1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/atomic.inline.hpp"
  45 #include "runtime/extendedPC.hpp"
  46 #include "runtime/globals.hpp"
  47 #include "runtime/interfaceSupport.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "services/attachListener.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "services/runtimeService.hpp"
  65 #include "utilities/decoder.hpp"
  66 #include "utilities/defaultStream.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/elfFile.hpp"
  69 #include "utilities/growableArray.hpp"
  70 #include "utilities/vmError.hpp"
  71 
  72 // put OS-includes here
  73 # include <sys/types.h>
  74 # include <sys/mman.h>
  75 # include <sys/stat.h>
  76 # include <sys/select.h>
  77 # include <pthread.h>
  78 # include <signal.h>
  79 # include <errno.h>
  80 # include <dlfcn.h>
  81 # include <stdio.h>
  82 # include <unistd.h>
  83 # include <sys/resource.h>
  84 # include <pthread.h>
  85 # include <sys/stat.h>
  86 # include <sys/time.h>
  87 # include <sys/times.h>
  88 # include <sys/utsname.h>
  89 # include <sys/socket.h>
  90 # include <sys/wait.h>
  91 # include <pwd.h>
  92 # include <poll.h>
  93 # include <semaphore.h>
  94 # include <fcntl.h>
  95 # include <string.h>
  96 # include <syscall.h>
  97 # include <sys/sysinfo.h>
  98 # include <gnu/libc-version.h>
  99 # include <sys/ipc.h>
 100 # include <sys/shm.h>
 101 # include <link.h>
 102 # include <stdint.h>
 103 # include <inttypes.h>
 104 # include <sys/ioctl.h>
 105 
 106 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 107 
 108 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 109 // getrusage() is prepared to handle the associated failure.
 110 #ifndef RUSAGE_THREAD
 111 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 112 #endif
 113 
 114 #define MAX_PATH    (2 * K)
 115 
 116 #define MAX_SECS 100000000
 117 
 118 // for timer info max values which include all bits
 119 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 120 
 121 #define LARGEPAGES_BIT (1 << 6)
 122 ////////////////////////////////////////////////////////////////////////////////
 123 // global variables
 124 julong os::Linux::_physical_memory = 0;
 125 
 126 address   os::Linux::_initial_thread_stack_bottom = NULL;
 127 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 128 
 129 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 130 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 131 Mutex* os::Linux::_createThread_lock = NULL;
 132 pthread_t os::Linux::_main_thread;
 133 int os::Linux::_page_size = -1;
 134 const int os::Linux::_vm_default_page_size = (8 * K);
 135 bool os::Linux::_is_floating_stack = false;
 136 bool os::Linux::_is_NPTL = false;
 137 bool os::Linux::_supports_fast_thread_cpu_time = false;
 138 const char * os::Linux::_glibc_version = NULL;
 139 const char * os::Linux::_libpthread_version = NULL;
 140 pthread_condattr_t os::Linux::_condattr[1];
 141 
 142 static jlong initial_time_count=0;
 143 
 144 static int clock_tics_per_sec = 100;
 145 
 146 // For diagnostics to print a message once. see run_periodic_checks
 147 static sigset_t check_signal_done;
 148 static bool check_signals = true;
 149 
 150 static pid_t _initial_pid = 0;
 151 
 152 /* Signal number used to suspend/resume a thread */
 153 
 154 /* do not use any signal number less than SIGSEGV, see 4355769 */
 155 static int SR_signum = SIGUSR2;
 156 sigset_t SR_sigset;
 157 
 158 /* Used to protect dlsym() calls */
 159 static pthread_mutex_t dl_mutex;
 160 
 161 // Declarations
 162 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 163 
 164 #ifdef JAVASE_EMBEDDED
 165 class MemNotifyThread: public Thread {
 166   friend class VMStructs;
 167  public:
 168   virtual void run();
 169 
 170  private:
 171   static MemNotifyThread* _memnotify_thread;
 172   int _fd;
 173 
 174  public:
 175 
 176   // Constructor
 177   MemNotifyThread(int fd);
 178 
 179   // Tester
 180   bool is_memnotify_thread() const { return true; }
 181 
 182   // Printing
 183   char* name() const { return (char*)"Linux MemNotify Thread"; }
 184 
 185   // Returns the single instance of the MemNotifyThread
 186   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 187 
 188   // Create and start the single instance of MemNotifyThread
 189   static void start();
 190 };
 191 #endif // JAVASE_EMBEDDED
 192 
 193 // utility functions
 194 
 195 static int SR_initialize();
 196 
 197 julong os::available_memory() {
 198   return Linux::available_memory();
 199 }
 200 
 201 julong os::Linux::available_memory() {
 202   // values in struct sysinfo are "unsigned long"
 203   struct sysinfo si;
 204   sysinfo(&si);
 205 
 206   return (julong)si.freeram * si.mem_unit;
 207 }
 208 
 209 julong os::physical_memory() {
 210   return Linux::physical_memory();
 211 }
 212 
 213 ////////////////////////////////////////////////////////////////////////////////
 214 // environment support
 215 
 216 bool os::getenv(const char* name, char* buf, int len) {
 217   const char* val = ::getenv(name);
 218   if (val != NULL && strlen(val) < (size_t)len) {
 219     strcpy(buf, val);
 220     return true;
 221   }
 222   if (len > 0) buf[0] = 0;  // return a null string
 223   return false;
 224 }
 225 
 226 
 227 // Return true if user is running as root.
 228 
 229 bool os::have_special_privileges() {
 230   static bool init = false;
 231   static bool privileges = false;
 232   if (!init) {
 233     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 234     init = true;
 235   }
 236   return privileges;
 237 }
 238 
 239 
 240 #ifndef SYS_gettid
 241 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 242 #ifdef __ia64__
 243 #define SYS_gettid 1105
 244 #elif __i386__
 245 #define SYS_gettid 224
 246 #elif __amd64__
 247 #define SYS_gettid 186
 248 #elif __sparc__
 249 #define SYS_gettid 143
 250 #else
 251 #error define gettid for the arch
 252 #endif
 253 #endif
 254 
 255 // Cpu architecture string
 256 #if   defined(ZERO)
 257 static char cpu_arch[] = ZERO_LIBARCH;
 258 #elif defined(IA64)
 259 static char cpu_arch[] = "ia64";
 260 #elif defined(IA32)
 261 static char cpu_arch[] = "i386";
 262 #elif defined(AMD64)
 263 static char cpu_arch[] = "amd64";
 264 #elif defined(ARM)
 265 static char cpu_arch[] = "arm";
 266 #elif defined(PPC32)
 267 static char cpu_arch[] = "ppc";
 268 #elif defined(PPC64)
 269 static char cpu_arch[] = "ppc64";
 270 #elif defined(SPARC)
 271 #  ifdef _LP64
 272 static char cpu_arch[] = "sparcv9";
 273 #  else
 274 static char cpu_arch[] = "sparc";
 275 #  endif
 276 #else
 277 #error Add appropriate cpu_arch setting
 278 #endif
 279 
 280 
 281 // pid_t gettid()
 282 //
 283 // Returns the kernel thread id of the currently running thread. Kernel
 284 // thread id is used to access /proc.
 285 //
 286 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 287 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 288 //
 289 pid_t os::Linux::gettid() {
 290   int rslt = syscall(SYS_gettid);
 291   if (rslt == -1) {
 292      // old kernel, no NPTL support
 293      return getpid();
 294   } else {
 295      return (pid_t)rslt;
 296   }
 297 }
 298 
 299 // Most versions of linux have a bug where the number of processors are
 300 // determined by looking at the /proc file system.  In a chroot environment,
 301 // the system call returns 1.  This causes the VM to act as if it is
 302 // a single processor and elide locking (see is_MP() call).
 303 static bool unsafe_chroot_detected = false;
 304 static const char *unstable_chroot_error = "/proc file system not found.\n"
 305                      "Java may be unstable running multithreaded in a chroot "
 306                      "environment on Linux when /proc filesystem is not mounted.";
 307 
 308 void os::Linux::initialize_system_info() {
 309   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 310   if (processor_count() == 1) {
 311     pid_t pid = os::Linux::gettid();
 312     char fname[32];
 313     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 314     FILE *fp = fopen(fname, "r");
 315     if (fp == NULL) {
 316       unsafe_chroot_detected = true;
 317     } else {
 318       fclose(fp);
 319     }
 320   }
 321   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 322   assert(processor_count() > 0, "linux error");
 323 }
 324 
 325 void os::init_system_properties_values() {
 326   // The next steps are taken in the product version:
 327   //
 328   // Obtain the JAVA_HOME value from the location of libjvm.so.
 329   // This library should be located at:
 330   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 331   //
 332   // If "/jre/lib/" appears at the right place in the path, then we
 333   // assume libjvm.so is installed in a JDK and we use this path.
 334   //
 335   // Otherwise exit with message: "Could not create the Java virtual machine."
 336   //
 337   // The following extra steps are taken in the debugging version:
 338   //
 339   // If "/jre/lib/" does NOT appear at the right place in the path
 340   // instead of exit check for $JAVA_HOME environment variable.
 341   //
 342   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 343   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 344   // it looks like libjvm.so is installed there
 345   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 346   //
 347   // Otherwise exit.
 348   //
 349   // Important note: if the location of libjvm.so changes this
 350   // code needs to be changed accordingly.
 351 
 352 // See ld(1):
 353 //      The linker uses the following search paths to locate required
 354 //      shared libraries:
 355 //        1: ...
 356 //        ...
 357 //        7: The default directories, normally /lib and /usr/lib.
 358 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 359 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 360 #else
 361 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 362 #endif
 363 
 364 // Base path of extensions installed on the system.
 365 #define SYS_EXT_DIR     "/usr/java/packages"
 366 #define EXTENSIONS_DIR  "/lib/ext"
 367 #define ENDORSED_DIR    "/lib/endorsed"
 368 
 369   // Buffer that fits several sprintfs.
 370   // Note that the space for the colon and the trailing null are provided
 371   // by the nulls included by the sizeof operator.
 372   const size_t bufsize =
 373     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 374          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 375          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 376   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 377 
 378   // sysclasspath, java_home, dll_dir
 379   {
 380     char *pslash;
 381     os::jvm_path(buf, bufsize);
 382 
 383     // Found the full path to libjvm.so.
 384     // Now cut the path to <java_home>/jre if we can.
 385     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 386     pslash = strrchr(buf, '/');
 387     if (pslash != NULL) {
 388       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 389     }
 390     Arguments::set_dll_dir(buf);
 391 
 392     if (pslash != NULL) {
 393       pslash = strrchr(buf, '/');
 394       if (pslash != NULL) {
 395         *pslash = '\0';          // Get rid of /<arch>.
 396         pslash = strrchr(buf, '/');
 397         if (pslash != NULL) {
 398           *pslash = '\0';        // Get rid of /lib.
 399         }
 400       }
 401     }
 402     Arguments::set_java_home(buf);
 403     set_boot_path('/', ':');
 404   }
 405 
 406   // Where to look for native libraries.
 407   //
 408   // Note: Due to a legacy implementation, most of the library path
 409   // is set in the launcher. This was to accomodate linking restrictions
 410   // on legacy Linux implementations (which are no longer supported).
 411   // Eventually, all the library path setting will be done here.
 412   //
 413   // However, to prevent the proliferation of improperly built native
 414   // libraries, the new path component /usr/java/packages is added here.
