1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "gc_interface/collectedHeap.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/gcLocker.inline.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "oops/symbol.hpp"
  40 #include "runtime/atomic.inline.hpp"
  41 #include "runtime/compilationPolicy.hpp"
  42 #include "runtime/deoptimization.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/interfaceSupport.hpp"
  45 #include "runtime/mutexLocker.hpp"
  46 #include "runtime/orderAccess.inline.hpp"
  47 #include "runtime/osThread.hpp"
  48 #include "runtime/safepoint.hpp"
  49 #include "runtime/signature.hpp"
  50 #include "runtime/stubCodeGenerator.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/sweeper.hpp"
  53 #include "runtime/synchronizer.hpp"
  54 #include "runtime/thread.inline.hpp"
  55 #include "services/memTracker.hpp"
  56 #include "services/runtimeService.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/macros.hpp"
  59 #ifdef TARGET_ARCH_x86
  60 # include "nativeInst_x86.hpp"
  61 # include "vmreg_x86.inline.hpp"
  62 #endif
  63 #ifdef TARGET_ARCH_sparc
  64 # include "nativeInst_sparc.hpp"
  65 # include "vmreg_sparc.inline.hpp"
  66 #endif
  67 #ifdef TARGET_ARCH_zero
  68 # include "nativeInst_zero.hpp"
  69 # include "vmreg_zero.inline.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_arm
  72 # include "nativeInst_arm.hpp"
  73 # include "vmreg_arm.inline.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_ppc
  76 # include "nativeInst_ppc.hpp"
  77 # include "vmreg_ppc.inline.hpp"
  78 #endif
  79 #if INCLUDE_ALL_GCS
  80 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  81 #include "gc_implementation/shared/suspendibleThreadSet.hpp"
  82 #endif // INCLUDE_ALL_GCS
  83 #ifdef COMPILER1
  84 #include "c1/c1_globals.hpp"
  85 #endif
  86 
  87 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  88 
  89 // --------------------------------------------------------------------------------------------------
  90 // Implementation of Safepoint begin/end
  91 
  92 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
  93 volatile int  SafepointSynchronize::_waiting_to_block = 0;
  94 volatile int SafepointSynchronize::_safepoint_counter = 0;
  95 int SafepointSynchronize::_current_jni_active_count = 0;
  96 long  SafepointSynchronize::_end_of_last_safepoint = 0;
  97 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
  98 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
  99 static bool timeout_error_printed = false;
 100 
 101 // Roll all threads forward to a safepoint and suspend them all
 102 void SafepointSynchronize::begin() {
 103 
 104   Thread* myThread = Thread::current();
 105   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
 106 
 107   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 108     _safepoint_begin_time = os::javaTimeNanos();
 109     _ts_of_current_safepoint = tty->time_stamp().seconds();
 110   }
 111 
 112 #if INCLUDE_ALL_GCS
 113   if (UseConcMarkSweepGC) {
 114     // In the future we should investigate whether CMS can use the
 115     // more-general mechanism below.  DLD (01/05).
 116     ConcurrentMarkSweepThread::synchronize(false);
 117   } else if (UseG1GC) {
 118     SuspendibleThreadSet::synchronize();
 119   }
 120 #endif // INCLUDE_ALL_GCS
 121 
 122   // By getting the Threads_lock, we assure that no threads are about to start or
 123   // exit. It is released again in SafepointSynchronize::end().
 124   Threads_lock->lock();
 125 
 126   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
 127 
 128   int nof_threads = Threads::number_of_threads();
 129 
 130   if (TraceSafepoint) {
 131     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
 132   }
 133 
 134   RuntimeService::record_safepoint_begin();
 135 
 136   MutexLocker mu(Safepoint_lock);
 137 
 138   // Reset the count of active JNI critical threads
 139   _current_jni_active_count = 0;
 140 
 141   // Set number of threads to wait for, before we initiate the callbacks
 142   _waiting_to_block = nof_threads;
 143   TryingToBlock     = 0 ;
 144   int still_running = nof_threads;
 145 
 146   // Save the starting time, so that it can be compared to see if this has taken
 147   // too long to complete.
 148   jlong safepoint_limit_time;
 149   timeout_error_printed = false;
 150 
 151   // PrintSafepointStatisticsTimeout can be specified separately. When
 152   // specified, PrintSafepointStatistics will be set to true in
 153   // deferred_initialize_stat method. The initialization has to be done
 154   // early enough to avoid any races. See bug 6880029 for details.
 155   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 156     deferred_initialize_stat();
 157   }
 158 
 159   // Begin the process of bringing the system to a safepoint.
 160   // Java threads can be in several different states and are
 161   // stopped by different mechanisms:
 162   //
 163   //  1. Running interpreted
 164   //     The interpreter dispatch table is changed to force it to
 165   //     check for a safepoint condition between bytecodes.
 166   //  2. Running in native code
 167   //     When returning from the native code, a Java thread must check
 168   //     the safepoint _state to see if we must block.  If the
 169   //     VM thread sees a Java thread in native, it does
 170   //     not wait for this thread to block.  The order of the memory
 171   //     writes and reads of both the safepoint state and the Java
 172   //     threads state is critical.  In order to guarantee that the
 173   //     memory writes are serialized with respect to each other,
 174   //     the VM thread issues a memory barrier instruction
 175   //     (on MP systems).  In order to avoid the overhead of issuing
 176   //     a memory barrier for each Java thread making native calls, each Java
 177   //     thread performs a write to a single memory page after changing
 178   //     the thread state.  The VM thread performs a sequence of
 179   //     mprotect OS calls which forces all previous writes from all
 180   //     Java threads to be serialized.  This is done in the
 181   //     os::serialize_thread_states() call.  This has proven to be
 182   //     much more efficient than executing a membar instruction
 183   //     on every call to native code.
