinity   = 0x7F800000;
 259 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 260 const julong double_infinity  = CONST64(0x7FF0000000000000);
 261 
 262 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 263 #ifdef _WIN64
 264   // 64-bit Windows on amd64 returns the wrong values for
 265   // infinity operands.
 266   union { jfloat f; juint i; } xbits, ybits;
 267   xbits.f = x;
 268   ybits.f = y;
 269   // x Mod Infinity == x unless x is infinity
 270   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 271        ((ybits.i & float_sign_mask) == float_infinity) ) {
 272     return x;
 273   }
 274 #endif
 275   return ((jfloat)fmod((double)x,(double)y));
 276 JRT_END
 277 
 278 
 279 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 280 #ifdef _WIN64
 281   union { jdouble d; julong l; } xbits, ybits;
 282   xbits.d = x;
 283   ybits.d = y;
 284   // x Mod Infinity == x unless x is infinity
 285   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 286        ((ybits.l & double_sign_mask) == double_infinity) ) {
 287     return x;
 288   }
 289 #endif
 290   return ((jdouble)fmod((double)x,(double)y));
 291 JRT_END
 292 
 293 #ifdef __SOFTFP__
 294 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 295   return x + y;
 296 JRT_END
 297 
 298 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 299   return x - y;
 300 JRT_END
 301 
 302 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 303   return x * y;
 304 JRT_END
 305 
 306 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 307   return x / y;
 308 JRT_END
 309 
 310 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 311   return x + y;
 312 JRT_END
 313 
 314 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 315   return x - y;
 316 JRT_END
 317 
 318 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 319   return x * y;
 320 JRT_END
 321 
 322 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 323   return x / y;
 324 JRT_END
 325 
 326 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 327   return (jfloat)x;
 328 JRT_END
 329 
 330 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 331   return (jdouble)x;
 332 JRT_END
 333 
 334 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 335   return (jdouble)x;
 336 JRT_END
 337 
 338 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 339   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 340 JRT_END
 341 
 342 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 343   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 344 JRT_END
 345 
 346 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 347   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 348 JRT_END
 349 
 350 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 351   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 352 JRT_END
 353 
 354 // Functions to return the opposite of the aeabi functions for nan.
 355 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 356   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 357 JRT_END
 358 
 359 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 360   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 361 JRT_END
 362 
 363 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 364   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 365 JRT_END
 366 
 367 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 368   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 369 JRT_END
 370 
 371 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 372   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 373 JRT_END
 374 
 375 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 376   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 377 JRT_END
 378 
 379 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 380   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 381 JRT_END
 382 
 383 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 384   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 385 JRT_END
 386 
 387 // Intrinsics make gcc generate code for these.
 388 float  SharedRuntime::fneg(float f)   {
 389   return -f;
 390 }
 391 
 392 double SharedRuntime::dneg(double f)  {
 393   return -f;
 394 }
 395 
 396 #endif // __SOFTFP__
 397 
 398 #if defined(__SOFTFP__) || defined(E500V2)
 399 // Intrinsics make gcc generate code for these.
 400 double SharedRuntime::dabs(double f)  {
 401   return (f <= (double)0.0) ? (double)0.0 - f : f;
 402 }
 403 
 404 #endif
 405 
 406 #if defined(__SOFTFP__) || defined(PPC32)
 407 double SharedRuntime::dsqrt(double f) {
 408   return sqrt(f);
 409 }
 410 #endif
 411 
 412 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 413   if (g_isnan(x))
 414     return 0;
 415   if (x >= (jfloat) max_jint)
 416     return max_jint;
 417   if (x <= (jfloat) min_jint)
 418     return min_jint;
 419   return (jint) x;
 420 JRT_END
 421 
 422 
 423 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 424   if (g_isnan(x))
 425     return 0;
 426   if (x >= (jfloat) max_jlong)
 427     return max_jlong;
 428   if (x <= (jfloat) min_jlong)
 429     return min_jlong;
 430   return (jlong) x;
 431 JRT_END
 432 
 433 
 434 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 435   if (g_isnan(x))
 436     return 0;
 437   if (x >= (jdouble) max_jint)
 438     return max_jint;
 439   if (x <= (jdouble) min_jint)
 440     return min_jint;
 441   return (jint) x;
 442 JRT_END
 443 
 444 
 445 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 446   if (g_isnan(x))
 447     return 0;
 448   if (x >= (jdouble) max_jlong)
 449     return max_jlong;
 450   if (x <= (jdouble) min_jlong)
 451     return min_jlong;
 452   return (jlong) x;
 453 JRT_END
 454 
 455 
 456 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 457   return (jfloat)x;
 458 JRT_END
 459 
 460 
 461 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 462   return (jfloat)x;
 463 JRT_END
 464 
 465 
 466 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 467   return (jdouble)x;
 468 JRT_END
 469 
 470 // Exception handling across interpreter/compiler boundaries
 471 //
 472 // exception_handler_for_return_address(...) returns the continuation address.
 473 // The continuation address is the entry point of the exception handler of the
 474 // previous frame depending on the return address.
 475 
 476 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 477   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 478 
 479   // Reset method handle flag.
 480   thread->set_is_method_handle_return(false);
 481 
 482   // The fastest case first
 483   CodeBlob* blob = CodeCache::find_blob(return_address);
 484   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 485   if (nm != NULL) {
 486     // Set flag if return address is a method handle call site.
 487     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 488     // native nmethods don't have exception handlers
 489     assert(!nm->is_native_method(), "no exception handler");
 490     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 491     if (nm->is_deopt_pc(return_address)) {
 492       // If we come here because of a stack overflow, the stack may be
 493       // unguarded. Reguard the stack otherwise if we return to the
 494       // deopt blob and the stack bang causes a stack overflow we
 495       // crash.
 496       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 497       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 498       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 499       return SharedRuntime::deopt_blob()->unpack_with_exception();
 500     } else {
 501       return nm->exception_begin();
 502     }
 503   }
 504 
 505   // Entry code
 506   if (StubRoutines::returns_to_call_stub(return_address)) {
 507     return StubRoutines::catch_exception_entry();
 508   }
 509   // Interpreted code
 510   if (Interpreter::contains(return_address)) {
 511     return Interpreter::rethrow_exception_entry();
 512   }
 513 
 514   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 515   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 516 
 517 #ifndef PRODUCT
 518   { ResourceMark rm;
 519     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 520     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 521     tty->print_cr("b) other problem");
 522   }
 523 #endif // PRODUCT
 524 
 525   ShouldNotReachHere();
 526   return NULL;
 527 }
 528 
 529 
 530 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 531   return raw_exception_handler_for_return_address(thread, return_address);
 532 JRT_END
 533 
 534 
 535 address SharedRuntime::get_poll_stub(address pc) {
 536   address stub;
 537   // Look up the code blob
 538   CodeBlob *cb = CodeCache::find_blob(pc);
 539 
 540   // Should be an nmethod
 541   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 542 
 543   // Look up the relocation information
 544   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 545     "safepoint polling: type must be poll" );
 546 
 547   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 548     "Only polling locations are used for safepoint");
 549 
 550   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 551   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 552   if (at_poll_return) {
 553     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 554            "polling page return stub not created yet");
 555     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 556   } else if (has_wide_vectors) {
 557     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 558            "polling page vectors safepoint stub not created yet");
 559     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 560   } else {
 561     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 562            "polling page safepoint stub not created yet");
 563     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 564   }
 565 #ifndef PRODUCT
 566   if( TraceSafepoint ) {
 567     char buf[256];
 568     jio_snprintf(buf, sizeof(buf),
 569                  "... found polling page %s exception at pc = "
 570                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 571                  at_poll_return ? "return" : "loop",
 572                  (intptr_t)pc, (intptr_t)stub);
 573     tty->print_raw_cr(buf);
 574   }
 575 #endif // PRODUCT
 576   return stub;
 577 }
 578 
 579 
 580 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 581   assert(caller.is_interpreted_frame(), "");
 582   int args_size = ArgumentSizeComputer(sig).size() + 1;
 583   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 584   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 585   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 586   return result;
 587 }
 588 
 589 
 590 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 591   if (JvmtiExport::can_post_on_exceptions()) {
 592     vframeStream vfst(thread, true);
 593     methodHandle method = methodHandle(thread, vfst.method());
 594     address bcp = method()->bcp_from(vfst.bci());
 595     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 596   }
 597   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 598 }
 599 
 600 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 601   Handle h_exception = Exceptions::new_exception(thread, name, message);
 602   throw_and_post_jvmti_exception(thread, h_exception);
 603 }
 604 
 605 // The interpreter code to call this tracing function is only
 606 // called/generated when TraceRedefineClasses has the right bits
 607 // set. Since obsolete methods are never compiled, we don't have
 608 // to modify the compilers to generate calls to this function.
 609 //
 610 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 611     JavaThread* thread, Method* method))
 612   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 613 
 614   if (method->is_obsolete()) {
 615     // We are calling an obsolete method, but this is not necessarily
 616     // an error. Our method could have been redefined just after we
 617     // fetched the Method* from the constant pool.
 618 
 619     // RC_TRACE macro has an embedded ResourceMark
 620     RC_TRACE_WITH_THREAD(0x00001000, thread,
 621                          ("calling obsolete method '%s'",
 622                           method->name_and_sig_as_C_string()));
 623     if (RC_TRACE_ENABLED(0x00002000)) {
 624       // this option is provided to debug calls to obsolete methods
 625       guarantee(false, "faulting at call to an obsolete method.");
 626     }
 627   }
 628   return 0;
 629 JRT_END
 630 
 631 // ret_pc points into caller; we are returning caller's exception handler
 632 // for given exception
 633 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 634                                                     bool force_unwind, bool top_frame_only) {
 635   assert(nm != NULL, "must exist");
 636   ResourceMark rm;
 637 
 638   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 639   // determine handler bci, if any
 640   EXCEPTION_MARK;
 641 
 642   int handler_bci = -1;
 643   int scope_depth = 0;
 644   if (!force_unwind) {
 645     int bci = sd->bci();
 646     bool recursive_exception = false;
 647     do {
 648       bool skip_scope_increment = false;
 649       // exception handler lookup
 650       KlassHandle ek (THREAD, exception->klass());
 651       methodHandle mh(THREAD, sd->method());
 652       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 653       if (HAS_PENDING_EXCEPTION) {
 654         recursive_exception = true;
 655         // We threw an exception while trying to find the exception handler.
 656         // Transfer the new exception to the exception handle which will
 657         // be set into thread local storage, and do another lookup for an
 658         // exception handler for this exception, this time starting at the
 659         // BCI of the exception handler which caused the exception to be
 660         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 661         // argument to ensure that the correct exception is thrown (4870175).