 415   // Eventually, all the library path setting will be done here.
 416   {
 417     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 418     // should always exist (until the legacy problem cited above is
 419     // addressed).
 420     const char *v = ::getenv("LD_LIBRARY_PATH");
 421     const char *v_colon = ":";
 422     if (v == NULL) { v = ""; v_colon = ""; }
 423     // That's +1 for the colon and +1 for the trailing '\0'.
 424     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 425                                                      strlen(v) + 1 +
 426                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 427                                                      mtInternal);
 428     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 429     Arguments::set_library_path(ld_library_path);
 430     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 431   }
 432 
 433   // Extensions directories.
 434   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 435   Arguments::set_ext_dirs(buf);
 436 
 437   // Endorsed standards default directory.
 438   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 439   Arguments::set_endorsed_dirs(buf);
 440 
 441   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 442 
 443 #undef DEFAULT_LIBPATH
 444 #undef SYS_EXT_DIR
 445 #undef EXTENSIONS_DIR
 446 #undef ENDORSED_DIR
 447 }
 448 
 449 ////////////////////////////////////////////////////////////////////////////////
 450 // breakpoint support
 451 
 452 void os::breakpoint() {
 453   BREAKPOINT;
 454 }
 455 
 456 extern "C" void breakpoint() {
 457   // use debugger to set breakpoint here
 458 }
 459 
 460 ////////////////////////////////////////////////////////////////////////////////
 461 // signal support
 462 
 463 debug_only(static bool signal_sets_initialized = false);
 464 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 465 
 466 bool os::Linux::is_sig_ignored(int sig) {
 467       struct sigaction oact;
 468       sigaction(sig, (struct sigaction*)NULL, &oact);
 469       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 470                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 471       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 472            return true;
 473       else
 474            return false;
 475 }
 476 
 477 void os::Linux::signal_sets_init() {
 478   // Should also have an assertion stating we are still single-threaded.
 479   assert(!signal_sets_initialized, "Already initialized");
 480   // Fill in signals that are necessarily unblocked for all threads in
 481   // the VM. Currently, we unblock the following signals:
 482   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 483   //                         by -Xrs (=ReduceSignalUsage));
 484   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 485   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 486   // the dispositions or masks wrt these signals.
 487   // Programs embedding the VM that want to use the above signals for their
 488   // own purposes must, at this time, use the "-Xrs" option to prevent
 489   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 490   // (See bug 4345157, and other related bugs).
 491   // In reality, though, unblocking these signals is really a nop, since
 492   // these signals are not blocked by default.
 493   sigemptyset(&unblocked_sigs);
 494   sigemptyset(&allowdebug_blocked_sigs);
 495   sigaddset(&unblocked_sigs, SIGILL);
 496   sigaddset(&unblocked_sigs, SIGSEGV);
 497   sigaddset(&unblocked_sigs, SIGBUS);
 498   sigaddset(&unblocked_sigs, SIGFPE);
 499 #if defined(PPC64)
 500   sigaddset(&unblocked_sigs, SIGTRAP);
 501 #endif
 502   sigaddset(&unblocked_sigs, SR_signum);
 503 
 504   if (!ReduceSignalUsage) {
 505    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 506       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 507       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 508    }
 509    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 510       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 511       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 512    }
 513    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 514       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 515       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 516    }
 517   }
 518   // Fill in signals that are blocked by all but the VM thread.
 519   sigemptyset(&vm_sigs);
 520   if (!ReduceSignalUsage)
 521     sigaddset(&vm_sigs, BREAK_SIGNAL);
 522   debug_only(signal_sets_initialized = true);
 523 
 524 }
 525 
 526 // These are signals that are unblocked while a thread is running Java.
 527 // (For some reason, they get blocked by default.)
 528 sigset_t* os::Linux::unblocked_signals() {
 529   assert(signal_sets_initialized, "Not initialized");
 530   return &unblocked_sigs;
 531 }
 532 
 533 // These are the signals that are blocked while a (non-VM) thread is
 534 // running Java. Only the VM thread handles these signals.
 535 sigset_t* os::Linux::vm_signals() {
 536   assert(signal_sets_initialized, "Not initialized");
 537   return &vm_sigs;
 538 }
 539 
 540 // These are signals that are blocked during cond_wait to allow debugger in
 541 sigset_t* os::Linux::allowdebug_blocked_signals() {
 542   assert(signal_sets_initialized, "Not initialized");
 543   return &allowdebug_blocked_sigs;
 544 }
 545 
 546 void os::Linux::hotspot_sigmask(Thread* thread) {
 547 
 548   //Save caller's signal mask before setting VM signal mask
 549   sigset_t caller_sigmask;
 550   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 551 
 552   OSThread* osthread = thread->osthread();
 553   osthread->set_caller_sigmask(caller_sigmask);
 554 
 555   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 556 
 557   if (!ReduceSignalUsage) {
 558     if (thread->is_VM_thread()) {
 559       // Only the VM thread handles BREAK_SIGNAL ...
 560       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 561     } else {
 562       // ... all other threads block BREAK_SIGNAL
 563       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 564     }
 565   }
 566 }
 567 
 568 //////////////////////////////////////////////////////////////////////////////
 569 // detecting pthread library
 570 
 571 void os::Linux::libpthread_init() {
 572   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 573   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 574   // generic name for earlier versions.
 575   // Define macros here so we can build HotSpot on old systems.
 576 # ifndef _CS_GNU_LIBC_VERSION
 577 # define _CS_GNU_LIBC_VERSION 2
 578 # endif
 579 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 580 # define _CS_GNU_LIBPTHREAD_VERSION 3
 581 # endif
 582 
 583   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 584   if (n > 0) {
 585      char *str = (char *)malloc(n, mtInternal);
 586      confstr(_CS_GNU_LIBC_VERSION, str, n);
 587      os::Linux::set_glibc_version(str);
 588   } else {
 589      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 590      static char _gnu_libc_version[32];
 591      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 592               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 593      os::Linux::set_glibc_version(_gnu_libc_version);
 594   }
 595 
 596   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 597   if (n > 0) {
 598      char *str = (char *)malloc(n, mtInternal);
 599      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 600      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 601      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 602      // is the case. LinuxThreads has a hard limit on max number of threads.
 603      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 604      // On the other hand, NPTL does not have such a limit, sysconf()
 605      // will return -1 and errno is not changed. Check if it is really NPTL.
 606      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 607          strstr(str, "NPTL") &&
 608          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 609        free(str);
 610        os::Linux::set_libpthread_version("linuxthreads");
 611      } else {
 612        os::Linux::set_libpthread_version(str);
 613      }
 614   } else {
 615     // glibc before 2.3.2 only has LinuxThreads.
 616     os::Linux::set_libpthread_version("linuxthreads");
 617   }
 618 
 619   if (strstr(libpthread_version(), "NPTL")) {
 620      os::Linux::set_is_NPTL();
 621   } else {
 622      os::Linux::set_is_LinuxThreads();
 623   }
 624 
 625   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 626   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 627   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 628      os::Linux::set_is_floating_stack();
 629   }
 630 }
 631 
 632 /////////////////////////////////////////////////////////////////////////////
 633 // thread stack
 634 
 635 // Force Linux kernel to expand current thread stack. If "bottom" is close
 636 // to the stack guard, caller should block all signals.
 637 //
 638 // MAP_GROWSDOWN:
 639 //   A special mmap() flag that is used to implement thread stacks. It tells
 640 //   kernel that the memory region should extend downwards when needed. This
 641 //   allows early versions of LinuxThreads to only mmap the first few pages
 642 //   when creating a new thread. Linux kernel will automatically expand thread
 643 //   stack as needed (on page faults).
 644 //
 645 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 646 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 647 //   region, it's hard to tell if the fault is due to a legitimate stack
 648 //   access or because of reading/writing non-exist memory (e.g. buffer
 649 //   overrun). As a rule, if the fault happens below current stack pointer,
 650 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 651 //   application (see Linux kernel fault.c).
 652 //
 653 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 654 //   stack overflow detection.
 655 //
 656 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 657 //   not use this flag. However, the stack of initial thread is not created
 658 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 659 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 660 //   and then attach the thread to JVM.
 661 //
 662 // To get around the problem and allow stack banging on Linux, we need to
 663 // manually expand thread stack after receiving the SIGSEGV.
 664 //
 665 // There are two ways to expand thread stack to address "bottom", we used
 666 // both of them in JVM before 1.5:
 667 //   1. adjust stack pointer first so that it is below "bottom", and then
 668 //      touch "bottom"
 669 //   2. mmap() the page in question
 670 //
 671 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 672 // if current sp is already near the lower end of page 101, and we need to
 673 // call mmap() to map page 100, it is possible that part of the mmap() frame
 674 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 675 // That will destroy the mmap() frame and cause VM to crash.
 676 //
 677 // The following code works by adjusting sp first, then accessing the "bottom"
 678 // page to force a page fault. Linux kernel will then automatically expand the
 679 // stack mapping.
 680 //
 681 // _expand_stack_to() assumes its frame size is less than page size, which
 682 // should always be true if the function is not inlined.
 683 
 684 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 685 #define NOINLINE
 686 #else
 687 #define NOINLINE __attribute__ ((noinline))
 688 #endif
 689 
 690 static void _expand_stack_to(address bottom) NOINLINE;
 691 
 692 static void _expand_stack_to(address bottom) {
 693   address sp;
 694   size_t size;
 695   volatile char *p;
 696 
 697   // Adjust bottom to point to the largest address within the same page, it
 698   // gives us a one-page buffer if alloca() allocates slightly more memory.
 699   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 700   bottom += os::Linux::page_size() - 1;
 701 
 702   // sp might be slightly above current stack pointer; if that's the case, we
 703   // will alloca() a little more space than necessary, which is OK. Don't use
 704   // os::current_stack_pointer(), as its result can be slightly below current
 705   // stack pointer, causing us to not alloca enough to reach "bottom".
 706   sp = (address)&sp;
 707 
 708   if (sp > bottom) {
 709     size = sp - bottom;
 710     p = (volatile char *)alloca(size);
 711     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 712     p[0] = '\0';
 713   }
 714 }
 715 
 716 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 717   assert(t!=NULL, "just checking");
 718   assert(t->osthread()->expanding_stack(), "expand should be set");
 719   assert(t->stack_base() != NULL, "stack_base was not initialized");
 720 
 721   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 722     sigset_t mask_all, old_sigset;
 723     sigfillset(&mask_all);
 724     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 725     _expand_stack_to(addr);
 726     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 727     return true;
 728   }
 729   return false;
 730 }
 731 
 732 //////////////////////////////////////////////////////////////////////////////
 733 // create new thread
 734 
 735 static address highest_vm_reserved_address();
 736 
 737 // check if it's safe to start a new thread
 738 static bool _thread_safety_check(Thread* thread) {
 739   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 740     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 741     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 742     //   allocated (MAP_FIXED) from high address space. Every thread stack
 743     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 744     //   it to other values if they rebuild LinuxThreads).
 745     //
 746     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 747     // the memory region has already been mmap'ed. That means if we have too
 748     // many threads and/or very large heap, eventually thread stack will
 749     // collide with heap.
 750     //
 751     // Here we try to prevent heap/stack collision by comparing current
 752     // stack bottom with the highest address that has been mmap'ed by JVM
 753     // plus a safety margin for memory maps created by native code.