 184   //  3. Running compiled Code
 185   //     Compiled code reads a global (Safepoint Polling) page that
 186   //     is set to fault if we are trying to get to a safepoint.
 187   //  4. Blocked
 188   //     A thread which is blocked will not be allowed to return from the
 189   //     block condition until the safepoint operation is complete.
 190   //  5. In VM or Transitioning between states
 191   //     If a Java thread is currently running in the VM or transitioning
 192   //     between states, the safepointing code will wait for the thread to
 193   //     block itself when it attempts transitions to a new state.
 194   //
 195   _state            = _synchronizing;
 196   OrderAccess::fence();
 197 
 198   // Flush all thread states to memory
 199   if (!UseMembar) {
 200     os::serialize_thread_states();
 201   }
 202 
 203   // Make interpreter safepoint aware
 204   Interpreter::notice_safepoints();
 205 
 206   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
 207     // Make polling safepoint aware
 208     guarantee (PageArmed == 0, "invariant") ;
 209     PageArmed = 1 ;
 210     os::make_polling_page_unreadable();
 211   }
 212 
 213   // Consider using active_processor_count() ... but that call is expensive.
 214   int ncpus = os::processor_count() ;
 215 
 216 #ifdef ASSERT
 217   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 218     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 219     // Clear the visited flag to ensure that the critical counts are collected properly.
 220     cur->set_visited_for_critical_count(false);
 221   }
 222 #endif // ASSERT
 223 
 224   if (SafepointTimeout)
 225     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 226 
 227   // Iterate through all threads until it have been determined how to stop them all at a safepoint
 228   unsigned int iterations = 0;
 229   int steps = 0 ;
 230   while(still_running > 0) {
 231     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 232       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 233       ThreadSafepointState *cur_state = cur->safepoint_state();
 234       if (cur_state->is_running()) {
 235         cur_state->examine_state_of_thread();
 236         if (!cur_state->is_running()) {
 237            still_running--;
 238            // consider adjusting steps downward:
 239            //   steps = 0
 240            //   steps -= NNN
 241            //   steps >>= 1
 242            //   steps = MIN(steps, 2000-100)
 243            //   if (iterations != 0) steps -= NNN
 244         }
 245         if (TraceSafepoint && Verbose) cur_state->print();
 246       }
 247     }
 248 
 249     if (PrintSafepointStatistics && iterations == 0) {
 250       begin_statistics(nof_threads, still_running);
 251     }
 252 
 253     if (still_running > 0) {
 254       // Check for if it takes to long
 255       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 256         print_safepoint_timeout(_spinning_timeout);
 257       }
 258 
 259       // Spin to avoid context switching.
 260       // There's a tension between allowing the mutators to run (and rendezvous)
 261       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 262       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 263       // spinning by the VM thread on a saturated system can increase rendezvous latency.
 264       // Blocking or yielding incur their own penalties in the form of context switching
 265       // and the resultant loss of $ residency.
 266       //
 267       // Further complicating matters is that yield() does not work as naively expected
 268       // on many platforms -- yield() does not guarantee that any other ready threads
 269       // will run.   As such we revert yield_all() after some number of iterations.
 270       // Yield_all() is implemented as a short unconditional sleep on some platforms.
 271       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 272       // can actually increase the time it takes the VM thread to detect that a system-wide
 273       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 274       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 275       // In that case the mutators will be stalled waiting for the safepoint to complete and the
 276       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 277       // will eventually wake up and detect that all mutators are safe, at which point
 278       // we'll again make progress.
 279       //
 280       // Beware too that that the VMThread typically runs at elevated priority.
 281       // Its default priority is higher than the default mutator priority.
 282       // Obviously, this complicates spinning.
 283       //
 284       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 285       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 286       //
 287       // See the comments in synchronizer.cpp for additional remarks on spinning.
 288       //
 289       // In the future we might:
 290       // 1. Modify the safepoint scheme to avoid potentially unbounded spinning.
 291       //    This is tricky as the path used by a thread exiting the JVM (say on
 292       //    on JNI call-out) simply stores into its state field.  The burden
 293       //    is placed on the VM thread, which must poll (spin).
 294       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 295       //    we might aggressively scan the stacks of threads that are already safe.
 296       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 297       //    If all the mutators are ONPROC there's no reason to sleep or yield.
 298       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 299       // 5. Check system saturation.  If the system is not fully saturated then
 300       //    simply spin and avoid sleep/yield.
 301       // 6. As still-running mutators rendezvous they could unpark the sleeping
 302       //    VMthread.  This works well for still-running mutators that become
 303       //    safe.  The VMthread must still poll for mutators that call-out.
 304       // 7. Drive the policy on time-since-begin instead of iterations.
 305       // 8. Consider making the spin duration a function of the # of CPUs:
 306       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 307       //    Alternately, instead of counting iterations of the outer loop
 308       //    we could count the # of threads visited in the inner loop, above.
 309       // 9. On windows consider using the return value from SwitchThreadTo()
 310       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 311 
 312       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
 313          guarantee (PageArmed == 0, "invariant") ;
 314          PageArmed = 1 ;
 315          os::make_polling_page_unreadable();
 316       }
 317 
 318       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 319       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 320       ++steps ;
 321       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 322         SpinPause() ;     // MP-Polite spin
 323       } else
 324       if (steps < DeferThrSuspendLoopCount) {
 325         os::NakedYield() ;
 326       } else {
 327         os::yield_all() ;
 328         // Alternately, the VM thread could transiently depress its scheduling priority or
 329         // transiently increase the priority of the tardy mutator(s).