 662         exception = Handle(THREAD, PENDING_EXCEPTION);
 663         CLEAR_PENDING_EXCEPTION;
 664         if (handler_bci >= 0) {
 665           bci = handler_bci;
 666           handler_bci = -1;
 667           skip_scope_increment = true;
 668         }
 669       }
 670       else {
 671         recursive_exception = false;
 672       }
 673       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 674         sd = sd->sender();
 675         if (sd != NULL) {
 676           bci = sd->bci();
 677         }
 678         ++scope_depth;
 679       }
 680     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 681   }
 682 
 683   // found handling method => lookup exception handler
 684   int catch_pco = ret_pc - nm->code_begin();
 685 
 686   ExceptionHandlerTable table(nm);
 687   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 688   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 689     // Allow abbreviated catch tables.  The idea is to allow a method
 690     // to materialize its exceptions without committing to the exact
 691     // routing of exceptions.  In particular this is needed for adding
 692     // a synthetic handler to unlock monitors when inlining
 693     // synchronized methods since the unlock path isn't represented in
 694     // the bytecodes.
 695     t = table.entry_for(catch_pco, -1, 0);
 696   }
 697 
 698 #ifdef COMPILER1
 699   if (t == NULL && nm->is_compiled_by_c1()) {
 700     assert(nm->unwind_handler_begin() != NULL, "");
 701     return nm->unwind_handler_begin();
 702   }
 703 #endif
 704 
 705   if (t == NULL) {
 706     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 707     tty->print_cr("   Exception:");
 708     exception->print();
 709     tty->cr();
 710     tty->print_cr(" Compiled exception table :");
 711     table.print();
 712     nm->print_code();
 713     guarantee(false, "missing exception handler");
 714     return NULL;
 715   }
 716 
 717   return nm->code_begin() + t->pco();
 718 }
 719 
 720 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 721   // These errors occur only at call sites
 722   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 723 JRT_END
 724 
 725 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 726   // These errors occur only at call sites
 727   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 728 JRT_END
 729 
 730 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 731   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 732 JRT_END
 733 
 734 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 735   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 736 JRT_END
 737 
 738 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 739   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 740   // cache sites (when the callee activation is not yet set up) so we are at a call site
 741   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 742 JRT_END
 743 
 744 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 745   // We avoid using the normal exception construction in this case because
 746   // it performs an upcall to Java, and we're already out of stack space.
 747   Klass* k = SystemDictionary::StackOverflowError_klass();
 748   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 749   Handle exception (thread, exception_oop);
 750   if (StackTraceInThrowable) {
 751     java_lang_Throwable::fill_in_stack_trace(exception);
 752   }
 753   throw_and_post_jvmti_exception(thread, exception);
 754 JRT_END
 755 
 756 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 757                                                            address pc,
 758                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 759 {
 760   address target_pc = NULL;
 761 
 762   if (Interpreter::contains(pc)) {
 763 #ifdef CC_INTERP
 764     // C++ interpreter doesn't throw implicit exceptions
 765     ShouldNotReachHere();
 766 #else
 767     switch (exception_kind) {
 768       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 769       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 770       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 771       default:                      ShouldNotReachHere();
 772     }
 773 #endif // !CC_INTERP
 774   } else {
 775     switch (exception_kind) {
 776       case STACK_OVERFLOW: {
 777         // Stack overflow only occurs upon frame setup; the callee is
 778         // going to be unwound. Dispatch to a shared runtime stub
 779         // which will cause the StackOverflowError to be fabricated
 780         // and processed.
 781         // Stack overflow should never occur during deoptimization:
 782         // the compiled method bangs the stack by as much as the
 783         // interpreter would need in case of a deoptimization. The
 784         // deoptimization blob and uncommon trap blob bang the stack
 785         // in a debug VM to verify the correctness of the compiled
 786         // method stack banging.
 787         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 788         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 789         return StubRoutines::throw_StackOverflowError_entry();
 790       }
 791 
 792       case IMPLICIT_NULL: {
 793         if (VtableStubs::contains(pc)) {
 794           // We haven't yet entered the callee frame. Fabricate an
 795           // exception and begin dispatching it in the caller. Since
 796           // the caller was at a call site, it's safe to destroy all
 797           // caller-saved registers, as these entry points do.
 798           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 799 
 800           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 801           if (vt_stub == NULL) return NULL;
 802 
 803           if (vt_stub->is_abstract_method_error(pc)) {
 804             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 805             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 806             return StubRoutines::throw_AbstractMethodError_entry();
 807           } else {
 808             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 809             return StubRoutines::throw_NullPointerException_at_call_entry();
 810           }
 811         } else {
 812           CodeBlob* cb = CodeCache::find_blob(pc);
 813 
 814           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 815           if (cb == NULL) return NULL;
 816 
 817           // Exception happened in CodeCache. Must be either:
 818           // 1. Inline-cache check in C2I handler blob,
 819           // 2. Inline-cache check in nmethod, or
 820           // 3. Implicit null exception in nmethod
 821 
 822           if (!cb->is_nmethod()) {
 823             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 824             if (!is_in_blob) {
 825               cb->print();
 826               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
 827             }
 828             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 829             // There is no handler here, so we will simply unwind.
 830             return StubRoutines::throw_NullPointerException_at_call_entry();
 831           }
 832 
 833           // Otherwise, it's an nmethod.  Consult its exception handlers.
 834           nmethod* nm = (nmethod*)cb;
 835           if (nm->inlinecache_check_contains(pc)) {
 836             // exception happened inside inline-cache check code
 837             // => the nmethod is not yet active (i.e., the frame
 838             // is not set up yet) => use return address pushed by
 839             // caller => don't push another return address
 840             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 841             return StubRoutines::throw_NullPointerException_at_call_entry();
 842           }
 843 
 844           if (nm->method()->is_method_handle_intrinsic()) {
 845             // exception happened inside MH dispatch code, similar to a vtable stub
 846             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 847             return StubRoutines::throw_NullPointerException_at_call_entry();
 848           }
 849 
 850 #ifndef PRODUCT
 851           _implicit_null_throws++;
 852 #endif
 853           target_pc = nm->continuation_for_implicit_exception(pc);
 854           // If there's an unexpected fault, target_pc might be NULL,
 855           // in which case we want to fall through into the normal
 856           // error handling code.
 857         }
 858 
 859         break; // fall through
 860       }
 861 
 862 
 863       case IMPLICIT_DIVIDE_BY_ZERO: {
 864         nmethod* nm = CodeCache::find_nmethod(pc);
 865         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 866 #ifndef PRODUCT
 867         _implicit_div0_throws++;
 868 #endif
 869         target_pc = nm->continuation_for_implicit_exception(pc);
 870         // If there's an unexpected fault, target_pc might be NULL,
 871         // in which case we want to fall through into the normal
 872         // error handling code.
 873         break; // fall through
 874       }
 875 
 876       default: ShouldNotReachHere();
 877     }
 878 
 879     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 880 
 881     // for AbortVMOnException flag
 882     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 883     if (exception_kind == IMPLICIT_NULL) {
 884       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 885     } else {
 886       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 887     }
 888     return target_pc;
 889   }
 890 
 891   ShouldNotReachHere();
 892   return NULL;
 893 }
 894 
 895 
 896 /**
 897  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 898  * installed in the native function entry of all native Java methods before
 899  * they get linked to their actual native methods.
 900  *
 901  * \note
 902  * This method actually never gets called!  The reason is because
 903  * the interpreter's native entries call NativeLookup::lookup() which
 904  * throws the exception when the lookup fails.  The exception is then
 905  * caught and forwarded on the return from NativeLookup::lookup() call
 906  * before the call to the native function.  This might change in the future.
 907  */
 908 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 909 {
 910   // We return a bad value here to make sure that the exception is
 911   // forwarded before we look at the return value.
 912   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 913 }
 914 JNI_END
 915 
 916 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 917   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 918 }
 919 
 920 
 921 #ifndef PRODUCT
 922 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 923   const frame f = thread->last_frame();
 924   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 925 #ifndef PRODUCT
 926   methodHandle mh(THREAD, f.interpreter_frame_method());
 927   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 928 #endif // !PRODUCT
 929   return preserve_this_value;
 930 JRT_END
 931 #endif // !PRODUCT
 932 
 933 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 934   assert(obj->is_oop(), "must be a valid oop");
 935   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 936   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 937 JRT_END
 938 
 939 
 940 jlong SharedRuntime::get_java_tid(Thread* thread) {
 941   if (thread != NULL) {
 942     if (thread->is_Java_thread()) {
 943       oop obj = ((JavaThread*)thread)->threadObj();
 944       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 945     }
 946   }
 947   return 0;
 948 }
 949 
 950 /**
 951  * This function ought to be a void function, but cannot be because
 952  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 953  * 6254741.  Once that is fixed we can remove the dummy return value.
 954  */
 955 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 956   return dtrace_object_alloc_base(Thread::current(), o, size);
 957 }
 958 
 959 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 960   assert(DTraceAllocProbes, "wrong call");
 961   Klass* klass = o->klass();
 962   Symbol* name = klass->name();
 963   HOTSPOT_OBJECT_ALLOC(
 964                    get_java_tid(thread),
 965                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 966   return 0;
 967 }
 968 
 969 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 970     JavaThread* thread, Method* method))
 971   assert(DTraceMethodProbes, "wrong call");
 972   Symbol* kname = method->klass_name();
 973   Symbol* name = method->name();
 974   Symbol* sig = method->signature();
 975   HOTSPOT_METHOD_ENTRY(
 976       get_java_tid(thread),
 977       (char *) kname->bytes(), kname->utf8_length(),
 978       (char *) name->bytes(), name->utf8_length(),
 979       (char *) sig->bytes(), sig->utf8_length());
 980   return 0;
 981 JRT_END
 982 
 983 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 984     JavaThread* thread, Method* method))
 985   assert(DTraceMethodProbes, "wrong call");
 986   Symbol* kname = method->klass_name();
 987   Symbol* name = method->name();
 988   Symbol* sig = method->signature();
 989   HOTSPOT_METHOD_RETURN(
 990       get_java_tid(thread),
 991       (char *) kname->bytes(), kname->utf8_length(),
 992       (char *) name->bytes(), name->utf8_length(),
 993       (char *) sig->bytes(), sig->utf8_length());
 994   return 0;
 995 JRT_END
 996 
 997 
 998 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
 999 // for a call current in progress, i.e., arguments has been pushed on stack
1000 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1001 // vtable updates, etc.  Caller frame must be compiled.