 754     //
 755     // This feature can be disabled by setting ThreadSafetyMargin to 0
 756     //
 757     if (ThreadSafetyMargin > 0) {
 758       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 759 
 760       // not safe if our stack extends below the safety margin
 761       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 762     } else {
 763       return true;
 764     }
 765   } else {
 766     // Floating stack LinuxThreads or NPTL:
 767     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 768     //   there's not enough space left, pthread_create() will fail. If we come
 769     //   here, that means enough space has been reserved for stack.
 770     return true;
 771   }
 772 }
 773 
 774 // Thread start routine for all newly created threads
 775 static void *java_start(Thread *thread) {
 776   // Try to randomize the cache line index of hot stack frames.
 777   // This helps when threads of the same stack traces evict each other's
 778   // cache lines. The threads can be either from the same JVM instance, or
 779   // from different JVM instances. The benefit is especially true for
 780   // processors with hyperthreading technology.
 781   static int counter = 0;
 782   int pid = os::current_process_id();
 783   alloca(((pid ^ counter++) & 7) * 128);
 784 
 785   ThreadLocalStorage::set_thread(thread);
 786 
 787   OSThread* osthread = thread->osthread();
 788   Monitor* sync = osthread->startThread_lock();
 789 
 790   // non floating stack LinuxThreads needs extra check, see above
 791   if (!_thread_safety_check(thread)) {
 792     // notify parent thread
 793     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 794     osthread->set_state(ZOMBIE);
 795     sync->notify_all();
 796     return NULL;
 797   }
 798 
 799   // thread_id is kernel thread id (similar to Solaris LWP id)
 800   osthread->set_thread_id(os::Linux::gettid());
 801 
 802   if (UseNUMA) {
 803     int lgrp_id = os::numa_get_group_id();
 804     if (lgrp_id != -1) {
 805       thread->set_lgrp_id(lgrp_id);
 806     }
 807   }
 808   // initialize signal mask for this thread
 809   os::Linux::hotspot_sigmask(thread);
 810 
 811   // initialize floating point control register
 812   os::Linux::init_thread_fpu_state();
 813 
 814   // handshaking with parent thread
 815   {
 816     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 817 
 818     // notify parent thread
 819     osthread->set_state(INITIALIZED);
 820     sync->notify_all();
 821 
 822     // wait until os::start_thread()
 823     while (osthread->get_state() == INITIALIZED) {
 824       sync->wait(Mutex::_no_safepoint_check_flag);
 825     }
 826   }
 827 
 828   // call one more level start routine
 829   thread->run();
 830 
 831   return 0;
 832 }
 833 
 834 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 835   assert(thread->osthread() == NULL, "caller responsible");
 836 
 837   // Allocate the OSThread object
 838   OSThread* osthread = new OSThread(NULL, NULL);
 839   if (osthread == NULL) {
 840     return false;
 841   }
 842 
 843   // set the correct thread state
 844   osthread->set_thread_type(thr_type);
 845 
 846   // Initial state is ALLOCATED but not INITIALIZED
 847   osthread->set_state(ALLOCATED);
 848 
 849   thread->set_osthread(osthread);
 850 
 851   // init thread attributes
 852   pthread_attr_t attr;
 853   pthread_attr_init(&attr);
 854   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 855 
 856   // stack size
 857   if (os::Linux::supports_variable_stack_size()) {
 858     // calculate stack size if it's not specified by caller
 859     if (stack_size == 0) {
 860       stack_size = os::Linux::default_stack_size(thr_type);
 861 
 862       switch (thr_type) {
 863       case os::java_thread:
 864         // Java threads use ThreadStackSize which default value can be
 865         // changed with the flag -Xss
 866         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 867         stack_size = JavaThread::stack_size_at_create();
 868         break;
 869       case os::compiler_thread:
 870         if (CompilerThreadStackSize > 0) {
 871           stack_size = (size_t)(CompilerThreadStackSize * K);
 872           break;
 873         } // else fall through:
 874           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 875       case os::vm_thread:
 876       case os::pgc_thread:
 877       case os::cgc_thread:
 878       case os::watcher_thread:
 879         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 880         break;
 881       }
 882     }
 883 
 884     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 885     pthread_attr_setstacksize(&attr, stack_size);
 886   } else {
 887     // let pthread_create() pick the default value.
 888   }
 889 
 890   // glibc guard page
 891   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 892 
 893   ThreadState state;
 894 
 895   {
 896     // Serialize thread creation if we are running with fixed stack LinuxThreads
 897     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 898     if (lock) {
 899       os::Linux::createThread_lock()->lock_without_safepoint_check();
 900     }
 901 
 902     pthread_t tid;
 903     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 904 
 905     pthread_attr_destroy(&attr);
 906 
 907     if (ret != 0) {
 908       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 909         perror("pthread_create()");
 910       }
 911       // Need to clean up stuff we've allocated so far
 912       thread->set_osthread(NULL);
 913       delete osthread;
 914       if (lock) os::Linux::createThread_lock()->unlock();
 915       return false;
 916     }
 917 
 918     // Store pthread info into the OSThread
 919     osthread->set_pthread_id(tid);
 920 
 921     // Wait until child thread is either initialized or aborted
 922     {
 923       Monitor* sync_with_child = osthread->startThread_lock();
 924       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 925       while ((state = osthread->get_state()) == ALLOCATED) {
 926         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 927       }
 928     }
 929 
 930     if (lock) {
 931       os::Linux::createThread_lock()->unlock();
 932     }
 933   }
 934 
 935   // Aborted due to thread limit being reached
 936   if (state == ZOMBIE) {
 937       thread->set_osthread(NULL);
 938       delete osthread;
 939       return false;
 940   }
 941 
 942   // The thread is returned suspended (in state INITIALIZED),
 943   // and is started higher up in the call chain
 944   assert(state == INITIALIZED, "race condition");
 945   return true;
 946 }
 947 
 948 /////////////////////////////////////////////////////////////////////////////
 949 // attach existing thread
 950 
 951 // bootstrap the main thread
 952 bool os::create_main_thread(JavaThread* thread) {
 953   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 954   return create_attached_thread(thread);
 955 }
 956 
 957 bool os::create_attached_thread(JavaThread* thread) {
 958 #ifdef ASSERT
 959     thread->verify_not_published();
 960 #endif
 961 
 962   // Allocate the OSThread object
 963   OSThread* osthread = new OSThread(NULL, NULL);
 964 
 965   if (osthread == NULL) {
 966     return false;
 967   }
 968 
 969   // Store pthread info into the OSThread
 970   osthread->set_thread_id(os::Linux::gettid());
 971   osthread->set_pthread_id(::pthread_self());
 972 
 973   // initialize floating point control register
 974   os::Linux::init_thread_fpu_state();
 975 
 976   // Initial thread state is RUNNABLE
 977   osthread->set_state(RUNNABLE);
 978 
 979   thread->set_osthread(osthread);
 980 
 981   if (UseNUMA) {
 982     int lgrp_id = os::numa_get_group_id();
 983     if (lgrp_id != -1) {
 984       thread->set_lgrp_id(lgrp_id);
 985     }
 986   }
 987 
 988   if (os::Linux::is_initial_thread()) {
 989     // If current thread is initial thread, its stack is mapped on demand,
 990     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 991     // the entire stack region to avoid SEGV in stack banging.
 992     // It is also useful to get around the heap-stack-gap problem on SuSE
 993     // kernel (see 4821821 for details). We first expand stack to the top
 994     // of yellow zone, then enable stack yellow zone (order is significant,
 995     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 996     // is no gap between the last two virtual memory regions.
 997 
 998     JavaThread *jt = (JavaThread *)thread;
 999     address addr = jt->stack_yellow_zone_base();
1000     assert(addr != NULL, "initialization problem?");
1001     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1002 
1003     osthread->set_expanding_stack();
1004     os::Linux::manually_expand_stack(jt, addr);
1005     osthread->clear_expanding_stack();
1006   }
1007 
1008   // initialize signal mask for this thread
1009   // and save the caller's signal mask
1010   os::Linux::hotspot_sigmask(thread);
1011 
1012   return true;
1013 }
1014 
1015 void os::pd_start_thread(Thread* thread) {
1016   OSThread * osthread = thread->osthread();
1017   assert(osthread->get_state() != INITIALIZED, "just checking");
1018   Monitor* sync_with_child = osthread->startThread_lock();
1019   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1020   sync_with_child->notify();
1021 }
1022 
1023 // Free Linux resources related to the OSThread
1024 void os::free_thread(OSThread* osthread) {
1025   assert(osthread != NULL, "osthread not set");
1026 
1027   if (Thread::current()->osthread() == osthread) {
1028     // Restore caller's signal mask
1029     sigset_t sigmask = osthread->caller_sigmask();
1030     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1031    }
1032 
1033   delete osthread;
1034 }
1035 
1036 //////////////////////////////////////////////////////////////////////////////
1037 // thread local storage
1038 
1039 // Restore the thread pointer if the destructor is called. This is in case
1040 // someone from JNI code sets up a destructor with pthread_key_create to run
1041 // detachCurrentThread on thread death. Unless we restore the thread pointer we
1042 // will hang or crash. When detachCurrentThread is called the key will be set
1043 // to null and we will not be called again. If detachCurrentThread is never
1044 // called we could loop forever depending on the pthread implementation.
1045 static void restore_thread_pointer(void* p) {
1046   Thread* thread = (Thread*) p;
1047   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1048 }
1049 
1050 int os::allocate_thread_local_storage() {
1051   pthread_key_t key;
1052   int rslt = pthread_key_create(&key, restore_thread_pointer);
1053   assert(rslt == 0, "cannot allocate thread local storage");
1054   return (int)key;
1055 }
1056 
1057 // Note: This is currently not used by VM, as we don't destroy TLS key
1058 // on VM exit.
1059 void os::free_thread_local_storage(int index) {
1060   int rslt = pthread_key_delete((pthread_key_t)index);
1061   assert(rslt == 0, "invalid index");
1062 }
1063 
1064 void os::thread_local_storage_at_put(int index, void* value) {
1065   int rslt = pthread_setspecific((pthread_key_t)index, value);
1066   assert(rslt == 0, "pthread_setspecific failed");
1067 }
1068 
1069 extern "C" Thread* get_thread() {
1070   return ThreadLocalStorage::thread();
1071 }
1072 
1073 //////////////////////////////////////////////////////////////////////////////
1074 // initial thread
1075 
1076 // Check if current thread is the initial thread, similar to Solaris thr_main.
1077 bool os::Linux::is_initial_thread(void) {
1078   char dummy;
1079   // If called before init complete, thread stack bottom will be null.
1080   // Can be called if fatal error occurs before initialization.
1081   if (initial_thread_stack_bottom() == NULL) return false;
1082   assert(initial_thread_stack_bottom() != NULL &&
1083          initial_thread_stack_size()   != 0,
1084          "os::init did not locate initial thread's stack region");
1085   if ((address)&dummy >= initial_thread_stack_bottom() &&
1086       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1087        return true;
1088   else return false;
1089 }
1090 
1091 // Find the virtual memory area that contains addr
1092 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1093   FILE *fp = fopen("/proc/self/maps", "r");
1094   if (fp) {
1095     address low, high;
1096     while (!feof(fp)) {
1097       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1098         if (low <= addr && addr < high) {
1099            if (vma_low)  *vma_low  = low;
1100            if (vma_high) *vma_high = high;
1101            fclose (fp);
1102            return true;
1103         }
1104       }
1105       for (;;) {
1106         int ch = fgetc(fp);
1107         if (ch == EOF || ch == (int)'\n') break;
1108       }
1109     }
1110     fclose(fp);
1111   }
1112   return false;
1113 }
1114 
1115 // Locate initial thread stack. This special handling of initial thread stack
1116 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1117 // bogus value for initial thread.