 330       }
 331 
 332       iterations ++ ;
 333     }
 334     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 335   }
 336   assert(still_running == 0, "sanity check");
 337 
 338   if (PrintSafepointStatistics) {
 339     update_statistics_on_spin_end();
 340   }
 341 
 342   // wait until all threads are stopped
 343   while (_waiting_to_block > 0) {
 344     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
 345     if (!SafepointTimeout || timeout_error_printed) {
 346       Safepoint_lock->wait(true);  // true, means with no safepoint checks
 347     } else {
 348       // Compute remaining time
 349       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 350 
 351       // If there is no remaining time, then there is an error
 352       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 353         print_safepoint_timeout(_blocking_timeout);
 354       }
 355     }
 356   }
 357   assert(_waiting_to_block == 0, "sanity check");
 358 
 359 #ifndef PRODUCT
 360   if (SafepointTimeout) {
 361     jlong current_time = os::javaTimeNanos();
 362     if (safepoint_limit_time < current_time) {
 363       tty->print_cr("# SafepointSynchronize: Finished after "
 364                     INT64_FORMAT_W(6) " ms",
 365                     ((current_time - safepoint_limit_time) / MICROUNITS +
 366                      SafepointTimeoutDelay));
 367     }
 368   }
 369 #endif
 370 
 371   assert((_safepoint_counter & 0x1) == 0, "must be even");
 372   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 373   _safepoint_counter ++;
 374 
 375   // Record state
 376   _state = _synchronized;
 377 
 378   OrderAccess::fence();
 379 
 380 #ifdef ASSERT
 381   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 382     // make sure all the threads were visited
 383     assert(cur->was_visited_for_critical_count(), "missed a thread");
 384   }
 385 #endif // ASSERT
 386 
 387   // Update the count of active JNI critical regions
 388   GC_locker::set_jni_lock_count(_current_jni_active_count);
 389 
 390   if (TraceSafepoint) {
 391     VM_Operation *op = VMThread::vm_operation();
 392     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
 393   }
 394 
 395   RuntimeService::record_safepoint_synchronized();
 396   if (PrintSafepointStatistics) {
 397     update_statistics_on_sync_end(os::javaTimeNanos());
 398   }
 399 
 400   // Call stuff that needs to be run when a safepoint is just about to be completed
 401   do_cleanup_tasks();
 402 
 403   if (PrintSafepointStatistics) {
 404     // Record how much time spend on the above cleanup tasks
 405     update_statistics_on_cleanup_end(os::javaTimeNanos());
 406   }
 407 }
 408 
 409 // Wake up all threads, so they are ready to resume execution after the safepoint
 410 // operation has been carried out
 411 void SafepointSynchronize::end() {
 412 
 413   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 414   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 415   _safepoint_counter ++;
 416   // memory fence isn't required here since an odd _safepoint_counter
 417   // value can do no harm and a fence is issued below anyway.
 418 
 419   DEBUG_ONLY(Thread* myThread = Thread::current();)
 420   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 421 
 422   if (PrintSafepointStatistics) {
 423     end_statistics(os::javaTimeNanos());
 424   }
 425 
 426 #ifdef ASSERT
 427   // A pending_exception cannot be installed during a safepoint.  The threads
 428   // may install an async exception after they come back from a safepoint into
 429   // pending_exception after they unblock.  But that should happen later.
 430   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 431     assert (!(cur->has_pending_exception() &&
 432               cur->safepoint_state()->is_at_poll_safepoint()),
 433             "safepoint installed a pending exception");
 434   }
 435 #endif // ASSERT
 436 
 437   if (PageArmed) {
 438     // Make polling safepoint aware
 439     os::make_polling_page_readable();
 440     PageArmed = 0 ;
 441   }
 442 
 443   // Remove safepoint check from interpreter
 444   Interpreter::ignore_safepoints();
 445 
 446   {
 447     MutexLocker mu(Safepoint_lock);
 448 
 449     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 450 
 451     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 452     // when they get restarted.
 453     _state = _not_synchronized;
 454     OrderAccess::fence();
 455 
 456     if (TraceSafepoint) {
 457        tty->print_cr("Leaving safepoint region");
 458     }
 459 
 460     // Start suspended threads
 461     for(JavaThread *current = Threads::first(); current; current = current->next()) {
 462       // A problem occurring on Solaris is when attempting to restart threads
 463       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 464       // to the next one (since it has been running the longest).  We then have
 465       // to wait for a cpu to become available before we can continue restarting
 466       // threads.
 467       // FIXME: This causes the performance of the VM to degrade when active and with
 468       // large numbers of threads.  Apparently this is due to the synchronous nature
 469       // of suspending threads.
 470       //
 471       // TODO-FIXME: the comments above are vestigial and no longer apply.
 472       // Furthermore, using solaris' schedctl in this particular context confers no benefit
 473       if (VMThreadHintNoPreempt) {
 474         os::hint_no_preempt();
 475       }
 476       ThreadSafepointState* cur_state = current->safepoint_state();
 477       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 478       cur_state->restart();
 479       assert(cur_state->is_running(), "safepoint state has not been reset");
 480     }
 481 
 482     RuntimeService::record_safepoint_end();
 483 
 484     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 485     // blocked in signal_thread_blocked
 486     Threads_lock->unlock();
 487 
 488   }
 489 #if INCLUDE_ALL_GCS
 490   // If there are any concurrent GC threads resume them.
 491   if (UseConcMarkSweepGC) {
 492     ConcurrentMarkSweepThread::desynchronize(false);
 493   } else if (UseG1GC) {
 494     SuspendibleThreadSet::desynchronize();
 495   }
 496 #endif // INCLUDE_ALL_GCS
 497   // record this time so VMThread can keep track how much time has elapsed
 498   // since last safepoint.
