1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/callnode.hpp"
  29 #include "opto/idealGraphPrinter.hpp"
  30 #include "opto/matcher.hpp"
  31 #include "opto/memnode.hpp"
  32 #include "opto/movenode.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/regmask.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "opto/type.hpp"
  38 #include "opto/vectornode.hpp"
  39 #include "runtime/os.hpp"
  40 #ifdef TARGET_ARCH_MODEL_x86_32
  41 # include "adfiles/ad_x86_32.hpp"
  42 #endif
  43 #ifdef TARGET_ARCH_MODEL_x86_64
  44 # include "adfiles/ad_x86_64.hpp"
  45 #endif
  46 #ifdef TARGET_ARCH_MODEL_sparc
  47 # include "adfiles/ad_sparc.hpp"
  48 #endif
  49 #ifdef TARGET_ARCH_MODEL_zero
  50 # include "adfiles/ad_zero.hpp"
  51 #endif
  52 #ifdef TARGET_ARCH_MODEL_arm
  53 # include "adfiles/ad_arm.hpp"
  54 #endif
  55 #ifdef TARGET_ARCH_MODEL_ppc_32
  56 # include "adfiles/ad_ppc_32.hpp"
  57 #endif
  58 #ifdef TARGET_ARCH_MODEL_ppc_64
  59 # include "adfiles/ad_ppc_64.hpp"
  60 #endif
  61 
  62 OptoReg::Name OptoReg::c_frame_pointer;
  63 
  64 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  65 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  66 RegMask Matcher::STACK_ONLY_mask;
  67 RegMask Matcher::c_frame_ptr_mask;
  68 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  69 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  70 
  71 //---------------------------Matcher-------------------------------------------
  72 Matcher::Matcher()
  73 : PhaseTransform( Phase::Ins_Select ),
  74 #ifdef ASSERT
  75   _old2new_map(C->comp_arena()),
  76   _new2old_map(C->comp_arena()),
  77 #endif
  78   _shared_nodes(C->comp_arena()),
  79   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  80   _swallowed(swallowed),
  81   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  82   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  83   _must_clone(must_clone),
  84   _register_save_policy(register_save_policy),
  85   _c_reg_save_policy(c_reg_save_policy),
  86   _register_save_type(register_save_type),
  87   _ruleName(ruleName),
  88   _allocation_started(false),
  89   _states_arena(Chunk::medium_size),
  90   _visited(&_states_arena),
  91   _shared(&_states_arena),
  92   _dontcare(&_states_arena) {
  93   C->set_matcher(this);
  94 
  95   idealreg2spillmask  [Op_RegI] = NULL;
  96   idealreg2spillmask  [Op_RegN] = NULL;
  97   idealreg2spillmask  [Op_RegL] = NULL;
  98   idealreg2spillmask  [Op_RegF] = NULL;
  99   idealreg2spillmask  [Op_RegD] = NULL;
 100   idealreg2spillmask  [Op_RegP] = NULL;
 101   idealreg2spillmask  [Op_VecS] = NULL;
 102   idealreg2spillmask  [Op_VecD] = NULL;
 103   idealreg2spillmask  [Op_VecX] = NULL;
 104   idealreg2spillmask  [Op_VecY] = NULL;
 105 
 106   idealreg2debugmask  [Op_RegI] = NULL;
 107   idealreg2debugmask  [Op_RegN] = NULL;
 108   idealreg2debugmask  [Op_RegL] = NULL;
 109   idealreg2debugmask  [Op_RegF] = NULL;
 110   idealreg2debugmask  [Op_RegD] = NULL;
 111   idealreg2debugmask  [Op_RegP] = NULL;
 112   idealreg2debugmask  [Op_VecS] = NULL;
 113   idealreg2debugmask  [Op_VecD] = NULL;
 114   idealreg2debugmask  [Op_VecX] = NULL;
 115   idealreg2debugmask  [Op_VecY] = NULL;
 116 
 117   idealreg2mhdebugmask[Op_RegI] = NULL;
 118   idealreg2mhdebugmask[Op_RegN] = NULL;
 119   idealreg2mhdebugmask[Op_RegL] = NULL;
 120   idealreg2mhdebugmask[Op_RegF] = NULL;
 121   idealreg2mhdebugmask[Op_RegD] = NULL;
 122   idealreg2mhdebugmask[Op_RegP] = NULL;
 123   idealreg2mhdebugmask[Op_VecS] = NULL;
 124   idealreg2mhdebugmask[Op_VecD] = NULL;
 125   idealreg2mhdebugmask[Op_VecX] = NULL;
 126   idealreg2mhdebugmask[Op_VecY] = NULL;
 127 
 128   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
 129 }
 130 
 131 //------------------------------warp_incoming_stk_arg------------------------
 132 // This warps a VMReg into an OptoReg::Name
 133 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 134   OptoReg::Name warped;
 135   if( reg->is_stack() ) {  // Stack slot argument?
 136     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 137     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 138     if( warped >= _in_arg_limit )
 139       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 140     if (!RegMask::can_represent_arg(warped)) {
 141       // the compiler cannot represent this method's calling sequence
 142       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
 143       return OptoReg::Bad;
 144     }
 145     return warped;
 146   }
 147   return OptoReg::as_OptoReg(reg);
 148 }
 149 
 150 //---------------------------compute_old_SP------------------------------------
 151 OptoReg::Name Compile::compute_old_SP() {
 152   int fixed    = fixed_slots();
 153   int preserve = in_preserve_stack_slots();
 154   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
 155 }
 156 
 157 
 158 
 159 #ifdef ASSERT
 160 void Matcher::verify_new_nodes_only(Node* xroot) {
 161   // Make sure that the new graph only references new nodes
 162   ResourceMark rm;
 163   Unique_Node_List worklist;
 164   VectorSet visited(Thread::current()->resource_area());
 165   worklist.push(xroot);
 166   while (worklist.size() > 0) {
 167     Node* n = worklist.pop();
 168     visited <<= n->_idx;
 169     assert(C->node_arena()->contains(n), "dead node");
 170     for (uint j = 0; j < n->req(); j++) {
 171       Node* in = n->in(j);
 172       if (in != NULL) {
 173         assert(C->node_arena()->contains(in), "dead node");
 174         if (!visited.test(in->_idx)) {
 175           worklist.push(in);
 176         }
 177       }
 178     }
 179   }
 180 }
 181 #endif
 182 
 183 
 184 //---------------------------match---------------------------------------------
 185 void Matcher::match( ) {
 186   if( MaxLabelRootDepth < 100 ) { // Too small?
 187     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 188     MaxLabelRootDepth = 100;
 189   }
 190   // One-time initialization of some register masks.
 191   init_spill_mask( C->root()->in(1) );
 192   _return_addr_mask = return_addr();
 193 #ifdef _LP64
 194   // Pointers take 2 slots in 64-bit land
 195   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 196 #endif
 197 
 198   // Map a Java-signature return type into return register-value
 199   // machine registers for 0, 1 and 2 returned values.
 200   const TypeTuple *range = C->tf()->range();
 201   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 202     // Get ideal-register return type
 203     int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
 204     // Get machine return register
 205     uint sop = C->start()->Opcode();
 206     OptoRegPair regs = return_value(ireg, false);
 207 
 208     // And mask for same
 209     _return_value_mask = RegMask(regs.first());
 210     if( OptoReg::is_valid(regs.second()) )
 211       _return_value_mask.Insert(regs.second());
 212   }
 213 
 214   // ---------------
 215   // Frame Layout
 216 
 217   // Need the method signature to determine the incoming argument types,
 218   // because the types determine which registers the incoming arguments are
 219   // in, and this affects the matched code.
 220   const TypeTuple *domain = C->tf()->domain();
 221   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 222   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 223   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 224   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 225   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 226   uint i;
 227   for( i = 0; i<argcnt; i++ ) {
 228     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 229   }
 230 
 231   // Pass array of ideal registers and length to USER code (from the AD file)
 232   // that will convert this to an array of register numbers.
 233   const StartNode *start = C->start();
 234   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 235 #ifdef ASSERT
 236   // Sanity check users' calling convention.  Real handy while trying to
 237   // get the initial port correct.
 238   { for (uint i = 0; i<argcnt; i++) {
 239       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 240         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 241         _parm_regs[i].set_bad();
 242         continue;
 243       }
 244       VMReg parm_reg = vm_parm_regs[i].first();
 245       assert(parm_reg->is_valid(), "invalid arg?");
 246       if (parm_reg->is_reg()) {
 247         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 248         assert(can_be_java_arg(opto_parm_reg) ||
 249                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 250                opto_parm_reg == inline_cache_reg(),
 251                "parameters in register must be preserved by runtime stubs");
 252       }
 253       for (uint j = 0; j < i; j++) {
 254         assert(parm_reg != vm_parm_regs[j].first(),
 255                "calling conv. must produce distinct regs");
 256       }
 257     }
 258   }
 259 #endif
 260 
 261   // Do some initial frame layout.
 262 
 263   // Compute the old incoming SP (may be called FP) as
 264   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 265   _old_SP = C->compute_old_SP();
 266   assert( is_even(_old_SP), "must be even" );
 267 
 268   // Compute highest incoming stack argument as
 269   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 270   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 271   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 272   for( i = 0; i < argcnt; i++ ) {
 273     // Permit args to have no register
 274     _calling_convention_mask[i].Clear();
 275     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 276       continue;
 277     }
 278     // calling_convention returns stack arguments as a count of
 279     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 280     // the allocators point of view, taking into account all the
 281     // preserve area, locks & pad2.
 282 
 283     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 284     if( OptoReg::is_valid(reg1))
 285       _calling_convention_mask[i].Insert(reg1);
 286 
 287     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 288     if( OptoReg::is_valid(reg2))
 289       _calling_convention_mask[i].Insert(reg2);
 290 
 291     // Saved biased stack-slot register number
 292     _parm_regs[i].set_pair(reg2, reg1);
 293   }
 294 
 295   // Finally, make sure the incoming arguments take up an even number of
 296   // words, in case the arguments or locals need to contain doubleword stack
 297   // slots.  The rest of the system assumes that stack slot pairs (in
 298   // particular, in the spill area) which look aligned will in fact be
 299   // aligned relative to the stack pointer in the target machine.  Double
 300   // stack slots will always be allocated aligned.
 301   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
 302 
 303   // Compute highest outgoing stack argument as
 304   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 305   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 306   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 307 
 308   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
 309     // the compiler cannot represent this method's calling sequence
 310     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 311   }
 312 
 313   if (C->failing())  return;  // bailed out on incoming arg failure
 314 
 315   // ---------------
 316   // Collect roots of matcher trees.  Every node for which
 317   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 318   // can be a valid interior of some tree.
 319   find_shared( C->root() );
 320   find_shared( C->top() );
 321 
 322   C->print_method(PHASE_BEFORE_MATCHING);
 323 
 324   // Create new ideal node ConP #NULL even if it does exist in old space
 325   // to avoid false sharing if the corresponding mach node is not used.
 326   // The corresponding mach node is only used in rare cases for derived
 327   // pointers.
 328   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
 329 
 330   // Swap out to old-space; emptying new-space
 331   Arena *old = C->node_arena()->move_contents(C->old_arena());
 332 
 333   // Save debug and profile information for nodes in old space:
 334   _old_node_note_array = C->node_note_array();
 335   if (_old_node_note_array != NULL) {
 336     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 337                            (C->comp_arena(), _old_node_note_array->length(),
 338                             0, NULL));
 339   }
 340 
 341   // Pre-size the new_node table to avoid the need for range checks.
