1 /*
   2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/biasedLocking.hpp"
  31 #include "runtime/handles.inline.hpp"
  32 #include "runtime/interfaceSupport.hpp"
  33 #include "runtime/mutexLocker.hpp"
  34 #include "runtime/objectMonitor.hpp"
  35 #include "runtime/objectMonitor.inline.hpp"
  36 #include "runtime/osThread.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "runtime/synchronizer.hpp"
  39 #include "runtime/thread.inline.hpp"
  40 #include "utilities/dtrace.hpp"
  41 #include "utilities/events.hpp"
  42 #include "utilities/preserveException.hpp"
  43 #ifdef TARGET_OS_FAMILY_linux
  44 # include "os_linux.inline.hpp"
  45 #endif
  46 #ifdef TARGET_OS_FAMILY_solaris
  47 # include "os_solaris.inline.hpp"
  48 #endif
  49 #ifdef TARGET_OS_FAMILY_windows
  50 # include "os_windows.inline.hpp"
  51 #endif
  52 #ifdef TARGET_OS_FAMILY_bsd
  53 # include "os_bsd.inline.hpp"
  54 #endif
  55 
  56 #if defined(__GNUC__) && !defined(PPC64)
  57   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  58   #define ATTR __attribute__((noinline))
  59 #else
  60   #define ATTR
  61 #endif
  62 
  63 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  64 
  65 // The "core" versions of monitor enter and exit reside in this file.
  66 // The interpreter and compilers contain specialized transliterated
  67 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  68 // for instance.  If you make changes here, make sure to modify the
  69 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  70 //
  71 //
  72 // -----------------------------------------------------------------------------
  73 
  74 #ifdef DTRACE_ENABLED
  75 
  76 // Only bother with this argument setup if dtrace is available
  77 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  78 
  79 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  80   char* bytes = NULL;                                                      \
  81   int len = 0;                                                             \
  82   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  83   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  84   if (klassname != NULL) {                                                 \
  85     bytes = (char*)klassname->bytes();                                     \
  86     len = klassname->utf8_length();                                        \
  87   }
  88 
  89 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  90   {                                                                        \
  91     if (DTraceMonitorProbes) {                                            \
  92       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  93       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  94                            (uintptr_t)(monitor), bytes, len, (millis));  \
  95     }                                                                      \
  96   }
  97 
  98 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  99 
 100 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
 101   {                                                                        \
 102     if (DTraceMonitorProbes) {                                            \
 103       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 104       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
 105                        (uintptr_t)(monitor), bytes, len);                  \
 106     }                                                                      \
 107   }
 108 
 109 #else //  ndef DTRACE_ENABLED
 110 
 111 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 112 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 113 
 114 #endif // ndef DTRACE_ENABLED
 115 
 116 // This exists only as a workaround of dtrace bug 6254741
 117 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 118   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 119   return 0;
 120 }
 121 
 122 #define NINFLATIONLOCKS 256
 123 static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;
 124 
 125 ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
 126 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL ;
 127 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL ;
 128 int ObjectSynchronizer::gOmInUseCount = 0;
 129 static volatile intptr_t ListLock = 0 ;      // protects global monitor free-list cache
 130 static volatile int MonitorFreeCount  = 0 ;      // # on gFreeList
 131 static volatile int MonitorPopulation = 0 ;      // # Extant -- in circulation
 132 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 133 
 134 // -----------------------------------------------------------------------------
 135 //  Fast Monitor Enter/Exit
 136 // This the fast monitor enter. The interpreter and compiler use
 137 // some assembly copies of this code. Make sure update those code
 138 // if the following function is changed. The implementation is
 139 // extremely sensitive to race condition. Be careful.
 140 
 141 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
 142  if (UseBiasedLocking) {
 143     if (!SafepointSynchronize::is_at_safepoint()) {
 144       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 145       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 146         return;
 147       }
 148     } else {
 149       assert(!attempt_rebias, "can not rebias toward VM thread");
 150       BiasedLocking::revoke_at_safepoint(obj);
 151     }
 152     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 153  }
 154 
 155  slow_enter (obj, lock, THREAD) ;
 156 }
 157 
 158 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 159   assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
 160   // if displaced header is null, the previous enter is recursive enter, no-op
 161   markOop dhw = lock->displaced_header();
 162   markOop mark ;
 163   if (dhw == NULL) {
 164      // Recursive stack-lock.
 165      // Diagnostics -- Could be: stack-locked, inflating, inflated.
 166      mark = object->mark() ;
 167      assert (!mark->is_neutral(), "invariant") ;
 168      if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
 169         assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
 170      }
 171      if (mark->has_monitor()) {
 172         ObjectMonitor * m = mark->monitor() ;
 173         assert(((oop)(m->object()))->mark() == mark, "invariant") ;
 174         assert(m->is_entered(THREAD), "invariant") ;
 175      }
 176      return ;
 177   }
 178 
 179   mark = object->mark() ;
 180 
 181   // If the object is stack-locked by the current thread, try to
 182   // swing the displaced header from the box back to the mark.
 183   if (mark == (markOop) lock) {
 184      assert (dhw->is_neutral(), "invariant") ;
 185      if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
 186         TEVENT (fast_exit: release stacklock) ;
 187         return;
 188      }
 189   }
 190 
 191   ObjectSynchronizer::inflate(THREAD, object)->exit (true, THREAD) ;
 192 }
 193 
 194 // -----------------------------------------------------------------------------
 195 // Interpreter/Compiler Slow Case
 196 // This routine is used to handle interpreter/compiler slow case
 197 // We don't need to use fast path here, because it must have been
 198 // failed in the interpreter/compiler code.
 199 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 200   markOop mark = obj->mark();
 201   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 202 
 203   if (mark->is_neutral()) {
 204     // Anticipate successful CAS -- the ST of the displaced mark must
 205     // be visible <= the ST performed by the CAS.
 206     lock->set_displaced_header(mark);
 207     if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
 208       TEVENT (slow_enter: release stacklock) ;
 209       return ;
 210     }
 211     // Fall through to inflate() ...
 212   } else
 213   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 214     assert(lock != mark->locker(), "must not re-lock the same lock");
 215     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 216     lock->set_displaced_header(NULL);
 217     return;
 218   }
 219 
 220 #if 0
 221   // The following optimization isn't particularly useful.
 222   if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
 223     lock->set_displaced_header (NULL) ;
 224     return ;
 225   }
 226 #endif
 227 
 228   // The object header will never be displaced to this lock,
 229   // so it does not matter what the value is, except that it
 230   // must be non-zero to avoid looking like a re-entrant lock,
 231   // and must not look locked either.
 232   lock->set_displaced_header(markOopDesc::unused_mark());
 233   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
 234 }
 235 
 236 // This routine is used to handle interpreter/compiler slow case
 237 // We don't need to use fast path here, because it must have
 238 // failed in the interpreter/compiler code. Simply use the heavy
 239 // weight monitor should be ok, unless someone find otherwise.
