1 /*
   2  * Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc_interface/collectedHeap.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/bytecodeInterpreter.hpp"
  30 #include "interpreter/bytecodeInterpreter.inline.hpp"
  31 #include "interpreter/bytecodeInterpreterProfiling.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/methodCounters.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "prims/jvmtiExport.hpp"
  39 #include "prims/jvmtiThreadState.hpp"
  40 #include "runtime/biasedLocking.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/orderAccess.inline.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/threadCritical.hpp"
  47 #include "utilities/exceptions.hpp"
  48 
  49 // no precompiled headers
  50 #ifdef CC_INTERP
  51 
  52 /*
  53  * USELABELS - If using GCC, then use labels for the opcode dispatching
  54  * rather -then a switch statement. This improves performance because it
  55  * gives us the oportunity to have the instructions that calculate the
  56  * next opcode to jump to be intermixed with the rest of the instructions
  57  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  58  */
  59 #undef USELABELS
  60 #ifdef __GNUC__
  61 /*
  62    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  63    don't use the computed goto approach.
  64 */
  65 #ifndef ASSERT
  66 #define USELABELS
  67 #endif
  68 #endif
  69 
  70 #undef CASE
  71 #ifdef USELABELS
  72 #define CASE(opcode) opc ## opcode
  73 #define DEFAULT opc_default
  74 #else
  75 #define CASE(opcode) case Bytecodes:: opcode
  76 #define DEFAULT default
  77 #endif
  78 
  79 /*
  80  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
  81  * opcode before going back to the top of the while loop, rather then having
  82  * the top of the while loop handle it. This provides a better opportunity
  83  * for instruction scheduling. Some compilers just do this prefetch
  84  * automatically. Some actually end up with worse performance if you
  85  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
  86  */
  87 #undef PREFETCH_OPCCODE
  88 #define PREFETCH_OPCCODE
  89 
  90 /*
  91   Interpreter safepoint: it is expected that the interpreter will have no live
  92   handles of its own creation live at an interpreter safepoint. Therefore we
  93   run a HandleMarkCleaner and trash all handles allocated in the call chain
  94   since the JavaCalls::call_helper invocation that initiated the chain.
  95   There really shouldn't be any handles remaining to trash but this is cheap
  96   in relation to a safepoint.
  97 */
  98 #define SAFEPOINT                                                                 \
  99     if ( SafepointSynchronize::is_synchronizing()) {                              \
 100         {                                                                         \
 101           /* zap freed handles rather than GC'ing them */                         \
 102           HandleMarkCleaner __hmc(THREAD);                                        \
 103         }                                                                         \
 104         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
 105     }
 106 
 107 /*
 108  * VM_JAVA_ERROR - Macro for throwing a java exception from
 109  * the interpreter loop. Should really be a CALL_VM but there
 110  * is no entry point to do the transition to vm so we just
 111  * do it by hand here.
 112  */
 113 #define VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                             \
 114     DECACHE_STATE();                                                              \
 115     SET_LAST_JAVA_FRAME();                                                        \
 116     {                                                                             \
 117        InterpreterRuntime::note_a_trap(THREAD, istate->method(), BCI());          \
 118        ThreadInVMfromJava trans(THREAD);                                          \
 119        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
 120     }                                                                             \
 121     RESET_LAST_JAVA_FRAME();                                                      \
 122     CACHE_STATE();
 123 
 124 // Normal throw of a java error.
 125 #define VM_JAVA_ERROR(name, msg, note_a_trap)                                     \
 126     VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                                 \
 127     goto handle_exception;
 128 
 129 #ifdef PRODUCT
 130 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 131 #else
 132 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
 133 {                                                                                                    \
 134     BytecodeCounter::_counter_value++;                                                               \
 135     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
 136     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
 137     if (TraceBytecodes) {                                                                            \
 138       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
 139                                    topOfStack[Interpreter::expr_index_at(1)],   \
 140                                    topOfStack[Interpreter::expr_index_at(2)]),  \
 141                                    handle_exception);                      \
 142     }                                                                      \
 143 }
 144 #endif
 145 
 146 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 147 #ifdef VM_JVMTI
 148 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 149    incremented. JvmtiExport::at_single_stepping_point() may cause a
 150    breakpoint opcode to get inserted at the current PC to allow the
 151    debugger to coalesce single-step events.
 152 
 153    As a result if we call at_single_stepping_point() we refetch opcode
 154    to get the current opcode. This will override any other prefetching
 155    that might have occurred.
 156 */
 157 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
 158 {                                                                                \
 159       if (_jvmti_interp_events) {                                                \
 160         if (JvmtiExport::should_post_single_step()) {                            \
 161           DECACHE_STATE();                                                       \
 162           SET_LAST_JAVA_FRAME();                                                 \
 163           ThreadInVMfromJava trans(THREAD);                                      \
 164           JvmtiExport::at_single_stepping_point(THREAD,                          \
 165                                           istate->method(),                      \
 166                                           pc);                                   \
 167           RESET_LAST_JAVA_FRAME();                                               \
 168           CACHE_STATE();                                                         \
 169           if (THREAD->pop_frame_pending() &&                                     \
 170               !THREAD->pop_frame_in_process()) {                                 \
 171             goto handle_Pop_Frame;                                               \
 172           }                                                                      \
 173           if (THREAD->jvmti_thread_state() &&                                    \
 174               THREAD->jvmti_thread_state()->is_earlyret_pending()) {             \
 175             goto handle_Early_Return;                                            \
 176           }                                                                      \
 177           opcode = *pc;                                                          \
 178         }                                                                        \
 179       }                                                                          \
 180 }
 181 #else
 182 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 183 #endif
 184 
 185 /*
 186  * CONTINUE - Macro for executing the next opcode.
 187  */
 188 #undef CONTINUE
 189 #ifdef USELABELS
 190 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 191 // initialization (which is is the initialization of the table pointer...)
 192 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
 193 #define CONTINUE {                              \
 194         opcode = *pc;                           \
 195         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 196         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 197         DISPATCH(opcode);                       \
 198     }
 199 #else
 200 #ifdef PREFETCH_OPCCODE
 201 #define CONTINUE {                              \
 202         opcode = *pc;                           \
 203         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 204         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 205         continue;                               \
 206     }
 207 #else
 208 #define CONTINUE {                              \
 209         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 210         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 211         continue;                               \
 212     }
 213 #endif
 214 #endif
 215 
 216 
 217 #define UPDATE_PC(opsize) {pc += opsize; }
 218 /*
 219  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 220  */
 221 #undef UPDATE_PC_AND_TOS
 222 #define UPDATE_PC_AND_TOS(opsize, stack) \
 223     {pc += opsize; MORE_STACK(stack); }
 224 
 225 /*
 226  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 227  * and executing the next opcode. It's somewhat similar to the combination
 228  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 229  */
 230 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 231 #ifdef USELABELS
 232 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 233         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 234         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 235         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 236         DISPATCH(opcode);                                       \
 237     }
 238 
 239 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 240         pc += opsize; opcode = *pc;                             \
 241         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 242         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 243         DISPATCH(opcode);                                       \
 244     }
 245 #else
 246 #ifdef PREFETCH_OPCCODE
 247 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 248         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 249         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 250         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 251         goto do_continue;                                       \
 252     }
 253 
 254 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 255         pc += opsize; opcode = *pc;                             \
 256         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 257         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 258         goto do_continue;                                       \
 259     }
 260 #else
 261 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 262         pc += opsize; MORE_STACK(stack);                \
 263         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 264         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 265         goto do_continue;                               \
 266     }
 267 
 268 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 269         pc += opsize;                                   \
 270         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 271         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 272         goto do_continue;                               \
 273     }
 274 #endif /* PREFETCH_OPCCODE */
 275 #endif /* USELABELS */
 276 
 277 // About to call a new method, update the save the adjusted pc and return to frame manager
 278 #define UPDATE_PC_AND_RETURN(opsize)  \
 279    DECACHE_TOS();                     \
 280    istate->set_bcp(pc+opsize);        \
 281    return;
 282 
 283 
 284 #define METHOD istate->method()
 285 #define GET_METHOD_COUNTERS(res)    \
 286   res = METHOD->method_counters();  \
 287   if (res == NULL) {                \
 288     CALL_VM(res = InterpreterRuntime::build_method_counters(THREAD, METHOD), handle_exception); \
 289   }
 290 
 291 #define OSR_REQUEST(res, branch_pc) \
 292             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
 293 /*
 294  * For those opcodes that need to have a GC point on a backwards branch
 295  */
 296 
 297 // Backedge counting is kind of strange. The asm interpreter will increment
 298 // the backedge counter as a separate counter but it does it's comparisons
 299 // to the sum (scaled) of invocation counter and backedge count to make
 300 // a decision. Seems kind of odd to sum them together like that
 301 
 302 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
 303 
 304 
 305 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
 306     if ((skip) <= 0) {                                                                              \
 307       MethodCounters* mcs;                                                                          \
 308       GET_METHOD_COUNTERS(mcs);                                                                     \
 309       if (UseLoopCounter) {                                                                         \
 310         bool do_OSR = UseOnStackReplacement;                                                        \
 311         mcs->backedge_counter()->increment();                                                       \
 312         if (ProfileInterpreter) {                                                                   \
 313           BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);                                   \
 314           /* Check for overflow against MDO count. */                                               \
 315           do_OSR = do_OSR                                                                           \
 316             && (mdo_last_branch_taken_count >= (uint)InvocationCounter::InterpreterBackwardBranchLimit)\
 317             /* When ProfileInterpreter is on, the backedge_count comes     */                       \
 318             /* from the methodDataOop, which value does not get reset on   */                       \
 319             /* the call to frequency_counter_overflow(). To avoid          */                       \
 320             /* excessive calls to the overflow routine while the method is */                       \
 321             /* being compiled, add a second test to make sure the overflow */                       \
 322             /* function is called only once every overflow_frequency.      */                       \
 323             && (!(mdo_last_branch_taken_count & 1023));                                             \
 324         } else {                                                                                    \
 325           /* check for overflow of backedge counter */                                              \
 326           do_OSR = do_OSR                                                                           \
 327             && mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter());         \
 328         }                                                                                           \
 329         if (do_OSR) {                                                                               \
 330           nmethod* osr_nmethod;                                                                     \
 331           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
 332           if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
 333             intptr_t* buf;                                                                          \
 334             /* Call OSR migration with last java frame only, no checks. */                          \
 335             CALL_VM_NAKED_LJF(buf=SharedRuntime::OSR_migration_begin(THREAD));                      \
 336             istate->set_msg(do_osr);                                                                \
 337             istate->set_osr_buf((address)buf);                                                      \
 338             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
 339             return;                                                                                 \
 340           }                                                                                         \
 341         }                                                                                           \
 342       }  /* UseCompiler ... */                                                                      \
 343       SAFEPOINT;                                                                                    \
 344     }
 345 
 346 /*
 347  * For those opcodes that need to have a GC point on a backwards branch
 348  */
 349 
 350 /*
 351  * Macros for caching and flushing the interpreter state. Some local
 352  * variables need to be flushed out to the frame before we do certain
 353  * things (like pushing frames or becomming gc safe) and some need to
 354  * be recached later (like after popping a frame). We could use one
 355  * macro to cache or decache everything, but this would be less then
 356  * optimal because we don't always need to cache or decache everything
 357  * because some things we know are already cached or decached.
 358  */
 359 #undef DECACHE_TOS
 360 #undef CACHE_TOS
 361 #undef CACHE_PREV_TOS
 362 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 363 
 364 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 365 
 366 #undef DECACHE_PC
 367 #undef CACHE_PC
 368 #define DECACHE_PC()    istate->set_bcp(pc);
 369 #define CACHE_PC()      pc = istate->bcp();
 370 #define CACHE_CP()      cp = istate->constants();
 371 #define CACHE_LOCALS()  locals = istate->locals();
 372 #undef CACHE_FRAME
 373 #define CACHE_FRAME()
 374 
 375 // BCI() returns the current bytecode-index.
 376 #undef  BCI
 377 #define BCI()           ((int)(intptr_t)(pc - (intptr_t)istate->method()->code_base()))
 378 
 379 /*
 380  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 381  * passed is a null ref.
 382  * On some architectures/platforms it should be possible to do this implicitly
 383  */
 384 #undef CHECK_NULL
 385 #define CHECK_NULL(obj_)                                                                         \
 386         if ((obj_) == NULL) {                                                                    \
 387           VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), NULL, note_nullCheck_trap); \
 388         }                                                                                        \
 389         VERIFY_OOP(obj_)
 390 
 391 #define VMdoubleConstZero() 0.0
 392 #define VMdoubleConstOne() 1.0
 393 #define VMlongConstZero() (max_jlong-max_jlong)
 394 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 395 
 396 /*
 397  * Alignment
 398  */
 399 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 400 
 401 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 402 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 403 
 404 // Reload interpreter state after calling the VM or a possible GC
 405 #define CACHE_STATE()   \
 406         CACHE_TOS();    \
 407         CACHE_PC();     \
 408         CACHE_CP();     \
 409         CACHE_LOCALS();
 410 
 411 // Call the VM with last java frame only.
 412 #define CALL_VM_NAKED_LJF(func)                                    \
 413         DECACHE_STATE();                                           \
 414         SET_LAST_JAVA_FRAME();                                     \
 415         func;                                                      \
 416         RESET_LAST_JAVA_FRAME();                                   \
 417         CACHE_STATE();
 418 
 419 // Call the VM. Don't check for pending exceptions.