 342   grow_new_node_array(C->unique());
 343 
 344   // Reset node counter so MachNodes start with _idx at 0
 345   int nodes = C->unique(); // save value
 346   C->set_unique(0);
 347   C->reset_dead_node_list();
 348 
 349   // Recursively match trees from old space into new space.
 350   // Correct leaves of new-space Nodes; they point to old-space.
 351   _visited.Clear();             // Clear visit bits for xform call
 352   C->set_cached_top_node(xform( C->top(), nodes ));
 353   if (!C->failing()) {
 354     Node* xroot =        xform( C->root(), 1 );
 355     if (xroot == NULL) {
 356       Matcher::soft_match_failure();  // recursive matching process failed
 357       C->record_method_not_compilable("instruction match failed");
 358     } else {
 359       // During matching shared constants were attached to C->root()
 360       // because xroot wasn't available yet, so transfer the uses to
 361       // the xroot.
 362       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 363         Node* n = C->root()->fast_out(j);
 364         if (C->node_arena()->contains(n)) {
 365           assert(n->in(0) == C->root(), "should be control user");
 366           n->set_req(0, xroot);
 367           --j;
 368           --jmax;
 369         }
 370       }
 371 
 372       // Generate new mach node for ConP #NULL
 373       assert(new_ideal_null != NULL, "sanity");
 374       _mach_null = match_tree(new_ideal_null);
 375       // Don't set control, it will confuse GCM since there are no uses.
 376       // The control will be set when this node is used first time
 377       // in find_base_for_derived().
 378       assert(_mach_null != NULL, "");
 379 
 380       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 381 
 382 #ifdef ASSERT
 383       verify_new_nodes_only(xroot);
 384 #endif
 385     }
 386   }
 387   if (C->top() == NULL || C->root() == NULL) {
 388     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 389   }
 390   if (C->failing()) {
 391     // delete old;
 392     old->destruct_contents();
 393     return;
 394   }
 395   assert( C->top(), "" );
 396   assert( C->root(), "" );
 397   validate_null_checks();
 398 
 399   // Now smoke old-space
 400   NOT_DEBUG( old->destruct_contents() );
 401 
 402   // ------------------------
 403   // Set up save-on-entry registers
 404   Fixup_Save_On_Entry( );
 405 }
 406 
 407 
 408 //------------------------------Fixup_Save_On_Entry----------------------------
 409 // The stated purpose of this routine is to take care of save-on-entry
 410 // registers.  However, the overall goal of the Match phase is to convert into
 411 // machine-specific instructions which have RegMasks to guide allocation.
 412 // So what this procedure really does is put a valid RegMask on each input
 413 // to the machine-specific variations of all Return, TailCall and Halt
 414 // instructions.  It also adds edgs to define the save-on-entry values (and of
 415 // course gives them a mask).
 416 
 417 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 418   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 419   // Do all the pre-defined register masks
 420   rms[TypeFunc::Control  ] = RegMask::Empty;
 421   rms[TypeFunc::I_O      ] = RegMask::Empty;
 422   rms[TypeFunc::Memory   ] = RegMask::Empty;
 423   rms[TypeFunc::ReturnAdr] = ret_adr;
 424   rms[TypeFunc::FramePtr ] = fp;
 425   return rms;
 426 }
 427 
 428 //---------------------------init_first_stack_mask-----------------------------
 429 // Create the initial stack mask used by values spilling to the stack.
 430 // Disallow any debug info in outgoing argument areas by setting the
 431 // initial mask accordingly.
 432 void Matcher::init_first_stack_mask() {
 433 
 434   // Allocate storage for spill masks as masks for the appropriate load type.
 435   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
 436 
 437   idealreg2spillmask  [Op_RegN] = &rms[0];
 438   idealreg2spillmask  [Op_RegI] = &rms[1];
 439   idealreg2spillmask  [Op_RegL] = &rms[2];
 440   idealreg2spillmask  [Op_RegF] = &rms[3];
 441   idealreg2spillmask  [Op_RegD] = &rms[4];
 442   idealreg2spillmask  [Op_RegP] = &rms[5];
 443 
 444   idealreg2debugmask  [Op_RegN] = &rms[6];
 445   idealreg2debugmask  [Op_RegI] = &rms[7];
 446   idealreg2debugmask  [Op_RegL] = &rms[8];
 447   idealreg2debugmask  [Op_RegF] = &rms[9];
 448   idealreg2debugmask  [Op_RegD] = &rms[10];
 449   idealreg2debugmask  [Op_RegP] = &rms[11];
 450 
 451   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 452   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 453   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 454   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 455   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 456   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 457 
 458   idealreg2spillmask  [Op_VecS] = &rms[18];
 459   idealreg2spillmask  [Op_VecD] = &rms[19];
 460   idealreg2spillmask  [Op_VecX] = &rms[20];
 461   idealreg2spillmask  [Op_VecY] = &rms[21];
 462 
 463   OptoReg::Name i;
 464 
 465   // At first, start with the empty mask
 466   C->FIRST_STACK_mask().Clear();
 467 
 468   // Add in the incoming argument area
 469   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 470   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
 471     C->FIRST_STACK_mask().Insert(i);
 472   }
 473   // Add in all bits past the outgoing argument area
 474   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
 475             "must be able to represent all call arguments in reg mask");
 476   OptoReg::Name init = _out_arg_limit;
 477   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
 478     C->FIRST_STACK_mask().Insert(i);
 479   }
 480   // Finally, set the "infinite stack" bit.
 481   C->FIRST_STACK_mask().set_AllStack();
 482 
 483   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 484   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
 485   // Keep spill masks aligned.
 486   aligned_stack_mask.clear_to_pairs();
 487   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 488 
 489   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 490 #ifdef _LP64
 491   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 492    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 493    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
 494 #else
 495    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 496 #endif
 497   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 498    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 499   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 500    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
 501   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 502    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 503   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 504    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
 505 
 506   if (Matcher::vector_size_supported(T_BYTE,4)) {
 507     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
 508      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
 509   }
 510   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 511     // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
 512     // RA guarantees such alignment since it is needed for Double and Long values.
 513     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
 514      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
 515   }
 516   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 517     // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
 518     //
 519     // RA can use input arguments stack slots for spills but until RA
 520     // we don't know frame size and offset of input arg stack slots.
 521     //
 522     // Exclude last input arg stack slots to avoid spilling vectors there
 523     // otherwise vector spills could stomp over stack slots in caller frame.
 524     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 525     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
 526       aligned_stack_mask.Remove(in);
 527       in = OptoReg::add(in, -1);
 528     }
 529      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
 530      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 531     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
 532      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
 533   }
 534   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 535     // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
 536     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 537     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
 538       aligned_stack_mask.Remove(in);
 539       in = OptoReg::add(in, -1);
 540     }
 541      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
 542      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 543     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
 544      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
 545   }
 546    if (UseFPUForSpilling) {
 547      // This mask logic assumes that the spill operations are
 548      // symmetric and that the registers involved are the same size.
 549      // On sparc for instance we may have to use 64 bit moves will
 550      // kill 2 registers when used with F0-F31.
 551      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 552      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 553 #ifdef _LP64
 554      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 555      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 556      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 557      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 558 #else
 559      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 560 #ifdef ARM
 561      // ARM has support for moving 64bit values between a pair of
 562      // integer registers and a double register
 563      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 564      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 565 #endif
 566 #endif
 567    }
 568 
 569   // Make up debug masks.  Any spill slot plus callee-save registers.
 570   // Caller-save registers are assumed to be trashable by the various
 571   // inline-cache fixup routines.
 572   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
 573   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
 574   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
 575   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
 576   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
 577   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
 578 
 579   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 580   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 581   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 582   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 583   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 584   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 585 
 586   // Prevent stub compilations from attempting to reference
 587   // callee-saved registers from debug info
 588   bool exclude_soe = !Compile::current()->is_method_compilation();
 589 
 590   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 591     // registers the caller has to save do not work
 592     if( _register_save_policy[i] == 'C' ||
 593         _register_save_policy[i] == 'A' ||
 594         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 595       idealreg2debugmask  [Op_RegN]->Remove(i);
 596       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
 597       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
 598       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
 599       idealreg2debugmask  [Op_RegD]->Remove(i);
 600       idealreg2debugmask  [Op_RegP]->Remove(i);
 601 
 602       idealreg2mhdebugmask[Op_RegN]->Remove(i);
 603       idealreg2mhdebugmask[Op_RegI]->Remove(i);
 604       idealreg2mhdebugmask[Op_RegL]->Remove(i);
 605       idealreg2mhdebugmask[Op_RegF]->Remove(i);
 606       idealreg2mhdebugmask[Op_RegD]->Remove(i);
 607       idealreg2mhdebugmask[Op_RegP]->Remove(i);
 608     }
 609   }
 610 
 611   // Subtract the register we use to save the SP for MethodHandle
 612   // invokes to from the debug mask.
 613   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 614   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
 615   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
 616   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
 617   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
 618   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
 619   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
 620 }
 621 
 622 //---------------------------is_save_on_entry----------------------------------
 623 bool Matcher::is_save_on_entry( int reg ) {
 624   return
 625     _register_save_policy[reg] == 'E' ||
 626     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 627     // Also save argument registers in the trampolining stubs
 628     (C->save_argument_registers() && is_spillable_arg(reg));
 629 }
 630 
 631 //---------------------------Fixup_Save_On_Entry-------------------------------
 632 void Matcher::Fixup_Save_On_Entry( ) {
 633   init_first_stack_mask();
 634 
 635   Node *root = C->root();       // Short name for root
 636   // Count number of save-on-entry registers.
 637   uint soe_cnt = number_of_saved_registers();
 638   uint i;
 639 
 640   // Find the procedure Start Node
 641   StartNode *start = C->start();
 642   assert( start, "Expect a start node" );
 643 
 644   // Save argument registers in the trampolining stubs
 645   if( C->save_argument_registers() )
 646     for( i = 0; i < _last_Mach_Reg; i++ )
 647       if( is_spillable_arg(i) )
 648         soe_cnt++;
 649 
 650   // Input RegMask array shared by all Returns.
 651   // The type for doubles and longs has a count of 2, but
 652   // there is only 1 returned value
 653   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 654   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 655   // Returns have 0 or 1 returned values depending on call signature.
 656   // Return register is specified by return_value in the AD file.
 657   if (ret_edge_cnt > TypeFunc::Parms)
 658     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 659 
 660   // Input RegMask array shared by all Rethrows.
 661   uint reth_edge_cnt = TypeFunc::Parms+1;
 662   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 663   // Rethrow takes exception oop only, but in the argument 0 slot.
 664   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
 665 #ifdef _LP64
 666   // Need two slots for ptrs in 64-bit land
 667   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
 668 #endif
 669 
 670   // Input RegMask array shared by all TailCalls
 671   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 672   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 673 
 674   // Input RegMask array shared by all TailJumps
 675   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 676   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 677 
 678   // TailCalls have 2 returned values (target & moop), whose masks come
 679   // from the usual MachNode/MachOper mechanism.  Find a sample
 680   // TailCall to extract these masks and put the correct masks into
 681   // the tail_call_rms array.
