1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/metaspaceShared.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/instanceKlass.hpp"
  41 #include "oops/objArrayOop.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/symbol.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "prims/privilegedStack.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/atomic.inline.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/deoptimization.hpp"
  52 #include "runtime/fprofiler.hpp"
  53 #include "runtime/frame.inline.hpp"
  54 #include "runtime/init.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/javaCalls.hpp"
  58 #include "runtime/jniPeriodicChecker.hpp"
  59 #include "runtime/memprofiler.hpp"
  60 #include "runtime/mutexLocker.hpp"
  61 #include "runtime/objectMonitor.hpp"
  62 #include "runtime/orderAccess.inline.hpp"
  63 #include "runtime/osThread.hpp"
  64 #include "runtime/safepoint.hpp"
  65 #include "runtime/sharedRuntime.hpp"
  66 #include "runtime/statSampler.hpp"
  67 #include "runtime/stubRoutines.hpp"
  68 #include "runtime/task.hpp"
  69 #include "runtime/thread.inline.hpp"
  70 #include "runtime/threadCritical.hpp"
  71 #include "runtime/threadLocalStorage.hpp"
  72 #include "runtime/vframe.hpp"
  73 #include "runtime/vframeArray.hpp"
  74 #include "runtime/vframe_hp.hpp"
  75 #include "runtime/vmThread.hpp"
  76 #include "runtime/vm_operations.hpp"
  77 #include "services/attachListener.hpp"
  78 #include "services/management.hpp"
  79 #include "services/memTracker.hpp"
  80 #include "services/threadService.hpp"
  81 #include "trace/tracing.hpp"
  82 #include "trace/traceMacros.hpp"
  83 #include "utilities/defaultStream.hpp"
  84 #include "utilities/dtrace.hpp"
  85 #include "utilities/events.hpp"
  86 #include "utilities/preserveException.hpp"
  87 #include "utilities/macros.hpp"
  88 #ifdef TARGET_OS_FAMILY_linux
  89 # include "os_linux.inline.hpp"
  90 #endif
  91 #ifdef TARGET_OS_FAMILY_solaris
  92 # include "os_solaris.inline.hpp"
  93 #endif
  94 #ifdef TARGET_OS_FAMILY_windows
  95 # include "os_windows.inline.hpp"
  96 #endif
  97 #ifdef TARGET_OS_FAMILY_bsd
  98 # include "os_bsd.inline.hpp"
  99 #endif
 100 #if INCLUDE_ALL_GCS
 101 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 102 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 103 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 104 #endif // INCLUDE_ALL_GCS
 105 #ifdef COMPILER1
 106 #include "c1/c1_Compiler.hpp"
 107 #endif
 108 #ifdef COMPILER2
 109 #include "opto/c2compiler.hpp"
 110 #include "opto/idealGraphPrinter.hpp"
 111 #endif
 112 #if INCLUDE_RTM_OPT
 113 #include "runtime/rtmLocking.hpp"
 114 #endif
 115 
 116 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 117 
 118 #ifdef DTRACE_ENABLED
 119 
 120 // Only bother with this argument setup if dtrace is available
 121 
 122 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 123 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 124 
 125 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 126   {                                                                        \
 127     ResourceMark rm(this);                                                 \
 128     int len = 0;                                                           \
 129     const char* name = (javathread)->get_thread_name();                    \
 130     len = strlen(name);                                                    \
 131     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 132       (char *) name, len,                                                           \
 133       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 134       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 135       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 136   }
 137 
 138 #else //  ndef DTRACE_ENABLED
 139 
 140 #define DTRACE_THREAD_PROBE(probe, javathread)
 141 
 142 #endif // ndef DTRACE_ENABLED
 143 
 144 
 145 // Class hierarchy
 146 // - Thread
 147 //   - VMThread
 148 //   - WatcherThread
 149 //   - ConcurrentMarkSweepThread
 150 //   - JavaThread
 151 //     - CompilerThread
 152 
 153 // ======= Thread ========
 154 // Support for forcing alignment of thread objects for biased locking
 155 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 156   if (UseBiasedLocking) {
 157     const int alignment = markOopDesc::biased_lock_alignment;
 158     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 159     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 160                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 161                                               AllocFailStrategy::RETURN_NULL);
 162     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 163     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 164            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 165            "JavaThread alignment code overflowed allocated storage");
 166     if (TraceBiasedLocking) {
 167       if (aligned_addr != real_malloc_addr)
 168         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 169                       real_malloc_addr, aligned_addr);
 170     }
 171     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 172     return aligned_addr;
 173   } else {
 174     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 175                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 176   }
 177 }
 178 
 179 void Thread::operator delete(void* p) {
 180   if (UseBiasedLocking) {
 181     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 182     FreeHeap(real_malloc_addr, mtThread);
 183   } else {
 184     FreeHeap(p, mtThread);
 185   }
 186 }
 187 
 188 
 189 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 190 // JavaThread
 191 
 192 
 193 Thread::Thread() {
 194   // stack and get_thread
 195   set_stack_base(NULL);
 196   set_stack_size(0);
 197   set_self_raw_id(0);
 198   set_lgrp_id(-1);
 199 
 200   // allocated data structures
 201   set_osthread(NULL);
 202   set_resource_area(new (mtThread)ResourceArea());
 203   DEBUG_ONLY(_current_resource_mark = NULL;)
 204   set_handle_area(new (mtThread) HandleArea(NULL));
 205   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 206   set_active_handles(NULL);
 207   set_free_handle_block(NULL);
 208   set_last_handle_mark(NULL);
 209 
 210   // This initial value ==> never claimed.
 211   _oops_do_parity = 0;
 212 
 213   // the handle mark links itself to last_handle_mark
 214   new HandleMark(this);
 215 
 216   // plain initialization
 217   debug_only(_owned_locks = NULL;)
 218   debug_only(_allow_allocation_count = 0;)
 219   NOT_PRODUCT(_allow_safepoint_count = 0;)
 220   NOT_PRODUCT(_skip_gcalot = false;)
 221   _jvmti_env_iteration_count = 0;
 222   set_allocated_bytes(0);
 223   _vm_operation_started_count = 0;
 224   _vm_operation_completed_count = 0;
 225   _current_pending_monitor = NULL;
 226   _current_pending_monitor_is_from_java = true;
 227   _current_waiting_monitor = NULL;
 228   _num_nested_signal = 0;
 229   omFreeList = NULL ;
 230   omFreeCount = 0 ;
 231   omFreeProvision = 32 ;
 232   omInUseList = NULL ;
 233   omInUseCount = 0 ;
 234 
 235 #ifdef ASSERT
 236   _visited_for_critical_count = false;
 237 #endif
 238 
 239   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 240   _suspend_flags = 0;
 241 
 242   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 243   _hashStateX = os::random() ;
 244   _hashStateY = 842502087 ;
 245   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 246   _hashStateW = 273326509 ;
 247 
 248   _OnTrap   = 0 ;
 249   _schedctl = NULL ;
 250   _Stalled  = 0 ;
 251   _TypeTag  = 0x2BAD ;
 252 
 253   // Many of the following fields are effectively final - immutable
 254   // Note that nascent threads can't use the Native Monitor-Mutex
 255   // construct until the _MutexEvent is initialized ...
 256   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 257   // we might instead use a stack of ParkEvents that we could provision on-demand.
 258   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 259   // and ::Release()
 260   _ParkEvent   = ParkEvent::Allocate (this) ;
 261   _SleepEvent  = ParkEvent::Allocate (this) ;
 262   _MutexEvent  = ParkEvent::Allocate (this) ;
 263   _MuxEvent    = ParkEvent::Allocate (this) ;
 264 
 265 #ifdef CHECK_UNHANDLED_OOPS
 266   if (CheckUnhandledOops) {
 267     _unhandled_oops = new UnhandledOops(this);
 268   }
 269 #endif // CHECK_UNHANDLED_OOPS
 270 #ifdef ASSERT
 271   if (UseBiasedLocking) {
 272     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 273     assert(this == _real_malloc_address ||
 274            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 275            "bug in forced alignment of thread objects");
 276   }
 277 #endif /* ASSERT */
 278 }
 279 
 280 void Thread::initialize_thread_local_storage() {
 281   // Note: Make sure this method only calls
 282   // non-blocking operations. Otherwise, it might not work
 283   // with the thread-startup/safepoint interaction.
 284 
 285   // During Java thread startup, safepoint code should allow this
 286   // method to complete because it may need to allocate memory to
 287   // store information for the new thread.
 288 
 289   // initialize structure dependent on thread local storage
 290   ThreadLocalStorage::set_thread(this);
 291 }
 292 
 293 void Thread::record_stack_base_and_size() {
 294   set_stack_base(os::current_stack_base());
 295   set_stack_size(os::current_stack_size());
 296   if (is_Java_thread()) {
 297     ((JavaThread*) this)->set_stack_overflow_limit();
 298   }
 299   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 300   // in initialize_thread(). Without the adjustment, stack size is
 301   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 302   // So far, only Solaris has real implementation of initialize_thread().
 303   //
 304   // set up any platform-specific state.
 305   os::initialize_thread(this);
 306 
 307 #if INCLUDE_NMT
 308   // record thread's native stack, stack grows downward
 309   address stack_low_addr = stack_base() - stack_size();
 310   MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
 311       CURRENT_PC);
 312 #endif // INCLUDE_NMT
 313 }
 314 
 315 
 316 Thread::~Thread() {
 317   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 318   ObjectSynchronizer::omFlush (this) ;
 319 
 320   EVENT_THREAD_DESTRUCT(this);
 321 
 322   // stack_base can be NULL if the thread is never started or exited before
 323   // record_stack_base_and_size called. Although, we would like to ensure
 324   // that all started threads do call record_stack_base_and_size(), there is
 325   // not proper way to enforce that.
 326 #if INCLUDE_NMT
 327   if (_stack_base != NULL) {
 328     address low_stack_addr = stack_base() - stack_size();
 329     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
 330 #ifdef ASSERT
 331     set_stack_base(NULL);
 332 #endif
 333   }
 334 #endif // INCLUDE_NMT
 335 
 336   // deallocate data structures
 337   delete resource_area();
 338   // since the handle marks are using the handle area, we have to deallocated the root
 339   // handle mark before deallocating the thread's handle area,
 340   assert(last_handle_mark() != NULL, "check we have an element");
 341   delete last_handle_mark();
 342   assert(last_handle_mark() == NULL, "check we have reached the end");
 343 
 344   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 345   // We NULL out the fields for good hygiene.
 346   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 347   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 348   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 349   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 350 
 351   delete handle_area();
 352   delete metadata_handles();
 353 
 354   // osthread() can be NULL, if creation of thread failed.
 355   if (osthread() != NULL) os::free_thread(osthread());
 356 
 357   delete _SR_lock;
 358 
 359   // clear thread local storage if the Thread is deleting itself
 360   if (this == Thread::current()) {
 361     ThreadLocalStorage::set_thread(NULL);
 362   } else {
 363     // In the case where we're not the current thread, invalidate all the
 364     // caches in case some code tries to get the current thread or the
 365     // thread that was destroyed, and gets stale information.
 366     ThreadLocalStorage::invalidate_all();
 367   }
 368   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 369 }
 370 
 371 // NOTE: dummy function for assertion purpose.
 372 void Thread::run() {
 373   ShouldNotReachHere();
 374 }
 375 
 376 #ifdef ASSERT
 377 // Private method to check for dangling thread pointer
 378 void check_for_dangling_thread_pointer(Thread *thread) {
 379  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 380          "possibility of dangling Thread pointer");
 381 }
 382 #endif
 383 
 384 
 385 #ifndef PRODUCT
 386 // Tracing method for basic thread operations
 387 void Thread::trace(const char* msg, const Thread* const thread) {
 388   if (!TraceThreadEvents) return;
 389   ResourceMark rm;
 390   ThreadCritical tc;
 391   const char *name = "non-Java thread";
 392   int prio = -1;
 393   if (thread->is_Java_thread()
 394       && !thread->is_Compiler_thread()) {
 395     // The Threads_lock must be held to get information about
 396     // this thread but may not be in some situations when
 397     // tracing  thread events.
 398     bool release_Threads_lock = false;
 399     if (!Threads_lock->owned_by_self()) {
 400       Threads_lock->lock();
 401       release_Threads_lock = true;
 402     }
 403     JavaThread* jt = (JavaThread *)thread;
 404     name = (char *)jt->get_thread_name();
 405     oop thread_oop = jt->threadObj();
 406     if (thread_oop != NULL) {
 407       prio = java_lang_Thread::priority(thread_oop);
 408     }
 409     if (release_Threads_lock) {
 410       Threads_lock->unlock();
 411     }
 412   }
 413   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 414 }
 415 #endif
 416 
 417 
 418 ThreadPriority Thread::get_priority(const Thread* const thread) {
 419   trace("get priority", thread);
 420   ThreadPriority priority;
 421   // Can return an error!
 422   (void)os::get_priority(thread, priority);
 423   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 424   return priority;
 425 }
 426 
 427 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 428   trace("set priority", thread);
 429   debug_only(check_for_dangling_thread_pointer(thread);)
 430   // Can return an error!
 431   (void)os::set_priority(thread, priority);
 432 }
 433 
 434 
 435 void Thread::start(Thread* thread) {
 436   trace("start", thread);
 437   // Start is different from resume in that its safety is guaranteed by context or
 438   // being called from a Java method synchronized on the Thread object.
 439   if (!DisableStartThread) {
 440     if (thread->is_Java_thread()) {
 441       // Initialize the thread state to RUNNABLE before starting this thread.
 442       // Can not set it after the thread started because we do not know the
 443       // exact thread state at that time. It could be in MONITOR_WAIT or
 444       // in SLEEPING or some other state.
 445       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 446                                           java_lang_Thread::RUNNABLE);
 447     }
 448     os::start_thread(thread);
 449   }
 450 }
 451 
 452 // Enqueue a VM_Operation to do the job for us - sometime later
 453 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 454   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 455   VMThread::execute(vm_stop);
 456 }
 457 
 458 
 459 //
 460 // Check if an external suspend request has completed (or has been
 461 // cancelled). Returns true if the thread is externally suspended and
 462 // false otherwise.
 463 //
 464 // The bits parameter returns information about the code path through
 465 // the routine. Useful for debugging:
 466 //
 467 // set in is_ext_suspend_completed():
 468 // 0x00000001 - routine was entered
 469 // 0x00000010 - routine return false at end
 470 // 0x00000100 - thread exited (return false)
 471 // 0x00000200 - suspend request cancelled (return false)
 472 // 0x00000400 - thread suspended (return true)
 473 // 0x00001000 - thread is in a suspend equivalent state (return true)
 474 // 0x00002000 - thread is native and walkable (return true)
 475 // 0x00004000 - thread is native_trans and walkable (needed retry)
 476 //
 477 // set in wait_for_ext_suspend_completion():
 478 // 0x00010000 - routine was entered
 479 // 0x00020000 - suspend request cancelled before loop (return false)
 480 // 0x00040000 - thread suspended before loop (return true)
 481 // 0x00080000 - suspend request cancelled in loop (return false)
 482 // 0x00100000 - thread suspended in loop (return true)
 483 // 0x00200000 - suspend not completed during retry loop (return false)
 484 //
 485 
 486 // Helper class for tracing suspend wait debug bits.
 487 //
 488 // 0x00000100 indicates that the target thread exited before it could
 489 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 490 // 0x00080000 each indicate a cancelled suspend request so they don't
 491 // count as wait failures either.
 492 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 493 
 494 class TraceSuspendDebugBits : public StackObj {
 495  private:
 496   JavaThread * jt;
 497   bool         is_wait;
 498   bool         called_by_wait;  // meaningful when !is_wait
 499   uint32_t *   bits;
 500 
 501  public:
 502   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 503                         uint32_t *_bits) {
 504     jt             = _jt;
 505     is_wait        = _is_wait;
 506     called_by_wait = _called_by_wait;
 507     bits           = _bits;
 508   }
 509 
 510   ~TraceSuspendDebugBits() {
 511     if (!is_wait) {
 512 #if 1
 513       // By default, don't trace bits for is_ext_suspend_completed() calls.
 514       // That trace is very chatty.
 515       return;
 516 #else
 517       if (!called_by_wait) {
 518         // If tracing for is_ext_suspend_completed() is enabled, then only
 519         // trace calls to it from wait_for_ext_suspend_completion()
 520         return;
 521       }
 522 #endif
 523     }
 524 
 525     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 526       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 527         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 528         ResourceMark rm;
 529 
 530         tty->print_cr(
 531             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 532             jt->get_thread_name(), *bits);
 533 
 534         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 535       }
 536     }
 537   }
 538 };
 539 #undef DEBUG_FALSE_BITS
 540 
 541 
 542 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 543   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 544 
 545   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 546   bool do_trans_retry;           // flag to force the retry
 547 
 548   *bits |= 0x00000001;
 549 
 550   do {
 551     do_trans_retry = false;
 552 
 553     if (is_exiting()) {
 554       // Thread is in the process of exiting. This is always checked
 555       // first to reduce the risk of dereferencing a freed JavaThread.
 556       *bits |= 0x00000100;
 557       return false;
 558     }
 559 
 560     if (!is_external_suspend()) {
 561       // Suspend request is cancelled. This is always checked before
 562       // is_ext_suspended() to reduce the risk of a rogue resume
 563       // confusing the thread that made the suspend request.
 564       *bits |= 0x00000200;
 565       return false;
 566     }
 567 
 568     if (is_ext_suspended()) {
 569       // thread is suspended
 570       *bits |= 0x00000400;
 571       return true;
 572     }
 573 
 574     // Now that we no longer do hard suspends of threads running
 575     // native code, the target thread can be changing thread state
 576     // while we are in this routine:
 577     //
 578     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 579     //
 580     // We save a copy of the thread state as observed at this moment
 581     // and make our decision about suspend completeness based on the
 582     // copy. This closes the race where the thread state is seen as
 583     // _thread_in_native_trans in the if-thread_blocked check, but is
 584     // seen as _thread_blocked in if-thread_in_native_trans check.
 585     JavaThreadState save_state = thread_state();
 586 
 587     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 588       // If the thread's state is _thread_blocked and this blocking
 589       // condition is known to be equivalent to a suspend, then we can
 590       // consider the thread to be externally suspended. This means that
 591       // the code that sets _thread_blocked has been modified to do
 592       // self-suspension if the blocking condition releases. We also
 593       // used to check for CONDVAR_WAIT here, but that is now covered by
 594       // the _thread_blocked with self-suspension check.
 595       //
 596       // Return true since we wouldn't be here unless there was still an
 597       // external suspend request.