1002 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1003   ResourceMark rm(THREAD);
1004 
1005   // last java frame on stack (which includes native call frames)
1006   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1007 
1008   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1009 }
1010 
1011 
1012 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1013 // for a call current in progress, i.e., arguments has been pushed on stack
1014 // but callee has not been invoked yet.  Caller frame must be compiled.
1015 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1016                                               vframeStream& vfst,
1017                                               Bytecodes::Code& bc,
1018                                               CallInfo& callinfo, TRAPS) {
1019   Handle receiver;
1020   Handle nullHandle;  //create a handy null handle for exception returns
1021 
1022   assert(!vfst.at_end(), "Java frame must exist");
1023 
1024   // Find caller and bci from vframe
1025   methodHandle caller(THREAD, vfst.method());
1026   int          bci   = vfst.bci();
1027 
1028   // Find bytecode
1029   Bytecode_invoke bytecode(caller, bci);
1030   bc = bytecode.invoke_code();
1031   int bytecode_index = bytecode.index();
1032 
1033   // Find receiver for non-static call
1034   if (bc != Bytecodes::_invokestatic &&
1035       bc != Bytecodes::_invokedynamic &&
1036       bc != Bytecodes::_invokehandle) {
1037     // This register map must be update since we need to find the receiver for
1038     // compiled frames. The receiver might be in a register.
1039     RegisterMap reg_map2(thread);
1040     frame stubFrame   = thread->last_frame();
1041     // Caller-frame is a compiled frame
1042     frame callerFrame = stubFrame.sender(&reg_map2);
1043 
1044     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1045     if (callee.is_null()) {
1046       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1047     }
1048     // Retrieve from a compiled argument list
1049     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1050 
1051     if (receiver.is_null()) {
1052       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1053     }
1054   }
1055 
1056   // Resolve method. This is parameterized by bytecode.
1057   constantPoolHandle constants(THREAD, caller->constants());
1058   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1059   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1060 
1061 #ifdef ASSERT
1062   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1063   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1064     assert(receiver.not_null(), "should have thrown exception");
1065     KlassHandle receiver_klass(THREAD, receiver->klass());
1066     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1067                             // klass is already loaded
1068     KlassHandle static_receiver_klass(THREAD, rk);
1069     // Method handle invokes might have been optimized to a direct call
1070     // so don't check for the receiver class.
1071     // FIXME this weakens the assert too much
1072     methodHandle callee = callinfo.selected_method();
1073     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1074            callee->is_method_handle_intrinsic() ||
1075            callee->is_compiled_lambda_form(),
1076            "actual receiver must be subclass of static receiver klass");
1077     if (receiver_klass->oop_is_instance()) {
1078       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1079         tty->print_cr("ERROR: Klass not yet initialized!!");
1080         receiver_klass()->print();
1081       }
1082       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1083     }
1084   }
1085 #endif
1086 
1087   return receiver;
1088 }
1089 
1090 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1091   ResourceMark rm(THREAD);
1092   // We need first to check if any Java activations (compiled, interpreted)
1093   // exist on the stack since last JavaCall.  If not, we need
1094   // to get the target method from the JavaCall wrapper.
1095   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1096   methodHandle callee_method;
1097   if (vfst.at_end()) {
1098     // No Java frames were found on stack since we did the JavaCall.
1099     // Hence the stack can only contain an entry_frame.  We need to
1100     // find the target method from the stub frame.
1101     RegisterMap reg_map(thread, false);
1102     frame fr = thread->last_frame();
1103     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1104     fr = fr.sender(&reg_map);
1105     assert(fr.is_entry_frame(), "must be");
1106     // fr is now pointing to the entry frame.
1107     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1108     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1109   } else {
1110     Bytecodes::Code bc;
1111     CallInfo callinfo;
1112     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1113     callee_method = callinfo.selected_method();
1114   }
1115   assert(callee_method()->is_method(), "must be");
1116   return callee_method;
1117 }
1118 
1119 // Resolves a call.
1120 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1121                                            bool is_virtual,
1122                                            bool is_optimized, TRAPS) {
1123   methodHandle callee_method;
1124   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1125   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1126     int retry_count = 0;
1127     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1128            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1129       // If has a pending exception then there is no need to re-try to
1130       // resolve this method.
1131       // If the method has been redefined, we need to try again.
1132       // Hack: we have no way to update the vtables of arrays, so don't
1133       // require that java.lang.Object has been updated.
1134 
1135       // It is very unlikely that method is redefined more than 100 times
1136       // in the middle of resolve. If it is looping here more than 100 times
1137       // means then there could be a bug here.
1138       guarantee((retry_count++ < 100),
1139                 "Could not resolve to latest version of redefined method");
1140       // method is redefined in the middle of resolve so re-try.
1141       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1142     }
1143   }
1144   return callee_method;
1145 }
1146 
1147 // Resolves a call.  The compilers generate code for calls that go here
1148 // and are patched with the real destination of the call.
1149 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1150                                            bool is_virtual,
1151                                            bool is_optimized, TRAPS) {
1152 
1153   ResourceMark rm(thread);
1154   RegisterMap cbl_map(thread, false);
1155   frame caller_frame = thread->last_frame().sender(&cbl_map);
1156 
1157   CodeBlob* caller_cb = caller_frame.cb();
1158   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1159   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1160 
1161   // make sure caller is not getting deoptimized
1162   // and removed before we are done with it.
1163   // CLEANUP - with lazy deopt shouldn't need this lock
1164   nmethodLocker caller_lock(caller_nm);
1165 
1166   // determine call info & receiver
1167   // note: a) receiver is NULL for static calls
1168   //       b) an exception is thrown if receiver is NULL for non-static calls
1169   CallInfo call_info;
1170   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1171   Handle receiver = find_callee_info(thread, invoke_code,
1172                                      call_info, CHECK_(methodHandle()));
1173   methodHandle callee_method = call_info.selected_method();
1174 
1175   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1176          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1177          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1178          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1179 
1180   // We do not patch the call site if the caller nmethod has been made non-entrant.
1181   if (!caller_nm->is_in_use()) {
1182     return callee_method;
1183   }
1184 
1185 #ifndef PRODUCT
1186   // tracing/debugging/statistics
1187   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1188                 (is_virtual) ? (&_resolve_virtual_ctr) :
1189                                (&_resolve_static_ctr);
1190   Atomic::inc(addr);
1191 
1192   if (TraceCallFixup) {
1193     ResourceMark rm(thread);
1194     tty->print("resolving %s%s (%s) call to",
1195       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1196       Bytecodes::name(invoke_code));
1197     callee_method->print_short_name(tty);
1198     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1199   }
1200 #endif
1201 
1202   // JSR 292 key invariant:
1203   // If the resolved method is a MethodHandle invoke target the call
1204   // site must be a MethodHandle call site, because the lambda form might tail-call
1205   // leaving the stack in a state unknown to either caller or callee
1206   // TODO detune for now but we might need it again
1207 //  assert(!callee_method->is_compiled_lambda_form() ||
1208 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1209 
1210   // Compute entry points. This might require generation of C2I converter
1211   // frames, so we cannot be holding any locks here. Furthermore, the
1212   // computation of the entry points is independent of patching the call.  We
1213   // always return the entry-point, but we only patch the stub if the call has
1214   // not been deoptimized.  Return values: For a virtual call this is an
1215   // (cached_oop, destination address) pair. For a static call/optimized
1216   // virtual this is just a destination address.
1217 
1218   StaticCallInfo static_call_info;
1219   CompiledICInfo virtual_call_info;
1220 
1221   // Make sure the callee nmethod does not get deoptimized and removed before
1222   // we are done patching the code.
1223   nmethod* callee_nm = callee_method->code();
1224   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1225     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1226     callee_nm = NULL;
1227   }
1228   nmethodLocker nl_callee(callee_nm);
1229 #ifdef ASSERT
1230   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1231 #endif
1232 
1233   if (is_virtual) {
1234     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1235     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1236     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1237     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1238                      is_optimized, static_bound, virtual_call_info,
1239                      CHECK_(methodHandle()));
1240   } else {
1241     // static call
1242     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1243   }
1244 
1245   // grab lock, check for deoptimization and potentially patch caller
1246   {
1247     MutexLocker ml_patch(CompiledIC_lock);
1248 
1249     // Lock blocks for safepoint during which both nmethods can change state.
1250 
1251     // Now that we are ready to patch if the Method* was redefined then
1252     // don't update call site and let the caller retry.
1253     // Don't update call site if caller nmethod has been made non-entrant
1254     // as it is a waste of time.
1255     // Don't update call site if callee nmethod was unloaded or deoptimized.
1256     // Don't update call site if callee nmethod was replaced by an other nmethod
1257     // which may happen when multiply alive nmethod (tiered compilation)
1258     // will be supported.
1259     if (!callee_method->is_old() && caller_nm->is_in_use() &&
1260         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1261 #ifdef ASSERT
1262       // We must not try to patch to jump to an already unloaded method.
1263       if (dest_entry_point != 0) {
1264         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1265         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1266                "should not call unloaded nmethod");
1267       }
1268 #endif
1269       if (is_virtual) {
1270         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1271         if (inline_cache->is_clean()) {
1272           inline_cache->set_to_monomorphic(virtual_call_info);
1273         }
1274       } else {
1275         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1276         if (ssc->is_clean()) ssc->set(static_call_info);
1277       }
1278     }
1279 
1280   } // unlock CompiledIC_lock
1281 
1282   return callee_method;
1283 }
1284 
1285 
1286 // Inline caches exist only in compiled code
1287 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1288 #ifdef ASSERT
1289   RegisterMap reg_map(thread, false);
1290   frame stub_frame = thread->last_frame();
1291   assert(stub_frame.is_runtime_frame(), "sanity check");
1292   frame caller_frame = stub_frame.sender(&reg_map);
1293   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1294 #endif /* ASSERT */
1295 
1296   methodHandle callee_method;
1297   JRT_BLOCK
1298     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1299     // Return Method* through TLS
1300     thread->set_vm_result_2(callee_method());
1301   JRT_BLOCK_END
1302   // return compiled code entry point after potential safepoints
1303   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1304   return callee_method->verified_code_entry();
1305 JRT_END
1306 
1307 
1308 // Handle call site that has been made non-entrant
1309 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1310   // 6243940 We might end up in here if the callee is deoptimized
1311   // as we race to call it.  We don't want to take a safepoint if
1312   // the caller was interpreted because the caller frame will look
1313   // interpreted to the stack walkers and arguments are now
1314   // "compiled" so it is much better to make this transition
1315   // invisible to the stack walking code. The i2c path will
1316   // place the callee method in the callee_target. It is stashed
1317   // there because if we try and find the callee by normal means a
1318   // safepoint is possible and have trouble gc'ing the compiled args.
