1 /*
   2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/handles.inline.hpp"
  31 #include "runtime/interfaceSupport.hpp"
  32 #include "runtime/mutexLocker.hpp"
  33 #include "runtime/objectMonitor.hpp"
  34 #include "runtime/objectMonitor.inline.hpp"
  35 #include "runtime/orderAccess.inline.hpp"
  36 #include "runtime/osThread.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "runtime/thread.inline.hpp"
  39 #include "services/threadService.hpp"
  40 #include "trace/tracing.hpp"
  41 #include "trace/traceMacros.hpp"
  42 #include "utilities/dtrace.hpp"
  43 #include "utilities/macros.hpp"
  44 #include "utilities/preserveException.hpp"
  45 #ifdef TARGET_OS_FAMILY_linux
  46 # include "os_linux.inline.hpp"
  47 #endif
  48 #ifdef TARGET_OS_FAMILY_solaris
  49 # include "os_solaris.inline.hpp"
  50 #endif
  51 #ifdef TARGET_OS_FAMILY_windows
  52 # include "os_windows.inline.hpp"
  53 #endif
  54 #ifdef TARGET_OS_FAMILY_bsd
  55 # include "os_bsd.inline.hpp"
  56 #endif
  57 
  58 #if defined(__GNUC__) && !defined(IA64) && !defined(PPC64)
  59   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  60   #define ATTR __attribute__((noinline))
  61 #else
  62   #define ATTR
  63 #endif
  64 
  65 
  66 #ifdef DTRACE_ENABLED
  67 
  68 // Only bother with this argument setup if dtrace is available
  69 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  70 
  71 
  72 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  73   char* bytes = NULL;                                                      \
  74   int len = 0;                                                             \
  75   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  76   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  77   if (klassname != NULL) {                                                 \
  78     bytes = (char*)klassname->bytes();                                     \
  79     len = klassname->utf8_length();                                        \
  80   }
  81 
  82 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  83   {                                                                        \
  84     if (DTraceMonitorProbes) {                                            \
  85       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  86       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  87                        (monitor), bytes, len, (millis));                   \
  88     }                                                                      \
  89   }
  90 
  91 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  92 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  93 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  94 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  95 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  96 
  97 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  98   {                                                                        \
  99     if (DTraceMonitorProbes) {                                            \
 100       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 101       HOTSPOT_MONITOR_##probe(jtid,                                               \
 102                        (uintptr_t)(monitor), bytes, len);                  \
 103     }                                                                      \
 104   }
 105 
 106 #else //  ndef DTRACE_ENABLED
 107 
 108 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 109 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 110 
 111 #endif // ndef DTRACE_ENABLED
 112 
 113 // Tunables ...
 114 // The knob* variables are effectively final.  Once set they should
 115 // never be modified hence.  Consider using __read_mostly with GCC.
 116 
 117 int ObjectMonitor::Knob_Verbose    = 0 ;
 118 int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
 119 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
 120 static int Knob_HandOff            = 0 ;
 121 static int Knob_ReportSettings     = 0 ;
 122 
 123 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
 124 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
 125 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
 126 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
 127 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
 128 static int Knob_SpinEarly          = 1 ;
 129 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
 130 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
 131 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
 132 static int Knob_Bonus              = 100 ;     // spin success bonus
 133 static int Knob_BonusB             = 100 ;     // spin success bonus
 134 static int Knob_Penalty            = 200 ;     // spin failure penalty
 135 static int Knob_Poverty            = 1000 ;
 136 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
 137 static int Knob_FixedSpin          = 0 ;
 138 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
 139 static int Knob_UsePause           = 1 ;
 140 static int Knob_ExitPolicy         = 0 ;
 141 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
 142 static int Knob_ResetEvent         = 0 ;
 143 static int BackOffMask             = 0 ;
 144 
 145 static int Knob_FastHSSEC          = 0 ;
 146 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
 147 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
 148 static volatile int InitDone       = 0 ;
 149 
 150 #define TrySpin TrySpin_VaryDuration
 151 
 152 // -----------------------------------------------------------------------------
 153 // Theory of operations -- Monitors lists, thread residency, etc:
 154 //
 155 // * A thread acquires ownership of a monitor by successfully
 156 //   CAS()ing the _owner field from null to non-null.
 157 //
 158 // * Invariant: A thread appears on at most one monitor list --
 159 //   cxq, EntryList or WaitSet -- at any one time.
 160 //
 161 // * Contending threads "push" themselves onto the cxq with CAS
 162 //   and then spin/park.
 163 //
 164 // * After a contending thread eventually acquires the lock it must
 165 //   dequeue itself from either the EntryList or the cxq.
 166 //
 167 // * The exiting thread identifies and unparks an "heir presumptive"
 168 //   tentative successor thread on the EntryList.  Critically, the
 169 //   exiting thread doesn't unlink the successor thread from the EntryList.
 170 //   After having been unparked, the wakee will recontend for ownership of
 171 //   the monitor.   The successor (wakee) will either acquire the lock or
 172 //   re-park itself.
 173 //
 174 //   Succession is provided for by a policy of competitive handoff.
 175 //   The exiting thread does _not_ grant or pass ownership to the
 176 //   successor thread.  (This is also referred to as "handoff" succession").
 177 //   Instead the exiting thread releases ownership and possibly wakes
 178 //   a successor, so the successor can (re)compete for ownership of the lock.
 179 //   If the EntryList is empty but the cxq is populated the exiting
 180 //   thread will drain the cxq into the EntryList.  It does so by
 181 //   by detaching the cxq (installing null with CAS) and folding
 182 //   the threads from the cxq into the EntryList.  The EntryList is
 183 //   doubly linked, while the cxq is singly linked because of the
 184 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 185 //
 186 // * Concurrency invariants:
 187 //
 188 //   -- only the monitor owner may access or mutate the EntryList.
 189 //      The mutex property of the monitor itself protects the EntryList
 190 //      from concurrent interference.
 191 //   -- Only the monitor owner may detach the cxq.
 192 //
 193 // * The monitor entry list operations avoid locks, but strictly speaking
 194 //   they're not lock-free.  Enter is lock-free, exit is not.
 195 //   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
 196 //
 197 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 198 //   detaching thread.  This mechanism is immune from the ABA corruption.
 199 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 200 //
 201 // * Taken together, the cxq and the EntryList constitute or form a
 202 //   single logical queue of threads stalled trying to acquire the lock.
 203 //   We use two distinct lists to improve the odds of a constant-time
 204 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 205 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 206 //   A key desideratum is to minimize queue & monitor metadata manipulation
 207 //   that occurs while holding the monitor lock -- that is, we want to
 208 //   minimize monitor lock holds times.  Note that even a small amount of
 209 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 210 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 211 //   locks and monitor metadata.
 212 //
 213 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
 214 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 215 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 216 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 217 //
 218 //   The EntryList is ordered by the prevailing queue discipline and
 219 //   can be organized in any convenient fashion, such as a doubly-linked list or
 220 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 221 //   to operate in constant-time.  If we need a priority queue then something akin
 222 //   to Solaris' sleepq would work nicely.  Viz.,
 223 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 224 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 225 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 226 //   EntryList accordingly.
 227 //
 228 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 229 //   somewhat similar to an elevator-scan.
 230 //
 231 // * The monitor synchronization subsystem avoids the use of native
 232 //   synchronization primitives except for the narrow platform-specific
 233 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 234 //   the semantics of park-unpark.  Put another way, this monitor implementation
 235 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 236 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 237 //   underlying OS manages the READY<->RUN transitions.
 238 //
 239 // * Waiting threads reside on the WaitSet list -- wait() puts
 240 //   the caller onto the WaitSet.
 241 //
 242 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 243 //   either the EntryList or cxq.  Subsequent exit() operations will
 244 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 245 //   it's likely the notifyee would simply impale itself on the lock held
 246 //   by the notifier.
 247 //
 248 // * An interesting alternative is to encode cxq as (List,LockByte) where
 249 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 250 //   variable, like _recursions, in the scheme.  The threads or Events that form
 251 //   the list would have to be aligned in 256-byte addresses.  A thread would
 252 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 253 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 254 //   Note that is is *not* word-tearing, but it does presume that full-word
 255 //   CAS operations are coherent with intermix with STB operations.  That's true
 256 //   on most common processors.
 257 //
 258 // * See also http://blogs.sun.com/dave
 259 
 260 
 261 // -----------------------------------------------------------------------------
 262 // Enter support
 263 
 264 bool ObjectMonitor::try_enter(Thread* THREAD) {
 265   if (THREAD != _owner) {
 266     if (THREAD->is_lock_owned ((address)_owner)) {
 267        assert(_recursions == 0, "internal state error");
 268        _owner = THREAD ;
 269        _recursions = 1 ;
 270        OwnerIsThread = 1 ;
 271        return true;
 272     }
 273     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
 274       return false;
 275     }
 276     return true;
 277   } else {
 278     _recursions++;
 279     return true;
 280   }
 281 }
 282 
 283 void ATTR ObjectMonitor::enter(TRAPS) {
 284   // The following code is ordered to check the most common cases first
 285   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 286   Thread * const Self = THREAD ;
 287   void * cur ;
 288 
 289   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
 290   if (cur == NULL) {
 291      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 292      assert (_recursions == 0   , "invariant") ;
 293      assert (_owner      == Self, "invariant") ;
 294      // CONSIDER: set or assert OwnerIsThread == 1
 295      return ;
 296   }
 297 
 298   if (cur == Self) {
 299      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 300      _recursions ++ ;
 301      return ;
 302   }
 303 
 304   if (Self->is_lock_owned ((address)cur)) {
 305     assert (_recursions == 0, "internal state error");
 306     _recursions = 1 ;
 307     // Commute owner from a thread-specific on-stack BasicLockObject address to
 308     // a full-fledged "Thread *".
 309     _owner = Self ;
 310     OwnerIsThread = 1 ;
 311     return ;
 312   }
 313 
 314   // We've encountered genuine contention.
 315   assert (Self->_Stalled == 0, "invariant") ;
 316   Self->_Stalled = intptr_t(this) ;
 317 
 318   // Try one round of spinning *before* enqueueing Self
 319   // and before going through the awkward and expensive state
 320   // transitions.  The following spin is strictly optional ...
 321   // Note that if we acquire the monitor from an initial spin
 322   // we forgo posting JVMTI events and firing DTRACE probes.
 323   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 324      assert (_owner == Self      , "invariant") ;
 325      assert (_recursions == 0    , "invariant") ;
 326      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 327      Self->_Stalled = 0 ;
 328      return ;
 329   }
 330 
 331   assert (_owner != Self          , "invariant") ;
 332   assert (_succ  != Self          , "invariant") ;
 333   assert (Self->is_Java_thread()  , "invariant") ;
 334   JavaThread * jt = (JavaThread *) Self ;
 335   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
 336   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
 337   assert (this->object() != NULL  , "invariant") ;
 338   assert (_count >= 0, "invariant") ;
 339 
 340   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 341   // Ensure the object-monitor relationship remains stable while there's contention.
 342   Atomic::inc_ptr(&_count);
 343 
 344   EventJavaMonitorEnter event;
 345 
 346   { // Change java thread status to indicate blocked on monitor enter.
 347     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 348 
 349     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 350     if (JvmtiExport::should_post_monitor_contended_enter()) {
 351       JvmtiExport::post_monitor_contended_enter(jt, this);
 352 
 353       // The current thread does not yet own the monitor and does not
 354       // yet appear on any queues that would get it made the successor.
 355       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 356       // handler cannot accidentally consume an unpark() meant for the
 357       // ParkEvent associated with this ObjectMonitor.