 598       *bits |= 0x00001000;
 599       return true;
 600     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 601       // Threads running native code will self-suspend on native==>VM/Java
 602       // transitions. If its stack is walkable (should always be the case
 603       // unless this function is called before the actual java_suspend()
 604       // call), then the wait is done.
 605       *bits |= 0x00002000;
 606       return true;
 607     } else if (!called_by_wait && !did_trans_retry &&
 608                save_state == _thread_in_native_trans &&
 609                frame_anchor()->walkable()) {
 610       // The thread is transitioning from thread_in_native to another
 611       // thread state. check_safepoint_and_suspend_for_native_trans()
 612       // will force the thread to self-suspend. If it hasn't gotten
 613       // there yet we may have caught the thread in-between the native
 614       // code check above and the self-suspend. Lucky us. If we were
 615       // called by wait_for_ext_suspend_completion(), then it
 616       // will be doing the retries so we don't have to.
 617       //
 618       // Since we use the saved thread state in the if-statement above,
 619       // there is a chance that the thread has already transitioned to
 620       // _thread_blocked by the time we get here. In that case, we will
 621       // make a single unnecessary pass through the logic below. This
 622       // doesn't hurt anything since we still do the trans retry.
 623 
 624       *bits |= 0x00004000;
 625 
 626       // Once the thread leaves thread_in_native_trans for another
 627       // thread state, we break out of this retry loop. We shouldn't
 628       // need this flag to prevent us from getting back here, but
 629       // sometimes paranoia is good.
 630       did_trans_retry = true;
 631 
 632       // We wait for the thread to transition to a more usable state.
 633       for (int i = 1; i <= SuspendRetryCount; i++) {
 634         // We used to do an "os::yield_all(i)" call here with the intention
 635         // that yielding would increase on each retry. However, the parameter
 636         // is ignored on Linux which means the yield didn't scale up. Waiting
 637         // on the SR_lock below provides a much more predictable scale up for
 638         // the delay. It also provides a simple/direct point to check for any
 639         // safepoint requests from the VMThread
 640 
 641         // temporarily drops SR_lock while doing wait with safepoint check
 642         // (if we're a JavaThread - the WatcherThread can also call this)
 643         // and increase delay with each retry
 644         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 645 
 646         // check the actual thread state instead of what we saved above
 647         if (thread_state() != _thread_in_native_trans) {
 648           // the thread has transitioned to another thread state so
 649           // try all the checks (except this one) one more time.
 650           do_trans_retry = true;
 651           break;
 652         }
 653       } // end retry loop
 654 
 655 
 656     }
 657   } while (do_trans_retry);
 658 
 659   *bits |= 0x00000010;
 660   return false;
 661 }
 662 
 663 //
 664 // Wait for an external suspend request to complete (or be cancelled).
 665 // Returns true if the thread is externally suspended and false otherwise.
 666 //
 667 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 668        uint32_t *bits) {
 669   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 670                              false /* !called_by_wait */, bits);
 671 
 672   // local flag copies to minimize SR_lock hold time
 673   bool is_suspended;
 674   bool pending;
 675   uint32_t reset_bits;
 676 
 677   // set a marker so is_ext_suspend_completed() knows we are the caller
 678   *bits |= 0x00010000;
 679 
 680   // We use reset_bits to reinitialize the bits value at the top of
 681   // each retry loop. This allows the caller to make use of any
 682   // unused bits for their own marking purposes.
 683   reset_bits = *bits;
 684 
 685   {
 686     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 687     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 688                                             delay, bits);
 689     pending = is_external_suspend();
 690   }
 691   // must release SR_lock to allow suspension to complete
 692 
 693   if (!pending) {
 694     // A cancelled suspend request is the only false return from
 695     // is_ext_suspend_completed() that keeps us from entering the
 696     // retry loop.
 697     *bits |= 0x00020000;
 698     return false;
 699   }
 700 
 701   if (is_suspended) {
 702     *bits |= 0x00040000;
 703     return true;
 704   }
 705 
 706   for (int i = 1; i <= retries; i++) {
 707     *bits = reset_bits;  // reinit to only track last retry
 708 
 709     // We used to do an "os::yield_all(i)" call here with the intention
 710     // that yielding would increase on each retry. However, the parameter
 711     // is ignored on Linux which means the yield didn't scale up. Waiting
 712     // on the SR_lock below provides a much more predictable scale up for
 713     // the delay. It also provides a simple/direct point to check for any
 714     // safepoint requests from the VMThread
 715 
 716     {
 717       MutexLocker ml(SR_lock());
 718       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 719       // can also call this)  and increase delay with each retry
 720       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 721 
 722       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 723                                               delay, bits);
 724 
 725       // It is possible for the external suspend request to be cancelled
 726       // (by a resume) before the actual suspend operation is completed.
 727       // Refresh our local copy to see if we still need to wait.
 728       pending = is_external_suspend();
 729     }
 730 
 731     if (!pending) {
 732       // A cancelled suspend request is the only false return from
 733       // is_ext_suspend_completed() that keeps us from staying in the
 734       // retry loop.
 735       *bits |= 0x00080000;
 736       return false;
 737     }
 738 
 739     if (is_suspended) {
 740       *bits |= 0x00100000;
 741       return true;
 742     }
 743   } // end retry loop
 744 
 745   // thread did not suspend after all our retries
 746   *bits |= 0x00200000;
 747   return false;
 748 }
 749 
 750 #ifndef PRODUCT
 751 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 752 
 753   // This should not need to be atomic as the only way for simultaneous
 754   // updates is via interrupts. Even then this should be rare or non-existent
 755   // and we don't care that much anyway.
 756 
 757   int index = _jmp_ring_index;
 758   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 759   _jmp_ring[index]._target = (intptr_t) target;
 760   _jmp_ring[index]._instruction = (intptr_t) instr;
 761   _jmp_ring[index]._file = file;
 762   _jmp_ring[index]._line = line;
 763 }
 764 #endif /* PRODUCT */
 765 
 766 // Called by flat profiler
 767 // Callers have already called wait_for_ext_suspend_completion
 768 // The assertion for that is currently too complex to put here:
 769 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 770   bool gotframe = false;
 771   // self suspension saves needed state.
 772   if (has_last_Java_frame() && _anchor.walkable()) {
 773      *_fr = pd_last_frame();
 774      gotframe = true;
 775   }
 776   return gotframe;
 777 }
 778 
 779 void Thread::interrupt(Thread* thread) {
 780   trace("interrupt", thread);
 781   debug_only(check_for_dangling_thread_pointer(thread);)
 782   os::interrupt(thread);
 783 }
 784 
 785 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 786   trace("is_interrupted", thread);
 787   debug_only(check_for_dangling_thread_pointer(thread);)
 788   // Note:  If clear_interrupted==false, this simply fetches and
 789   // returns the value of the field osthread()->interrupted().
 790   return os::is_interrupted(thread, clear_interrupted);
 791 }
 792 
 793 
 794 // GC Support
 795 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 796   jint thread_parity = _oops_do_parity;
 797   if (thread_parity != strong_roots_parity) {
 798     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 799     if (res == thread_parity) {
 800       return true;
 801     } else {
 802       guarantee(res == strong_roots_parity, "Or else what?");
 803       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 804          "Should only fail when parallel.");
 805       return false;
 806     }
 807   }
 808   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 809          "Should only fail when parallel.");
 810   return false;
 811 }
 812 
 813 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 814   active_handles()->oops_do(f);
 815   // Do oop for ThreadShadow
 816   f->do_oop((oop*)&_pending_exception);
 817   handle_area()->oops_do(f);
 818 }
 819 
 820 void Thread::nmethods_do(CodeBlobClosure* cf) {
 821   // no nmethods in a generic thread...
 822 }
 823 
 824 void Thread::metadata_do(void f(Metadata*)) {
 825   if (metadata_handles() != NULL) {
 826     for (int i = 0; i< metadata_handles()->length(); i++) {
 827       f(metadata_handles()->at(i));
 828     }
 829   }
 830 }
 831 
 832 void Thread::print_on(outputStream* st) const {
 833   // get_priority assumes osthread initialized
 834   if (osthread() != NULL) {
 835     int os_prio;
 836     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 837       st->print("os_prio=%d ", os_prio);
 838     }
 839     st->print("tid=" INTPTR_FORMAT " ", this);
 840     osthread()->print_on(st);
 841   }
 842   debug_only(if (WizardMode) print_owned_locks_on(st);)
 843 }
 844 
 845 // Thread::print_on_error() is called by fatal error handler. Don't use
 846 // any lock or allocate memory.
 847 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 848   if      (is_VM_thread())                  st->print("VMThread");
 849   else if (is_Compiler_thread())            st->print("CompilerThread");
 850   else if (is_Java_thread())                st->print("JavaThread");
 851   else if (is_GC_task_thread())             st->print("GCTaskThread");
 852   else if (is_Watcher_thread())             st->print("WatcherThread");
 853   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 854   else st->print("Thread");
 855 
 856   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 857             _stack_base - _stack_size, _stack_base);
 858 
 859   if (osthread()) {
 860     st->print(" [id=%d]", osthread()->thread_id());
 861   }
 862 }
 863 
 864 #ifdef ASSERT
 865 void Thread::print_owned_locks_on(outputStream* st) const {
 866   Monitor *cur = _owned_locks;
 867   if (cur == NULL) {
 868     st->print(" (no locks) ");
 869   } else {
 870     st->print_cr(" Locks owned:");
 871     while(cur) {
 872       cur->print_on(st);
 873       cur = cur->next();
 874     }
 875   }
 876 }
 877 
 878 static int ref_use_count  = 0;
 879 
 880 bool Thread::owns_locks_but_compiled_lock() const {
 881   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 882     if (cur != Compile_lock) return true;
 883   }
 884   return false;
 885 }
 886 
 887 
 888 #endif
 889 
 890 #ifndef PRODUCT
 891 
 892 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 893 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 894 // no threads which allow_vm_block's are held
 895 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 896     // Check if current thread is allowed to block at a safepoint
 897     if (!(_allow_safepoint_count == 0))
 898       fatal("Possible safepoint reached by thread that does not allow it");
 899     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 900       fatal("LEAF method calling lock?");
 901     }
 902 
 903 #ifdef ASSERT
 904     if (potential_vm_operation && is_Java_thread()
 905         && !Universe::is_bootstrapping()) {
 906       // Make sure we do not hold any locks that the VM thread also uses.
 907       // This could potentially lead to deadlocks
 908       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 909         // Threads_lock is special, since the safepoint synchronization will not start before this is
 910         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 911         // since it is used to transfer control between JavaThreads and the VMThread
 912         // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 913         if ( (cur->allow_vm_block() &&
 914               cur != Threads_lock &&
 915               cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 916               cur != VMOperationRequest_lock &&
 917               cur != VMOperationQueue_lock) ||
 918               cur->rank() == Mutex::special) {
 919           fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 920         }
 921       }
 922     }
 923 
 924     if (GCALotAtAllSafepoints) {
 925       // We could enter a safepoint here and thus have a gc
 926       InterfaceSupport::check_gc_alot();
 927     }
 928 #endif
 929 }
 930 #endif
 931 
 932 bool Thread::is_in_stack(address adr) const {
 933   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 934   address end = os::current_stack_pointer();
 935   // Allow non Java threads to call this without stack_base
 936   if (_stack_base == NULL) return true;
 937   if (stack_base() >= adr && adr >= end) return true;
 938 
 939   return false;
 940 }
 941 
 942 
 943 bool Thread::is_in_usable_stack(address adr) const {
 944   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 945   size_t usable_stack_size = _stack_size - stack_guard_size;
 946 
 947   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 948 }
 949 
 950 
 951 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 952 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 953 // used for compilation in the future. If that change is made, the need for these methods
 954 // should be revisited, and they should be removed if possible.
 955 
 956 bool Thread::is_lock_owned(address adr) const {
 957   return on_local_stack(adr);
 958 }
 959 
 960 bool Thread::set_as_starting_thread() {
 961  // NOTE: this must be called inside the main thread.
 962   return os::create_main_thread((JavaThread*)this);
 963 }
 964 
 965 static void initialize_class(Symbol* class_name, TRAPS) {
 966   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 967   InstanceKlass::cast(klass)->initialize(CHECK);
 968 }
 969 
 970 
 971 // Creates the initial ThreadGroup
 972 static Handle create_initial_thread_group(TRAPS) {
 973   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 974   instanceKlassHandle klass (THREAD, k);
 975 
 976   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 977   {
 978     JavaValue result(T_VOID);
 979     JavaCalls::call_special(&result,
 980                             system_instance,
 981                             klass,
 982                             vmSymbols::object_initializer_name(),
 983                             vmSymbols::void_method_signature(),
 984                             CHECK_NH);
 985   }
 986   Universe::set_system_thread_group(system_instance());
 987 
 988   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 989   {
 990     JavaValue result(T_VOID);
 991     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 992     JavaCalls::call_special(&result,
 993                             main_instance,
 994                             klass,
 995                             vmSymbols::object_initializer_name(),
 996                             vmSymbols::threadgroup_string_void_signature(),
 997                             system_instance,
 998                             string,
 999                             CHECK_NH);
1000   }
1001   return main_instance;
1002 }
1003 
1004 // Creates the initial Thread
1005 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1006   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1007   instanceKlassHandle klass (THREAD, k);
1008   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1009 
1010   java_lang_Thread::set_thread(thread_oop(), thread);
1011   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1012   thread->set_threadObj(thread_oop());
1013 
1014   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1015 
1016   JavaValue result(T_VOID);
1017   JavaCalls::call_special(&result, thread_oop,
1018                                    klass,
1019                                    vmSymbols::object_initializer_name(),
1020                                    vmSymbols::threadgroup_string_void_signature(),
1021                                    thread_group,
1022                                    string,
1023                                    CHECK_NULL);
1024   return thread_oop();
1025 }
1026 
1027 static void call_initializeSystemClass(TRAPS) {
1028   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1029   instanceKlassHandle klass (THREAD, k);
1030 
1031   JavaValue result(T_VOID);
1032   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1033                                          vmSymbols::void_method_signature(), CHECK);
1034 }
1035 
1036 char java_runtime_name[128] = "";
1037 char java_runtime_version[128] = "";
1038 
1039 // extract the JRE name from sun.misc.Version.java_runtime_name
1040 static const char* get_java_runtime_name(TRAPS) {
1041   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1042                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1043   fieldDescriptor fd;
1044   bool found = k != NULL &&
1045                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1046                                                         vmSymbols::string_signature(), &fd);
1047   if (found) {
1048     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1049     if (name_oop == NULL)
1050       return NULL;
1051     const char* name = java_lang_String::as_utf8_string(name_oop,
1052                                                         java_runtime_name,
1053                                                         sizeof(java_runtime_name));
1054     return name;
1055   } else {
1056     return NULL;
1057   }
1058 }
1059 
1060 // extract the JRE version from sun.misc.Version.java_runtime_version
1061 static const char* get_java_runtime_version(TRAPS) {
1062   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1063                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1064   fieldDescriptor fd;
1065   bool found = k != NULL &&
1066                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1067                                                         vmSymbols::string_signature(), &fd);
1068   if (found) {
1069     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1070     if (name_oop == NULL)
1071       return NULL;
1072     const char* name = java_lang_String::as_utf8_string(name_oop,
1073                                                         java_runtime_version,
1074                                                         sizeof(java_runtime_version));
1075     return name;
1076   } else {
1077     return NULL;
1078   }
1079 }
1080 
1081 // General purpose hook into Java code, run once when the VM is initialized.
1082 // The Java library method itself may be changed independently from the VM.
1083 static void call_postVMInitHook(TRAPS) {
1084   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1085   instanceKlassHandle klass (THREAD, k);
1086   if (klass.not_null()) {
1087     JavaValue result(T_VOID);
1088     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1089                                            vmSymbols::void_method_signature(),
1090                                            CHECK);
1091   }
1092 }
1093 
1094 static void reset_vm_info_property(TRAPS) {
1095   // the vm info string
1096   ResourceMark rm(THREAD);
1097   const char *vm_info = VM_Version::vm_info_string();
1098 
1099   // java.lang.System class
1100   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1101   instanceKlassHandle klass (THREAD, k);
1102 
1103   // setProperty arguments
1104   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1105   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1106 
1107   // return value
1108   JavaValue r(T_OBJECT);
1109 
1110   // public static String setProperty(String key, String value);
1111   JavaCalls::call_static(&r,
1112                          klass,
1113                          vmSymbols::setProperty_name(),
1114                          vmSymbols::string_string_string_signature(),
1115                          key_str,
1116                          value_str,
1117                          CHECK);
1118 }
1119 
1120 
1121 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1122   assert(thread_group.not_null(), "thread group should be specified");
1123   assert(threadObj() == NULL, "should only create Java thread object once");
1124 
1125   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1126   instanceKlassHandle klass (THREAD, k);
1127   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1128 
1129   java_lang_Thread::set_thread(thread_oop(), this);
1130   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1131   set_threadObj(thread_oop());
1132 
1133   JavaValue result(T_VOID);
1134   if (thread_name != NULL) {
1135     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1136     // Thread gets assigned specified name and null target
1137     JavaCalls::call_special(&result,
1138                             thread_oop,
1139                             klass,
1140                             vmSymbols::object_initializer_name(),
1141                             vmSymbols::threadgroup_string_void_signature(),
1142                             thread_group, // Argument 1
1143                             name,         // Argument 2
1144                             THREAD);
1145   } else {
1146     // Thread gets assigned name "Thread-nnn" and null target
1147     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1148     JavaCalls::call_special(&result,
1149                             thread_oop,
1150                             klass,
1151                             vmSymbols::object_initializer_name(),
1152                             vmSymbols::threadgroup_runnable_void_signature(),
1153                             thread_group, // Argument 1
1154                             Handle(),     // Argument 2
1155                             THREAD);
1156   }
1157 
1158 
1159   if (daemon) {
1160       java_lang_Thread::set_daemon(thread_oop());
1161   }
1162 
1163   if (HAS_PENDING_EXCEPTION) {
1164     return;
1165   }
1166 
1167   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1168   Handle threadObj(this, this->threadObj());
1169 
1170   JavaCalls::call_special(&result,
1171                          thread_group,
1172                          group,
1173                          vmSymbols::add_method_name(),
1174                          vmSymbols::thread_void_signature(),
1175                          threadObj,          // Arg 1
1176                          THREAD);
1177 
1178 
1179 }
1180 
1181 // NamedThread --  non-JavaThread subclasses with multiple
1182 // uniquely named instances should derive from this.