 420 #define CALL_VM_NOCHECK(func)                                      \
 421         CALL_VM_NAKED_LJF(func)                                    \
 422         if (THREAD->pop_frame_pending() &&                         \
 423             !THREAD->pop_frame_in_process()) {                     \
 424           goto handle_Pop_Frame;                                   \
 425         }                                                          \
 426         if (THREAD->jvmti_thread_state() &&                        \
 427             THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
 428           goto handle_Early_Return;                                \
 429         }
 430 
 431 // Call the VM and check for pending exceptions
 432 #define CALL_VM(func, label) {                                     \
 433           CALL_VM_NOCHECK(func);                                   \
 434           if (THREAD->has_pending_exception()) goto label;         \
 435         }
 436 
 437 /*
 438  * BytecodeInterpreter::run(interpreterState istate)
 439  * BytecodeInterpreter::runWithChecks(interpreterState istate)
 440  *
 441  * The real deal. This is where byte codes actually get interpreted.
 442  * Basically it's a big while loop that iterates until we return from
 443  * the method passed in.
 444  *
 445  * The runWithChecks is used if JVMTI is enabled.
 446  *
 447  */
 448 #if defined(VM_JVMTI)
 449 void
 450 BytecodeInterpreter::runWithChecks(interpreterState istate) {
 451 #else
 452 void
 453 BytecodeInterpreter::run(interpreterState istate) {
 454 #endif
 455 
 456   // In order to simplify some tests based on switches set at runtime
 457   // we invoke the interpreter a single time after switches are enabled
 458   // and set simpler to to test variables rather than method calls or complex
 459   // boolean expressions.
 460 
 461   static int initialized = 0;
 462   static int checkit = 0;
 463   static intptr_t* c_addr = NULL;
 464   static intptr_t  c_value;
 465 
 466   if (checkit && *c_addr != c_value) {
 467     os::breakpoint();
 468   }
 469 #ifdef VM_JVMTI
 470   static bool _jvmti_interp_events = 0;
 471 #endif
 472 
 473   static int _compiling;  // (UseCompiler || CountCompiledCalls)
 474 
 475 #ifdef ASSERT
 476   if (istate->_msg != initialize) {
 477     assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
 478 #ifndef SHARK
 479     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
 480 #endif // !SHARK
 481   }
 482   // Verify linkages.
 483   interpreterState l = istate;
 484   do {
 485     assert(l == l->_self_link, "bad link");
 486     l = l->_prev_link;
 487   } while (l != NULL);
 488   // Screwups with stack management usually cause us to overwrite istate
 489   // save a copy so we can verify it.
 490   interpreterState orig = istate;
 491 #endif
 492 
 493   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 494   register address          pc = istate->bcp();
 495   register jubyte opcode;
 496   register intptr_t*        locals = istate->locals();
 497   register ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
 498 #ifdef LOTS_OF_REGS
 499   register JavaThread*      THREAD = istate->thread();
 500 #else
 501 #undef THREAD
 502 #define THREAD istate->thread()
 503 #endif
 504 
 505 #ifdef USELABELS
 506   const static void* const opclabels_data[256] = {
 507 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
 508 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
 509 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
 510 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
 511 
 512 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
 513 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
 514 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
 515 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
 516 
 517 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
 518 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
 519 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
 520 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
 521 
 522 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
 523 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
 524 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
 525 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
 526 
 527 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
 528 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
 529 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
 530 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
 531 
 532 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
 533 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
 534 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
 535 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
 536 
 537 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
 538 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
 539 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
 540 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
 541 
 542 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
 543 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
 544 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
 545 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
 546 
 547 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
 548 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
 549 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
 550 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
 551 
 552 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
 553 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
 554 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
 555 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
 556 
 557 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
 558 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
 559 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
 560 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
 561 
 562 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
 563 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
 564 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
 565 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
 566 
 567 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
 568 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
 569 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
 570 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 571 
 572 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 573 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 574 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 575 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 576 
 577 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 578 /* 0xE4 */ &&opc_default,     &&opc_fast_aldc,      &&opc_fast_aldc_w,  &&opc_return_register_finalizer,
 579 /* 0xE8 */ &&opc_invokehandle,&&opc_default,        &&opc_default,      &&opc_default,
 580 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 581 
 582 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 583 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 584 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 585 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
 586   };
 587   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 588 #endif /* USELABELS */
 589 
 590 #ifdef ASSERT
 591   // this will trigger a VERIFY_OOP on entry
 592   if (istate->msg() != initialize && ! METHOD->is_static()) {
 593     oop rcvr = LOCALS_OBJECT(0);
 594     VERIFY_OOP(rcvr);
 595   }
 596 #endif
 597 // #define HACK
 598 #ifdef HACK
 599   bool interesting = false;
 600 #endif // HACK
 601 
 602   /* QQQ this should be a stack method so we don't know actual direction */
 603   guarantee(istate->msg() == initialize ||
 604          topOfStack >= istate->stack_limit() &&
 605          topOfStack < istate->stack_base(),
 606          "Stack top out of range");
 607 
 608 #ifdef CC_INTERP_PROFILE
 609   // MethodData's last branch taken count.
 610   uint mdo_last_branch_taken_count = 0;
 611 #else
 612   const uint mdo_last_branch_taken_count = 0;
 613 #endif
 614 
 615   switch (istate->msg()) {
 616     case initialize: {
 617       if (initialized++) ShouldNotReachHere(); // Only one initialize call.
 618       _compiling = (UseCompiler || CountCompiledCalls);
 619 #ifdef VM_JVMTI
 620       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
 621 #endif
 622       return;
 623     }
 624     break;
 625     case method_entry: {
 626       THREAD->set_do_not_unlock();
 627       // count invocations
 628       assert(initialized, "Interpreter not initialized");
 629       if (_compiling) {
 630         MethodCounters* mcs;
 631         GET_METHOD_COUNTERS(mcs);
 632         if (ProfileInterpreter) {
 633           METHOD->increment_interpreter_invocation_count(THREAD);
 634         }
 635         mcs->invocation_counter()->increment();
 636         if (mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter())) {
 637           CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
 638           // We no longer retry on a counter overflow.
 639         }
 640         // Get or create profile data. Check for pending (async) exceptions.
 641         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 642         SAFEPOINT;
 643       }
 644 
 645       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 646         // initialize
 647         os::breakpoint();
 648       }
 649 
 650 #ifdef HACK
 651       {
 652         ResourceMark rm;
 653         char *method_name = istate->method()->name_and_sig_as_C_string();
 654         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 655           tty->print_cr("entering: depth %d bci: %d",
 656                          (istate->_stack_base - istate->_stack),
 657                          istate->_bcp - istate->_method->code_base());
 658           interesting = true;
 659         }
 660       }
 661 #endif // HACK
 662 
 663       // Lock method if synchronized.
 664       if (METHOD->is_synchronized()) {
 665         // oop rcvr = locals[0].j.r;
 666         oop rcvr;
 667         if (METHOD->is_static()) {
 668           rcvr = METHOD->constants()->pool_holder()->java_mirror();
 669         } else {
 670           rcvr = LOCALS_OBJECT(0);
 671           VERIFY_OOP(rcvr);
 672         }
 673         // The initial monitor is ours for the taking.
 674         // Monitor not filled in frame manager any longer as this caused race condition with biased locking.
 675         BasicObjectLock* mon = &istate->monitor_base()[-1];
 676         mon->set_obj(rcvr);
 677         bool success = false;
 678         uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 679         markOop mark = rcvr->mark();
 680         intptr_t hash = (intptr_t) markOopDesc::no_hash;
 681         // Implies UseBiasedLocking.
 682         if (mark->has_bias_pattern()) {
 683           uintptr_t thread_ident;
 684           uintptr_t anticipated_bias_locking_value;
 685           thread_ident = (uintptr_t)istate->thread();
 686           anticipated_bias_locking_value =
 687             (((uintptr_t)rcvr->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 688             ~((uintptr_t) markOopDesc::age_mask_in_place);
 689 
 690           if (anticipated_bias_locking_value == 0) {
 691             // Already biased towards this thread, nothing to do.
 692             if (PrintBiasedLockingStatistics) {
 693               (* BiasedLocking::biased_lock_entry_count_addr())++;
 694             }
 695             success = true;
 696           } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 697             // Try to revoke bias.
 698             markOop header = rcvr->klass()->prototype_header();
 699             if (hash != markOopDesc::no_hash) {
 700               header = header->copy_set_hash(hash);
 701             }
 702             if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), mark) == mark) {
 703               if (PrintBiasedLockingStatistics)
 704                 (*BiasedLocking::revoked_lock_entry_count_addr())++;
 705             }
 706           } else if ((anticipated_bias_locking_value & epoch_mask_in_place) != 0) {
 707             // Try to rebias.
 708             markOop new_header = (markOop) ( (intptr_t) rcvr->klass()->prototype_header() | thread_ident);
 709             if (hash != markOopDesc::no_hash) {
 710               new_header = new_header->copy_set_hash(hash);
 711             }
 712             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), mark) == mark) {
 713               if (PrintBiasedLockingStatistics) {
 714                 (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 715               }
 716             } else {
 717               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 718             }
 719             success = true;
 720           } else {
 721             // Try to bias towards thread in case object is anonymously biased.
 722             markOop header = (markOop) ((uintptr_t) mark &
 723                                         ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 724                                          (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 725             if (hash != markOopDesc::no_hash) {
 726               header = header->copy_set_hash(hash);
 727             }
 728             markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 729             // Debugging hint.
 730             DEBUG_ONLY(mon->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 731             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), header) == header) {
 732               if (PrintBiasedLockingStatistics) {
 733                 (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 734               }
 735             } else {
 736               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 737             }
 738             success = true;
 739           }
 740         }
 741 
 742         // Traditional lightweight locking.
 743         if (!success) {
 744           markOop displaced = rcvr->mark()->set_unlocked();
 745           mon->lock()->set_displaced_header(displaced);
 746           bool call_vm = UseHeavyMonitors;
 747           if (call_vm || Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
 748             // Is it simple recursive case?
 749             if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 750               mon->lock()->set_displaced_header(NULL);
 751             } else {
 752               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 753             }
 754           }
 755         }
 756       }
 757       THREAD->clr_do_not_unlock();
 758 
 759       // Notify jvmti
 760 #ifdef VM_JVMTI
 761       if (_jvmti_interp_events) {
 762         // Whenever JVMTI puts a thread in interp_only_mode, method
 763         // entry/exit events are sent for that thread to track stack depth.
 764         if (THREAD->is_interp_only_mode()) {
 765           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 766                   handle_exception);
 767         }
 768       }
 769 #endif /* VM_JVMTI */
 770 
 771       goto run;
 772     }
 773 
 774     case popping_frame: {
 775       // returned from a java call to pop the frame, restart the call
 776       // clear the message so we don't confuse ourselves later
 777       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 778       istate->set_msg(no_request);
 779       if (_compiling) {
 780         // Set MDX back to the ProfileData of the invoke bytecode that will be
 781         // restarted.
 782         SET_MDX(NULL);
 783         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 784       }
 785       THREAD->clr_pop_frame_in_process();
 786       goto run;
 787     }
 788 
 789     case method_resume: {
 790       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 791         // resume
 792         os::breakpoint();
 793       }
 794 #ifdef HACK
 795       {
 796         ResourceMark rm;
 797         char *method_name = istate->method()->name_and_sig_as_C_string();
 798         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 799           tty->print_cr("resume: depth %d bci: %d",
 800                          (istate->_stack_base - istate->_stack) ,
 801                          istate->_bcp - istate->_method->code_base());
 802           interesting = true;
 803         }
 804       }
 805 #endif // HACK
 806       // returned from a java call, continue executing.
 807       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
 808         goto handle_Pop_Frame;
 809       }
 810       if (THREAD->jvmti_thread_state() &&
 811           THREAD->jvmti_thread_state()->is_earlyret_pending()) {
 812         goto handle_Early_Return;
 813       }
 814 
 815       if (THREAD->has_pending_exception()) goto handle_exception;
 816       // Update the pc by the saved amount of the invoke bytecode size
 817       UPDATE_PC(istate->bcp_advance());
 818 
 819       if (_compiling) {
 820         // Get or create profile data. Check for pending (async) exceptions.
 821         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 822       }
 823       goto run;
 824     }
 825 
 826     case deopt_resume2: {
 827       // Returned from an opcode that will reexecute. Deopt was
 828       // a result of a PopFrame request.
 829       //
 830 
 831       if (_compiling) {
 832         // Get or create profile data. Check for pending (async) exceptions.
 833         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 834       }
 835       goto run;
 836     }
 837 
 838     case deopt_resume: {
 839       // Returned from an opcode that has completed. The stack has
 840       // the result all we need to do is skip across the bytecode
 841       // and continue (assuming there is no exception pending)
 842       //
 843       // compute continuation length
 844       //
 845       // Note: it is possible to deopt at a return_register_finalizer opcode
 846       // because this requires entering the vm to do the registering. While the
 847       // opcode is complete we can't advance because there are no more opcodes
 848       // much like trying to deopt at a poll return. In that has we simply
 849       // get out of here
 850       //
 851       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
 852         // this will do the right thing even if an exception is pending.
 853         goto handle_return;
 854       }
 855       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
 856       if (THREAD->has_pending_exception()) goto handle_exception;
 857 
 858       if (_compiling) {
 859         // Get or create profile data. Check for pending (async) exceptions.