 240 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 241   fast_exit (object, lock, THREAD) ;
 242 }
 243 
 244 // -----------------------------------------------------------------------------
 245 // Class Loader  support to workaround deadlocks on the class loader lock objects
 246 // Also used by GC
 247 // complete_exit()/reenter() are used to wait on a nested lock
 248 // i.e. to give up an outer lock completely and then re-enter
 249 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 250 //  1) complete_exit lock1 - saving recursion count
 251 //  2) wait on lock2
 252 //  3) when notified on lock2, unlock lock2
 253 //  4) reenter lock1 with original recursion count
 254 //  5) lock lock2
 255 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 256 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 257   TEVENT (complete_exit) ;
 258   if (UseBiasedLocking) {
 259     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 260     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 261   }
 262 
 263   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 264 
 265   return monitor->complete_exit(THREAD);
 266 }
 267 
 268 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 269 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 270   TEVENT (reenter) ;
 271   if (UseBiasedLocking) {
 272     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 273     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 274   }
 275 
 276   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 277 
 278   monitor->reenter(recursion, THREAD);
 279 }
 280 // -----------------------------------------------------------------------------
 281 // JNI locks on java objects
 282 // NOTE: must use heavy weight monitor to handle jni monitor enter
 283 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
 284   // the current locking is from JNI instead of Java code
 285   TEVENT (jni_enter) ;
 286   if (UseBiasedLocking) {
 287     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 288     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 289   }
 290   THREAD->set_current_pending_monitor_is_from_java(false);
 291   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
 292   THREAD->set_current_pending_monitor_is_from_java(true);
 293 }
 294 
 295 // NOTE: must use heavy weight monitor to handle jni monitor enter
 296 bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
 297   if (UseBiasedLocking) {
 298     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 299     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 300   }
 301 
 302   ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
 303   return monitor->try_enter(THREAD);
 304 }
 305 
 306 
 307 // NOTE: must use heavy weight monitor to handle jni monitor exit
 308 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 309   TEVENT (jni_exit) ;
 310   if (UseBiasedLocking) {
 311     Handle h_obj(THREAD, obj);
 312     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 313     obj = h_obj();
 314   }
 315   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 316 
 317   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
 318   // If this thread has locked the object, exit the monitor.  Note:  can't use
 319   // monitor->check(CHECK); must exit even if an exception is pending.
 320   if (monitor->check(THREAD)) {
 321      monitor->exit(true, THREAD);
 322   }
 323 }
 324 
 325 // -----------------------------------------------------------------------------
 326 // Internal VM locks on java objects
 327 // standard constructor, allows locking failures
 328 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 329   _dolock = doLock;
 330   _thread = thread;
 331   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 332   _obj = obj;
 333 
 334   if (_dolock) {
 335     TEVENT (ObjectLocker) ;
 336 
 337     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 338   }
 339 }
 340 
 341 ObjectLocker::~ObjectLocker() {
 342   if (_dolock) {
 343     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 344   }
 345 }
 346 
 347 
 348 // -----------------------------------------------------------------------------
 349 //  Wait/Notify/NotifyAll
 350 // NOTE: must use heavy weight monitor to handle wait()
 351 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 352   if (UseBiasedLocking) {
 353     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 354     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 355   }
 356   if (millis < 0) {
 357     TEVENT (wait - throw IAX) ;
 358     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 359   }
 360   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 361   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 362   monitor->wait(millis, true, THREAD);
 363 
 364   // This dummy call is in place to get around dtrace bug 6254741.  Once
 365   // that's fixed we can uncomment the following line, remove the call
 366   // and change this function back into a "void" func.
 367   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 368   return dtrace_waited_probe(monitor, obj, THREAD);
 369 }
 370 
 371 void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
 372   if (UseBiasedLocking) {
 373     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 374     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 375   }
 376   if (millis < 0) {
 377     TEVENT (wait - throw IAX) ;
 378     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 379   }
 380   ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
 381 }
 382 
 383 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 384  if (UseBiasedLocking) {
 385     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 386     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 387   }
 388 
 389   markOop mark = obj->mark();
 390   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 391     return;
 392   }
 393   ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
 394 }
 395 
 396 // NOTE: see comment of notify()
 397 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 398   if (UseBiasedLocking) {
 399     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 400     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 401   }
 402 
 403   markOop mark = obj->mark();
 404   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 405     return;
 406   }
 407   ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
 408 }
 409 
 410 // -----------------------------------------------------------------------------
 411 // Hash Code handling
 412 //
 413 // Performance concern:
 414 // OrderAccess::storestore() calls release() which STs 0 into the global volatile
 415 // OrderAccess::Dummy variable.  This store is unnecessary for correctness.
 416 // Many threads STing into a common location causes considerable cache migration
 417 // or "sloshing" on large SMP system.  As such, I avoid using OrderAccess::storestore()
 418 // until it's repaired.  In some cases OrderAccess::fence() -- which incurs local
 419 // latency on the executing processor -- is a better choice as it scales on SMP
 420 // systems.  See http://blogs.sun.com/dave/entry/biased_locking_in_hotspot for a
 421 // discussion of coherency costs.  Note that all our current reference platforms
 422 // provide strong ST-ST order, so the issue is moot on IA32, x64, and SPARC.
 423 //
 424 // As a general policy we use "volatile" to control compiler-based reordering
 425 // and explicit fences (barriers) to control for architectural reordering performed
 426 // by the CPU(s) or platform.
 427 
 428 struct SharedGlobals {
 429     // These are highly shared mostly-read variables.
 430     // To avoid false-sharing they need to be the sole occupants of a $ line.
 431     double padPrefix [8];
 432     volatile int stwRandom ;
 433     volatile int stwCycle ;
 434 
 435     // Hot RW variables -- Sequester to avoid false-sharing
 436     double padSuffix [16];
 437     volatile int hcSequence ;
 438     double padFinal [8] ;
 439 } ;
 440 
 441 static SharedGlobals GVars ;
 442 static int MonitorScavengeThreshold = 1000000 ;
 443 static volatile int ForceMonitorScavenge = 0 ; // Scavenge required and pending
 444 
 445 static markOop ReadStableMark (oop obj) {
 446   markOop mark = obj->mark() ;
 447   if (!mark->is_being_inflated()) {
 448     return mark ;       // normal fast-path return
 449   }
 450 
 451   int its = 0 ;
 452   for (;;) {
 453     markOop mark = obj->mark() ;
 454     if (!mark->is_being_inflated()) {
 455       return mark ;    // normal fast-path return
 456     }
 457 
 458     // The object is being inflated by some other thread.
 459     // The caller of ReadStableMark() must wait for inflation to complete.
 460     // Avoid live-lock
 461     // TODO: consider calling SafepointSynchronize::do_call_back() while
 462     // spinning to see if there's a safepoint pending.  If so, immediately
 463     // yielding or blocking would be appropriate.  Avoid spinning while
 464     // there is a safepoint pending.
 465     // TODO: add inflation contention performance counters.
 466     // TODO: restrict the aggregate number of spinners.
 467 
 468     ++its ;
 469     if (its > 10000 || !os::is_MP()) {
 470        if (its & 1) {
 471          os::NakedYield() ;
 472          TEVENT (Inflate: INFLATING - yield) ;
 473        } else {
 474          // Note that the following code attenuates the livelock problem but is not
 475          // a complete remedy.  A more complete solution would require that the inflating
 476          // thread hold the associated inflation lock.  The following code simply restricts
 477          // the number of spinners to at most one.  We'll have N-2 threads blocked
 478          // on the inflationlock, 1 thread holding the inflation lock and using
 479          // a yield/park strategy, and 1 thread in the midst of inflation.
 480          // A more refined approach would be to change the encoding of INFLATING
 481          // to allow encapsulation of a native thread pointer.  Threads waiting for
 482          // inflation to complete would use CAS to push themselves onto a singly linked
 483          // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 484          // and calling park().  When inflation was complete the thread that accomplished inflation
 485          // would detach the list and set the markword to inflated with a single CAS and
 486          // then for each thread on the list, set the flag and unpark() the thread.
 487          // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 488          // wakes at most one thread whereas we need to wake the entire list.
 489          int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1) ;
 490          int YieldThenBlock = 0 ;
 491          assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
 492          assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
 493          Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
 494          while (obj->mark() == markOopDesc::INFLATING()) {
 495            // Beware: NakedYield() is advisory and has almost no effect on some platforms
 496            // so we periodically call Self->_ParkEvent->park(1).
 497            // We use a mixed spin/yield/block mechanism.