 682   for( i=1; i < root->req(); i++ ) {
 683     MachReturnNode *m = root->in(i)->as_MachReturn();
 684     if( m->ideal_Opcode() == Op_TailCall ) {
 685       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 686       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 687       break;
 688     }
 689   }
 690 
 691   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 692   // from the usual MachNode/MachOper mechanism.  Find a sample
 693   // TailJump to extract these masks and put the correct masks into
 694   // the tail_jump_rms array.
 695   for( i=1; i < root->req(); i++ ) {
 696     MachReturnNode *m = root->in(i)->as_MachReturn();
 697     if( m->ideal_Opcode() == Op_TailJump ) {
 698       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 699       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 700       break;
 701     }
 702   }
 703 
 704   // Input RegMask array shared by all Halts
 705   uint halt_edge_cnt = TypeFunc::Parms;
 706   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 707 
 708   // Capture the return input masks into each exit flavor
 709   for( i=1; i < root->req(); i++ ) {
 710     MachReturnNode *exit = root->in(i)->as_MachReturn();
 711     switch( exit->ideal_Opcode() ) {
 712       case Op_Return   : exit->_in_rms = ret_rms;  break;
 713       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 714       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 715       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 716       case Op_Halt     : exit->_in_rms = halt_rms; break;
 717       default          : ShouldNotReachHere();
 718     }
 719   }
 720 
 721   // Next unused projection number from Start.
 722   int proj_cnt = C->tf()->domain()->cnt();
 723 
 724   // Do all the save-on-entry registers.  Make projections from Start for
 725   // them, and give them a use at the exit points.  To the allocator, they
 726   // look like incoming register arguments.
 727   for( i = 0; i < _last_Mach_Reg; i++ ) {
 728     if( is_save_on_entry(i) ) {
 729 
 730       // Add the save-on-entry to the mask array
 731       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 732       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 733       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 734       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 735       // Halts need the SOE registers, but only in the stack as debug info.
 736       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 737       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 738 
 739       Node *mproj;
 740 
 741       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 742       // into a single RegD.
 743       if( (i&1) == 0 &&
 744           _register_save_type[i  ] == Op_RegF &&
 745           _register_save_type[i+1] == Op_RegF &&
 746           is_save_on_entry(i+1) ) {
 747         // Add other bit for double
 748         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 749         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 750         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 751         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 752         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 753         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 754         proj_cnt += 2;          // Skip 2 for doubles
 755       }
 756       else if( (i&1) == 1 &&    // Else check for high half of double
 757                _register_save_type[i-1] == Op_RegF &&
 758                _register_save_type[i  ] == Op_RegF &&
 759                is_save_on_entry(i-1) ) {
 760         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 761         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 762         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 763         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 764         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 765         mproj = C->top();
 766       }
 767       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 768       // into a single RegL.
 769       else if( (i&1) == 0 &&
 770           _register_save_type[i  ] == Op_RegI &&
 771           _register_save_type[i+1] == Op_RegI &&
 772         is_save_on_entry(i+1) ) {
 773         // Add other bit for long
 774         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 775         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 776         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 777         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 778         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 779         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 780         proj_cnt += 2;          // Skip 2 for longs
 781       }
 782       else if( (i&1) == 1 &&    // Else check for high half of long
 783                _register_save_type[i-1] == Op_RegI &&
 784                _register_save_type[i  ] == Op_RegI &&
 785                is_save_on_entry(i-1) ) {
 786         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 787         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 788         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 789         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 790         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 791         mproj = C->top();
 792       } else {
 793         // Make a projection for it off the Start
 794         mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 795       }
 796 
 797       ret_edge_cnt ++;
 798       reth_edge_cnt ++;
 799       tail_call_edge_cnt ++;
 800       tail_jump_edge_cnt ++;
 801       halt_edge_cnt ++;
 802 
 803       // Add a use of the SOE register to all exit paths
 804       for( uint j=1; j < root->req(); j++ )
 805         root->in(j)->add_req(mproj);
 806     } // End of if a save-on-entry register
 807   } // End of for all machine registers
 808 }
 809 
 810 //------------------------------init_spill_mask--------------------------------
 811 void Matcher::init_spill_mask( Node *ret ) {
 812   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 813 
 814   OptoReg::c_frame_pointer = c_frame_pointer();
 815   c_frame_ptr_mask = c_frame_pointer();
 816 #ifdef _LP64
 817   // pointers are twice as big
 818   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 819 #endif
 820 
 821   // Start at OptoReg::stack0()
 822   STACK_ONLY_mask.Clear();
 823   OptoReg::Name init = OptoReg::stack2reg(0);
 824   // STACK_ONLY_mask is all stack bits
 825   OptoReg::Name i;
 826   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 827     STACK_ONLY_mask.Insert(i);
 828   // Also set the "infinite stack" bit.
 829   STACK_ONLY_mask.set_AllStack();
 830 
 831   // Copy the register names over into the shared world
 832   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 833     // SharedInfo::regName[i] = regName[i];
 834     // Handy RegMasks per machine register
 835     mreg2regmask[i].Insert(i);
 836   }
 837 
 838   // Grab the Frame Pointer
 839   Node *fp  = ret->in(TypeFunc::FramePtr);
 840   Node *mem = ret->in(TypeFunc::Memory);
 841   const TypePtr* atp = TypePtr::BOTTOM;
 842   // Share frame pointer while making spill ops
 843   set_shared(fp);
 844 
 845   // Compute generic short-offset Loads
 846 #ifdef _LP64
 847   MachNode *spillCP = match_tree(new LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 848 #endif
 849   MachNode *spillI  = match_tree(new LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered));
 850   MachNode *spillL  = match_tree(new LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered,false));
 851   MachNode *spillF  = match_tree(new LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered));
 852   MachNode *spillD  = match_tree(new LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered));
 853   MachNode *spillP  = match_tree(new LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 854   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 855          spillD != NULL && spillP != NULL, "");
 856   // Get the ADLC notion of the right regmask, for each basic type.
 857 #ifdef _LP64
 858   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 859 #endif
 860   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 861   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 862   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 863   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 864   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 865 
 866   // Vector regmasks.
 867   if (Matcher::vector_size_supported(T_BYTE,4)) {
 868     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 869     MachNode *spillVectS = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
 870     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
 871   }
 872   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 873     MachNode *spillVectD = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
 874     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
 875   }
 876   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 877     MachNode *spillVectX = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
 878     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
 879   }
 880   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 881     MachNode *spillVectY = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
 882     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
 883   }
 884 }
 885 
 886 #ifdef ASSERT
 887 static void match_alias_type(Compile* C, Node* n, Node* m) {
 888   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 889   const TypePtr* nat = n->adr_type();
 890   const TypePtr* mat = m->adr_type();
 891   int nidx = C->get_alias_index(nat);
 892   int midx = C->get_alias_index(mat);
 893   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 894   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 895     for (uint i = 1; i < n->req(); i++) {
 896       Node* n1 = n->in(i);
 897       const TypePtr* n1at = n1->adr_type();
 898       if (n1at != NULL) {
 899         nat = n1at;
 900         nidx = C->get_alias_index(n1at);
 901       }
 902     }
 903   }
 904   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 905   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 906     switch (n->Opcode()) {
 907     case Op_PrefetchRead:
 908     case Op_PrefetchWrite:
 909     case Op_PrefetchAllocation:
 910       nidx = Compile::AliasIdxRaw;
 911       nat = TypeRawPtr::BOTTOM;
 912       break;
 913     }
 914   }
 915   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 916     switch (n->Opcode()) {
 917     case Op_ClearArray:
 918       midx = Compile::AliasIdxRaw;
 919       mat = TypeRawPtr::BOTTOM;
 920       break;
 921     }
 922   }
 923   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 924     switch (n->Opcode()) {
 925     case Op_Return:
 926     case Op_Rethrow:
 927     case Op_Halt:
 928     case Op_TailCall:
 929     case Op_TailJump:
 930       nidx = Compile::AliasIdxBot;
 931       nat = TypePtr::BOTTOM;
 932       break;
 933     }
 934   }
 935   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 936     switch (n->Opcode()) {
 937     case Op_StrComp:
 938     case Op_StrEquals:
 939     case Op_StrIndexOf:
 940     case Op_AryEq:
 941     case Op_MemBarVolatile:
 942     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 943     case Op_EncodeISOArray:
 944       nidx = Compile::AliasIdxTop;
 945       nat = NULL;
 946       break;
 947     }
 948   }
 949   if (nidx != midx) {
 950     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 951       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 952       n->dump();
 953       m->dump();
 954     }
 955     assert(C->subsume_loads() && C->must_alias(nat, midx),
 956            "must not lose alias info when matching");
 957   }
 958 }
 959 #endif
 960 
 961 
 962 //------------------------------MStack-----------------------------------------
 963 // State and MStack class used in xform() and find_shared() iterative methods.
 964 enum Node_State { Pre_Visit,  // node has to be pre-visited
 965                       Visit,  // visit node
 966                  Post_Visit,  // post-visit node
 967              Alt_Post_Visit   // alternative post-visit path
 968                 };
 969 
 970 class MStack: public Node_Stack {
 971   public:
 972     MStack(int size) : Node_Stack(size) { }
 973 
 974     void push(Node *n, Node_State ns) {
 975       Node_Stack::push(n, (uint)ns);
 976     }
 977     void push(Node *n, Node_State ns, Node *parent, int indx) {
 978       ++_inode_top;
 979       if ((_inode_top + 1) >= _inode_max) grow();
 980       _inode_top->node = parent;
 981       _inode_top->indx = (uint)indx;
 982       ++_inode_top;
 983       _inode_top->node = n;
 984       _inode_top->indx = (uint)ns;
 985     }
 986     Node *parent() {
 987       pop();
 988       return node();
 989     }
 990     Node_State state() const {
 991       return (Node_State)index();
 992     }
 993     void set_state(Node_State ns) {
 994       set_index((uint)ns);
 995     }
 996 };
 997 
 998 
 999 //------------------------------xform------------------------------------------
1000 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
1001 // Node in new-space.  Given a new-space Node, recursively walk his children.
1002 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
1003 Node *Matcher::xform( Node *n, int max_stack ) {
1004   // Use one stack to keep both: child's node/state and parent's node/index
1005   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
1006   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
1007 
1008   while (mstack.is_nonempty()) {
1009     C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
1010     if (C->failing()) return NULL;
1011     n = mstack.node();          // Leave node on stack
1012     Node_State nstate = mstack.state();
1013     if (nstate == Visit) {
1014       mstack.set_state(Post_Visit);
1015       Node *oldn = n;
1016       // Old-space or new-space check
1017       if (!C->node_arena()->contains(n)) {
1018         // Old space!
1019         Node* m;
1020         if (has_new_node(n)) {  // Not yet Label/Reduced
1021           m = new_node(n);
1022         } else {
1023           if (!is_dontcare(n)) { // Matcher can match this guy
1024             // Calls match special.  They match alone with no children.
1025             // Their children, the incoming arguments, match normally.
1026             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1027             if (C->failing())  return NULL;
1028             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
1029           } else {                  // Nothing the matcher cares about
1030             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
1031               // Convert to machine-dependent projection
1032               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
1033 #ifdef ASSERT
1034               _new2old_map.map(m->_idx, n);
1035 #endif
1036               if (m->in(0) != NULL) // m might be top
1037                 collect_null_checks(m, n);
1038             } else {                // Else just a regular 'ol guy
1039               m = n->clone();       // So just clone into new-space
1040 #ifdef ASSERT
1041               _new2old_map.map(m->_idx, n);
1042 #endif
1043               // Def-Use edges will be added incrementally as Uses
1044               // of this node are matched.