 860         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 861       }
 862       goto run;
 863     }
 864     case got_monitors: {
 865       // continue locking now that we have a monitor to use
 866       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 867       oop lockee = STACK_OBJECT(-1);
 868       VERIFY_OOP(lockee);
 869       // derefing's lockee ought to provoke implicit null check
 870       // find a free monitor
 871       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 872       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
 873       entry->set_obj(lockee);
 874       bool success = false;
 875       uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 876 
 877       markOop mark = lockee->mark();
 878       intptr_t hash = (intptr_t) markOopDesc::no_hash;
 879       // implies UseBiasedLocking
 880       if (mark->has_bias_pattern()) {
 881         uintptr_t thread_ident;
 882         uintptr_t anticipated_bias_locking_value;
 883         thread_ident = (uintptr_t)istate->thread();
 884         anticipated_bias_locking_value =
 885           (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 886           ~((uintptr_t) markOopDesc::age_mask_in_place);
 887 
 888         if  (anticipated_bias_locking_value == 0) {
 889           // already biased towards this thread, nothing to do
 890           if (PrintBiasedLockingStatistics) {
 891             (* BiasedLocking::biased_lock_entry_count_addr())++;
 892           }
 893           success = true;
 894         } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 895           // try revoke bias
 896           markOop header = lockee->klass()->prototype_header();
 897           if (hash != markOopDesc::no_hash) {
 898             header = header->copy_set_hash(hash);
 899           }
 900           if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
 901             if (PrintBiasedLockingStatistics) {
 902               (*BiasedLocking::revoked_lock_entry_count_addr())++;
 903             }
 904           }
 905         } else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
 906           // try rebias
 907           markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
 908           if (hash != markOopDesc::no_hash) {
 909                 new_header = new_header->copy_set_hash(hash);
 910           }
 911           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
 912             if (PrintBiasedLockingStatistics) {
 913               (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 914             }
 915           } else {
 916             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 917           }
 918           success = true;
 919         } else {
 920           // try to bias towards thread in case object is anonymously biased
 921           markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 922                                                           (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 923           if (hash != markOopDesc::no_hash) {
 924             header = header->copy_set_hash(hash);
 925           }
 926           markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 927           // debugging hint
 928           DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 929           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
 930             if (PrintBiasedLockingStatistics) {
 931               (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 932             }
 933           } else {
 934             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 935           }
 936           success = true;
 937         }
 938       }
 939 
 940       // traditional lightweight locking
 941       if (!success) {
 942         markOop displaced = lockee->mark()->set_unlocked();
 943         entry->lock()->set_displaced_header(displaced);
 944         bool call_vm = UseHeavyMonitors;
 945         if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
 946           // Is it simple recursive case?
 947           if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 948             entry->lock()->set_displaced_header(NULL);
 949           } else {
 950             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 951           }
 952         }
 953       }
 954       UPDATE_PC_AND_TOS(1, -1);
 955       goto run;
 956     }
 957     default: {
 958       fatal("Unexpected message from frame manager");
 959     }
 960   }
 961 
 962 run:
 963 
 964   DO_UPDATE_INSTRUCTION_COUNT(*pc)
 965   DEBUGGER_SINGLE_STEP_NOTIFY();
 966 #ifdef PREFETCH_OPCCODE
 967   opcode = *pc;  /* prefetch first opcode */
 968 #endif
 969 
 970 #ifndef USELABELS
 971   while (1)
 972 #endif
 973   {
 974 #ifndef PREFETCH_OPCCODE
 975       opcode = *pc;
 976 #endif
 977       // Seems like this happens twice per opcode. At worst this is only
 978       // need at entry to the loop.
 979       // DEBUGGER_SINGLE_STEP_NOTIFY();
 980       /* Using this labels avoids double breakpoints when quickening and
 981        * when returing from transition frames.
 982        */
 983   opcode_switch:
 984       assert(istate == orig, "Corrupted istate");
 985       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
 986       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
 987       assert(topOfStack < istate->stack_base(), "Stack underrun");
 988 
 989 #ifdef USELABELS
 990       DISPATCH(opcode);
 991 #else
 992       switch (opcode)
 993 #endif
 994       {
 995       CASE(_nop):
 996           UPDATE_PC_AND_CONTINUE(1);
 997 
 998           /* Push miscellaneous constants onto the stack. */
 999 
1000       CASE(_aconst_null):
1001           SET_STACK_OBJECT(NULL, 0);
1002           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1003 
1004 #undef  OPC_CONST_n
1005 #define OPC_CONST_n(opcode, const_type, value)                          \
1006       CASE(opcode):                                                     \
1007           SET_STACK_ ## const_type(value, 0);                           \
1008           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1009 
1010           OPC_CONST_n(_iconst_m1,   INT,       -1);
1011           OPC_CONST_n(_iconst_0,    INT,        0);
1012           OPC_CONST_n(_iconst_1,    INT,        1);
1013           OPC_CONST_n(_iconst_2,    INT,        2);
1014           OPC_CONST_n(_iconst_3,    INT,        3);
1015           OPC_CONST_n(_iconst_4,    INT,        4);
1016           OPC_CONST_n(_iconst_5,    INT,        5);
1017           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
1018           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
1019           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
1020 
1021 #undef  OPC_CONST2_n
1022 #define OPC_CONST2_n(opcname, value, key, kind)                         \
1023       CASE(_##opcname):                                                 \
1024       {                                                                 \
1025           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
1026           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1027       }
1028          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
1029          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
1030          OPC_CONST2_n(lconst_0, Zero, long, LONG);
1031          OPC_CONST2_n(lconst_1, One,  long, LONG);
1032 
1033          /* Load constant from constant pool: */
1034 
1035           /* Push a 1-byte signed integer value onto the stack. */
1036       CASE(_bipush):
1037           SET_STACK_INT((jbyte)(pc[1]), 0);
1038           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1039 
1040           /* Push a 2-byte signed integer constant onto the stack. */
1041       CASE(_sipush):
1042           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
1043           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1044 
1045           /* load from local variable */
1046 
1047       CASE(_aload):
1048           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
1049           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
1050           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1051 
1052       CASE(_iload):
1053       CASE(_fload):
1054           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1055           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1056 
1057       CASE(_lload):
1058           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
1059           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1060 
1061       CASE(_dload):
1062           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
1063           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1064 
1065 #undef  OPC_LOAD_n
1066 #define OPC_LOAD_n(num)                                                 \
1067       CASE(_aload_##num):                                               \
1068           VERIFY_OOP(LOCALS_OBJECT(num));                               \
1069           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
1070           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1071                                                                         \
1072       CASE(_iload_##num):                                               \
1073       CASE(_fload_##num):                                               \
1074           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
1075           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1076                                                                         \
1077       CASE(_lload_##num):                                               \
1078           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
1079           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1080       CASE(_dload_##num):                                               \
1081           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
1082           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1083 
1084           OPC_LOAD_n(0);
1085           OPC_LOAD_n(1);
1086           OPC_LOAD_n(2);
1087           OPC_LOAD_n(3);
1088 
1089           /* store to a local variable */
1090 
1091       CASE(_astore):
1092           astore(topOfStack, -1, locals, pc[1]);
1093           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1094 
1095       CASE(_istore):
1096       CASE(_fstore):
1097           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1098           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1099 
1100       CASE(_lstore):
1101           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1102           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1103 
1104       CASE(_dstore):
1105           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1106           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1107 
1108       CASE(_wide): {
1109           uint16_t reg = Bytes::get_Java_u2(pc + 2);
1110 
1111           opcode = pc[1];
1112 
1113           // Wide and it's sub-bytecode are counted as separate instructions. If we
1114           // don't account for this here, the bytecode trace skips the next bytecode.
1115           DO_UPDATE_INSTRUCTION_COUNT(opcode);
1116 
1117           switch(opcode) {
1118               case Bytecodes::_aload:
1119                   VERIFY_OOP(LOCALS_OBJECT(reg));
1120                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1121                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1122 
1123               case Bytecodes::_iload:
1124               case Bytecodes::_fload:
1125                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1126                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1127 
1128               case Bytecodes::_lload:
1129                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1130                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1131 
1132               case Bytecodes::_dload:
1133                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1134                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1135 
1136               case Bytecodes::_astore:
1137                   astore(topOfStack, -1, locals, reg);
1138                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1139 
1140               case Bytecodes::_istore:
1141               case Bytecodes::_fstore:
1142                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1143                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1144 
1145               case Bytecodes::_lstore:
1146                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1147                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1148 
1149               case Bytecodes::_dstore:
1150                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1151                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1152 
1153               case Bytecodes::_iinc: {
1154                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1155                   // Be nice to see what this generates.... QQQ
1156                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1157                   UPDATE_PC_AND_CONTINUE(6);
1158               }
1159               case Bytecodes::_ret:
1160                   // Profile ret.
1161                   BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(reg))));
1162                   // Now, update the pc.
1163                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1164                   UPDATE_PC_AND_CONTINUE(0);
1165               default:
1166                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode", note_no_trap);
1167           }
1168       }
1169 
1170 
1171 #undef  OPC_STORE_n
1172 #define OPC_STORE_n(num)                                                \
1173       CASE(_astore_##num):                                              \
1174           astore(topOfStack, -1, locals, num);                          \
1175           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1176       CASE(_istore_##num):                                              \
1177       CASE(_fstore_##num):                                              \
1178           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1179           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1180 
1181           OPC_STORE_n(0);
1182           OPC_STORE_n(1);
1183           OPC_STORE_n(2);
1184           OPC_STORE_n(3);
1185 
1186 #undef  OPC_DSTORE_n
1187 #define OPC_DSTORE_n(num)                                               \
1188       CASE(_dstore_##num):                                              \
1189           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1190           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1191       CASE(_lstore_##num):                                              \
1192           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1193           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1194 
1195           OPC_DSTORE_n(0);
1196           OPC_DSTORE_n(1);
1197           OPC_DSTORE_n(2);
1198           OPC_DSTORE_n(3);
1199 
1200           /* stack pop, dup, and insert opcodes */
1201 
1202 
1203       CASE(_pop):                /* Discard the top item on the stack */
1204           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1205 
1206 
1207       CASE(_pop2):               /* Discard the top 2 items on the stack */
1208           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1209 
1210 
1211       CASE(_dup):               /* Duplicate the top item on the stack */
1212           dup(topOfStack);
1213           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1214 
1215       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1216           dup2(topOfStack);
1217           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1218 
1219       CASE(_dup_x1):    /* insert top word two down */
1220           dup_x1(topOfStack);
1221           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1222 
1223       CASE(_dup_x2):    /* insert top word three down  */
1224           dup_x2(topOfStack);
1225           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1226 
1227       CASE(_dup2_x1):   /* insert top 2 slots three down */
1228           dup2_x1(topOfStack);
1229           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1230 
1231       CASE(_dup2_x2):   /* insert top 2 slots four down */
1232           dup2_x2(topOfStack);
1233           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1234 
1235       CASE(_swap): {        /* swap top two elements on the stack */
1236           swap(topOfStack);
1237           UPDATE_PC_AND_CONTINUE(1);
1238       }
1239 
1240           /* Perform various binary integer operations */
1241 
1242 #undef  OPC_INT_BINARY
1243 #define OPC_INT_BINARY(opcname, opname, test)                           \
1244       CASE(_i##opcname):                                                \
1245           if (test && (STACK_INT(-1) == 0)) {                           \
1246               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1247                             "/ by zero", note_div0Check_trap);          \
1248           }                                                             \
1249           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1250                                       STACK_INT(-1)),                   \
1251                                       -2);                              \
1252           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1253       CASE(_l##opcname):                                                \
1254       {                                                                 \
1255           if (test) {                                                   \
1256             jlong l1 = STACK_LONG(-1);                                  \
1257             if (VMlongEqz(l1)) {                                        \
1258               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1259                             "/ by long zero", note_div0Check_trap);     \
1260             }                                                           \
1261           }                                                             \
1262           /* First long at (-1,-2) next long at (-3,-4) */              \
1263           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1264                                         STACK_LONG(-1)),                \
1265                                         -3);                            \
1266           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1267       }
1268 
1269       OPC_INT_BINARY(add, Add, 0);
1270       OPC_INT_BINARY(sub, Sub, 0);
1271       OPC_INT_BINARY(mul, Mul, 0);
1272       OPC_INT_BINARY(and, And, 0);
1273       OPC_INT_BINARY(or,  Or,  0);
1274       OPC_INT_BINARY(xor, Xor, 0);
1275       OPC_INT_BINARY(div, Div, 1);
1276       OPC_INT_BINARY(rem, Rem, 1);
1277 
1278 
1279       /* Perform various binary floating number operations */
1280       /* On some machine/platforms/compilers div zero check can be implicit */
1281 
1282 #undef  OPC_FLOAT_BINARY
1283 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1284       CASE(_d##opcname): {                                                 \
1285           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1286                                             STACK_DOUBLE(-1)),             \
1287                                             -3);                           \
1288           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1289       }                                                                    \
1290       CASE(_f##opcname):                                                   \
1291           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1292                                           STACK_FLOAT(-1)),                \
1293                                           -2);                             \
1294           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1295 
1296 
1297      OPC_FLOAT_BINARY(add, Add);
1298      OPC_FLOAT_BINARY(sub, Sub);
1299      OPC_FLOAT_BINARY(mul, Mul);
1300      OPC_FLOAT_BINARY(div, Div);
1301      OPC_FLOAT_BINARY(rem, Rem);
1302 
1303       /* Shift operations
1304        * Shift left int and long: ishl, lshl