1118 void os::Linux::capture_initial_stack(size_t max_size) {
1119   // stack size is the easy part, get it from RLIMIT_STACK
1120   size_t stack_size;
1121   struct rlimit rlim;
1122   getrlimit(RLIMIT_STACK, &rlim);
1123   stack_size = rlim.rlim_cur;
1124 
1125   // 6308388: a bug in ld.so will relocate its own .data section to the
1126   //   lower end of primordial stack; reduce ulimit -s value a little bit
1127   //   so we won't install guard page on ld.so's data section.
1128   stack_size -= 2 * page_size();
1129 
1130   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1131   //   7.1, in both cases we will get 2G in return value.
1132   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1133   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1134   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1135   //   in case other parts in glibc still assumes 2M max stack size.
1136   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1137   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1138   if (stack_size > 2 * K * K IA64_ONLY(*2))
1139       stack_size = 2 * K * K IA64_ONLY(*2);
1140   // Try to figure out where the stack base (top) is. This is harder.
1141   //
1142   // When an application is started, glibc saves the initial stack pointer in
1143   // a global variable "__libc_stack_end", which is then used by system
1144   // libraries. __libc_stack_end should be pretty close to stack top. The
1145   // variable is available since the very early days. However, because it is
1146   // a private interface, it could disappear in the future.
1147   //
1148   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1149   // to __libc_stack_end, it is very close to stack top, but isn't the real
1150   // stack top. Note that /proc may not exist if VM is running as a chroot
1151   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1152   // /proc/<pid>/stat could change in the future (though unlikely).
1153   //
1154   // We try __libc_stack_end first. If that doesn't work, look for
1155   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1156   // as a hint, which should work well in most cases.
1157 
1158   uintptr_t stack_start;
1159 
1160   // try __libc_stack_end first
1161   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1162   if (p && *p) {
1163     stack_start = *p;
1164   } else {
1165     // see if we can get the start_stack field from /proc/self/stat
1166     FILE *fp;
1167     int pid;
1168     char state;
1169     int ppid;
1170     int pgrp;
1171     int session;
1172     int nr;
1173     int tpgrp;
1174     unsigned long flags;
1175     unsigned long minflt;
1176     unsigned long cminflt;
1177     unsigned long majflt;
1178     unsigned long cmajflt;
1179     unsigned long utime;
1180     unsigned long stime;
1181     long cutime;
1182     long cstime;
1183     long prio;
1184     long nice;
1185     long junk;
1186     long it_real;
1187     uintptr_t start;
1188     uintptr_t vsize;
1189     intptr_t rss;
1190     uintptr_t rsslim;
1191     uintptr_t scodes;
1192     uintptr_t ecode;
1193     int i;
1194 
1195     // Figure what the primordial thread stack base is. Code is inspired
1196     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1197     // followed by command name surrounded by parentheses, state, etc.
1198     char stat[2048];
1199     int statlen;
1200 
1201     fp = fopen("/proc/self/stat", "r");
1202     if (fp) {
1203       statlen = fread(stat, 1, 2047, fp);
1204       stat[statlen] = '\0';
1205       fclose(fp);
1206 
1207       // Skip pid and the command string. Note that we could be dealing with
1208       // weird command names, e.g. user could decide to rename java launcher
1209       // to "java 1.4.2 :)", then the stat file would look like
1210       //                1234 (java 1.4.2 :)) R ... ...
1211       // We don't really need to know the command string, just find the last
1212       // occurrence of ")" and then start parsing from there. See bug 4726580.
1213       char * s = strrchr(stat, ')');
1214 
1215       i = 0;
1216       if (s) {
1217         // Skip blank chars
1218         do s++; while (isspace(*s));
1219 
1220 #define _UFM UINTX_FORMAT
1221 #define _DFM INTX_FORMAT
1222 
1223         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1224         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1225         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1226              &state,          /* 3  %c  */
1227              &ppid,           /* 4  %d  */
1228              &pgrp,           /* 5  %d  */
1229              &session,        /* 6  %d  */
1230              &nr,             /* 7  %d  */
1231              &tpgrp,          /* 8  %d  */
1232              &flags,          /* 9  %lu  */
1233              &minflt,         /* 10 %lu  */
1234              &cminflt,        /* 11 %lu  */
1235              &majflt,         /* 12 %lu  */
1236              &cmajflt,        /* 13 %lu  */
1237              &utime,          /* 14 %lu  */
1238              &stime,          /* 15 %lu  */
1239              &cutime,         /* 16 %ld  */
1240              &cstime,         /* 17 %ld  */
1241              &prio,           /* 18 %ld  */
1242              &nice,           /* 19 %ld  */
1243              &junk,           /* 20 %ld  */
1244              &it_real,        /* 21 %ld  */
1245              &start,          /* 22 UINTX_FORMAT */
1246              &vsize,          /* 23 UINTX_FORMAT */
1247              &rss,            /* 24 INTX_FORMAT  */
1248              &rsslim,         /* 25 UINTX_FORMAT */
1249              &scodes,         /* 26 UINTX_FORMAT */
1250              &ecode,          /* 27 UINTX_FORMAT */
1251              &stack_start);   /* 28 UINTX_FORMAT */
1252       }
1253 
1254 #undef _UFM
1255 #undef _DFM
1256 
1257       if (i != 28 - 2) {
1258          assert(false, "Bad conversion from /proc/self/stat");
1259          // product mode - assume we are the initial thread, good luck in the
1260          // embedded case.
1261          warning("Can't detect initial thread stack location - bad conversion");
1262          stack_start = (uintptr_t) &rlim;
1263       }
1264     } else {
1265       // For some reason we can't open /proc/self/stat (for example, running on
1266       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1267       // most cases, so don't abort:
1268       warning("Can't detect initial thread stack location - no /proc/self/stat");
1269       stack_start = (uintptr_t) &rlim;
1270     }
1271   }
1272 
1273   // Now we have a pointer (stack_start) very close to the stack top, the
1274   // next thing to do is to figure out the exact location of stack top. We
1275   // can find out the virtual memory area that contains stack_start by
1276   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1277   // and its upper limit is the real stack top. (again, this would fail if
1278   // running inside chroot, because /proc may not exist.)
1279 
1280   uintptr_t stack_top;
1281   address low, high;
1282   if (find_vma((address)stack_start, &low, &high)) {
1283     // success, "high" is the true stack top. (ignore "low", because initial
1284     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1285     stack_top = (uintptr_t)high;
1286   } else {
1287     // failed, likely because /proc/self/maps does not exist
1288     warning("Can't detect initial thread stack location - find_vma failed");
1289     // best effort: stack_start is normally within a few pages below the real
1290     // stack top, use it as stack top, and reduce stack size so we won't put
1291     // guard page outside stack.
1292     stack_top = stack_start;
1293     stack_size -= 16 * page_size();
1294   }
1295 
1296   // stack_top could be partially down the page so align it
1297   stack_top = align_size_up(stack_top, page_size());
1298 
1299   if (max_size && stack_size > max_size) {
1300      _initial_thread_stack_size = max_size;
1301   } else {
1302      _initial_thread_stack_size = stack_size;
1303   }
1304 
1305   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1306   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1307 }
1308 
1309 ////////////////////////////////////////////////////////////////////////////////
1310 // time support
1311 
1312 // Time since start-up in seconds to a fine granularity.
1313 // Used by VMSelfDestructTimer and the MemProfiler.
1314 double os::elapsedTime() {
1315 
1316   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1317 }
1318 
1319 jlong os::elapsed_counter() {
1320   return javaTimeNanos() - initial_time_count;
1321 }
1322 
1323 jlong os::elapsed_frequency() {
1324   return NANOSECS_PER_SEC; // nanosecond resolution
1325 }
1326 
1327 bool os::supports_vtime() { return true; }
1328 bool os::enable_vtime()   { return false; }
1329 bool os::vtime_enabled()  { return false; }
1330 
1331 double os::elapsedVTime() {
1332   struct rusage usage;
1333   int retval = getrusage(RUSAGE_THREAD, &usage);
1334   if (retval == 0) {
1335     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1336   } else {
1337     // better than nothing, but not much
1338     return elapsedTime();
1339   }
1340 }
1341 
1342 jlong os::javaTimeMillis() {
1343   timeval time;
1344   int status = gettimeofday(&time, NULL);
1345   assert(status != -1, "linux error");
1346   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1347 }
1348 
1349 #ifndef CLOCK_MONOTONIC
1350 #define CLOCK_MONOTONIC (1)
1351 #endif
1352 
1353 void os::Linux::clock_init() {
1354   // we do dlopen's in this particular order due to bug in linux
1355   // dynamical loader (see 6348968) leading to crash on exit
1356   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1357   if (handle == NULL) {
1358     handle = dlopen("librt.so", RTLD_LAZY);
1359   }
1360 
1361   if (handle) {
1362     int (*clock_getres_func)(clockid_t, struct timespec*) =
1363            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1364     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1365            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1366     if (clock_getres_func && clock_gettime_func) {
1367       // See if monotonic clock is supported by the kernel. Note that some
1368       // early implementations simply return kernel jiffies (updated every
1369       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1370       // for nano time (though the monotonic property is still nice to have).
1371       // It's fixed in newer kernels, however clock_getres() still returns
1372       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1373       // resolution for now. Hopefully as people move to new kernels, this
1374       // won't be a problem.
1375       struct timespec res;
1376       struct timespec tp;
1377       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1378           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1379         // yes, monotonic clock is supported
1380         _clock_gettime = clock_gettime_func;
1381         return;
1382       } else {
1383         // close librt if there is no monotonic clock
1384         dlclose(handle);
1385       }
1386     }
1387   }
1388   warning("No monotonic clock was available - timed services may " \
1389           "be adversely affected if the time-of-day clock changes");
1390 }
1391 
1392 #ifndef SYS_clock_getres
1393 
1394 #if defined(IA32) || defined(AMD64)
1395 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1396 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1397 #else
1398 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1399 #define sys_clock_getres(x,y)  -1
1400 #endif
1401 
1402 #else
1403 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1404 #endif
1405 
1406 void os::Linux::fast_thread_clock_init() {
1407   if (!UseLinuxPosixThreadCPUClocks) {
1408     return;
1409   }
1410   clockid_t clockid;
1411   struct timespec tp;
1412   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1413       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1414 
1415   // Switch to using fast clocks for thread cpu time if
1416   // the sys_clock_getres() returns 0 error code.
1417   // Note, that some kernels may support the current thread
1418   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1419   // returned by the pthread_getcpuclockid().
1420   // If the fast Posix clocks are supported then the sys_clock_getres()
1421   // must return at least tp.tv_sec == 0 which means a resolution
1422   // better than 1 sec. This is extra check for reliability.