1319   RegisterMap reg_map(thread, false);
1320   frame stub_frame = thread->last_frame();
1321   assert(stub_frame.is_runtime_frame(), "sanity check");
1322   frame caller_frame = stub_frame.sender(&reg_map);
1323 
1324   if (caller_frame.is_interpreted_frame() ||
1325       caller_frame.is_entry_frame()) {
1326     Method* callee = thread->callee_target();
1327     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1328     thread->set_vm_result_2(callee);
1329     thread->set_callee_target(NULL);
1330     return callee->get_c2i_entry();
1331   }
1332 
1333   // Must be compiled to compiled path which is safe to stackwalk
1334   methodHandle callee_method;
1335   JRT_BLOCK
1336     // Force resolving of caller (if we called from compiled frame)
1337     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1338     thread->set_vm_result_2(callee_method());
1339   JRT_BLOCK_END
1340   // return compiled code entry point after potential safepoints
1341   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1342   return callee_method->verified_code_entry();
1343 JRT_END
1344 
1345 // Handle abstract method call
1346 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1347   return StubRoutines::throw_AbstractMethodError_entry();
1348 JRT_END
1349 
1350 
1351 // resolve a static call and patch code
1352 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1353   methodHandle callee_method;
1354   JRT_BLOCK
1355     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1356     thread->set_vm_result_2(callee_method());
1357   JRT_BLOCK_END
1358   // return compiled code entry point after potential safepoints
1359   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1360   return callee_method->verified_code_entry();
1361 JRT_END
1362 
1363 
1364 // resolve virtual call and update inline cache to monomorphic
1365 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1366   methodHandle callee_method;
1367   JRT_BLOCK
1368     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1369     thread->set_vm_result_2(callee_method());
1370   JRT_BLOCK_END
1371   // return compiled code entry point after potential safepoints
1372   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1373   return callee_method->verified_code_entry();
1374 JRT_END
1375 
1376 
1377 // Resolve a virtual call that can be statically bound (e.g., always
1378 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1379 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1380   methodHandle callee_method;
1381   JRT_BLOCK
1382     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1383     thread->set_vm_result_2(callee_method());
1384   JRT_BLOCK_END
1385   // return compiled code entry point after potential safepoints
1386   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1387   return callee_method->verified_code_entry();
1388 JRT_END
1389 
1390 
1391 
1392 
1393 
1394 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1395   ResourceMark rm(thread);
1396   CallInfo call_info;
1397   Bytecodes::Code bc;
1398 
1399   // receiver is NULL for static calls. An exception is thrown for NULL
1400   // receivers for non-static calls
1401   Handle receiver = find_callee_info(thread, bc, call_info,
1402                                      CHECK_(methodHandle()));
1403   // Compiler1 can produce virtual call sites that can actually be statically bound
1404   // If we fell thru to below we would think that the site was going megamorphic
1405   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1406   // we'd try and do a vtable dispatch however methods that can be statically bound
1407   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1408   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1409   // plain ic_miss) and the site will be converted to an optimized virtual call site
1410   // never to miss again. I don't believe C2 will produce code like this but if it
1411   // did this would still be the correct thing to do for it too, hence no ifdef.
1412   //
1413   if (call_info.resolved_method()->can_be_statically_bound()) {
1414     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1415     if (TraceCallFixup) {
1416       RegisterMap reg_map(thread, false);
1417       frame caller_frame = thread->last_frame().sender(&reg_map);
1418       ResourceMark rm(thread);
1419       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1420       callee_method->print_short_name(tty);
1421       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1422       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1423     }
1424     return callee_method;
1425   }
1426 
1427   methodHandle callee_method = call_info.selected_method();
1428 
1429   bool should_be_mono = false;
1430 
1431 #ifndef PRODUCT
1432   Atomic::inc(&_ic_miss_ctr);
1433 
1434   // Statistics & Tracing
1435   if (TraceCallFixup) {
1436     ResourceMark rm(thread);
1437     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1438     callee_method->print_short_name(tty);
1439     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1440   }
1441 
1442   if (ICMissHistogram) {
1443     MutexLocker m(VMStatistic_lock);
1444     RegisterMap reg_map(thread, false);
1445     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1446     // produce statistics under the lock
1447     trace_ic_miss(f.pc());
1448   }
1449 #endif
1450 
1451   // install an event collector so that when a vtable stub is created the
1452   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1453   // event can't be posted when the stub is created as locks are held
1454   // - instead the event will be deferred until the event collector goes
1455   // out of scope.
1456   JvmtiDynamicCodeEventCollector event_collector;
1457 
1458   // Update inline cache to megamorphic. Skip update if caller has been
1459   // made non-entrant or we are called from interpreted.
1460   { MutexLocker ml_patch (CompiledIC_lock);
1461     RegisterMap reg_map(thread, false);
1462     frame caller_frame = thread->last_frame().sender(&reg_map);
1463     CodeBlob* cb = caller_frame.cb();
1464     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1465       // Not a non-entrant nmethod, so find inline_cache
1466       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1467       bool should_be_mono = false;
1468       if (inline_cache->is_optimized()) {
1469         if (TraceCallFixup) {
1470           ResourceMark rm(thread);
1471           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1472           callee_method->print_short_name(tty);
1473           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1474         }
1475         should_be_mono = true;
1476       } else if (inline_cache->is_icholder_call()) {
1477         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1478         if ( ic_oop != NULL) {
1479 
1480           if (receiver()->klass() == ic_oop->holder_klass()) {
1481             // This isn't a real miss. We must have seen that compiled code
1482             // is now available and we want the call site converted to a
1483             // monomorphic compiled call site.
1484             // We can't assert for callee_method->code() != NULL because it
1485             // could have been deoptimized in the meantime
1486             if (TraceCallFixup) {
1487               ResourceMark rm(thread);
1488               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1489               callee_method->print_short_name(tty);
1490               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1491             }
1492             should_be_mono = true;
1493           }
1494         }
1495       }
1496 
1497       if (should_be_mono) {
1498 
1499         // We have a path that was monomorphic but was going interpreted
1500         // and now we have (or had) a compiled entry. We correct the IC
1501         // by using a new icBuffer.
1502         CompiledICInfo info;
1503         KlassHandle receiver_klass(THREAD, receiver()->klass());
1504         inline_cache->compute_monomorphic_entry(callee_method,
1505                                                 receiver_klass,
1506                                                 inline_cache->is_optimized(),
1507                                                 false,
1508                                                 info, CHECK_(methodHandle()));
1509         inline_cache->set_to_monomorphic(info);
1510       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1511         // Potential change to megamorphic
1512         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1513         if (!successful) {
1514           inline_cache->set_to_clean();
1515         }
1516       } else {
1517         // Either clean or megamorphic
1518       }
1519     }
1520   } // Release CompiledIC_lock
1521 
1522   return callee_method;
1523 }
1524 
1525 //
1526 // Resets a call-site in compiled code so it will get resolved again.
1527 // This routines handles both virtual call sites, optimized virtual call
1528 // sites, and static call sites. Typically used to change a call sites
1529 // destination from compiled to interpreted.
1530 //
1531 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1532   ResourceMark rm(thread);
1533   RegisterMap reg_map(thread, false);
1534   frame stub_frame = thread->last_frame();
1535   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1536   frame caller = stub_frame.sender(&reg_map);
1537 
1538   // Do nothing if the frame isn't a live compiled frame.
1539   // nmethod could be deoptimized by the time we get here
1540   // so no update to the caller is needed.
1541 
1542   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1543 
1544     address pc = caller.pc();
1545 
1546     // Default call_addr is the location of the "basic" call.
1547     // Determine the address of the call we a reresolving. With
1548     // Inline Caches we will always find a recognizable call.
1549     // With Inline Caches disabled we may or may not find a
1550     // recognizable call. We will always find a call for static
1551     // calls and for optimized virtual calls. For vanilla virtual
1552     // calls it depends on the state of the UseInlineCaches switch.
1553     //
1554     // With Inline Caches disabled we can get here for a virtual call
1555     // for two reasons:
1556     //   1 - calling an abstract method. The vtable for abstract methods
1557     //       will run us thru handle_wrong_method and we will eventually
1558     //       end up in the interpreter to throw the ame.
1559     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1560     //       call and between the time we fetch the entry address and
1561     //       we jump to it the target gets deoptimized. Similar to 1
1562     //       we will wind up in the interprter (thru a c2i with c2).
1563     //
1564     address call_addr = NULL;
1565     {
1566       // Get call instruction under lock because another thread may be
1567       // busy patching it.
1568       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1569       // Location of call instruction
1570       if (NativeCall::is_call_before(pc)) {
1571         NativeCall *ncall = nativeCall_before(pc);
1572         call_addr = ncall->instruction_address();
1573       }
1574     }
1575 
1576     // Check for static or virtual call
1577     bool is_static_call = false;
1578     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1579     // Make sure nmethod doesn't get deoptimized and removed until
1580     // this is done with it.
1581     // CLEANUP - with lazy deopt shouldn't need this lock
1582     nmethodLocker nmlock(caller_nm);
1583 
1584     if (call_addr != NULL) {
1585       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1586       int ret = iter.next(); // Get item
1587       if (ret) {
1588         assert(iter.addr() == call_addr, "must find call");
1589         if (iter.type() == relocInfo::static_call_type) {
1590           is_static_call = true;
1591         } else {
1592           assert(iter.type() == relocInfo::virtual_call_type ||
1593                  iter.type() == relocInfo::opt_virtual_call_type
1594                 , "unexpected relocInfo. type");
1595         }
1596       } else {
1597         assert(!UseInlineCaches, "relocation info. must exist for this address");
1598       }
1599 
1600       // Cleaning the inline cache will force a new resolve. This is more robust
1601       // than directly setting it to the new destination, since resolving of calls
1602       // is always done through the same code path. (experience shows that it
1603       // leads to very hard to track down bugs, if an inline cache gets updated
1604       // to a wrong method). It should not be performance critical, since the
1605       // resolve is only done once.