1305        * Logical shift right int and long w/zero extension: iushr, lushr
1306        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1307        */
1308 
1309 #undef  OPC_SHIFT_BINARY
1310 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1311       CASE(_i##opcname):                                                \
1312          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1313                                      STACK_INT(-1)),                    \
1314                                      -2);                               \
1315          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1316       CASE(_l##opcname):                                                \
1317       {                                                                 \
1318          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1319                                        STACK_INT(-1)),                  \
1320                                        -2);                             \
1321          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1322       }
1323 
1324       OPC_SHIFT_BINARY(shl, Shl);
1325       OPC_SHIFT_BINARY(shr, Shr);
1326       OPC_SHIFT_BINARY(ushr, Ushr);
1327 
1328      /* Increment local variable by constant */
1329       CASE(_iinc):
1330       {
1331           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1332           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1333           UPDATE_PC_AND_CONTINUE(3);
1334       }
1335 
1336      /* negate the value on the top of the stack */
1337 
1338       CASE(_ineg):
1339          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1340          UPDATE_PC_AND_CONTINUE(1);
1341 
1342       CASE(_fneg):
1343          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1344          UPDATE_PC_AND_CONTINUE(1);
1345 
1346       CASE(_lneg):
1347       {
1348          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1349          UPDATE_PC_AND_CONTINUE(1);
1350       }
1351 
1352       CASE(_dneg):
1353       {
1354          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1355          UPDATE_PC_AND_CONTINUE(1);
1356       }
1357 
1358       /* Conversion operations */
1359 
1360       CASE(_i2f):       /* convert top of stack int to float */
1361          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1362          UPDATE_PC_AND_CONTINUE(1);
1363 
1364       CASE(_i2l):       /* convert top of stack int to long */
1365       {
1366           // this is ugly QQQ
1367           jlong r = VMint2Long(STACK_INT(-1));
1368           MORE_STACK(-1); // Pop
1369           SET_STACK_LONG(r, 1);
1370 
1371           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1372       }
1373 
1374       CASE(_i2d):       /* convert top of stack int to double */
1375       {
1376           // this is ugly QQQ (why cast to jlong?? )
1377           jdouble r = (jlong)STACK_INT(-1);
1378           MORE_STACK(-1); // Pop
1379           SET_STACK_DOUBLE(r, 1);
1380 
1381           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1382       }
1383 
1384       CASE(_l2i):       /* convert top of stack long to int */
1385       {
1386           jint r = VMlong2Int(STACK_LONG(-1));
1387           MORE_STACK(-2); // Pop
1388           SET_STACK_INT(r, 0);
1389           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1390       }
1391 
1392       CASE(_l2f):   /* convert top of stack long to float */
1393       {
1394           jlong r = STACK_LONG(-1);
1395           MORE_STACK(-2); // Pop
1396           SET_STACK_FLOAT(VMlong2Float(r), 0);
1397           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1398       }
1399 
1400       CASE(_l2d):       /* convert top of stack long to double */
1401       {
1402           jlong r = STACK_LONG(-1);
1403           MORE_STACK(-2); // Pop
1404           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1405           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1406       }
1407 
1408       CASE(_f2i):  /* Convert top of stack float to int */
1409           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1410           UPDATE_PC_AND_CONTINUE(1);
1411 
1412       CASE(_f2l):  /* convert top of stack float to long */
1413       {
1414           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1415           MORE_STACK(-1); // POP
1416           SET_STACK_LONG(r, 1);
1417           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1418       }
1419 
1420       CASE(_f2d):  /* convert top of stack float to double */
1421       {
1422           jfloat f;
1423           jdouble r;
1424           f = STACK_FLOAT(-1);
1425           r = (jdouble) f;
1426           MORE_STACK(-1); // POP
1427           SET_STACK_DOUBLE(r, 1);
1428           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1429       }
1430 
1431       CASE(_d2i): /* convert top of stack double to int */
1432       {
1433           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1434           MORE_STACK(-2);
1435           SET_STACK_INT(r1, 0);
1436           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1437       }
1438 
1439       CASE(_d2f): /* convert top of stack double to float */
1440       {
1441           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1442           MORE_STACK(-2);
1443           SET_STACK_FLOAT(r1, 0);
1444           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1445       }
1446 
1447       CASE(_d2l): /* convert top of stack double to long */
1448       {
1449           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1450           MORE_STACK(-2);
1451           SET_STACK_LONG(r1, 1);
1452           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1453       }
1454 
1455       CASE(_i2b):
1456           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1457           UPDATE_PC_AND_CONTINUE(1);
1458 
1459       CASE(_i2c):
1460           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1461           UPDATE_PC_AND_CONTINUE(1);
1462 
1463       CASE(_i2s):
1464           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1465           UPDATE_PC_AND_CONTINUE(1);
1466 
1467       /* comparison operators */
1468 
1469 
1470 #define COMPARISON_OP(name, comparison)                                      \
1471       CASE(_if_icmp##name): {                                                \
1472           const bool cmp = (STACK_INT(-2) comparison STACK_INT(-1));         \
1473           int skip = cmp                                                     \
1474                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1475           address branch_pc = pc;                                            \
1476           /* Profile branch. */                                              \
1477           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1478           UPDATE_PC_AND_TOS(skip, -2);                                       \
1479           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1480           CONTINUE;                                                          \
1481       }                                                                      \
1482       CASE(_if##name): {                                                     \
1483           const bool cmp = (STACK_INT(-1) comparison 0);                     \
1484           int skip = cmp                                                     \
1485                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1486           address branch_pc = pc;                                            \
1487           /* Profile branch. */                                              \
1488           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1489           UPDATE_PC_AND_TOS(skip, -1);                                       \
1490           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1491           CONTINUE;                                                          \
1492       }
1493 
1494 #define COMPARISON_OP2(name, comparison)                                     \
1495       COMPARISON_OP(name, comparison)                                        \
1496       CASE(_if_acmp##name): {                                                \
1497           const bool cmp = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1));   \
1498           int skip = cmp                                                     \
1499                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1500           address branch_pc = pc;                                            \
1501           /* Profile branch. */                                              \
1502           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1503           UPDATE_PC_AND_TOS(skip, -2);                                       \
1504           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1505           CONTINUE;                                                          \
1506       }
1507 
1508 #define NULL_COMPARISON_NOT_OP(name)                                         \
1509       CASE(_if##name): {                                                     \
1510           const bool cmp = (!(STACK_OBJECT(-1) == NULL));                    \
1511           int skip = cmp                                                     \
1512                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1513           address branch_pc = pc;                                            \
1514           /* Profile branch. */                                              \
1515           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1516           UPDATE_PC_AND_TOS(skip, -1);                                       \
1517           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1518           CONTINUE;                                                          \
1519       }
1520 
1521 #define NULL_COMPARISON_OP(name)                                             \
1522       CASE(_if##name): {                                                     \
1523           const bool cmp = ((STACK_OBJECT(-1) == NULL));                     \
1524           int skip = cmp                                                     \
1525                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1526           address branch_pc = pc;                                            \
1527           /* Profile branch. */                                              \
1528           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1529           UPDATE_PC_AND_TOS(skip, -1);                                       \
1530           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1531           CONTINUE;                                                          \
1532       }
1533       COMPARISON_OP(lt, <);
1534       COMPARISON_OP(gt, >);
1535       COMPARISON_OP(le, <=);
1536       COMPARISON_OP(ge, >=);
1537       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1538       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1539       NULL_COMPARISON_OP(null);
1540       NULL_COMPARISON_NOT_OP(nonnull);
1541 
1542       /* Goto pc at specified offset in switch table. */
1543 
1544       CASE(_tableswitch): {
1545           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1546           int32_t  key  = STACK_INT(-1);
1547           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1548           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1549           int32_t  skip;
1550           key -= low;
1551           if (((uint32_t) key > (uint32_t)(high - low))) {
1552             key = -1;
1553             skip = Bytes::get_Java_u4((address)&lpc[0]);
1554           } else {
1555             skip = Bytes::get_Java_u4((address)&lpc[key + 3]);
1556           }
1557           // Profile switch.
1558           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/key);
1559           // Does this really need a full backedge check (osr)?
1560           address branch_pc = pc;
1561           UPDATE_PC_AND_TOS(skip, -1);
1562           DO_BACKEDGE_CHECKS(skip, branch_pc);
1563           CONTINUE;
1564       }
1565 
1566       /* Goto pc whose table entry matches specified key. */
1567 
1568       CASE(_lookupswitch): {
1569           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1570           int32_t  key  = STACK_INT(-1);
1571           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1572           // Remember index.
1573           int      index = -1;
1574           int      newindex = 0;
1575           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1576           while (--npairs >= 0) {
1577             lpc += 2;
1578             if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1579               skip = Bytes::get_Java_u4((address)&lpc[1]);
1580               index = newindex;
1581               break;
1582             }
1583             newindex += 1;
1584           }
1585           // Profile switch.
1586           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/index);
1587           address branch_pc = pc;
1588           UPDATE_PC_AND_TOS(skip, -1);
1589           DO_BACKEDGE_CHECKS(skip, branch_pc);
1590           CONTINUE;
1591       }
1592 
1593       CASE(_fcmpl):
1594       CASE(_fcmpg):
1595       {
1596           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1597                                         STACK_FLOAT(-1),
1598                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1599                         -2);
1600           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1601       }
1602 
1603       CASE(_dcmpl):
1604       CASE(_dcmpg):
1605       {
1606           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1607                                   STACK_DOUBLE(-1),
1608                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1609           MORE_STACK(-4); // Pop
1610           SET_STACK_INT(r, 0);
1611           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1612       }
1613 
1614       CASE(_lcmp):
1615       {
1616           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1617           MORE_STACK(-4);
1618           SET_STACK_INT(r, 0);
1619           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1620       }
1621 
1622 
1623       /* Return from a method */
1624 
1625       CASE(_areturn):
1626       CASE(_ireturn):
1627       CASE(_freturn):
1628       {
1629           // Allow a safepoint before returning to frame manager.
1630           SAFEPOINT;
1631 
1632           goto handle_return;
1633       }
1634 
1635       CASE(_lreturn):
1636       CASE(_dreturn):
1637       {
1638           // Allow a safepoint before returning to frame manager.
1639           SAFEPOINT;
1640           goto handle_return;
1641       }
1642 
1643       CASE(_return_register_finalizer): {
1644 
1645           oop rcvr = LOCALS_OBJECT(0);
1646           VERIFY_OOP(rcvr);
1647           if (rcvr->klass()->has_finalizer()) {
1648             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1649           }
1650           goto handle_return;
1651       }
1652       CASE(_return): {
1653 
1654           // Allow a safepoint before returning to frame manager.
1655           SAFEPOINT;
1656           goto handle_return;
1657       }
1658 
1659       /* Array access byte-codes */
1660 
1661       /* Every array access byte-code starts out like this */
1662 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1663 #define ARRAY_INTRO(arrayOff)                                                  \
1664       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1665       jint     index  = STACK_INT(arrayOff + 1);                               \
1666       char message[jintAsStringSize];                                          \
1667       CHECK_NULL(arrObj);                                                      \
1668       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1669           sprintf(message, "%d", index);                                       \
1670           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1671                         message, note_rangeCheck_trap);                        \
1672       }
1673 
1674       /* 32-bit loads. These handle conversion from < 32-bit types */
1675 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1676       {                                                                               \
1677           ARRAY_INTRO(-2);                                                            \
1678           (void)extra;                                                                \
1679           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1680                            -2);                                                       \
1681           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1682       }
1683 
1684       /* 64-bit loads */
1685 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1686       {                                                                                    \
1687           ARRAY_INTRO(-2);                                                                 \
1688           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1689           (void)extra;                                                                     \
1690           UPDATE_PC_AND_CONTINUE(1);                                                       \
1691       }
1692 
1693       CASE(_iaload):
1694           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1695       CASE(_faload):
1696           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1697       CASE(_aaload): {
1698           ARRAY_INTRO(-2);
1699           SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1700           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1701       }
1702       CASE(_baload):
1703           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1704       CASE(_caload):
1705           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1706       CASE(_saload):
1707           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1708       CASE(_laload):
1709           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1710       CASE(_daload):
1711           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1712 
1713       /* 32-bit stores. These handle conversion to < 32-bit types */
1714 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1715       {                                                                              \
1716           ARRAY_INTRO(-3);                                                           \
1717           (void)extra;                                                               \
1718           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1719           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1720       }
1721 
1722       /* 64-bit stores */
1723 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1724       {                                                                              \
1725           ARRAY_INTRO(-4);                                                           \
1726           (void)extra;                                                               \
1727           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1728           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1729       }
1730 
1731       CASE(_iastore):
1732           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1733       CASE(_fastore):
1734           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1735       /*
1736        * This one looks different because of the assignability check
1737        */
1738       CASE(_aastore): {
1739           oop rhsObject = STACK_OBJECT(-1);
1740           VERIFY_OOP(rhsObject);
1741           ARRAY_INTRO( -3);
1742           // arrObj, index are set
1743           if (rhsObject != NULL) {
1744             /* Check assignability of rhsObject into arrObj */
1745             Klass* rhsKlass = rhsObject->klass(); // EBX (subclass)
1746             Klass* elemKlass = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1747             //
1748             // Check for compatibilty. This check must not GC!!
1749             // Seems way more expensive now that we must dispatch
1750             //
1751             if (rhsKlass != elemKlass && !rhsKlass->is_subtype_of(elemKlass)) { // ebx->is...
1752               // Decrement counter if subtype check failed.