1423 
1424   if(pthread_getcpuclockid_func &&
1425      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1426      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1427 
1428     _supports_fast_thread_cpu_time = true;
1429     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1430   }
1431 }
1432 
1433 jlong os::javaTimeNanos() {
1434   if (Linux::supports_monotonic_clock()) {
1435     struct timespec tp;
1436     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1437     assert(status == 0, "gettime error");
1438     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1439     return result;
1440   } else {
1441     timeval time;
1442     int status = gettimeofday(&time, NULL);
1443     assert(status != -1, "linux error");
1444     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1445     return 1000 * usecs;
1446   }
1447 }
1448 
1449 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1450   if (Linux::supports_monotonic_clock()) {
1451     info_ptr->max_value = ALL_64_BITS;
1452 
1453     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1454     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1455     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1456   } else {
1457     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1458     info_ptr->max_value = ALL_64_BITS;
1459 
1460     // gettimeofday is a real time clock so it skips
1461     info_ptr->may_skip_backward = true;
1462     info_ptr->may_skip_forward = true;
1463   }
1464 
1465   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1466 }
1467 
1468 // Return the real, user, and system times in seconds from an
1469 // arbitrary fixed point in the past.
1470 bool os::getTimesSecs(double* process_real_time,
1471                       double* process_user_time,
1472                       double* process_system_time) {
1473   struct tms ticks;
1474   clock_t real_ticks = times(&ticks);
1475 
1476   if (real_ticks == (clock_t) (-1)) {
1477     return false;
1478   } else {
1479     double ticks_per_second = (double) clock_tics_per_sec;
1480     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1481     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1482     *process_real_time = ((double) real_ticks) / ticks_per_second;
1483 
1484     return true;
1485   }
1486 }
1487 
1488 
1489 char * os::local_time_string(char *buf, size_t buflen) {
1490   struct tm t;
1491   time_t long_time;
1492   time(&long_time);
1493   localtime_r(&long_time, &t);
1494   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1495                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1496                t.tm_hour, t.tm_min, t.tm_sec);
1497   return buf;
1498 }
1499 
1500 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1501   return localtime_r(clock, res);
1502 }
1503 
1504 ////////////////////////////////////////////////////////////////////////////////
1505 // runtime exit support
1506 
1507 // Note: os::shutdown() might be called very early during initialization, or
1508 // called from signal handler. Before adding something to os::shutdown(), make
1509 // sure it is async-safe and can handle partially initialized VM.
1510 void os::shutdown() {
1511 
1512   // allow PerfMemory to attempt cleanup of any persistent resources
1513   perfMemory_exit();
1514 
1515   // needs to remove object in file system
1516   AttachListener::abort();
1517 
1518   // flush buffered output, finish log files
1519   ostream_abort();
1520 
1521   // Check for abort hook
1522   abort_hook_t abort_hook = Arguments::abort_hook();
1523   if (abort_hook != NULL) {
1524     abort_hook();
1525   }
1526 
1527 }
1528 
1529 // Note: os::abort() might be called very early during initialization, or
1530 // called from signal handler. Before adding something to os::abort(), make
1531 // sure it is async-safe and can handle partially initialized VM.
1532 void os::abort(bool dump_core) {
1533   os::shutdown();
1534   if (dump_core) {
1535 #ifndef PRODUCT
1536     fdStream out(defaultStream::output_fd());
1537     out.print_raw("Current thread is ");
1538     char buf[16];
1539     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1540     out.print_raw_cr(buf);
1541     out.print_raw_cr("Dumping core ...");
1542 #endif
1543     ::abort(); // dump core
1544   }
1545 
1546   ::exit(1);
1547 }
1548 
1549 // Die immediately, no exit hook, no abort hook, no cleanup.
1550 void os::die() {
1551   // _exit() on LinuxThreads only kills current thread
1552   ::abort();
1553 }
1554 
1555 
1556 // This method is a copy of JDK's sysGetLastErrorString
1557 // from src/solaris/hpi/src/system_md.c
1558 
1559 size_t os::lasterror(char *buf, size_t len) {
1560 
1561   if (errno == 0)  return 0;
1562 
1563   const char *s = ::strerror(errno);
1564   size_t n = ::strlen(s);
1565   if (n >= len) {
1566     n = len - 1;
1567   }
1568   ::strncpy(buf, s, n);
1569   buf[n] = '\0';
1570   return n;
1571 }
1572 
1573 intx os::current_thread_id() { return (intx)pthread_self(); }
1574 int os::current_process_id() {
1575 
1576   // Under the old linux thread library, linux gives each thread
1577   // its own process id. Because of this each thread will return
1578   // a different pid if this method were to return the result
1579   // of getpid(2). Linux provides no api that returns the pid
1580   // of the launcher thread for the vm. This implementation
1581   // returns a unique pid, the pid of the launcher thread
1582   // that starts the vm 'process'.
1583 
1584   // Under the NPTL, getpid() returns the same pid as the
1585   // launcher thread rather than a unique pid per thread.
1586   // Use gettid() if you want the old pre NPTL behaviour.
1587 
1588   // if you are looking for the result of a call to getpid() that
1589   // returns a unique pid for the calling thread, then look at the
1590   // OSThread::thread_id() method in osThread_linux.hpp file
1591 
1592   return (int)(_initial_pid ? _initial_pid : getpid());
1593 }
1594 
1595 // DLL functions
1596 
1597 const char* os::dll_file_extension() { return ".so"; }
1598 
1599 // This must be hard coded because it's the system's temporary
1600 // directory not the java application's temp directory, ala java.io.tmpdir.
1601 const char* os::get_temp_directory() { return "/tmp"; }
1602 
1603 static bool file_exists(const char* filename) {
1604   struct stat statbuf;
1605   if (filename == NULL || strlen(filename) == 0) {
1606     return false;
1607   }
1608   return os::stat(filename, &statbuf) == 0;
1609 }
1610 
1611 bool os::dll_build_name(char* buffer, size_t buflen,
1612                         const char* pname, const char* fname) {
1613   bool retval = false;
1614   // Copied from libhpi
1615   const size_t pnamelen = pname ? strlen(pname) : 0;
1616 
1617   // Return error on buffer overflow.
1618   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1619     return retval;
1620   }
1621 
1622   if (pnamelen == 0) {
1623     snprintf(buffer, buflen, "lib%s.so", fname);
1624     retval = true;
1625   } else if (strchr(pname, *os::path_separator()) != NULL) {
1626     int n;
1627     char** pelements = split_path(pname, &n);
1628     if (pelements == NULL) {
1629       return false;
1630     }
1631     for (int i = 0 ; i < n ; i++) {
1632       // Really shouldn't be NULL, but check can't hurt
1633       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1634         continue; // skip the empty path values
1635       }
1636       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1637       if (file_exists(buffer)) {
1638         retval = true;
1639         break;
1640       }
1641     }
1642     // release the storage
1643     for (int i = 0 ; i < n ; i++) {
1644       if (pelements[i] != NULL) {
1645         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1646       }
1647     }
1648     if (pelements != NULL) {
1649       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1650     }
1651   } else {
1652     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1653     retval = true;
1654   }
1655   return retval;
1656 }
1657 
1658 // check if addr is inside libjvm.so
1659 bool os::address_is_in_vm(address addr) {
1660   static address libjvm_base_addr;
1661   Dl_info dlinfo;
1662 
1663   if (libjvm_base_addr == NULL) {
1664     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1665       libjvm_base_addr = (address)dlinfo.dli_fbase;
1666     }
1667     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1668   }
1669 
1670   if (dladdr((void *)addr, &dlinfo) != 0) {
1671     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1672   }
1673 
1674   return false;
1675 }
1676 
1677 bool os::dll_address_to_function_name(address addr, char *buf,
1678                                       int buflen, int *offset) {
1679   // buf is not optional, but offset is optional
1680   assert(buf != NULL, "sanity check");
1681 
1682   Dl_info dlinfo;
1683 
1684   if (dladdr((void*)addr, &dlinfo) != 0) {
1685     // see if we have a matching symbol
1686     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1687       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1688         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1689       }
1690       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1691       return true;
1692     }
1693     // no matching symbol so try for just file info
1694     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1695       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1696                           buf, buflen, offset, dlinfo.dli_fname)) {
1697         return true;
1698       }
1699     }
1700   }
1701 
1702   buf[0] = '\0';
1703   if (offset != NULL) *offset = -1;
1704   return false;
1705 }
1706 
1707 struct _address_to_library_name {
1708   address addr;          // input : memory address
1709   size_t  buflen;        //         size of fname
1710   char*   fname;         // output: library name
1711   address base;          //         library base addr
1712 };
1713 
1714 static int address_to_library_name_callback(struct dl_phdr_info *info,
1715                                             size_t size, void *data) {
1716   int i;
1717   bool found = false;
1718   address libbase = NULL;
1719   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1720 
1721   // iterate through all loadable segments
1722   for (i = 0; i < info->dlpi_phnum; i++) {
1723     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1724     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1725       // base address of a library is the lowest address of its loaded
1726       // segments.
1727       if (libbase == NULL || libbase > segbase) {
1728         libbase = segbase;
1729       }
1730       // see if 'addr' is within current segment
1731       if (segbase <= d->addr &&
1732           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1733         found = true;
1734       }
1735     }
1736   }
1737 
1738   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1739   // so dll_address_to_library_name() can fall through to use dladdr() which
1740   // can figure out executable name from argv[0].
1741   if (found && info->dlpi_name && info->dlpi_name[0]) {
1742     d->base = libbase;
1743     if (d->fname) {
1744       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1745     }
1746     return 1;
1747   }
1748   return 0;
1749 }
1750 
1751 bool os::dll_address_to_library_name(address addr, char* buf,
1752                                      int buflen, int* offset) {
1753   // buf is not optional, but offset is optional
1754   assert(buf != NULL, "sanity check");
1755 
1756   Dl_info dlinfo;
1757   struct _address_to_library_name data;
1758 
1759   // There is a bug in old glibc dladdr() implementation that it could resolve
1760   // to wrong library name if the .so file has a base address != NULL. Here
1761   // we iterate through the program headers of all loaded libraries to find
1762   // out which library 'addr' really belongs to. This workaround can be
1763   // removed once the minimum requirement for glibc is moved to 2.3.x.
1764   data.addr = addr;
1765   data.fname = buf;
1766   data.buflen = buflen;
1767   data.base = NULL;
1768   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1769 
1770   if (rslt) {
1771      // buf already contains library name
1772      if (offset) *offset = addr - data.base;
1773      return true;
1774   }
1775   if (dladdr((void*)addr, &dlinfo) != 0) {
1776     if (dlinfo.dli_fname != NULL) {
1777       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1778     }
1779     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1780       *offset = addr - (address)dlinfo.dli_fbase;
1781     }
1782     return true;
1783   }
1784 
1785   buf[0] = '\0';
1786   if (offset) *offset = -1;
1787   return false;
1788 }
1789 
1790   // Loads .dll/.so and
1791   // in case of error it checks if .dll/.so was built for the
1792   // same architecture as Hotspot is running on
1793 
1794 
1795 // Remember the stack's state. The Linux dynamic linker will change
1796 // the stack to 'executable' at most once, so we must safepoint only once.
1797 bool os::Linux::_stack_is_executable = false;
1798 
1799 // VM operation that loads a library.  This is necessary if stack protection
1800 // of the Java stacks can be lost during loading the library.  If we
1801 // do not stop the Java threads, they can stack overflow before the stacks
1802 // are protected again.