 358     }
 359 
 360     OSThreadContendState osts(Self->osthread());
 361     ThreadBlockInVM tbivm(jt);
 362 
 363     Self->set_current_pending_monitor(this);
 364 
 365     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 366     for (;;) {
 367       jt->set_suspend_equivalent();
 368       // cleared by handle_special_suspend_equivalent_condition()
 369       // or java_suspend_self()
 370 
 371       EnterI (THREAD) ;
 372 
 373       if (!ExitSuspendEquivalent(jt)) break ;
 374 
 375       //
 376       // We have acquired the contended monitor, but while we were
 377       // waiting another thread suspended us. We don't want to enter
 378       // the monitor while suspended because that would surprise the
 379       // thread that suspended us.
 380       //
 381           _recursions = 0 ;
 382       _succ = NULL ;
 383       exit (false, Self) ;
 384 
 385       jt->java_suspend_self();
 386     }
 387     Self->set_current_pending_monitor(NULL);
 388   }
 389 
 390   Atomic::dec_ptr(&_count);
 391   assert (_count >= 0, "invariant") ;
 392   Self->_Stalled = 0 ;
 393 
 394   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 395   assert (_recursions == 0     , "invariant") ;
 396   assert (_owner == Self       , "invariant") ;
 397   assert (_succ  != Self       , "invariant") ;
 398   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 399 
 400   // The thread -- now the owner -- is back in vm mode.
 401   // Report the glorious news via TI,DTrace and jvmstat.
 402   // The probe effect is non-trivial.  All the reportage occurs
 403   // while we hold the monitor, increasing the length of the critical
 404   // section.  Amdahl's parallel speedup law comes vividly into play.
 405   //
 406   // Another option might be to aggregate the events (thread local or
 407   // per-monitor aggregation) and defer reporting until a more opportune
 408   // time -- such as next time some thread encounters contention but has
 409   // yet to acquire the lock.  While spinning that thread could
 410   // spinning we could increment JVMStat counters, etc.
 411 
 412   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 413   if (JvmtiExport::should_post_monitor_contended_entered()) {
 414     JvmtiExport::post_monitor_contended_entered(jt, this);
 415 
 416     // The current thread already owns the monitor and is not going to
 417     // call park() for the remainder of the monitor enter protocol. So
 418     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 419     // event handler consumed an unpark() issued by the thread that
 420     // just exited the monitor.
 421   }
 422 
 423   if (event.should_commit()) {
 424     event.set_klass(((oop)this->object())->klass());
 425     event.set_previousOwner((TYPE_JAVALANGTHREAD)_previous_owner_tid);
 426     event.set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
 427     event.commit();
 428   }
 429 
 430   if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
 431      ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
 432   }
 433 }
 434 
 435 
 436 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 437 // Callers must compensate as needed.
 438 
 439 int ObjectMonitor::TryLock (Thread * Self) {
 440    for (;;) {
 441       void * own = _owner ;
 442       if (own != NULL) return 0 ;
 443       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
 444          // Either guarantee _recursions == 0 or set _recursions = 0.
 445          assert (_recursions == 0, "invariant") ;
 446          assert (_owner == Self, "invariant") ;
 447          // CONSIDER: set or assert that OwnerIsThread == 1
 448          return 1 ;
 449       }
 450       // The lock had been free momentarily, but we lost the race to the lock.
 451       // Interference -- the CAS failed.
 452       // We can either return -1 or retry.
 453       // Retry doesn't make as much sense because the lock was just acquired.
 454       if (true) return -1 ;
 455    }
 456 }
 457 
 458 void ATTR ObjectMonitor::EnterI (TRAPS) {
 459     Thread * Self = THREAD ;
 460     assert (Self->is_Java_thread(), "invariant") ;
 461     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
 462 
 463     // Try the lock - TATAS
 464     if (TryLock (Self) > 0) {
 465         assert (_succ != Self              , "invariant") ;
 466         assert (_owner == Self             , "invariant") ;
 467         assert (_Responsible != Self       , "invariant") ;
 468         return ;
 469     }
 470 
 471     DeferredInitialize () ;
 472 
 473     // We try one round of spinning *before* enqueueing Self.
 474     //
 475     // If the _owner is ready but OFFPROC we could use a YieldTo()
 476     // operation to donate the remainder of this thread's quantum
 477     // to the owner.  This has subtle but beneficial affinity
 478     // effects.
 479 
 480     if (TrySpin (Self) > 0) {
 481         assert (_owner == Self        , "invariant") ;
 482         assert (_succ != Self         , "invariant") ;
 483         assert (_Responsible != Self  , "invariant") ;
 484         return ;
 485     }
 486 
 487     // The Spin failed -- Enqueue and park the thread ...
 488     assert (_succ  != Self            , "invariant") ;
 489     assert (_owner != Self            , "invariant") ;
 490     assert (_Responsible != Self      , "invariant") ;
 491 
 492     // Enqueue "Self" on ObjectMonitor's _cxq.
 493     //
 494     // Node acts as a proxy for Self.
 495     // As an aside, if were to ever rewrite the synchronization code mostly
 496     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 497     // Java objects.  This would avoid awkward lifecycle and liveness issues,
 498     // as well as eliminate a subset of ABA issues.
 499     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 500     //
 501 
 502     ObjectWaiter node(Self) ;
 503     Self->_ParkEvent->reset() ;
 504     node._prev   = (ObjectWaiter *) 0xBAD ;
 505     node.TState  = ObjectWaiter::TS_CXQ ;
 506 
 507     // Push "Self" onto the front of the _cxq.
 508     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 509     // Note that spinning tends to reduce the rate at which threads
 510     // enqueue and dequeue on EntryList|cxq.
 511     ObjectWaiter * nxt ;
 512     for (;;) {
 513         node._next = nxt = _cxq ;
 514         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
 515 
 516         // Interference - the CAS failed because _cxq changed.  Just retry.
 517         // As an optional optimization we retry the lock.
 518         if (TryLock (Self) > 0) {
 519             assert (_succ != Self         , "invariant") ;
 520             assert (_owner == Self        , "invariant") ;
 521             assert (_Responsible != Self  , "invariant") ;
 522             return ;
 523         }
 524     }
 525 
 526     // Check for cxq|EntryList edge transition to non-null.  This indicates
 527     // the onset of contention.  While contention persists exiting threads
 528     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 529     // operations revert to the faster 1-0 mode.  This enter operation may interleave
 530     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 531     // arrange for one of the contending thread to use a timed park() operations
 532     // to detect and recover from the race.  (Stranding is form of progress failure
 533     // where the monitor is unlocked but all the contending threads remain parked).
 534     // That is, at least one of the contended threads will periodically poll _owner.
 535     // One of the contending threads will become the designated "Responsible" thread.
 536     // The Responsible thread uses a timed park instead of a normal indefinite park
 537     // operation -- it periodically wakes and checks for and recovers from potential
 538     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 539     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 540     // be responsible for a monitor.
 541     //
 542     // Currently, one of the contended threads takes on the added role of "Responsible".
 543     // A viable alternative would be to use a dedicated "stranding checker" thread
 544     // that periodically iterated over all the threads (or active monitors) and unparked
 545     // successors where there was risk of stranding.  This would help eliminate the
 546     // timer scalability issues we see on some platforms as we'd only have one thread
 547     // -- the checker -- parked on a timer.
 548 
 549     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
 550         // Try to assume the role of responsible thread for the monitor.
 551         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 552         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 553     }
 554 
 555     // The lock have been released while this thread was occupied queueing
 556     // itself onto _cxq.  To close the race and avoid "stranding" and
 557     // progress-liveness failure we must resample-retry _owner before parking.
 558     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 559     // In this case the ST-MEMBAR is accomplished with CAS().
 560     //
 561     // TODO: Defer all thread state transitions until park-time.
 562     // Since state transitions are heavy and inefficient we'd like
 563     // to defer the state transitions until absolutely necessary,
 564     // and in doing so avoid some transitions ...
 565 
 566     TEVENT (Inflated enter - Contention) ;
 567     int nWakeups = 0 ;
 568     int RecheckInterval = 1 ;
 569 
 570     for (;;) {
 571 
 572         if (TryLock (Self) > 0) break ;
 573         assert (_owner != Self, "invariant") ;
 574 
 575         if ((SyncFlags & 2) && _Responsible == NULL) {
 576            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 577         }
 578 
 579         // park self
 580         if (_Responsible == Self || (SyncFlags & 1)) {
 581             TEVENT (Inflated enter - park TIMED) ;
 582             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
 583             // Increase the RecheckInterval, but clamp the value.
 584             RecheckInterval *= 8 ;
 585             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
 586         } else {
 587             TEVENT (Inflated enter - park UNTIMED) ;
 588             Self->_ParkEvent->park() ;
 589         }
 590 
 591         if (TryLock(Self) > 0) break ;
 592 
 593         // The lock is still contested.
 594         // Keep a tally of the # of futile wakeups.
 595         // Note that the counter is not protected by a lock or updated by atomics.
 596         // That is by design - we trade "lossy" counters which are exposed to
 597         // races during updates for a lower probe effect.
 598         TEVENT (Inflated enter - Futile wakeup) ;
 599         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 600            ObjectMonitor::_sync_FutileWakeups->inc() ;
 601         }
 602         ++ nWakeups ;
 603 
 604         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 605         // We can defer clearing _succ until after the spin completes
 606         // TrySpin() must tolerate being called with _succ == Self.
 607         // Try yet another round of adaptive spinning.
 608         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
 609 
 610         // We can find that we were unpark()ed and redesignated _succ while
 611         // we were spinning.  That's harmless.  If we iterate and call park(),
 612         // park() will consume the event and return immediately and we'll
 613         // just spin again.  This pattern can repeat, leaving _succ to simply
 614         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 615         // Alternately, we can sample fired() here, and if set, forgo spinning
 616         // in the next iteration.
 617 
 618         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 619            Self->_ParkEvent->reset() ;
 620            OrderAccess::fence() ;
 621         }
 622         if (_succ == Self) _succ = NULL ;
 623 
 624         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 625         OrderAccess::fence() ;
 626     }
 627 
 628     // Egress :
 629     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 630     // Normally we'll find Self on the EntryList .
 631     // From the perspective of the lock owner (this thread), the
 632     // EntryList is stable and cxq is prepend-only.
 633     // The head of cxq is volatile but the interior is stable.
 634     // In addition, Self.TState is stable.
 635 
 636     assert (_owner == Self      , "invariant") ;
 637     assert (object() != NULL    , "invariant") ;
 638     // I'd like to write:
 639     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 640     // but as we're at a safepoint that's not safe.
 641 
 642     UnlinkAfterAcquire (Self, &node) ;
 643     if (_succ == Self) _succ = NULL ;
 644 
 645     assert (_succ != Self, "invariant") ;
 646     if (_Responsible == Self) {
 647         _Responsible = NULL ;
 648         OrderAccess::fence(); // Dekker pivot-point
 649 
 650         // We may leave threads on cxq|EntryList without a designated
 651         // "Responsible" thread.  This is benign.  When this thread subsequently
 652         // exits the monitor it can "see" such preexisting "old" threads --
 653         // threads that arrived on the cxq|EntryList before the fence, above --
 654         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 655         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 656         // non-null and elect a new "Responsible" timer thread.
 657         //
 658         // This thread executes:
 659         //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 660         //    LD cxq|EntryList               (in subsequent exit)
 661         //
 662         // Entering threads in the slow/contended path execute:
 663         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 664         //    The (ST cxq; MEMBAR) is accomplished with CAS().