1753               BI_PROFILE_SUBTYPECHECK_FAILED(rhsKlass);
1754               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "", note_arrayCheck_trap);
1755             }
1756             // Profile checkcast with null_seen and receiver.
1757             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, rhsKlass);
1758           } else {
1759             // Profile checkcast with null_seen and receiver.
1760             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
1761           }
1762           ((objArrayOop) arrObj)->obj_at_put(index, rhsObject);
1763           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1764       }
1765       CASE(_bastore):
1766           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1767       CASE(_castore):
1768           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1769       CASE(_sastore):
1770           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1771       CASE(_lastore):
1772           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1773       CASE(_dastore):
1774           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1775 
1776       CASE(_arraylength):
1777       {
1778           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1779           CHECK_NULL(ary);
1780           SET_STACK_INT(ary->length(), -1);
1781           UPDATE_PC_AND_CONTINUE(1);
1782       }
1783 
1784       /* monitorenter and monitorexit for locking/unlocking an object */
1785 
1786       CASE(_monitorenter): {
1787         oop lockee = STACK_OBJECT(-1);
1788         // derefing's lockee ought to provoke implicit null check
1789         CHECK_NULL(lockee);
1790         // find a free monitor or one already allocated for this object
1791         // if we find a matching object then we need a new monitor
1792         // since this is recursive enter
1793         BasicObjectLock* limit = istate->monitor_base();
1794         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1795         BasicObjectLock* entry = NULL;
1796         while (most_recent != limit ) {
1797           if (most_recent->obj() == NULL) entry = most_recent;
1798           else if (most_recent->obj() == lockee) break;
1799           most_recent++;
1800         }
1801         if (entry != NULL) {
1802           entry->set_obj(lockee);
1803           int success = false;
1804           uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
1805 
1806           markOop mark = lockee->mark();
1807           intptr_t hash = (intptr_t) markOopDesc::no_hash;
1808           // implies UseBiasedLocking
1809           if (mark->has_bias_pattern()) {
1810             uintptr_t thread_ident;
1811             uintptr_t anticipated_bias_locking_value;
1812             thread_ident = (uintptr_t)istate->thread();
1813             anticipated_bias_locking_value =
1814               (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
1815               ~((uintptr_t) markOopDesc::age_mask_in_place);
1816 
1817             if  (anticipated_bias_locking_value == 0) {
1818               // already biased towards this thread, nothing to do
1819               if (PrintBiasedLockingStatistics) {
1820                 (* BiasedLocking::biased_lock_entry_count_addr())++;
1821               }
1822               success = true;
1823             }
1824             else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
1825               // try revoke bias
1826               markOop header = lockee->klass()->prototype_header();
1827               if (hash != markOopDesc::no_hash) {
1828                 header = header->copy_set_hash(hash);
1829               }
1830               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
1831                 if (PrintBiasedLockingStatistics)
1832                   (*BiasedLocking::revoked_lock_entry_count_addr())++;
1833               }
1834             }
1835             else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
1836               // try rebias
1837               markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
1838               if (hash != markOopDesc::no_hash) {
1839                 new_header = new_header->copy_set_hash(hash);
1840               }
1841               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
1842                 if (PrintBiasedLockingStatistics)
1843                   (* BiasedLocking::rebiased_lock_entry_count_addr())++;
1844               }
1845               else {
1846                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1847               }
1848               success = true;
1849             }
1850             else {
1851               // try to bias towards thread in case object is anonymously biased
1852               markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
1853                                                               (uintptr_t)markOopDesc::age_mask_in_place |
1854                                                               epoch_mask_in_place));
1855               if (hash != markOopDesc::no_hash) {
1856                 header = header->copy_set_hash(hash);
1857               }
1858               markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
1859               // debugging hint
1860               DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
1861               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
1862                 if (PrintBiasedLockingStatistics)
1863                   (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
1864               }
1865               else {
1866                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1867               }
1868               success = true;
1869             }
1870           }
1871 
1872           // traditional lightweight locking
1873           if (!success) {
1874             markOop displaced = lockee->mark()->set_unlocked();
1875             entry->lock()->set_displaced_header(displaced);
1876             bool call_vm = UseHeavyMonitors;
1877             if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1878               // Is it simple recursive case?
1879               if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1880                 entry->lock()->set_displaced_header(NULL);
1881               } else {
1882                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1883               }
1884             }
1885           }
1886           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1887         } else {
1888           istate->set_msg(more_monitors);
1889           UPDATE_PC_AND_RETURN(0); // Re-execute
1890         }
1891       }
1892 
1893       CASE(_monitorexit): {
1894         oop lockee = STACK_OBJECT(-1);
1895         CHECK_NULL(lockee);
1896         // derefing's lockee ought to provoke implicit null check
1897         // find our monitor slot
1898         BasicObjectLock* limit = istate->monitor_base();
1899         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1900         while (most_recent != limit ) {
1901           if ((most_recent)->obj() == lockee) {
1902             BasicLock* lock = most_recent->lock();
1903             markOop header = lock->displaced_header();
1904             most_recent->set_obj(NULL);
1905             if (!lockee->mark()->has_bias_pattern()) {
1906               bool call_vm = UseHeavyMonitors;
1907               // If it isn't recursive we either must swap old header or call the runtime
1908               if (header != NULL || call_vm) {
1909                 if (call_vm || Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1910                   // restore object for the slow case
1911                   most_recent->set_obj(lockee);
1912                   CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1913                 }
1914               }
1915             }
1916             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1917           }
1918           most_recent++;
1919         }
1920         // Need to throw illegal monitor state exception
1921         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1922         ShouldNotReachHere();
1923       }
1924 
1925       /* All of the non-quick opcodes. */
1926 
1927       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1928        *  constant pool index in the instruction.
1929        */
1930       CASE(_getfield):
1931       CASE(_getstatic):
1932         {
1933           u2 index;
1934           ConstantPoolCacheEntry* cache;
1935           index = Bytes::get_native_u2(pc+1);
1936 
1937           // QQQ Need to make this as inlined as possible. Probably need to
1938           // split all the bytecode cases out so c++ compiler has a chance
1939           // for constant prop to fold everything possible away.
1940 
1941           cache = cp->entry_at(index);
1942           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1943             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1944                     handle_exception);
1945             cache = cp->entry_at(index);
1946           }
1947 
1948 #ifdef VM_JVMTI
1949           if (_jvmti_interp_events) {
1950             int *count_addr;
1951             oop obj;
1952             // Check to see if a field modification watch has been set
1953             // before we take the time to call into the VM.
1954             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1955             if ( *count_addr > 0 ) {
1956               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1957                 obj = (oop)NULL;
1958               } else {
1959                 obj = (oop) STACK_OBJECT(-1);
1960                 VERIFY_OOP(obj);
1961               }
1962               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1963                                           obj,
1964                                           cache),
1965                                           handle_exception);
1966             }
1967           }
1968 #endif /* VM_JVMTI */
1969 
1970           oop obj;
1971           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1972             Klass* k = cache->f1_as_klass();
1973             obj = k->java_mirror();
1974             MORE_STACK(1);  // Assume single slot push
1975           } else {
1976             obj = (oop) STACK_OBJECT(-1);
1977             CHECK_NULL(obj);
1978           }
1979 
1980           //
1981           // Now store the result on the stack
1982           //
1983           TosState tos_type = cache->flag_state();
1984           int field_offset = cache->f2_as_index();
1985           if (cache->is_volatile()) {
1986             if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
1987               OrderAccess::fence();
1988             }
1989             if (tos_type == atos) {
1990               VERIFY_OOP(obj->obj_field_acquire(field_offset));
1991               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
1992             } else if (tos_type == itos) {
1993               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1994             } else if (tos_type == ltos) {
1995               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1996               MORE_STACK(1);
1997             } else if (tos_type == btos) {
1998               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
1999             } else if (tos_type == ctos) {
2000               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
2001             } else if (tos_type == stos) {
2002               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
2003             } else if (tos_type == ftos) {
2004               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
2005             } else {
2006               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
2007               MORE_STACK(1);
2008             }
2009           } else {
2010             if (tos_type == atos) {
2011               VERIFY_OOP(obj->obj_field(field_offset));
2012               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
2013             } else if (tos_type == itos) {
2014               SET_STACK_INT(obj->int_field(field_offset), -1);
2015             } else if (tos_type == ltos) {
2016               SET_STACK_LONG(obj->long_field(field_offset), 0);
2017               MORE_STACK(1);
2018             } else if (tos_type == btos) {
2019               SET_STACK_INT(obj->byte_field(field_offset), -1);
2020             } else if (tos_type == ctos) {
2021               SET_STACK_INT(obj->char_field(field_offset), -1);
2022             } else if (tos_type == stos) {
2023               SET_STACK_INT(obj->short_field(field_offset), -1);
2024             } else if (tos_type == ftos) {
2025               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
2026             } else {
2027               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
2028               MORE_STACK(1);
2029             }
2030           }
2031 
2032           UPDATE_PC_AND_CONTINUE(3);
2033          }
2034 
2035       CASE(_putfield):
2036       CASE(_putstatic):
2037         {
2038           u2 index = Bytes::get_native_u2(pc+1);
2039           ConstantPoolCacheEntry* cache = cp->entry_at(index);
2040           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2041             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
2042                     handle_exception);
2043             cache = cp->entry_at(index);
2044           }
2045 
2046 #ifdef VM_JVMTI
2047           if (_jvmti_interp_events) {
2048             int *count_addr;
2049             oop obj;
2050             // Check to see if a field modification watch has been set
2051             // before we take the time to call into the VM.
2052             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
2053             if ( *count_addr > 0 ) {
2054               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2055                 obj = (oop)NULL;
2056               }
2057               else {
2058                 if (cache->is_long() || cache->is_double()) {
2059                   obj = (oop) STACK_OBJECT(-3);
2060                 } else {
2061                   obj = (oop) STACK_OBJECT(-2);
2062                 }
2063                 VERIFY_OOP(obj);
2064               }
2065 
2066               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
2067                                           obj,
2068                                           cache,
2069                                           (jvalue *)STACK_SLOT(-1)),
2070                                           handle_exception);
2071             }
2072           }
2073 #endif /* VM_JVMTI */
2074 
2075           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2076           // out so c++ compiler has a chance for constant prop to fold everything possible away.
2077 
2078           oop obj;
2079           int count;
2080           TosState tos_type = cache->flag_state();
2081 
2082           count = -1;
2083           if (tos_type == ltos || tos_type == dtos) {
2084             --count;
2085           }
2086           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2087             Klass* k = cache->f1_as_klass();
2088             obj = k->java_mirror();
2089           } else {
2090             --count;
2091             obj = (oop) STACK_OBJECT(count);
2092             CHECK_NULL(obj);
2093           }
2094 
2095           //
2096           // Now store the result
2097           //
2098           int field_offset = cache->f2_as_index();
2099           if (cache->is_volatile()) {
2100             if (tos_type == itos) {
2101               obj->release_int_field_put(field_offset, STACK_INT(-1));
2102             } else if (tos_type == atos) {
2103               VERIFY_OOP(STACK_OBJECT(-1));
2104               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
2105             } else if (tos_type == btos) {
2106               obj->release_byte_field_put(field_offset, STACK_INT(-1));
2107             } else if (tos_type == ltos) {
2108               obj->release_long_field_put(field_offset, STACK_LONG(-1));
2109             } else if (tos_type == ctos) {
2110               obj->release_char_field_put(field_offset, STACK_INT(-1));
2111             } else if (tos_type == stos) {
2112               obj->release_short_field_put(field_offset, STACK_INT(-1));
2113             } else if (tos_type == ftos) {
2114               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
2115             } else {
2116               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
2117             }
2118             OrderAccess::storeload();
2119           } else {
2120             if (tos_type == itos) {
2121               obj->int_field_put(field_offset, STACK_INT(-1));
2122             } else if (tos_type == atos) {
2123               VERIFY_OOP(STACK_OBJECT(-1));
2124               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2125             } else if (tos_type == btos) {
2126               obj->byte_field_put(field_offset, STACK_INT(-1));
2127             } else if (tos_type == ltos) {
2128               obj->long_field_put(field_offset, STACK_LONG(-1));
2129             } else if (tos_type == ctos) {
2130               obj->char_field_put(field_offset, STACK_INT(-1));
2131             } else if (tos_type == stos) {
2132               obj->short_field_put(field_offset, STACK_INT(-1));
2133             } else if (tos_type == ftos) {
2134               obj->float_field_put(field_offset, STACK_FLOAT(-1));
2135             } else {
2136               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2137             }
2138           }
2139 
2140           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
2141         }
2142 
2143       CASE(_new): {
2144         u2 index = Bytes::get_Java_u2(pc+1);
2145         ConstantPool* constants = istate->method()->constants();
2146         if (!constants->tag_at(index).is_unresolved_klass()) {
2147           // Make sure klass is initialized and doesn't have a finalizer
2148           Klass* entry = constants->slot_at(index).get_klass();
2149           assert(entry->is_klass(), "Should be resolved klass");
2150           Klass* k_entry = (Klass*) entry;
2151           assert(k_entry->oop_is_instance(), "Should be InstanceKlass");
2152           InstanceKlass* ik = (InstanceKlass*) k_entry;
2153           if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
2154             size_t obj_size = ik->size_helper();
2155             oop result = NULL;
2156             // If the TLAB isn't pre-zeroed then we'll have to do it
2157             bool need_zero = !ZeroTLAB;
2158             if (UseTLAB) {
2159               result = (oop) THREAD->tlab().allocate(obj_size);
2160             }
2161             // Disable non-TLAB-based fast-path, because profiling requires that all
2162             // allocations go through InterpreterRuntime::_new() if THREAD->tlab().allocate
2163             // returns NULL.