 498            if ((YieldThenBlock++) >= 16) {
 499               Thread::current()->_ParkEvent->park(1) ;
 500            } else {
 501               os::NakedYield() ;
 502            }
 503          }
 504          Thread::muxRelease (InflationLocks + ix ) ;
 505          TEVENT (Inflate: INFLATING - yield/park) ;
 506        }
 507     } else {
 508        SpinPause() ;       // SMP-polite spinning
 509     }
 510   }
 511 }
 512 
 513 // hashCode() generation :
 514 //
 515 // Possibilities:
 516 // * MD5Digest of {obj,stwRandom}
 517 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 518 // * A DES- or AES-style SBox[] mechanism
 519 // * One of the Phi-based schemes, such as:
 520 //   2654435761 = 2^32 * Phi (golden ratio)
 521 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 522 // * A variation of Marsaglia's shift-xor RNG scheme.
 523 // * (obj ^ stwRandom) is appealing, but can result
 524 //   in undesirable regularity in the hashCode values of adjacent objects
 525 //   (objects allocated back-to-back, in particular).  This could potentially
 526 //   result in hashtable collisions and reduced hashtable efficiency.
 527 //   There are simple ways to "diffuse" the middle address bits over the
 528 //   generated hashCode values:
 529 //
 530 
 531 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 532   intptr_t value = 0 ;
 533   if (hashCode == 0) {
 534      // This form uses an unguarded global Park-Miller RNG,
 535      // so it's possible for two threads to race and generate the same RNG.
 536      // On MP system we'll have lots of RW access to a global, so the
 537      // mechanism induces lots of coherency traffic.
 538      value = os::random() ;
 539   } else
 540   if (hashCode == 1) {
 541      // This variation has the property of being stable (idempotent)
 542      // between STW operations.  This can be useful in some of the 1-0
 543      // synchronization schemes.
 544      intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3 ;
 545      value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
 546   } else
 547   if (hashCode == 2) {
 548      value = 1 ;            // for sensitivity testing
 549   } else
 550   if (hashCode == 3) {
 551      value = ++GVars.hcSequence ;
 552   } else
 553   if (hashCode == 4) {
 554      value = cast_from_oop<intptr_t>(obj) ;
 555   } else {
 556      // Marsaglia's xor-shift scheme with thread-specific state
 557      // This is probably the best overall implementation -- we'll
 558      // likely make this the default in future releases.
 559      unsigned t = Self->_hashStateX ;
 560      t ^= (t << 11) ;
 561      Self->_hashStateX = Self->_hashStateY ;
 562      Self->_hashStateY = Self->_hashStateZ ;
 563      Self->_hashStateZ = Self->_hashStateW ;
 564      unsigned v = Self->_hashStateW ;
 565      v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
 566      Self->_hashStateW = v ;
 567      value = v ;
 568   }
 569 
 570   value &= markOopDesc::hash_mask;
 571   if (value == 0) value = 0xBAD ;
 572   assert (value != markOopDesc::no_hash, "invariant") ;
 573   TEVENT (hashCode: GENERATE) ;
 574   return value;
 575 }
 576 //
 577 intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
 578   if (UseBiasedLocking) {
 579     // NOTE: many places throughout the JVM do not expect a safepoint
 580     // to be taken here, in particular most operations on perm gen
 581     // objects. However, we only ever bias Java instances and all of
 582     // the call sites of identity_hash that might revoke biases have
 583     // been checked to make sure they can handle a safepoint. The
 584     // added check of the bias pattern is to avoid useless calls to
 585     // thread-local storage.
 586     if (obj->mark()->has_bias_pattern()) {
 587       // Box and unbox the raw reference just in case we cause a STW safepoint.
 588       Handle hobj (Self, obj) ;
 589       // Relaxing assertion for bug 6320749.
 590       assert (Universe::verify_in_progress() ||
 591               !SafepointSynchronize::is_at_safepoint(),
 592              "biases should not be seen by VM thread here");
 593       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 594       obj = hobj() ;
 595       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 596     }
 597   }
 598 
 599   // hashCode() is a heap mutator ...
 600   // Relaxing assertion for bug 6320749.
 601   assert (Universe::verify_in_progress() ||
 602           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
 603   assert (Universe::verify_in_progress() ||
 604           Self->is_Java_thread() , "invariant") ;
 605   assert (Universe::verify_in_progress() ||
 606          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
 607 
 608   ObjectMonitor* monitor = NULL;
 609   markOop temp, test;
 610   intptr_t hash;
 611   markOop mark = ReadStableMark (obj);
 612 
 613   // object should remain ineligible for biased locking
 614   assert (!mark->has_bias_pattern(), "invariant") ;
 615 
 616   if (mark->is_neutral()) {
 617     hash = mark->hash();              // this is a normal header
 618     if (hash) {                       // if it has hash, just return it
 619       return hash;
 620     }
 621     hash = get_next_hash(Self, obj);  // allocate a new hash code
 622     temp = mark->copy_set_hash(hash); // merge the hash code into header
 623     // use (machine word version) atomic operation to install the hash
 624     test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
 625     if (test == mark) {
 626       return hash;
 627     }
 628     // If atomic operation failed, we must inflate the header
 629     // into heavy weight monitor. We could add more code here
 630     // for fast path, but it does not worth the complexity.
 631   } else if (mark->has_monitor()) {
 632     monitor = mark->monitor();
 633     temp = monitor->header();
 634     assert (temp->is_neutral(), "invariant") ;
 635     hash = temp->hash();
 636     if (hash) {
 637       return hash;
 638     }
 639     // Skip to the following code to reduce code size
 640   } else if (Self->is_lock_owned((address)mark->locker())) {
 641     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 642     assert (temp->is_neutral(), "invariant") ;
 643     hash = temp->hash();              // by current thread, check if the displaced
 644     if (hash) {                       // header contains hash code
 645       return hash;
 646     }
 647     // WARNING:
 648     //   The displaced header is strictly immutable.
 649     // It can NOT be changed in ANY cases. So we have
 650     // to inflate the header into heavyweight monitor
 651     // even the current thread owns the lock. The reason
 652     // is the BasicLock (stack slot) will be asynchronously
 653     // read by other threads during the inflate() function.
 654     // Any change to stack may not propagate to other threads
 655     // correctly.
 656   }
 657 
 658   // Inflate the monitor to set hash code
 659   monitor = ObjectSynchronizer::inflate(Self, obj);
 660   // Load displaced header and check it has hash code
 661   mark = monitor->header();
 662   assert (mark->is_neutral(), "invariant") ;
 663   hash = mark->hash();
 664   if (hash == 0) {
 665     hash = get_next_hash(Self, obj);
 666     temp = mark->copy_set_hash(hash); // merge hash code into header
 667     assert (temp->is_neutral(), "invariant") ;
 668     test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
 669     if (test != mark) {
 670       // The only update to the header in the monitor (outside GC)
 671       // is install the hash code. If someone add new usage of
 672       // displaced header, please update this code
 673       hash = test->hash();
 674       assert (test->is_neutral(), "invariant") ;
 675       assert (hash != 0, "Trivial unexpected object/monitor header usage.");
 676     }
 677   }
 678   // We finally get the hash
 679   return hash;
 680 }
 681 
 682 // Deprecated -- use FastHashCode() instead.
 683 
 684 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 685   return FastHashCode (Thread::current(), obj()) ;
 686 }
 687 
 688 
 689 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 690                                                    Handle h_obj) {
 691   if (UseBiasedLocking) {
 692     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 693     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 694   }
 695 
 696   assert(thread == JavaThread::current(), "Can only be called on current thread");
 697   oop obj = h_obj();
 698 
 699   markOop mark = ReadStableMark (obj) ;
 700 
 701   // Uncontended case, header points to stack
 702   if (mark->has_locker()) {
 703     return thread->is_lock_owned((address)mark->locker());
 704   }
 705   // Contended case, header points to ObjectMonitor (tagged pointer)
 706   if (mark->has_monitor()) {
 707     ObjectMonitor* monitor = mark->monitor();
 708     return monitor->is_entered(thread) != 0 ;
 709   }
 710   // Unlocked case, header in place
 711   assert(mark->is_neutral(), "sanity check");
 712   return false;
 713 }
 714 
 715 // Be aware of this method could revoke bias of the lock object.