1045               assert(m->outcnt() == 0, "no Uses of this clone yet");
1046             }
1047           }
1048 
1049           set_new_node(n, m);       // Map old to new
1050           if (_old_node_note_array != NULL) {
1051             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1052                                                   n->_idx);
1053             C->set_node_notes_at(m->_idx, nn);
1054           }
1055           debug_only(match_alias_type(C, n, m));
1056         }
1057         n = m;    // n is now a new-space node
1058         mstack.set_node(n);
1059       }
1060 
1061       // New space!
1062       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1063 
1064       int i;
1065       // Put precedence edges on stack first (match them last).
1066       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1067         Node *m = oldn->in(i);
1068         if (m == NULL) break;
1069         // set -1 to call add_prec() instead of set_req() during Step1
1070         mstack.push(m, Visit, n, -1);
1071       }
1072 
1073       // For constant debug info, I'd rather have unmatched constants.
1074       int cnt = n->req();
1075       JVMState* jvms = n->jvms();
1076       int debug_cnt = jvms ? jvms->debug_start() : cnt;
1077 
1078       // Now do only debug info.  Clone constants rather than matching.
1079       // Constants are represented directly in the debug info without
1080       // the need for executable machine instructions.
1081       // Monitor boxes are also represented directly.
1082       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1083         Node *m = n->in(i);          // Get input
1084         int op = m->Opcode();
1085         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1086         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1087             op == Op_ConF || op == Op_ConD || op == Op_ConL
1088             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1089             ) {
1090           m = m->clone();
1091 #ifdef ASSERT
1092           _new2old_map.map(m->_idx, n);
1093 #endif
1094           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1095           mstack.push(m->in(0), Visit, m, 0);
1096         } else {
1097           mstack.push(m, Visit, n, i);
1098         }
1099       }
1100 
1101       // And now walk his children, and convert his inputs to new-space.
1102       for( ; i >= 0; --i ) { // For all normal inputs do
1103         Node *m = n->in(i);  // Get input
1104         if(m != NULL)
1105           mstack.push(m, Visit, n, i);
1106       }
1107 
1108     }
1109     else if (nstate == Post_Visit) {
1110       // Set xformed input
1111       Node *p = mstack.parent();
1112       if (p != NULL) { // root doesn't have parent
1113         int i = (int)mstack.index();
1114         if (i >= 0)
1115           p->set_req(i, n); // required input
1116         else if (i == -1)
1117           p->add_prec(n);   // precedence input
1118         else
1119           ShouldNotReachHere();
1120       }
1121       mstack.pop(); // remove processed node from stack
1122     }
1123     else {
1124       ShouldNotReachHere();
1125     }
1126   } // while (mstack.is_nonempty())
1127   return n; // Return new-space Node
1128 }
1129 
1130 //------------------------------warp_outgoing_stk_arg------------------------
1131 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1132   // Convert outgoing argument location to a pre-biased stack offset
1133   if (reg->is_stack()) {
1134     OptoReg::Name warped = reg->reg2stack();
1135     // Adjust the stack slot offset to be the register number used
1136     // by the allocator.
1137     warped = OptoReg::add(begin_out_arg_area, warped);
1138     // Keep track of the largest numbered stack slot used for an arg.
1139     // Largest used slot per call-site indicates the amount of stack
1140     // that is killed by the call.
1141     if( warped >= out_arg_limit_per_call )
1142       out_arg_limit_per_call = OptoReg::add(warped,1);
1143     if (!RegMask::can_represent_arg(warped)) {
1144       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
1145       return OptoReg::Bad;
1146     }
1147     return warped;
1148   }
1149   return OptoReg::as_OptoReg(reg);
1150 }
1151 
1152 
1153 //------------------------------match_sfpt-------------------------------------
1154 // Helper function to match call instructions.  Calls match special.
1155 // They match alone with no children.  Their children, the incoming
1156 // arguments, match normally.
1157 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1158   MachSafePointNode *msfpt = NULL;
1159   MachCallNode      *mcall = NULL;
1160   uint               cnt;
1161   // Split out case for SafePoint vs Call
1162   CallNode *call;
1163   const TypeTuple *domain;
1164   ciMethod*        method = NULL;
1165   bool             is_method_handle_invoke = false;  // for special kill effects
1166   if( sfpt->is_Call() ) {
1167     call = sfpt->as_Call();
1168     domain = call->tf()->domain();
1169     cnt = domain->cnt();
1170 
1171     // Match just the call, nothing else
1172     MachNode *m = match_tree(call);
1173     if (C->failing())  return NULL;
1174     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1175 
1176     // Copy data from the Ideal SafePoint to the machine version
1177     mcall = m->as_MachCall();
1178 
1179     mcall->set_tf(         call->tf());
1180     mcall->set_entry_point(call->entry_point());
1181     mcall->set_cnt(        call->cnt());
1182 
1183     if( mcall->is_MachCallJava() ) {
1184       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1185       const CallJavaNode *call_java =  call->as_CallJava();
1186       method = call_java->method();
1187       mcall_java->_method = method;
1188       mcall_java->_bci = call_java->_bci;
1189       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1190       is_method_handle_invoke = call_java->is_method_handle_invoke();
1191       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1192       if (is_method_handle_invoke) {
1193         C->set_has_method_handle_invokes(true);
1194       }
1195       if( mcall_java->is_MachCallStaticJava() )
1196         mcall_java->as_MachCallStaticJava()->_name =
1197          call_java->as_CallStaticJava()->_name;
1198       if( mcall_java->is_MachCallDynamicJava() )
1199         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1200          call_java->as_CallDynamicJava()->_vtable_index;
1201     }
1202     else if( mcall->is_MachCallRuntime() ) {
1203       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1204     }
1205     msfpt = mcall;
1206   }
1207   // This is a non-call safepoint
1208   else {
1209     call = NULL;
1210     domain = NULL;
1211     MachNode *mn = match_tree(sfpt);
1212     if (C->failing())  return NULL;
1213     msfpt = mn->as_MachSafePoint();
1214     cnt = TypeFunc::Parms;
1215   }
1216 
1217   // Advertise the correct memory effects (for anti-dependence computation).
1218   msfpt->set_adr_type(sfpt->adr_type());
1219 
1220   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1221   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1222   // Empty them all.
1223   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1224 
1225   // Do all the pre-defined non-Empty register masks
1226   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1227   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1228 
1229   // Place first outgoing argument can possibly be put.
1230   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1231   assert( is_even(begin_out_arg_area), "" );
1232   // Compute max outgoing register number per call site.
1233   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1234   // Calls to C may hammer extra stack slots above and beyond any arguments.
1235   // These are usually backing store for register arguments for varargs.
1236   if( call != NULL && call->is_CallRuntime() )
1237     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1238 
1239 
1240   // Do the normal argument list (parameters) register masks
1241   int argcnt = cnt - TypeFunc::Parms;
1242   if( argcnt > 0 ) {          // Skip it all if we have no args
1243     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1244     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1245     int i;
1246     for( i = 0; i < argcnt; i++ ) {
1247       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1248     }
1249     // V-call to pick proper calling convention
1250     call->calling_convention( sig_bt, parm_regs, argcnt );
1251 
1252 #ifdef ASSERT
1253     // Sanity check users' calling convention.  Really handy during
1254     // the initial porting effort.  Fairly expensive otherwise.
1255     { for (int i = 0; i<argcnt; i++) {
1256       if( !parm_regs[i].first()->is_valid() &&
1257           !parm_regs[i].second()->is_valid() ) continue;
1258       VMReg reg1 = parm_regs[i].first();
1259       VMReg reg2 = parm_regs[i].second();
1260       for (int j = 0; j < i; j++) {
1261         if( !parm_regs[j].first()->is_valid() &&
1262             !parm_regs[j].second()->is_valid() ) continue;
1263         VMReg reg3 = parm_regs[j].first();
1264         VMReg reg4 = parm_regs[j].second();
1265         if( !reg1->is_valid() ) {
1266           assert( !reg2->is_valid(), "valid halvsies" );
1267         } else if( !reg3->is_valid() ) {
1268           assert( !reg4->is_valid(), "valid halvsies" );
1269         } else {
1270           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1271           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1272           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1273           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1274           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1275           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1276         }
1277       }
1278     }
1279     }
1280 #endif
1281 
1282     // Visit each argument.  Compute its outgoing register mask.
1283     // Return results now can have 2 bits returned.
1284     // Compute max over all outgoing arguments both per call-site
1285     // and over the entire method.
1286     for( i = 0; i < argcnt; i++ ) {
1287       // Address of incoming argument mask to fill in
1288       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1289       if( !parm_regs[i].first()->is_valid() &&
1290           !parm_regs[i].second()->is_valid() ) {
1291         continue;               // Avoid Halves
1292       }
1293       // Grab first register, adjust stack slots and insert in mask.
1294       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1295       if (OptoReg::is_valid(reg1))
1296         rm->Insert( reg1 );
1297       // Grab second register (if any), adjust stack slots and insert in mask.
1298       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1299       if (OptoReg::is_valid(reg2))
1300         rm->Insert( reg2 );
1301     } // End of for all arguments
1302 
1303     // Compute number of stack slots needed to restore stack in case of
1304     // Pascal-style argument popping.
1305     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1306   }
1307 
1308   // Compute the max stack slot killed by any call.  These will not be
1309   // available for debug info, and will be used to adjust FIRST_STACK_mask
1310   // after all call sites have been visited.
1311   if( _out_arg_limit < out_arg_limit_per_call)
1312     _out_arg_limit = out_arg_limit_per_call;
1313 
1314   if (mcall) {
1315     // Kill the outgoing argument area, including any non-argument holes and
1316     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1317     // Since the max-per-method covers the max-per-call-site and debug info
1318     // is excluded on the max-per-method basis, debug info cannot land in
1319     // this killed area.
1320     uint r_cnt = mcall->tf()->range()->cnt();
1321     MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1322     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1323       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1324     } else {
1325       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1326         proj->_rout.Insert(OptoReg::Name(i));
1327     }
1328     if (proj->_rout.is_NotEmpty()) {
1329       push_projection(proj);
1330     }
1331   }
1332   // Transfer the safepoint information from the call to the mcall
1333   // Move the JVMState list
1334   msfpt->set_jvms(sfpt->jvms());
1335   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1336     jvms->set_map(sfpt);
1337   }
1338 
1339   // Debug inputs begin just after the last incoming parameter
1340   assert((mcall == NULL) || (mcall->jvms() == NULL) ||
1341          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
1342 
1343   // Move the OopMap
1344   msfpt->_oop_map = sfpt->_oop_map;
1345 
1346   // Add additional edges.
1347   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1348     // For these calls we can not add MachConstantBase in expand(), as the
1349     // ins are not complete then.
1350     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1351     if (msfpt->jvms() &&
1352         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1353       // We added an edge before jvms, so we must adapt the position of the ins.
1354       msfpt->jvms()->adapt_position(+1);
1355     }
1356   }
1357 
1358   // Registers killed by the call are set in the local scheduling pass
1359   // of Global Code Motion.
1360   return msfpt;
1361 }
1362 
1363 //---------------------------match_tree----------------------------------------
1364 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1365 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1366 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1367 // a Load's result RegMask for memoization in idealreg2regmask[]
1368 MachNode *Matcher::match_tree( const Node *n ) {
1369   assert( n->Opcode() != Op_Phi, "cannot match" );
1370   assert( !n->is_block_start(), "cannot match" );
1371   // Set the mark for all locally allocated State objects.