 499   _end_of_last_safepoint = os::javaTimeMillis();
 500 }
 501 
 502 bool SafepointSynchronize::is_cleanup_needed() {
 503   // Need a safepoint if some inline cache buffers is non-empty
 504   if (!InlineCacheBuffer::is_empty()) return true;
 505   return false;
 506 }
 507 
 508 
 509 
 510 // Various cleaning tasks that should be done periodically at safepoints
 511 void SafepointSynchronize::do_cleanup_tasks() {
 512   {
 513     TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
 514     ObjectSynchronizer::deflate_idle_monitors();
 515   }
 516 
 517   {
 518     TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
 519     InlineCacheBuffer::update_inline_caches();
 520   }
 521   {
 522     TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
 523     CompilationPolicy::policy()->do_safepoint_work();
 524   }
 525 
 526   {
 527     TraceTime t4("mark nmethods", TraceSafepointCleanupTime);
 528     NMethodSweeper::mark_active_nmethods();
 529   }
 530 
 531   if (SymbolTable::needs_rehashing()) {
 532     TraceTime t5("rehashing symbol table", TraceSafepointCleanupTime);
 533     SymbolTable::rehash_table();
 534   }
 535 
 536   if (StringTable::needs_rehashing()) {
 537     TraceTime t6("rehashing string table", TraceSafepointCleanupTime);
 538     StringTable::rehash_table();
 539   }
 540 
 541   // rotate log files?
 542   if (UseGCLogFileRotation) {
 543     gclog_or_tty->rotate_log(false);
 544   }
 545 
 546   {
 547     // CMS delays purging the CLDG until the beginning of the next safepoint and to
 548     // make sure concurrent sweep is done
 549     TraceTime t7("purging class loader data graph", TraceSafepointCleanupTime);
 550     ClassLoaderDataGraph::purge_if_needed();
 551   }
 552 
 553   if (MemTracker::is_on()) {
 554     MemTracker::sync();
 555   }
 556 }
 557 
 558 
 559 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 560   switch(state) {
 561   case _thread_in_native:
 562     // native threads are safe if they have no java stack or have walkable stack
 563     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 564 
 565    // blocked threads should have already have walkable stack
 566   case _thread_blocked:
 567     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 568     return true;
 569 
 570   default:
 571     return false;
 572   }
 573 }
 574 
 575 
 576 // See if the thread is running inside a lazy critical native and
 577 // update the thread critical count if so.  Also set a suspend flag to
 578 // cause the native wrapper to return into the JVM to do the unlock
 579 // once the native finishes.
 580 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
 581   if (state == _thread_in_native &&
 582       thread->has_last_Java_frame() &&
 583       thread->frame_anchor()->walkable()) {
 584     // This thread might be in a critical native nmethod so look at
 585     // the top of the stack and increment the critical count if it
 586     // is.
 587     frame wrapper_frame = thread->last_frame();
 588     CodeBlob* stub_cb = wrapper_frame.cb();
 589     if (stub_cb != NULL &&
 590         stub_cb->is_nmethod() &&
 591         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
 592       // A thread could potentially be in a critical native across
 593       // more than one safepoint, so only update the critical state on
 594       // the first one.  When it returns it will perform the unlock.
 595       if (!thread->do_critical_native_unlock()) {
 596 #ifdef ASSERT
 597         if (!thread->in_critical()) {
 598           GC_locker::increment_debug_jni_lock_count();
 599         }
 600 #endif
 601         thread->enter_critical();
 602         // Make sure the native wrapper calls back on return to
 603         // perform the needed critical unlock.
 604         thread->set_critical_native_unlock();
 605       }
 606     }
 607   }
 608 }
 609 
 610 
 611 
 612 // -------------------------------------------------------------------------------------------------------
 613 // Implementation of Safepoint callback point
 614 
 615 void SafepointSynchronize::block(JavaThread *thread) {
 616   assert(thread != NULL, "thread must be set");
 617   assert(thread->is_Java_thread(), "not a Java thread");
 618 
 619   // Threads shouldn't block if they are in the middle of printing, but...
 620   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 621 
 622   // Only bail from the block() call if the thread is gone from the
 623   // thread list; starting to exit should still block.
 624   if (thread->is_terminated()) {
 625      // block current thread if we come here from native code when VM is gone
 626      thread->block_if_vm_exited();
 627 
 628      // otherwise do nothing
 629      return;
 630   }
 631 
 632   JavaThreadState state = thread->thread_state();
 633   thread->frame_anchor()->make_walkable(thread);
 634 
 635   // Check that we have a valid thread_state at this point
 636   switch(state) {
 637     case _thread_in_vm_trans:
 638     case _thread_in_Java:        // From compiled code
 639 
 640       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 641       // we pretend we are still in the VM.
 642       thread->set_thread_state(_thread_in_vm);
 643 
 644       if (is_synchronizing()) {
 645          Atomic::inc (&TryingToBlock) ;
 646       }
 647 
 648       // We will always be holding the Safepoint_lock when we are examine the state
 649       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 650       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 651       Safepoint_lock->lock_without_safepoint_check();
 652       if (is_synchronizing()) {
 653         // Decrement the number of threads to wait for and signal vm thread
 654         assert(_waiting_to_block > 0, "sanity check");
 655         _waiting_to_block--;
 656         thread->safepoint_state()->set_has_called_back(true);
 657 
 658         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
 659         if (thread->in_critical()) {
 660           // Notice that this thread is in a critical section
 661           increment_jni_active_count();
 662         }
 663 
 664         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 665         if (_waiting_to_block == 0) {
 666           Safepoint_lock->notify_all();
 667         }
 668       }
 669 
 670       // We transition the thread to state _thread_blocked here, but
 671       // we can't do our usual check for external suspension and then
 672       // self-suspend after the lock_without_safepoint_check() call
 673       // below because we are often called during transitions while
 674       // we hold different locks. That would leave us suspended while
 675       // holding a resource which results in deadlocks.
 676       thread->set_thread_state(_thread_blocked);
 677       Safepoint_lock->unlock();
 678 
 679       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 680       // the entire safepoint, the threads will all line up here during the safepoint.
 681       Threads_lock->lock_without_safepoint_check();
 682       // restore original state. This is important if the thread comes from compiled code, so it
 683       // will continue to execute with the _thread_in_Java state.