 665         //
 666         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 667         // exit operation from floating above the ST Responsible=null.
 668     }
 669 
 670     // We've acquired ownership with CAS().
 671     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 672     // But since the CAS() this thread may have also stored into _succ,
 673     // EntryList, cxq or Responsible.  These meta-data updates must be
 674     // visible __before this thread subsequently drops the lock.
 675     // Consider what could occur if we didn't enforce this constraint --
 676     // STs to monitor meta-data and user-data could reorder with (become
 677     // visible after) the ST in exit that drops ownership of the lock.
 678     // Some other thread could then acquire the lock, but observe inconsistent
 679     // or old monitor meta-data and heap data.  That violates the JMM.
 680     // To that end, the 1-0 exit() operation must have at least STST|LDST
 681     // "release" barrier semantics.  Specifically, there must be at least a
 682     // STST|LDST barrier in exit() before the ST of null into _owner that drops
 683     // the lock.   The barrier ensures that changes to monitor meta-data and data
 684     // protected by the lock will be visible before we release the lock, and
 685     // therefore before some other thread (CPU) has a chance to acquire the lock.
 686     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 687     //
 688     // Critically, any prior STs to _succ or EntryList must be visible before
 689     // the ST of null into _owner in the *subsequent* (following) corresponding
 690     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 691     // execute a serializing instruction.
 692 
 693     if (SyncFlags & 8) {
 694        OrderAccess::fence() ;
 695     }
 696     return ;
 697 }
 698 
 699 // ReenterI() is a specialized inline form of the latter half of the
 700 // contended slow-path from EnterI().  We use ReenterI() only for
 701 // monitor reentry in wait().
 702 //
 703 // In the future we should reconcile EnterI() and ReenterI(), adding
 704 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 705 // loop accordingly.
 706 
 707 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
 708     assert (Self != NULL                , "invariant") ;
 709     assert (SelfNode != NULL            , "invariant") ;
 710     assert (SelfNode->_thread == Self   , "invariant") ;
 711     assert (_waiters > 0                , "invariant") ;
 712     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
 713     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
 714     JavaThread * jt = (JavaThread *) Self ;
 715 
 716     int nWakeups = 0 ;
 717     for (;;) {
 718         ObjectWaiter::TStates v = SelfNode->TState ;
 719         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
 720         assert    (_owner != Self, "invariant") ;
 721 
 722         if (TryLock (Self) > 0) break ;
 723         if (TrySpin (Self) > 0) break ;
 724 
 725         TEVENT (Wait Reentry - parking) ;
 726 
 727         // State transition wrappers around park() ...
 728         // ReenterI() wisely defers state transitions until
 729         // it's clear we must park the thread.
 730         {
 731            OSThreadContendState osts(Self->osthread());
 732            ThreadBlockInVM tbivm(jt);
 733 
 734            // cleared by handle_special_suspend_equivalent_condition()
 735            // or java_suspend_self()
 736            jt->set_suspend_equivalent();
 737            if (SyncFlags & 1) {
 738               Self->_ParkEvent->park ((jlong)1000) ;
 739            } else {
 740               Self->_ParkEvent->park () ;
 741            }
 742 
 743            // were we externally suspended while we were waiting?
 744            for (;;) {
 745               if (!ExitSuspendEquivalent (jt)) break ;
 746               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 747               jt->java_suspend_self();
 748               jt->set_suspend_equivalent();
 749            }
 750         }
 751 
 752         // Try again, but just so we distinguish between futile wakeups and
 753         // successful wakeups.  The following test isn't algorithmically
 754         // necessary, but it helps us maintain sensible statistics.
 755         if (TryLock(Self) > 0) break ;
 756 
 757         // The lock is still contested.
 758         // Keep a tally of the # of futile wakeups.
 759         // Note that the counter is not protected by a lock or updated by atomics.
 760         // That is by design - we trade "lossy" counters which are exposed to
 761         // races during updates for a lower probe effect.
 762         TEVENT (Wait Reentry - futile wakeup) ;
 763         ++ nWakeups ;
 764 
 765         // Assuming this is not a spurious wakeup we'll normally
 766         // find that _succ == Self.
 767         if (_succ == Self) _succ = NULL ;
 768 
 769         // Invariant: after clearing _succ a contending thread
 770         // *must* retry  _owner before parking.
 771         OrderAccess::fence() ;
 772 
 773         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 774           ObjectMonitor::_sync_FutileWakeups->inc() ;
 775         }
 776     }
 777 
 778     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 779     // Normally we'll find Self on the EntryList.
 780     // Unlinking from the EntryList is constant-time and atomic-free.
 781     // From the perspective of the lock owner (this thread), the
 782     // EntryList is stable and cxq is prepend-only.
 783     // The head of cxq is volatile but the interior is stable.
 784     // In addition, Self.TState is stable.
 785 
 786     assert (_owner == Self, "invariant") ;
 787     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 788     UnlinkAfterAcquire (Self, SelfNode) ;
 789     if (_succ == Self) _succ = NULL ;
 790     assert (_succ != Self, "invariant") ;
 791     SelfNode->TState = ObjectWaiter::TS_RUN ;
 792     OrderAccess::fence() ;      // see comments at the end of EnterI()
 793 }
 794 
 795 // after the thread acquires the lock in ::enter().  Equally, we could defer
 796 // unlinking the thread until ::exit()-time.
 797 
 798 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
 799 {
 800     assert (_owner == Self, "invariant") ;
 801     assert (SelfNode->_thread == Self, "invariant") ;
 802 
 803     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 804         // Normal case: remove Self from the DLL EntryList .
 805         // This is a constant-time operation.
 806         ObjectWaiter * nxt = SelfNode->_next ;
 807         ObjectWaiter * prv = SelfNode->_prev ;
 808         if (nxt != NULL) nxt->_prev = prv ;
 809         if (prv != NULL) prv->_next = nxt ;
 810         if (SelfNode == _EntryList ) _EntryList = nxt ;
 811         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 812         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 813         TEVENT (Unlink from EntryList) ;
 814     } else {
 815         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 816         // Inopportune interleaving -- Self is still on the cxq.
 817         // This usually means the enqueue of self raced an exiting thread.
 818         // Normally we'll find Self near the front of the cxq, so
 819         // dequeueing is typically fast.  If needbe we can accelerate
 820         // this with some MCS/CHL-like bidirectional list hints and advisory
 821         // back-links so dequeueing from the interior will normally operate
 822         // in constant-time.
 823         // Dequeue Self from either the head (with CAS) or from the interior
 824         // with a linear-time scan and normal non-atomic memory operations.
 825         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 826         // and then unlink Self from EntryList.  We have to drain eventually,
 827         // so it might as well be now.
 828 
 829         ObjectWaiter * v = _cxq ;
 830         assert (v != NULL, "invariant") ;
 831         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
 832             // The CAS above can fail from interference IFF a "RAT" arrived.
 833             // In that case Self must be in the interior and can no longer be
 834             // at the head of cxq.
 835             if (v == SelfNode) {
 836                 assert (_cxq != v, "invariant") ;
 837                 v = _cxq ;          // CAS above failed - start scan at head of list
 838             }
 839             ObjectWaiter * p ;
 840             ObjectWaiter * q = NULL ;
 841             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
 842                 q = p ;
 843                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 844             }
 845             assert (v != SelfNode,  "invariant") ;
 846             assert (p == SelfNode,  "Node not found on cxq") ;
 847             assert (p != _cxq,      "invariant") ;
 848             assert (q != NULL,      "invariant") ;
 849             assert (q->_next == p,  "invariant") ;
 850             q->_next = p->_next ;
 851         }
 852         TEVENT (Unlink from cxq) ;
 853     }
 854 
 855     // Diagnostic hygiene ...
 856     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
 857     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
 858     SelfNode->TState = ObjectWaiter::TS_RUN ;
 859 }
 860 
 861 // -----------------------------------------------------------------------------
 862 // Exit support
 863 //
 864 // exit()
 865 // ~~~~~~
 866 // Note that the collector can't reclaim the objectMonitor or deflate
 867 // the object out from underneath the thread calling ::exit() as the
 868 // thread calling ::exit() never transitions to a stable state.
 869 // This inhibits GC, which in turn inhibits asynchronous (and
 870 // inopportune) reclamation of "this".
 871 //
 872 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 873 // There's one exception to the claim above, however.  EnterI() can call
 874 // exit() to drop a lock if the acquirer has been externally suspended.
 875 // In that case exit() is called with _thread_state as _thread_blocked,
 876 // but the monitor's _count field is > 0, which inhibits reclamation.
 877 //
 878 // 1-0 exit
 879 // ~~~~~~~~
 880 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 881 // the fast-path operators have been optimized so the common ::exit()
 882 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
 883 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 884 // greatly improves latency -- MEMBAR and CAS having considerable local
 885 // latency on modern processors -- but at the cost of "stranding".  Absent the
 886 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 887 // ::enter() path, resulting in the entering thread being stranding
 888 // and a progress-liveness failure.   Stranding is extremely rare.
 889 // We use timers (timed park operations) & periodic polling to detect
 890 // and recover from stranding.  Potentially stranded threads periodically
 891 // wake up and poll the lock.  See the usage of the _Responsible variable.
 892 //
 893 // The CAS() in enter provides for safety and exclusion, while the CAS or
 894 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 895 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
 896 // We detect and recover from stranding with timers.
 897 //
 898 // If a thread transiently strands it'll park until (a) another
 899 // thread acquires the lock and then drops the lock, at which time the
 900 // exiting thread will notice and unpark the stranded thread, or, (b)
 901 // the timer expires.  If the lock is high traffic then the stranding latency
 902 // will be low due to (a).  If the lock is low traffic then the odds of
 903 // stranding are lower, although the worst-case stranding latency
 904 // is longer.  Critically, we don't want to put excessive load in the
 905 // platform's timer subsystem.  We want to minimize both the timer injection
 906 // rate (timers created/sec) as well as the number of timers active at
 907 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 908 // the integral of the # of active timers at any instant over time).
 909 // Both impinge on OS scalability.  Given that, at most one thread parked on
 910 // a monitor will use a timer.
 911 
 912 void ATTR ObjectMonitor::exit(bool not_suspended, TRAPS) {
 913    Thread * Self = THREAD ;
 914    if (THREAD != _owner) {
 915      if (THREAD->is_lock_owned((address) _owner)) {
 916        // Transmute _owner from a BasicLock pointer to a Thread address.
 917        // We don't need to hold _mutex for this transition.
 918        // Non-null to Non-null is safe as long as all readers can
 919        // tolerate either flavor.
 920        assert (_recursions == 0, "invariant") ;
 921        _owner = THREAD ;
 922        _recursions = 0 ;
 923        OwnerIsThread = 1 ;
 924      } else {
 925        // NOTE: we need to handle unbalanced monitor enter/exit
 926        // in native code by throwing an exception.
 927        // TODO: Throw an IllegalMonitorStateException ?
 928        TEVENT (Exit - Throw IMSX) ;
 929        assert(false, "Non-balanced monitor enter/exit!");
 930        if (false) {
 931           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 932        }
 933        return;
 934      }
 935    }
 936 
 937    if (_recursions != 0) {
 938      _recursions--;        // this is simple recursive enter
 939      TEVENT (Inflated exit - recursive) ;
 940      return ;
 941    }
 942 
 943    // Invariant: after setting Responsible=null an thread must execute
 944    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 945    if ((SyncFlags & 4) == 0) {
 946       _Responsible = NULL ;
 947    }
 948 
 949 #if INCLUDE_TRACE
 950    // get the owner's thread id for the MonitorEnter event
 951    // if it is enabled and the thread isn't suspended
 952    if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) {
 953      _previous_owner_tid = SharedRuntime::get_java_tid(Self);
 954    }
 955 #endif
 956 
 957    for (;;) {
 958       assert (THREAD == _owner, "invariant") ;
 959 
 960 
 961       if (Knob_ExitPolicy == 0) {
 962          // release semantics: prior loads and stores from within the critical section
 963          // must not float (reorder) past the following store that drops the lock.