 716 // This method queries the ownership of the lock handle specified by 'h_obj'.
 717 // If the current thread owns the lock, it returns owner_self. If no
 718 // thread owns the lock, it returns owner_none. Otherwise, it will return
 719 // owner_other.
 720 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 721 (JavaThread *self, Handle h_obj) {
 722   // The caller must beware this method can revoke bias, and
 723   // revocation can result in a safepoint.
 724   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
 725   assert (self->thread_state() != _thread_blocked , "invariant") ;
 726 
 727   // Possible mark states: neutral, biased, stack-locked, inflated
 728 
 729   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 730     // CASE: biased
 731     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 732     assert(!h_obj->mark()->has_bias_pattern(),
 733            "biases should be revoked by now");
 734   }
 735 
 736   assert(self == JavaThread::current(), "Can only be called on current thread");
 737   oop obj = h_obj();
 738   markOop mark = ReadStableMark (obj) ;
 739 
 740   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 741   if (mark->has_locker()) {
 742     return self->is_lock_owned((address)mark->locker()) ?
 743       owner_self : owner_other;
 744   }
 745 
 746   // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
 747   // The Object:ObjectMonitor relationship is stable as long as we're
 748   // not at a safepoint.
 749   if (mark->has_monitor()) {
 750     void * owner = mark->monitor()->_owner ;
 751     if (owner == NULL) return owner_none ;
 752     return (owner == self ||
 753             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 754   }
 755 
 756   // CASE: neutral
 757   assert(mark->is_neutral(), "sanity check");
 758   return owner_none ;           // it's unlocked
 759 }
 760 
 761 // FIXME: jvmti should call this
 762 JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
 763   if (UseBiasedLocking) {
 764     if (SafepointSynchronize::is_at_safepoint()) {
 765       BiasedLocking::revoke_at_safepoint(h_obj);
 766     } else {
 767       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 768     }
 769     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 770   }
 771 
 772   oop obj = h_obj();
 773   address owner = NULL;
 774 
 775   markOop mark = ReadStableMark (obj) ;
 776 
 777   // Uncontended case, header points to stack
 778   if (mark->has_locker()) {
 779     owner = (address) mark->locker();
 780   }
 781 
 782   // Contended case, header points to ObjectMonitor (tagged pointer)
 783   if (mark->has_monitor()) {
 784     ObjectMonitor* monitor = mark->monitor();
 785     assert(monitor != NULL, "monitor should be non-null");
 786     owner = (address) monitor->owner();
 787   }
 788 
 789   if (owner != NULL) {
 790     // owning_thread_from_monitor_owner() may also return NULL here
 791     return Threads::owning_thread_from_monitor_owner(owner, doLock);
 792   }
 793 
 794   // Unlocked case, header in place
 795   // Cannot have assertion since this object may have been
 796   // locked by another thread when reaching here.
 797   // assert(mark->is_neutral(), "sanity check");
 798 
 799   return NULL;
 800 }
 801 // Visitors ...
 802 
 803 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 804   ObjectMonitor* block = gBlockList;
 805   ObjectMonitor* mid;
 806   while (block) {
 807     assert(block->object() == CHAINMARKER, "must be a block header");
 808     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 809       mid = block + i;
 810       oop object = (oop) mid->object();
 811       if (object != NULL) {
 812         closure->do_monitor(mid);
 813       }
 814     }
 815     block = (ObjectMonitor*) block->FreeNext;
 816   }
 817 }
 818 
 819 // Get the next block in the block list.
 820 static inline ObjectMonitor* next(ObjectMonitor* block) {
 821   assert(block->object() == CHAINMARKER, "must be a block header");
 822   block = block->FreeNext ;
 823   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
 824   return block;
 825 }
 826 
 827 
 828 void ObjectSynchronizer::oops_do(OopClosure* f) {
 829   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 830   for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
 831     assert(block->object() == CHAINMARKER, "must be a block header");
 832     for (int i = 1; i < _BLOCKSIZE; i++) {
 833       ObjectMonitor* mid = &block[i];
 834       if (mid->object() != NULL) {
 835         f->do_oop((oop*)mid->object_addr());
 836       }
 837     }
 838   }
 839 }
 840 
 841 
 842 // -----------------------------------------------------------------------------
 843 // ObjectMonitor Lifecycle
 844 // -----------------------
 845 // Inflation unlinks monitors from the global gFreeList and
 846 // associates them with objects.  Deflation -- which occurs at
 847 // STW-time -- disassociates idle monitors from objects.  Such
 848 // scavenged monitors are returned to the gFreeList.
 849 //
 850 // The global list is protected by ListLock.  All the critical sections
 851 // are short and operate in constant-time.
 852 //
 853 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
 854 //
 855 // Lifecycle:
 856 // --   unassigned and on the global free list
 857 // --   unassigned and on a thread's private omFreeList
 858 // --   assigned to an object.  The object is inflated and the mark refers
 859 //      to the objectmonitor.
 860 //
 861 
 862 
 863 // Constraining monitor pool growth via MonitorBound ...
 864 //
 865 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
 866 // the rate of scavenging is driven primarily by GC.  As such,  we can find
 867 // an inordinate number of monitors in circulation.
 868 // To avoid that scenario we can artificially induce a STW safepoint
 869 // if the pool appears to be growing past some reasonable bound.
 870 // Generally we favor time in space-time tradeoffs, but as there's no
 871 // natural back-pressure on the # of extant monitors we need to impose some
 872 // type of limit.  Beware that if MonitorBound is set to too low a value
 873 // we could just loop. In addition, if MonitorBound is set to a low value
 874 // we'll incur more safepoints, which are harmful to performance.
 875 // See also: GuaranteedSafepointInterval
 876 //
 877 // The current implementation uses asynchronous VM operations.
 878 //
 879 
 880 static void InduceScavenge (Thread * Self, const char * Whence) {
 881   // Induce STW safepoint to trim monitors
 882   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
 883   // More precisely, trigger an asynchronous STW safepoint as the number
 884   // of active monitors passes the specified threshold.
 885   // TODO: assert thread state is reasonable
 886 
 887   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
 888     if (ObjectMonitor::Knob_Verbose) {
 889       ::printf ("Monitor scavenge - Induced STW @%s (%d)\n", Whence, ForceMonitorScavenge) ;
 890       ::fflush(stdout) ;
 891     }
 892     // Induce a 'null' safepoint to scavenge monitors
 893     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
 894     // to the VMthread and have a lifespan longer than that of this activation record.
 895     // The VMThread will delete the op when completed.
 896     VMThread::execute (new VM_ForceAsyncSafepoint()) ;
 897 
 898     if (ObjectMonitor::Knob_Verbose) {
 899       ::printf ("Monitor scavenge - STW posted @%s (%d)\n", Whence, ForceMonitorScavenge) ;
 900       ::fflush(stdout) ;
 901     }
 902   }
 903 }
 904 /* Too slow for general assert or debug
 905 void ObjectSynchronizer::verifyInUse (Thread *Self) {
 906    ObjectMonitor* mid;
 907    int inusetally = 0;
 908    for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
 909      inusetally ++;
 910    }
 911    assert(inusetally == Self->omInUseCount, "inuse count off");
 912 
 913    int freetally = 0;
 914    for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
 915      freetally ++;
 916    }
 917    assert(freetally == Self->omFreeCount, "free count off");
 918 }
 919 */
 920 ObjectMonitor * ATTR ObjectSynchronizer::omAlloc (Thread * Self) {
 921     // A large MAXPRIVATE value reduces both list lock contention
 922     // and list coherency traffic, but also tends to increase the
 923     // number of objectMonitors in circulation as well as the STW
 924     // scavenge costs.  As usual, we lean toward time in space-time
 925     // tradeoffs.