2164 #ifndef CC_INTERP_PROFILE
2165             if (result == NULL) {
2166               need_zero = true;
2167               // Try allocate in shared eden
2168             retry:
2169               HeapWord* compare_to = *Universe::heap()->top_addr();
2170               HeapWord* new_top = compare_to + obj_size;
2171               if (new_top <= *Universe::heap()->end_addr()) {
2172                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
2173                   goto retry;
2174                 }
2175                 result = (oop) compare_to;
2176               }
2177             }
2178 #endif
2179             if (result != NULL) {
2180               // Initialize object (if nonzero size and need) and then the header
2181               if (need_zero ) {
2182                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
2183                 obj_size -= sizeof(oopDesc) / oopSize;
2184                 if (obj_size > 0 ) {
2185                   memset(to_zero, 0, obj_size * HeapWordSize);
2186                 }
2187               }
2188               if (UseBiasedLocking) {
2189                 result->set_mark(ik->prototype_header());
2190               } else {
2191                 result->set_mark(markOopDesc::prototype());
2192               }
2193               result->set_klass_gap(0);
2194               result->set_klass(k_entry);
2195               // Must prevent reordering of stores for object initialization
2196               // with stores that publish the new object.
2197               OrderAccess::storestore();
2198               SET_STACK_OBJECT(result, 0);
2199               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2200             }
2201           }
2202         }
2203         // Slow case allocation
2204         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2205                 handle_exception);
2206         // Must prevent reordering of stores for object initialization
2207         // with stores that publish the new object.
2208         OrderAccess::storestore();
2209         SET_STACK_OBJECT(THREAD->vm_result(), 0);
2210         THREAD->set_vm_result(NULL);
2211         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2212       }
2213       CASE(_anewarray): {
2214         u2 index = Bytes::get_Java_u2(pc+1);
2215         jint size = STACK_INT(-1);
2216         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2217                 handle_exception);
2218         // Must prevent reordering of stores for object initialization
2219         // with stores that publish the new object.
2220         OrderAccess::storestore();
2221         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2222         THREAD->set_vm_result(NULL);
2223         UPDATE_PC_AND_CONTINUE(3);
2224       }
2225       CASE(_multianewarray): {
2226         jint dims = *(pc+3);
2227         jint size = STACK_INT(-1);
2228         // stack grows down, dimensions are up!
2229         jint *dimarray =
2230                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2231                                       Interpreter::stackElementWords-1];
2232         //adjust pointer to start of stack element
2233         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2234                 handle_exception);
2235         // Must prevent reordering of stores for object initialization
2236         // with stores that publish the new object.
2237         OrderAccess::storestore();
2238         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2239         THREAD->set_vm_result(NULL);
2240         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2241       }
2242       CASE(_checkcast):
2243           if (STACK_OBJECT(-1) != NULL) {
2244             VERIFY_OOP(STACK_OBJECT(-1));
2245             u2 index = Bytes::get_Java_u2(pc+1);
2246             // Constant pool may have actual klass or unresolved klass. If it is
2247             // unresolved we must resolve it.
2248             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2249               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2250             }
2251             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2252             Klass* objKlass = STACK_OBJECT(-1)->klass(); // ebx
2253             //
2254             // Check for compatibilty. This check must not GC!!
2255             // Seems way more expensive now that we must dispatch.
2256             //
2257             if (objKlass != klassOf && !objKlass->is_subtype_of(klassOf)) {
2258               // Decrement counter at checkcast.
2259               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2260               ResourceMark rm(THREAD);
2261               const char* objName = objKlass->external_name();
2262               const char* klassName = klassOf->external_name();
2263               char* message = SharedRuntime::generate_class_cast_message(
2264                 objName, klassName);
2265               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message, note_classCheck_trap);
2266             }
2267             // Profile checkcast with null_seen and receiver.
2268             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, objKlass);
2269           } else {
2270             // Profile checkcast with null_seen and receiver.
2271             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
2272           }
2273           UPDATE_PC_AND_CONTINUE(3);
2274 
2275       CASE(_instanceof):
2276           if (STACK_OBJECT(-1) == NULL) {
2277             SET_STACK_INT(0, -1);
2278             // Profile instanceof with null_seen and receiver.
2279             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/true, NULL);
2280           } else {
2281             VERIFY_OOP(STACK_OBJECT(-1));
2282             u2 index = Bytes::get_Java_u2(pc+1);
2283             // Constant pool may have actual klass or unresolved klass. If it is
2284             // unresolved we must resolve it.
2285             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2286               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2287             }
2288             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2289             Klass* objKlass = STACK_OBJECT(-1)->klass();
2290             //
2291             // Check for compatibilty. This check must not GC!!
2292             // Seems way more expensive now that we must dispatch.
2293             //
2294             if ( objKlass == klassOf || objKlass->is_subtype_of(klassOf)) {
2295               SET_STACK_INT(1, -1);
2296             } else {
2297               SET_STACK_INT(0, -1);
2298               // Decrement counter at checkcast.
2299               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2300             }
2301             // Profile instanceof with null_seen and receiver.
2302             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/false, objKlass);
2303           }
2304           UPDATE_PC_AND_CONTINUE(3);
2305 
2306       CASE(_ldc_w):
2307       CASE(_ldc):
2308         {
2309           u2 index;
2310           bool wide = false;
2311           int incr = 2; // frequent case
2312           if (opcode == Bytecodes::_ldc) {
2313             index = pc[1];
2314           } else {
2315             index = Bytes::get_Java_u2(pc+1);
2316             incr = 3;
2317             wide = true;
2318           }
2319 
2320           ConstantPool* constants = METHOD->constants();
2321           switch (constants->tag_at(index).value()) {
2322           case JVM_CONSTANT_Integer:
2323             SET_STACK_INT(constants->int_at(index), 0);
2324             break;
2325 
2326           case JVM_CONSTANT_Float:
2327             SET_STACK_FLOAT(constants->float_at(index), 0);
2328             break;
2329 
2330           case JVM_CONSTANT_String:
2331             {
2332               oop result = constants->resolved_references()->obj_at(index);
2333               if (result == NULL) {
2334                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2335                 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2336                 THREAD->set_vm_result(NULL);
2337               } else {
2338                 VERIFY_OOP(result);
2339                 SET_STACK_OBJECT(result, 0);
2340               }
2341             break;
2342             }
2343 
2344           case JVM_CONSTANT_Class:
2345             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2346             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2347             break;
2348 
2349           case JVM_CONSTANT_UnresolvedClass:
2350           case JVM_CONSTANT_UnresolvedClassInError:
2351             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2352             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2353             THREAD->set_vm_result(NULL);
2354             break;
2355 
2356           default:  ShouldNotReachHere();
2357           }
2358           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2359         }
2360 
2361       CASE(_ldc2_w):
2362         {
2363           u2 index = Bytes::get_Java_u2(pc+1);
2364 
2365           ConstantPool* constants = METHOD->constants();
2366           switch (constants->tag_at(index).value()) {
2367 
2368           case JVM_CONSTANT_Long:
2369              SET_STACK_LONG(constants->long_at(index), 1);
2370             break;
2371 
2372           case JVM_CONSTANT_Double:
2373              SET_STACK_DOUBLE(constants->double_at(index), 1);
2374             break;
2375           default:  ShouldNotReachHere();
2376           }
2377           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2378         }
2379 
2380       CASE(_fast_aldc_w):
2381       CASE(_fast_aldc): {
2382         u2 index;
2383         int incr;
2384         if (opcode == Bytecodes::_fast_aldc) {
2385           index = pc[1];
2386           incr = 2;
2387         } else {
2388           index = Bytes::get_native_u2(pc+1);
2389           incr = 3;
2390         }
2391 
2392         // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2393         // This kind of CP cache entry does not need to match the flags byte, because
2394         // there is a 1-1 relation between bytecode type and CP entry type.
2395         ConstantPool* constants = METHOD->constants();
2396         oop result = constants->resolved_references()->obj_at(index);
2397         if (result == NULL) {
2398           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2399                   handle_exception);
2400           result = THREAD->vm_result();
2401         }
2402 
2403         VERIFY_OOP(result);
2404         SET_STACK_OBJECT(result, 0);
2405         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2406       }
2407 
2408       CASE(_invokedynamic): {
2409 
2410         u4 index = Bytes::get_native_u4(pc+1);
2411         ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2412 
2413         // We are resolved if the resolved_references field contains a non-null object (CallSite, etc.)
2414         // This kind of CP cache entry does not need to match the flags byte, because
2415         // there is a 1-1 relation between bytecode type and CP entry type.
2416         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2417           CALL_VM(InterpreterRuntime::resolve_invokedynamic(THREAD),
2418                   handle_exception);
2419           cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2420         }
2421 
2422         Method* method = cache->f1_as_method();
2423         if (VerifyOops) method->verify();
2424 
2425         if (cache->has_appendix()) {
2426           ConstantPool* constants = METHOD->constants();
2427           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2428           MORE_STACK(1);
2429         }
2430 
2431         istate->set_msg(call_method);
2432         istate->set_callee(method);
2433         istate->set_callee_entry_point(method->from_interpreted_entry());
2434         istate->set_bcp_advance(5);
2435 
2436         // Invokedynamic has got a call counter, just like an invokestatic -> increment!
2437         BI_PROFILE_UPDATE_CALL();
2438 
2439         UPDATE_PC_AND_RETURN(0); // I'll be back...
2440       }
2441 
2442       CASE(_invokehandle): {
2443 
2444         u2 index = Bytes::get_native_u2(pc+1);
2445         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2446 
2447         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2448           CALL_VM(InterpreterRuntime::resolve_invokehandle(THREAD),
2449                   handle_exception);
2450           cache = cp->entry_at(index);
2451         }
2452 
2453         Method* method = cache->f1_as_method();
2454         if (VerifyOops) method->verify();
2455 
2456         if (cache->has_appendix()) {
2457           ConstantPool* constants = METHOD->constants();
2458           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2459           MORE_STACK(1);
2460         }
2461 
2462         istate->set_msg(call_method);
2463         istate->set_callee(method);
2464         istate->set_callee_entry_point(method->from_interpreted_entry());
2465         istate->set_bcp_advance(3);
2466 
2467         // Invokehandle has got a call counter, just like a final call -> increment!
2468         BI_PROFILE_UPDATE_FINALCALL();
2469 
2470         UPDATE_PC_AND_RETURN(0); // I'll be back...
2471       }
2472 
2473       CASE(_invokeinterface): {
2474         u2 index = Bytes::get_native_u2(pc+1);
2475 
2476         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2477         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2478 
2479         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2480         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2481           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2482                   handle_exception);
2483           cache = cp->entry_at(index);
2484         }
2485 
2486         istate->set_msg(call_method);
2487 
2488         // Special case of invokeinterface called for virtual method of
2489         // java.lang.Object.  See cpCacheOop.cpp for details.
2490         // This code isn't produced by javac, but could be produced by
2491         // another compliant java compiler.
2492         if (cache->is_forced_virtual()) {
2493           Method* callee;
2494           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2495           if (cache->is_vfinal()) {
2496             callee = cache->f2_as_vfinal_method();
2497             // Profile 'special case of invokeinterface' final call.
2498             BI_PROFILE_UPDATE_FINALCALL();
2499           } else {
2500             // Get receiver.
2501             int parms = cache->parameter_size();
2502             // Same comments as invokevirtual apply here.
2503             oop rcvr = STACK_OBJECT(-parms);
2504             VERIFY_OOP(rcvr);
2505             InstanceKlass* rcvrKlass = (InstanceKlass*)rcvr->klass();
2506             callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2507             // Profile 'special case of invokeinterface' virtual call.
2508             BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2509           }
2510           istate->set_callee(callee);
2511           istate->set_callee_entry_point(callee->from_interpreted_entry());
2512 #ifdef VM_JVMTI
2513           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2514             istate->set_callee_entry_point(callee->interpreter_entry());
2515           }
2516 #endif /* VM_JVMTI */
2517           istate->set_bcp_advance(5);
2518           UPDATE_PC_AND_RETURN(0); // I'll be back...
2519         }
2520 
2521         // this could definitely be cleaned up QQQ
2522         Method* callee;
2523         Klass* iclass = cache->f1_as_klass();
2524         // InstanceKlass* interface = (InstanceKlass*) iclass;
2525         // get receiver
2526         int parms = cache->parameter_size();
2527         oop rcvr = STACK_OBJECT(-parms);
2528         CHECK_NULL(rcvr);
2529         InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2530         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2531         int i;
2532         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2533           if (ki->interface_klass() == iclass) break;
2534         }
2535         // If the interface isn't found, this class doesn't implement this
2536         // interface.  The link resolver checks this but only for the first
2537         // time this interface is called.
2538         if (i == int2->itable_length()) {
2539           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "", note_no_trap);
2540         }
2541         int mindex = cache->f2_as_index();
2542         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2543         callee = im[mindex].method();
2544         if (callee == NULL) {
2545           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "", note_no_trap);
2546         }
2547 
2548         // Profile virtual call.