1183 NamedThread::NamedThread() : Thread() {
1184   _name = NULL;
1185   _processed_thread = NULL;
1186 }
1187 
1188 NamedThread::~NamedThread() {
1189   if (_name != NULL) {
1190     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1191     _name = NULL;
1192   }
1193 }
1194 
1195 void NamedThread::set_name(const char* format, ...) {
1196   guarantee(_name == NULL, "Only get to set name once.");
1197   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1198   guarantee(_name != NULL, "alloc failure");
1199   va_list ap;
1200   va_start(ap, format);
1201   jio_vsnprintf(_name, max_name_len, format, ap);
1202   va_end(ap);
1203 }
1204 
1205 void NamedThread::print_on(outputStream* st) const {
1206   st->print("\"%s\" ", name());
1207   Thread::print_on(st);
1208   st->cr();
1209 }
1210 
1211 
1212 // ======= WatcherThread ========
1213 
1214 // The watcher thread exists to simulate timer interrupts.  It should
1215 // be replaced by an abstraction over whatever native support for
1216 // timer interrupts exists on the platform.
1217 
1218 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1219 bool WatcherThread::_startable = false;
1220 volatile bool  WatcherThread::_should_terminate = false;
1221 
1222 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1223   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1224   if (os::create_thread(this, os::watcher_thread)) {
1225     _watcher_thread = this;
1226 
1227     // Set the watcher thread to the highest OS priority which should not be
1228     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1229     // is created. The only normal thread using this priority is the reference
1230     // handler thread, which runs for very short intervals only.
1231     // If the VMThread's priority is not lower than the WatcherThread profiling
1232     // will be inaccurate.
1233     os::set_priority(this, MaxPriority);
1234     if (!DisableStartThread) {
1235       os::start_thread(this);
1236     }
1237   }
1238 }
1239 
1240 int WatcherThread::sleep() const {
1241   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1242 
1243   // remaining will be zero if there are no tasks,
1244   // causing the WatcherThread to sleep until a task is
1245   // enrolled
1246   int remaining = PeriodicTask::time_to_wait();
1247   int time_slept = 0;
1248 
1249   // we expect this to timeout - we only ever get unparked when
1250   // we should terminate or when a new task has been enrolled
1251   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1252 
1253   jlong time_before_loop = os::javaTimeNanos();
1254 
1255   for (;;) {
1256     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1257     jlong now = os::javaTimeNanos();
1258 
1259     if (remaining == 0) {
1260         // if we didn't have any tasks we could have waited for a long time
1261         // consider the time_slept zero and reset time_before_loop
1262         time_slept = 0;
1263         time_before_loop = now;
1264     } else {
1265         // need to recalculate since we might have new tasks in _tasks
1266         time_slept = (int) ((now - time_before_loop) / 1000000);
1267     }
1268 
1269     // Change to task list or spurious wakeup of some kind
1270     if (timedout || _should_terminate) {
1271         break;
1272     }
1273 
1274     remaining = PeriodicTask::time_to_wait();
1275     if (remaining == 0) {
1276         // Last task was just disenrolled so loop around and wait until
1277         // another task gets enrolled
1278         continue;
1279     }
1280 
1281     remaining -= time_slept;
1282     if (remaining <= 0)
1283       break;
1284   }
1285 
1286   return time_slept;
1287 }
1288 
1289 void WatcherThread::run() {
1290   assert(this == watcher_thread(), "just checking");
1291 
1292   this->record_stack_base_and_size();
1293   this->initialize_thread_local_storage();
1294   this->set_active_handles(JNIHandleBlock::allocate_block());
1295   while(!_should_terminate) {
1296     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1297     assert(watcher_thread() == this,  "thread consistency check");
1298 
1299     // Calculate how long it'll be until the next PeriodicTask work
1300     // should be done, and sleep that amount of time.
1301     int time_waited = sleep();
1302 
1303     if (is_error_reported()) {
1304       // A fatal error has happened, the error handler(VMError::report_and_die)
1305       // should abort JVM after creating an error log file. However in some
1306       // rare cases, the error handler itself might deadlock. Here we try to
1307       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1308       //
1309       // This code is in WatcherThread because WatcherThread wakes up
1310       // periodically so the fatal error handler doesn't need to do anything;
1311       // also because the WatcherThread is less likely to crash than other
1312       // threads.
1313 
1314       for (;;) {
1315         if (!ShowMessageBoxOnError
1316          && (OnError == NULL || OnError[0] == '\0')
1317          && Arguments::abort_hook() == NULL) {
1318              os::sleep(this, 2 * 60 * 1000, false);
1319              fdStream err(defaultStream::output_fd());
1320              err.print_raw_cr("# [ timer expired, abort... ]");
1321              // skip atexit/vm_exit/vm_abort hooks
1322              os::die();
1323         }
1324 
1325         // Wake up 5 seconds later, the fatal handler may reset OnError or
1326         // ShowMessageBoxOnError when it is ready to abort.
1327         os::sleep(this, 5 * 1000, false);
1328       }
1329     }
1330 
1331     PeriodicTask::real_time_tick(time_waited);
1332   }
1333 
1334   // Signal that it is terminated
1335   {
1336     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1337     _watcher_thread = NULL;
1338     Terminator_lock->notify();
1339   }
1340 
1341   // Thread destructor usually does this..
1342   ThreadLocalStorage::set_thread(NULL);
1343 }
1344 
1345 void WatcherThread::start() {
1346   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1347 
1348   if (watcher_thread() == NULL && _startable) {
1349     _should_terminate = false;
1350     // Create the single instance of WatcherThread
1351     new WatcherThread();
1352   }
1353 }
1354 
1355 void WatcherThread::make_startable() {
1356   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1357   _startable = true;
1358 }
1359 
1360 void WatcherThread::stop() {
1361   {
1362     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1363     _should_terminate = true;
1364     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1365 
1366     WatcherThread* watcher = watcher_thread();
1367     if (watcher != NULL)
1368       watcher->unpark();
1369   }
1370 
1371   // it is ok to take late safepoints here, if needed
1372   MutexLocker mu(Terminator_lock);
1373 
1374   while(watcher_thread() != NULL) {
1375     // This wait should make safepoint checks, wait without a timeout,
1376     // and wait as a suspend-equivalent condition.
1377     //
1378     // Note: If the FlatProfiler is running, then this thread is waiting
1379     // for the WatcherThread to terminate and the WatcherThread, via the
1380     // FlatProfiler task, is waiting for the external suspend request on
1381     // this thread to complete. wait_for_ext_suspend_completion() will
1382     // eventually timeout, but that takes time. Making this wait a
1383     // suspend-equivalent condition solves that timeout problem.
1384     //
1385     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1386                           Mutex::_as_suspend_equivalent_flag);
1387   }
1388 }
1389 
1390 void WatcherThread::unpark() {
1391   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1392   PeriodicTask_lock->notify();
1393 }
1394 
1395 void WatcherThread::print_on(outputStream* st) const {
1396   st->print("\"%s\" ", name());
1397   Thread::print_on(st);
1398   st->cr();
1399 }
1400 
1401 // ======= JavaThread ========
1402 
1403 // A JavaThread is a normal Java thread
1404 
1405 void JavaThread::initialize() {
1406   // Initialize fields
1407 
1408   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1409   set_claimed_par_id(UINT_MAX);
1410 
1411   set_saved_exception_pc(NULL);
1412   set_threadObj(NULL);
1413   _anchor.clear();
1414   set_entry_point(NULL);
1415   set_jni_functions(jni_functions());
1416   set_callee_target(NULL);
1417   set_vm_result(NULL);
1418   set_vm_result_2(NULL);
1419   set_vframe_array_head(NULL);
1420   set_vframe_array_last(NULL);
1421   set_deferred_locals(NULL);
1422   set_deopt_mark(NULL);
1423   set_deopt_nmethod(NULL);
1424   clear_must_deopt_id();
1425   set_monitor_chunks(NULL);
1426   set_next(NULL);
1427   set_thread_state(_thread_new);
1428 #if INCLUDE_NMT
1429   set_recorder(NULL);
1430 #endif
1431   _terminated = _not_terminated;
1432   _privileged_stack_top = NULL;
1433   _array_for_gc = NULL;
1434   _suspend_equivalent = false;
1435   _in_deopt_handler = 0;
1436   _doing_unsafe_access = false;
1437   _stack_guard_state = stack_guard_unused;
1438   (void)const_cast<oop&>(_exception_oop = NULL);
1439   _exception_pc  = 0;
1440   _exception_handler_pc = 0;
1441   _is_method_handle_return = 0;
1442   _jvmti_thread_state= NULL;
1443   _should_post_on_exceptions_flag = JNI_FALSE;
1444   _jvmti_get_loaded_classes_closure = NULL;
1445   _interp_only_mode    = 0;
1446   _special_runtime_exit_condition = _no_async_condition;
1447   _pending_async_exception = NULL;
1448   _thread_stat = NULL;
1449   _thread_stat = new ThreadStatistics();
1450   _blocked_on_compilation = false;
1451   _jni_active_critical = 0;
1452   _do_not_unlock_if_synchronized = false;
1453   _cached_monitor_info = NULL;
1454   _parker = Parker::Allocate(this) ;
1455 
1456 #ifndef PRODUCT
1457   _jmp_ring_index = 0;
1458   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1459     record_jump(NULL, NULL, NULL, 0);
1460   }
1461 #endif /* PRODUCT */
1462 
1463   set_thread_profiler(NULL);
1464   if (FlatProfiler::is_active()) {
1465     // This is where we would decide to either give each thread it's own profiler
1466     // or use one global one from FlatProfiler,
1467     // or up to some count of the number of profiled threads, etc.
1468     ThreadProfiler* pp = new ThreadProfiler();
1469     pp->engage();
1470     set_thread_profiler(pp);
1471   }
1472 
1473   // Setup safepoint state info for this thread
1474   ThreadSafepointState::create(this);
1475 
1476   debug_only(_java_call_counter = 0);
1477 
1478   // JVMTI PopFrame support
1479   _popframe_condition = popframe_inactive;
1480   _popframe_preserved_args = NULL;
1481   _popframe_preserved_args_size = 0;
1482 
1483   pd_initialize();
1484 }
1485 
1486 #if INCLUDE_ALL_GCS
1487 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1488 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1489 #endif // INCLUDE_ALL_GCS
1490 
1491 JavaThread::JavaThread(bool is_attaching_via_jni) :
1492   Thread()
1493 #if INCLUDE_ALL_GCS
1494   , _satb_mark_queue(&_satb_mark_queue_set),
1495   _dirty_card_queue(&_dirty_card_queue_set)
1496 #endif // INCLUDE_ALL_GCS
1497 {
1498   initialize();
1499   if (is_attaching_via_jni) {
1500     _jni_attach_state = _attaching_via_jni;
1501   } else {
1502     _jni_attach_state = _not_attaching_via_jni;
1503   }
1504   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1505   _safepoint_visible = false;
1506 }
1507 
1508 bool JavaThread::reguard_stack(address cur_sp) {
1509   if (_stack_guard_state != stack_guard_yellow_disabled) {
1510     return true; // Stack already guarded or guard pages not needed.
1511   }
1512 
1513   if (register_stack_overflow()) {
1514     // For those architectures which have separate register and
1515     // memory stacks, we must check the register stack to see if
1516     // it has overflowed.
1517     return false;
1518   }
1519 
1520   // Java code never executes within the yellow zone: the latter is only
1521   // there to provoke an exception during stack banging.  If java code
1522   // is executing there, either StackShadowPages should be larger, or
1523   // some exception code in c1, c2 or the interpreter isn't unwinding
1524   // when it should.
1525   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1526 
1527   enable_stack_yellow_zone();
1528   return true;
1529 }
1530 
1531 bool JavaThread::reguard_stack(void) {
1532   return reguard_stack(os::current_stack_pointer());
1533 }
1534 
1535 
1536 void JavaThread::block_if_vm_exited() {
1537   if (_terminated == _vm_exited) {
1538     // _vm_exited is set at safepoint, and Threads_lock is never released
1539     // we will block here forever
1540     Threads_lock->lock_without_safepoint_check();
1541     ShouldNotReachHere();
1542   }
1543 }
1544 
1545 
1546 // Remove this ifdef when C1 is ported to the compiler interface.
1547 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1548 
1549 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1550   Thread()
1551 #if INCLUDE_ALL_GCS
1552   , _satb_mark_queue(&_satb_mark_queue_set),
1553   _dirty_card_queue(&_dirty_card_queue_set)
1554 #endif // INCLUDE_ALL_GCS
1555 {
1556   if (TraceThreadEvents) {
1557     tty->print_cr("creating thread %p", this);
1558   }
1559   initialize();
1560   _jni_attach_state = _not_attaching_via_jni;
1561   set_entry_point(entry_point);
1562   // Create the native thread itself.
1563   // %note runtime_23
1564   os::ThreadType thr_type = os::java_thread;
1565   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1566                                                      os::java_thread;
1567   os::create_thread(this, thr_type, stack_sz);
1568   _safepoint_visible = false;
1569   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1570   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1571   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1572   // the exception consists of creating the exception object & initializing it, initialization
1573   // will leave the VM via a JavaCall and then all locks must be unlocked).
1574   //
1575   // The thread is still suspended when we reach here. Thread must be explicit started
1576   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1577   // by calling Threads:add. The reason why this is not done here, is because the thread
1578   // object must be fully initialized (take a look at JVM_Start)
1579 }
1580 
1581 JavaThread::~JavaThread() {
1582   if (TraceThreadEvents) {
1583       tty->print_cr("terminate thread %p", this);
1584   }
1585 
1586   // By now, this thread should already be invisible to safepoint,
1587   // and its per-thread recorder also collected.
1588   assert(!is_safepoint_visible(), "wrong state");
1589 #if INCLUDE_NMT
1590   assert(get_recorder() == NULL, "Already collected");
1591 #endif // INCLUDE_NMT
1592 
1593   // JSR166 -- return the parker to the free list
1594   Parker::Release(_parker);
1595   _parker = NULL ;
1596 
1597   // Free any remaining  previous UnrollBlock
1598   vframeArray* old_array = vframe_array_last();
1599 
1600   if (old_array != NULL) {
1601     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1602     old_array->set_unroll_block(NULL);
1603     delete old_info;
1604     delete old_array;
1605   }
1606 
1607   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1608   if (deferred != NULL) {
1609     // This can only happen if thread is destroyed before deoptimization occurs.
1610     assert(deferred->length() != 0, "empty array!");
1611     do {
1612       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1613       deferred->remove_at(0);
1614       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1615       delete dlv;
1616     } while (deferred->length() != 0);
1617     delete deferred;
1618   }
1619 
1620   // All Java related clean up happens in exit
1621   ThreadSafepointState::destroy(this);
1622   if (_thread_profiler != NULL) delete _thread_profiler;
1623   if (_thread_stat != NULL) delete _thread_stat;
1624 }
1625 
1626 
1627 // The first routine called by a new Java thread
1628 void JavaThread::run() {
1629   // initialize thread-local alloc buffer related fields
1630   this->initialize_tlab();
1631 
1632   // used to test validity of stack trace backs
1633   this->record_base_of_stack_pointer();
1634 
1635   // Record real stack base and size.
1636   this->record_stack_base_and_size();
1637 
1638   // Initialize thread local storage; set before calling MutexLocker
1639   this->initialize_thread_local_storage();
1640 
1641   this->create_stack_guard_pages();
1642 
1643   this->cache_global_variables();
1644 
1645   // Thread is now sufficient initialized to be handled by the safepoint code as being
1646   // in the VM. Change thread state from _thread_new to _thread_in_vm
1647   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1648 
1649   assert(JavaThread::current() == this, "sanity check");
1650   assert(!Thread::current()->owns_locks(), "sanity check");
1651 
1652   DTRACE_THREAD_PROBE(start, this);
1653 
1654   // This operation might block. We call that after all safepoint checks for a new thread has
1655   // been completed.
1656   this->set_active_handles(JNIHandleBlock::allocate_block());
1657 
1658   if (JvmtiExport::should_post_thread_life()) {
1659     JvmtiExport::post_thread_start(this);
1660   }
1661 
1662   EventThreadStart event;
1663   if (event.should_commit()) {
1664      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1665      event.commit();
1666   }
1667 
1668   // We call another function to do the rest so we are sure that the stack addresses used
1669   // from there will be lower than the stack base just computed
1670   thread_main_inner();
1671 
1672   // Note, thread is no longer valid at this point!
1673 }
1674 
1675 
1676 void JavaThread::thread_main_inner() {
1677   assert(JavaThread::current() == this, "sanity check");
1678   assert(this->threadObj() != NULL, "just checking");
1679 
1680   // Execute thread entry point unless this thread has a pending exception
1681   // or has been stopped before starting.
1682   // Note: Due to JVM_StopThread we can have pending exceptions already!
1683   if (!this->has_pending_exception() &&
1684       !java_lang_Thread::is_stillborn(this->threadObj())) {
1685     {
1686       ResourceMark rm(this);
1687       this->set_native_thread_name(this->get_thread_name());
1688     }
1689     HandleMark hm(this);
1690     this->entry_point()(this, this);
1691   }
1692 
1693   DTRACE_THREAD_PROBE(stop, this);
1694 
1695   this->exit(false);
1696   delete this;
1697 }
1698 
1699 
1700 static void ensure_join(JavaThread* thread) {
1701   // We do not need to grap the Threads_lock, since we are operating on ourself.
1702   Handle threadObj(thread, thread->threadObj());
1703   assert(threadObj.not_null(), "java thread object must exist");
1704   ObjectLocker lock(threadObj, thread);
1705   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1706   thread->clear_pending_exception();
1707   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1708   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1709   // Clear the native thread instance - this makes isAlive return false and allows the join()
1710   // to complete once we've done the notify_all below
1711   java_lang_Thread::set_thread(threadObj(), NULL);
1712   lock.notify_all(thread);
1713   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1714   thread->clear_pending_exception();
1715 }
1716 
1717 
1718 // For any new cleanup additions, please check to see if they need to be applied to
1719 // cleanup_failed_attach_current_thread as well.