1372   // When this call returns, the _states_arena arena will be reset
1373   // freeing all State objects.
1374   ResourceMark rm( &_states_arena );
1375 
1376   LabelRootDepth = 0;
1377 
1378   // StoreNodes require their Memory input to match any LoadNodes
1379   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1380 #ifdef ASSERT
1381   Node* save_mem_node = _mem_node;
1382   _mem_node = n->is_Store() ? (Node*)n : NULL;
1383 #endif
1384   // State object for root node of match tree
1385   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1386   State *s = new (&_states_arena) State;
1387   s->_kids[0] = NULL;
1388   s->_kids[1] = NULL;
1389   s->_leaf = (Node*)n;
1390   // Label the input tree, allocating labels from top-level arena
1391   Label_Root( n, s, n->in(0), mem );
1392   if (C->failing())  return NULL;
1393 
1394   // The minimum cost match for the whole tree is found at the root State
1395   uint mincost = max_juint;
1396   uint cost = max_juint;
1397   uint i;
1398   for( i = 0; i < NUM_OPERANDS; i++ ) {
1399     if( s->valid(i) &&                // valid entry and
1400         s->_cost[i] < cost &&         // low cost and
1401         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1402       cost = s->_cost[mincost=i];
1403   }
1404   if (mincost == max_juint) {
1405 #ifndef PRODUCT
1406     tty->print("No matching rule for:");
1407     s->dump();
1408 #endif
1409     Matcher::soft_match_failure();
1410     return NULL;
1411   }
1412   // Reduce input tree based upon the state labels to machine Nodes
1413   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1414 #ifdef ASSERT
1415   _old2new_map.map(n->_idx, m);
1416   _new2old_map.map(m->_idx, (Node*)n);
1417 #endif
1418 
1419   // Add any Matcher-ignored edges
1420   uint cnt = n->req();
1421   uint start = 1;
1422   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1423   if( n->is_AddP() ) {
1424     assert( mem == (Node*)1, "" );
1425     start = AddPNode::Base+1;
1426   }
1427   for( i = start; i < cnt; i++ ) {
1428     if( !n->match_edge(i) ) {
1429       if( i < m->req() )
1430         m->ins_req( i, n->in(i) );
1431       else
1432         m->add_req( n->in(i) );
1433     }
1434   }
1435 
1436   debug_only( _mem_node = save_mem_node; )
1437   return m;
1438 }
1439 
1440 
1441 //------------------------------match_into_reg---------------------------------
1442 // Choose to either match this Node in a register or part of the current
1443 // match tree.  Return true for requiring a register and false for matching
1444 // as part of the current match tree.
1445 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1446 
1447   const Type *t = m->bottom_type();
1448 
1449   if (t->singleton()) {
1450     // Never force constants into registers.  Allow them to match as
1451     // constants or registers.  Copies of the same value will share
1452     // the same register.  See find_shared_node.
1453     return false;
1454   } else {                      // Not a constant
1455     // Stop recursion if they have different Controls.
1456     Node* m_control = m->in(0);
1457     // Control of load's memory can post-dominates load's control.
1458     // So use it since load can't float above its memory.
1459     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
1460     if (control && m_control && control != m_control && control != mem_control) {
1461 
1462       // Actually, we can live with the most conservative control we
1463       // find, if it post-dominates the others.  This allows us to
1464       // pick up load/op/store trees where the load can float a little
1465       // above the store.
1466       Node *x = control;
1467       const uint max_scan = 6;  // Arbitrary scan cutoff
1468       uint j;
1469       for (j=0; j<max_scan; j++) {
1470         if (x->is_Region())     // Bail out at merge points
1471           return true;
1472         x = x->in(0);
1473         if (x == m_control)     // Does 'control' post-dominate
1474           break;                // m->in(0)?  If so, we can use it
1475         if (x == mem_control)   // Does 'control' post-dominate
1476           break;                // mem_control?  If so, we can use it
1477       }
1478       if (j == max_scan)        // No post-domination before scan end?
1479         return true;            // Then break the match tree up
1480     }
1481     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1482         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1483       // These are commonly used in address expressions and can
1484       // efficiently fold into them on X64 in some cases.
1485       return false;
1486     }
1487   }
1488 
1489   // Not forceable cloning.  If shared, put it into a register.
1490   return shared;
1491 }
1492 
1493 
1494 //------------------------------Instruction Selection--------------------------
1495 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1496 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1497 // things the Matcher does not match (e.g., Memory), and things with different
1498 // Controls (hence forced into different blocks).  We pass in the Control
1499 // selected for this entire State tree.
1500 
1501 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1502 // Store and the Load must have identical Memories (as well as identical
1503 // pointers).  Since the Matcher does not have anything for Memory (and
1504 // does not handle DAGs), I have to match the Memory input myself.  If the
1505 // Tree root is a Store, I require all Loads to have the identical memory.
1506 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1507   // Since Label_Root is a recursive function, its possible that we might run
1508   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1509   LabelRootDepth++;
1510   if (LabelRootDepth > MaxLabelRootDepth) {
1511     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1512     return NULL;
1513   }
1514   uint care = 0;                // Edges matcher cares about
1515   uint cnt = n->req();
1516   uint i = 0;
1517 
1518   // Examine children for memory state
1519   // Can only subsume a child into your match-tree if that child's memory state
1520   // is not modified along the path to another input.
1521   // It is unsafe even if the other inputs are separate roots.
1522   Node *input_mem = NULL;
1523   for( i = 1; i < cnt; i++ ) {
1524     if( !n->match_edge(i) ) continue;
1525     Node *m = n->in(i);         // Get ith input
1526     assert( m, "expect non-null children" );
1527     if( m->is_Load() ) {
1528       if( input_mem == NULL ) {
1529         input_mem = m->in(MemNode::Memory);
1530       } else if( input_mem != m->in(MemNode::Memory) ) {
1531         input_mem = NodeSentinel;
1532       }
1533     }
1534   }
1535 
1536   for( i = 1; i < cnt; i++ ){// For my children
1537     if( !n->match_edge(i) ) continue;
1538     Node *m = n->in(i);         // Get ith input
1539     // Allocate states out of a private arena
1540     State *s = new (&_states_arena) State;
1541     svec->_kids[care++] = s;
1542     assert( care <= 2, "binary only for now" );
1543 
1544     // Recursively label the State tree.
1545     s->_kids[0] = NULL;
1546     s->_kids[1] = NULL;
1547     s->_leaf = m;
1548 
1549     // Check for leaves of the State Tree; things that cannot be a part of
1550     // the current tree.  If it finds any, that value is matched as a
1551     // register operand.  If not, then the normal matching is used.
1552     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1553         //
1554         // Stop recursion if this is LoadNode and the root of this tree is a
1555         // StoreNode and the load & store have different memories.
1556         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1557         // Can NOT include the match of a subtree when its memory state
1558         // is used by any of the other subtrees
1559         (input_mem == NodeSentinel) ) {
1560 #ifndef PRODUCT
1561       // Print when we exclude matching due to different memory states at input-loads
1562       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1563         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1564         tty->print_cr("invalid input_mem");
1565       }
1566 #endif
1567       // Switch to a register-only opcode; this value must be in a register
1568       // and cannot be subsumed as part of a larger instruction.
1569       s->DFA( m->ideal_reg(), m );
1570 
1571     } else {
1572       // If match tree has no control and we do, adopt it for entire tree
1573       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1574         control = m->in(0);         // Pick up control
1575       // Else match as a normal part of the match tree.
1576       control = Label_Root(m,s,control,mem);
1577       if (C->failing()) return NULL;
1578     }
1579   }
1580 
1581 
1582   // Call DFA to match this node, and return
1583   svec->DFA( n->Opcode(), n );
1584 
1585 #ifdef ASSERT
1586   uint x;
1587   for( x = 0; x < _LAST_MACH_OPER; x++ )
1588     if( svec->valid(x) )
1589       break;
1590 
1591   if (x >= _LAST_MACH_OPER) {
1592     n->dump();
1593     svec->dump();
1594     assert( false, "bad AD file" );
1595   }
1596 #endif
1597   return control;
1598 }
1599 
1600 
1601 // Con nodes reduced using the same rule can share their MachNode
1602 // which reduces the number of copies of a constant in the final
1603 // program.  The register allocator is free to split uses later to
1604 // split live ranges.
1605 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1606   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
1607 
1608   // See if this Con has already been reduced using this rule.
1609   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1610   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1611   if (last != NULL && rule == last->rule()) {
1612     // Don't expect control change for DecodeN
1613     if (leaf->is_DecodeNarrowPtr())
1614       return last;
1615     // Get the new space root.
1616     Node* xroot = new_node(C->root());
1617     if (xroot == NULL) {
1618       // This shouldn't happen give the order of matching.
1619       return NULL;
1620     }
1621 
1622     // Shared constants need to have their control be root so they
1623     // can be scheduled properly.
1624     Node* control = last->in(0);
1625     if (control != xroot) {
1626       if (control == NULL || control == C->root()) {
1627         last->set_req(0, xroot);
1628       } else {
1629         assert(false, "unexpected control");
1630         return NULL;
1631       }
1632     }
1633     return last;
1634   }
1635   return NULL;
1636 }
1637 
1638 
1639 //------------------------------ReduceInst-------------------------------------
1640 // Reduce a State tree (with given Control) into a tree of MachNodes.
1641 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1642 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1643 // Each MachNode has a number of complicated MachOper operands; each
1644 // MachOper also covers a further tree of Ideal Nodes.
1645 
1646 // The root of the Ideal match tree is always an instruction, so we enter
1647 // the recursion here.  After building the MachNode, we need to recurse
1648 // the tree checking for these cases:
1649 // (1) Child is an instruction -
1650 //     Build the instruction (recursively), add it as an edge.
1651 //     Build a simple operand (register) to hold the result of the instruction.
1652 // (2) Child is an interior part of an instruction -
1653 //     Skip over it (do nothing)
1654 // (3) Child is the start of a operand -
1655 //     Build the operand, place it inside the instruction
1656 //     Call ReduceOper.
1657 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1658   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1659 
1660   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1661   if (shared_node != NULL) {
1662     return shared_node;
1663   }
1664 
1665   // Build the object to represent this state & prepare for recursive calls
1666   MachNode *mach = s->MachNodeGenerator( rule, C );
1667   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1668   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1669   Node *leaf = s->_leaf;
1670   // Check for instruction or instruction chain rule
1671   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1672     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1673            "duplicating node that's already been matched");
1674     // Instruction
1675     mach->add_req( leaf->in(0) ); // Set initial control
1676     // Reduce interior of complex instruction
1677     ReduceInst_Interior( s, rule, mem, mach, 1 );
1678   } else {
1679     // Instruction chain rules are data-dependent on their inputs
1680     mach->add_req(0);             // Set initial control to none
1681     ReduceInst_Chain_Rule( s, rule, mem, mach );
1682   }
1683 
1684   // If a Memory was used, insert a Memory edge
1685   if( mem != (Node*)1 ) {
1686     mach->ins_req(MemNode::Memory,mem);
1687 #ifdef ASSERT
1688     // Verify adr type after matching memory operation
1689     const MachOper* oper = mach->memory_operand();
1690     if (oper != NULL && oper != (MachOper*)-1) {
1691       // It has a unique memory operand.  Find corresponding ideal mem node.