1606 
1607       MutexLocker ml(CompiledIC_lock);
1608       //
1609       // We do not patch the call site if the nmethod has been made non-entrant
1610       // as it is a waste of time
1611       //
1612       if (caller_nm->is_in_use()) {
1613         if (is_static_call) {
1614           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1615           ssc->set_to_clean();
1616         } else {
1617           // compiled, dispatched call (which used to call an interpreted method)
1618           CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1619           inline_cache->set_to_clean();
1620         }
1621       }
1622     }
1623 
1624   }
1625 
1626   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1627 
1628 
1629 #ifndef PRODUCT
1630   Atomic::inc(&_wrong_method_ctr);
1631 
1632   if (TraceCallFixup) {
1633     ResourceMark rm(thread);
1634     tty->print("handle_wrong_method reresolving call to");
1635     callee_method->print_short_name(tty);
1636     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1637   }
1638 #endif
1639 
1640   return callee_method;
1641 }
1642 
1643 #ifdef ASSERT
1644 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1645                                                                 const BasicType* sig_bt,
1646                                                                 const VMRegPair* regs) {
1647   ResourceMark rm;
1648   const int total_args_passed = method->size_of_parameters();
1649   const VMRegPair*    regs_with_member_name = regs;
1650         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1651 
1652   const int member_arg_pos = total_args_passed - 1;
1653   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1654   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1655 
1656   const bool is_outgoing = method->is_method_handle_intrinsic();
1657   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1658 
1659   for (int i = 0; i < member_arg_pos; i++) {
1660     VMReg a =    regs_with_member_name[i].first();
1661     VMReg b = regs_without_member_name[i].first();
1662     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1663   }
1664   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1665 }
1666 #endif
1667 
1668 // ---------------------------------------------------------------------------
1669 // We are calling the interpreter via a c2i. Normally this would mean that
1670 // we were called by a compiled method. However we could have lost a race
1671 // where we went int -> i2c -> c2i and so the caller could in fact be
1672 // interpreted. If the caller is compiled we attempt to patch the caller
1673 // so he no longer calls into the interpreter.
1674 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1675   Method* moop(method);
1676 
1677   address entry_point = moop->from_compiled_entry();
1678 
1679   // It's possible that deoptimization can occur at a call site which hasn't
1680   // been resolved yet, in which case this function will be called from
1681   // an nmethod that has been patched for deopt and we can ignore the
1682   // request for a fixup.
1683   // Also it is possible that we lost a race in that from_compiled_entry
1684   // is now back to the i2c in that case we don't need to patch and if
1685   // we did we'd leap into space because the callsite needs to use
1686   // "to interpreter" stub in order to load up the Method*. Don't
1687   // ask me how I know this...
1688 
1689   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1690   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1691     return;
1692   }
1693 
1694   // The check above makes sure this is a nmethod.
1695   nmethod* nm = cb->as_nmethod_or_null();
1696   assert(nm, "must be");
1697 
1698   // Get the return PC for the passed caller PC.
1699   address return_pc = caller_pc + frame::pc_return_offset;
1700 
1701   // There is a benign race here. We could be attempting to patch to a compiled
1702   // entry point at the same time the callee is being deoptimized. If that is
1703   // the case then entry_point may in fact point to a c2i and we'd patch the
1704   // call site with the same old data. clear_code will set code() to NULL
1705   // at the end of it. If we happen to see that NULL then we can skip trying
1706   // to patch. If we hit the window where the callee has a c2i in the
1707   // from_compiled_entry and the NULL isn't present yet then we lose the race
1708   // and patch the code with the same old data. Asi es la vida.
1709 
1710   if (moop->code() == NULL) return;
1711 
1712   if (nm->is_in_use()) {
1713 
1714     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1715     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1716     if (NativeCall::is_call_before(return_pc)) {
1717       NativeCall *call = nativeCall_before(return_pc);
1718       //
1719       // bug 6281185. We might get here after resolving a call site to a vanilla
1720       // virtual call. Because the resolvee uses the verified entry it may then
1721       // see compiled code and attempt to patch the site by calling us. This would
1722       // then incorrectly convert the call site to optimized and its downhill from
1723       // there. If you're lucky you'll get the assert in the bugid, if not you've
1724       // just made a call site that could be megamorphic into a monomorphic site
1725       // for the rest of its life! Just another racing bug in the life of
1726       // fixup_callers_callsite ...
1727       //
1728       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1729       iter.next();
1730       assert(iter.has_current(), "must have a reloc at java call site");
1731       relocInfo::relocType typ = iter.reloc()->type();
1732       if ( typ != relocInfo::static_call_type &&
1733            typ != relocInfo::opt_virtual_call_type &&
1734            typ != relocInfo::static_stub_type) {
1735         return;
1736       }
1737       address destination = call->destination();
1738       if (destination != entry_point) {
1739         CodeBlob* callee = CodeCache::find_blob(destination);
1740         // callee == cb seems weird. It means calling interpreter thru stub.
1741         if (callee == cb || callee->is_adapter_blob()) {
1742           // static call or optimized virtual
1743           if (TraceCallFixup) {
1744             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1745             moop->print_short_name(tty);
1746             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1747           }
1748           call->set_destination_mt_safe(entry_point);
1749         } else {
1750           if (TraceCallFixup) {
1751             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1752             moop->print_short_name(tty);
1753             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1754           }
1755           // assert is too strong could also be resolve destinations.
1756           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1757         }
1758       } else {
1759           if (TraceCallFixup) {
1760             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1761             moop->print_short_name(tty);
1762             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1763           }
1764       }
1765     }
1766   }
1767 IRT_END
1768 
1769 
1770 // same as JVM_Arraycopy, but called directly from compiled code
1771 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1772                                                 oopDesc* dest, jint dest_pos,
1773                                                 jint length,
1774                                                 JavaThread* thread)) {
1775 #ifndef PRODUCT
1776   _slow_array_copy_ctr++;
1777 #endif
1778   // Check if we have null pointers
1779   if (src == NULL || dest == NULL) {
1780     THROW(vmSymbols::java_lang_NullPointerException());
1781   }
1782   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1783   // even though the copy_array API also performs dynamic checks to ensure
1784   // that src and dest are truly arrays (and are conformable).
1785   // The copy_array mechanism is awkward and could be removed, but
1786   // the compilers don't call this function except as a last resort,
1787   // so it probably doesn't matter.
1788   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
1789                                         (arrayOopDesc*)dest, dest_pos,
1790                                         length, thread);
1791 }
1792 JRT_END
1793 
1794 char* SharedRuntime::generate_class_cast_message(
1795     JavaThread* thread, const char* objName) {
1796 
1797   // Get target class name from the checkcast instruction
1798   vframeStream vfst(thread, true);
1799   assert(!vfst.at_end(), "Java frame must exist");
1800   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1801   Klass* targetKlass = vfst.method()->constants()->klass_at(
1802     cc.index(), thread);
1803   return generate_class_cast_message(objName, targetKlass->external_name());
1804 }
1805 
1806 char* SharedRuntime::generate_class_cast_message(
1807     const char* objName, const char* targetKlassName, const char* desc) {
1808   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1809 
1810   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1811   if (NULL == message) {
1812     // Shouldn't happen, but don't cause even more problems if it does
1813     message = const_cast<char*>(objName);
1814   } else {
1815     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1816   }
1817   return message;
1818 }
1819 
1820 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1821   (void) JavaThread::current()->reguard_stack();
1822 JRT_END
1823 
1824 
1825 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1826 #ifndef PRODUCT
1827 int SharedRuntime::_monitor_enter_ctr=0;
1828 #endif
1829 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1830   oop obj(_obj);
1831 #ifndef PRODUCT
1832   _monitor_enter_ctr++;             // monitor enter slow
1833 #endif
1834   if (PrintBiasedLockingStatistics) {
1835     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1836   }
1837   Handle h_obj(THREAD, obj);
1838   if (UseBiasedLocking) {
1839     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1840     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1841   } else {
1842     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1843   }
1844   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1845 JRT_END
1846 
1847 #ifndef PRODUCT
1848 int SharedRuntime::_monitor_exit_ctr=0;
1849 #endif
1850 // Handles the uncommon cases of monitor unlocking in compiled code
1851 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1852    oop obj(_obj);
1853 #ifndef PRODUCT
1854   _monitor_exit_ctr++;              // monitor exit slow
1855 #endif
1856   Thread* THREAD = JavaThread::current();
1857   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1858   // testing was unable to ever fire the assert that guarded it so I have removed it.
1859   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1860 #undef MIGHT_HAVE_PENDING
1861 #ifdef MIGHT_HAVE_PENDING
1862   // Save and restore any pending_exception around the exception mark.
1863   // While the slow_exit must not throw an exception, we could come into
1864   // this routine with one set.