 926     const int MAXPRIVATE = 1024 ;
 927     for (;;) {
 928         ObjectMonitor * m ;
 929 
 930         // 1: try to allocate from the thread's local omFreeList.
 931         // Threads will attempt to allocate first from their local list, then
 932         // from the global list, and only after those attempts fail will the thread
 933         // attempt to instantiate new monitors.   Thread-local free lists take
 934         // heat off the ListLock and improve allocation latency, as well as reducing
 935         // coherency traffic on the shared global list.
 936         m = Self->omFreeList ;
 937         if (m != NULL) {
 938            Self->omFreeList = m->FreeNext ;
 939            Self->omFreeCount -- ;
 940            // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
 941            guarantee (m->object() == NULL, "invariant") ;
 942            if (MonitorInUseLists) {
 943              m->FreeNext = Self->omInUseList;
 944              Self->omInUseList = m;
 945              Self->omInUseCount ++;
 946              // verifyInUse(Self);
 947            } else {
 948              m->FreeNext = NULL;
 949            }
 950            return m ;
 951         }
 952 
 953         // 2: try to allocate from the global gFreeList
 954         // CONSIDER: use muxTry() instead of muxAcquire().
 955         // If the muxTry() fails then drop immediately into case 3.
 956         // If we're using thread-local free lists then try
 957         // to reprovision the caller's free list.
 958         if (gFreeList != NULL) {
 959             // Reprovision the thread's omFreeList.
 960             // Use bulk transfers to reduce the allocation rate and heat
 961             // on various locks.
 962             Thread::muxAcquire (&ListLock, "omAlloc") ;
 963             for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL; ) {
 964                 MonitorFreeCount --;
 965                 ObjectMonitor * take = gFreeList ;
 966                 gFreeList = take->FreeNext ;
 967                 guarantee (take->object() == NULL, "invariant") ;
 968                 guarantee (!take->is_busy(), "invariant") ;
 969                 take->Recycle() ;
 970                 omRelease (Self, take, false) ;
 971             }
 972             Thread::muxRelease (&ListLock) ;
 973             Self->omFreeProvision += 1 + (Self->omFreeProvision/2) ;
 974             if (Self->omFreeProvision > MAXPRIVATE ) Self->omFreeProvision = MAXPRIVATE ;
 975             TEVENT (omFirst - reprovision) ;
 976 
 977             const int mx = MonitorBound ;
 978             if (mx > 0 && (MonitorPopulation-MonitorFreeCount) > mx) {
 979               // We can't safely induce a STW safepoint from omAlloc() as our thread
 980               // state may not be appropriate for such activities and callers may hold
 981               // naked oops, so instead we defer the action.
 982               InduceScavenge (Self, "omAlloc") ;
 983             }
 984             continue;
 985         }
 986 
 987         // 3: allocate a block of new ObjectMonitors
 988         // Both the local and global free lists are empty -- resort to malloc().
 989         // In the current implementation objectMonitors are TSM - immortal.
 990         assert (_BLOCKSIZE > 1, "invariant") ;
 991         ObjectMonitor * temp = new ObjectMonitor[_BLOCKSIZE];
 992 
 993         // NOTE: (almost) no way to recover if allocation failed.
 994         // We might be able to induce a STW safepoint and scavenge enough
 995         // objectMonitors to permit progress.
 996         if (temp == NULL) {
 997             vm_exit_out_of_memory (sizeof (ObjectMonitor[_BLOCKSIZE]), OOM_MALLOC_ERROR,
 998                                    "Allocate ObjectMonitors");
 999         }
1000 
1001         // Format the block.
1002         // initialize the linked list, each monitor points to its next
1003         // forming the single linked free list, the very first monitor
1004         // will points to next block, which forms the block list.
1005         // The trick of using the 1st element in the block as gBlockList
1006         // linkage should be reconsidered.  A better implementation would
1007         // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1008 
1009         for (int i = 1; i < _BLOCKSIZE ; i++) {
1010            temp[i].FreeNext = &temp[i+1];
1011         }
1012 
1013         // terminate the last monitor as the end of list
1014         temp[_BLOCKSIZE - 1].FreeNext = NULL ;
1015 
1016         // Element [0] is reserved for global list linkage
1017         temp[0].set_object(CHAINMARKER);
1018 
1019         // Consider carving out this thread's current request from the
1020         // block in hand.  This avoids some lock traffic and redundant
1021         // list activity.
1022 
1023         // Acquire the ListLock to manipulate BlockList and FreeList.
1024         // An Oyama-Taura-Yonezawa scheme might be more efficient.
1025         Thread::muxAcquire (&ListLock, "omAlloc [2]") ;
1026         MonitorPopulation += _BLOCKSIZE-1;
1027         MonitorFreeCount += _BLOCKSIZE-1;
1028 
1029         // Add the new block to the list of extant blocks (gBlockList).
1030         // The very first objectMonitor in a block is reserved and dedicated.
1031         // It serves as blocklist "next" linkage.
1032         temp[0].FreeNext = gBlockList;
1033         gBlockList = temp;
1034 
1035         // Add the new string of objectMonitors to the global free list
1036         temp[_BLOCKSIZE - 1].FreeNext = gFreeList ;
1037         gFreeList = temp + 1;
1038         Thread::muxRelease (&ListLock) ;
1039         TEVENT (Allocate block of monitors) ;
1040     }
1041 }
1042 
1043 // Place "m" on the caller's private per-thread omFreeList.
1044 // In practice there's no need to clamp or limit the number of
1045 // monitors on a thread's omFreeList as the only time we'll call
1046 // omRelease is to return a monitor to the free list after a CAS
1047 // attempt failed.  This doesn't allow unbounded #s of monitors to
1048 // accumulate on a thread's free list.
1049 //
1050 
1051 void ObjectSynchronizer::omRelease (Thread * Self, ObjectMonitor * m, bool fromPerThreadAlloc) {
1052     guarantee (m->object() == NULL, "invariant") ;
1053 
1054     // Remove from omInUseList
1055     if (MonitorInUseLists && fromPerThreadAlloc) {
1056       ObjectMonitor* curmidinuse = NULL;
1057       for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; ) {
1058        if (m == mid) {
1059          // extract from per-thread in-use-list
1060          if (mid == Self->omInUseList) {
1061            Self->omInUseList = mid->FreeNext;
1062          } else if (curmidinuse != NULL) {
1063            curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
1064          }
1065          Self->omInUseCount --;
1066          // verifyInUse(Self);
1067          break;
1068        } else {
1069          curmidinuse = mid;
1070          mid = mid->FreeNext;
1071       }
1072     }
1073   }
1074 
1075   // FreeNext is used for both onInUseList and omFreeList, so clear old before setting new
1076   m->FreeNext = Self->omFreeList ;
1077   Self->omFreeList = m ;
1078   Self->omFreeCount ++ ;
1079 }
1080 
1081 // Return the monitors of a moribund thread's local free list to
1082 // the global free list.  Typically a thread calls omFlush() when
1083 // it's dying.  We could also consider having the VM thread steal
1084 // monitors from threads that have not run java code over a few
1085 // consecutive STW safepoints.  Relatedly, we might decay
1086 // omFreeProvision at STW safepoints.
1087 //
1088 // Also return the monitors of a moribund thread"s omInUseList to
1089 // a global gOmInUseList under the global list lock so these
1090 // will continue to be scanned.