 964          // On SPARC that requires MEMBAR #loadstore|#storestore.
 965          // But of course in TSO #loadstore|#storestore is not required.
 966          // I'd like to write one of the following:
 967          // A.  OrderAccess::release() ; _owner = NULL
 968          // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 969          // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 970          // store into a _dummy variable.  That store is not needed, but can result
 971          // in massive wasteful coherency traffic on classic SMP systems.
 972          // Instead, I use release_store(), which is implemented as just a simple
 973          // ST on x64, x86 and SPARC.
 974          OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
 975          OrderAccess::storeload() ;                         // See if we need to wake a successor
 976          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 977             TEVENT (Inflated exit - simple egress) ;
 978             return ;
 979          }
 980          TEVENT (Inflated exit - complex egress) ;
 981 
 982          // Normally the exiting thread is responsible for ensuring succession,
 983          // but if other successors are ready or other entering threads are spinning
 984          // then this thread can simply store NULL into _owner and exit without
 985          // waking a successor.  The existence of spinners or ready successors
 986          // guarantees proper succession (liveness).  Responsibility passes to the
 987          // ready or running successors.  The exiting thread delegates the duty.
 988          // More precisely, if a successor already exists this thread is absolved
 989          // of the responsibility of waking (unparking) one.
 990          //
 991          // The _succ variable is critical to reducing futile wakeup frequency.
 992          // _succ identifies the "heir presumptive" thread that has been made
 993          // ready (unparked) but that has not yet run.  We need only one such
 994          // successor thread to guarantee progress.
 995          // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
 996          // section 3.3 "Futile Wakeup Throttling" for details.
 997          //
 998          // Note that spinners in Enter() also set _succ non-null.
 999          // In the current implementation spinners opportunistically set
1000          // _succ so that exiting threads might avoid waking a successor.
1001          // Another less appealing alternative would be for the exiting thread
1002          // to drop the lock and then spin briefly to see if a spinner managed
1003          // to acquire the lock.  If so, the exiting thread could exit
1004          // immediately without waking a successor, otherwise the exiting
1005          // thread would need to dequeue and wake a successor.
1006          // (Note that we'd need to make the post-drop spin short, but no
1007          // shorter than the worst-case round-trip cache-line migration time.
1008          // The dropped lock needs to become visible to the spinner, and then
1009          // the acquisition of the lock by the spinner must become visible to
1010          // the exiting thread).
1011          //
1012 
1013          // It appears that an heir-presumptive (successor) must be made ready.
1014          // Only the current lock owner can manipulate the EntryList or
1015          // drain _cxq, so we need to reacquire the lock.  If we fail
1016          // to reacquire the lock the responsibility for ensuring succession
1017          // falls to the new owner.
1018          //
1019          if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1020             return ;
1021          }
1022          TEVENT (Exit - Reacquired) ;
1023       } else {
1024          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1025             OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
1026             OrderAccess::storeload() ;
1027             // Ratify the previously observed values.
1028             if (_cxq == NULL || _succ != NULL) {
1029                 TEVENT (Inflated exit - simple egress) ;
1030                 return ;
1031             }
1032 
1033             // inopportune interleaving -- the exiting thread (this thread)
1034             // in the fast-exit path raced an entering thread in the slow-enter
1035             // path.
1036             // We have two choices:
1037             // A.  Try to reacquire the lock.
1038             //     If the CAS() fails return immediately, otherwise
1039             //     we either restart/rerun the exit operation, or simply
1040             //     fall-through into the code below which wakes a successor.
1041             // B.  If the elements forming the EntryList|cxq are TSM
1042             //     we could simply unpark() the lead thread and return
1043             //     without having set _succ.
1044             if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1045                TEVENT (Inflated exit - reacquired succeeded) ;
1046                return ;
1047             }
1048             TEVENT (Inflated exit - reacquired failed) ;
1049          } else {
1050             TEVENT (Inflated exit - complex egress) ;
1051          }
1052       }
1053 
1054       guarantee (_owner == THREAD, "invariant") ;
1055 
1056       ObjectWaiter * w = NULL ;
1057       int QMode = Knob_QMode ;
1058 
1059       if (QMode == 2 && _cxq != NULL) {
1060           // QMode == 2 : cxq has precedence over EntryList.
1061           // Try to directly wake a successor from the cxq.
1062           // If successful, the successor will need to unlink itself from cxq.
1063           w = _cxq ;
1064           assert (w != NULL, "invariant") ;
1065           assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1066           ExitEpilog (Self, w) ;
1067           return ;
1068       }
1069 
1070       if (QMode == 3 && _cxq != NULL) {
1071           // Aggressively drain cxq into EntryList at the first opportunity.
1072           // This policy ensure that recently-run threads live at the head of EntryList.
1073           // Drain _cxq into EntryList - bulk transfer.
1074           // First, detach _cxq.
1075           // The following loop is tantamount to: w = swap (&cxq, NULL)
1076           w = _cxq ;
1077           for (;;) {
1078              assert (w != NULL, "Invariant") ;
1079              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1080              if (u == w) break ;
1081              w = u ;
1082           }
1083           assert (w != NULL              , "invariant") ;
1084 
1085           ObjectWaiter * q = NULL ;
1086           ObjectWaiter * p ;
1087           for (p = w ; p != NULL ; p = p->_next) {
1088               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1089               p->TState = ObjectWaiter::TS_ENTER ;
1090               p->_prev = q ;
1091               q = p ;
1092           }
1093 
1094           // Append the RATs to the EntryList
1095           // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1096           ObjectWaiter * Tail ;
1097           for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
1098           if (Tail == NULL) {
1099               _EntryList = w ;
1100           } else {
1101               Tail->_next = w ;
1102               w->_prev = Tail ;
1103           }
1104 
1105           // Fall thru into code that tries to wake a successor from EntryList
1106       }
1107 
1108       if (QMode == 4 && _cxq != NULL) {
1109           // Aggressively drain cxq into EntryList at the first opportunity.
1110           // This policy ensure that recently-run threads live at the head of EntryList.
1111 
1112           // Drain _cxq into EntryList - bulk transfer.
1113           // First, detach _cxq.
1114           // The following loop is tantamount to: w = swap (&cxq, NULL)
1115           w = _cxq ;
1116           for (;;) {
1117              assert (w != NULL, "Invariant") ;
1118              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1119              if (u == w) break ;
1120              w = u ;
1121           }
1122           assert (w != NULL              , "invariant") ;
1123 
1124           ObjectWaiter * q = NULL ;
1125           ObjectWaiter * p ;
1126           for (p = w ; p != NULL ; p = p->_next) {
1127               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1128               p->TState = ObjectWaiter::TS_ENTER ;
1129               p->_prev = q ;
1130               q = p ;
1131           }
1132 
1133           // Prepend the RATs to the EntryList
1134           if (_EntryList != NULL) {
1135               q->_next = _EntryList ;
1136               _EntryList->_prev = q ;
1137           }
1138           _EntryList = w ;
1139 
1140           // Fall thru into code that tries to wake a successor from EntryList
1141       }
1142 
1143       w = _EntryList  ;
1144       if (w != NULL) {
1145           // I'd like to write: guarantee (w->_thread != Self).
1146           // But in practice an exiting thread may find itself on the EntryList.
1147           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1148           // then calls exit().  Exit release the lock by setting O._owner to NULL.
1149           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
1150           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1151           // release the lock "O".  T2 resumes immediately after the ST of null into
1152           // _owner, above.  T2 notices that the EntryList is populated, so it
1153           // reacquires the lock and then finds itself on the EntryList.
1154           // Given all that, we have to tolerate the circumstance where "w" is
1155           // associated with Self.
1156           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1157           ExitEpilog (Self, w) ;
1158           return ;
1159       }
1160 
1161       // If we find that both _cxq and EntryList are null then just
1162       // re-run the exit protocol from the top.
1163       w = _cxq ;
1164       if (w == NULL) continue ;
1165 
1166       // Drain _cxq into EntryList - bulk transfer.
1167       // First, detach _cxq.
1168       // The following loop is tantamount to: w = swap (&cxq, NULL)
1169       for (;;) {
1170           assert (w != NULL, "Invariant") ;
1171           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1172           if (u == w) break ;
1173           w = u ;
1174       }
1175       TEVENT (Inflated exit - drain cxq into EntryList) ;
1176 
1177       assert (w != NULL              , "invariant") ;
1178       assert (_EntryList  == NULL    , "invariant") ;
1179 
1180       // Convert the LIFO SLL anchored by _cxq into a DLL.
1181       // The list reorganization step operates in O(LENGTH(w)) time.
1182       // It's critical that this step operate quickly as
1183       // "Self" still holds the outer-lock, restricting parallelism
1184       // and effectively lengthening the critical section.
1185       // Invariant: s chases t chases u.
1186       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1187       // we have faster access to the tail.
1188 
1189       if (QMode == 1) {
1190          // QMode == 1 : drain cxq to EntryList, reversing order
1191          // We also reverse the order of the list.
1192          ObjectWaiter * s = NULL ;
1193          ObjectWaiter * t = w ;
1194          ObjectWaiter * u = NULL ;
1195          while (t != NULL) {
1196              guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
1197              t->TState = ObjectWaiter::TS_ENTER ;
1198              u = t->_next ;
1199              t->_prev = u ;
1200              t->_next = s ;
1201              s = t;
1202              t = u ;
1203          }
1204          _EntryList  = s ;
1205          assert (s != NULL, "invariant") ;
1206       } else {
1207          // QMode == 0 or QMode == 2
1208          _EntryList = w ;
1209          ObjectWaiter * q = NULL ;
1210          ObjectWaiter * p ;
1211          for (p = w ; p != NULL ; p = p->_next) {
1212              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1213              p->TState = ObjectWaiter::TS_ENTER ;
1214              p->_prev = q ;
1215              q = p ;
1216          }
1217       }
1218 
1219       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1220       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1221 
1222       // See if we can abdicate to a spinner instead of waking a thread.
1223       // A primary goal of the implementation is to reduce the
1224       // context-switch rate.
1225       if (_succ != NULL) continue;
1226 
1227       w = _EntryList  ;
1228       if (w != NULL) {
1229           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1230           ExitEpilog (Self, w) ;
1231           return ;
1232       }
1233    }
1234 }
1235 
1236 // ExitSuspendEquivalent:
1237 // A faster alternate to handle_special_suspend_equivalent_condition()
1238 //
1239 // handle_special_suspend_equivalent_condition() unconditionally
1240 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1241 // operations have high latency.  Note that in ::enter() we call HSSEC
1242 // while holding the monitor, so we effectively lengthen the critical sections.
1243 //
1244 // There are a number of possible solutions:
1245 //
1246 // A.  To ameliorate the problem we might also defer state transitions
1247 //     to as late as possible -- just prior to parking.
1248 //     Given that, we'd call HSSEC after having returned from park(),
1249 //     but before attempting to acquire the monitor.  This is only a
1250 //     partial solution.  It avoids calling HSSEC while holding the
1251 //     monitor (good), but it still increases successor reacquisition latency --
1252 //     the interval between unparking a successor and the time the successor
1253 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1254 //     If we use this technique we can also avoid EnterI()-exit() loop
1255 //     in ::enter() where we iteratively drop the lock and then attempt
1256 //     to reacquire it after suspending.