1865   oop pending_excep = NULL;
1866   const char* pending_file;
1867   int pending_line;
1868   if (HAS_PENDING_EXCEPTION) {
1869     pending_excep = PENDING_EXCEPTION;
1870     pending_file  = THREAD->exception_file();
1871     pending_line  = THREAD->exception_line();
1872     CLEAR_PENDING_EXCEPTION;
1873   }
1874 #endif /* MIGHT_HAVE_PENDING */
1875 
1876   {
1877     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1878     EXCEPTION_MARK;
1879     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1880   }
1881 
1882 #ifdef MIGHT_HAVE_PENDING
1883   if (pending_excep != NULL) {
1884     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1885   }
1886 #endif /* MIGHT_HAVE_PENDING */
1887 JRT_END
1888 
1889 #ifndef PRODUCT
1890 
1891 void SharedRuntime::print_statistics() {
1892   ttyLocker ttyl;
1893   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1894 
1895   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1896   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1897   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1898 
1899   SharedRuntime::print_ic_miss_histogram();
1900 
1901   if (CountRemovableExceptions) {
1902     if (_nof_removable_exceptions > 0) {
1903       Unimplemented(); // this counter is not yet incremented
1904       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1905     }
1906   }
1907 
1908   // Dump the JRT_ENTRY counters
1909   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1910   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1911   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1912   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1913   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1914   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1915   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1916 
1917   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1918   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1919   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1920   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1921   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1922 
1923   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1924   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1925   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1926   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1927   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1928   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1929   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1930   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1931   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1932   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1933   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1934   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1935   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1936   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1937   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1938   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1939 
1940   AdapterHandlerLibrary::print_statistics();
1941 
1942   if (xtty != NULL)  xtty->tail("statistics");
1943 }
1944 
1945 inline double percent(int x, int y) {
1946   return 100.0 * x / MAX2(y, 1);
1947 }
1948 
1949 class MethodArityHistogram {
1950  public:
1951   enum { MAX_ARITY = 256 };
1952  private:
1953   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1954   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1955   static int _max_arity;                      // max. arity seen
1956   static int _max_size;                       // max. arg size seen
1957 
1958   static void add_method_to_histogram(nmethod* nm) {
1959     Method* m = nm->method();
1960     ArgumentCount args(m->signature());
1961     int arity   = args.size() + (m->is_static() ? 0 : 1);
1962     int argsize = m->size_of_parameters();
1963     arity   = MIN2(arity, MAX_ARITY-1);
1964     argsize = MIN2(argsize, MAX_ARITY-1);
1965     int count = nm->method()->compiled_invocation_count();
1966     _arity_histogram[arity]  += count;
1967     _size_histogram[argsize] += count;
1968     _max_arity = MAX2(_max_arity, arity);
1969     _max_size  = MAX2(_max_size, argsize);
1970   }
1971 
1972   void print_histogram_helper(int n, int* histo, const char* name) {
1973     const int N = MIN2(5, n);
1974     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1975     double sum = 0;
1976     double weighted_sum = 0;
1977     int i;
1978     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1979     double rest = sum;
1980     double percent = sum / 100;
1981     for (i = 0; i <= N; i++) {
1982       rest -= histo[i];
1983       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1984     }
1985     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1986     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1987   }
1988 
1989   void print_histogram() {
1990     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1991     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1992     tty->print_cr("\nSame for parameter size (in words):");
1993     print_histogram_helper(_max_size, _size_histogram, "size");
1994     tty->cr();
1995   }
1996 
1997  public:
1998   MethodArityHistogram() {
1999     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2000     _max_arity = _max_size = 0;
2001     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2002     CodeCache::nmethods_do(add_method_to_histogram);
2003     print_histogram();
2004   }
2005 };
2006 
2007 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2008 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2009 int MethodArityHistogram::_max_arity;
2010 int MethodArityHistogram::_max_size;
2011 
2012 void SharedRuntime::print_call_statistics(int comp_total) {
2013   tty->print_cr("Calls from compiled code:");
2014   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2015   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2016   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2017   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2018   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2019   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2020   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2021   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2022   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2023   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2024   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2025   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2026   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2027   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2028   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2029   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2030   tty->cr();
2031   tty->print_cr("Note 1: counter updates are not MT-safe.");
2032   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2033   tty->print_cr("        %% in nested categories are relative to their category");
2034   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2035   tty->cr();
2036 
2037   MethodArityHistogram h;
2038 }
2039 #endif
2040 
2041 
2042 // A simple wrapper class around the calling convention information
2043 // that allows sharing of adapters for the same calling convention.
2044 class AdapterFingerPrint : public CHeapObj<mtCode> {
2045  private:
2046   enum {
2047     _basic_type_bits = 4,
2048     _basic_type_mask = right_n_bits(_basic_type_bits),
2049     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2050     _compact_int_count = 3
2051   };
2052   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2053   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2054 
2055   union {
2056     int  _compact[_compact_int_count];
2057     int* _fingerprint;
2058   } _value;
2059   int _length; // A negative length indicates the fingerprint is in the compact form,
2060                // Otherwise _value._fingerprint is the array.
2061 
2062   // Remap BasicTypes that are handled equivalently by the adapters.
2063   // These are correct for the current system but someday it might be
2064   // necessary to make this mapping platform dependent.
2065   static int adapter_encoding(BasicType in) {
2066     switch(in) {
2067       case T_BOOLEAN:
2068       case T_BYTE:
2069       case T_SHORT:
2070       case T_CHAR:
2071         // There are all promoted to T_INT in the calling convention
2072         return T_INT;
2073 
2074       case T_OBJECT:
2075       case T_ARRAY:
2076         // In other words, we assume that any register good enough for
2077         // an int or long is good enough for a managed pointer.
2078 #ifdef _LP64
2079         return T_LONG;
2080 #else
2081         return T_INT;
2082 #endif
2083 
2084       case T_INT:
2085       case T_LONG:
2086       case T_FLOAT:
2087       case T_DOUBLE:
2088       case T_VOID:
2089         return in;
2090 
2091       default:
2092         ShouldNotReachHere();
2093         return T_CONFLICT;
2094     }
2095   }
2096 
2097  public:
2098   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2099     // The fingerprint is based on the BasicType signature encoded
2100     // into an array of ints with eight entries per int.
2101     int* ptr;
2102     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2103     if (len <= _compact_int_count) {
2104       assert(_compact_int_count == 3, "else change next line");
2105       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2106       // Storing the signature encoded as signed chars hits about 98%
2107       // of the time.
2108       _length = -len;
2109       ptr = _value._compact;
2110     } else {
2111       _length = len;
2112       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2113       ptr = _value._fingerprint;
2114     }
2115 
2116     // Now pack the BasicTypes with 8 per int
2117     int sig_index = 0;
2118     for (int index = 0; index < len; index++) {
2119       int value = 0;
2120       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2121         int bt = ((sig_index < total_args_passed)
2122                   ? adapter_encoding(sig_bt[sig_index++])
2123                   : 0);
2124         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2125         value = (value << _basic_type_bits) | bt;
2126       }
2127       ptr[index] = value;
2128     }
2129   }
2130 
2131   ~AdapterFingerPrint() {
2132     if (_length > 0) {
2133       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2134     }
2135   }
2136 
2137   int value(int index) {
2138     if (_length < 0) {
2139       return _value._compact[index];
2140     }
2141     return _value._fingerprint[index];
2142   }
2143   int length() {
2144     if (_length < 0) return -_length;
2145     return _length;
2146   }
2147 
2148   bool is_compact() {
2149     return _length <= 0;
2150   }
2151 
2152   unsigned int compute_hash() {
2153     int hash = 0;
2154     for (int i = 0; i < length(); i++) {
2155       int v = value(i);
2156       hash = (hash << 8) ^ v ^ (hash >> 5);
2157     }
2158     return (unsigned int)hash;
2159   }
2160 
2161   const char* as_string() {
2162     stringStream st;
2163     st.print("0x");
2164     for (int i = 0; i < length(); i++) {
2165       st.print("%08x", value(i));
2166     }
2167     return st.as_string();
2168   }
2169 
2170   bool equals(AdapterFingerPrint* other) {
2171     if (other->_length != _length) {
2172       return false;
2173     }
2174     if (_length < 0) {
2175       assert(_compact_int_count == 3, "else change next line");
2176       return _value._compact[0] == other->_value._compact[0] &&
2177              _value._compact[1] == other->_value._compact[1] &&
2178              _value._compact[2] == other->_value._compact[2];
2179     } else {
2180       for (int i = 0; i < _length; i++) {
2181         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2182           return false;
2183         }
2184       }
2185     }
2186     return true;
2187   }
2188 };
2189 
2190 
2191 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2192 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2193   friend class AdapterHandlerTableIterator;
2194 
2195  private:
2196 
2197 #ifndef PRODUCT
2198   static int _lookups; // number of calls to lookup
2199   static int _buckets; // number of buckets checked
2200   static int _equals;  // number of buckets checked with matching hash
2201   static int _hits;    // number of successful lookups
2202   static int _compact; // number of equals calls with compact signature
2203 #endif
2204 
2205   AdapterHandlerEntry* bucket(int i) {
2206     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2207   }
2208 
2209  public:
2210   AdapterHandlerTable()
2211     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2212 
2213   // Create a new entry suitable for insertion in the table
2214   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2215     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2216     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2217     return entry;
2218   }
2219 
2220   // Insert an entry into the table
2221   void add(AdapterHandlerEntry* entry) {
2222     int index = hash_to_index(entry->hash());
2223     add_entry(index, entry);
2224   }
2225 
2226   void free_entry(AdapterHandlerEntry* entry) {
2227     entry->deallocate();
2228     BasicHashtable<mtCode>::free_entry(entry);
2229   }
2230 
2231   // Find a entry with the same fingerprint if it exists
2232   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2233     NOT_PRODUCT(_lookups++);
2234     AdapterFingerPrint fp(total_args_passed, sig_bt);
2235     unsigned int hash = fp.compute_hash();
2236     int index = hash_to_index(hash);
2237     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2238       NOT_PRODUCT(_buckets++);
2239       if (e->hash() == hash) {
2240         NOT_PRODUCT(_equals++);
2241         if (fp.equals(e->fingerprint())) {
2242 #ifndef PRODUCT
2243           if (fp.is_compact()) _compact++;
2244           _hits++;
2245 #endif
2246           return e;
2247         }
2248       }
2249     }
2250     return NULL;
2251   }
2252 
2253 #ifndef PRODUCT
2254   void print_statistics() {
2255     ResourceMark rm;
2256     int longest = 0;
2257     int empty = 0;
2258     int total = 0;
2259     int nonempty = 0;
2260     for (int index = 0; index < table_size(); index++) {
2261       int count = 0;
2262       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2263         count++;
2264       }
2265       if (count != 0) nonempty++;
2266       if (count == 0) empty++;
2267       if (count > longest) longest = count;
2268       total += count;
2269     }
2270     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2271                   empty, longest, total, total / (double)nonempty);
2272     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2273                   _lookups, _buckets, _equals, _hits, _compact);
2274   }
2275 #endif
2276 };
2277 
2278 
2279 #ifndef PRODUCT
2280 
2281 int AdapterHandlerTable::_lookups;
2282 int AdapterHandlerTable::_buckets;
2283 int AdapterHandlerTable::_equals;
2284 int AdapterHandlerTable::_hits;
2285 int AdapterHandlerTable::_compact;
2286 
2287 #endif
2288 
2289 class AdapterHandlerTableIterator : public StackObj {
2290  private:
2291   AdapterHandlerTable* _table;
2292   int _index;
2293   AdapterHandlerEntry* _current;
2294 
2295   void scan() {
2296     while (_index < _table->table_size()) {
2297       AdapterHandlerEntry* a = _table->bucket(_index);
2298       _index++;
2299       if (a != NULL) {
2300         _current = a;
2301         return;
2302       }
2303     }
2304   }
2305 
2306  public:
2307   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2308     scan();
2309   }
2310   bool has_next() {
2311     return _current != NULL;
2312   }
2313   AdapterHandlerEntry* next() {
2314     if (_current != NULL) {
2315       AdapterHandlerEntry* result = _current;
2316       _current = _current->next();
2317       if (_current == NULL) scan();
2318       return result;
2319     } else {
2320       return NULL;
2321     }
2322   }
2323 };
2324 
2325 
2326 // ---------------------------------------------------------------------------
2327 // Implementation of AdapterHandlerLibrary
2328 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2329 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2330 const int AdapterHandlerLibrary_size = 16*K;
2331 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2332 
2333 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2334   // Should be called only when AdapterHandlerLibrary_lock is active.