1720 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1721   assert(this == JavaThread::current(),  "thread consistency check");
1722 
1723   HandleMark hm(this);
1724   Handle uncaught_exception(this, this->pending_exception());
1725   this->clear_pending_exception();
1726   Handle threadObj(this, this->threadObj());
1727   assert(threadObj.not_null(), "Java thread object should be created");
1728 
1729   if (get_thread_profiler() != NULL) {
1730     get_thread_profiler()->disengage();
1731     ResourceMark rm;
1732     get_thread_profiler()->print(get_thread_name());
1733   }
1734 
1735 
1736   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1737   {
1738     EXCEPTION_MARK;
1739 
1740     CLEAR_PENDING_EXCEPTION;
1741   }
1742   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1743   // has to be fixed by a runtime query method
1744   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1745     // JSR-166: change call from from ThreadGroup.uncaughtException to
1746     // java.lang.Thread.dispatchUncaughtException
1747     if (uncaught_exception.not_null()) {
1748       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1749       {
1750         EXCEPTION_MARK;
1751         // Check if the method Thread.dispatchUncaughtException() exists. If so
1752         // call it.  Otherwise we have an older library without the JSR-166 changes,
1753         // so call ThreadGroup.uncaughtException()
1754         KlassHandle recvrKlass(THREAD, threadObj->klass());
1755         CallInfo callinfo;
1756         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1757         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1758                                            vmSymbols::dispatchUncaughtException_name(),
1759                                            vmSymbols::throwable_void_signature(),
1760                                            KlassHandle(), false, false, THREAD);
1761         CLEAR_PENDING_EXCEPTION;
1762         methodHandle method = callinfo.selected_method();
1763         if (method.not_null()) {
1764           JavaValue result(T_VOID);
1765           JavaCalls::call_virtual(&result,
1766                                   threadObj, thread_klass,
1767                                   vmSymbols::dispatchUncaughtException_name(),
1768                                   vmSymbols::throwable_void_signature(),
1769                                   uncaught_exception,
1770                                   THREAD);
1771         } else {
1772           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1773           JavaValue result(T_VOID);
1774           JavaCalls::call_virtual(&result,
1775                                   group, thread_group,
1776                                   vmSymbols::uncaughtException_name(),
1777                                   vmSymbols::thread_throwable_void_signature(),
1778                                   threadObj,           // Arg 1
1779                                   uncaught_exception,  // Arg 2
1780                                   THREAD);
1781         }
1782         if (HAS_PENDING_EXCEPTION) {
1783           ResourceMark rm(this);
1784           jio_fprintf(defaultStream::error_stream(),
1785                 "\nException: %s thrown from the UncaughtExceptionHandler"
1786                 " in thread \"%s\"\n",
1787                 pending_exception()->klass()->external_name(),
1788                 get_thread_name());
1789           CLEAR_PENDING_EXCEPTION;
1790         }
1791       }
1792     }
1793 
1794     // Called before the java thread exit since we want to read info
1795     // from java_lang_Thread object
1796     EventThreadEnd event;
1797     if (event.should_commit()) {
1798         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1799         event.commit();
1800     }
1801 
1802     // Call after last event on thread
1803     EVENT_THREAD_EXIT(this);
1804 
1805     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1806     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1807     // is deprecated anyhow.
1808     if (!is_Compiler_thread()) {
1809       int count = 3;
1810       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1811         EXCEPTION_MARK;
1812         JavaValue result(T_VOID);
1813         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1814         JavaCalls::call_virtual(&result,
1815                               threadObj, thread_klass,
1816                               vmSymbols::exit_method_name(),
1817                               vmSymbols::void_method_signature(),
1818                               THREAD);
1819         CLEAR_PENDING_EXCEPTION;
1820       }
1821     }
1822     // notify JVMTI
1823     if (JvmtiExport::should_post_thread_life()) {
1824       JvmtiExport::post_thread_end(this);
1825     }
1826 
1827     // We have notified the agents that we are exiting, before we go on,
1828     // we must check for a pending external suspend request and honor it
1829     // in order to not surprise the thread that made the suspend request.
1830     while (true) {
1831       {
1832         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1833         if (!is_external_suspend()) {
1834           set_terminated(_thread_exiting);
1835           ThreadService::current_thread_exiting(this);
1836           break;
1837         }
1838         // Implied else:
1839         // Things get a little tricky here. We have a pending external
1840         // suspend request, but we are holding the SR_lock so we
1841         // can't just self-suspend. So we temporarily drop the lock
1842         // and then self-suspend.
1843       }
1844 
1845       ThreadBlockInVM tbivm(this);
1846       java_suspend_self();
1847 
1848       // We're done with this suspend request, but we have to loop around
1849       // and check again. Eventually we will get SR_lock without a pending
1850       // external suspend request and will be able to mark ourselves as
1851       // exiting.
1852     }
1853     // no more external suspends are allowed at this point
1854   } else {
1855     // before_exit() has already posted JVMTI THREAD_END events
1856   }
1857 
1858   // Notify waiters on thread object. This has to be done after exit() is called
1859   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1860   // group should have the destroyed bit set before waiters are notified).
1861   ensure_join(this);
1862   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1863 
1864   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1865   // held by this thread must be released.  A detach operation must only
1866   // get here if there are no Java frames on the stack.  Therefore, any
1867   // owned monitors at this point MUST be JNI-acquired monitors which are
1868   // pre-inflated and in the monitor cache.
1869   //
1870   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1871   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1872     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1873     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1874     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1875   }
1876 
1877   // These things needs to be done while we are still a Java Thread. Make sure that thread
1878   // is in a consistent state, in case GC happens
1879   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1880 
1881   if (active_handles() != NULL) {
1882     JNIHandleBlock* block = active_handles();
1883     set_active_handles(NULL);
1884     JNIHandleBlock::release_block(block);
1885   }
1886 
1887   if (free_handle_block() != NULL) {
1888     JNIHandleBlock* block = free_handle_block();
1889     set_free_handle_block(NULL);
1890     JNIHandleBlock::release_block(block);
1891   }
1892 
1893   // These have to be removed while this is still a valid thread.
1894   remove_stack_guard_pages();
1895 
1896   if (UseTLAB) {
1897     tlab().make_parsable(true);  // retire TLAB
1898   }
1899 
1900   if (JvmtiEnv::environments_might_exist()) {
1901     JvmtiExport::cleanup_thread(this);
1902   }
1903 
1904   // We must flush any deferred card marks before removing a thread from
1905   // the list of active threads.
1906   Universe::heap()->flush_deferred_store_barrier(this);
1907   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1908 
1909 #if INCLUDE_ALL_GCS
1910   // We must flush the G1-related buffers before removing a thread
1911   // from the list of active threads. We must do this after any deferred
1912   // card marks have been flushed (above) so that any entries that are
1913   // added to the thread's dirty card queue as a result are not lost.
1914   if (UseG1GC) {
1915     flush_barrier_queues();
1916   }
1917 #endif // INCLUDE_ALL_GCS
1918 
1919   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1920   Threads::remove(this);
1921 }
1922 
1923 #if INCLUDE_ALL_GCS
1924 // Flush G1-related queues.
1925 void JavaThread::flush_barrier_queues() {
1926   satb_mark_queue().flush();
1927   dirty_card_queue().flush();
1928 }
1929 
1930 void JavaThread::initialize_queues() {
1931   assert(!SafepointSynchronize::is_at_safepoint(),
1932          "we should not be at a safepoint");
1933 
1934   ObjPtrQueue& satb_queue = satb_mark_queue();
1935   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1936   // The SATB queue should have been constructed with its active
1937   // field set to false.
1938   assert(!satb_queue.is_active(), "SATB queue should not be active");
1939   assert(satb_queue.is_empty(), "SATB queue should be empty");
1940   // If we are creating the thread during a marking cycle, we should
1941   // set the active field of the SATB queue to true.
1942   if (satb_queue_set.is_active()) {
1943     satb_queue.set_active(true);
1944   }
1945 
1946   DirtyCardQueue& dirty_queue = dirty_card_queue();
1947   // The dirty card queue should have been constructed with its
1948   // active field set to true.
1949   assert(dirty_queue.is_active(), "dirty card queue should be active");
1950 }
1951 #endif // INCLUDE_ALL_GCS
1952 
1953 void JavaThread::cleanup_failed_attach_current_thread() {
1954   if (get_thread_profiler() != NULL) {
1955     get_thread_profiler()->disengage();
1956     ResourceMark rm;
1957     get_thread_profiler()->print(get_thread_name());
1958   }
1959 
1960   if (active_handles() != NULL) {
1961     JNIHandleBlock* block = active_handles();
1962     set_active_handles(NULL);
1963     JNIHandleBlock::release_block(block);
1964   }
1965 
1966   if (free_handle_block() != NULL) {
1967     JNIHandleBlock* block = free_handle_block();
1968     set_free_handle_block(NULL);
1969     JNIHandleBlock::release_block(block);
1970   }
1971 
1972   // These have to be removed while this is still a valid thread.
1973   remove_stack_guard_pages();
1974 
1975   if (UseTLAB) {
1976     tlab().make_parsable(true);  // retire TLAB, if any
1977   }
1978 
1979 #if INCLUDE_ALL_GCS
1980   if (UseG1GC) {
1981     flush_barrier_queues();
1982   }
1983 #endif // INCLUDE_ALL_GCS
1984 
1985   Threads::remove(this);
1986   delete this;
1987 }
1988 
1989 
1990 
1991 
1992 JavaThread* JavaThread::active() {
1993   Thread* thread = ThreadLocalStorage::thread();
1994   assert(thread != NULL, "just checking");
1995   if (thread->is_Java_thread()) {
1996     return (JavaThread*) thread;
1997   } else {
1998     assert(thread->is_VM_thread(), "this must be a vm thread");
1999     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2000     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2001     assert(ret->is_Java_thread(), "must be a Java thread");
2002     return ret;
2003   }
2004 }
2005 
2006 bool JavaThread::is_lock_owned(address adr) const {
2007   if (Thread::is_lock_owned(adr)) return true;
2008 
2009   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2010     if (chunk->contains(adr)) return true;
2011   }
2012 
2013   return false;
2014 }
2015 
2016 
2017 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2018   chunk->set_next(monitor_chunks());
2019   set_monitor_chunks(chunk);
2020 }
2021 
2022 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2023   guarantee(monitor_chunks() != NULL, "must be non empty");
2024   if (monitor_chunks() == chunk) {
2025     set_monitor_chunks(chunk->next());
2026   } else {
2027     MonitorChunk* prev = monitor_chunks();
2028     while (prev->next() != chunk) prev = prev->next();
2029     prev->set_next(chunk->next());
2030   }
2031 }
2032 
2033 // JVM support.
2034 
2035 // Note: this function shouldn't block if it's called in
2036 // _thread_in_native_trans state (such as from
2037 // check_special_condition_for_native_trans()).
2038 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2039 
2040   if (has_last_Java_frame() && has_async_condition()) {
2041     // If we are at a polling page safepoint (not a poll return)
2042     // then we must defer async exception because live registers
2043     // will be clobbered by the exception path. Poll return is
2044     // ok because the call we a returning from already collides
2045     // with exception handling registers and so there is no issue.
2046     // (The exception handling path kills call result registers but
2047     //  this is ok since the exception kills the result anyway).
2048 
2049     if (is_at_poll_safepoint()) {
2050       // if the code we are returning to has deoptimized we must defer
2051       // the exception otherwise live registers get clobbered on the
2052       // exception path before deoptimization is able to retrieve them.
2053       //
2054       RegisterMap map(this, false);
2055       frame caller_fr = last_frame().sender(&map);
2056       assert(caller_fr.is_compiled_frame(), "what?");
2057       if (caller_fr.is_deoptimized_frame()) {
2058         if (TraceExceptions) {
2059           ResourceMark rm;
2060           tty->print_cr("deferred async exception at compiled safepoint");
2061         }
2062         return;
2063       }
2064     }
2065   }
2066 
2067   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2068   if (condition == _no_async_condition) {
2069     // Conditions have changed since has_special_runtime_exit_condition()
2070     // was called:
2071     // - if we were here only because of an external suspend request,
2072     //   then that was taken care of above (or cancelled) so we are done
2073     // - if we were here because of another async request, then it has
2074     //   been cleared between the has_special_runtime_exit_condition()
2075     //   and now so again we are done
2076     return;
2077   }
2078 
2079   // Check for pending async. exception
2080   if (_pending_async_exception != NULL) {
2081     // Only overwrite an already pending exception, if it is not a threadDeath.
2082     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2083 
2084       // We cannot call Exceptions::_throw(...) here because we cannot block
2085       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2086 
2087       if (TraceExceptions) {
2088         ResourceMark rm;
2089         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2090         if (has_last_Java_frame() ) {
2091           frame f = last_frame();
2092           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2093         }
2094         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2095       }
2096       _pending_async_exception = NULL;
2097       clear_has_async_exception();
2098     }
2099   }
2100 
2101   if (check_unsafe_error &&
2102       condition == _async_unsafe_access_error && !has_pending_exception()) {
2103     condition = _no_async_condition;  // done
2104     switch (thread_state()) {
2105     case _thread_in_vm:
2106       {
2107         JavaThread* THREAD = this;
2108         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2109       }
2110     case _thread_in_native:
2111       {
2112         ThreadInVMfromNative tiv(this);
2113         JavaThread* THREAD = this;
2114         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2115       }
2116     case _thread_in_Java:
2117       {
2118         ThreadInVMfromJava tiv(this);
2119         JavaThread* THREAD = this;
2120         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2121       }
2122     default:
2123       ShouldNotReachHere();
2124     }
2125   }
2126 
2127   assert(condition == _no_async_condition || has_pending_exception() ||
2128          (!check_unsafe_error && condition == _async_unsafe_access_error),
2129          "must have handled the async condition, if no exception");
2130 }
2131 
2132 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2133   //
2134   // Check for pending external suspend. Internal suspend requests do
2135   // not use handle_special_runtime_exit_condition().
2136   // If JNIEnv proxies are allowed, don't self-suspend if the target
2137   // thread is not the current thread. In older versions of jdbx, jdbx
2138   // threads could call into the VM with another thread's JNIEnv so we
2139   // can be here operating on behalf of a suspended thread (4432884).
2140   bool do_self_suspend = is_external_suspend_with_lock();
2141   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2142     //
2143     // Because thread is external suspended the safepoint code will count
2144     // thread as at a safepoint. This can be odd because we can be here
2145     // as _thread_in_Java which would normally transition to _thread_blocked
2146     // at a safepoint. We would like to mark the thread as _thread_blocked
2147     // before calling java_suspend_self like all other callers of it but
2148     // we must then observe proper safepoint protocol. (We can't leave
2149     // _thread_blocked with a safepoint in progress). However we can be
2150     // here as _thread_in_native_trans so we can't use a normal transition
2151     // constructor/destructor pair because they assert on that type of
2152     // transition. We could do something like:
2153     //
2154     // JavaThreadState state = thread_state();
2155     // set_thread_state(_thread_in_vm);
2156     // {
2157     //   ThreadBlockInVM tbivm(this);
2158     //   java_suspend_self()
2159     // }
2160     // set_thread_state(_thread_in_vm_trans);
2161     // if (safepoint) block;
2162     // set_thread_state(state);
2163     //
2164     // but that is pretty messy. Instead we just go with the way the
2165     // code has worked before and note that this is the only path to
2166     // java_suspend_self that doesn't put the thread in _thread_blocked
2167     // mode.
2168 
2169     frame_anchor()->make_walkable(this);
2170     java_suspend_self();
2171 
2172     // We might be here for reasons in addition to the self-suspend request
2173     // so check for other async requests.
2174   }
2175 
2176   if (check_asyncs) {
2177     check_and_handle_async_exceptions();
2178   }
2179 }
2180 
2181 void JavaThread::send_thread_stop(oop java_throwable)  {
2182   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2183   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2184   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2185 
2186   // Do not throw asynchronous exceptions against the compiler thread
2187   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2188   if (is_Compiler_thread()) return;
2189 
2190   {
2191     // Actually throw the Throwable against the target Thread - however
2192     // only if there is no thread death exception installed already.
2193     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2194       // If the topmost frame is a runtime stub, then we are calling into
2195       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2196       // must deoptimize the caller before continuing, as the compiled  exception handler table
2197       // may not be valid
2198       if (has_last_Java_frame()) {
2199         frame f = last_frame();
2200         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2201           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2202           RegisterMap reg_map(this, UseBiasedLocking);
2203           frame compiled_frame = f.sender(&reg_map);
2204           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2205             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2206           }
2207         }
2208       }
2209 
2210       // Set async. pending exception in thread.
2211       set_pending_async_exception(java_throwable);
2212 
2213       if (TraceExceptions) {
2214        ResourceMark rm;
2215        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2216       }
2217       // for AbortVMOnException flag
2218       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2219     }
2220   }
2221 
2222 
2223   // Interrupt thread so it will wake up from a potential wait()
2224   Thread::interrupt(this);
2225 }
2226 
2227 // External suspension mechanism.
2228 //
2229 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2230 // to any VM_locks and it is at a transition
2231 // Self-suspension will happen on the transition out of the vm.
2232 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2233 //
2234 // Guarantees on return:
2235 //   + Target thread will not execute any new bytecode (that's why we need to
2236 //     force a safepoint)
2237 //   + Target thread will not enter any new monitors
2238 //
2239 void JavaThread::java_suspend() {
2240   { MutexLocker mu(Threads_lock);
2241     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2242        return;
2243     }
2244   }
2245 
2246   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2247     if (!is_external_suspend()) {
2248       // a racing resume has cancelled us; bail out now
2249       return;
2250     }
2251 
2252     // suspend is done
2253     uint32_t debug_bits = 0;
2254     // Warning: is_ext_suspend_completed() may temporarily drop the
2255     // SR_lock to allow the thread to reach a stable thread state if
2256     // it is currently in a transient thread state.
2257     if (is_ext_suspend_completed(false /* !called_by_wait */,
2258                                  SuspendRetryDelay, &debug_bits) ) {
2259       return;
2260     }
2261   }
2262 
2263   VM_ForceSafepoint vm_suspend;
2264   VMThread::execute(&vm_suspend);
2265 }
2266 
2267 // Part II of external suspension.
2268 // A JavaThread self suspends when it detects a pending external suspend
2269 // request. This is usually on transitions. It is also done in places
2270 // where continuing to the next transition would surprise the caller,
2271 // e.g., monitor entry.
2272 //
2273 // Returns the number of times that the thread self-suspended.
2274 //
2275 // Note: DO NOT call java_suspend_self() when you just want to block current
2276 //       thread. java_suspend_self() is the second stage of cooperative
2277 //       suspension for external suspend requests and should only be used
2278 //       to complete an external suspend request.
2279 //
2280 int JavaThread::java_suspend_self() {
2281   int ret = 0;
2282 
2283   // we are in the process of exiting so don't suspend
2284   if (is_exiting()) {
2285      clear_external_suspend();
2286      return ret;
2287   }
2288 
2289   assert(_anchor.walkable() ||
2290     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2291     "must have walkable stack");
2292 
2293   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2294 
2295   assert(!this->is_ext_suspended(),
2296     "a thread trying to self-suspend should not already be suspended");
2297 
2298   if (this->is_suspend_equivalent()) {
2299     // If we are self-suspending as a result of the lifting of a
2300     // suspend equivalent condition, then the suspend_equivalent
2301     // flag is not cleared until we set the ext_suspended flag so
2302     // that wait_for_ext_suspend_completion() returns consistent
2303     // results.