1692       Node* m = NULL;
1693       if (leaf->is_Mem()) {
1694         m = leaf;
1695       } else {
1696         m = _mem_node;
1697         assert(m != NULL && m->is_Mem(), "expecting memory node");
1698       }
1699       const Type* mach_at = mach->adr_type();
1700       // DecodeN node consumed by an address may have different type
1701       // then its input. Don't compare types for such case.
1702       if (m->adr_type() != mach_at &&
1703           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1704            m->in(MemNode::Address)->is_AddP() &&
1705            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
1706            m->in(MemNode::Address)->is_AddP() &&
1707            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1708            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
1709         mach_at = m->adr_type();
1710       }
1711       if (m->adr_type() != mach_at) {
1712         m->dump();
1713         tty->print_cr("mach:");
1714         mach->dump(1);
1715       }
1716       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1717     }
1718 #endif
1719   }
1720 
1721   // If the _leaf is an AddP, insert the base edge
1722   if (leaf->is_AddP()) {
1723     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1724   }
1725 
1726   uint number_of_projections_prior = number_of_projections();
1727 
1728   // Perform any 1-to-many expansions required
1729   MachNode *ex = mach->Expand(s, _projection_list, mem);
1730   if (ex != mach) {
1731     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1732     if( ex->in(1)->is_Con() )
1733       ex->in(1)->set_req(0, C->root());
1734     // Remove old node from the graph
1735     for( uint i=0; i<mach->req(); i++ ) {
1736       mach->set_req(i,NULL);
1737     }
1738 #ifdef ASSERT
1739     _new2old_map.map(ex->_idx, s->_leaf);
1740 #endif
1741   }
1742 
1743   // PhaseChaitin::fixup_spills will sometimes generate spill code
1744   // via the matcher.  By the time, nodes have been wired into the CFG,
1745   // and any further nodes generated by expand rules will be left hanging
1746   // in space, and will not get emitted as output code.  Catch this.
1747   // Also, catch any new register allocation constraints ("projections")
1748   // generated belatedly during spill code generation.
1749   if (_allocation_started) {
1750     guarantee(ex == mach, "no expand rules during spill generation");
1751     guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
1752   }
1753 
1754   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1755     // Record the con for sharing
1756     _shared_nodes.map(leaf->_idx, ex);
1757   }
1758 
1759   return ex;
1760 }
1761 
1762 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1763   // 'op' is what I am expecting to receive
1764   int op = _leftOp[rule];
1765   // Operand type to catch childs result
1766   // This is what my child will give me.
1767   int opnd_class_instance = s->_rule[op];
1768   // Choose between operand class or not.
1769   // This is what I will receive.
1770   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1771   // New rule for child.  Chase operand classes to get the actual rule.
1772   int newrule = s->_rule[catch_op];
1773 
1774   if( newrule < NUM_OPERANDS ) {
1775     // Chain from operand or operand class, may be output of shared node
1776     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1777             "Bad AD file: Instruction chain rule must chain from operand");
1778     // Insert operand into array of operands for this instruction
1779     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1780 
1781     ReduceOper( s, newrule, mem, mach );
1782   } else {
1783     // Chain from the result of an instruction
1784     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1785     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1786     Node *mem1 = (Node*)1;
1787     debug_only(Node *save_mem_node = _mem_node;)
1788     mach->add_req( ReduceInst(s, newrule, mem1) );
1789     debug_only(_mem_node = save_mem_node;)
1790   }
1791   return;
1792 }
1793 
1794 
1795 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1796   if( s->_leaf->is_Load() ) {
1797     Node *mem2 = s->_leaf->in(MemNode::Memory);
1798     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1799     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1800     mem = mem2;
1801   }
1802   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1803     if( mach->in(0) == NULL )
1804       mach->set_req(0, s->_leaf->in(0));
1805   }
1806 
1807   // Now recursively walk the state tree & add operand list.
1808   for( uint i=0; i<2; i++ ) {   // binary tree
1809     State *newstate = s->_kids[i];
1810     if( newstate == NULL ) break;      // Might only have 1 child
1811     // 'op' is what I am expecting to receive
1812     int op;
1813     if( i == 0 ) {
1814       op = _leftOp[rule];
1815     } else {
1816       op = _rightOp[rule];
1817     }
1818     // Operand type to catch childs result
1819     // This is what my child will give me.
1820     int opnd_class_instance = newstate->_rule[op];
1821     // Choose between operand class or not.
1822     // This is what I will receive.
1823     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1824     // New rule for child.  Chase operand classes to get the actual rule.
1825     int newrule = newstate->_rule[catch_op];
1826 
1827     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1828       // Operand/operandClass
1829       // Insert operand into array of operands for this instruction
1830       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1831       ReduceOper( newstate, newrule, mem, mach );
1832 
1833     } else {                    // Child is internal operand or new instruction
1834       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1835         // internal operand --> call ReduceInst_Interior
1836         // Interior of complex instruction.  Do nothing but recurse.
1837         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1838       } else {
1839         // instruction --> call build operand(  ) to catch result
1840         //             --> ReduceInst( newrule )
1841         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1842         Node *mem1 = (Node*)1;
1843         debug_only(Node *save_mem_node = _mem_node;)
1844         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1845         debug_only(_mem_node = save_mem_node;)
1846       }
1847     }
1848     assert( mach->_opnds[num_opnds-1], "" );
1849   }
1850   return num_opnds;
1851 }
1852 
1853 // This routine walks the interior of possible complex operands.
1854 // At each point we check our children in the match tree:
1855 // (1) No children -
1856 //     We are a leaf; add _leaf field as an input to the MachNode
1857 // (2) Child is an internal operand -
1858 //     Skip over it ( do nothing )
1859 // (3) Child is an instruction -
1860 //     Call ReduceInst recursively and
1861 //     and instruction as an input to the MachNode
1862 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1863   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1864   State *kid = s->_kids[0];
1865   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1866 
1867   // Leaf?  And not subsumed?
1868   if( kid == NULL && !_swallowed[rule] ) {
1869     mach->add_req( s->_leaf );  // Add leaf pointer
1870     return;                     // Bail out
1871   }
1872 
1873   if( s->_leaf->is_Load() ) {
1874     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1875     mem = s->_leaf->in(MemNode::Memory);
1876     debug_only(_mem_node = s->_leaf;)
1877   }
1878   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1879     if( !mach->in(0) )
1880       mach->set_req(0,s->_leaf->in(0));
1881     else {
1882       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1883     }
1884   }
1885 
1886   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1887     int newrule;
1888     if( i == 0)
1889       newrule = kid->_rule[_leftOp[rule]];
1890     else
1891       newrule = kid->_rule[_rightOp[rule]];
1892 
1893     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1894       // Internal operand; recurse but do nothing else
1895       ReduceOper( kid, newrule, mem, mach );
1896 
1897     } else {                    // Child is a new instruction
1898       // Reduce the instruction, and add a direct pointer from this
1899       // machine instruction to the newly reduced one.
1900       Node *mem1 = (Node*)1;
1901       debug_only(Node *save_mem_node = _mem_node;)
1902       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1903       debug_only(_mem_node = save_mem_node;)
1904     }
1905   }
1906 }
1907 
1908 
1909 // -------------------------------------------------------------------------
1910 // Java-Java calling convention
1911 // (what you use when Java calls Java)
1912 
1913 //------------------------------find_receiver----------------------------------
1914 // For a given signature, return the OptoReg for parameter 0.
1915 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1916   VMRegPair regs;
1917   BasicType sig_bt = T_OBJECT;
1918   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1919   // Return argument 0 register.  In the LP64 build pointers
1920   // take 2 registers, but the VM wants only the 'main' name.
1921   return OptoReg::as_OptoReg(regs.first());
1922 }
1923 
1924 // This function identifies sub-graphs in which a 'load' node is
1925 // input to two different nodes, and such that it can be matched
1926 // with BMI instructions like blsi, blsr, etc.
1927 // Example : for b = -a[i] & a[i] can be matched to blsi r32, m32.
1928 // The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL*
1929 // refers to the same node.
1930 #ifdef X86
1931 // Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop)
1932 // This is a temporary solution until we make DAGs expressible in ADL.
1933 template<typename ConType>
1934 class FusedPatternMatcher {
1935   Node* _op1_node;
1936   Node* _mop_node;
1937   int _con_op;
1938 
1939   static int match_next(Node* n, int next_op, int next_op_idx) {
1940     if (n->in(1) == NULL || n->in(2) == NULL) {
1941       return -1;
1942     }
1943 
1944     if (next_op_idx == -1) { // n is commutative, try rotations
1945       if (n->in(1)->Opcode() == next_op) {
1946         return 1;
1947       } else if (n->in(2)->Opcode() == next_op) {
1948         return 2;
1949       }
1950     } else {
1951       assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index");
1952       if (n->in(next_op_idx)->Opcode() == next_op) {
1953         return next_op_idx;
1954       }
1955     }
1956     return -1;
1957   }
1958 public:
1959   FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) :
1960     _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { }
1961 
1962   bool match(int op1, int op1_op2_idx,  // op1 and the index of the op1->op2 edge, -1 if op1 is commutative
1963              int op2, int op2_con_idx,  // op2 and the index of the op2->con edge, -1 if op2 is commutative
1964              typename ConType::NativeType con_value) {
1965     if (_op1_node->Opcode() != op1) {
1966       return false;
1967     }
1968     if (_mop_node->outcnt() > 2) {
1969       return false;
1970     }
1971     op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx);
1972     if (op1_op2_idx == -1) {
1973       return false;
1974     }
1975     // Memory operation must be the other edge
1976     int op1_mop_idx = (op1_op2_idx & 1) + 1;
1977 
1978     // Check that the mop node is really what we want
1979     if (_op1_node->in(op1_mop_idx) == _mop_node) {
1980       Node *op2_node = _op1_node->in(op1_op2_idx);
1981       if (op2_node->outcnt() > 1) {
1982         return false;
1983       }
1984       assert(op2_node->Opcode() == op2, "Should be");
1985       op2_con_idx = match_next(op2_node, _con_op, op2_con_idx);
1986       if (op2_con_idx == -1) {
1987         return false;
1988       }
1989       // Memory operation must be the other edge
1990       int op2_mop_idx = (op2_con_idx & 1) + 1;
1991       // Check that the memory operation is the same node
1992       if (op2_node->in(op2_mop_idx) == _mop_node) {
1993         // Now check the constant
1994         const Type* con_type = op2_node->in(op2_con_idx)->bottom_type();
1995         if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) {
1996           return true;
1997         }
1998       }
1999     }
2000     return false;
2001   }
2002 };
2003 
2004 
2005 bool Matcher::is_bmi_pattern(Node *n, Node *m) {
2006   if (n != NULL && m != NULL) {
2007     if (m->Opcode() == Op_LoadI) {
2008       FusedPatternMatcher<TypeInt> bmii(n, m, Op_ConI);
2009       return bmii.match(Op_AndI, -1, Op_SubI,  1,  0)  ||
2010              bmii.match(Op_AndI, -1, Op_AddI, -1, -1)  ||
2011              bmii.match(Op_XorI, -1, Op_AddI, -1, -1);
2012     } else if (m->Opcode() == Op_LoadL) {
2013       FusedPatternMatcher<TypeLong> bmil(n, m, Op_ConL);
2014       return bmil.match(Op_AndL, -1, Op_SubL,  1,  0) ||
2015              bmil.match(Op_AndL, -1, Op_AddL, -1, -1) ||
2016              bmil.match(Op_XorL, -1, Op_AddL, -1, -1);
2017     }
2018   }
2019   return false;
2020 }
2021 #endif // X86
2022 
2023 // A method-klass-holder may be passed in the inline_cache_reg
2024 // and then expanded into the inline_cache_reg and a method_oop register
2025 //   defined in ad_<arch>.cpp
2026 
2027 
2028 //------------------------------find_shared------------------------------------
2029 // Set bits if Node is shared or otherwise a root
2030 void Matcher::find_shared( Node *n ) {
2031   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
2032   MStack mstack(C->unique() * 2);
2033   // Mark nodes as address_visited if they are inputs to an address expression
2034   VectorSet address_visited(Thread::current()->resource_area());
2035   mstack.push(n, Visit);     // Don't need to pre-visit root node
2036   while (mstack.is_nonempty()) {
2037     n = mstack.node();       // Leave node on stack
2038     Node_State nstate = mstack.state();
2039     uint nop = n->Opcode();
2040     if (nstate == Pre_Visit) {
2041       if (address_visited.test(n->_idx)) { // Visited in address already?