2335   if (_buffer == NULL) // Initialize lazily
2336       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2337   return _buffer;
2338 }
2339 
2340 void AdapterHandlerLibrary::initialize() {
2341   if (_adapters != NULL) return;
2342   _adapters = new AdapterHandlerTable();
2343 
2344   // Create a special handler for abstract methods.  Abstract methods
2345   // are never compiled so an i2c entry is somewhat meaningless, but
2346   // throw AbstractMethodError just in case.
2347   // Pass wrong_method_abstract for the c2i transitions to return
2348   // AbstractMethodError for invalid invocations.
2349   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2350   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2351                                                               StubRoutines::throw_AbstractMethodError_entry(),
2352                                                               wrong_method_abstract, wrong_method_abstract);
2353 }
2354 
2355 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2356                                                       address i2c_entry,
2357                                                       address c2i_entry,
2358                                                       address c2i_unverified_entry) {
2359   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2360 }
2361 
2362 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2363   // Use customized signature handler.  Need to lock around updates to
2364   // the AdapterHandlerTable (it is not safe for concurrent readers
2365   // and a single writer: this could be fixed if it becomes a
2366   // problem).
2367 
2368   // Get the address of the ic_miss handlers before we grab the
2369   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2370   // was caused by the initialization of the stubs happening
2371   // while we held the lock and then notifying jvmti while
2372   // holding it. This just forces the initialization to be a little
2373   // earlier.
2374   address ic_miss = SharedRuntime::get_ic_miss_stub();
2375   assert(ic_miss != NULL, "must have handler");
2376 
2377   ResourceMark rm;
2378 
2379   NOT_PRODUCT(int insts_size);
2380   AdapterBlob* new_adapter = NULL;
2381   AdapterHandlerEntry* entry = NULL;
2382   AdapterFingerPrint* fingerprint = NULL;
2383   {
2384     MutexLocker mu(AdapterHandlerLibrary_lock);
2385     // make sure data structure is initialized
2386     initialize();
2387 
2388     if (method->is_abstract()) {
2389       return _abstract_method_handler;
2390     }
2391 
2392     // Fill in the signature array, for the calling-convention call.
2393     int total_args_passed = method->size_of_parameters(); // All args on stack
2394 
2395     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2396     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2397     int i = 0;
2398     if (!method->is_static())  // Pass in receiver first
2399       sig_bt[i++] = T_OBJECT;
2400     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2401       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2402       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2403         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2404     }
2405     assert(i == total_args_passed, "");
2406 
2407     // Lookup method signature's fingerprint
2408     entry = _adapters->lookup(total_args_passed, sig_bt);
2409 
2410 #ifdef ASSERT
2411     AdapterHandlerEntry* shared_entry = NULL;
2412     // Start adapter sharing verification only after the VM is booted.
2413     if (VerifyAdapterSharing && (entry != NULL)) {
2414       shared_entry = entry;
2415       entry = NULL;
2416     }
2417 #endif
2418 
2419     if (entry != NULL) {
2420       return entry;
2421     }
2422 
2423     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2424     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2425 
2426     // Make a C heap allocated version of the fingerprint to store in the adapter
2427     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2428 
2429     // StubRoutines::code2() is initialized after this function can be called. As a result,
2430     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2431     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2432     // stub that ensure that an I2C stub is called from an interpreter frame.
2433     bool contains_all_checks = StubRoutines::code2() != NULL;
2434 
2435     // Create I2C & C2I handlers
2436     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2437     if (buf != NULL) {
2438       CodeBuffer buffer(buf);
2439       short buffer_locs[20];
2440       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2441                                              sizeof(buffer_locs)/sizeof(relocInfo));
2442 
2443       MacroAssembler _masm(&buffer);
2444       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2445                                                      total_args_passed,
2446                                                      comp_args_on_stack,
2447                                                      sig_bt,
2448                                                      regs,
2449                                                      fingerprint);
2450 #ifdef ASSERT
2451       if (VerifyAdapterSharing) {
2452         if (shared_entry != NULL) {
2453           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2454           // Release the one just created and return the original
2455           _adapters->free_entry(entry);
2456           return shared_entry;
2457         } else  {
2458           entry->save_code(buf->code_begin(), buffer.insts_size());
2459         }
2460       }
2461 #endif
2462 
2463       new_adapter = AdapterBlob::create(&buffer);
2464       NOT_PRODUCT(insts_size = buffer.insts_size());
2465     }
2466     if (new_adapter == NULL) {
2467       // CodeCache is full, disable compilation
2468       // Ought to log this but compile log is only per compile thread
2469       // and we're some non descript Java thread.
2470       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2471       CompileBroker::handle_full_code_cache();
2472       return NULL; // Out of CodeCache space
2473     }
2474     entry->relocate(new_adapter->content_begin());
2475 #ifndef PRODUCT
2476     // debugging suppport
2477     if (PrintAdapterHandlers || PrintStubCode) {
2478       ttyLocker ttyl;
2479       entry->print_adapter_on(tty);
2480       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2481                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2482                     method->signature()->as_C_string(), insts_size);
2483       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2484       if (Verbose || PrintStubCode) {
2485         address first_pc = entry->base_address();
2486         if (first_pc != NULL) {
2487           Disassembler::decode(first_pc, first_pc + insts_size);
2488           tty->cr();
2489         }
2490       }
2491     }
2492 #endif
2493     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2494     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2495     if (contains_all_checks || !VerifyAdapterCalls) {
2496       _adapters->add(entry);
2497     }
2498   }
2499   // Outside of the lock
2500   if (new_adapter != NULL) {
2501     char blob_id[256];
2502     jio_snprintf(blob_id,
2503                  sizeof(blob_id),
2504                  "%s(%s)@" PTR_FORMAT,
2505                  new_adapter->name(),
2506                  fingerprint->as_string(),
2507                  new_adapter->content_begin());
2508     Forte::register_stub(blob_id, new_adapter->content_begin(),new_adapter->content_end());
2509 
2510     if (JvmtiExport::should_post_dynamic_code_generated()) {
2511       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2512     }
2513   }
2514   return entry;
2515 }
2516 
2517 address AdapterHandlerEntry::base_address() {
2518   address base = _i2c_entry;
2519   if (base == NULL)  base = _c2i_entry;
2520   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2521   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2522   return base;
2523 }
2524 
2525 void AdapterHandlerEntry::relocate(address new_base) {
2526   address old_base = base_address();
2527   assert(old_base != NULL, "");
2528   ptrdiff_t delta = new_base - old_base;
2529   if (_i2c_entry != NULL)
2530     _i2c_entry += delta;
2531   if (_c2i_entry != NULL)
2532     _c2i_entry += delta;
2533   if (_c2i_unverified_entry != NULL)
2534     _c2i_unverified_entry += delta;
2535   assert(base_address() == new_base, "");
2536 }
2537 
2538 
2539 void AdapterHandlerEntry::deallocate() {
2540   delete _fingerprint;
2541 #ifdef ASSERT
2542   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2543 #endif
2544 }
2545 
2546 
2547 #ifdef ASSERT
2548 // Capture the code before relocation so that it can be compared
2549 // against other versions.  If the code is captured after relocation
2550 // then relative instructions won't be equivalent.
2551 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2552   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2553   _saved_code_length = length;
2554   memcpy(_saved_code, buffer, length);
2555 }
2556 
2557 
2558 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2559   if (length != _saved_code_length) {
2560     return false;
2561   }
2562 
2563   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2564 }
2565 #endif
2566 
2567 
2568 /**
2569  * Create a native wrapper for this native method.  The wrapper converts the
2570  * Java-compiled calling convention to the native convention, handles
2571  * arguments, and transitions to native.  On return from the native we transition
2572  * back to java blocking if a safepoint is in progress.
2573  */
2574 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2575   ResourceMark rm;
2576   nmethod* nm = NULL;
2577 
2578   assert(method->is_native(), "must be native");
2579   assert(method->is_method_handle_intrinsic() ||
2580          method->has_native_function(), "must have something valid to call!");
2581 
2582   {
2583     // Perform the work while holding the lock, but perform any printing outside the lock
2584     MutexLocker mu(AdapterHandlerLibrary_lock);
2585     // See if somebody beat us to it
2586     nm = method->code();
2587     if (nm != NULL) {
2588       return;
2589     }
2590 
2591     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2592     assert(compile_id > 0, "Must generate native wrapper");
2593 
2594 
2595     ResourceMark rm;
2596     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2597     if (buf != NULL) {
2598       CodeBuffer buffer(buf);
2599       double locs_buf[20];
2600       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2601       MacroAssembler _masm(&buffer);
2602 
2603       // Fill in the signature array, for the calling-convention call.
2604       const int total_args_passed = method->size_of_parameters();
2605 
2606       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2607       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2608       int i=0;
2609       if( !method->is_static() )  // Pass in receiver first
2610         sig_bt[i++] = T_OBJECT;
2611       SignatureStream ss(method->signature());
2612       for( ; !ss.at_return_type(); ss.next()) {
2613         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2614         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2615           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2616       }
2617       assert(i == total_args_passed, "");
2618       BasicType ret_type = ss.type();
2619 
2620       // Now get the compiled-Java layout as input (or output) arguments.
2621       // NOTE: Stubs for compiled entry points of method handle intrinsics
2622       // are just trampolines so the argument registers must be outgoing ones.
2623       const bool is_outgoing = method->is_method_handle_intrinsic();
2624       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2625 
2626       // Generate the compiled-to-native wrapper code
2627       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2628 
2629       if (nm != NULL) {
2630         method->set_code(method, nm);
2631       }
2632     }
2633   } // Unlock AdapterHandlerLibrary_lock
2634 
2635 
2636   // Install the generated code.
2637   if (nm != NULL) {
2638     if (PrintCompilation) {
2639       ttyLocker ttyl;
2640       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2641     }
2642     nm->post_compiled_method_load_event();
2643   } else {
2644     // CodeCache is full, disable compilation
2645     CompileBroker::handle_full_code_cache();
2646   }
2647 }
2648 
2649 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2650   assert(thread == JavaThread::current(), "must be");
2651   // The code is about to enter a JNI lazy critical native method and
2652   // _needs_gc is true, so if this thread is already in a critical
2653   // section then just return, otherwise this thread should block
2654   // until needs_gc has been cleared.
2655   if (thread->in_critical()) {
2656     return;
2657   }
2658   // Lock and unlock a critical section to give the system a chance to block
2659   GC_locker::lock_critical(thread);
2660   GC_locker::unlock_critical(thread);
2661 JRT_END
2662 
2663 #ifdef HAVE_DTRACE_H
2664 /**
2665  * Create a dtrace nmethod for this method.  The wrapper converts the
2666  * Java-compiled calling convention to the native convention, makes a dummy call
2667  * (actually nops for the size of the call instruction, which become a trap if
2668  * probe is enabled), and finally returns to the caller. Since this all looks like a
2669  * leaf, no thread transition is needed.