2549         BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2550 
2551         istate->set_callee(callee);
2552         istate->set_callee_entry_point(callee->from_interpreted_entry());
2553 #ifdef VM_JVMTI
2554         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2555           istate->set_callee_entry_point(callee->interpreter_entry());
2556         }
2557 #endif /* VM_JVMTI */
2558         istate->set_bcp_advance(5);
2559         UPDATE_PC_AND_RETURN(0); // I'll be back...
2560       }
2561 
2562       CASE(_invokevirtual):
2563       CASE(_invokespecial):
2564       CASE(_invokestatic): {
2565         u2 index = Bytes::get_native_u2(pc+1);
2566 
2567         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2568         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2569         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2570 
2571         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2572           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2573                   handle_exception);
2574           cache = cp->entry_at(index);
2575         }
2576 
2577         istate->set_msg(call_method);
2578         {
2579           Method* callee;
2580           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2581             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2582             if (cache->is_vfinal()) {
2583               callee = cache->f2_as_vfinal_method();
2584               // Profile final call.
2585               BI_PROFILE_UPDATE_FINALCALL();
2586             } else {
2587               // get receiver
2588               int parms = cache->parameter_size();
2589               // this works but needs a resourcemark and seems to create a vtable on every call:
2590               // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2591               //
2592               // this fails with an assert
2593               // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2594               // but this works
2595               oop rcvr = STACK_OBJECT(-parms);
2596               VERIFY_OOP(rcvr);
2597               InstanceKlass* rcvrKlass = (InstanceKlass*)rcvr->klass();
2598               /*
2599                 Executing this code in java.lang.String:
2600                     public String(char value[]) {
2601                           this.count = value.length;
2602                           this.value = (char[])value.clone();
2603                      }
2604 
2605                  a find on rcvr->klass() reports:
2606                  {type array char}{type array class}
2607                   - klass: {other class}
2608 
2609                   but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2610                   because rcvr->klass()->oop_is_instance() == 0
2611                   However it seems to have a vtable in the right location. Huh?
2612 
2613               */
2614               callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2615               // Profile virtual call.
2616               BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2617             }
2618           } else {
2619             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2620               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2621             }
2622             callee = cache->f1_as_method();
2623 
2624             // Profile call.
2625             BI_PROFILE_UPDATE_CALL();
2626           }
2627 
2628           istate->set_callee(callee);
2629           istate->set_callee_entry_point(callee->from_interpreted_entry());
2630 #ifdef VM_JVMTI
2631           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2632             istate->set_callee_entry_point(callee->interpreter_entry());
2633           }
2634 #endif /* VM_JVMTI */
2635           istate->set_bcp_advance(3);
2636           UPDATE_PC_AND_RETURN(0); // I'll be back...
2637         }
2638       }
2639 
2640       /* Allocate memory for a new java object. */
2641 
2642       CASE(_newarray): {
2643         BasicType atype = (BasicType) *(pc+1);
2644         jint size = STACK_INT(-1);
2645         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2646                 handle_exception);
2647         // Must prevent reordering of stores for object initialization
2648         // with stores that publish the new object.
2649         OrderAccess::storestore();
2650         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2651         THREAD->set_vm_result(NULL);
2652 
2653         UPDATE_PC_AND_CONTINUE(2);
2654       }
2655 
2656       /* Throw an exception. */
2657 
2658       CASE(_athrow): {
2659           oop except_oop = STACK_OBJECT(-1);
2660           CHECK_NULL(except_oop);
2661           // set pending_exception so we use common code
2662           THREAD->set_pending_exception(except_oop, NULL, 0);
2663           goto handle_exception;
2664       }
2665 
2666       /* goto and jsr. They are exactly the same except jsr pushes
2667        * the address of the next instruction first.
2668        */
2669 
2670       CASE(_jsr): {
2671           /* push bytecode index on stack */
2672           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2673           MORE_STACK(1);
2674           /* FALL THROUGH */
2675       }
2676 
2677       CASE(_goto):
2678       {
2679           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2680           // Profile jump.
2681           BI_PROFILE_UPDATE_JUMP();
2682           address branch_pc = pc;
2683           UPDATE_PC(offset);
2684           DO_BACKEDGE_CHECKS(offset, branch_pc);
2685           CONTINUE;
2686       }
2687 
2688       CASE(_jsr_w): {
2689           /* push return address on the stack */
2690           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2691           MORE_STACK(1);
2692           /* FALL THROUGH */
2693       }
2694 
2695       CASE(_goto_w):
2696       {
2697           int32_t offset = Bytes::get_Java_u4(pc + 1);
2698           // Profile jump.
2699           BI_PROFILE_UPDATE_JUMP();
2700           address branch_pc = pc;
2701           UPDATE_PC(offset);
2702           DO_BACKEDGE_CHECKS(offset, branch_pc);
2703           CONTINUE;
2704       }
2705 
2706       /* return from a jsr or jsr_w */
2707 
2708       CASE(_ret): {
2709           // Profile ret.
2710           BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(pc[1]))));
2711           // Now, update the pc.
2712           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2713           UPDATE_PC_AND_CONTINUE(0);
2714       }
2715 
2716       /* debugger breakpoint */
2717 
2718       CASE(_breakpoint): {
2719           Bytecodes::Code original_bytecode;
2720           DECACHE_STATE();
2721           SET_LAST_JAVA_FRAME();
2722           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2723                               METHOD, pc);
2724           RESET_LAST_JAVA_FRAME();
2725           CACHE_STATE();
2726           if (THREAD->has_pending_exception()) goto handle_exception;
2727             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2728                                                     handle_exception);
2729 
2730           opcode = (jubyte)original_bytecode;
2731           goto opcode_switch;
2732       }
2733 
2734       DEFAULT:
2735           fatal(err_msg("Unimplemented opcode %d = %s", opcode,
2736                         Bytecodes::name((Bytecodes::Code)opcode)));
2737           goto finish;
2738 
2739       } /* switch(opc) */
2740 
2741 
2742 #ifdef USELABELS
2743     check_for_exception:
2744 #endif
2745     {
2746       if (!THREAD->has_pending_exception()) {
2747         CONTINUE;
2748       }
2749       /* We will be gcsafe soon, so flush our state. */
2750       DECACHE_PC();
2751       goto handle_exception;
2752     }
2753   do_continue: ;
2754 
2755   } /* while (1) interpreter loop */
2756 
2757 
2758   // An exception exists in the thread state see whether this activation can handle it
2759   handle_exception: {
2760 
2761     HandleMarkCleaner __hmc(THREAD);
2762     Handle except_oop(THREAD, THREAD->pending_exception());
2763     // Prevent any subsequent HandleMarkCleaner in the VM
2764     // from freeing the except_oop handle.
2765     HandleMark __hm(THREAD);
2766 
2767     THREAD->clear_pending_exception();
2768     assert(except_oop(), "No exception to process");
2769     intptr_t continuation_bci;
2770     // expression stack is emptied
2771     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2772     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2773             handle_exception);
2774 
2775     except_oop = THREAD->vm_result();
2776     THREAD->set_vm_result(NULL);
2777     if (continuation_bci >= 0) {
2778       // Place exception on top of stack
2779       SET_STACK_OBJECT(except_oop(), 0);
2780       MORE_STACK(1);
2781       pc = METHOD->code_base() + continuation_bci;
2782       if (TraceExceptions) {
2783         ttyLocker ttyl;
2784         ResourceMark rm;
2785         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), (void*)except_oop());
2786         tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2787         tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2788                       istate->bcp() - (intptr_t)METHOD->code_base(),
2789                       continuation_bci, THREAD);
2790       }
2791       // for AbortVMOnException flag
2792       NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2793 
2794       // Update profiling data.
2795       BI_PROFILE_ALIGN_TO_CURRENT_BCI();
2796       goto run;
2797     }
2798     if (TraceExceptions) {
2799       ttyLocker ttyl;
2800       ResourceMark rm;
2801       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), (void*)except_oop());
2802       tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2803       tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
2804                     istate->bcp() - (intptr_t)METHOD->code_base(),
2805                     THREAD);
2806     }
2807     // for AbortVMOnException flag
2808     NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2809     // No handler in this activation, unwind and try again
2810     THREAD->set_pending_exception(except_oop(), NULL, 0);
2811     goto handle_return;
2812   }  // handle_exception:
2813 
2814   // Return from an interpreter invocation with the result of the interpretation
2815   // on the top of the Java Stack (or a pending exception)
2816 
2817   handle_Pop_Frame: {
2818 
2819     // We don't really do anything special here except we must be aware
2820     // that we can get here without ever locking the method (if sync).
2821     // Also we skip the notification of the exit.
2822 
2823     istate->set_msg(popping_frame);
2824     // Clear pending so while the pop is in process
2825     // we don't start another one if a call_vm is done.
2826     THREAD->clr_pop_frame_pending();
2827     // Let interpreter (only) see the we're in the process of popping a frame
2828     THREAD->set_pop_frame_in_process();
2829 
2830     goto handle_return;
2831 
2832   } // handle_Pop_Frame
2833 
2834   // ForceEarlyReturn ends a method, and returns to the caller with a return value
2835   // given by the invoker of the early return.
2836   handle_Early_Return: {
2837 
2838     istate->set_msg(early_return);
2839 
2840     // Clear expression stack.
2841     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2842 
2843     JvmtiThreadState *ts = THREAD->jvmti_thread_state();
2844 
2845     // Push the value to be returned.
2846     switch (istate->method()->result_type()) {
2847       case T_BOOLEAN:
2848       case T_SHORT:
2849       case T_BYTE:
2850       case T_CHAR:
2851       case T_INT:
2852         SET_STACK_INT(ts->earlyret_value().i, 0);
2853         MORE_STACK(1);
2854         break;
2855       case T_LONG:
2856         SET_STACK_LONG(ts->earlyret_value().j, 1);
2857         MORE_STACK(2);
2858         break;
2859       case T_FLOAT:
2860         SET_STACK_FLOAT(ts->earlyret_value().f, 0);
2861         MORE_STACK(1);
2862         break;
2863       case T_DOUBLE:
2864         SET_STACK_DOUBLE(ts->earlyret_value().d, 1);
2865         MORE_STACK(2);
2866         break;
2867       case T_ARRAY:
2868       case T_OBJECT:
2869         SET_STACK_OBJECT(ts->earlyret_oop(), 0);
2870         MORE_STACK(1);
2871         break;
2872     }
2873 
2874     ts->clr_earlyret_value();
2875     ts->set_earlyret_oop(NULL);
2876     ts->clr_earlyret_pending();
2877 
2878     // Fall through to handle_return.
2879 
2880   } // handle_Early_Return
2881 
2882   handle_return: {
2883     // A storestore barrier is required to order initialization of
2884     // final fields with publishing the reference to the object that
2885     // holds the field. Without the barrier the value of final fields
2886     // can be observed to change.
2887     OrderAccess::storestore();
2888 
2889     DECACHE_STATE();
2890 
2891     bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return;
2892     bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame;
2893     Handle original_exception(THREAD, THREAD->pending_exception());
2894     Handle illegal_state_oop(THREAD, NULL);
2895 
2896     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2897     // in any following VM entries from freeing our live handles, but illegal_state_oop
2898     // isn't really allocated yet and so doesn't become live until later and
2899     // in unpredicatable places. Instead we must protect the places where we enter the
2900     // VM. It would be much simpler (and safer) if we could allocate a real handle with
2901     // a NULL oop in it and then overwrite the oop later as needed. This isn't
2902     // unfortunately isn't possible.
2903 
2904     THREAD->clear_pending_exception();
2905 
2906     //
2907     // As far as we are concerned we have returned. If we have a pending exception
2908     // that will be returned as this invocation's result. However if we get any
2909     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2910     // will be our final result (i.e. monitor exception trumps a pending exception).
2911     //
2912 
2913     // If we never locked the method (or really passed the point where we would have),
2914     // there is no need to unlock it (or look for other monitors), since that
2915     // could not have happened.
2916 
2917     if (THREAD->do_not_unlock()) {
2918 
2919       // Never locked, reset the flag now because obviously any caller must
2920       // have passed their point of locking for us to have gotten here.
2921 
2922       THREAD->clr_do_not_unlock();
2923     } else {
2924       // At this point we consider that we have returned. We now check that the
2925       // locks were properly block structured. If we find that they were not
2926       // used properly we will return with an illegal monitor exception.
2927       // The exception is checked by the caller not the callee since this
2928       // checking is considered to be part of the invocation and therefore
2929       // in the callers scope (JVM spec 8.13).
2930       //
2931       // Another weird thing to watch for is if the method was locked
2932       // recursively and then not exited properly. This means we must
2933       // examine all the entries in reverse time(and stack) order and
2934       // unlock as we find them. If we find the method monitor before
2935       // we are at the initial entry then we should throw an exception.
2936       // It is not clear the template based interpreter does this
2937       // correctly
2938 
2939       BasicObjectLock* base = istate->monitor_base();
2940       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2941       bool method_unlock_needed = METHOD->is_synchronized();
2942       // We know the initial monitor was used for the method don't check that
2943       // slot in the loop
2944       if (method_unlock_needed) base--;
2945 
2946       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2947       while (end < base) {
2948         oop lockee = end->obj();
2949         if (lockee != NULL) {
2950           BasicLock* lock = end->lock();
2951           markOop header = lock->displaced_header();
2952           end->set_obj(NULL);
2953 
2954           if (!lockee->mark()->has_bias_pattern()) {
2955             // If it isn't recursive we either must swap old header or call the runtime
2956             if (header != NULL) {
2957               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2958                 // restore object for the slow case
2959                 end->set_obj(lockee);
2960                 {
2961                   // Prevent any HandleMarkCleaner from freeing our live handles
2962                   HandleMark __hm(THREAD);
2963                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
2964                 }
2965               }
2966             }
2967           }
2968           // One error is plenty
2969           if (illegal_state_oop() == NULL && !suppress_error) {
2970             {
2971               // Prevent any HandleMarkCleaner from freeing our live handles
2972               HandleMark __hm(THREAD);
2973               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2974             }
2975             assert(THREAD->has_pending_exception(), "Lost our exception!");
2976             illegal_state_oop = THREAD->pending_exception();
2977             THREAD->clear_pending_exception();
2978           }
2979         }
2980         end++;
2981       }
2982       // Unlock the method if needed
2983       if (method_unlock_needed) {
2984         if (base->obj() == NULL) {
2985           // The method is already unlocked this is not good.