2304     this->clear_suspend_equivalent();
2305   }
2306 
2307   // A racing resume may have cancelled us before we grabbed SR_lock
2308   // above. Or another external suspend request could be waiting for us
2309   // by the time we return from SR_lock()->wait(). The thread
2310   // that requested the suspension may already be trying to walk our
2311   // stack and if we return now, we can change the stack out from under
2312   // it. This would be a "bad thing (TM)" and cause the stack walker
2313   // to crash. We stay self-suspended until there are no more pending
2314   // external suspend requests.
2315   while (is_external_suspend()) {
2316     ret++;
2317     this->set_ext_suspended();
2318 
2319     // _ext_suspended flag is cleared by java_resume()
2320     while (is_ext_suspended()) {
2321       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2322     }
2323   }
2324 
2325   return ret;
2326 }
2327 
2328 #ifdef ASSERT
2329 // verify the JavaThread has not yet been published in the Threads::list, and
2330 // hence doesn't need protection from concurrent access at this stage
2331 void JavaThread::verify_not_published() {
2332   if (!Threads_lock->owned_by_self()) {
2333    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2334    assert( !Threads::includes(this),
2335            "java thread shouldn't have been published yet!");
2336   }
2337   else {
2338    assert( !Threads::includes(this),
2339            "java thread shouldn't have been published yet!");
2340   }
2341 }
2342 #endif
2343 
2344 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2345 // progress or when _suspend_flags is non-zero.
2346 // Current thread needs to self-suspend if there is a suspend request and/or
2347 // block if a safepoint is in progress.
2348 // Async exception ISN'T checked.
2349 // Note only the ThreadInVMfromNative transition can call this function
2350 // directly and when thread state is _thread_in_native_trans
2351 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2352   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2353 
2354   JavaThread *curJT = JavaThread::current();
2355   bool do_self_suspend = thread->is_external_suspend();
2356 
2357   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2358 
2359   // If JNIEnv proxies are allowed, don't self-suspend if the target
2360   // thread is not the current thread. In older versions of jdbx, jdbx
2361   // threads could call into the VM with another thread's JNIEnv so we
2362   // can be here operating on behalf of a suspended thread (4432884).
2363   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2364     JavaThreadState state = thread->thread_state();
2365 
2366     // We mark this thread_blocked state as a suspend-equivalent so
2367     // that a caller to is_ext_suspend_completed() won't be confused.
2368     // The suspend-equivalent state is cleared by java_suspend_self().
2369     thread->set_suspend_equivalent();
2370 
2371     // If the safepoint code sees the _thread_in_native_trans state, it will
2372     // wait until the thread changes to other thread state. There is no
2373     // guarantee on how soon we can obtain the SR_lock and complete the
2374     // self-suspend request. It would be a bad idea to let safepoint wait for
2375     // too long. Temporarily change the state to _thread_blocked to
2376     // let the VM thread know that this thread is ready for GC. The problem
2377     // of changing thread state is that safepoint could happen just after
2378     // java_suspend_self() returns after being resumed, and VM thread will
2379     // see the _thread_blocked state. We must check for safepoint
2380     // after restoring the state and make sure we won't leave while a safepoint
2381     // is in progress.
2382     thread->set_thread_state(_thread_blocked);
2383     thread->java_suspend_self();
2384     thread->set_thread_state(state);
2385     // Make sure new state is seen by VM thread
2386     if (os::is_MP()) {
2387       if (UseMembar) {
2388         // Force a fence between the write above and read below
2389         OrderAccess::fence();
2390       } else {
2391         // Must use this rather than serialization page in particular on Windows
2392         InterfaceSupport::serialize_memory(thread);
2393       }
2394     }
2395   }
2396 
2397   if (SafepointSynchronize::do_call_back()) {
2398     // If we are safepointing, then block the caller which may not be
2399     // the same as the target thread (see above).
2400     SafepointSynchronize::block(curJT);
2401   }
2402 
2403   if (thread->is_deopt_suspend()) {
2404     thread->clear_deopt_suspend();
2405     RegisterMap map(thread, false);
2406     frame f = thread->last_frame();
2407     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2408       f = f.sender(&map);
2409     }
2410     if (f.id() == thread->must_deopt_id()) {
2411       thread->clear_must_deopt_id();
2412       f.deoptimize(thread);
2413     } else {
2414       fatal("missed deoptimization!");
2415     }
2416   }
2417 }
2418 
2419 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2420 // progress or when _suspend_flags is non-zero.
2421 // Current thread needs to self-suspend if there is a suspend request and/or
2422 // block if a safepoint is in progress.
2423 // Also check for pending async exception (not including unsafe access error).
2424 // Note only the native==>VM/Java barriers can call this function and when
2425 // thread state is _thread_in_native_trans.
2426 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2427   check_safepoint_and_suspend_for_native_trans(thread);
2428 
2429   if (thread->has_async_exception()) {
2430     // We are in _thread_in_native_trans state, don't handle unsafe
2431     // access error since that may block.
2432     thread->check_and_handle_async_exceptions(false);
2433   }
2434 }
2435 
2436 // This is a variant of the normal
2437 // check_special_condition_for_native_trans with slightly different
2438 // semantics for use by critical native wrappers.  It does all the
2439 // normal checks but also performs the transition back into
2440 // thread_in_Java state.  This is required so that critical natives
2441 // can potentially block and perform a GC if they are the last thread
2442 // exiting the GC_locker.
2443 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2444   check_special_condition_for_native_trans(thread);
2445 
2446   // Finish the transition
2447   thread->set_thread_state(_thread_in_Java);
2448 
2449   if (thread->do_critical_native_unlock()) {
2450     ThreadInVMfromJavaNoAsyncException tiv(thread);
2451     GC_locker::unlock_critical(thread);
2452     thread->clear_critical_native_unlock();
2453   }
2454 }
2455 
2456 // We need to guarantee the Threads_lock here, since resumes are not
2457 // allowed during safepoint synchronization
2458 // Can only resume from an external suspension
2459 void JavaThread::java_resume() {
2460   assert_locked_or_safepoint(Threads_lock);
2461 
2462   // Sanity check: thread is gone, has started exiting or the thread
2463   // was not externally suspended.
2464   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2465     return;
2466   }
2467 
2468   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2469 
2470   clear_external_suspend();
2471 
2472   if (is_ext_suspended()) {
2473     clear_ext_suspended();
2474     SR_lock()->notify_all();
2475   }
2476 }
2477 
2478 void JavaThread::create_stack_guard_pages() {
2479   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2480   address low_addr = stack_base() - stack_size();
2481   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2482 
2483   int allocate = os::allocate_stack_guard_pages();
2484   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2485 
2486   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2487     warning("Attempt to allocate stack guard pages failed.");
2488     return;
2489   }
2490 
2491   if (os::guard_memory((char *) low_addr, len)) {
2492     _stack_guard_state = stack_guard_enabled;
2493   } else {
2494     warning("Attempt to protect stack guard pages failed.");
2495     if (os::uncommit_memory((char *) low_addr, len)) {
2496       warning("Attempt to deallocate stack guard pages failed.");
2497     }
2498   }
2499 }
2500 
2501 void JavaThread::remove_stack_guard_pages() {
2502   assert(Thread::current() == this, "from different thread");
2503   if (_stack_guard_state == stack_guard_unused) return;
2504   address low_addr = stack_base() - stack_size();
2505   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2506 
2507   if (os::allocate_stack_guard_pages()) {
2508     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2509       _stack_guard_state = stack_guard_unused;
2510     } else {
2511       warning("Attempt to deallocate stack guard pages failed.");
2512     }
2513   } else {
2514     if (_stack_guard_state == stack_guard_unused) return;
2515     if (os::unguard_memory((char *) low_addr, len)) {
2516       _stack_guard_state = stack_guard_unused;
2517     } else {
2518         warning("Attempt to unprotect stack guard pages failed.");
2519     }
2520   }
2521 }
2522 
2523 void JavaThread::enable_stack_yellow_zone() {
2524   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2525   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2526 
2527   // The base notation is from the stacks point of view, growing downward.
2528   // We need to adjust it to work correctly with guard_memory()
2529   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2530 
2531   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2532   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2533 
2534   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2535     _stack_guard_state = stack_guard_enabled;
2536   } else {
2537     warning("Attempt to guard stack yellow zone failed.");
2538   }
2539   enable_register_stack_guard();
2540 }
2541 
2542 void JavaThread::disable_stack_yellow_zone() {
2543   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2544   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2545 
2546   // Simply return if called for a thread that does not use guard pages.
2547   if (_stack_guard_state == stack_guard_unused) return;
2548 
2549   // The base notation is from the stacks point of view, growing downward.
2550   // We need to adjust it to work correctly with guard_memory()
2551   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2552 
2553   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2554     _stack_guard_state = stack_guard_yellow_disabled;
2555   } else {
2556     warning("Attempt to unguard stack yellow zone failed.");
2557   }
2558   disable_register_stack_guard();
2559 }
2560 
2561 void JavaThread::enable_stack_red_zone() {
2562   // The base notation is from the stacks point of view, growing downward.
2563   // We need to adjust it to work correctly with guard_memory()
2564   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2565   address base = stack_red_zone_base() - stack_red_zone_size();
2566 
2567   guarantee(base < stack_base(),"Error calculating stack red zone");
2568   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2569 
2570   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2571     warning("Attempt to guard stack red zone failed.");
2572   }
2573 }
2574 
2575 void JavaThread::disable_stack_red_zone() {
2576   // The base notation is from the stacks point of view, growing downward.
2577   // We need to adjust it to work correctly with guard_memory()
2578   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2579   address base = stack_red_zone_base() - stack_red_zone_size();
2580   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2581     warning("Attempt to unguard stack red zone failed.");
2582   }
2583 }
2584 
2585 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2586   // ignore is there is no stack
2587   if (!has_last_Java_frame()) return;
2588   // traverse the stack frames. Starts from top frame.
2589   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2590     frame* fr = fst.current();
2591     f(fr, fst.register_map());
2592   }
2593 }
2594 
2595 
2596 #ifndef PRODUCT
2597 // Deoptimization
2598 // Function for testing deoptimization
2599 void JavaThread::deoptimize() {
2600   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2601   StackFrameStream fst(this, UseBiasedLocking);
2602   bool deopt = false;           // Dump stack only if a deopt actually happens.
2603   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2604   // Iterate over all frames in the thread and deoptimize
2605   for(; !fst.is_done(); fst.next()) {
2606     if(fst.current()->can_be_deoptimized()) {
2607 
2608       if (only_at) {
2609         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2610         // consists of comma or carriage return separated numbers so
2611         // search for the current bci in that string.
2612         address pc = fst.current()->pc();
2613         nmethod* nm =  (nmethod*) fst.current()->cb();
2614         ScopeDesc* sd = nm->scope_desc_at( pc);
2615         char buffer[8];
2616         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2617         size_t len = strlen(buffer);
2618         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2619         while (found != NULL) {
2620           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2621               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2622             // Check that the bci found is bracketed by terminators.
2623             break;
2624           }
2625           found = strstr(found + 1, buffer);
2626         }
2627         if (!found) {
2628           continue;
2629         }
2630       }
2631 
2632       if (DebugDeoptimization && !deopt) {
2633         deopt = true; // One-time only print before deopt
2634         tty->print_cr("[BEFORE Deoptimization]");
2635         trace_frames();
2636         trace_stack();
2637       }
2638       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2639     }
2640   }
2641 
2642   if (DebugDeoptimization && deopt) {
2643     tty->print_cr("[AFTER Deoptimization]");
2644     trace_frames();
2645   }
2646 }
2647 
2648 
2649 // Make zombies
2650 void JavaThread::make_zombies() {
2651   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2652     if (fst.current()->can_be_deoptimized()) {
2653       // it is a Java nmethod
2654       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2655       nm->make_not_entrant();
2656     }
2657   }
2658 }
2659 #endif // PRODUCT
2660 
2661 
2662 void JavaThread::deoptimized_wrt_marked_nmethods() {
2663   if (!has_last_Java_frame()) return;
2664   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2665   StackFrameStream fst(this, UseBiasedLocking);
2666   for(; !fst.is_done(); fst.next()) {
2667     if (fst.current()->should_be_deoptimized()) {
2668       if (LogCompilation && xtty != NULL) {
2669         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2670         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2671                    this->name(), nm != NULL ? nm->compile_id() : -1);
2672       }
2673 
2674       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2675     }
2676   }
2677 }
2678 
2679 
2680 // GC support
2681 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2682 
2683 void JavaThread::gc_epilogue() {
2684   frames_do(frame_gc_epilogue);
2685 }
2686 
2687 
2688 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2689 
2690 void JavaThread::gc_prologue() {
2691   frames_do(frame_gc_prologue);
2692 }
2693 
2694 // If the caller is a NamedThread, then remember, in the current scope,
2695 // the given JavaThread in its _processed_thread field.
2696 class RememberProcessedThread: public StackObj {
2697   NamedThread* _cur_thr;
2698 public:
2699   RememberProcessedThread(JavaThread* jthr) {
2700     Thread* thread = Thread::current();
2701     if (thread->is_Named_thread()) {
2702       _cur_thr = (NamedThread *)thread;
2703       _cur_thr->set_processed_thread(jthr);
2704     } else {
2705       _cur_thr = NULL;
2706     }
2707   }
2708 
2709   ~RememberProcessedThread() {
2710     if (_cur_thr) {
2711       _cur_thr->set_processed_thread(NULL);
2712     }
2713   }
2714 };
2715 
2716 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2717   // Verify that the deferred card marks have been flushed.
2718   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2719 
2720   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2721   // since there may be more than one thread using each ThreadProfiler.
2722 
2723   // Traverse the GCHandles
2724   Thread::oops_do(f, cld_f, cf);
2725 
2726   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2727           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2728 
2729   if (has_last_Java_frame()) {
2730     // Record JavaThread to GC thread
2731     RememberProcessedThread rpt(this);
2732 
2733     // Traverse the privileged stack
2734     if (_privileged_stack_top != NULL) {
2735       _privileged_stack_top->oops_do(f);
2736     }
2737 
2738     // traverse the registered growable array
2739     if (_array_for_gc != NULL) {
2740       for (int index = 0; index < _array_for_gc->length(); index++) {
2741         f->do_oop(_array_for_gc->adr_at(index));
2742       }
2743     }
2744 
2745     // Traverse the monitor chunks
2746     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2747       chunk->oops_do(f);
2748     }
2749 
2750     // Traverse the execution stack
2751     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2752       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2753     }
2754   }
2755 
2756   // callee_target is never live across a gc point so NULL it here should
2757   // it still contain a methdOop.
2758 
2759   set_callee_target(NULL);
2760 
2761   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2762   // If we have deferred set_locals there might be oops waiting to be
2763   // written
2764   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2765   if (list != NULL) {
2766     for (int i = 0; i < list->length(); i++) {
2767       list->at(i)->oops_do(f);
2768     }
2769   }
2770 
2771   // Traverse instance variables at the end since the GC may be moving things
2772   // around using this function
2773   f->do_oop((oop*) &_threadObj);
2774   f->do_oop((oop*) &_vm_result);
2775   f->do_oop((oop*) &_exception_oop);
2776   f->do_oop((oop*) &_pending_async_exception);
2777 
2778   if (jvmti_thread_state() != NULL) {
2779     jvmti_thread_state()->oops_do(f);
2780   }
2781 }
2782 
2783 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2784   Thread::nmethods_do(cf);  // (super method is a no-op)
2785 
2786   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2787           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2788 
2789   if (has_last_Java_frame()) {
2790     // Traverse the execution stack
2791     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2792       fst.current()->nmethods_do(cf);
2793     }
2794   }
2795 }
2796 
2797 void JavaThread::metadata_do(void f(Metadata*)) {
2798   Thread::metadata_do(f);
2799   if (has_last_Java_frame()) {
2800     // Traverse the execution stack to call f() on the methods in the stack
2801     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2802       fst.current()->metadata_do(f);
2803     }
2804   } else if (is_Compiler_thread()) {
2805     // need to walk ciMetadata in current compile tasks to keep alive.
2806     CompilerThread* ct = (CompilerThread*)this;
2807     if (ct->env() != NULL) {
2808       ct->env()->metadata_do(f);
2809     }
2810   }
2811 }
2812 
2813 // Printing
2814 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2815   switch (_thread_state) {
2816   case _thread_uninitialized:     return "_thread_uninitialized";
2817   case _thread_new:               return "_thread_new";
2818   case _thread_new_trans:         return "_thread_new_trans";
2819   case _thread_in_native:         return "_thread_in_native";
2820   case _thread_in_native_trans:   return "_thread_in_native_trans";
2821   case _thread_in_vm:             return "_thread_in_vm";
2822   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2823   case _thread_in_Java:           return "_thread_in_Java";
2824   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2825   case _thread_blocked:           return "_thread_blocked";
2826   case _thread_blocked_trans:     return "_thread_blocked_trans";
2827   default:                        return "unknown thread state";
2828   }
2829 }
2830 
2831 #ifndef PRODUCT
2832 void JavaThread::print_thread_state_on(outputStream *st) const {
2833   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2834 };
2835 void JavaThread::print_thread_state() const {
2836   print_thread_state_on(tty);
2837 };
2838 #endif // PRODUCT
2839 
2840 // Called by Threads::print() for VM_PrintThreads operation
2841 void JavaThread::print_on(outputStream *st) const {
2842   st->print("\"%s\" ", get_thread_name());
2843   oop thread_oop = threadObj();
2844   if (thread_oop != NULL) {
2845     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2846     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2847     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2848   }
2849   Thread::print_on(st);
2850   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2851   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2852   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2853     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2854   }
2855 #ifndef PRODUCT
2856   print_thread_state_on(st);
2857   _safepoint_state->print_on(st);
2858 #endif // PRODUCT
2859 }
2860 
2861 // Called by fatal error handler. The difference between this and
2862 // JavaThread::print() is that we can't grab lock or allocate memory.
2863 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2864   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2865   oop thread_obj = threadObj();
2866   if (thread_obj != NULL) {
2867      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2868   }
2869   st->print(" [");
2870   st->print("%s", _get_thread_state_name(_thread_state));
2871   if (osthread()) {
2872     st->print(", id=%d", osthread()->thread_id());
2873   }
2874   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2875             _stack_base - _stack_size, _stack_base);
2876   st->print("]");
2877   return;
2878 }
2879 
2880 // Verification
2881 
2882 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2883 
2884 void JavaThread::verify() {
2885   // Verify oops in the thread.
2886   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2887 
2888   // Verify the stack frames.
2889   frames_do(frame_verify);
2890 }
2891 
2892 // CR 6300358 (sub-CR 2137150)
2893 // Most callers of this method assume that it can't return NULL but a
2894 // thread may not have a name whilst it is in the process of attaching to
2895 // the VM - see CR 6412693, and there are places where a JavaThread can be
2896 // seen prior to having it's threadObj set (eg JNI attaching threads and
2897 // if vm exit occurs during initialization). These cases can all be accounted
2898 // for such that this method never returns NULL.