 684       thread->set_thread_state(state);
 685       Threads_lock->unlock();
 686       break;
 687 
 688     case _thread_in_native_trans:
 689     case _thread_blocked_trans:
 690     case _thread_new_trans:
 691       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 692         thread->print_thread_state();
 693         fatal("Deadlock in safepoint code.  "
 694               "Should have called back to the VM before blocking.");
 695       }
 696 
 697       // We transition the thread to state _thread_blocked here, but
 698       // we can't do our usual check for external suspension and then
 699       // self-suspend after the lock_without_safepoint_check() call
 700       // below because we are often called during transitions while
 701       // we hold different locks. That would leave us suspended while
 702       // holding a resource which results in deadlocks.
 703       thread->set_thread_state(_thread_blocked);
 704 
 705       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 706       // the safepoint code might still be waiting for it to block. We need to change the state here,
 707       // so it can see that it is at a safepoint.
 708 
 709       // Block until the safepoint operation is completed.
 710       Threads_lock->lock_without_safepoint_check();
 711 
 712       // Restore state
 713       thread->set_thread_state(state);
 714 
 715       Threads_lock->unlock();
 716       break;
 717 
 718     default:
 719      fatal(err_msg("Illegal threadstate encountered: %d", state));
 720   }
 721 
 722   // Check for pending. async. exceptions or suspends - except if the
 723   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 724   // is called last since it grabs a lock and we only want to do that when
 725   // we must.
 726   //
 727   // Note: we never deliver an async exception at a polling point as the
 728   // compiler may not have an exception handler for it. The polling
 729   // code will notice the async and deoptimize and the exception will
 730   // be delivered. (Polling at a return point is ok though). Sure is
 731   // a lot of bother for a deprecated feature...
 732   //
 733   // We don't deliver an async exception if the thread state is
 734   // _thread_in_native_trans so JNI functions won't be called with
 735   // a surprising pending exception. If the thread state is going back to java,
 736   // async exception is checked in check_special_condition_for_native_trans().
 737 
 738   if (state != _thread_blocked_trans &&
 739       state != _thread_in_vm_trans &&
 740       thread->has_special_runtime_exit_condition()) {
 741     thread->handle_special_runtime_exit_condition(
 742       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 743   }
 744 }
 745 
 746 // ------------------------------------------------------------------------------------------------------
 747 // Exception handlers
 748 
 749 #ifndef PRODUCT
 750 
 751 #ifdef SPARC
 752 
 753 #ifdef _LP64
 754 #define PTR_PAD ""
 755 #else
 756 #define PTR_PAD "        "
 757 #endif
 758 
 759 static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
 760   bool is_oop = newptr ? (cast_to_oop(newptr))->is_oop() : false;
 761   tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
 762                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
 763                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
 764 }
 765 
 766 static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
 767   bool is_oop = newptr ? (cast_to_oop(newptr))->is_oop() : false;
 768   tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
 769                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
 770                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
 771 }
 772 
 773 static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
 774 #ifdef _LP64
 775   tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
 776   const int incr = 1;           // Increment to skip a long, in units of intptr_t
 777 #else
 778   tty->print_cr("--------+--address-+------before-----------+-------after----------+");
 779   const int incr = 2;           // Increment to skip a long, in units of intptr_t
 780 #endif
 781   tty->print_cr("---SP---|");
 782   for( int i=0; i<16; i++ ) {
 783     tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
 784   tty->print_cr("--------|");
 785   for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
 786     tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
 787   tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
 788   tty->print_cr("--------|");
 789   tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 790   tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 791   tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 792   tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 793   tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
 794   old_sp += incr; new_sp += incr; was_oops += incr;
 795   // Skip the floats
 796   tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
 797   tty->print_cr("---FP---|");
 798   old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
 799   for( int i2=0; i2<16; i2++ ) {
 800     tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
 801   tty->cr();
 802 }
 803 #endif  // SPARC
 804 #endif  // PRODUCT
 805 
 806 
 807 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 808   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 809   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 810   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 811 
 812   // Uncomment this to get some serious before/after printing of the
 813   // Sparc safepoint-blob frame structure.
 814   /*
 815   intptr_t* sp = thread->last_Java_sp();
 816   intptr_t stack_copy[150];
 817   for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
 818   bool was_oops[150];
 819   for( int i=0; i<150; i++ )
 820     was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
 821   */
 822 
 823   if (ShowSafepointMsgs) {
 824     tty->print("handle_polling_page_exception: ");
 825   }
 826 
 827   if (PrintSafepointStatistics) {
 828     inc_page_trap_count();
 829   }
 830 
 831   ThreadSafepointState* state = thread->safepoint_state();
 832 
 833   state->handle_polling_page_exception();
 834   // print_me(sp,stack_copy,was_oops);
 835 }
 836 
 837 
 838 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 839   if (!timeout_error_printed) {
 840     timeout_error_printed = true;
 841     // Print out the thread info which didn't reach the safepoint for debugging
 842     // purposes (useful when there are lots of threads in the debugger).
 843     tty->cr();
 844     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 845     if (reason ==  _spinning_timeout) {
 846       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 847     } else if (reason == _blocking_timeout) {
 848       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 849     }
 850 
 851     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 852     ThreadSafepointState *cur_state;
 853     ResourceMark rm;
 854     for(JavaThread *cur_thread = Threads::first(); cur_thread;
 855         cur_thread = cur_thread->next()) {
 856       cur_state = cur_thread->safepoint_state();
 857 
 858       if (cur_thread->thread_state() != _thread_blocked &&
 859           ((reason == _spinning_timeout && cur_state->is_running()) ||
 860            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 861         tty->print("# ");
 862         cur_thread->print();
 863         tty->cr();
 864       }
 865     }
 866     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 867   }
 868 
 869   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 870   // ShowMessageBoxOnError.