1091 //
1092 // We currently call omFlush() from the Thread:: dtor _after the thread
1093 // has been excised from the thread list and is no longer a mutator.
1094 // That means that omFlush() can run concurrently with a safepoint and
1095 // the scavenge operator.  Calling omFlush() from JavaThread::exit() might
1096 // be a better choice as we could safely reason that that the JVM is
1097 // not at a safepoint at the time of the call, and thus there could
1098 // be not inopportune interleavings between omFlush() and the scavenge
1099 // operator.
1100 
1101 void ObjectSynchronizer::omFlush (Thread * Self) {
1102     ObjectMonitor * List = Self->omFreeList ;  // Null-terminated SLL
1103     Self->omFreeList = NULL ;
1104     ObjectMonitor * Tail = NULL ;
1105     int Tally = 0;
1106     if (List != NULL) {
1107       ObjectMonitor * s ;
1108       for (s = List ; s != NULL ; s = s->FreeNext) {
1109           Tally ++ ;
1110           Tail = s ;
1111           guarantee (s->object() == NULL, "invariant") ;
1112           guarantee (!s->is_busy(), "invariant") ;
1113           s->set_owner (NULL) ;   // redundant but good hygiene
1114           TEVENT (omFlush - Move one) ;
1115       }
1116       guarantee (Tail != NULL && List != NULL, "invariant") ;
1117     }
1118 
1119     ObjectMonitor * InUseList = Self->omInUseList;
1120     ObjectMonitor * InUseTail = NULL ;
1121     int InUseTally = 0;
1122     if (InUseList != NULL) {
1123       Self->omInUseList = NULL;
1124       ObjectMonitor *curom;
1125       for (curom = InUseList; curom != NULL; curom = curom->FreeNext) {
1126         InUseTail = curom;
1127         InUseTally++;
1128       }
1129 // TODO debug
1130       assert(Self->omInUseCount == InUseTally, "inuse count off");
1131       Self->omInUseCount = 0;
1132       guarantee (InUseTail != NULL && InUseList != NULL, "invariant");
1133     }
1134 
1135     Thread::muxAcquire (&ListLock, "omFlush") ;
1136     if (Tail != NULL) {
1137       Tail->FreeNext = gFreeList ;
1138       gFreeList = List ;
1139       MonitorFreeCount += Tally;
1140     }
1141 
1142     if (InUseTail != NULL) {
1143       InUseTail->FreeNext = gOmInUseList;
1144       gOmInUseList = InUseList;
1145       gOmInUseCount += InUseTally;
1146     }
1147 
1148     Thread::muxRelease (&ListLock) ;
1149     TEVENT (omFlush) ;
1150 }
1151 
1152 // Fast path code shared by multiple functions
1153 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
1154   markOop mark = obj->mark();
1155   if (mark->has_monitor()) {
1156     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
1157     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
1158     return mark->monitor();
1159   }
1160   return ObjectSynchronizer::inflate(Thread::current(), obj);
1161 }
1162 
1163 
1164 // Note that we could encounter some performance loss through false-sharing as
1165 // multiple locks occupy the same $ line.  Padding might be appropriate.
1166 
1167 
1168 ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
1169   // Inflate mutates the heap ...
1170   // Relaxing assertion for bug 6320749.
1171   assert (Universe::verify_in_progress() ||
1172           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
1173 
1174   for (;;) {
1175       const markOop mark = object->mark() ;
1176       assert (!mark->has_bias_pattern(), "invariant") ;
1177 
1178       // The mark can be in one of the following states:
1179       // *  Inflated     - just return
1180       // *  Stack-locked - coerce it to inflated
1181       // *  INFLATING    - busy wait for conversion to complete
1182       // *  Neutral      - aggressively inflate the object.
1183       // *  BIASED       - Illegal.  We should never see this
1184 
1185       // CASE: inflated
1186       if (mark->has_monitor()) {
1187           ObjectMonitor * inf = mark->monitor() ;
1188           assert (inf->header()->is_neutral(), "invariant");
1189           assert (inf->object() == object, "invariant") ;
1190           assert (ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1191           return inf ;
1192       }
1193 
1194       // CASE: inflation in progress - inflating over a stack-lock.
1195       // Some other thread is converting from stack-locked to inflated.
1196       // Only that thread can complete inflation -- other threads must wait.
1197       // The INFLATING value is transient.
1198       // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1199       // We could always eliminate polling by parking the thread on some auxiliary list.
1200       if (mark == markOopDesc::INFLATING()) {
1201          TEVENT (Inflate: spin while INFLATING) ;
1202          ReadStableMark(object) ;
1203          continue ;
1204       }
1205 
1206       // CASE: stack-locked
1207       // Could be stack-locked either by this thread or by some other thread.
1208       //
1209       // Note that we allocate the objectmonitor speculatively, _before_ attempting
1210       // to install INFLATING into the mark word.  We originally installed INFLATING,
1211       // allocated the objectmonitor, and then finally STed the address of the
1212       // objectmonitor into the mark.  This was correct, but artificially lengthened
1213       // the interval in which INFLATED appeared in the mark, thus increasing
1214       // the odds of inflation contention.
1215       //
1216       // We now use per-thread private objectmonitor free lists.
1217       // These list are reprovisioned from the global free list outside the
1218       // critical INFLATING...ST interval.  A thread can transfer
1219       // multiple objectmonitors en-mass from the global free list to its local free list.
1220       // This reduces coherency traffic and lock contention on the global free list.
1221       // Using such local free lists, it doesn't matter if the omAlloc() call appears
1222       // before or after the CAS(INFLATING) operation.
1223       // See the comments in omAlloc().
1224 
1225       if (mark->has_locker()) {
1226           ObjectMonitor * m = omAlloc (Self) ;
1227           // Optimistically prepare the objectmonitor - anticipate successful CAS
1228           // We do this before the CAS in order to minimize the length of time
1229           // in which INFLATING appears in the mark.
1230           m->Recycle();
1231           m->_Responsible  = NULL ;
1232           m->OwnerIsThread = 0 ;
1233           m->_recursions   = 0 ;
1234           m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;   // Consider: maintain by type/class
1235 
1236           markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ;
1237           if (cmp != mark) {
1238              omRelease (Self, m, true) ;
1239              continue ;       // Interference -- just retry
1240           }
1241 
1242           // We've successfully installed INFLATING (0) into the mark-word.
1243           // This is the only case where 0 will appear in a mark-work.
1244           // Only the singular thread that successfully swings the mark-word
1245           // to 0 can perform (or more precisely, complete) inflation.
1246           //
1247           // Why do we CAS a 0 into the mark-word instead of just CASing the
1248           // mark-word from the stack-locked value directly to the new inflated state?
1249           // Consider what happens when a thread unlocks a stack-locked object.
1250           // It attempts to use CAS to swing the displaced header value from the
1251           // on-stack basiclock back into the object header.  Recall also that the
1252           // header value (hashcode, etc) can reside in (a) the object header, or
1253           // (b) a displaced header associated with the stack-lock, or (c) a displaced
1254           // header in an objectMonitor.  The inflate() routine must copy the header
1255           // value from the basiclock on the owner's stack to the objectMonitor, all
1256           // the while preserving the hashCode stability invariants.  If the owner
1257           // decides to release the lock while the value is 0, the unlock will fail
1258           // and control will eventually pass from slow_exit() to inflate.  The owner
1259           // will then spin, waiting for the 0 value to disappear.   Put another way,
1260           // the 0 causes the owner to stall if the owner happens to try to
1261           // drop the lock (restoring the header from the basiclock to the object)
1262           // while inflation is in-progress.  This protocol avoids races that might
1263           // would otherwise permit hashCode values to change or "flicker" for an object.
1264           // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1265           // 0 serves as a "BUSY" inflate-in-progress indicator.
1266 
1267 
1268           // fetch the displaced mark from the owner's stack.