1803 class VM_LinuxDllLoad: public VM_Operation {
1804  private:
1805   const char *_filename;
1806   char *_ebuf;
1807   int _ebuflen;
1808   void *_lib;
1809  public:
1810   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1811     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1812   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1813   void doit() {
1814     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1815     os::Linux::_stack_is_executable = true;
1816   }
1817   void* loaded_library() { return _lib; }
1818 };
1819 
1820 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1821 {
1822   void * result = NULL;
1823   bool load_attempted = false;
1824 
1825   // Check whether the library to load might change execution rights
1826   // of the stack. If they are changed, the protection of the stack
1827   // guard pages will be lost. We need a safepoint to fix this.
1828   //
1829   // See Linux man page execstack(8) for more info.
1830   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1831     ElfFile ef(filename);
1832     if (!ef.specifies_noexecstack()) {
1833       if (!is_init_completed()) {
1834         os::Linux::_stack_is_executable = true;
1835         // This is OK - No Java threads have been created yet, and hence no
1836         // stack guard pages to fix.
1837         //
1838         // This should happen only when you are building JDK7 using a very
1839         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1840         //
1841         // Dynamic loader will make all stacks executable after
1842         // this function returns, and will not do that again.
1843         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1844       } else {
1845         warning("You have loaded library %s which might have disabled stack guard. "
1846                 "The VM will try to fix the stack guard now.\n"
1847                 "It's highly recommended that you fix the library with "
1848                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1849                 filename);
1850 
1851         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1852         JavaThread *jt = JavaThread::current();
1853         if (jt->thread_state() != _thread_in_native) {
1854           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1855           // that requires ExecStack. Cannot enter safe point. Let's give up.
1856           warning("Unable to fix stack guard. Giving up.");
1857         } else {
1858           if (!LoadExecStackDllInVMThread) {
1859             // This is for the case where the DLL has an static
1860             // constructor function that executes JNI code. We cannot
1861             // load such DLLs in the VMThread.
1862             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1863           }
1864 
1865           ThreadInVMfromNative tiv(jt);
1866           debug_only(VMNativeEntryWrapper vew;)
1867 
1868           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1869           VMThread::execute(&op);
1870           if (LoadExecStackDllInVMThread) {
1871             result = op.loaded_library();
1872           }
1873           load_attempted = true;
1874         }
1875       }
1876     }
1877   }
1878 
1879   if (!load_attempted) {
1880     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1881   }
1882 
1883   if (result != NULL) {
1884     // Successful loading
1885     return result;
1886   }
1887 
1888   Elf32_Ehdr elf_head;
1889   int diag_msg_max_length=ebuflen-strlen(ebuf);
1890   char* diag_msg_buf=ebuf+strlen(ebuf);
1891 
1892   if (diag_msg_max_length==0) {
1893     // No more space in ebuf for additional diagnostics message
1894     return NULL;
1895   }
1896 
1897 
1898   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1899 
1900   if (file_descriptor < 0) {
1901     // Can't open library, report dlerror() message
1902     return NULL;
1903   }
1904 
1905   bool failed_to_read_elf_head=
1906     (sizeof(elf_head)!=
1907         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1908 
1909   ::close(file_descriptor);
1910   if (failed_to_read_elf_head) {
1911     // file i/o error - report dlerror() msg
1912     return NULL;
1913   }
1914 
1915   typedef struct {
1916     Elf32_Half  code;         // Actual value as defined in elf.h
1917     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1918     char        elf_class;    // 32 or 64 bit
1919     char        endianess;    // MSB or LSB
1920     char*       name;         // String representation
1921   } arch_t;
1922 
1923   #ifndef EM_486
1924   #define EM_486          6               /* Intel 80486 */
1925   #endif
1926 
1927   static const arch_t arch_array[]={
1928     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1929     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1930     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1931     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1932     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1933     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1934     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1935     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1936 #if defined(VM_LITTLE_ENDIAN)
1937     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1938 #else
1939     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1940 #endif
1941     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1942     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1943     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1944     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1945     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1946     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1947     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1948   };
1949 
1950   #if  (defined IA32)
1951     static  Elf32_Half running_arch_code=EM_386;
1952   #elif   (defined AMD64)
1953     static  Elf32_Half running_arch_code=EM_X86_64;
1954   #elif  (defined IA64)
1955     static  Elf32_Half running_arch_code=EM_IA_64;
1956   #elif  (defined __sparc) && (defined _LP64)
1957     static  Elf32_Half running_arch_code=EM_SPARCV9;
1958   #elif  (defined __sparc) && (!defined _LP64)
1959     static  Elf32_Half running_arch_code=EM_SPARC;
1960   #elif  (defined __powerpc64__)
1961     static  Elf32_Half running_arch_code=EM_PPC64;
1962   #elif  (defined __powerpc__)
1963     static  Elf32_Half running_arch_code=EM_PPC;
1964   #elif  (defined ARM)
1965     static  Elf32_Half running_arch_code=EM_ARM;
1966   #elif  (defined S390)
1967     static  Elf32_Half running_arch_code=EM_S390;
1968   #elif  (defined ALPHA)
1969     static  Elf32_Half running_arch_code=EM_ALPHA;
1970   #elif  (defined MIPSEL)
1971     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1972   #elif  (defined PARISC)
1973     static  Elf32_Half running_arch_code=EM_PARISC;
1974   #elif  (defined MIPS)
1975     static  Elf32_Half running_arch_code=EM_MIPS;
1976   #elif  (defined M68K)
1977     static  Elf32_Half running_arch_code=EM_68K;
1978   #else
1979     #error Method os::dll_load requires that one of following is defined:\
1980          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1981   #endif
1982 
1983   // Identify compatability class for VM's architecture and library's architecture
1984   // Obtain string descriptions for architectures
1985 
1986   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1987   int running_arch_index=-1;
1988 
1989   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1990     if (running_arch_code == arch_array[i].code) {
1991       running_arch_index    = i;
1992     }
1993     if (lib_arch.code == arch_array[i].code) {
1994       lib_arch.compat_class = arch_array[i].compat_class;
1995       lib_arch.name         = arch_array[i].name;
1996     }
1997   }
1998 
1999   assert(running_arch_index != -1,
2000     "Didn't find running architecture code (running_arch_code) in arch_array");
2001   if (running_arch_index == -1) {
2002     // Even though running architecture detection failed
2003     // we may still continue with reporting dlerror() message
2004     return NULL;
2005   }
2006 
2007   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2008     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2009     return NULL;
2010   }
2011 
2012 #ifndef S390
2013   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2014     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2015     return NULL;
2016   }
2017 #endif // !S390
2018 
2019   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2020     if ( lib_arch.name!=NULL ) {
2021       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2022         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2023         lib_arch.name, arch_array[running_arch_index].name);
2024     } else {
2025       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2026       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2027         lib_arch.code,
2028         arch_array[running_arch_index].name);
2029     }
2030   }
2031 
2032   return NULL;
2033 }
2034 
2035 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2036   void * result = ::dlopen(filename, RTLD_LAZY);
2037   if (result == NULL) {
2038     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2039     ebuf[ebuflen-1] = '\0';
2040   }
2041   return result;
2042 }
2043 
2044 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2045   void * result = NULL;
2046   if (LoadExecStackDllInVMThread) {
2047     result = dlopen_helper(filename, ebuf, ebuflen);
2048   }
2049 
2050   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2051   // library that requires an executable stack, or which does not have this
2052   // stack attribute set, dlopen changes the stack attribute to executable. The
2053   // read protection of the guard pages gets lost.
2054   //
2055   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2056   // may have been queued at the same time.
2057 
2058   if (!_stack_is_executable) {
2059     JavaThread *jt = Threads::first();
2060 
2061     while (jt) {
2062       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2063           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2064         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2065                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2066           warning("Attempt to reguard stack yellow zone failed.");
2067         }
2068       }
2069       jt = jt->next();
2070     }
2071   }
2072 
2073   return result;
2074 }
2075 
2076 /*
2077  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2078  * chances are you might want to run the generated bits against glibc-2.0
2079  * libdl.so, so always use locking for any version of glibc.
2080  */
2081 void* os::dll_lookup(void* handle, const char* name) {
2082   pthread_mutex_lock(&dl_mutex);
2083   void* res = dlsym(handle, name);
2084   pthread_mutex_unlock(&dl_mutex);
2085   return res;
2086 }
2087 
2088 void* os::get_default_process_handle() {
2089   return (void*)::dlopen(NULL, RTLD_LAZY);
2090 }
2091 
2092 static bool _print_ascii_file(const char* filename, outputStream* st) {
2093   int fd = ::open(filename, O_RDONLY);
2094   if (fd == -1) {
2095      return false;
2096   }
2097 
2098   char buf[32];
2099   int bytes;
2100   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2101     st->print_raw(buf, bytes);
2102   }
2103 
2104   ::close(fd);
2105 
2106   return true;
2107 }
2108 
2109 void os::print_dll_info(outputStream *st) {
2110    st->print_cr("Dynamic libraries:");
2111 
2112    char fname[32];
2113    pid_t pid = os::Linux::gettid();
2114 
2115    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2116 
2117    if (!_print_ascii_file(fname, st)) {
2118      st->print("Can not get library information for pid = %d\n", pid);
2119    }
2120 }
2121 
2122 void os::print_os_info_brief(outputStream* st) {
2123   os::Linux::print_distro_info(st);
2124 
2125   os::Posix::print_uname_info(st);
2126 
2127   os::Linux::print_libversion_info(st);
2128 
2129 }
2130 
2131 void os::print_os_info(outputStream* st) {
2132   st->print("OS:");
2133 
2134   os::Linux::print_distro_info(st);
2135 
2136   os::Posix::print_uname_info(st);
2137 
2138   // Print warning if unsafe chroot environment detected
2139   if (unsafe_chroot_detected) {
2140     st->print("WARNING!! ");
2141     st->print_cr("%s", unstable_chroot_error);
2142   }
2143 
2144   os::Linux::print_libversion_info(st);
2145 
2146   os::Posix::print_rlimit_info(st);
2147 
2148   os::Posix::print_load_average(st);
2149 
2150   os::Linux::print_full_memory_info(st);
2151 }
2152 
2153 // Try to identify popular distros.
2154 // Most Linux distributions have a /etc/XXX-release file, which contains
2155 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2156 // file that also contains the OS version string. Some have more than one
2157 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2158 // /etc/redhat-release.), so the order is important.
2159 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2160 // their own specific XXX-release file as well as a redhat-release file.
2161 // Because of this the XXX-release file needs to be searched for before the
2162 // redhat-release file.
2163 // Since Red Hat has a lsb-release file that is not very descriptive the
2164 // search for redhat-release needs to be before lsb-release.
2165 // Since the lsb-release file is the new standard it needs to be searched
2166 // before the older style release files.
2167 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2168 // next to last resort.  The os-release file is a new standard that contains
2169 // distribution information and the system-release file seems to be an old
2170 // standard that has been replaced by the lsb-release and os-release files.
2171 // Searching for the debian_version file is the last resort.  It contains
2172 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2173 // "Debian " is printed before the contents of the debian_version file.