1257 //
1258 // B.  In the future we might fold all the suspend bits into a
1259 //     composite per-thread suspend flag and then update it with CAS().
1260 //     Alternately, a Dekker-like mechanism with multiple variables
1261 //     would suffice:
1262 //       ST Self->_suspend_equivalent = false
1263 //       MEMBAR
1264 //       LD Self_>_suspend_flags
1265 //
1266 
1267 
1268 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
1269    int Mode = Knob_FastHSSEC ;
1270    if (Mode && !jSelf->is_external_suspend()) {
1271       assert (jSelf->is_suspend_equivalent(), "invariant") ;
1272       jSelf->clear_suspend_equivalent() ;
1273       if (2 == Mode) OrderAccess::storeload() ;
1274       if (!jSelf->is_external_suspend()) return false ;
1275       // We raced a suspension -- fall thru into the slow path
1276       TEVENT (ExitSuspendEquivalent - raced) ;
1277       jSelf->set_suspend_equivalent() ;
1278    }
1279    return jSelf->handle_special_suspend_equivalent_condition() ;
1280 }
1281 
1282 
1283 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
1284    assert (_owner == Self, "invariant") ;
1285 
1286    // Exit protocol:
1287    // 1. ST _succ = wakee
1288    // 2. membar #loadstore|#storestore;
1289    // 2. ST _owner = NULL
1290    // 3. unpark(wakee)
1291 
1292    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
1293    ParkEvent * Trigger = Wakee->_event ;
1294 
1295    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1296    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1297    // out-of-scope (non-extant).
1298    Wakee  = NULL ;
1299 
1300    // Drop the lock
1301    OrderAccess::release_store_ptr (&_owner, NULL) ;
1302    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
1303 
1304    if (SafepointSynchronize::do_call_back()) {
1305       TEVENT (unpark before SAFEPOINT) ;
1306    }
1307 
1308    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1309    Trigger->unpark() ;
1310 
1311    // Maintain stats and report events to JVMTI
1312    if (ObjectMonitor::_sync_Parks != NULL) {
1313       ObjectMonitor::_sync_Parks->inc() ;
1314    }
1315 }
1316 
1317 
1318 // -----------------------------------------------------------------------------
1319 // Class Loader deadlock handling.
1320 //
1321 // complete_exit exits a lock returning recursion count
1322 // complete_exit/reenter operate as a wait without waiting
1323 // complete_exit requires an inflated monitor
1324 // The _owner field is not always the Thread addr even with an
1325 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1326 // thread due to contention.
1327 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1328    Thread * const Self = THREAD;
1329    assert(Self->is_Java_thread(), "Must be Java thread!");
1330    JavaThread *jt = (JavaThread *)THREAD;
1331 
1332    DeferredInitialize();
1333 
1334    if (THREAD != _owner) {
1335     if (THREAD->is_lock_owned ((address)_owner)) {
1336        assert(_recursions == 0, "internal state error");
1337        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
1338        _recursions = 0 ;
1339        OwnerIsThread = 1 ;
1340     }
1341    }
1342 
1343    guarantee(Self == _owner, "complete_exit not owner");
1344    intptr_t save = _recursions; // record the old recursion count
1345    _recursions = 0;        // set the recursion level to be 0
1346    exit (true, Self) ;           // exit the monitor
1347    guarantee (_owner != Self, "invariant");
1348    return save;
1349 }
1350 
1351 // reenter() enters a lock and sets recursion count
1352 // complete_exit/reenter operate as a wait without waiting
1353 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1354    Thread * const Self = THREAD;
1355    assert(Self->is_Java_thread(), "Must be Java thread!");
1356    JavaThread *jt = (JavaThread *)THREAD;
1357 
1358    guarantee(_owner != Self, "reenter already owner");
1359    enter (THREAD);       // enter the monitor
1360    guarantee (_recursions == 0, "reenter recursion");
1361    _recursions = recursions;
1362    return;
1363 }
1364 
1365 
1366 // -----------------------------------------------------------------------------
1367 // A macro is used below because there may already be a pending
1368 // exception which should not abort the execution of the routines
1369 // which use this (which is why we don't put this into check_slow and
1370 // call it with a CHECK argument).
1371 
1372 #define CHECK_OWNER()                                                             \
1373   do {                                                                            \
1374     if (THREAD != _owner) {                                                       \
1375       if (THREAD->is_lock_owned((address) _owner)) {                              \
1376         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
1377         _recursions = 0;                                                          \
1378         OwnerIsThread = 1 ;                                                       \
1379       } else {                                                                    \
1380         TEVENT (Throw IMSX) ;                                                     \
1381         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
1382       }                                                                           \
1383     }                                                                             \
1384   } while (false)
1385 
1386 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1387 // TODO-FIXME: remove check_slow() -- it's likely dead.
1388 
1389 void ObjectMonitor::check_slow(TRAPS) {
1390   TEVENT (check_slow - throw IMSX) ;
1391   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1392   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1393 }
1394 
1395 static int Adjust (volatile int * adr, int dx) {
1396   int v ;
1397   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
1398   return v ;
1399 }
1400 
1401 // helper method for posting a monitor wait event
1402 void ObjectMonitor::post_monitor_wait_event(EventJavaMonitorWait* event,
1403                                                            jlong notifier_tid,
1404                                                            jlong timeout,
1405                                                            bool timedout) {
1406   event->set_klass(((oop)this->object())->klass());
1407   event->set_timeout((TYPE_ULONG)timeout);
1408   event->set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
1409   event->set_notifier((TYPE_OSTHREAD)notifier_tid);
1410   event->set_timedOut((TYPE_BOOLEAN)timedout);
1411   event->commit();
1412 }
1413 
1414 // -----------------------------------------------------------------------------
1415 // Wait/Notify/NotifyAll
1416 //
1417 // Note: a subset of changes to ObjectMonitor::wait()
1418 // will need to be replicated in complete_exit above
1419 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1420    Thread * const Self = THREAD ;
1421    assert(Self->is_Java_thread(), "Must be Java thread!");
1422    JavaThread *jt = (JavaThread *)THREAD;
1423 
1424    DeferredInitialize () ;
1425 
1426    // Throw IMSX or IEX.
1427    CHECK_OWNER();
1428 
1429    EventJavaMonitorWait event;
1430 
1431    // check for a pending interrupt
1432    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1433      // post monitor waited event.  Note that this is past-tense, we are done waiting.
1434      if (JvmtiExport::should_post_monitor_waited()) {
1435         // Note: 'false' parameter is passed here because the
1436         // wait was not timed out due to thread interrupt.
1437         JvmtiExport::post_monitor_waited(jt, this, false);
1438 
1439         // In this short circuit of the monitor wait protocol, the
1440         // current thread never drops ownership of the monitor and
1441         // never gets added to the wait queue so the current thread
1442         // cannot be made the successor. This means that the
1443         // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1444         // consume an unpark() meant for the ParkEvent associated with
1445         // this ObjectMonitor.
1446      }
1447      if (event.should_commit()) {
1448        post_monitor_wait_event(&event, 0, millis, false);
1449      }
1450      TEVENT (Wait - Throw IEX) ;
1451      THROW(vmSymbols::java_lang_InterruptedException());
1452      return ;
1453    }
1454 
1455    TEVENT (Wait) ;
1456 
1457    assert (Self->_Stalled == 0, "invariant") ;
1458    Self->_Stalled = intptr_t(this) ;
1459    jt->set_current_waiting_monitor(this);
1460 
1461    // create a node to be put into the queue
1462    // Critically, after we reset() the event but prior to park(), we must check
1463    // for a pending interrupt.
1464    ObjectWaiter node(Self);
1465    node.TState = ObjectWaiter::TS_WAIT ;
1466    Self->_ParkEvent->reset() ;
1467    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1468 
1469    // Enter the waiting queue, which is a circular doubly linked list in this case
1470    // but it could be a priority queue or any data structure.
1471    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1472    // by the the owner of the monitor *except* in the case where park()
1473    // returns because of a timeout of interrupt.  Contention is exceptionally rare
1474    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1475 
1476    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
1477    AddWaiter (&node) ;
1478    Thread::SpinRelease (&_WaitSetLock) ;
1479 
1480    if ((SyncFlags & 4) == 0) {
1481       _Responsible = NULL ;
1482    }
1483    intptr_t save = _recursions; // record the old recursion count
1484    _waiters++;                  // increment the number of waiters
1485    _recursions = 0;             // set the recursion level to be 1
1486    exit (true, Self) ;                    // exit the monitor
1487    guarantee (_owner != Self, "invariant") ;
1488 
1489    // The thread is on the WaitSet list - now park() it.
1490    // On MP systems it's conceivable that a brief spin before we park
1491    // could be profitable.
1492    //
1493    // TODO-FIXME: change the following logic to a loop of the form
1494    //   while (!timeout && !interrupted && _notified == 0) park()
1495 
1496    int ret = OS_OK ;
1497    int WasNotified = 0 ;
1498    { // State transition wrappers
1499      OSThread* osthread = Self->osthread();
1500      OSThreadWaitState osts(osthread, true);
1501      {
1502        ThreadBlockInVM tbivm(jt);
1503        // Thread is in thread_blocked state and oop access is unsafe.
1504        jt->set_suspend_equivalent();
1505 
1506        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1507            // Intentionally empty
1508        } else
1509        if (node._notified == 0) {
1510          if (millis <= 0) {
1511             Self->_ParkEvent->park () ;
1512          } else {
1513             ret = Self->_ParkEvent->park (millis) ;
1514          }
1515        }
1516 
1517        // were we externally suspended while we were waiting?
1518        if (ExitSuspendEquivalent (jt)) {
1519           // TODO-FIXME: add -- if succ == Self then succ = null.
1520           jt->java_suspend_self();
1521        }
1522 
1523      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1524 
1525 
1526      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1527      // from the WaitSet to the EntryList.
1528      // See if we need to remove Node from the WaitSet.
1529      // We use double-checked locking to avoid grabbing _WaitSetLock
1530      // if the thread is not on the wait queue.
1531      //
1532      // Note that we don't need a fence before the fetch of TState.
1533      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1534      // written by the is thread. (perhaps the fetch might even be satisfied
1535      // by a look-aside into the processor's own store buffer, although given
1536      // the length of the code path between the prior ST and this load that's
1537      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1538      // then we'll acquire the lock and then re-fetch a fresh TState value.
1539      // That is, we fail toward safety.
1540 
1541      if (node.TState == ObjectWaiter::TS_WAIT) {
1542          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
1543          if (node.TState == ObjectWaiter::TS_WAIT) {
1544             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
1545             assert(node._notified == 0, "invariant");
1546             node.TState = ObjectWaiter::TS_RUN ;
1547          }
1548          Thread::SpinRelease (&_WaitSetLock) ;
1549      }
1550 
1551      // The thread is now either on off-list (TS_RUN),
1552      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1553      // The Node's TState variable is stable from the perspective of this thread.
1554      // No other threads will asynchronously modify TState.
1555      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
1556      OrderAccess::loadload() ;
1557      if (_succ == Self) _succ = NULL ;
1558      WasNotified = node._notified ;
1559 
1560      // Reentry phase -- reacquire the monitor.
1561      // re-enter contended monitor after object.wait().
1562      // retain OBJECT_WAIT state until re-enter successfully completes
1563      // Thread state is thread_in_vm and oop access is again safe,
1564      // although the raw address of the object may have changed.