2899 const char* JavaThread::get_thread_name() const {
2900 #ifdef ASSERT
2901   // early safepoints can hit while current thread does not yet have TLS
2902   if (!SafepointSynchronize::is_at_safepoint()) {
2903     Thread *cur = Thread::current();
2904     if (!(cur->is_Java_thread() && cur == this)) {
2905       // Current JavaThreads are allowed to get their own name without
2906       // the Threads_lock.
2907       assert_locked_or_safepoint(Threads_lock);
2908     }
2909   }
2910 #endif // ASSERT
2911     return get_thread_name_string();
2912 }
2913 
2914 // Returns a non-NULL representation of this thread's name, or a suitable
2915 // descriptive string if there is no set name
2916 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2917   const char* name_str;
2918   oop thread_obj = threadObj();
2919   if (thread_obj != NULL) {
2920     typeArrayOop name = java_lang_Thread::name(thread_obj);
2921     if (name != NULL) {
2922       if (buf == NULL) {
2923         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2924       }
2925       else {
2926         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2927       }
2928     }
2929     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2930       name_str = "<no-name - thread is attaching>";
2931     }
2932     else {
2933       name_str = Thread::name();
2934     }
2935   }
2936   else {
2937     name_str = Thread::name();
2938   }
2939   assert(name_str != NULL, "unexpected NULL thread name");
2940   return name_str;
2941 }
2942 
2943 
2944 const char* JavaThread::get_threadgroup_name() const {
2945   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2946   oop thread_obj = threadObj();
2947   if (thread_obj != NULL) {
2948     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2949     if (thread_group != NULL) {
2950       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2951       // ThreadGroup.name can be null
2952       if (name != NULL) {
2953         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2954         return str;
2955       }
2956     }
2957   }
2958   return NULL;
2959 }
2960 
2961 const char* JavaThread::get_parent_name() const {
2962   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2963   oop thread_obj = threadObj();
2964   if (thread_obj != NULL) {
2965     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2966     if (thread_group != NULL) {
2967       oop parent = java_lang_ThreadGroup::parent(thread_group);
2968       if (parent != NULL) {
2969         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2970         // ThreadGroup.name can be null
2971         if (name != NULL) {
2972           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2973           return str;
2974         }
2975       }
2976     }
2977   }
2978   return NULL;
2979 }
2980 
2981 ThreadPriority JavaThread::java_priority() const {
2982   oop thr_oop = threadObj();
2983   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2984   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2985   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2986   return priority;
2987 }
2988 
2989 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2990 
2991   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2992   // Link Java Thread object <-> C++ Thread
2993 
2994   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2995   // and put it into a new Handle.  The Handle "thread_oop" can then
2996   // be used to pass the C++ thread object to other methods.
2997 
2998   // Set the Java level thread object (jthread) field of the
2999   // new thread (a JavaThread *) to C++ thread object using the
3000   // "thread_oop" handle.
3001 
3002   // Set the thread field (a JavaThread *) of the
3003   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3004 
3005   Handle thread_oop(Thread::current(),
3006                     JNIHandles::resolve_non_null(jni_thread));
3007   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3008     "must be initialized");
3009   set_threadObj(thread_oop());
3010   java_lang_Thread::set_thread(thread_oop(), this);
3011 
3012   if (prio == NoPriority) {
3013     prio = java_lang_Thread::priority(thread_oop());
3014     assert(prio != NoPriority, "A valid priority should be present");
3015   }
3016 
3017   // Push the Java priority down to the native thread; needs Threads_lock
3018   Thread::set_priority(this, prio);
3019 
3020   // Add the new thread to the Threads list and set it in motion.
3021   // We must have threads lock in order to call Threads::add.
3022   // It is crucial that we do not block before the thread is
3023   // added to the Threads list for if a GC happens, then the java_thread oop
3024   // will not be visited by GC.
3025   Threads::add(this);
3026 }
3027 
3028 oop JavaThread::current_park_blocker() {
3029   // Support for JSR-166 locks
3030   oop thread_oop = threadObj();
3031   if (thread_oop != NULL &&
3032       JDK_Version::current().supports_thread_park_blocker()) {
3033     return java_lang_Thread::park_blocker(thread_oop);
3034   }
3035   return NULL;
3036 }
3037 
3038 
3039 void JavaThread::print_stack_on(outputStream* st) {
3040   if (!has_last_Java_frame()) return;
3041   ResourceMark rm;
3042   HandleMark   hm;
3043 
3044   RegisterMap reg_map(this);
3045   vframe* start_vf = last_java_vframe(&reg_map);
3046   int count = 0;
3047   for (vframe* f = start_vf; f; f = f->sender() ) {
3048     if (f->is_java_frame()) {
3049       javaVFrame* jvf = javaVFrame::cast(f);
3050       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3051 
3052       // Print out lock information
3053       if (JavaMonitorsInStackTrace) {
3054         jvf->print_lock_info_on(st, count);
3055       }
3056     } else {
3057       // Ignore non-Java frames
3058     }
3059 
3060     // Bail-out case for too deep stacks
3061     count++;
3062     if (MaxJavaStackTraceDepth == count) return;
3063   }
3064 }
3065 
3066 
3067 // JVMTI PopFrame support
3068 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3069   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3070   if (in_bytes(size_in_bytes) != 0) {
3071     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3072     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3073     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3074   }
3075 }
3076 
3077 void* JavaThread::popframe_preserved_args() {
3078   return _popframe_preserved_args;
3079 }
3080 
3081 ByteSize JavaThread::popframe_preserved_args_size() {
3082   return in_ByteSize(_popframe_preserved_args_size);
3083 }
3084 
3085 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3086   int sz = in_bytes(popframe_preserved_args_size());
3087   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3088   return in_WordSize(sz / wordSize);
3089 }
3090 
3091 void JavaThread::popframe_free_preserved_args() {
3092   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3093   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3094   _popframe_preserved_args = NULL;
3095   _popframe_preserved_args_size = 0;
3096 }
3097 
3098 #ifndef PRODUCT
3099 
3100 void JavaThread::trace_frames() {
3101   tty->print_cr("[Describe stack]");
3102   int frame_no = 1;
3103   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3104     tty->print("  %d. ", frame_no++);
3105     fst.current()->print_value_on(tty,this);
3106     tty->cr();
3107   }
3108 }
3109 
3110 class PrintAndVerifyOopClosure: public OopClosure {
3111  protected:
3112   template <class T> inline void do_oop_work(T* p) {
3113     oop obj = oopDesc::load_decode_heap_oop(p);
3114     if (obj == NULL) return;
3115     tty->print(INTPTR_FORMAT ": ", p);
3116     if (obj->is_oop_or_null()) {
3117       if (obj->is_objArray()) {
3118         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3119       } else {
3120         obj->print();
3121       }
3122     } else {
3123       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3124     }
3125     tty->cr();
3126   }
3127  public:
3128   virtual void do_oop(oop* p) { do_oop_work(p); }
3129   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3130 };
3131 
3132 
3133 static void oops_print(frame* f, const RegisterMap *map) {
3134   PrintAndVerifyOopClosure print;
3135   f->print_value();
3136   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3137 }
3138 
3139 // Print our all the locations that contain oops and whether they are
3140 // valid or not.  This useful when trying to find the oldest frame
3141 // where an oop has gone bad since the frame walk is from youngest to
3142 // oldest.
3143 void JavaThread::trace_oops() {
3144   tty->print_cr("[Trace oops]");
3145   frames_do(oops_print);
3146 }
3147 
3148 
3149 #ifdef ASSERT
3150 // Print or validate the layout of stack frames
3151 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3152   ResourceMark rm;
3153   PRESERVE_EXCEPTION_MARK;
3154   FrameValues values;
3155   int frame_no = 0;
3156   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3157     fst.current()->describe(values, ++frame_no);
3158     if (depth == frame_no) break;
3159   }
3160   if (validate_only) {
3161     values.validate();
3162   } else {
3163     tty->print_cr("[Describe stack layout]");
3164     values.print(this);
3165   }
3166 }
3167 #endif
3168 
3169 void JavaThread::trace_stack_from(vframe* start_vf) {
3170   ResourceMark rm;
3171   int vframe_no = 1;
3172   for (vframe* f = start_vf; f; f = f->sender() ) {
3173     if (f->is_java_frame()) {
3174       javaVFrame::cast(f)->print_activation(vframe_no++);
3175     } else {
3176       f->print();
3177     }
3178     if (vframe_no > StackPrintLimit) {
3179       tty->print_cr("...<more frames>...");
3180       return;
3181     }
3182   }
3183 }
3184 
3185 
3186 void JavaThread::trace_stack() {
3187   if (!has_last_Java_frame()) return;
3188   ResourceMark rm;
3189   HandleMark   hm;
3190   RegisterMap reg_map(this);
3191   trace_stack_from(last_java_vframe(&reg_map));
3192 }
3193 
3194 
3195 #endif // PRODUCT
3196 
3197 
3198 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3199   assert(reg_map != NULL, "a map must be given");
3200   frame f = last_frame();
3201   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3202     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3203   }
3204   return NULL;
3205 }
3206 
3207 
3208 Klass* JavaThread::security_get_caller_class(int depth) {
3209   vframeStream vfst(this);
3210   vfst.security_get_caller_frame(depth);
3211   if (!vfst.at_end()) {
3212     return vfst.method()->method_holder();
3213   }
3214   return NULL;
3215 }
3216 
3217 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3218   assert(thread->is_Compiler_thread(), "must be compiler thread");
3219   CompileBroker::compiler_thread_loop();
3220 }
3221 
3222 // Create a CompilerThread
3223 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3224 : JavaThread(&compiler_thread_entry) {
3225   _env   = NULL;
3226   _log   = NULL;
3227   _task  = NULL;
3228   _queue = queue;
3229   _counters = counters;
3230   _buffer_blob = NULL;
3231   _scanned_nmethod = NULL;
3232   _compiler = NULL;
3233 
3234 #ifndef PRODUCT
3235   _ideal_graph_printer = NULL;
3236 #endif
3237 }
3238 
3239 void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3240   JavaThread::oops_do(f, cld_f, cf);
3241   if (_scanned_nmethod != NULL && cf != NULL) {
3242     // Safepoints can occur when the sweeper is scanning an nmethod so
3243     // process it here to make sure it isn't unloaded in the middle of
3244     // a scan.
3245     cf->do_code_blob(_scanned_nmethod);
3246   }
3247 }
3248 
3249 
3250 // ======= Threads ========
3251 
3252 // The Threads class links together all active threads, and provides
3253 // operations over all threads.  It is protected by its own Mutex
3254 // lock, which is also used in other contexts to protect thread
3255 // operations from having the thread being operated on from exiting
3256 // and going away unexpectedly (e.g., safepoint synchronization)
3257 
3258 JavaThread* Threads::_thread_list = NULL;
3259 int         Threads::_number_of_threads = 0;
3260 int         Threads::_number_of_non_daemon_threads = 0;
3261 int         Threads::_return_code = 0;
3262 size_t      JavaThread::_stack_size_at_create = 0;
3263 #ifdef ASSERT
3264 bool        Threads::_vm_complete = false;
3265 #endif
3266 
3267 // All JavaThreads
3268 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3269 
3270 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3271 void Threads::threads_do(ThreadClosure* tc) {
3272   assert_locked_or_safepoint(Threads_lock);
3273   // ALL_JAVA_THREADS iterates through all JavaThreads
3274   ALL_JAVA_THREADS(p) {
3275     tc->do_thread(p);
3276   }
3277   // Someday we could have a table or list of all non-JavaThreads.
3278   // For now, just manually iterate through them.
3279   tc->do_thread(VMThread::vm_thread());
3280   Universe::heap()->gc_threads_do(tc);
3281   WatcherThread *wt = WatcherThread::watcher_thread();
3282   // Strictly speaking, the following NULL check isn't sufficient to make sure
3283   // the data for WatcherThread is still valid upon being examined. However,
3284   // considering that WatchThread terminates when the VM is on the way to
3285   // exit at safepoint, the chance of the above is extremely small. The right
3286   // way to prevent termination of WatcherThread would be to acquire
3287   // Terminator_lock, but we can't do that without violating the lock rank
3288   // checking in some cases.
3289   if (wt != NULL)
3290     tc->do_thread(wt);
3291 
3292   // If CompilerThreads ever become non-JavaThreads, add them here
3293 }
3294 
3295 
3296 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3297   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3298 
3299   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3300     create_vm_init_libraries();
3301   }
3302 
3303   initialize_class(vmSymbols::java_lang_String(), CHECK);
3304 
3305   // Initialize java_lang.System (needed before creating the thread)
3306   initialize_class(vmSymbols::java_lang_System(), CHECK);
3307   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3308   Handle thread_group = create_initial_thread_group(CHECK);
3309   Universe::set_main_thread_group(thread_group());
3310   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3311   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3312   main_thread->set_threadObj(thread_object);
3313   // Set thread status to running since main thread has
3314   // been started and running.
3315   java_lang_Thread::set_thread_status(thread_object,
3316                                       java_lang_Thread::RUNNABLE);
3317 
3318   // The VM creates & returns objects of this class. Make sure it's initialized.
3319   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3320 
3321   // The VM preresolves methods to these classes. Make sure that they get initialized
3322   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3323   initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK);
3324   call_initializeSystemClass(CHECK);
3325 
3326   // get the Java runtime name after java.lang.System is initialized
3327   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3328   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3329 
3330   // an instance of OutOfMemory exception has been allocated earlier
3331   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3332   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3333   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3334   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3335   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3336   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3337   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3338   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3339 }
3340 
3341 void Threads::initialize_jsr292_core_classes(TRAPS) {
3342   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3343   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3344   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3345 }
3346 
3347 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3348 
3349   extern void JDK_Version_init();
3350 
3351   // Check version
3352   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3353 
3354   // Initialize the output stream module
3355   ostream_init();
3356 
3357   // Process java launcher properties.
3358   Arguments::process_sun_java_launcher_properties(args);
3359 
3360   // Initialize the os module before using TLS
3361   os::init();
3362 
3363   // Initialize system properties.
3364   Arguments::init_system_properties();
3365 
3366   // So that JDK version can be used as a discriminator when parsing arguments
3367   JDK_Version_init();
3368 
3369   // Update/Initialize System properties after JDK version number is known
3370   Arguments::init_version_specific_system_properties();
3371 
3372   // Parse arguments
3373   jint parse_result = Arguments::parse(args);
3374   if (parse_result != JNI_OK) return parse_result;
3375 
3376   os::init_before_ergo();
3377 
3378   jint ergo_result = Arguments::apply_ergo();
3379   if (ergo_result != JNI_OK) return ergo_result;
3380 
3381   if (PauseAtStartup) {
3382     os::pause();
3383   }
3384 
3385   HOTSPOT_VM_INIT_BEGIN();
3386 
3387   // Record VM creation timing statistics
3388   TraceVmCreationTime create_vm_timer;
3389   create_vm_timer.start();
3390 
3391   // Timing (must come after argument parsing)
3392   TraceTime timer("Create VM", TraceStartupTime);
3393 
3394   // Initialize the os module after parsing the args
3395   jint os_init_2_result = os::init_2();
3396   if (os_init_2_result != JNI_OK) return os_init_2_result;
3397 
3398   jint adjust_after_os_result = Arguments::adjust_after_os();
3399   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3400 
3401   // initialize TLS
3402   ThreadLocalStorage::init();
3403 
3404   // Bootstrap native memory tracking, so it can start recording memory
3405   // activities before worker thread is started. This is the first phase
3406   // of bootstrapping, VM is currently running in single-thread mode.
3407   MemTracker::bootstrap_single_thread();
3408 
3409   // Initialize output stream logging
3410   ostream_init_log();
3411 
3412   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3413   // Must be before create_vm_init_agents()
3414   if (Arguments::init_libraries_at_startup()) {
3415     convert_vm_init_libraries_to_agents();
3416   }
3417 
3418   // Launch -agentlib/-agentpath and converted -Xrun agents
3419   if (Arguments::init_agents_at_startup()) {
3420     create_vm_init_agents();
3421   }
3422 
3423   // Initialize Threads state
3424   _thread_list = NULL;
3425   _number_of_threads = 0;
3426   _number_of_non_daemon_threads = 0;
3427 
3428   // Initialize global data structures and create system classes in heap
3429   vm_init_globals();
3430 
3431   // Attach the main thread to this os thread
3432   JavaThread* main_thread = new JavaThread();
3433   main_thread->set_thread_state(_thread_in_vm);
3434   // must do this before set_active_handles and initialize_thread_local_storage
3435   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3436   // change the stack size recorded here to one based on the java thread
3437   // stacksize. This adjusted size is what is used to figure the placement
3438   // of the guard pages.
3439   main_thread->record_stack_base_and_size();
3440   main_thread->initialize_thread_local_storage();
3441 
3442   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3443 
3444   if (!main_thread->set_as_starting_thread()) {
3445     vm_shutdown_during_initialization(
3446       "Failed necessary internal allocation. Out of swap space");
3447     delete main_thread;
3448     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3449     return JNI_ENOMEM;
3450   }
3451 
3452   // Enable guard page *after* os::create_main_thread(), otherwise it would
3453   // crash Linux VM, see notes in os_linux.cpp.
3454   main_thread->create_stack_guard_pages();
3455 
3456   // Initialize Java-Level synchronization subsystem
3457   ObjectMonitor::Initialize() ;
3458 
3459   // Second phase of bootstrapping, VM is about entering multi-thread mode
3460   MemTracker::bootstrap_multi_thread();
3461 
3462   // Initialize global modules
3463   jint status = init_globals();
3464   if (status != JNI_OK) {
3465     delete main_thread;
3466     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3467     return status;
3468   }
3469 
3470   // Should be done after the heap is fully created
3471   main_thread->cache_global_variables();
3472 
3473   HandleMark hm;
3474 
3475   { MutexLocker mu(Threads_lock);
3476     Threads::add(main_thread);
3477   }
3478 
3479   // Any JVMTI raw monitors entered in onload will transition into
3480   // real raw monitor. VM is setup enough here for raw monitor enter.