2670  */
2671 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2672   ResourceMark rm;
2673   nmethod* nm = NULL;
2674 
2675   if (PrintCompilation) {
2676     ttyLocker ttyl;
2677     tty->print("---   n  ");
2678     method->print_short_name(tty);
2679     if (method->is_static()) {
2680       tty->print(" (static)");
2681     }
2682     tty->cr();
2683   }
2684 
2685   {
2686     // perform the work while holding the lock, but perform any printing
2687     // outside the lock
2688     MutexLocker mu(AdapterHandlerLibrary_lock);
2689     // See if somebody beat us to it
2690     nm = method->code();
2691     if (nm) {
2692       return nm;
2693     }
2694 
2695     ResourceMark rm;
2696 
2697     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2698     if (buf != NULL) {
2699       CodeBuffer buffer(buf);
2700       // Need a few relocation entries
2701       double locs_buf[20];
2702       buffer.insts()->initialize_shared_locs(
2703         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2704       MacroAssembler _masm(&buffer);
2705 
2706       // Generate the compiled-to-native wrapper code
2707       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2708     }
2709   }
2710   return nm;
2711 }
2712 
2713 // the dtrace method needs to convert java lang string to utf8 string.
2714 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2715   typeArrayOop jlsValue  = java_lang_String::value(src);
2716   int          jlsOffset = java_lang_String::offset(src);
2717   int          jlsLen    = java_lang_String::length(src);
2718   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2719                                            jlsValue->char_at_addr(jlsOffset);
2720   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2721   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2722 }
2723 #endif // ndef HAVE_DTRACE_H
2724 
2725 int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) {
2726   int argcnt = in_args_count;
2727   if (CCallingConventionRequiresIntsAsLongs) {
2728     for (int in = 0; in < in_args_count; in++) {
2729       BasicType bt = in_sig_bt[in];
2730       switch (bt) {
2731         case T_BOOLEAN:
2732         case T_CHAR:
2733         case T_BYTE:
2734         case T_SHORT:
2735         case T_INT:
2736           argcnt++;
2737           break;
2738         default:
2739           break;
2740       }
2741     }
2742   } else {
2743     assert(0, "This should not be needed on this platform");
2744   }
2745 
2746   return argcnt;
2747 }
2748 
2749 void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count,
2750                                              BasicType*& in_sig_bt, VMRegPair*& in_regs) {
2751   if (CCallingConventionRequiresIntsAsLongs) {
2752     VMRegPair *new_in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt);
2753     BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
2754 
2755     int argcnt = 0;
2756     for (int in = 0; in < in_args_count; in++, argcnt++) {
2757       BasicType bt  = in_sig_bt[in];
2758       VMRegPair reg = in_regs[in];
2759       switch (bt) {
2760         case T_BOOLEAN:
2761         case T_CHAR:
2762         case T_BYTE:
2763         case T_SHORT:
2764         case T_INT:
2765           // Convert (bt) to (T_LONG,bt).
2766           new_in_sig_bt[argcnt  ] = T_LONG;
2767           new_in_sig_bt[argcnt+1] = bt;
2768           assert(reg.first()->is_valid() && !reg.second()->is_valid(), "");
2769           new_in_regs[argcnt  ].set2(reg.first());
2770           new_in_regs[argcnt+1].set_bad();
2771           argcnt++;
2772           break;
2773         default:
2774           // No conversion needed.
2775           new_in_sig_bt[argcnt] = bt;
2776           new_in_regs[argcnt]   = reg;
2777           break;
2778       }
2779     }
2780     assert(argcnt == i2l_argcnt, "must match");
2781 
2782     in_regs = new_in_regs;
2783     in_sig_bt = new_in_sig_bt;
2784     in_args_count = i2l_argcnt;
2785   } else {
2786     assert(0, "This should not be needed on this platform");
2787   }
2788 }
2789 
2790 // -------------------------------------------------------------------------
2791 // Java-Java calling convention
2792 // (what you use when Java calls Java)
2793 
2794 //------------------------------name_for_receiver----------------------------------
2795 // For a given signature, return the VMReg for parameter 0.
2796 VMReg SharedRuntime::name_for_receiver() {
2797   VMRegPair regs;
2798   BasicType sig_bt = T_OBJECT;
2799   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2800   // Return argument 0 register.  In the LP64 build pointers
2801   // take 2 registers, but the VM wants only the 'main' name.
2802   return regs.first();
2803 }
2804 
2805 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2806   // This method is returning a data structure allocating as a
2807   // ResourceObject, so do not put any ResourceMarks in here.
2808   char *s = sig->as_C_string();
2809   int len = (int)strlen(s);
2810   s++; len--;                   // Skip opening paren
2811   char *t = s+len;
2812   while( *(--t) != ')' ) ;      // Find close paren
2813 
2814   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2815   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2816   int cnt = 0;
2817   if (has_receiver) {
2818     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2819   }
2820 
2821   while( s < t ) {
2822     switch( *s++ ) {            // Switch on signature character
2823     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2824     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2825     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2826     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2827     case 'I': sig_bt[cnt++] = T_INT;     break;
2828     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2829     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2830     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2831     case 'V': sig_bt[cnt++] = T_VOID;    break;
2832     case 'L':                   // Oop
2833       while( *s++ != ';'  ) ;   // Skip signature
2834       sig_bt[cnt++] = T_OBJECT;
2835       break;
2836     case '[': {                 // Array
2837       do {                      // Skip optional size
2838         while( *s >= '0' && *s <= '9' ) s++;
2839       } while( *s++ == '[' );   // Nested arrays?
2840       // Skip element type
2841       if( s[-1] == 'L' )
2842         while( *s++ != ';'  ) ; // Skip signature
2843       sig_bt[cnt++] = T_ARRAY;
2844       break;
2845     }
2846     default : ShouldNotReachHere();
2847     }
2848   }
2849 
2850   if (has_appendix) {
2851     sig_bt[cnt++] = T_OBJECT;
2852   }
2853 
2854   assert( cnt < 256, "grow table size" );
2855 
2856   int comp_args_on_stack;
2857   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2858 
2859   // the calling convention doesn't count out_preserve_stack_slots so
2860   // we must add that in to get "true" stack offsets.
2861 
2862   if (comp_args_on_stack) {
2863     for (int i = 0; i < cnt; i++) {
2864       VMReg reg1 = regs[i].first();
2865       if( reg1->is_stack()) {
2866         // Yuck
2867         reg1 = reg1->bias(out_preserve_stack_slots());
2868       }
2869       VMReg reg2 = regs[i].second();
2870       if( reg2->is_stack()) {
2871         // Yuck
2872         reg2 = reg2->bias(out_preserve_stack_slots());
2873       }
2874       regs[i].set_pair(reg2, reg1);
2875     }
2876   }
2877 
2878   // results
2879   *arg_size = cnt;
2880   return regs;
2881 }
2882 
2883 // OSR Migration Code
2884 //
2885 // This code is used convert interpreter frames into compiled frames.  It is
2886 // called from very start of a compiled OSR nmethod.  A temp array is
2887 // allocated to hold the interesting bits of the interpreter frame.  All
2888 // active locks are inflated to allow them to move.  The displaced headers and
2889 // active interpreter locals are copied into the temp buffer.  Then we return
2890 // back to the compiled code.  The compiled code then pops the current
2891 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2892 // copies the interpreter locals and displaced headers where it wants.
2893 // Finally it calls back to free the temp buffer.
2894 //
2895 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2896 
2897 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2898 
2899   //
2900   // This code is dependent on the memory layout of the interpreter local
2901   // array and the monitors. On all of our platforms the layout is identical
2902   // so this code is shared. If some platform lays the their arrays out
2903   // differently then this code could move to platform specific code or
2904   // the code here could be modified to copy items one at a time using
2905   // frame accessor methods and be platform independent.
2906 
2907   frame fr = thread->last_frame();
2908   assert( fr.is_interpreted_frame(), "" );
2909   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2910 
2911   // Figure out how many monitors are active.
2912   int active_monitor_count = 0;
2913   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2914        kptr < fr.interpreter_frame_monitor_begin();
2915        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2916     if( kptr->obj() != NULL ) active_monitor_count++;
2917   }
2918 
2919   // QQQ we could place number of active monitors in the array so that compiled code
2920   // could double check it.
2921 
2922   Method* moop = fr.interpreter_frame_method();
2923   int max_locals = moop->max_locals();
2924   // Allocate temp buffer, 1 word per local & 2 per active monitor
2925   int buf_size_words = max_locals + active_monitor_count*2;
2926   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2927 
2928   // Copy the locals.  Order is preserved so that loading of longs works.
2929   // Since there's no GC I can copy the oops blindly.
2930   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2931   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2932                        (HeapWord*)&buf[0],
2933                        max_locals);
2934 
2935   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2936   int i = max_locals;
2937   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2938        kptr2 < fr.interpreter_frame_monitor_begin();
2939        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2940     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2941       BasicLock *lock = kptr2->lock();
2942       // Inflate so the displaced header becomes position-independent
2943       if (lock->displaced_header()->is_unlocked())
2944         ObjectSynchronizer::inflate_helper(kptr2->obj());
2945       // Now the displaced header is free to move
2946       buf[i++] = (intptr_t)lock->displaced_header();
2947       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2948     }
2949   }
2950   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2951 
2952   return buf;
2953 JRT_END
2954 
2955 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2956   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
2957 JRT_END
2958 
2959 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2960   AdapterHandlerTableIterator iter(_adapters);
2961   while (iter.has_next()) {
2962     AdapterHandlerEntry* a = iter.next();
2963     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2964   }
2965   return false;
2966 }
2967 
2968 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2969   AdapterHandlerTableIterator iter(_adapters);
2970   while (iter.has_next()) {
2971     AdapterHandlerEntry* a = iter.next();
2972     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2973       st->print("Adapter for signature: ");
2974       a->print_adapter_on(tty);
2975       return;
2976     }
2977   }
2978   assert(false, "Should have found handler");
2979 }
2980 
2981 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2982   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2983                (intptr_t) this, fingerprint()->as_string(),
2984                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2985 
2986 }
2987 
2988 #ifndef PRODUCT
2989 
2990 void AdapterHandlerLibrary::print_statistics() {
2991   _adapters->print_statistics();
2992 }
2993 
2994 #endif /* PRODUCT */