 871   if (DieOnSafepointTimeout) {
 872     char msg[1024];
 873     VM_Operation *op = VMThread::vm_operation();
 874     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 875             SafepointTimeoutDelay,
 876             op != NULL ? op->name() : "no vm operation");
 877     fatal(msg);
 878   }
 879 }
 880 
 881 
 882 // -------------------------------------------------------------------------------------------------------
 883 // Implementation of ThreadSafepointState
 884 
 885 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 886   _thread = thread;
 887   _type   = _running;
 888   _has_called_back = false;
 889   _at_poll_safepoint = false;
 890 }
 891 
 892 void ThreadSafepointState::create(JavaThread *thread) {
 893   ThreadSafepointState *state = new ThreadSafepointState(thread);
 894   thread->set_safepoint_state(state);
 895 }
 896 
 897 void ThreadSafepointState::destroy(JavaThread *thread) {
 898   if (thread->safepoint_state()) {
 899     delete(thread->safepoint_state());
 900     thread->set_safepoint_state(NULL);
 901   }
 902 }
 903 
 904 void ThreadSafepointState::examine_state_of_thread() {
 905   assert(is_running(), "better be running or just have hit safepoint poll");
 906 
 907   JavaThreadState state = _thread->thread_state();
 908 
 909   // Save the state at the start of safepoint processing.
 910   _orig_thread_state = state;
 911 
 912   // Check for a thread that is suspended. Note that thread resume tries
 913   // to grab the Threads_lock which we own here, so a thread cannot be
 914   // resumed during safepoint synchronization.
 915 
 916   // We check to see if this thread is suspended without locking to
 917   // avoid deadlocking with a third thread that is waiting for this
 918   // thread to be suspended. The third thread can notice the safepoint
 919   // that we're trying to start at the beginning of its SR_lock->wait()
 920   // call. If that happens, then the third thread will block on the
 921   // safepoint while still holding the underlying SR_lock. We won't be
 922   // able to get the SR_lock and we'll deadlock.
 923   //
 924   // We don't need to grab the SR_lock here for two reasons:
 925   // 1) The suspend flags are both volatile and are set with an
 926   //    Atomic::cmpxchg() call so we should see the suspended
 927   //    state right away.
 928   // 2) We're being called from the safepoint polling loop; if
 929   //    we don't see the suspended state on this iteration, then
 930   //    we'll come around again.
 931   //
 932   bool is_suspended = _thread->is_ext_suspended();
 933   if (is_suspended) {
 934     roll_forward(_at_safepoint);
 935     return;
 936   }
 937 
 938   // Some JavaThread states have an initial safepoint state of
 939   // running, but are actually at a safepoint. We will happily
 940   // agree and update the safepoint state here.
 941   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
 942     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
 943     roll_forward(_at_safepoint);
 944     return;
 945   }
 946 
 947   if (state == _thread_in_vm) {
 948     roll_forward(_call_back);
 949     return;
 950   }
 951 
 952   // All other thread states will continue to run until they
 953   // transition and self-block in state _blocked
 954   // Safepoint polling in compiled code causes the Java threads to do the same.
 955   // Note: new threads may require a malloc so they must be allowed to finish
 956 
 957   assert(is_running(), "examine_state_of_thread on non-running thread");
 958   return;
 959 }
 960 
 961 // Returns true is thread could not be rolled forward at present position.
 962 void ThreadSafepointState::roll_forward(suspend_type type) {
 963   _type = type;
 964 
 965   switch(_type) {
 966     case _at_safepoint:
 967       SafepointSynchronize::signal_thread_at_safepoint();
 968       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
 969       if (_thread->in_critical()) {
 970         // Notice that this thread is in a critical section
 971         SafepointSynchronize::increment_jni_active_count();
 972       }
 973       break;
 974 
 975     case _call_back:
 976       set_has_called_back(false);
 977       break;
 978 
 979     case _running:
 980     default:
 981       ShouldNotReachHere();
 982   }
 983 }
 984 
 985 void ThreadSafepointState::restart() {
 986   switch(type()) {
 987     case _at_safepoint:
 988     case _call_back:
 989       break;
 990 
 991     case _running:
 992     default:
 993        tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
 994                       _thread, _type);
 995        _thread->print();
 996       ShouldNotReachHere();
 997   }
 998   _type = _running;
 999   set_has_called_back(false);
1000 }
1001 
1002 
1003 void ThreadSafepointState::print_on(outputStream *st) const {
1004   const char *s;
1005 
1006   switch(_type) {
1007     case _running                : s = "_running";              break;
1008     case _at_safepoint           : s = "_at_safepoint";         break;
1009     case _call_back              : s = "_call_back";            break;
1010     default:
1011       ShouldNotReachHere();
1012   }
1013 
1014   st->print_cr("Thread: " INTPTR_FORMAT
1015               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
1016                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
1017                _at_poll_safepoint);
1018 
1019   _thread->print_thread_state_on(st);
1020 }
1021 
1022 
1023 // ---------------------------------------------------------------------------------------------------------------------
1024 
1025 // Block the thread at the safepoint poll or poll return.
1026 void ThreadSafepointState::handle_polling_page_exception() {
1027 
1028   // Check state.  block() will set thread state to thread_in_vm which will
1029   // cause the safepoint state _type to become _call_back.