3481   JvmtiExport::transition_pending_onload_raw_monitors();
3482 
3483   // Fully start NMT
3484   MemTracker::start();
3485 
3486   // Create the VMThread
3487   { TraceTime timer("Start VMThread", TraceStartupTime);
3488     VMThread::create();
3489     Thread* vmthread = VMThread::vm_thread();
3490 
3491     if (!os::create_thread(vmthread, os::vm_thread))
3492       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3493 
3494     // Wait for the VM thread to become ready, and VMThread::run to initialize
3495     // Monitors can have spurious returns, must always check another state flag
3496     {
3497       MutexLocker ml(Notify_lock);
3498       os::start_thread(vmthread);
3499       while (vmthread->active_handles() == NULL) {
3500         Notify_lock->wait();
3501       }
3502     }
3503   }
3504 
3505   assert (Universe::is_fully_initialized(), "not initialized");
3506   if (VerifyDuringStartup) {
3507     // Make sure we're starting with a clean slate.
3508     VM_Verify verify_op;
3509     VMThread::execute(&verify_op);
3510   }
3511 
3512   Thread* THREAD = Thread::current();
3513 
3514   // At this point, the Universe is initialized, but we have not executed
3515   // any byte code.  Now is a good time (the only time) to dump out the
3516   // internal state of the JVM for sharing.
3517   if (DumpSharedSpaces) {
3518     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3519     ShouldNotReachHere();
3520   }
3521 
3522   // Always call even when there are not JVMTI environments yet, since environments
3523   // may be attached late and JVMTI must track phases of VM execution
3524   JvmtiExport::enter_start_phase();
3525 
3526   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3527   JvmtiExport::post_vm_start();
3528 
3529   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3530 
3531   // We need this for ClassDataSharing - the initial vm.info property is set
3532   // with the default value of CDS "sharing" which may be reset through
3533   // command line options.
3534   reset_vm_info_property(CHECK_JNI_ERR);
3535 
3536   quicken_jni_functions();
3537 
3538   // Must be run after init_ft which initializes ft_enabled
3539   if (TRACE_INITIALIZE() != JNI_OK) {
3540     vm_exit_during_initialization("Failed to initialize tracing backend");
3541   }
3542 
3543   // Set flag that basic initialization has completed. Used by exceptions and various
3544   // debug stuff, that does not work until all basic classes have been initialized.
3545   set_init_completed();
3546 
3547   HOTSPOT_VM_INIT_END();
3548 
3549   // record VM initialization completion time
3550 #if INCLUDE_MANAGEMENT
3551   Management::record_vm_init_completed();
3552 #endif // INCLUDE_MANAGEMENT
3553 
3554   // Compute system loader. Note that this has to occur after set_init_completed, since
3555   // valid exceptions may be thrown in the process.
3556   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3557   // set_init_completed has just been called, causing exceptions not to be shortcut
3558   // anymore. We call vm_exit_during_initialization directly instead.
3559   SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3560 
3561 #if INCLUDE_ALL_GCS
3562   // Support for ConcurrentMarkSweep. This should be cleaned up
3563   // and better encapsulated. The ugly nested if test would go away
3564   // once things are properly refactored. XXX YSR
3565   if (UseConcMarkSweepGC || UseG1GC) {
3566     if (UseConcMarkSweepGC) {
3567       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3568     } else {
3569       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3570     }
3571   }
3572 #endif // INCLUDE_ALL_GCS
3573 
3574   // Always call even when there are not JVMTI environments yet, since environments
3575   // may be attached late and JVMTI must track phases of VM execution
3576   JvmtiExport::enter_live_phase();
3577 
3578   // Signal Dispatcher needs to be started before VMInit event is posted
3579   os::signal_init();
3580 
3581   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3582   if (!DisableAttachMechanism) {
3583     AttachListener::vm_start();
3584     if (StartAttachListener || AttachListener::init_at_startup()) {
3585       AttachListener::init();
3586     }
3587   }
3588 
3589   // Launch -Xrun agents
3590   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3591   // back-end can launch with -Xdebug -Xrunjdwp.
3592   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3593     create_vm_init_libraries();
3594   }
3595 
3596   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3597   JvmtiExport::post_vm_initialized();
3598 
3599   if (TRACE_START() != JNI_OK) {
3600     vm_exit_during_initialization("Failed to start tracing backend.");
3601   }
3602 
3603   if (CleanChunkPoolAsync) {
3604     Chunk::start_chunk_pool_cleaner_task();
3605   }
3606 
3607   // initialize compiler(s)
3608 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3609   CompileBroker::compilation_init();
3610 #endif
3611 
3612   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3613   // It is done after compilers are initialized, because otherwise compilations of
3614   // signature polymorphic MH intrinsics can be missed
3615   // (see SystemDictionary::find_method_handle_intrinsic).
3616   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3617 
3618 #if INCLUDE_MANAGEMENT
3619   Management::initialize(THREAD);
3620 
3621   if (HAS_PENDING_EXCEPTION) {
3622     // management agent fails to start possibly due to
3623     // configuration problem and is responsible for printing
3624     // stack trace if appropriate. Simply exit VM.
3625     vm_exit(1);
3626   }
3627 #endif // INCLUDE_MANAGEMENT
3628 
3629   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3630   if (MemProfiling)                   MemProfiler::engage();
3631   StatSampler::engage();
3632   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3633 
3634   BiasedLocking::init();
3635 
3636 #if INCLUDE_RTM_OPT
3637   RTMLockingCounters::init();
3638 #endif
3639 
3640   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3641     call_postVMInitHook(THREAD);
3642     // The Java side of PostVMInitHook.run must deal with all
3643     // exceptions and provide means of diagnosis.
3644     if (HAS_PENDING_EXCEPTION) {
3645       CLEAR_PENDING_EXCEPTION;
3646     }
3647   }
3648 
3649   {
3650       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3651       // Make sure the watcher thread can be started by WatcherThread::start()
3652       // or by dynamic enrollment.
3653       WatcherThread::make_startable();
3654       // Start up the WatcherThread if there are any periodic tasks
3655       // NOTE:  All PeriodicTasks should be registered by now. If they
3656       //   aren't, late joiners might appear to start slowly (we might
3657       //   take a while to process their first tick).
3658       if (PeriodicTask::num_tasks() > 0) {
3659           WatcherThread::start();
3660       }
3661   }
3662 
3663   // Give os specific code one last chance to start
3664   os::init_3();
3665 
3666   create_vm_timer.end();
3667 #ifdef ASSERT
3668   _vm_complete = true;
3669 #endif
3670   return JNI_OK;
3671 }
3672 
3673 // type for the Agent_OnLoad and JVM_OnLoad entry points
3674 extern "C" {
3675   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3676 }
3677 // Find a command line agent library and return its entry point for
3678 //         -agentlib:  -agentpath:   -Xrun
3679 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3680 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3681   OnLoadEntry_t on_load_entry = NULL;
3682   void *library = NULL;
3683 
3684   if (!agent->valid()) {
3685     char buffer[JVM_MAXPATHLEN];
3686     char ebuf[1024];
3687     const char *name = agent->name();
3688     const char *msg = "Could not find agent library ";
3689 
3690     // First check to see if agent is statically linked into executable
3691     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3692       library = agent->os_lib();
3693     } else if (agent->is_absolute_path()) {
3694       library = os::dll_load(name, ebuf, sizeof ebuf);
3695       if (library == NULL) {
3696         const char *sub_msg = " in absolute path, with error: ";
3697         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3698         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3699         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3700         // If we can't find the agent, exit.
3701         vm_exit_during_initialization(buf, NULL);
3702         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3703       }
3704     } else {
3705       // Try to load the agent from the standard dll directory
3706       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3707                              name)) {
3708         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3709       }
3710       if (library == NULL) { // Try the local directory
3711         char ns[1] = {0};
3712         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3713           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3714         }
3715         if (library == NULL) {
3716           const char *sub_msg = " on the library path, with error: ";
3717           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3718           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3719           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3720           // If we can't find the agent, exit.
3721           vm_exit_during_initialization(buf, NULL);
3722           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3723         }
3724       }
3725     }
3726     agent->set_os_lib(library);
3727     agent->set_valid();
3728   }
3729 
3730   // Find the OnLoad function.
3731   on_load_entry =
3732     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3733                                                           false,
3734                                                           on_load_symbols,
3735                                                           num_symbol_entries));
3736   return on_load_entry;
3737 }
3738 
3739 // Find the JVM_OnLoad entry point
3740 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3741   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3742   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3743 }
3744 
3745 // Find the Agent_OnLoad entry point
3746 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3747   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3748   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3749 }
3750 
3751 // For backwards compatibility with -Xrun
3752 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3753 // treated like -agentpath:
3754 // Must be called before agent libraries are created
3755 void Threads::convert_vm_init_libraries_to_agents() {
3756   AgentLibrary* agent;
3757   AgentLibrary* next;
3758 
3759   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3760     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3761     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3762 
3763     // If there is an JVM_OnLoad function it will get called later,
3764     // otherwise see if there is an Agent_OnLoad
3765     if (on_load_entry == NULL) {
3766       on_load_entry = lookup_agent_on_load(agent);
3767       if (on_load_entry != NULL) {
3768         // switch it to the agent list -- so that Agent_OnLoad will be called,
3769         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3770         Arguments::convert_library_to_agent(agent);
3771       } else {
3772         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3773       }
3774     }
3775   }
3776 }
3777 
3778 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3779 // Invokes Agent_OnLoad
3780 // Called very early -- before JavaThreads exist
3781 void Threads::create_vm_init_agents() {
3782   extern struct JavaVM_ main_vm;
3783   AgentLibrary* agent;
3784 
3785   JvmtiExport::enter_onload_phase();
3786 
3787   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3788     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3789 
3790     if (on_load_entry != NULL) {
3791       // Invoke the Agent_OnLoad function
3792       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3793       if (err != JNI_OK) {
3794         vm_exit_during_initialization("agent library failed to init", agent->name());
3795       }
3796     } else {
3797       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3798     }
3799   }
3800   JvmtiExport::enter_primordial_phase();
3801 }
3802 
3803 extern "C" {
3804   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3805 }
3806 
3807 void Threads::shutdown_vm_agents() {
3808   // Send any Agent_OnUnload notifications
3809   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3810   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3811   extern struct JavaVM_ main_vm;
3812   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3813 
3814     // Find the Agent_OnUnload function.
3815     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3816       os::find_agent_function(agent,
3817       false,
3818       on_unload_symbols,
3819       num_symbol_entries));
3820 
3821     // Invoke the Agent_OnUnload function
3822     if (unload_entry != NULL) {
3823       JavaThread* thread = JavaThread::current();
3824       ThreadToNativeFromVM ttn(thread);
3825       HandleMark hm(thread);
3826       (*unload_entry)(&main_vm);
3827     }
3828   }
3829 }
3830 
3831 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3832 // Invokes JVM_OnLoad
3833 void Threads::create_vm_init_libraries() {
3834   extern struct JavaVM_ main_vm;
3835   AgentLibrary* agent;
3836 
3837   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3838     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3839 
3840     if (on_load_entry != NULL) {
3841       // Invoke the JVM_OnLoad function
3842       JavaThread* thread = JavaThread::current();
3843       ThreadToNativeFromVM ttn(thread);
3844       HandleMark hm(thread);
3845       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3846       if (err != JNI_OK) {
3847         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3848       }
3849     } else {
3850       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3851     }
3852   }
3853 }
3854 
3855 // Last thread running calls java.lang.Shutdown.shutdown()
3856 void JavaThread::invoke_shutdown_hooks() {
3857   HandleMark hm(this);
3858 
3859   // We could get here with a pending exception, if so clear it now.
3860   if (this->has_pending_exception()) {
3861     this->clear_pending_exception();
3862   }
3863 
3864   EXCEPTION_MARK;
3865   Klass* k =
3866     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3867                                       THREAD);
3868   if (k != NULL) {
3869     // SystemDictionary::resolve_or_null will return null if there was
3870     // an exception.  If we cannot load the Shutdown class, just don't
3871     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3872     // and finalizers (if runFinalizersOnExit is set) won't be run.
3873     // Note that if a shutdown hook was registered or runFinalizersOnExit
3874     // was called, the Shutdown class would have already been loaded
3875     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3876     instanceKlassHandle shutdown_klass (THREAD, k);
3877     JavaValue result(T_VOID);
3878     JavaCalls::call_static(&result,
3879                            shutdown_klass,
3880                            vmSymbols::shutdown_method_name(),
3881                            vmSymbols::void_method_signature(),
3882                            THREAD);
3883   }
3884   CLEAR_PENDING_EXCEPTION;
3885 }
3886 
3887 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3888 // the program falls off the end of main(). Another VM exit path is through
3889 // vm_exit() when the program calls System.exit() to return a value or when
3890 // there is a serious error in VM. The two shutdown paths are not exactly
3891 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3892 // and VM_Exit op at VM level.
3893 //
3894 // Shutdown sequence:
3895 //   + Shutdown native memory tracking if it is on
3896 //   + Wait until we are the last non-daemon thread to execute
3897 //     <-- every thing is still working at this moment -->
3898 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3899 //        shutdown hooks, run finalizers if finalization-on-exit
3900 //   + Call before_exit(), prepare for VM exit
3901 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3902 //        currently the only user of this mechanism is File.deleteOnExit())
3903 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3904 //        post thread end and vm death events to JVMTI,
3905 //        stop signal thread
3906 //   + Call JavaThread::exit(), it will:
3907 //      > release JNI handle blocks, remove stack guard pages
3908 //      > remove this thread from Threads list
3909 //     <-- no more Java code from this thread after this point -->
3910 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3911 //     the compiler threads at safepoint
3912 //     <-- do not use anything that could get blocked by Safepoint -->
3913 //   + Disable tracing at JNI/JVM barriers
3914 //   + Set _vm_exited flag for threads that are still running native code
3915 //   + Delete this thread
3916 //   + Call exit_globals()
3917 //      > deletes tty
3918 //      > deletes PerfMemory resources
3919 //   + Return to caller
3920 
3921 bool Threads::destroy_vm() {
3922   JavaThread* thread = JavaThread::current();
3923 
3924 #ifdef ASSERT
3925   _vm_complete = false;
3926 #endif
3927   // Wait until we are the last non-daemon thread to execute
3928   { MutexLocker nu(Threads_lock);
3929     while (Threads::number_of_non_daemon_threads() > 1 )
3930       // This wait should make safepoint checks, wait without a timeout,
3931       // and wait as a suspend-equivalent condition.
3932       //
3933       // Note: If the FlatProfiler is running and this thread is waiting
3934       // for another non-daemon thread to finish, then the FlatProfiler
3935       // is waiting for the external suspend request on this thread to
3936       // complete. wait_for_ext_suspend_completion() will eventually
3937       // timeout, but that takes time. Making this wait a suspend-
3938       // equivalent condition solves that timeout problem.
3939       //
3940       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3941                          Mutex::_as_suspend_equivalent_flag);
3942   }
3943 
3944   // Hang forever on exit if we are reporting an error.
3945   if (ShowMessageBoxOnError && is_error_reported()) {
3946     os::infinite_sleep();
3947   }
3948   os::wait_for_keypress_at_exit();
3949 
3950   if (JDK_Version::is_jdk12x_version()) {
3951     // We are the last thread running, so check if finalizers should be run.
3952     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3953     HandleMark rm(thread);
3954     Universe::run_finalizers_on_exit();
3955   } else {
3956     // run Java level shutdown hooks
3957     thread->invoke_shutdown_hooks();
3958   }
3959 
3960   before_exit(thread);
3961 
3962   thread->exit(true);
3963 
3964   // Stop VM thread.
3965   {
3966     // 4945125 The vm thread comes to a safepoint during exit.
3967     // GC vm_operations can get caught at the safepoint, and the
3968     // heap is unparseable if they are caught. Grab the Heap_lock
3969     // to prevent this. The GC vm_operations will not be able to
3970     // queue until after the vm thread is dead.
3971     // After this point, we'll never emerge out of the safepoint before
3972     // the VM exits, so concurrent GC threads do not need to be explicitly
3973     // stopped; they remain inactive until the process exits.
3974     // Note: some concurrent G1 threads may be running during a safepoint,
3975     // but these will not be accessing the heap, just some G1-specific side
3976     // data structures that are not accessed by any other threads but them
3977     // after this point in a terminal safepoint.
3978 
3979     MutexLocker ml(Heap_lock);
3980 
3981     VMThread::wait_for_vm_thread_exit();
3982     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3983     VMThread::destroy();
3984   }
3985 
3986   // clean up ideal graph printers
3987 #if defined(COMPILER2) && !defined(PRODUCT)
3988   IdealGraphPrinter::clean_up();
3989 #endif
3990 
3991   // Now, all Java threads are gone except daemon threads. Daemon threads
3992   // running Java code or in VM are stopped by the Safepoint. However,
3993   // daemon threads executing native code are still running.  But they
3994   // will be stopped at native=>Java/VM barriers. Note that we can't
3995   // simply kill or suspend them, as it is inherently deadlock-prone.
3996 
3997 #ifndef PRODUCT
3998   // disable function tracing at JNI/JVM barriers
3999   TraceJNICalls = false;
4000   TraceJVMCalls = false;
4001   TraceRuntimeCalls = false;
4002 #endif
4003 
4004   VM_Exit::set_vm_exited();
4005 
4006   notify_vm_shutdown();
4007 
4008   delete thread;
4009 
4010   // exit_globals() will delete tty
4011   exit_globals();
4012 
4013   return true;
4014 }
4015 
4016 
4017 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4018   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4019   return is_supported_jni_version(version);
4020 }
4021 
4022 
4023 jboolean Threads::is_supported_jni_version(jint version) {
4024   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4025   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4026   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4027   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4028   return JNI_FALSE;
4029 }
4030 
4031 
4032 void Threads::add(JavaThread* p, bool force_daemon) {
4033   // The threads lock must be owned at this point
4034   assert_locked_or_safepoint(Threads_lock);
4035 
4036   // See the comment for this method in thread.hpp for its purpose and
4037   // why it is called here.
4038   p->initialize_queues();
4039   p->set_next(_thread_list);
4040   _thread_list = p;
4041   _number_of_threads++;
4042   oop threadObj = p->threadObj();
4043   bool daemon = true;
4044   // Bootstrapping problem: threadObj can be null for initial
4045   // JavaThread (or for threads attached via JNI)
4046   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4047     _number_of_non_daemon_threads++;
4048     daemon = false;
4049   }
4050 
4051   p->set_safepoint_visible(true);
4052 
4053   ThreadService::add_thread(p, daemon);
4054 
4055   // Possible GC point.
4056   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4057 }
4058 
4059 void Threads::remove(JavaThread* p) {
4060   // Extra scope needed for Thread_lock, so we can check
4061   // that we do not remove thread without safepoint code notice
4062   { MutexLocker ml(Threads_lock);
4063 
4064     assert(includes(p), "p must be present");
4065 
4066     JavaThread* current = _thread_list;
4067     JavaThread* prev    = NULL;
4068 
4069     while (current != p) {
4070       prev    = current;
4071       current = current->next();
4072     }
4073 
4074     if (prev) {
4075       prev->set_next(current->next());
4076     } else {
4077       _thread_list = p->next();
4078     }
4079     _number_of_threads--;
4080     oop threadObj = p->threadObj();
4081     bool daemon = true;
4082     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4083       _number_of_non_daemon_threads--;
4084       daemon = false;
4085 
4086       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4087       // on destroy_vm will wake up.