2174 void os::Linux::print_distro_info(outputStream* st) {
2175    if (!_print_ascii_file("/etc/oracle-release", st) &&
2176        !_print_ascii_file("/etc/mandriva-release", st) &&
2177        !_print_ascii_file("/etc/mandrake-release", st) &&
2178        !_print_ascii_file("/etc/sun-release", st) &&
2179        !_print_ascii_file("/etc/redhat-release", st) &&
2180        !_print_ascii_file("/etc/lsb-release", st) &&
2181        !_print_ascii_file("/etc/SuSE-release", st) &&
2182        !_print_ascii_file("/etc/turbolinux-release", st) &&
2183        !_print_ascii_file("/etc/gentoo-release", st) &&
2184        !_print_ascii_file("/etc/ltib-release", st) &&
2185        !_print_ascii_file("/etc/angstrom-version", st) &&
2186        !_print_ascii_file("/etc/system-release", st) &&
2187        !_print_ascii_file("/etc/os-release", st)) {
2188 
2189        if (file_exists("/etc/debian_version")) {
2190          st->print("Debian ");
2191          _print_ascii_file("/etc/debian_version", st);
2192        } else {
2193          st->print("Linux");
2194        }
2195    }
2196    st->cr();
2197 }
2198 
2199 void os::Linux::print_libversion_info(outputStream* st) {
2200   // libc, pthread
2201   st->print("libc:");
2202   st->print("%s ", os::Linux::glibc_version());
2203   st->print("%s ", os::Linux::libpthread_version());
2204   if (os::Linux::is_LinuxThreads()) {
2205      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2206   }
2207   st->cr();
2208 }
2209 
2210 void os::Linux::print_full_memory_info(outputStream* st) {
2211    st->print("\n/proc/meminfo:\n");
2212    _print_ascii_file("/proc/meminfo", st);
2213    st->cr();
2214 }
2215 
2216 void os::print_memory_info(outputStream* st) {
2217 
2218   st->print("Memory:");
2219   st->print(" %dk page", os::vm_page_size()>>10);
2220 
2221   // values in struct sysinfo are "unsigned long"
2222   struct sysinfo si;
2223   sysinfo(&si);
2224 
2225   st->print(", physical " UINT64_FORMAT "k",
2226             os::physical_memory() >> 10);
2227   st->print("(" UINT64_FORMAT "k free)",
2228             os::available_memory() >> 10);
2229   st->print(", swap " UINT64_FORMAT "k",
2230             ((jlong)si.totalswap * si.mem_unit) >> 10);
2231   st->print("(" UINT64_FORMAT "k free)",
2232             ((jlong)si.freeswap * si.mem_unit) >> 10);
2233   st->cr();
2234 }
2235 
2236 void os::pd_print_cpu_info(outputStream* st) {
2237   st->print("\n/proc/cpuinfo:\n");
2238   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2239     st->print("  <Not Available>");
2240   }
2241   st->cr();
2242 }
2243 
2244 void os::print_siginfo(outputStream* st, void* siginfo) {
2245   const siginfo_t* si = (const siginfo_t*)siginfo;
2246 
2247   os::Posix::print_siginfo_brief(st, si);
2248 #if INCLUDE_CDS
2249   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2250       UseSharedSpaces) {
2251     FileMapInfo* mapinfo = FileMapInfo::current_info();
2252     if (mapinfo->is_in_shared_space(si->si_addr)) {
2253       st->print("\n\nError accessing class data sharing archive."   \
2254                 " Mapped file inaccessible during execution, "      \
2255                 " possible disk/network problem.");
2256     }
2257   }
2258 #endif
2259   st->cr();
2260 }
2261 
2262 
2263 static void print_signal_handler(outputStream* st, int sig,
2264                                  char* buf, size_t buflen);
2265 
2266 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2267   st->print_cr("Signal Handlers:");
2268   print_signal_handler(st, SIGSEGV, buf, buflen);
2269   print_signal_handler(st, SIGBUS , buf, buflen);
2270   print_signal_handler(st, SIGFPE , buf, buflen);
2271   print_signal_handler(st, SIGPIPE, buf, buflen);
2272   print_signal_handler(st, SIGXFSZ, buf, buflen);
2273   print_signal_handler(st, SIGILL , buf, buflen);
2274   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2275   print_signal_handler(st, SR_signum, buf, buflen);
2276   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2277   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2278   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2279   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2280 #if defined(PPC64)
2281   print_signal_handler(st, SIGTRAP, buf, buflen);
2282 #endif
2283 }
2284 
2285 static char saved_jvm_path[MAXPATHLEN] = {0};
2286 
2287 // Find the full path to the current module, libjvm.so
2288 void os::jvm_path(char *buf, jint buflen) {
2289   // Error checking.
2290   if (buflen < MAXPATHLEN) {
2291     assert(false, "must use a large-enough buffer");
2292     buf[0] = '\0';
2293     return;
2294   }
2295   // Lazy resolve the path to current module.
2296   if (saved_jvm_path[0] != 0) {
2297     strcpy(buf, saved_jvm_path);
2298     return;
2299   }
2300 
2301   char dli_fname[MAXPATHLEN];
2302   bool ret = dll_address_to_library_name(
2303                 CAST_FROM_FN_PTR(address, os::jvm_path),
2304                 dli_fname, sizeof(dli_fname), NULL);
2305   assert(ret, "cannot locate libjvm");
2306   char *rp = NULL;
2307   if (ret && dli_fname[0] != '\0') {
2308     rp = realpath(dli_fname, buf);
2309   }
2310   if (rp == NULL)
2311     return;
2312 
2313   if (Arguments::created_by_gamma_launcher()) {
2314     // Support for the gamma launcher.  Typical value for buf is
2315     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2316     // the right place in the string, then assume we are installed in a JDK and
2317     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2318     // up the path so it looks like libjvm.so is installed there (append a
2319     // fake suffix hotspot/libjvm.so).
2320     const char *p = buf + strlen(buf) - 1;
2321     for (int count = 0; p > buf && count < 5; ++count) {
2322       for (--p; p > buf && *p != '/'; --p)
2323         /* empty */ ;
2324     }
2325 
2326     if (strncmp(p, "/jre/lib/", 9) != 0) {
2327       // Look for JAVA_HOME in the environment.
2328       char* java_home_var = ::getenv("JAVA_HOME");
2329       if (java_home_var != NULL && java_home_var[0] != 0) {
2330         char* jrelib_p;
2331         int len;
2332 
2333         // Check the current module name "libjvm.so".
2334         p = strrchr(buf, '/');
2335         assert(strstr(p, "/libjvm") == p, "invalid library name");
2336 
2337         rp = realpath(java_home_var, buf);
2338         if (rp == NULL)
2339           return;
2340 
2341         // determine if this is a legacy image or modules image
2342         // modules image doesn't have "jre" subdirectory
2343         len = strlen(buf);
2344         assert(len < buflen, "Ran out of buffer room");
2345         jrelib_p = buf + len;
2346         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2347         if (0 != access(buf, F_OK)) {
2348           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2349         }
2350 
2351         if (0 == access(buf, F_OK)) {
2352           // Use current module name "libjvm.so"
2353           len = strlen(buf);
2354           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2355         } else {
2356           // Go back to path of .so
2357           rp = realpath(dli_fname, buf);
2358           if (rp == NULL)
2359             return;
2360         }
2361       }
2362     }
2363   }
2364 
2365   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2366 }
2367 
2368 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2369   // no prefix required, not even "_"
2370 }
2371 
2372 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2373   // no suffix required
2374 }
2375 
2376 ////////////////////////////////////////////////////////////////////////////////
2377 // sun.misc.Signal support
2378 
2379 static volatile jint sigint_count = 0;
2380 
2381 static void
2382 UserHandler(int sig, void *siginfo, void *context) {
2383   // 4511530 - sem_post is serialized and handled by the manager thread. When
2384   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2385   // don't want to flood the manager thread with sem_post requests.
2386   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2387       return;
2388 
2389   // Ctrl-C is pressed during error reporting, likely because the error
2390   // handler fails to abort. Let VM die immediately.
2391   if (sig == SIGINT && is_error_reported()) {
2392      os::die();
2393   }
2394 
2395   os::signal_notify(sig);
2396 }
2397 
2398 void* os::user_handler() {
2399   return CAST_FROM_FN_PTR(void*, UserHandler);
2400 }
2401 
2402 class Semaphore : public StackObj {
2403   public:
2404     Semaphore();
2405     ~Semaphore();
2406     void signal();
2407     void wait();
2408     bool trywait();
2409     bool timedwait(unsigned int sec, int nsec);
2410   private:
2411     sem_t _semaphore;
2412 };
2413 
2414 Semaphore::Semaphore() {
2415   sem_init(&_semaphore, 0, 0);
2416 }
2417 
2418 Semaphore::~Semaphore() {
2419   sem_destroy(&_semaphore);
2420 }
2421 
2422 void Semaphore::signal() {
2423   sem_post(&_semaphore);
2424 }
2425 
2426 void Semaphore::wait() {
2427   sem_wait(&_semaphore);
2428 }
2429 
2430 bool Semaphore::trywait() {
2431   return sem_trywait(&_semaphore) == 0;
2432 }
2433 
2434 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2435 
2436   struct timespec ts;
2437   // Semaphore's are always associated with CLOCK_REALTIME
2438   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2439   // see unpackTime for discussion on overflow checking
2440   if (sec >= MAX_SECS) {
2441     ts.tv_sec += MAX_SECS;
2442     ts.tv_nsec = 0;
2443   } else {
2444     ts.tv_sec += sec;
2445     ts.tv_nsec += nsec;
2446     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2447       ts.tv_nsec -= NANOSECS_PER_SEC;
2448       ++ts.tv_sec; // note: this must be <= max_secs
2449     }
2450   }
2451 
2452   while (1) {
2453     int result = sem_timedwait(&_semaphore, &ts);
2454     if (result == 0) {
2455       return true;
2456     } else if (errno == EINTR) {
2457       continue;
2458     } else if (errno == ETIMEDOUT) {
2459       return false;
2460     } else {
2461       return false;
2462     }
2463   }
2464 }
2465 
2466 extern "C" {
2467   typedef void (*sa_handler_t)(int);
2468   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2469 }
2470 
2471 void* os::signal(int signal_number, void* handler) {
2472   struct sigaction sigAct, oldSigAct;
2473 
2474   sigfillset(&(sigAct.sa_mask));
2475   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2476   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2477 
2478   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2479     // -1 means registration failed
2480     return (void *)-1;
2481   }
2482 
2483   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2484 }
2485 
2486 void os::signal_raise(int signal_number) {
2487   ::raise(signal_number);
2488 }
2489 
2490 /*
2491  * The following code is moved from os.cpp for making this
2492  * code platform specific, which it is by its very nature.
2493  */
2494 
2495 // Will be modified when max signal is changed to be dynamic
2496 int os::sigexitnum_pd() {
2497   return NSIG;
2498 }
2499 
2500 // a counter for each possible signal value
2501 static volatile jint pending_signals[NSIG+1] = { 0 };
2502 
2503 // Linux(POSIX) specific hand shaking semaphore.
2504 static sem_t sig_sem;
2505 static Semaphore sr_semaphore;
2506 
2507 void os::signal_init_pd() {
2508   // Initialize signal structures
2509   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2510 
2511   // Initialize signal semaphore
2512   ::sem_init(&sig_sem, 0, 0);
2513 }
2514 
2515 void os::signal_notify(int sig) {
2516   Atomic::inc(&pending_signals[sig]);
2517   ::sem_post(&sig_sem);
2518 }
2519 
2520 static int check_pending_signals(bool wait) {
2521   Atomic::store(0, &sigint_count);
2522   for (;;) {
2523     for (int i = 0; i < NSIG + 1; i++) {
2524       jint n = pending_signals[i];
2525       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2526         return i;
2527       }
2528     }
2529     if (!wait) {
2530       return -1;
2531     }
2532     JavaThread *thread = JavaThread::current();
2533     ThreadBlockInVM tbivm(thread);
2534 
2535     bool threadIsSuspended;
2536     do {
2537       thread->set_suspend_equivalent();
2538       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2539       ::sem_wait(&sig_sem);
2540 
2541       // were we externally suspended while we were waiting?