2042         // Flag as visited and shared now.
2043         set_visited(n);
2044       }
2045       if (is_visited(n)) {   // Visited already?
2046         // Node is shared and has no reason to clone.  Flag it as shared.
2047         // This causes it to match into a register for the sharing.
2048         set_shared(n);       // Flag as shared and
2049         mstack.pop();        // remove node from stack
2050         continue;
2051       }
2052       nstate = Visit; // Not already visited; so visit now
2053     }
2054     if (nstate == Visit) {
2055       mstack.set_state(Post_Visit);
2056       set_visited(n);   // Flag as visited now
2057       bool mem_op = false;
2058 
2059       switch( nop ) {  // Handle some opcodes special
2060       case Op_Phi:             // Treat Phis as shared roots
2061       case Op_Parm:
2062       case Op_Proj:            // All handled specially during matching
2063       case Op_SafePointScalarObject:
2064         set_shared(n);
2065         set_dontcare(n);
2066         break;
2067       case Op_If:
2068       case Op_CountedLoopEnd:
2069         mstack.set_state(Alt_Post_Visit); // Alternative way
2070         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
2071         // with matching cmp/branch in 1 instruction.  The Matcher needs the
2072         // Bool and CmpX side-by-side, because it can only get at constants
2073         // that are at the leaves of Match trees, and the Bool's condition acts
2074         // as a constant here.
2075         mstack.push(n->in(1), Visit);         // Clone the Bool
2076         mstack.push(n->in(0), Pre_Visit);     // Visit control input
2077         continue; // while (mstack.is_nonempty())
2078       case Op_ConvI2D:         // These forms efficiently match with a prior
2079       case Op_ConvI2F:         //   Load but not a following Store
2080         if( n->in(1)->is_Load() &&        // Prior load
2081             n->outcnt() == 1 &&           // Not already shared
2082             n->unique_out()->is_Store() ) // Following store
2083           set_shared(n);       // Force it to be a root
2084         break;
2085       case Op_ReverseBytesI:
2086       case Op_ReverseBytesL:
2087         if( n->in(1)->is_Load() &&        // Prior load
2088             n->outcnt() == 1 )            // Not already shared
2089           set_shared(n);                  // Force it to be a root
2090         break;
2091       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
2092       case Op_IfFalse:
2093       case Op_IfTrue:
2094       case Op_MachProj:
2095       case Op_MergeMem:
2096       case Op_Catch:
2097       case Op_CatchProj:
2098       case Op_CProj:
2099       case Op_JumpProj:
2100       case Op_JProj:
2101       case Op_NeverBranch:
2102         set_dontcare(n);
2103         break;
2104       case Op_Jump:
2105         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
2106         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
2107         continue;                             // while (mstack.is_nonempty())
2108       case Op_StrComp:
2109       case Op_StrEquals:
2110       case Op_StrIndexOf:
2111       case Op_AryEq:
2112       case Op_EncodeISOArray:
2113         set_shared(n); // Force result into register (it will be anyways)
2114         break;
2115       case Op_ConP: {  // Convert pointers above the centerline to NUL
2116         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2117         const TypePtr* tp = tn->type()->is_ptr();
2118         if (tp->_ptr == TypePtr::AnyNull) {
2119           tn->set_type(TypePtr::NULL_PTR);
2120         }
2121         break;
2122       }
2123       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
2124         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2125         const TypePtr* tp = tn->type()->make_ptr();
2126         if (tp && tp->_ptr == TypePtr::AnyNull) {
2127           tn->set_type(TypeNarrowOop::NULL_PTR);
2128         }
2129         break;
2130       }
2131       case Op_Binary:         // These are introduced in the Post_Visit state.
2132         ShouldNotReachHere();
2133         break;
2134       case Op_ClearArray:
2135       case Op_SafePoint:
2136         mem_op = true;
2137         break;
2138       default:
2139         if( n->is_Store() ) {
2140           // Do match stores, despite no ideal reg
2141           mem_op = true;
2142           break;
2143         }
2144         if( n->is_Mem() ) { // Loads and LoadStores
2145           mem_op = true;
2146           // Loads must be root of match tree due to prior load conflict
2147           if( C->subsume_loads() == false )
2148             set_shared(n);
2149         }
2150         // Fall into default case
2151         if( !n->ideal_reg() )
2152           set_dontcare(n);  // Unmatchable Nodes
2153       } // end_switch
2154 
2155       for(int i = n->req() - 1; i >= 0; --i) { // For my children
2156         Node *m = n->in(i); // Get ith input
2157         if (m == NULL) continue;  // Ignore NULLs
2158         uint mop = m->Opcode();
2159 
2160         // Must clone all producers of flags, or we will not match correctly.
2161         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2162         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2163         // are also there, so we may match a float-branch to int-flags and
2164         // expect the allocator to haul the flags from the int-side to the
2165         // fp-side.  No can do.
2166         if( _must_clone[mop] ) {
2167           mstack.push(m, Visit);
2168           continue; // for(int i = ...)
2169         }
2170 
2171         if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
2172           // Bases used in addresses must be shared but since
2173           // they are shared through a DecodeN they may appear
2174           // to have a single use so force sharing here.
2175           set_shared(m->in(AddPNode::Base)->in(1));
2176         }
2177 
2178         // if 'n' and 'm' are part of a graph for BMI instruction, clone this node.
2179 #ifdef X86
2180         if (UseBMI1Instructions && is_bmi_pattern(n, m)) {
2181           mstack.push(m, Visit);
2182           continue;
2183         }
2184 #endif
2185 
2186         // Clone addressing expressions as they are "free" in memory access instructions
2187         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
2188           // Some inputs for address expression are not put on stack
2189           // to avoid marking them as shared and forcing them into register
2190           // if they are used only in address expressions.
2191           // But they should be marked as shared if there are other uses
2192           // besides address expressions.
2193 
2194           Node *off = m->in(AddPNode::Offset);
2195           if( off->is_Con() &&
2196               // When there are other uses besides address expressions
2197               // put it on stack and mark as shared.
2198               !is_visited(m) ) {
2199             address_visited.test_set(m->_idx); // Flag as address_visited
2200             Node *adr = m->in(AddPNode::Address);
2201 
2202             // Intel, ARM and friends can handle 2 adds in addressing mode
2203             if( clone_shift_expressions && adr->is_AddP() &&
2204                 // AtomicAdd is not an addressing expression.
2205                 // Cheap to find it by looking for screwy base.
2206                 !adr->in(AddPNode::Base)->is_top() &&
2207                 // Are there other uses besides address expressions?
2208                 !is_visited(adr) ) {
2209               address_visited.set(adr->_idx); // Flag as address_visited
2210               Node *shift = adr->in(AddPNode::Offset);
2211               // Check for shift by small constant as well
2212               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
2213                   shift->in(2)->get_int() <= 3 &&
2214                   // Are there other uses besides address expressions?
2215                   !is_visited(shift) ) {
2216                 address_visited.set(shift->_idx); // Flag as address_visited
2217                 mstack.push(shift->in(2), Visit);
2218                 Node *conv = shift->in(1);
2219 #ifdef _LP64
2220                 // Allow Matcher to match the rule which bypass
2221                 // ConvI2L operation for an array index on LP64
2222                 // if the index value is positive.
2223                 if( conv->Opcode() == Op_ConvI2L &&
2224                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
2225                     // Are there other uses besides address expressions?
2226                     !is_visited(conv) ) {
2227                   address_visited.set(conv->_idx); // Flag as address_visited
2228                   mstack.push(conv->in(1), Pre_Visit);
2229                 } else
2230 #endif
2231                 mstack.push(conv, Pre_Visit);
2232               } else {
2233                 mstack.push(shift, Pre_Visit);
2234               }
2235               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
2236               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
2237             } else {  // Sparc, Alpha, PPC and friends
2238               mstack.push(adr, Pre_Visit);
2239             }
2240 
2241             // Clone X+offset as it also folds into most addressing expressions
2242             mstack.push(off, Visit);
2243             mstack.push(m->in(AddPNode::Base), Pre_Visit);
2244             continue; // for(int i = ...)
2245           } // if( off->is_Con() )
2246         }   // if( mem_op &&
2247         mstack.push(m, Pre_Visit);
2248       }     // for(int i = ...)
2249     }
2250     else if (nstate == Alt_Post_Visit) {
2251       mstack.pop(); // Remove node from stack
2252       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2253       // shared and all users of the Bool need to move the Cmp in parallel.
2254       // This leaves both the Bool and the If pointing at the Cmp.  To
2255       // prevent the Matcher from trying to Match the Cmp along both paths
2256       // BoolNode::match_edge always returns a zero.
2257 
2258       // We reorder the Op_If in a pre-order manner, so we can visit without
2259       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2260       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2261     }
2262     else if (nstate == Post_Visit) {
2263       mstack.pop(); // Remove node from stack
2264 
2265       // Now hack a few special opcodes
2266       switch( n->Opcode() ) {       // Handle some opcodes special
2267       case Op_StorePConditional:
2268       case Op_StoreIConditional:
2269       case Op_StoreLConditional:
2270       case Op_CompareAndSwapI:
2271       case Op_CompareAndSwapL:
2272       case Op_CompareAndSwapP:
2273       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2274         Node *newval = n->in(MemNode::ValueIn );
2275         Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
2276         Node *pair = new BinaryNode( oldval, newval );
2277         n->set_req(MemNode::ValueIn,pair);
2278         n->del_req(LoadStoreConditionalNode::ExpectedIn);
2279         break;
2280       }
2281       case Op_CMoveD:              // Convert trinary to binary-tree
2282       case Op_CMoveF:
2283       case Op_CMoveI:
2284       case Op_CMoveL:
2285       case Op_CMoveN:
2286       case Op_CMoveP: {
2287         // Restructure into a binary tree for Matching.  It's possible that
2288         // we could move this code up next to the graph reshaping for IfNodes
2289         // or vice-versa, but I do not want to debug this for Ladybird.
2290         // 10/2/2000 CNC.