1565      // (Don't cache naked oops over safepoints, of course).
1566 
1567      // post monitor waited event. Note that this is past-tense, we are done waiting.
1568      if (JvmtiExport::should_post_monitor_waited()) {
1569        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1570 
1571        if (node._notified != 0 && _succ == Self) {
1572          // In this part of the monitor wait-notify-reenter protocol it
1573          // is possible (and normal) for another thread to do a fastpath
1574          // monitor enter-exit while this thread is still trying to get
1575          // to the reenter portion of the protocol.
1576          //
1577          // The ObjectMonitor was notified and the current thread is
1578          // the successor which also means that an unpark() has already
1579          // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1580          // consume the unpark() that was done when the successor was
1581          // set because the same ParkEvent is shared between Java
1582          // monitors and JVM/TI RawMonitors (for now).
1583          //
1584          // We redo the unpark() to ensure forward progress, i.e., we
1585          // don't want all pending threads hanging (parked) with none
1586          // entering the unlocked monitor.
1587          node._event->unpark();
1588        }
1589      }
1590 
1591      if (event.should_commit()) {
1592        post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
1593      }
1594 
1595      OrderAccess::fence() ;
1596 
1597      assert (Self->_Stalled != 0, "invariant") ;
1598      Self->_Stalled = 0 ;
1599 
1600      assert (_owner != Self, "invariant") ;
1601      ObjectWaiter::TStates v = node.TState ;
1602      if (v == ObjectWaiter::TS_RUN) {
1603          enter (Self) ;
1604      } else {
1605          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
1606          ReenterI (Self, &node) ;
1607          node.wait_reenter_end(this);
1608      }
1609 
1610      // Self has reacquired the lock.
1611      // Lifecycle - the node representing Self must not appear on any queues.
1612      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1613      // want residual elements associated with this thread left on any lists.
1614      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
1615      assert    (_owner == Self, "invariant") ;
1616      assert    (_succ != Self , "invariant") ;
1617    } // OSThreadWaitState()
1618 
1619    jt->set_current_waiting_monitor(NULL);
1620 
1621    guarantee (_recursions == 0, "invariant") ;
1622    _recursions = save;     // restore the old recursion count
1623    _waiters--;             // decrement the number of waiters
1624 
1625    // Verify a few postconditions
1626    assert (_owner == Self       , "invariant") ;
1627    assert (_succ  != Self       , "invariant") ;
1628    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
1629 
1630    if (SyncFlags & 32) {
1631       OrderAccess::fence() ;
1632    }
1633 
1634    // check if the notification happened
1635    if (!WasNotified) {
1636      // no, it could be timeout or Thread.interrupt() or both
1637      // check for interrupt event, otherwise it is timeout
1638      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1639        TEVENT (Wait - throw IEX from epilog) ;
1640        THROW(vmSymbols::java_lang_InterruptedException());
1641      }
1642    }
1643 
1644    // NOTE: Spurious wake up will be consider as timeout.
1645    // Monitor notify has precedence over thread interrupt.
1646 }
1647 
1648 
1649 // Consider:
1650 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1651 // then instead of transferring a thread from the WaitSet to the EntryList
1652 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1653 
1654 void ObjectMonitor::notify(TRAPS) {
1655   CHECK_OWNER();
1656   if (_WaitSet == NULL) {
1657      TEVENT (Empty-Notify) ;
1658      return ;
1659   }
1660   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1661 
1662   int Policy = Knob_MoveNotifyee ;
1663 
1664   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
1665   ObjectWaiter * iterator = DequeueWaiter() ;
1666   if (iterator != NULL) {
1667      TEVENT (Notify1 - Transfer) ;
1668      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1669      guarantee (iterator->_notified == 0, "invariant") ;
1670      if (Policy != 4) {
1671         iterator->TState = ObjectWaiter::TS_ENTER ;
1672      }
1673      iterator->_notified = 1 ;
1674      Thread * Self = THREAD;
1675      iterator->_notifier_tid = Self->osthread()->thread_id();
1676 
1677      ObjectWaiter * List = _EntryList ;
1678      if (List != NULL) {
1679         assert (List->_prev == NULL, "invariant") ;
1680         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1681         assert (List != iterator, "invariant") ;
1682      }
1683 
1684      if (Policy == 0) {       // prepend to EntryList
1685          if (List == NULL) {
1686              iterator->_next = iterator->_prev = NULL ;
1687              _EntryList = iterator ;
1688          } else {
1689              List->_prev = iterator ;
1690              iterator->_next = List ;
1691              iterator->_prev = NULL ;
1692              _EntryList = iterator ;
1693         }
1694      } else
1695      if (Policy == 1) {      // append to EntryList
1696          if (List == NULL) {
1697              iterator->_next = iterator->_prev = NULL ;
1698              _EntryList = iterator ;
1699          } else {
1700             // CONSIDER:  finding the tail currently requires a linear-time walk of
1701             // the EntryList.  We can make tail access constant-time by converting to
1702             // a CDLL instead of using our current DLL.
1703             ObjectWaiter * Tail ;
1704             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1705             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1706             Tail->_next = iterator ;
1707             iterator->_prev = Tail ;
1708             iterator->_next = NULL ;
1709         }
1710      } else
1711      if (Policy == 2) {      // prepend to cxq
1712          // prepend to cxq
1713          if (List == NULL) {
1714              iterator->_next = iterator->_prev = NULL ;
1715              _EntryList = iterator ;
1716          } else {
1717             iterator->TState = ObjectWaiter::TS_CXQ ;
1718             for (;;) {
1719                 ObjectWaiter * Front = _cxq ;
1720                 iterator->_next = Front ;
1721                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1722                     break ;
1723                 }
1724             }
1725          }
1726      } else
1727      if (Policy == 3) {      // append to cxq
1728         iterator->TState = ObjectWaiter::TS_CXQ ;
1729         for (;;) {
1730             ObjectWaiter * Tail ;
1731             Tail = _cxq ;
1732             if (Tail == NULL) {
1733                 iterator->_next = NULL ;
1734                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1735                    break ;
1736                 }
1737             } else {
1738                 while (Tail->_next != NULL) Tail = Tail->_next ;
1739                 Tail->_next = iterator ;
1740                 iterator->_prev = Tail ;
1741                 iterator->_next = NULL ;
1742                 break ;
1743             }
1744         }
1745      } else {
1746         ParkEvent * ev = iterator->_event ;
1747         iterator->TState = ObjectWaiter::TS_RUN ;
1748         OrderAccess::fence() ;
1749         ev->unpark() ;
1750      }
1751 
1752      if (Policy < 4) {
1753        iterator->wait_reenter_begin(this);
1754      }
1755 
1756      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1757      // move the add-to-EntryList operation, above, outside the critical section
1758      // protected by _WaitSetLock.  In practice that's not useful.  With the
1759      // exception of  wait() timeouts and interrupts the monitor owner
1760      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1761      // on _WaitSetLock so it's not profitable to reduce the length of the
1762      // critical section.
1763   }
1764 
1765   Thread::SpinRelease (&_WaitSetLock) ;
1766 
1767   if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
1768      ObjectMonitor::_sync_Notifications->inc() ;
1769   }
1770 }
1771 
1772 
1773 void ObjectMonitor::notifyAll(TRAPS) {
1774   CHECK_OWNER();
1775   ObjectWaiter* iterator;
1776   if (_WaitSet == NULL) {
1777       TEVENT (Empty-NotifyAll) ;
1778       return ;
1779   }
1780   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1781 
1782   int Policy = Knob_MoveNotifyee ;
1783   int Tally = 0 ;
1784   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
1785 
1786   for (;;) {
1787      iterator = DequeueWaiter () ;
1788      if (iterator == NULL) break ;
1789      TEVENT (NotifyAll - Transfer1) ;
1790      ++Tally ;
1791 
1792      // Disposition - what might we do with iterator ?
1793      // a.  add it directly to the EntryList - either tail or head.
1794      // b.  push it onto the front of the _cxq.
1795      // For now we use (a).
1796 
1797      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1798      guarantee (iterator->_notified == 0, "invariant") ;
1799      iterator->_notified = 1 ;
1800      Thread * Self = THREAD;
1801      iterator->_notifier_tid = Self->osthread()->thread_id();
1802      if (Policy != 4) {
1803         iterator->TState = ObjectWaiter::TS_ENTER ;
1804      }
1805 
1806      ObjectWaiter * List = _EntryList ;
1807      if (List != NULL) {
1808         assert (List->_prev == NULL, "invariant") ;
1809         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1810         assert (List != iterator, "invariant") ;
1811      }
1812 
1813      if (Policy == 0) {       // prepend to EntryList
1814          if (List == NULL) {
1815              iterator->_next = iterator->_prev = NULL ;
1816              _EntryList = iterator ;
1817          } else {
1818              List->_prev = iterator ;
1819              iterator->_next = List ;
1820              iterator->_prev = NULL ;
1821              _EntryList = iterator ;
1822         }
1823      } else
1824      if (Policy == 1) {      // append to EntryList
1825          if (List == NULL) {
1826              iterator->_next = iterator->_prev = NULL ;
1827              _EntryList = iterator ;
1828          } else {
1829             // CONSIDER:  finding the tail currently requires a linear-time walk of
1830             // the EntryList.  We can make tail access constant-time by converting to
1831             // a CDLL instead of using our current DLL.
1832             ObjectWaiter * Tail ;
1833             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1834             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1835             Tail->_next = iterator ;
1836             iterator->_prev = Tail ;
1837             iterator->_next = NULL ;
1838         }
1839      } else
1840      if (Policy == 2) {      // prepend to cxq
1841          // prepend to cxq
1842          iterator->TState = ObjectWaiter::TS_CXQ ;
1843          for (;;) {
1844              ObjectWaiter * Front = _cxq ;
1845              iterator->_next = Front ;
1846              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1847                  break ;
1848              }
1849          }
1850      } else
1851      if (Policy == 3) {      // append to cxq
1852         iterator->TState = ObjectWaiter::TS_CXQ ;
1853         for (;;) {
1854             ObjectWaiter * Tail ;
1855             Tail = _cxq ;
1856             if (Tail == NULL) {
1857                 iterator->_next = NULL ;
1858                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1859                    break ;
1860                 }
1861             } else {
1862                 while (Tail->_next != NULL) Tail = Tail->_next ;
1863                 Tail->_next = iterator ;
1864                 iterator->_prev = Tail ;
1865                 iterator->_next = NULL ;
1866                 break ;
1867             }
1868         }
1869      } else {
1870         ParkEvent * ev = iterator->_event ;
1871         iterator->TState = ObjectWaiter::TS_RUN ;
1872         OrderAccess::fence() ;
1873         ev->unpark() ;
1874      }
1875 
1876      if (Policy < 4) {
1877        iterator->wait_reenter_begin(this);
1878      }
1879 
1880      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1881      // move the add-to-EntryList operation, above, outside the critical section
1882      // protected by _WaitSetLock.  In practice that's not useful.  With the
1883      // exception of  wait() timeouts and interrupts the monitor owner
1884      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1885      // on _WaitSetLock so it's not profitable to reduce the length of the
1886      // critical section.
1887   }
1888 
1889   Thread::SpinRelease (&_WaitSetLock) ;
1890 
1891   if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
1892      ObjectMonitor::_sync_Notifications->inc(Tally) ;
1893   }
1894 }
1895 
1896 // -----------------------------------------------------------------------------
1897 // Adaptive Spinning Support
1898 //
1899 // Adaptive spin-then-block - rational spinning
1900 //
1901 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1902 // algorithm.  On high order SMP systems it would be better to start with
1903 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1904 // a contending thread could enqueue itself on the cxq and then spin locally
1905 // on a thread-specific variable such as its ParkEvent._Event flag.