1269           // The owner can't die or unwind past the lock while our INFLATING
1270           // object is in the mark.  Furthermore the owner can't complete
1271           // an unlock on the object, either.
1272           markOop dmw = mark->displaced_mark_helper() ;
1273           assert (dmw->is_neutral(), "invariant") ;
1274 
1275           // Setup monitor fields to proper values -- prepare the monitor
1276           m->set_header(dmw) ;
1277 
1278           // Optimization: if the mark->locker stack address is associated
1279           // with this thread we could simply set m->_owner = Self and
1280           // m->OwnerIsThread = 1. Note that a thread can inflate an object
1281           // that it has stack-locked -- as might happen in wait() -- directly
1282           // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1283           m->set_owner(mark->locker());
1284           m->set_object(object);
1285           // TODO-FIXME: assert BasicLock->dhw != 0.
1286 
1287           // Must preserve store ordering. The monitor state must
1288           // be stable at the time of publishing the monitor address.
1289           guarantee (object->mark() == markOopDesc::INFLATING(), "invariant") ;
1290           object->release_set_mark(markOopDesc::encode(m));
1291 
1292           // Hopefully the performance counters are allocated on distinct cache lines
1293           // to avoid false sharing on MP systems ...
1294           if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
1295           TEVENT(Inflate: overwrite stacklock) ;
1296           if (TraceMonitorInflation) {
1297             if (object->is_instance()) {
1298               ResourceMark rm;
1299               tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1300                 (void *) object, (intptr_t) object->mark(),
1301                 object->klass()->external_name());
1302             }
1303           }
1304           return m ;
1305       }
1306 
1307       // CASE: neutral
1308       // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1309       // If we know we're inflating for entry it's better to inflate by swinging a
1310       // pre-locked objectMonitor pointer into the object header.   A successful
1311       // CAS inflates the object *and* confers ownership to the inflating thread.
1312       // In the current implementation we use a 2-step mechanism where we CAS()
1313       // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1314       // An inflateTry() method that we could call from fast_enter() and slow_enter()
1315       // would be useful.
1316 
1317       assert (mark->is_neutral(), "invariant");
1318       ObjectMonitor * m = omAlloc (Self) ;
1319       // prepare m for installation - set monitor to initial state
1320       m->Recycle();
1321       m->set_header(mark);
1322       m->set_owner(NULL);
1323       m->set_object(object);
1324       m->OwnerIsThread = 1 ;
1325       m->_recursions   = 0 ;
1326       m->_Responsible  = NULL ;
1327       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;       // consider: keep metastats by type/class
1328 
1329       if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
1330           m->set_object (NULL) ;
1331           m->set_owner  (NULL) ;
1332           m->OwnerIsThread = 0 ;
1333           m->Recycle() ;
1334           omRelease (Self, m, true) ;
1335           m = NULL ;
1336           continue ;
1337           // interference - the markword changed - just retry.
1338           // The state-transitions are one-way, so there's no chance of
1339           // live-lock -- "Inflated" is an absorbing state.
1340       }
1341 
1342       // Hopefully the performance counters are allocated on distinct
1343       // cache lines to avoid false sharing on MP systems ...
1344       if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
1345       TEVENT(Inflate: overwrite neutral) ;
1346       if (TraceMonitorInflation) {
1347         if (object->is_instance()) {
1348           ResourceMark rm;
1349           tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1350             (void *) object, (intptr_t) object->mark(),
1351             object->klass()->external_name());
1352         }
1353       }
1354       return m ;
1355   }
1356 }
1357 
1358 // Note that we could encounter some performance loss through false-sharing as
1359 // multiple locks occupy the same $ line.  Padding might be appropriate.
1360 
1361 
1362 // Deflate_idle_monitors() is called at all safepoints, immediately
1363 // after all mutators are stopped, but before any objects have moved.
1364 // It traverses the list of known monitors, deflating where possible.
1365 // The scavenged monitor are returned to the monitor free list.
1366 //
1367 // Beware that we scavenge at *every* stop-the-world point.
1368 // Having a large number of monitors in-circulation negatively
1369 // impacts the performance of some applications (e.g., PointBase).
1370 // Broadly, we want to minimize the # of monitors in circulation.
1371 //
1372 // We have added a flag, MonitorInUseLists, which creates a list
1373 // of active monitors for each thread. deflate_idle_monitors()
1374 // only scans the per-thread inuse lists. omAlloc() puts all
1375 // assigned monitors on the per-thread list. deflate_idle_monitors()
1376 // returns the non-busy monitors to the global free list.
1377 // When a thread dies, omFlush() adds the list of active monitors for
1378 // that thread to a global gOmInUseList acquiring the
1379 // global list lock. deflate_idle_monitors() acquires the global
1380 // list lock to scan for non-busy monitors to the global free list.
1381 // An alternative could have used a single global inuse list. The
1382 // downside would have been the additional cost of acquiring the global list lock
1383 // for every omAlloc().
1384 //
1385 // Perversely, the heap size -- and thus the STW safepoint rate --
1386 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1387 // which in turn can mean large(r) numbers of objectmonitors in circulation.
1388 // This is an unfortunate aspect of this design.
1389 //
1390 
1391 enum ManifestConstants {
1392     ClearResponsibleAtSTW   = 0,
1393     MaximumRecheckInterval  = 1000
1394 } ;
1395 
1396 // Deflate a single monitor if not in use
1397 // Return true if deflated, false if in use
1398 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1399                                          ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
1400   bool deflated;
1401   // Normal case ... The monitor is associated with obj.
1402   guarantee (obj->mark() == markOopDesc::encode(mid), "invariant") ;
1403   guarantee (mid == obj->mark()->monitor(), "invariant");
1404   guarantee (mid->header()->is_neutral(), "invariant");
1405 
1406   if (mid->is_busy()) {
1407      if (ClearResponsibleAtSTW) mid->_Responsible = NULL ;
1408      deflated = false;
1409   } else {
1410      // Deflate the monitor if it is no longer being used
1411      // It's idle - scavenge and return to the global free list
1412      // plain old deflation ...
1413      TEVENT (deflate_idle_monitors - scavenge1) ;
1414      if (TraceMonitorInflation) {
1415        if (obj->is_instance()) {
1416          ResourceMark rm;
1417            tty->print_cr("Deflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1418                 (void *) obj, (intptr_t) obj->mark(), obj->klass()->external_name());
1419        }
1420      }
1421 
1422      // Restore the header back to obj
1423      obj->release_set_mark(mid->header());
1424      mid->clear();
1425 
1426      assert (mid->object() == NULL, "invariant") ;
1427 
1428      // Move the object to the working free list defined by FreeHead,FreeTail.