2291         Node *pair1 = new BinaryNode(n->in(1),n->in(1)->in(1));
2292         n->set_req(1,pair1);
2293         Node *pair2 = new BinaryNode(n->in(2),n->in(3));
2294         n->set_req(2,pair2);
2295         n->del_req(3);
2296         break;
2297       }
2298       case Op_LoopLimit: {
2299         Node *pair1 = new BinaryNode(n->in(1),n->in(2));
2300         n->set_req(1,pair1);
2301         n->set_req(2,n->in(3));
2302         n->del_req(3);
2303         break;
2304       }
2305       case Op_StrEquals: {
2306         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2307         n->set_req(2,pair1);
2308         n->set_req(3,n->in(4));
2309         n->del_req(4);
2310         break;
2311       }
2312       case Op_StrComp:
2313       case Op_StrIndexOf: {
2314         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2315         n->set_req(2,pair1);
2316         Node *pair2 = new BinaryNode(n->in(4),n->in(5));
2317         n->set_req(3,pair2);
2318         n->del_req(5);
2319         n->del_req(4);
2320         break;
2321       }
2322       case Op_EncodeISOArray: {
2323         // Restructure into a binary tree for Matching.
2324         Node* pair = new BinaryNode(n->in(3), n->in(4));
2325         n->set_req(3, pair);
2326         n->del_req(4);
2327         break;
2328       }
2329       default:
2330         break;
2331       }
2332     }
2333     else {
2334       ShouldNotReachHere();
2335     }
2336   } // end of while (mstack.is_nonempty())
2337 }
2338 
2339 #ifdef ASSERT
2340 // machine-independent root to machine-dependent root
2341 void Matcher::dump_old2new_map() {
2342   _old2new_map.dump();
2343 }
2344 #endif
2345 
2346 //---------------------------collect_null_checks-------------------------------
2347 // Find null checks in the ideal graph; write a machine-specific node for
2348 // it.  Used by later implicit-null-check handling.  Actually collects
2349 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2350 // value being tested.
2351 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2352   Node *iff = proj->in(0);
2353   if( iff->Opcode() == Op_If ) {
2354     // During matching If's have Bool & Cmp side-by-side
2355     BoolNode *b = iff->in(1)->as_Bool();
2356     Node *cmp = iff->in(2);
2357     int opc = cmp->Opcode();
2358     if (opc != Op_CmpP && opc != Op_CmpN) return;
2359 
2360     const Type* ct = cmp->in(2)->bottom_type();
2361     if (ct == TypePtr::NULL_PTR ||
2362         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2363 
2364       bool push_it = false;
2365       if( proj->Opcode() == Op_IfTrue ) {
2366         extern int all_null_checks_found;
2367         all_null_checks_found++;
2368         if( b->_test._test == BoolTest::ne ) {
2369           push_it = true;
2370         }
2371       } else {
2372         assert( proj->Opcode() == Op_IfFalse, "" );
2373         if( b->_test._test == BoolTest::eq ) {
2374           push_it = true;
2375         }
2376       }
2377       if( push_it ) {
2378         _null_check_tests.push(proj);
2379         Node* val = cmp->in(1);
2380 #ifdef _LP64
2381         if (val->bottom_type()->isa_narrowoop() &&
2382             !Matcher::narrow_oop_use_complex_address()) {
2383           //
2384           // Look for DecodeN node which should be pinned to orig_proj.
2385           // On platforms (Sparc) which can not handle 2 adds
2386           // in addressing mode we have to keep a DecodeN node and
2387           // use it to do implicit NULL check in address.
2388           //
2389           // DecodeN node was pinned to non-null path (orig_proj) during
2390           // CastPP transformation in final_graph_reshaping_impl().
2391           //
2392           uint cnt = orig_proj->outcnt();
2393           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2394             Node* d = orig_proj->raw_out(i);
2395             if (d->is_DecodeN() && d->in(1) == val) {
2396               val = d;
2397               val->set_req(0, NULL); // Unpin now.
2398               // Mark this as special case to distinguish from
2399               // a regular case: CmpP(DecodeN, NULL).
2400               val = (Node*)(((intptr_t)val) | 1);
2401               break;
2402             }
2403           }
2404         }
2405 #endif
2406         _null_check_tests.push(val);
2407       }
2408     }
2409   }
2410 }
2411 
2412 //---------------------------validate_null_checks------------------------------
2413 // Its possible that the value being NULL checked is not the root of a match
2414 // tree.  If so, I cannot use the value in an implicit null check.
2415 void Matcher::validate_null_checks( ) {
2416   uint cnt = _null_check_tests.size();
2417   for( uint i=0; i < cnt; i+=2 ) {
2418     Node *test = _null_check_tests[i];
2419     Node *val = _null_check_tests[i+1];
2420     bool is_decoden = ((intptr_t)val) & 1;
2421     val = (Node*)(((intptr_t)val) & ~1);
2422     if (has_new_node(val)) {
2423       Node* new_val = new_node(val);
2424       if (is_decoden) {
2425         assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
2426         // Note: new_val may have a control edge if
2427         // the original ideal node DecodeN was matched before
2428         // it was unpinned in Matcher::collect_null_checks().
2429         // Unpin the mach node and mark it.
2430         new_val->set_req(0, NULL);
2431         new_val = (Node*)(((intptr_t)new_val) | 1);
2432       }
2433       // Is a match-tree root, so replace with the matched value
2434       _null_check_tests.map(i+1, new_val);
2435     } else {
2436       // Yank from candidate list
2437       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2438       _null_check_tests.map(i,_null_check_tests[--cnt]);
2439       _null_check_tests.pop();
2440       _null_check_tests.pop();
2441       i-=2;
2442     }
2443   }
2444 }
2445 
2446 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2447 // atomic instruction acting as a store_load barrier without any
2448 // intervening volatile load, and thus we don't need a barrier here.
2449 // We retain the Node to act as a compiler ordering barrier.
2450 bool Matcher::post_store_load_barrier(const Node* vmb) {
2451   Compile* C = Compile::current();
2452   assert(vmb->is_MemBar(), "");
2453   assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
2454   const MemBarNode* membar = vmb->as_MemBar();
2455 
2456   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2457   Node* ctrl = NULL;
2458   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2459     Node* p = membar->fast_out(i);
2460     assert(p->is_Proj(), "only projections here");
2461     if ((p->as_Proj()->_con == TypeFunc::Control) &&
2462         !C->node_arena()->contains(p)) { // Unmatched old-space only
2463       ctrl = p;
2464       break;
2465     }
2466   }
2467   assert((ctrl != NULL), "missing control projection");
2468 
2469   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2470     Node *x = ctrl->fast_out(j);
2471     int xop = x->Opcode();
2472 
2473     // We don't need current barrier if we see another or a lock
2474     // before seeing volatile load.
2475     //
2476     // Op_Fastunlock previously appeared in the Op_* list below.
2477     // With the advent of 1-0 lock operations we're no longer guaranteed
2478     // that a monitor exit operation contains a serializing instruction.
2479 
2480     if (xop == Op_MemBarVolatile ||
2481         xop == Op_CompareAndSwapL ||
2482         xop == Op_CompareAndSwapP ||
2483         xop == Op_CompareAndSwapN ||
2484         xop == Op_CompareAndSwapI) {
2485       return true;
2486     }
2487 
2488     // Op_FastLock previously appeared in the Op_* list above.
2489     // With biased locking we're no longer guaranteed that a monitor
2490     // enter operation contains a serializing instruction.
2491     if ((xop == Op_FastLock) && !UseBiasedLocking) {
2492       return true;
2493     }
2494 
2495     if (x->is_MemBar()) {
2496       // We must retain this membar if there is an upcoming volatile
2497       // load, which will be followed by acquire membar.
2498       if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
2499         return false;
2500       } else {
2501         // For other kinds of barriers, check by pretending we
2502         // are them, and seeing if we can be removed.
2503         return post_store_load_barrier(x->as_MemBar());
2504       }
2505     }
2506 
2507     // probably not necessary to check for these
2508     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2509       return false;
2510     }
2511   }
2512   return false;
2513 }
2514 
2515 // Check whether node n is a branch to an uncommon trap that we could
2516 // optimize as test with very high branch costs in case of going to
2517 // the uncommon trap. The code must be able to be recompiled to use
2518 // a cheaper test.
2519 bool Matcher::branches_to_uncommon_trap(const Node *n) {
2520   // Don't do it for natives, adapters, or runtime stubs
2521   Compile *C = Compile::current();
2522   if (!C->is_method_compilation()) return false;
2523 
2524   assert(n->is_If(), "You should only call this on if nodes.");
2525   IfNode *ifn = n->as_If();
2526 
2527   Node *ifFalse = NULL;
2528   for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
2529     if (ifn->fast_out(i)->is_IfFalse()) {
2530       ifFalse = ifn->fast_out(i);
2531       break;
2532     }
2533   }
2534   assert(ifFalse, "An If should have an ifFalse. Graph is broken.");
2535 
2536   Node *reg = ifFalse;
2537   int cnt = 4; // We must protect against cycles.  Limit to 4 iterations.
2538                // Alternatively use visited set?  Seems too expensive.
2539   while (reg != NULL && cnt > 0) {
2540     CallNode *call = NULL;
2541     RegionNode *nxt_reg = NULL;
2542     for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
2543       Node *o = reg->fast_out(i);
2544       if (o->is_Call()) {
2545         call = o->as_Call();
2546       }
2547       if (o->is_Region()) {
2548         nxt_reg = o->as_Region();
2549       }
2550     }
2551 
2552     if (call &&
2553         call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
2554       const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
2555       if (trtype->isa_int() && trtype->is_int()->is_con()) {
2556         jint tr_con = trtype->is_int()->get_con();
2557         Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
2558         Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
2559         assert((int)reason < (int)BitsPerInt, "recode bit map");
2560 
2561         if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
2562             && action != Deoptimization::Action_none) {
2563           // This uncommon trap is sure to recompile, eventually.
2564           // When that happens, C->too_many_traps will prevent
2565           // this transformation from happening again.
2566           return true;
2567         }
2568       }
2569     }
2570 
2571     reg = nxt_reg;
2572     cnt--;
2573   }
2574 
2575   return false;
2576 }
2577 
2578 //=============================================================================
2579 //---------------------------State---------------------------------------------
2580 State::State(void) {
2581 #ifdef ASSERT
2582   _id = 0;
2583   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2584   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2585   //memset(_cost, -1, sizeof(_cost));
2586   //memset(_rule, -1, sizeof(_rule));
2587 #endif
2588   memset(_valid, 0, sizeof(_valid));
2589 }
2590 
2591 #ifdef ASSERT
2592 State::~State() {
2593   _id = 99;
2594   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2595   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2596   memset(_cost, -3, sizeof(_cost));
2597   memset(_rule, -3, sizeof(_rule));
2598 }
2599 #endif
2600 
2601 #ifndef PRODUCT
2602 //---------------------------dump----------------------------------------------
2603 void State::dump() {
2604   tty->print("\n");
2605   dump(0);
2606 }
2607 
2608 void State::dump(int depth) {
2609   for( int j = 0; j < depth; j++ )
2610     tty->print("   ");
2611   tty->print("--N: ");
2612   _leaf->dump();
2613   uint i;
2614   for( i = 0; i < _LAST_MACH_OPER; i++ )
2615     // Check for valid entry
2616     if( valid(i) ) {
2617       for( int j = 0; j < depth; j++ )
2618         tty->print("   ");
2619         assert(_cost[i] != max_juint, "cost must be a valid value");
2620         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2621         tty->print_cr("%s  %d  %s",
2622                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2623       }
2624   tty->cr();
2625 
2626   for( i=0; i<2; i++ )
2627     if( _kids[i] )
2628       _kids[i]->dump(depth+1);
2629 }
2630 #endif