1030   assert(type() == ThreadSafepointState::_running,
1031          "polling page exception on thread not running state");
1032 
1033   // Step 1: Find the nmethod from the return address
1034   if (ShowSafepointMsgs && Verbose) {
1035     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
1036   }
1037   address real_return_addr = thread()->saved_exception_pc();
1038 
1039   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
1040   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
1041   nmethod* nm = (nmethod*)cb;
1042 
1043   // Find frame of caller
1044   frame stub_fr = thread()->last_frame();
1045   CodeBlob* stub_cb = stub_fr.cb();
1046   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
1047   RegisterMap map(thread(), true);
1048   frame caller_fr = stub_fr.sender(&map);
1049 
1050   // Should only be poll_return or poll
1051   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
1052 
1053   // This is a poll immediately before a return. The exception handling code
1054   // has already had the effect of causing the return to occur, so the execution
1055   // will continue immediately after the call. In addition, the oopmap at the
1056   // return point does not mark the return value as an oop (if it is), so
1057   // it needs a handle here to be updated.
1058   if( nm->is_at_poll_return(real_return_addr) ) {
1059     // See if return type is an oop.
1060     bool return_oop = nm->method()->is_returning_oop();
1061     Handle return_value;
1062     if (return_oop) {
1063       // The oop result has been saved on the stack together with all
1064       // the other registers. In order to preserve it over GCs we need
1065       // to keep it in a handle.
1066       oop result = caller_fr.saved_oop_result(&map);
1067       assert(result == NULL || result->is_oop(), "must be oop");
1068       return_value = Handle(thread(), result);
1069       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
1070     }
1071 
1072     // Block the thread
1073     SafepointSynchronize::block(thread());
1074 
1075     // restore oop result, if any
1076     if (return_oop) {
1077       caller_fr.set_saved_oop_result(&map, return_value());
1078     }
1079   }
1080 
1081   // This is a safepoint poll. Verify the return address and block.
1082   else {
1083     set_at_poll_safepoint(true);
1084 
1085     // verify the blob built the "return address" correctly
1086     assert(real_return_addr == caller_fr.pc(), "must match");
1087 
1088     // Block the thread
1089     SafepointSynchronize::block(thread());
1090     set_at_poll_safepoint(false);
1091 
1092     // If we have a pending async exception deoptimize the frame
1093     // as otherwise we may never deliver it.
1094     if (thread()->has_async_condition()) {
1095       ThreadInVMfromJavaNoAsyncException __tiv(thread());
1096       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1097     }
1098 
1099     // If an exception has been installed we must check for a pending deoptimization
1100     // Deoptimize frame if exception has been thrown.
1101 
1102     if (thread()->has_pending_exception() ) {
1103       RegisterMap map(thread(), true);
1104       frame caller_fr = stub_fr.sender(&map);
1105       if (caller_fr.is_deoptimized_frame()) {
1106         // The exception patch will destroy registers that are still
1107         // live and will be needed during deoptimization. Defer the
1108         // Async exception should have deferred the exception until the
1109         // next safepoint which will be detected when we get into
1110         // the interpreter so if we have an exception now things
1111         // are messed up.
1112 
1113         fatal("Exception installed and deoptimization is pending");
1114       }
1115     }
1116   }
1117 }
1118 
1119 
1120 //
1121 //                     Statistics & Instrumentations
1122 //
1123 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1124 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1125 int    SafepointSynchronize::_cur_stat_index = 0;
1126 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1127 julong SafepointSynchronize::_coalesced_vmop_count = 0;
1128 jlong  SafepointSynchronize::_max_sync_time = 0;
1129 jlong  SafepointSynchronize::_max_vmop_time = 0;
1130 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1131 
1132 static jlong  cleanup_end_time = 0;
1133 static bool   need_to_track_page_armed_status = false;
1134 static bool   init_done = false;
1135 
1136 // Helper method to print the header.
1137 static void print_header() {
1138   tty->print("         vmop                    "
1139              "[threads: total initially_running wait_to_block]    ");
1140   tty->print("[time: spin block sync cleanup vmop] ");
1141 
1142   // no page armed status printed out if it is always armed.
1143   if (need_to_track_page_armed_status) {
1144     tty->print("page_armed ");
1145   }
1146 
1147   tty->print_cr("page_trap_count");
1148 }
1149 
1150 void SafepointSynchronize::deferred_initialize_stat() {
1151   if (init_done) return;
1152 
1153   if (PrintSafepointStatisticsCount <= 0) {
1154     fatal("Wrong PrintSafepointStatisticsCount");
1155   }
1156 
1157   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1158   // be printed right away, in which case, _safepoint_stats will regress to
1159   // a single element array. Otherwise, it is a circular ring buffer with default
1160   // size of PrintSafepointStatisticsCount.
1161   int stats_array_size;
1162   if (PrintSafepointStatisticsTimeout > 0) {
1163     stats_array_size = 1;
1164     PrintSafepointStatistics = true;
1165   } else {
1166     stats_array_size = PrintSafepointStatisticsCount;
1167   }
1168   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1169                                                  * sizeof(SafepointStats), mtInternal);
1170   guarantee(_safepoint_stats != NULL,
1171             "not enough memory for safepoint instrumentation data");
1172 
1173   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
1174     need_to_track_page_armed_status = true;
1175   }
1176   init_done = true;
1177 }
1178 
1179 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1180   assert(init_done, "safepoint statistics array hasn't been initialized");
1181   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1182 
1183   spstat->_time_stamp = _ts_of_current_safepoint;
1184 
1185   VM_Operation *op = VMThread::vm_operation();
1186   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1187   if (op != NULL) {
1188     _safepoint_reasons[spstat->_vmop_type]++;
1189   }
1190 
1191   spstat->_nof_total_threads = nof_threads;
1192   spstat->_nof_initial_running_threads = nof_running;
1193   spstat->_nof_threads_hit_page_trap = 0;
1194 
1195   // Records the start time of spinning. The real time spent on spinning
1196   // will be adjusted when spin is done. Same trick is applied for time
1197   // spent on waiting for threads to block.