1429      if (*FreeHeadp == NULL) *FreeHeadp = mid;
1430      if (*FreeTailp != NULL) {
1431        ObjectMonitor * prevtail = *FreeTailp;
1432        assert(prevtail->FreeNext == NULL, "cleaned up deflated?"); // TODO KK
1433        prevtail->FreeNext = mid;
1434       }
1435      *FreeTailp = mid;
1436      deflated = true;
1437   }
1438   return deflated;
1439 }
1440 
1441 // Caller acquires ListLock
1442 int ObjectSynchronizer::walk_monitor_list(ObjectMonitor** listheadp,
1443                                           ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
1444   ObjectMonitor* mid;
1445   ObjectMonitor* next;
1446   ObjectMonitor* curmidinuse = NULL;
1447   int deflatedcount = 0;
1448 
1449   for (mid = *listheadp; mid != NULL; ) {
1450      oop obj = (oop) mid->object();
1451      bool deflated = false;
1452      if (obj != NULL) {
1453        deflated = deflate_monitor(mid, obj, FreeHeadp, FreeTailp);
1454      }
1455      if (deflated) {
1456        // extract from per-thread in-use-list
1457        if (mid == *listheadp) {
1458          *listheadp = mid->FreeNext;
1459        } else if (curmidinuse != NULL) {
1460          curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
1461        }
1462        next = mid->FreeNext;
1463        mid->FreeNext = NULL;  // This mid is current tail in the FreeHead list
1464        mid = next;
1465        deflatedcount++;
1466      } else {
1467        curmidinuse = mid;
1468        mid = mid->FreeNext;
1469     }
1470   }
1471   return deflatedcount;
1472 }
1473 
1474 void ObjectSynchronizer::deflate_idle_monitors() {
1475   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1476   int nInuse = 0 ;              // currently associated with objects
1477   int nInCirculation = 0 ;      // extant
1478   int nScavenged = 0 ;          // reclaimed
1479   bool deflated = false;
1480 
1481   ObjectMonitor * FreeHead = NULL ;  // Local SLL of scavenged monitors
1482   ObjectMonitor * FreeTail = NULL ;
1483 
1484   TEVENT (deflate_idle_monitors) ;
1485   // Prevent omFlush from changing mids in Thread dtor's during deflation
1486   // And in case the vm thread is acquiring a lock during a safepoint
1487   // See e.g. 6320749
1488   Thread::muxAcquire (&ListLock, "scavenge - return") ;
1489 
1490   if (MonitorInUseLists) {
1491     int inUse = 0;
1492     for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
1493       nInCirculation+= cur->omInUseCount;
1494       int deflatedcount = walk_monitor_list(cur->omInUseList_addr(), &FreeHead, &FreeTail);
1495       cur->omInUseCount-= deflatedcount;
1496       // verifyInUse(cur);
1497       nScavenged += deflatedcount;
1498       nInuse += cur->omInUseCount;
1499      }
1500 
1501    // For moribund threads, scan gOmInUseList
1502    if (gOmInUseList) {
1503      nInCirculation += gOmInUseCount;
1504      int deflatedcount = walk_monitor_list((ObjectMonitor **)&gOmInUseList, &FreeHead, &FreeTail);
1505      gOmInUseCount-= deflatedcount;
1506      nScavenged += deflatedcount;
1507      nInuse += gOmInUseCount;
1508     }
1509 
1510   } else for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
1511   // Iterate over all extant monitors - Scavenge all idle monitors.
1512     assert(block->object() == CHAINMARKER, "must be a block header");
1513     nInCirculation += _BLOCKSIZE ;
1514     for (int i = 1 ; i < _BLOCKSIZE; i++) {
1515       ObjectMonitor* mid = &block[i];
1516       oop obj = (oop) mid->object();
1517 
1518       if (obj == NULL) {
1519         // The monitor is not associated with an object.
1520         // The monitor should either be a thread-specific private
1521         // free list or the global free list.
1522         // obj == NULL IMPLIES mid->is_busy() == 0
1523         guarantee (!mid->is_busy(), "invariant") ;
1524         continue ;
1525       }
1526       deflated = deflate_monitor(mid, obj, &FreeHead, &FreeTail);
1527 
1528       if (deflated) {
1529         mid->FreeNext = NULL ;
1530         nScavenged ++ ;
1531       } else {
1532         nInuse ++;
1533       }
1534     }
1535   }
1536 
1537   MonitorFreeCount += nScavenged;
1538 
1539   // Consider: audit gFreeList to ensure that MonitorFreeCount and list agree.
1540 
1541   if (ObjectMonitor::Knob_Verbose) {
1542     ::printf ("Deflate: InCirc=%d InUse=%d Scavenged=%d ForceMonitorScavenge=%d : pop=%d free=%d\n",
1543         nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
1544         MonitorPopulation, MonitorFreeCount) ;
1545     ::fflush(stdout) ;
1546   }
1547 
1548   ForceMonitorScavenge = 0;    // Reset
1549 
1550   // Move the scavenged monitors back to the global free list.
1551   if (FreeHead != NULL) {
1552      guarantee (FreeTail != NULL && nScavenged > 0, "invariant") ;
1553      assert (FreeTail->FreeNext == NULL, "invariant") ;
1554      // constant-time list splice - prepend scavenged segment to gFreeList
1555      FreeTail->FreeNext = gFreeList ;
1556      gFreeList = FreeHead ;
1557   }
1558   Thread::muxRelease (&ListLock) ;
1559 
1560   if (ObjectMonitor::_sync_Deflations != NULL) ObjectMonitor::_sync_Deflations->inc(nScavenged) ;
1561   if (ObjectMonitor::_sync_MonExtant  != NULL) ObjectMonitor::_sync_MonExtant ->set_value(nInCirculation);
1562 
1563   // TODO: Add objectMonitor leak detection.
1564   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
1565   GVars.stwRandom = os::random() ;
1566   GVars.stwCycle ++ ;
1567 }
1568 
1569 // Monitor cleanup on JavaThread::exit
1570 
1571 // Iterate through monitor cache and attempt to release thread's monitors
1572 // Gives up on a particular monitor if an exception occurs, but continues
1573 // the overall iteration, swallowing the exception.
1574 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1575 private:
1576   TRAPS;
1577 
1578 public:
1579   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1580   void do_monitor(ObjectMonitor* mid) {
1581     if (mid->owner() == THREAD) {
1582       (void)mid->complete_exit(CHECK);
1583     }
1584   }
1585 };
1586 
1587 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
1588 // ignored.  This is meant to be called during JNI thread detach which assumes
1589 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1590 // Scanning the extant monitor list can be time consuming.
1591 // A simple optimization is to add a per-thread flag that indicates a thread
1592 // called jni_monitorenter() during its lifetime.
1593 //
1594 // Instead of No_Savepoint_Verifier it might be cheaper to
1595 // use an idiom of the form:
1596 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1597 //   <code that must not run at safepoint>
1598 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1599 // Since the tests are extremely cheap we could leave them enabled
1600 // for normal product builds.
1601 
1602 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1603   assert(THREAD == JavaThread::current(), "must be current Java thread");
1604   No_Safepoint_Verifier nsv ;
1605   ReleaseJavaMonitorsClosure rjmc(THREAD);
1606   Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
1607   ObjectSynchronizer::monitors_iterate(&rjmc);
1608   Thread::muxRelease(&ListLock);
1609   THREAD->clear_pending_exception();
1610 }
1611 
1612 //------------------------------------------------------------------------------
1613 // Non-product code
1614 
1615 #ifndef PRODUCT
1616 
1617 // Verify all monitors in the monitor cache, the verification is weak.
1618 void ObjectSynchronizer::verify() {
1619   ObjectMonitor* block = gBlockList;
1620   ObjectMonitor* mid;
1621   while (block) {
1622     assert(block->object() == CHAINMARKER, "must be a block header");
1623     for (int i = 1; i < _BLOCKSIZE; i++) {
1624       mid = block + i;
1625       oop object = (oop) mid->object();
1626       if (object != NULL) {
1627         mid->verify();
1628       }
1629     }
1630     block = (ObjectMonitor*) block->FreeNext;
1631   }
1632 }
1633 
1634 // Check if monitor belongs to the monitor cache
1635 // The list is grow-only so it's *relatively* safe to traverse
1636 // the list of extant blocks without taking a lock.
1637 
1638 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
1639   ObjectMonitor* block = gBlockList;
1640 
1641   while (block) {
1642     assert(block->object() == CHAINMARKER, "must be a block header");
1643     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
1644       address mon = (address) monitor;
1645       address blk = (address) block;
1646       size_t diff = mon - blk;
1647       assert((diff % sizeof(ObjectMonitor)) == 0, "check");
1648       return 1;
1649     }
1650     block = (ObjectMonitor*) block->FreeNext;
1651   }
1652   return 0;
1653 }
1654 
1655 #endif