1906 // That's left as an exercise for the reader.  Note that global spinning is
1907 // not problematic on Niagara, as the L2$ serves the interconnect and has both
1908 // low latency and massive bandwidth.
1909 //
1910 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1911 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1912 // (duration) or we can fix the count at approximately the duration of
1913 // a context switch and vary the frequency.   Of course we could also
1914 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1915 // See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
1916 //
1917 // This implementation varies the duration "D", where D varies with
1918 // the success rate of recent spin attempts. (D is capped at approximately
1919 // length of a round-trip context switch).  The success rate for recent
1920 // spin attempts is a good predictor of the success rate of future spin
1921 // attempts.  The mechanism adapts automatically to varying critical
1922 // section length (lock modality), system load and degree of parallelism.
1923 // D is maintained per-monitor in _SpinDuration and is initialized
1924 // optimistically.  Spin frequency is fixed at 100%.
1925 //
1926 // Note that _SpinDuration is volatile, but we update it without locks
1927 // or atomics.  The code is designed so that _SpinDuration stays within
1928 // a reasonable range even in the presence of races.  The arithmetic
1929 // operations on _SpinDuration are closed over the domain of legal values,
1930 // so at worst a race will install and older but still legal value.
1931 // At the very worst this introduces some apparent non-determinism.
1932 // We might spin when we shouldn't or vice-versa, but since the spin
1933 // count are relatively short, even in the worst case, the effect is harmless.
1934 //
1935 // Care must be taken that a low "D" value does not become an
1936 // an absorbing state.  Transient spinning failures -- when spinning
1937 // is overall profitable -- should not cause the system to converge
1938 // on low "D" values.  We want spinning to be stable and predictable
1939 // and fairly responsive to change and at the same time we don't want
1940 // it to oscillate, become metastable, be "too" non-deterministic,
1941 // or converge on or enter undesirable stable absorbing states.
1942 //
1943 // We implement a feedback-based control system -- using past behavior
1944 // to predict future behavior.  We face two issues: (a) if the
1945 // input signal is random then the spin predictor won't provide optimal
1946 // results, and (b) if the signal frequency is too high then the control
1947 // system, which has some natural response lag, will "chase" the signal.
1948 // (b) can arise from multimodal lock hold times.  Transient preemption
1949 // can also result in apparent bimodal lock hold times.
1950 // Although sub-optimal, neither condition is particularly harmful, as
1951 // in the worst-case we'll spin when we shouldn't or vice-versa.
1952 // The maximum spin duration is rather short so the failure modes aren't bad.
1953 // To be conservative, I've tuned the gain in system to bias toward
1954 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1955 // "rings" or oscillates between spinning and not spinning.  This happens
1956 // when spinning is just on the cusp of profitability, however, so the
1957 // situation is not dire.  The state is benign -- there's no need to add
1958 // hysteresis control to damp the transition rate between spinning and
1959 // not spinning.
1960 //
1961 
1962 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
1963 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
1964 
1965 // Spinning: Fixed frequency (100%), vary duration
1966 
1967 
1968 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
1969 
1970     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1971     int ctr = Knob_FixedSpin ;
1972     if (ctr != 0) {
1973         while (--ctr >= 0) {
1974             if (TryLock (Self) > 0) return 1 ;
1975             SpinPause () ;
1976         }
1977         return 0 ;
1978     }
1979 
1980     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
1981       if (TryLock(Self) > 0) {
1982         // Increase _SpinDuration ...
1983         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1984         // Raising _SpurDuration to the poverty line is key.
1985         int x = _SpinDuration ;
1986         if (x < Knob_SpinLimit) {
1987            if (x < Knob_Poverty) x = Knob_Poverty ;
1988            _SpinDuration = x + Knob_BonusB ;
1989         }
1990         return 1 ;
1991       }
1992       SpinPause () ;
1993     }
1994 
1995     // Admission control - verify preconditions for spinning
1996     //
1997     // We always spin a little bit, just to prevent _SpinDuration == 0 from
1998     // becoming an absorbing state.  Put another way, we spin briefly to
1999     // sample, just in case the system load, parallelism, contention, or lock
2000     // modality changed.
2001     //
2002     // Consider the following alternative:
2003     // Periodically set _SpinDuration = _SpinLimit and try a long/full
2004     // spin attempt.  "Periodically" might mean after a tally of
2005     // the # of failed spin attempts (or iterations) reaches some threshold.
2006     // This takes us into the realm of 1-out-of-N spinning, where we
2007     // hold the duration constant but vary the frequency.
2008 
2009     ctr = _SpinDuration  ;
2010     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
2011     if (ctr <= 0) return 0 ;
2012 
2013     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
2014     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
2015        TEVENT (Spin abort - notrunnable [TOP]);
2016        return 0 ;
2017     }
2018 
2019     int MaxSpin = Knob_MaxSpinners ;
2020     if (MaxSpin >= 0) {
2021        if (_Spinner > MaxSpin) {
2022           TEVENT (Spin abort -- too many spinners) ;
2023           return 0 ;
2024        }
2025        // Slightly racy, but benign ...
2026        Adjust (&_Spinner, 1) ;
2027     }
2028 
2029     // We're good to spin ... spin ingress.
2030     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
2031     // when preparing to LD...CAS _owner, etc and the CAS is likely
2032     // to succeed.
2033     int hits    = 0 ;
2034     int msk     = 0 ;
2035     int caspty  = Knob_CASPenalty ;
2036     int oxpty   = Knob_OXPenalty ;
2037     int sss     = Knob_SpinSetSucc ;
2038     if (sss && _succ == NULL ) _succ = Self ;
2039     Thread * prv = NULL ;
2040 
2041     // There are three ways to exit the following loop:
2042     // 1.  A successful spin where this thread has acquired the lock.
2043     // 2.  Spin failure with prejudice
2044     // 3.  Spin failure without prejudice
2045 
2046     while (--ctr >= 0) {
2047 
2048       // Periodic polling -- Check for pending GC
2049       // Threads may spin while they're unsafe.
2050       // We don't want spinning threads to delay the JVM from reaching
2051       // a stop-the-world safepoint or to steal cycles from GC.
2052       // If we detect a pending safepoint we abort in order that
2053       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
2054       // this thread, if safe, doesn't steal cycles from GC.
2055       // This is in keeping with the "no loitering in runtime" rule.
2056       // We periodically check to see if there's a safepoint pending.
2057       if ((ctr & 0xFF) == 0) {
2058          if (SafepointSynchronize::do_call_back()) {
2059             TEVENT (Spin: safepoint) ;
2060             goto Abort ;           // abrupt spin egress
2061          }
2062          if (Knob_UsePause & 1) SpinPause () ;
2063 
2064          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
2065          if (hits > 50 && scb != NULL) {
2066             int abend = (*scb)(SpinCallbackArgument, 0) ;
2067          }
2068       }
2069 
2070       if (Knob_UsePause & 2) SpinPause() ;
2071 
2072       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
2073       // This is useful on classic SMP systems, but is of less utility on
2074       // N1-style CMT platforms.
2075       //
2076       // Trade-off: lock acquisition latency vs coherency bandwidth.
2077       // Lock hold times are typically short.  A histogram
2078       // of successful spin attempts shows that we usually acquire
2079       // the lock early in the spin.  That suggests we want to
2080       // sample _owner frequently in the early phase of the spin,
2081       // but then back-off and sample less frequently as the spin
2082       // progresses.  The back-off makes a good citizen on SMP big
2083       // SMP systems.  Oversampling _owner can consume excessive
2084       // coherency bandwidth.  Relatedly, if we _oversample _owner we
2085       // can inadvertently interfere with the the ST m->owner=null.
2086       // executed by the lock owner.
2087       if (ctr & msk) continue ;
2088       ++hits ;
2089       if ((hits & 0xF) == 0) {
2090         // The 0xF, above, corresponds to the exponent.
2091         // Consider: (msk+1)|msk
2092         msk = ((msk << 2)|3) & BackOffMask ;
2093       }
2094 
2095       // Probe _owner with TATAS
2096       // If this thread observes the monitor transition or flicker
2097       // from locked to unlocked to locked, then the odds that this
2098       // thread will acquire the lock in this spin attempt go down
2099       // considerably.  The same argument applies if the CAS fails
2100       // or if we observe _owner change from one non-null value to
2101       // another non-null value.   In such cases we might abort
2102       // the spin without prejudice or apply a "penalty" to the
2103       // spin count-down variable "ctr", reducing it by 100, say.
2104 
2105       Thread * ox = (Thread *) _owner ;
2106       if (ox == NULL) {
2107          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
2108          if (ox == NULL) {
2109             // The CAS succeeded -- this thread acquired ownership
2110             // Take care of some bookkeeping to exit spin state.
2111             if (sss && _succ == Self) {
2112                _succ = NULL ;
2113             }
2114             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
2115 
2116             // Increase _SpinDuration :
2117             // The spin was successful (profitable) so we tend toward
2118             // longer spin attempts in the future.
2119             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2120             // If we acquired the lock early in the spin cycle it
2121             // makes sense to increase _SpinDuration proportionally.
2122             // Note that we don't clamp SpinDuration precisely at SpinLimit.
2123             int x = _SpinDuration ;
2124             if (x < Knob_SpinLimit) {
2125                 if (x < Knob_Poverty) x = Knob_Poverty ;
2126                 _SpinDuration = x + Knob_Bonus ;
2127             }
2128             return 1 ;
2129          }
2130 
2131          // The CAS failed ... we can take any of the following actions:
2132          // * penalize: ctr -= Knob_CASPenalty
2133          // * exit spin with prejudice -- goto Abort;
2134          // * exit spin without prejudice.
2135          // * Since CAS is high-latency, retry again immediately.
2136          prv = ox ;
2137          TEVENT (Spin: cas failed) ;
2138          if (caspty == -2) break ;
2139          if (caspty == -1) goto Abort ;
2140          ctr -= caspty ;
2141          continue ;
2142       }
2143 
2144       // Did lock ownership change hands ?
2145       if (ox != prv && prv != NULL ) {
2146           TEVENT (spin: Owner changed)
2147           if (oxpty == -2) break ;
2148           if (oxpty == -1) goto Abort ;
2149           ctr -= oxpty ;
2150       }
2151       prv = ox ;
2152 
2153       // Abort the spin if the owner is not executing.
2154       // The owner must be executing in order to drop the lock.
2155       // Spinning while the owner is OFFPROC is idiocy.
2156       // Consider: ctr -= RunnablePenalty ;
2157       if (Knob_OState && NotRunnable (Self, ox)) {
2158          TEVENT (Spin abort - notrunnable);
2159          goto Abort ;
2160       }
2161       if (sss && _succ == NULL ) _succ = Self ;
2162    }
2163 
2164    // Spin failed with prejudice -- reduce _SpinDuration.
2165    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2166    // AIMD is globally stable.
2167    TEVENT (Spin failure) ;
2168    {
2169      int x = _SpinDuration ;
2170      if (x > 0) {
2171         // Consider an AIMD scheme like: x -= (x >> 3) + 100
2172         // This is globally sample and tends to damp the response.
2173         x -= Knob_Penalty ;
2174         if (x < 0) x = 0 ;
2175         _SpinDuration = x ;
2176      }
2177    }
2178 
2179  Abort:
2180    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
2181    if (sss && _succ == Self) {
2182       _succ = NULL ;
2183       // Invariant: after setting succ=null a contending thread
2184       // must recheck-retry _owner before parking.  This usually happens
2185       // in the normal usage of TrySpin(), but it's safest
2186       // to make TrySpin() as foolproof as possible.