2986           if (illegal_state_oop() == NULL && !suppress_error) {
2987             {
2988               // Prevent any HandleMarkCleaner from freeing our live handles
2989               HandleMark __hm(THREAD);
2990               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2991             }
2992             assert(THREAD->has_pending_exception(), "Lost our exception!");
2993             illegal_state_oop = THREAD->pending_exception();
2994             THREAD->clear_pending_exception();
2995           }
2996         } else {
2997           //
2998           // The initial monitor is always used for the method
2999           // However if that slot is no longer the oop for the method it was unlocked
3000           // and reused by something that wasn't unlocked!
3001           //
3002           // deopt can come in with rcvr dead because c2 knows
3003           // its value is preserved in the monitor. So we can't use locals[0] at all
3004           // and must use first monitor slot.
3005           //
3006           oop rcvr = base->obj();
3007           if (rcvr == NULL) {
3008             if (!suppress_error) {
3009               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "", note_nullCheck_trap);
3010               illegal_state_oop = THREAD->pending_exception();
3011               THREAD->clear_pending_exception();
3012             }
3013           } else if (UseHeavyMonitors) {
3014             {
3015               // Prevent any HandleMarkCleaner from freeing our live handles.
3016               HandleMark __hm(THREAD);
3017               CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3018             }
3019             if (THREAD->has_pending_exception()) {
3020               if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
3021               THREAD->clear_pending_exception();
3022             }
3023           } else {
3024             BasicLock* lock = base->lock();
3025             markOop header = lock->displaced_header();
3026             base->set_obj(NULL);
3027 
3028             if (!rcvr->mark()->has_bias_pattern()) {
3029               base->set_obj(NULL);
3030               // If it isn't recursive we either must swap old header or call the runtime
3031               if (header != NULL) {
3032                 if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
3033                   // restore object for the slow case
3034                   base->set_obj(rcvr);
3035                   {
3036                     // Prevent any HandleMarkCleaner from freeing our live handles
3037                     HandleMark __hm(THREAD);
3038                     CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3039                   }
3040                   if (THREAD->has_pending_exception()) {
3041                     if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
3042                     THREAD->clear_pending_exception();
3043                   }
3044                 }
3045               }
3046             }
3047           }
3048         }
3049       }
3050     }
3051     // Clear the do_not_unlock flag now.
3052     THREAD->clr_do_not_unlock();
3053 
3054     //
3055     // Notify jvmti/jvmdi
3056     //
3057     // NOTE: we do not notify a method_exit if we have a pending exception,
3058     // including an exception we generate for unlocking checks.  In the former
3059     // case, JVMDI has already been notified by our call for the exception handler
3060     // and in both cases as far as JVMDI is concerned we have already returned.
3061     // If we notify it again JVMDI will be all confused about how many frames
3062     // are still on the stack (4340444).
3063     //
3064     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
3065     // method_exit events whenever we leave an activation unless it was done
3066     // for popframe. This is nothing like jvmdi. However we are passing the
3067     // tests at the moment (apparently because they are jvmdi based) so rather
3068     // than change this code and possibly fail tests we will leave it alone
3069     // (with this note) in anticipation of changing the vm and the tests
3070     // simultaneously.
3071 
3072 
3073     //
3074     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
3075 
3076 
3077 
3078 #ifdef VM_JVMTI
3079       if (_jvmti_interp_events) {
3080         // Whenever JVMTI puts a thread in interp_only_mode, method
3081         // entry/exit events are sent for that thread to track stack depth.
3082         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
3083           {
3084             // Prevent any HandleMarkCleaner from freeing our live handles
3085             HandleMark __hm(THREAD);
3086             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
3087           }
3088         }
3089       }
3090 #endif /* VM_JVMTI */
3091 
3092     //
3093     // See if we are returning any exception
3094     // A pending exception that was pending prior to a possible popping frame
3095     // overrides the popping frame.
3096     //
3097     assert(!suppress_error || (suppress_error && illegal_state_oop() == NULL), "Error was not suppressed");
3098     if (illegal_state_oop() != NULL || original_exception() != NULL) {
3099       // Inform the frame manager we have no result.
3100       istate->set_msg(throwing_exception);
3101       if (illegal_state_oop() != NULL)
3102         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
3103       else
3104         THREAD->set_pending_exception(original_exception(), NULL, 0);
3105       UPDATE_PC_AND_RETURN(0);
3106     }
3107 
3108     if (istate->msg() == popping_frame) {
3109       // Make it simpler on the assembly code and set the message for the frame pop.
3110       // returns
3111       if (istate->prev() == NULL) {
3112         // We must be returning to a deoptimized frame (because popframe only happens between
3113         // two interpreted frames). We need to save the current arguments in C heap so that
3114         // the deoptimized frame when it restarts can copy the arguments to its expression
3115         // stack and re-execute the call. We also have to notify deoptimization that this
3116         // has occurred and to pick the preserved args copy them to the deoptimized frame's
3117         // java expression stack. Yuck.
3118         //
3119         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3120                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3121         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3122       }
3123     } else {
3124       istate->set_msg(return_from_method);
3125     }
3126 
3127     // Normal return
3128     // Advance the pc and return to frame manager
3129     UPDATE_PC_AND_RETURN(1);
3130   } /* handle_return: */
3131 
3132 // This is really a fatal error return
3133 
3134 finish:
3135   DECACHE_TOS();
3136   DECACHE_PC();
3137 
3138   return;
3139 }
3140 
3141 /*
3142  * All the code following this point is only produced once and is not present
3143  * in the JVMTI version of the interpreter
3144 */
3145 
3146 #ifndef VM_JVMTI
3147 
3148 // This constructor should only be used to contruct the object to signal
3149 // interpreter initialization. All other instances should be created by
3150 // the frame manager.
3151 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3152   if (msg != initialize) ShouldNotReachHere();
3153   _msg = msg;
3154   _self_link = this;
3155   _prev_link = NULL;
3156 }
3157 
3158 // Inline static functions for Java Stack and Local manipulation
3159 
3160 // The implementations are platform dependent. We have to worry about alignment
3161 // issues on some machines which can change on the same platform depending on
3162 // whether it is an LP64 machine also.
3163 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
3164   return (address) tos[Interpreter::expr_index_at(-offset)];
3165 }
3166 
3167 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
3168   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
3169 }
3170 
3171 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
3172   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
3173 }
3174 
3175 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
3176   return cast_to_oop(tos [Interpreter::expr_index_at(-offset)]);
3177 }
3178 
3179 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
3180   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
3181 }
3182 
3183 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
3184   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
3185 }
3186 
3187 // only used for value types
3188 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
3189                                                         int offset) {
3190   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3191 }
3192 
3193 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
3194                                                        int offset) {
3195   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3196 }
3197 
3198 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
3199                                                          int offset) {
3200   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3201 }
3202 
3203 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
3204                                                           int offset) {
3205   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3206 }
3207 
3208 // needs to be platform dep for the 32 bit platforms.
3209 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
3210                                                           int offset) {
3211   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
3212 }
3213 
3214 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
3215                                               address addr, int offset) {
3216   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
3217                         ((VMJavaVal64*)addr)->d);
3218 }
3219 
3220 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
3221                                                         int offset) {
3222   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3223   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
3224 }
3225 
3226 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
3227                                             address addr, int offset) {
3228   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3229   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
3230                         ((VMJavaVal64*)addr)->l;
3231 }
3232 
3233 // Locals
3234 
3235 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
3236   return (address)locals[Interpreter::local_index_at(-offset)];
3237 }
3238 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
3239   return (jint)locals[Interpreter::local_index_at(-offset)];
3240 }
3241 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
3242   return (jfloat)locals[Interpreter::local_index_at(-offset)];
3243 }
3244 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
3245   return cast_to_oop(locals[Interpreter::local_index_at(-offset)]);
3246 }
3247 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
3248   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
3249 }
3250 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
3251   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
3252 }
3253 
3254 // Returns the address of locals value.
3255 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
3256   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3257 }
3258 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
3259   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3260 }
3261 
3262 // Used for local value or returnAddress
3263 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
3264                                    address value, int offset) {
3265   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
3266 }
3267 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
3268                                    jint value, int offset) {
3269   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
3270 }
3271 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
3272                                    jfloat value, int offset) {
3273   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
3274 }
3275 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
3276                                    oop value, int offset) {
3277   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
3278 }
3279 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
3280                                    jdouble value, int offset) {
3281   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
3282 }
3283 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
3284                                    jlong value, int offset) {
3285   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
3286 }
3287 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
3288                                    address addr, int offset) {
3289   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
3290 }
3291 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
3292                                    address addr, int offset) {
3293   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
3294 }
3295 
3296 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
3297                           intptr_t* locals, int locals_offset) {
3298   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3299   locals[Interpreter::local_index_at(-locals_offset)] = value;
3300 }
3301 
3302 
3303 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3304                                    int to_offset) {
3305   tos[Interpreter::expr_index_at(-to_offset)] =
3306                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3307 }
3308 
3309 void BytecodeInterpreter::dup(intptr_t *tos) {
3310   copy_stack_slot(tos, -1, 0);
3311 }
3312 void BytecodeInterpreter::dup2(intptr_t *tos) {
3313   copy_stack_slot(tos, -2, 0);
3314   copy_stack_slot(tos, -1, 1);
3315 }
3316 
3317 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3318   /* insert top word two down */
3319   copy_stack_slot(tos, -1, 0);
3320   copy_stack_slot(tos, -2, -1);
3321   copy_stack_slot(tos, 0, -2);
3322 }
3323 
3324 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3325   /* insert top word three down  */
3326   copy_stack_slot(tos, -1, 0);
3327   copy_stack_slot(tos, -2, -1);
3328   copy_stack_slot(tos, -3, -2);
3329   copy_stack_slot(tos, 0, -3);
3330 }
3331 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3332   /* insert top 2 slots three down */
3333   copy_stack_slot(tos, -1, 1);
3334   copy_stack_slot(tos, -2, 0);
3335   copy_stack_slot(tos, -3, -1);
3336   copy_stack_slot(tos, 1, -2);
3337   copy_stack_slot(tos, 0, -3);
3338 }
3339 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3340   /* insert top 2 slots four down */
3341   copy_stack_slot(tos, -1, 1);
3342   copy_stack_slot(tos, -2, 0);
3343   copy_stack_slot(tos, -3, -1);
3344   copy_stack_slot(tos, -4, -2);
3345   copy_stack_slot(tos, 1, -3);
3346   copy_stack_slot(tos, 0, -4);
3347 }
3348 
3349 
3350 void BytecodeInterpreter::swap(intptr_t *tos) {
3351   // swap top two elements
3352   intptr_t val = tos[Interpreter::expr_index_at(1)];
3353   // Copy -2 entry to -1
3354   copy_stack_slot(tos, -2, -1);
3355   // Store saved -1 entry into -2
3356   tos[Interpreter::expr_index_at(2)] = val;
3357 }
3358 // --------------------------------------------------------------------------------
3359 // Non-product code
3360 #ifndef PRODUCT
3361 
3362 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3363   switch (msg) {
3364      case BytecodeInterpreter::no_request:  return("no_request");
3365      case BytecodeInterpreter::initialize:  return("initialize");
3366      // status message to C++ interpreter
3367      case BytecodeInterpreter::method_entry:  return("method_entry");
3368      case BytecodeInterpreter::method_resume:  return("method_resume");
3369      case BytecodeInterpreter::got_monitors:  return("got_monitors");
3370      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3371      // requests to frame manager from C++ interpreter
3372      case BytecodeInterpreter::call_method:  return("call_method");
3373      case BytecodeInterpreter::return_from_method:  return("return_from_method");
3374      case BytecodeInterpreter::more_monitors:  return("more_monitors");
3375      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3376      case BytecodeInterpreter::popping_frame:  return("popping_frame");
3377      case BytecodeInterpreter::do_osr:  return("do_osr");
3378      // deopt
3379      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3380      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3381      default: return("BAD MSG");
3382   }
3383 }
3384 void
3385 BytecodeInterpreter::print() {
3386   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3387   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3388   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3389   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3390   {
3391     ResourceMark rm;
3392     char *method_name = _method->name_and_sig_as_C_string();
3393     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3394   }
3395   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3396   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3397   tty->print_cr("msg: %s", C_msg(this->_msg));
3398   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3399   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3400   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3401   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3402   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3403   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3404   tty->print_cr("native_mirror: " INTPTR_FORMAT, (void*) this->_oop_temp);
3405   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3406   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3407   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3408 #ifdef SPARC
3409   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3410   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3411   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3412   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3413 #endif
3414 #if !defined(ZERO) && defined(PPC)
3415   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3416 #endif // !ZERO
3417   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3418 }
3419 
3420 extern "C" {
3421   void PI(uintptr_t arg) {
3422     ((BytecodeInterpreter*)arg)->print();
3423   }
3424 }
3425 #endif // PRODUCT
3426 
3427 #endif // JVMTI
3428 #endif // CC_INTERP