1198   if (nof_running != 0) {
1199     spstat->_time_to_spin = os::javaTimeNanos();
1200   }  else {
1201     spstat->_time_to_spin = 0;
1202   }
1203 }
1204 
1205 void SafepointSynchronize::update_statistics_on_spin_end() {
1206   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1207 
1208   jlong cur_time = os::javaTimeNanos();
1209 
1210   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1211   if (spstat->_nof_initial_running_threads != 0) {
1212     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1213   }
1214 
1215   if (need_to_track_page_armed_status) {
1216     spstat->_page_armed = (PageArmed == 1);
1217   }
1218 
1219   // Records the start time of waiting for to block. Updated when block is done.
1220   if (_waiting_to_block != 0) {
1221     spstat->_time_to_wait_to_block = cur_time;
1222   } else {
1223     spstat->_time_to_wait_to_block = 0;
1224   }
1225 }
1226 
1227 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1228   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1229 
1230   if (spstat->_nof_threads_wait_to_block != 0) {
1231     spstat->_time_to_wait_to_block = end_time -
1232       spstat->_time_to_wait_to_block;
1233   }
1234 
1235   // Records the end time of sync which will be used to calculate the total
1236   // vm operation time. Again, the real time spending in syncing will be deducted
1237   // from the start of the sync time later when end_statistics is called.
1238   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1239   if (spstat->_time_to_sync > _max_sync_time) {
1240     _max_sync_time = spstat->_time_to_sync;
1241   }
1242 
1243   spstat->_time_to_do_cleanups = end_time;
1244 }
1245 
1246 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1247   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1248 
1249   // Record how long spent in cleanup tasks.
1250   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1251 
1252   cleanup_end_time = end_time;
1253 }
1254 
1255 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1256   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1257 
1258   // Update the vm operation time.
1259   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1260   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1261     _max_vmop_time = spstat->_time_to_exec_vmop;
1262   }
1263   // Only the sync time longer than the specified
1264   // PrintSafepointStatisticsTimeout will be printed out right away.
1265   // By default, it is -1 meaning all samples will be put into the list.
1266   if ( PrintSafepointStatisticsTimeout > 0) {
1267     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1268       print_statistics();
1269     }
1270   } else {
1271     // The safepoint statistics will be printed out when the _safepoin_stats
1272     // array fills up.
1273     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1274       print_statistics();
1275       _cur_stat_index = 0;
1276     } else {
1277       _cur_stat_index++;
1278     }
1279   }
1280 }
1281 
1282 void SafepointSynchronize::print_statistics() {
1283   SafepointStats* sstats = _safepoint_stats;
1284 
1285   for (int index = 0; index <= _cur_stat_index; index++) {
1286     if (index % 30 == 0) {
1287       print_header();
1288     }
1289     sstats = &_safepoint_stats[index];
1290     tty->print("%.3f: ", sstats->_time_stamp);
1291     tty->print("%-26s       ["
1292                INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
1293                "    ]    ",
1294                sstats->_vmop_type == -1 ? "no vm operation" :
1295                VM_Operation::name(sstats->_vmop_type),
1296                sstats->_nof_total_threads,
1297                sstats->_nof_initial_running_threads,
1298                sstats->_nof_threads_wait_to_block);
1299     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1300     tty->print("  ["
1301                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1302                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1303                INT64_FORMAT_W(6)"    ]  ",
1304                sstats->_time_to_spin / MICROUNITS,
1305                sstats->_time_to_wait_to_block / MICROUNITS,
1306                sstats->_time_to_sync / MICROUNITS,
1307                sstats->_time_to_do_cleanups / MICROUNITS,
1308                sstats->_time_to_exec_vmop / MICROUNITS);
1309 
1310     if (need_to_track_page_armed_status) {
1311       tty->print(INT32_FORMAT"         ", sstats->_page_armed);
1312     }
1313     tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
1314   }
1315 }
1316 
1317 // This method will be called when VM exits. It will first call
1318 // print_statistics to print out the rest of the sampling.  Then
1319 // it tries to summarize the sampling.
1320 void SafepointSynchronize::print_stat_on_exit() {
1321   if (_safepoint_stats == NULL) return;
1322 
1323   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1324 
1325   // During VM exit, end_statistics may not get called and in that
1326   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1327   // don't print it out.
1328   // Approximate the vm op time.
1329   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1330     os::javaTimeNanos() - cleanup_end_time;
1331 
1332   if ( PrintSafepointStatisticsTimeout < 0 ||
1333        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1334     print_statistics();
1335   }
1336   tty->cr();
1337 
1338   // Print out polling page sampling status.
1339   if (!need_to_track_page_armed_status) {
1340     if (UseCompilerSafepoints) {
1341       tty->print_cr("Polling page always armed");
1342     }
1343   } else {
1344     tty->print_cr("Defer polling page loop count = %d\n",
1345                  DeferPollingPageLoopCount);
1346   }
1347 
1348   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1349     if (_safepoint_reasons[index] != 0) {
1350       tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
1351                     _safepoint_reasons[index]);
1352     }
1353   }
1354 
1355   tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
1356                 _coalesced_vmop_count);
1357   tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
1358                 _max_sync_time / MICROUNITS);
1359   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1360                 INT64_FORMAT_W(5)" ms",
1361                 _max_vmop_time / MICROUNITS);
1362 }
1363 
1364 // ------------------------------------------------------------------------------------------------
1365 // Non-product code
1366 
1367 #ifndef PRODUCT
1368 
1369 void SafepointSynchronize::print_state() {
1370   if (_state == _not_synchronized) {
1371     tty->print_cr("not synchronized");
1372   } else if (_state == _synchronizing || _state == _synchronized) {
1373     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1374                   "synchronized");
1375 
1376     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1377        cur->safepoint_state()->print();
1378     }
1379   }
1380 }
1381 
1382 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1383   if (ShowSafepointMsgs) {
1384     va_list ap;
1385     va_start(ap, format);
1386     tty->vprint_cr(format, ap);
1387     va_end(ap);
1388   }
1389 }
1390 
1391 #endif // !PRODUCT