2187       OrderAccess::fence() ;
2188       if (TryLock(Self) > 0) return 1 ;
2189    }
2190    return 0 ;
2191 }
2192 
2193 // NotRunnable() -- informed spinning
2194 //
2195 // Don't bother spinning if the owner is not eligible to drop the lock.
2196 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
2197 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2198 // The thread must be runnable in order to drop the lock in timely fashion.
2199 // If the _owner is not runnable then spinning will not likely be
2200 // successful (profitable).
2201 //
2202 // Beware -- the thread referenced by _owner could have died
2203 // so a simply fetch from _owner->_thread_state might trap.
2204 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2205 // Because of the lifecycle issues the schedctl and _thread_state values
2206 // observed by NotRunnable() might be garbage.  NotRunnable must
2207 // tolerate this and consider the observed _thread_state value
2208 // as advisory.
2209 //
2210 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2211 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
2212 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2213 // with the LSB of _owner.  Another option would be to probablistically probe
2214 // the putative _owner->TypeTag value.
2215 //
2216 // Checking _thread_state isn't perfect.  Even if the thread is
2217 // in_java it might be blocked on a page-fault or have been preempted
2218 // and sitting on a ready/dispatch queue.  _thread state in conjunction
2219 // with schedctl.sc_state gives us a good picture of what the
2220 // thread is doing, however.
2221 //
2222 // TODO: check schedctl.sc_state.
2223 // We'll need to use SafeFetch32() to read from the schedctl block.
2224 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2225 //
2226 // The return value from NotRunnable() is *advisory* -- the
2227 // result is based on sampling and is not necessarily coherent.
2228 // The caller must tolerate false-negative and false-positive errors.
2229 // Spinning, in general, is probabilistic anyway.
2230 
2231 
2232 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
2233     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
2234     if (!OwnerIsThread) return 0 ;
2235 
2236     if (ox == NULL) return 0 ;
2237 
2238     // Avoid transitive spinning ...
2239     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2240     // Immediately after T1 acquires L it's possible that T2, also
2241     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2242     // This occurs transiently after T1 acquired L but before
2243     // T1 managed to clear T1.Stalled.  T2 does not need to abort
2244     // its spin in this circumstance.
2245     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
2246 
2247     if (BlockedOn == 1) return 1 ;
2248     if (BlockedOn != 0) {
2249       return BlockedOn != intptr_t(this) && _owner == ox ;
2250     }
2251 
2252     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
2253     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
2254     // consider also: jst != _thread_in_Java -- but that's overspecific.
2255     return jst == _thread_blocked || jst == _thread_in_native ;
2256 }
2257 
2258 
2259 // -----------------------------------------------------------------------------
2260 // WaitSet management ...
2261 
2262 ObjectWaiter::ObjectWaiter(Thread* thread) {
2263   _next     = NULL;
2264   _prev     = NULL;
2265   _notified = 0;
2266   TState    = TS_RUN ;
2267   _thread   = thread;
2268   _event    = thread->_ParkEvent ;
2269   _active   = false;
2270   assert (_event != NULL, "invariant") ;
2271 }
2272 
2273 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
2274   JavaThread *jt = (JavaThread *)this->_thread;
2275   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2276 }
2277 
2278 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
2279   JavaThread *jt = (JavaThread *)this->_thread;
2280   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2281 }
2282 
2283 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2284   assert(node != NULL, "should not dequeue NULL node");
2285   assert(node->_prev == NULL, "node already in list");
2286   assert(node->_next == NULL, "node already in list");
2287   // put node at end of queue (circular doubly linked list)
2288   if (_WaitSet == NULL) {
2289     _WaitSet = node;
2290     node->_prev = node;
2291     node->_next = node;
2292   } else {
2293     ObjectWaiter* head = _WaitSet ;
2294     ObjectWaiter* tail = head->_prev;
2295     assert(tail->_next == head, "invariant check");
2296     tail->_next = node;
2297     head->_prev = node;
2298     node->_next = head;
2299     node->_prev = tail;
2300   }
2301 }
2302 
2303 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2304   // dequeue the very first waiter
2305   ObjectWaiter* waiter = _WaitSet;
2306   if (waiter) {
2307     DequeueSpecificWaiter(waiter);
2308   }
2309   return waiter;
2310 }
2311 
2312 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2313   assert(node != NULL, "should not dequeue NULL node");
2314   assert(node->_prev != NULL, "node already removed from list");
2315   assert(node->_next != NULL, "node already removed from list");
2316   // when the waiter has woken up because of interrupt,
2317   // timeout or other spurious wake-up, dequeue the
2318   // waiter from waiting list
2319   ObjectWaiter* next = node->_next;
2320   if (next == node) {
2321     assert(node->_prev == node, "invariant check");
2322     _WaitSet = NULL;
2323   } else {
2324     ObjectWaiter* prev = node->_prev;
2325     assert(prev->_next == node, "invariant check");
2326     assert(next->_prev == node, "invariant check");
2327     next->_prev = prev;
2328     prev->_next = next;
2329     if (_WaitSet == node) {
2330       _WaitSet = next;
2331     }
2332   }
2333   node->_next = NULL;
2334   node->_prev = NULL;
2335 }
2336 
2337 // -----------------------------------------------------------------------------
2338 // PerfData support
2339 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
2340 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
2341 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
2342 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
2343 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
2344 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
2345 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
2346 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
2347 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
2348 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
2349 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
2350 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
2351 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
2352 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
2353 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
2354 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
2355 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
2356 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
2357 
2358 // One-shot global initialization for the sync subsystem.
2359 // We could also defer initialization and initialize on-demand
2360 // the first time we call inflate().  Initialization would
2361 // be protected - like so many things - by the MonitorCache_lock.
2362 
2363 void ObjectMonitor::Initialize () {
2364   static int InitializationCompleted = 0 ;
2365   assert (InitializationCompleted == 0, "invariant") ;
2366   InitializationCompleted = 1 ;
2367   if (UsePerfData) {
2368       EXCEPTION_MARK ;
2369       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
2370       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
2371       NEWPERFCOUNTER(_sync_Inflations) ;
2372       NEWPERFCOUNTER(_sync_Deflations) ;
2373       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
2374       NEWPERFCOUNTER(_sync_FutileWakeups) ;
2375       NEWPERFCOUNTER(_sync_Parks) ;
2376       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
2377       NEWPERFCOUNTER(_sync_Notifications) ;
2378       NEWPERFCOUNTER(_sync_SlowEnter) ;
2379       NEWPERFCOUNTER(_sync_SlowExit) ;
2380       NEWPERFCOUNTER(_sync_SlowNotify) ;
2381       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
2382       NEWPERFCOUNTER(_sync_FailedSpins) ;
2383       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
2384       NEWPERFCOUNTER(_sync_PrivateA) ;
2385       NEWPERFCOUNTER(_sync_PrivateB) ;
2386       NEWPERFCOUNTER(_sync_MonInCirculation) ;
2387       NEWPERFCOUNTER(_sync_MonScavenged) ;
2388       NEWPERFVARIABLE(_sync_MonExtant) ;
2389       #undef NEWPERFCOUNTER
2390   }
2391 }
2392 
2393 
2394 // Compile-time asserts
2395 // When possible, it's better to catch errors deterministically at
2396 // compile-time than at runtime.  The down-side to using compile-time
2397 // asserts is that error message -- often something about negative array
2398 // indices -- is opaque.
2399 
2400 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
2401 
2402 void ObjectMonitor::ctAsserts() {
2403   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
2404 }
2405 
2406 
2407 static char * kvGet (char * kvList, const char * Key) {
2408     if (kvList == NULL) return NULL ;
2409     size_t n = strlen (Key) ;
2410     char * Search ;
2411     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
2412         if (strncmp (Search, Key, n) == 0) {
2413             if (Search[n] == '=') return Search + n + 1 ;
2414             if (Search[n] == 0)   return (char *) "1" ;
2415         }
2416     }
2417     return NULL ;
2418 }
2419 
2420 static int kvGetInt (char * kvList, const char * Key, int Default) {
2421     char * v = kvGet (kvList, Key) ;
2422     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
2423     if (Knob_ReportSettings && v != NULL) {
2424         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
2425         ::fflush (stdout) ;
2426     }
2427     return rslt ;
2428 }
2429 
2430 void ObjectMonitor::DeferredInitialize () {
2431   if (InitDone > 0) return ;
2432   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2433       while (InitDone != 1) ;
2434       return ;
2435   }
2436 
2437   // One-shot global initialization ...
2438   // The initialization is idempotent, so we don't need locks.
2439   // In the future consider doing this via os::init_2().
2440   // SyncKnobs consist of <Key>=<Value> pairs in the style
2441   // of environment variables.  Start by converting ':' to NUL.
2442 
2443   if (SyncKnobs == NULL) SyncKnobs = "" ;
2444 
2445   size_t sz = strlen (SyncKnobs) ;
2446   char * knobs = (char *) malloc (sz + 2) ;
2447   if (knobs == NULL) {
2448      vm_exit_out_of_memory (sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs") ;
2449      guarantee (0, "invariant") ;
2450   }
2451   strcpy (knobs, SyncKnobs) ;
2452   knobs[sz+1] = 0 ;
2453   for (char * p = knobs ; *p ; p++) {
2454      if (*p == ':') *p = 0 ;
2455   }
2456 
2457   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
2458   SETKNOB(ReportSettings) ;
2459   SETKNOB(Verbose) ;
2460   SETKNOB(FixedSpin) ;
2461   SETKNOB(SpinLimit) ;
2462   SETKNOB(SpinBase) ;
2463   SETKNOB(SpinBackOff);
2464   SETKNOB(CASPenalty) ;
2465   SETKNOB(OXPenalty) ;
2466   SETKNOB(LogSpins) ;
2467   SETKNOB(SpinSetSucc) ;
2468   SETKNOB(SuccEnabled) ;
2469   SETKNOB(SuccRestrict) ;
2470   SETKNOB(Penalty) ;
2471   SETKNOB(Bonus) ;
2472   SETKNOB(BonusB) ;
2473   SETKNOB(Poverty) ;
2474   SETKNOB(SpinAfterFutile) ;
2475   SETKNOB(UsePause) ;
2476   SETKNOB(SpinEarly) ;
2477   SETKNOB(OState) ;
2478   SETKNOB(MaxSpinners) ;
2479   SETKNOB(PreSpin) ;
2480   SETKNOB(ExitPolicy) ;
2481   SETKNOB(QMode);
2482   SETKNOB(ResetEvent) ;
2483   SETKNOB(MoveNotifyee) ;
2484   SETKNOB(FastHSSEC) ;
2485   #undef SETKNOB
2486 
2487   if (os::is_MP()) {
2488      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
2489      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
2490      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2491   } else {
2492      Knob_SpinLimit = 0 ;
2493      Knob_SpinBase  = 0 ;
2494      Knob_PreSpin   = 0 ;
2495      Knob_FixedSpin = -1 ;
2496   }
2497 
2498   if (Knob_LogSpins == 0) {
2499      ObjectMonitor::_sync_FailedSpins = NULL ;
2500   }
2501 
2502   free (knobs) ;
2503   OrderAccess::fence() ;
2504   InitDone = 1 ;
2505 }
2506 
2507 #ifndef PRODUCT
2508 void ObjectMonitor::verify() {
2509 }
2510 
2511 void ObjectMonitor::print() {
2512 }
2513 #endif