4088       if (number_of_non_daemon_threads() == 1)
4089         Threads_lock->notify_all();
4090     }
4091     ThreadService::remove_thread(p, daemon);
4092 
4093     // Make sure that safepoint code disregard this thread. This is needed since
4094     // the thread might mess around with locks after this point. This can cause it
4095     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4096     // of this thread since it is removed from the queue.
4097     p->set_terminated_value();
4098 
4099     // Now, this thread is not visible to safepoint
4100     p->set_safepoint_visible(false);
4101     // once the thread becomes safepoint invisible, we can not use its per-thread
4102     // recorder. And Threads::do_threads() no longer walks this thread, so we have
4103     // to release its per-thread recorder here.
4104     MemTracker::thread_exiting(p);
4105   } // unlock Threads_lock
4106 
4107   // Since Events::log uses a lock, we grab it outside the Threads_lock
4108   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4109 }
4110 
4111 // Threads_lock must be held when this is called (or must be called during a safepoint)
4112 bool Threads::includes(JavaThread* p) {
4113   assert(Threads_lock->is_locked(), "sanity check");
4114   ALL_JAVA_THREADS(q) {
4115     if (q == p ) {
4116       return true;
4117     }
4118   }
4119   return false;
4120 }
4121 
4122 // Operations on the Threads list for GC.  These are not explicitly locked,
4123 // but the garbage collector must provide a safe context for them to run.
4124 // In particular, these things should never be called when the Threads_lock
4125 // is held by some other thread. (Note: the Safepoint abstraction also
4126 // uses the Threads_lock to guarantee this property. It also makes sure that
4127 // all threads gets blocked when exiting or starting).
4128 
4129 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4130   ALL_JAVA_THREADS(p) {
4131     p->oops_do(f, cld_f, cf);
4132   }
4133   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4134 }
4135 
4136 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4137   // Introduce a mechanism allowing parallel threads to claim threads as
4138   // root groups.  Overhead should be small enough to use all the time,
4139   // even in sequential code.
4140   SharedHeap* sh = SharedHeap::heap();
4141   // Cannot yet substitute active_workers for n_par_threads
4142   // because of G1CollectedHeap::verify() use of
4143   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4144   // turn off parallelism in process_strong_roots while active_workers
4145   // is being used for parallelism elsewhere.
4146   bool is_par = sh->n_par_threads() > 0;
4147   assert(!is_par ||
4148          (SharedHeap::heap()->n_par_threads() ==
4149           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4150   int cp = SharedHeap::heap()->strong_roots_parity();
4151   ALL_JAVA_THREADS(p) {
4152     if (p->claim_oops_do(is_par, cp)) {
4153       p->oops_do(f, cld_f, cf);
4154     }
4155   }
4156   VMThread* vmt = VMThread::vm_thread();
4157   if (vmt->claim_oops_do(is_par, cp)) {
4158     vmt->oops_do(f, cld_f, cf);
4159   }
4160 }
4161 
4162 #if INCLUDE_ALL_GCS
4163 // Used by ParallelScavenge
4164 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4165   ALL_JAVA_THREADS(p) {
4166     q->enqueue(new ThreadRootsTask(p));
4167   }
4168   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4169 }
4170 
4171 // Used by Parallel Old
4172 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4173   ALL_JAVA_THREADS(p) {
4174     q->enqueue(new ThreadRootsMarkingTask(p));
4175   }
4176   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4177 }
4178 #endif // INCLUDE_ALL_GCS
4179 
4180 void Threads::nmethods_do(CodeBlobClosure* cf) {
4181   ALL_JAVA_THREADS(p) {
4182     p->nmethods_do(cf);
4183   }
4184   VMThread::vm_thread()->nmethods_do(cf);
4185 }
4186 
4187 void Threads::metadata_do(void f(Metadata*)) {
4188   ALL_JAVA_THREADS(p) {
4189     p->metadata_do(f);
4190   }
4191 }
4192 
4193 void Threads::gc_epilogue() {
4194   ALL_JAVA_THREADS(p) {
4195     p->gc_epilogue();
4196   }
4197 }
4198 
4199 void Threads::gc_prologue() {
4200   ALL_JAVA_THREADS(p) {
4201     p->gc_prologue();
4202   }
4203 }
4204 
4205 void Threads::deoptimized_wrt_marked_nmethods() {
4206   ALL_JAVA_THREADS(p) {
4207     p->deoptimized_wrt_marked_nmethods();
4208   }
4209 }
4210 
4211 
4212 // Get count Java threads that are waiting to enter the specified monitor.
4213 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4214   address monitor, bool doLock) {
4215   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4216     "must grab Threads_lock or be at safepoint");
4217   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4218 
4219   int i = 0;
4220   {
4221     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4222     ALL_JAVA_THREADS(p) {
4223       if (p->is_Compiler_thread()) continue;
4224 
4225       address pending = (address)p->current_pending_monitor();
4226       if (pending == monitor) {             // found a match
4227         if (i < count) result->append(p);   // save the first count matches
4228         i++;
4229       }
4230     }
4231   }
4232   return result;
4233 }
4234 
4235 
4236 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4237   assert(doLock ||
4238          Threads_lock->owned_by_self() ||
4239          SafepointSynchronize::is_at_safepoint(),
4240          "must grab Threads_lock or be at safepoint");
4241 
4242   // NULL owner means not locked so we can skip the search
4243   if (owner == NULL) return NULL;
4244 
4245   {
4246     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4247     ALL_JAVA_THREADS(p) {
4248       // first, see if owner is the address of a Java thread
4249       if (owner == (address)p) return p;
4250     }
4251   }
4252   // Cannot assert on lack of success here since this function may be
4253   // used by code that is trying to report useful problem information
4254   // like deadlock detection.
4255   if (UseHeavyMonitors) return NULL;
4256 
4257   //
4258   // If we didn't find a matching Java thread and we didn't force use of
4259   // heavyweight monitors, then the owner is the stack address of the
4260   // Lock Word in the owning Java thread's stack.
4261   //
4262   JavaThread* the_owner = NULL;
4263   {
4264     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4265     ALL_JAVA_THREADS(q) {
4266       if (q->is_lock_owned(owner)) {
4267         the_owner = q;
4268         break;
4269       }
4270     }
4271   }
4272   // cannot assert on lack of success here; see above comment
4273   return the_owner;
4274 }
4275 
4276 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4277 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4278   char buf[32];
4279   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4280 
4281   st->print_cr("Full thread dump %s (%s %s):",
4282                 Abstract_VM_Version::vm_name(),
4283                 Abstract_VM_Version::vm_release(),
4284                 Abstract_VM_Version::vm_info_string()
4285                );
4286   st->cr();
4287 
4288 #if INCLUDE_ALL_GCS
4289   // Dump concurrent locks
4290   ConcurrentLocksDump concurrent_locks;
4291   if (print_concurrent_locks) {
4292     concurrent_locks.dump_at_safepoint();
4293   }
4294 #endif // INCLUDE_ALL_GCS
4295 
4296   ALL_JAVA_THREADS(p) {
4297     ResourceMark rm;
4298     p->print_on(st);
4299     if (print_stacks) {
4300       if (internal_format) {
4301         p->trace_stack();
4302       } else {
4303         p->print_stack_on(st);
4304       }
4305     }
4306     st->cr();
4307 #if INCLUDE_ALL_GCS
4308     if (print_concurrent_locks) {
4309       concurrent_locks.print_locks_on(p, st);
4310     }
4311 #endif // INCLUDE_ALL_GCS
4312   }
4313 
4314   VMThread::vm_thread()->print_on(st);
4315   st->cr();
4316   Universe::heap()->print_gc_threads_on(st);
4317   WatcherThread* wt = WatcherThread::watcher_thread();
4318   if (wt != NULL) {
4319     wt->print_on(st);
4320     st->cr();
4321   }
4322   CompileBroker::print_compiler_threads_on(st);
4323   st->flush();
4324 }
4325 
4326 // Threads::print_on_error() is called by fatal error handler. It's possible
4327 // that VM is not at safepoint and/or current thread is inside signal handler.
4328 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4329 // memory (even in resource area), it might deadlock the error handler.
4330 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4331   bool found_current = false;
4332   st->print_cr("Java Threads: ( => current thread )");
4333   ALL_JAVA_THREADS(thread) {
4334     bool is_current = (current == thread);
4335     found_current = found_current || is_current;
4336 
4337     st->print("%s", is_current ? "=>" : "  ");
4338 
4339     st->print(PTR_FORMAT, thread);
4340     st->print(" ");
4341     thread->print_on_error(st, buf, buflen);
4342     st->cr();
4343   }
4344   st->cr();
4345 
4346   st->print_cr("Other Threads:");
4347   if (VMThread::vm_thread()) {
4348     bool is_current = (current == VMThread::vm_thread());
4349     found_current = found_current || is_current;
4350     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4351 
4352     st->print(PTR_FORMAT, VMThread::vm_thread());
4353     st->print(" ");
4354     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4355     st->cr();
4356   }
4357   WatcherThread* wt = WatcherThread::watcher_thread();
4358   if (wt != NULL) {
4359     bool is_current = (current == wt);
4360     found_current = found_current || is_current;
4361     st->print("%s", is_current ? "=>" : "  ");
4362 
4363     st->print(PTR_FORMAT, wt);
4364     st->print(" ");
4365     wt->print_on_error(st, buf, buflen);
4366     st->cr();
4367   }
4368   if (!found_current) {
4369     st->cr();
4370     st->print("=>" PTR_FORMAT " (exited) ", current);
4371     current->print_on_error(st, buf, buflen);
4372     st->cr();
4373   }
4374 }
4375 
4376 // Internal SpinLock and Mutex
4377 // Based on ParkEvent
4378 
4379 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4380 //
4381 // We employ SpinLocks _only for low-contention, fixed-length
4382 // short-duration critical sections where we're concerned
4383 // about native mutex_t or HotSpot Mutex:: latency.
4384 // The mux construct provides a spin-then-block mutual exclusion
4385 // mechanism.
4386 //
4387 // Testing has shown that contention on the ListLock guarding gFreeList
4388 // is common.  If we implement ListLock as a simple SpinLock it's common
4389 // for the JVM to devolve to yielding with little progress.  This is true
4390 // despite the fact that the critical sections protected by ListLock are
4391 // extremely short.
4392 //
4393 // TODO-FIXME: ListLock should be of type SpinLock.
4394 // We should make this a 1st-class type, integrated into the lock
4395 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4396 // should have sufficient padding to avoid false-sharing and excessive
4397 // cache-coherency traffic.
4398 
4399 
4400 typedef volatile int SpinLockT ;
4401 
4402 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4403   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4404      return ;   // normal fast-path return
4405   }
4406 
4407   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4408   TEVENT (SpinAcquire - ctx) ;
4409   int ctr = 0 ;
4410   int Yields = 0 ;
4411   for (;;) {
4412      while (*adr != 0) {
4413         ++ctr ;
4414         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4415            if (Yields > 5) {
4416              os::naked_short_sleep(1);
4417            } else {
4418              os::NakedYield() ;
4419              ++Yields ;
4420            }
4421         } else {
4422            SpinPause() ;
4423         }
4424      }
4425      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4426   }
4427 }
4428 
4429 void Thread::SpinRelease (volatile int * adr) {
4430   assert (*adr != 0, "invariant") ;
4431   OrderAccess::fence() ;      // guarantee at least release consistency.
4432   // Roach-motel semantics.
4433   // It's safe if subsequent LDs and STs float "up" into the critical section,
4434   // but prior LDs and STs within the critical section can't be allowed
4435   // to reorder or float past the ST that releases the lock.
4436   *adr = 0 ;
4437 }
4438 
4439 // muxAcquire and muxRelease:
4440 //
4441 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4442 //    The LSB of the word is set IFF the lock is held.
4443 //    The remainder of the word points to the head of a singly-linked list
4444 //    of threads blocked on the lock.
4445 //
4446 // *  The current implementation of muxAcquire-muxRelease uses its own
4447 //    dedicated Thread._MuxEvent instance.  If we're interested in
4448 //    minimizing the peak number of extant ParkEvent instances then
4449 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4450 //    as certain invariants were satisfied.  Specifically, care would need
4451 //    to be taken with regards to consuming unpark() "permits".
4452 //    A safe rule of thumb is that a thread would never call muxAcquire()
4453 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4454 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4455 //    consume an unpark() permit intended for monitorenter, for instance.
4456 //    One way around this would be to widen the restricted-range semaphore
4457 //    implemented in park().  Another alternative would be to provide
4458 //    multiple instances of the PlatformEvent() for each thread.  One
4459 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4460 //
4461 // *  Usage:
4462 //    -- Only as leaf locks
4463 //    -- for short-term locking only as muxAcquire does not perform
4464 //       thread state transitions.
4465 //
4466 // Alternatives:
4467 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4468 //    but with parking or spin-then-park instead of pure spinning.
4469 // *  Use Taura-Oyama-Yonenzawa locks.
4470 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4471 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4472 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4473 //    acquiring threads use timers (ParkTimed) to detect and recover from
4474 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4475 //    boundaries by using placement-new.
4476 // *  Augment MCS with advisory back-link fields maintained with CAS().
4477 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4478 //    The validity of the backlinks must be ratified before we trust the value.
4479 //    If the backlinks are invalid the exiting thread must back-track through the
4480 //    the forward links, which are always trustworthy.
4481 // *  Add a successor indication.  The LockWord is currently encoded as
4482 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4483 //    to provide the usual futile-wakeup optimization.
4484 //    See RTStt for details.
4485 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4486 //
4487 
4488 
4489 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4490 enum MuxBits { LOCKBIT = 1 } ;
4491 
4492 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4493   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4494   if (w == 0) return ;
4495   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4496      return ;
4497   }
4498 
4499   TEVENT (muxAcquire - Contention) ;
4500   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4501   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4502   for (;;) {
4503      int its = (os::is_MP() ? 100 : 0) + 1 ;
4504 
4505      // Optional spin phase: spin-then-park strategy
4506      while (--its >= 0) {
4507        w = *Lock ;
4508        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4509           return ;
4510        }
4511      }
4512 
4513      Self->reset() ;
4514      Self->OnList = intptr_t(Lock) ;
4515      // The following fence() isn't _strictly necessary as the subsequent
4516      // CAS() both serializes execution and ratifies the fetched *Lock value.
4517      OrderAccess::fence();
4518      for (;;) {
4519         w = *Lock ;
4520         if ((w & LOCKBIT) == 0) {
4521             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4522                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4523                 return ;
4524             }
4525             continue ;      // Interference -- *Lock changed -- Just retry
4526         }
4527         assert (w & LOCKBIT, "invariant") ;
4528         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4529         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4530      }
4531 
4532      while (Self->OnList != 0) {
4533         Self->park() ;
4534      }
4535   }
4536 }
4537 
4538 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4539   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4540   if (w == 0) return ;
4541   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4542     return ;
4543   }
4544 
4545   TEVENT (muxAcquire - Contention) ;
4546   ParkEvent * ReleaseAfter = NULL ;
4547   if (ev == NULL) {
4548     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4549   }
4550   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4551   for (;;) {
4552     guarantee (ev->OnList == 0, "invariant") ;
4553     int its = (os::is_MP() ? 100 : 0) + 1 ;
4554 
4555     // Optional spin phase: spin-then-park strategy
4556     while (--its >= 0) {
4557       w = *Lock ;
4558       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4559         if (ReleaseAfter != NULL) {
4560           ParkEvent::Release (ReleaseAfter) ;
4561         }
4562         return ;
4563       }
4564     }
4565 
4566     ev->reset() ;
4567     ev->OnList = intptr_t(Lock) ;
4568     // The following fence() isn't _strictly necessary as the subsequent
4569     // CAS() both serializes execution and ratifies the fetched *Lock value.
4570     OrderAccess::fence();
4571     for (;;) {
4572       w = *Lock ;
4573       if ((w & LOCKBIT) == 0) {
4574         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4575           ev->OnList = 0 ;
4576           // We call ::Release while holding the outer lock, thus
4577           // artificially lengthening the critical section.
4578           // Consider deferring the ::Release() until the subsequent unlock(),
4579           // after we've dropped the outer lock.
4580           if (ReleaseAfter != NULL) {
4581             ParkEvent::Release (ReleaseAfter) ;
4582           }
4583           return ;
4584         }
4585         continue ;      // Interference -- *Lock changed -- Just retry
4586       }
4587       assert (w & LOCKBIT, "invariant") ;
4588       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4589       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4590     }
4591 
4592     while (ev->OnList != 0) {
4593       ev->park() ;
4594     }
4595   }
4596 }
4597 
4598 // Release() must extract a successor from the list and then wake that thread.
4599 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4600 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4601 // Release() would :
4602 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4603 // (B) Extract a successor from the private list "in-hand"
4604 // (C) attempt to CAS() the residual back into *Lock over null.
4605 //     If there were any newly arrived threads and the CAS() would fail.
4606 //     In that case Release() would detach the RATs, re-merge the list in-hand
4607 //     with the RATs and repeat as needed.  Alternately, Release() might
4608 //     detach and extract a successor, but then pass the residual list to the wakee.
4609 //     The wakee would be responsible for reattaching and remerging before it
4610 //     competed for the lock.
4611 //
4612 // Both "pop" and DMR are immune from ABA corruption -- there can be
4613 // multiple concurrent pushers, but only one popper or detacher.
4614 // This implementation pops from the head of the list.  This is unfair,
4615 // but tends to provide excellent throughput as hot threads remain hot.
4616 // (We wake recently run threads first).
4617 
4618 void Thread::muxRelease (volatile intptr_t * Lock)  {
4619   for (;;) {
4620     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4621     assert (w & LOCKBIT, "invariant") ;
4622     if (w == LOCKBIT) return ;
4623     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4624     assert (List != NULL, "invariant") ;
4625     assert (List->OnList == intptr_t(Lock), "invariant") ;
4626     ParkEvent * nxt = List->ListNext ;
4627 
4628     // The following CAS() releases the lock and pops the head element.
4629     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4630       continue ;
4631     }
4632     List->OnList = 0 ;
4633     OrderAccess::fence() ;
4634     List->unpark () ;
4635     return ;
4636   }
4637 }
4638 
4639 
4640 void Threads::verify() {
4641   ALL_JAVA_THREADS(p) {
4642     p->verify();
4643   }
4644   VMThread* thread = VMThread::vm_thread();
4645   if (thread != NULL) thread->verify();
4646 }