2542       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2543       if (threadIsSuspended) {
2544         //
2545         // The semaphore has been incremented, but while we were waiting
2546         // another thread suspended us. We don't want to continue running
2547         // while suspended because that would surprise the thread that
2548         // suspended us.
2549         //
2550         ::sem_post(&sig_sem);
2551 
2552         thread->java_suspend_self();
2553       }
2554     } while (threadIsSuspended);
2555   }
2556 }
2557 
2558 int os::signal_lookup() {
2559   return check_pending_signals(false);
2560 }
2561 
2562 int os::signal_wait() {
2563   return check_pending_signals(true);
2564 }
2565 
2566 ////////////////////////////////////////////////////////////////////////////////
2567 // Virtual Memory
2568 
2569 int os::vm_page_size() {
2570   // Seems redundant as all get out
2571   assert(os::Linux::page_size() != -1, "must call os::init");
2572   return os::Linux::page_size();
2573 }
2574 
2575 // Solaris allocates memory by pages.
2576 int os::vm_allocation_granularity() {
2577   assert(os::Linux::page_size() != -1, "must call os::init");
2578   return os::Linux::page_size();
2579 }
2580 
2581 // Rationale behind this function:
2582 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2583 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2584 //  samples for JITted code. Here we create private executable mapping over the code cache
2585 //  and then we can use standard (well, almost, as mapping can change) way to provide
2586 //  info for the reporting script by storing timestamp and location of symbol
2587 void linux_wrap_code(char* base, size_t size) {
2588   static volatile jint cnt = 0;
2589 
2590   if (!UseOprofile) {
2591     return;
2592   }
2593 
2594   char buf[PATH_MAX+1];
2595   int num = Atomic::add(1, &cnt);
2596 
2597   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2598            os::get_temp_directory(), os::current_process_id(), num);
2599   unlink(buf);
2600 
2601   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2602 
2603   if (fd != -1) {
2604     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2605     if (rv != (off_t)-1) {
2606       if (::write(fd, "", 1) == 1) {
2607         mmap(base, size,
2608              PROT_READ|PROT_WRITE|PROT_EXEC,
2609              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2610       }
2611     }
2612     ::close(fd);
2613     unlink(buf);
2614   }
2615 }
2616 
2617 static bool recoverable_mmap_error(int err) {
2618   // See if the error is one we can let the caller handle. This
2619   // list of errno values comes from JBS-6843484. I can't find a
2620   // Linux man page that documents this specific set of errno
2621   // values so while this list currently matches Solaris, it may
2622   // change as we gain experience with this failure mode.
2623   switch (err) {
2624   case EBADF:
2625   case EINVAL:
2626   case ENOTSUP:
2627     // let the caller deal with these errors
2628     return true;
2629 
2630   default:
2631     // Any remaining errors on this OS can cause our reserved mapping
2632     // to be lost. That can cause confusion where different data
2633     // structures think they have the same memory mapped. The worst
2634     // scenario is if both the VM and a library think they have the
2635     // same memory mapped.
2636     return false;
2637   }
2638 }
2639 
2640 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2641                                     int err) {
2642   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2643           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2644           strerror(err), err);
2645 }
2646 
2647 static void warn_fail_commit_memory(char* addr, size_t size,
2648                                     size_t alignment_hint, bool exec,
2649                                     int err) {
2650   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2651           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2652           alignment_hint, exec, strerror(err), err);
2653 }
2654 
2655 // NOTE: Linux kernel does not really reserve the pages for us.
2656 //       All it does is to check if there are enough free pages
2657 //       left at the time of mmap(). This could be a potential
2658 //       problem.
2659 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2660   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2661   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2662                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2663   if (res != (uintptr_t) MAP_FAILED) {
2664     if (UseNUMAInterleaving) {
2665       numa_make_global(addr, size);
2666     }
2667     return 0;
2668   }
2669 
2670   int err = errno;  // save errno from mmap() call above
2671 
2672   if (!recoverable_mmap_error(err)) {
2673     warn_fail_commit_memory(addr, size, exec, err);
2674     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2675   }
2676 
2677   return err;
2678 }
2679 
2680 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2681   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2682 }
2683 
2684 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2685                                   const char* mesg) {
2686   assert(mesg != NULL, "mesg must be specified");
2687   int err = os::Linux::commit_memory_impl(addr, size, exec);
2688   if (err != 0) {
2689     // the caller wants all commit errors to exit with the specified mesg:
2690     warn_fail_commit_memory(addr, size, exec, err);
2691     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2692   }
2693 }
2694 
2695 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2696 #ifndef MAP_HUGETLB
2697 #define MAP_HUGETLB 0x40000
2698 #endif
2699 
2700 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2701 #ifndef MADV_HUGEPAGE
2702 #define MADV_HUGEPAGE 14
2703 #endif
2704 
2705 int os::Linux::commit_memory_impl(char* addr, size_t size,
2706                                   size_t alignment_hint, bool exec) {
2707   int err = os::Linux::commit_memory_impl(addr, size, exec);
2708   if (err == 0) {
2709     realign_memory(addr, size, alignment_hint);
2710   }
2711   return err;
2712 }
2713 
2714 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2715                           bool exec) {
2716   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2717 }
2718 
2719 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2720                                   size_t alignment_hint, bool exec,
2721                                   const char* mesg) {
2722   assert(mesg != NULL, "mesg must be specified");
2723   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2724   if (err != 0) {
2725     // the caller wants all commit errors to exit with the specified mesg:
2726     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2727     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2728   }
2729 }
2730 
2731 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2732   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2733     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2734     // be supported or the memory may already be backed by huge pages.
2735     ::madvise(addr, bytes, MADV_HUGEPAGE);
2736   }
2737 }
2738 
2739 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2740   // This method works by doing an mmap over an existing mmaping and effectively discarding
2741   // the existing pages. However it won't work for SHM-based large pages that cannot be
2742   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2743   // small pages on top of the SHM segment. This method always works for small pages, so we
2744   // allow that in any case.
2745   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2746     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2747   }
2748 }
2749 
2750 void os::numa_make_global(char *addr, size_t bytes) {
2751   Linux::numa_interleave_memory(addr, bytes);
2752 }
2753 
2754 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2755 // bind policy to MPOL_PREFERRED for the current thread.
2756 #define USE_MPOL_PREFERRED 0
2757 
2758 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2759   // To make NUMA and large pages more robust when both enabled, we need to ease
2760   // the requirements on where the memory should be allocated. MPOL_BIND is the
2761   // default policy and it will force memory to be allocated on the specified
2762   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2763   // the specified node, but will not force it. Using this policy will prevent
2764   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2765   // free large pages.
2766   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2767   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2768 }
2769 
2770 bool os::numa_topology_changed()   { return false; }
2771 
2772 size_t os::numa_get_groups_num() {
2773   int max_node = Linux::numa_max_node();
2774   return max_node > 0 ? max_node + 1 : 1;
2775 }
2776 
2777 int os::numa_get_group_id() {
2778   int cpu_id = Linux::sched_getcpu();
2779   if (cpu_id != -1) {
2780     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2781     if (lgrp_id != -1) {
2782       return lgrp_id;
2783     }
2784   }
2785   return 0;
2786 }
2787 
2788 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2789   for (size_t i = 0; i < size; i++) {
2790     ids[i] = i;
2791   }
2792   return size;
2793 }
2794 
2795 bool os::get_page_info(char *start, page_info* info) {
2796   return false;
2797 }
2798 
2799 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2800   return end;
2801 }
2802 
2803 
2804 int os::Linux::sched_getcpu_syscall(void) {
2805   unsigned int cpu;
2806   int retval = -1;
2807 
2808 #if defined(IA32)
2809 # ifndef SYS_getcpu
2810 # define SYS_getcpu 318
2811 # endif
2812   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2813 #elif defined(AMD64)
2814 // Unfortunately we have to bring all these macros here from vsyscall.h
2815 // to be able to compile on old linuxes.
2816 # define __NR_vgetcpu 2
2817 # define VSYSCALL_START (-10UL << 20)
2818 # define VSYSCALL_SIZE 1024
2819 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2820   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2821   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2822   retval = vgetcpu(&cpu, NULL, NULL);
2823 #endif
2824 
2825   return (retval == -1) ? retval : cpu;
2826 }
2827 
2828 // Something to do with the numa-aware allocator needs these symbols
2829 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2830 extern "C" JNIEXPORT void numa_error(char *where) { }
2831 extern "C" JNIEXPORT int fork1() { return fork(); }
2832 
2833 
2834 // If we are running with libnuma version > 2, then we should
2835 // be trying to use symbols with versions 1.1
2836 // If we are running with earlier version, which did not have symbol versions,
2837 // we should use the base version.
2838 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2839   void *f = dlvsym(handle, name, "libnuma_1.1");
2840   if (f == NULL) {
2841     f = dlsym(handle, name);
2842   }
2843   return f;
2844 }
2845 
2846 bool os::Linux::libnuma_init() {
2847   // sched_getcpu() should be in libc.
2848   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2849                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2850 
2851   // If it's not, try a direct syscall.
2852   if (sched_getcpu() == -1)
2853     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2854 
2855   if (sched_getcpu() != -1) { // Does it work?
2856     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2857     if (handle != NULL) {
2858       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2859                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2860       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2861                                        libnuma_dlsym(handle, "numa_max_node")));
2862       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2863                                         libnuma_dlsym(handle, "numa_available")));
2864       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2865                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2866       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2867                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2868       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2869                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
2870 
2871 
2872       if (numa_available() != -1) {
2873         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2874         // Create a cpu -> node mapping
2875         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2876         rebuild_cpu_to_node_map();
2877         return true;
2878       }
2879     }
2880   }
2881   return false;
2882 }
2883 
2884 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2885 // The table is later used in get_node_by_cpu().
2886 void os::Linux::rebuild_cpu_to_node_map() {
2887   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2888                               // in libnuma (possible values are starting from 16,
2889                               // and continuing up with every other power of 2, but less
2890                               // than the maximum number of CPUs supported by kernel), and
2891                               // is a subject to change (in libnuma version 2 the requirements
2892                               // are more reasonable) we'll just hardcode the number they use
2893                               // in the library.
2894   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2895 
2896   size_t cpu_num = os::active_processor_count();
2897   size_t cpu_map_size = NCPUS / BitsPerCLong;
2898   size_t cpu_map_valid_size =
2899     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2900 
2901   cpu_to_node()->clear();
2902   cpu_to_node()->at_grow(cpu_num - 1);
2903   size_t node_num = numa_get_groups_num();
2904 
2905   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2906   for (size_t i = 0; i < node_num; i++) {
2907     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2908       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2909         if (cpu_map[j] != 0) {
2910           for (size_t k = 0; k < BitsPerCLong; k++) {
2911             if (cpu_map[j] & (1UL << k)) {
2912               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2913             }
2914           }
2915         }
2916       }
2917     }
2918   }
2919   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2920 }
2921 
2922 int os::Linux::get_node_by_cpu(int cpu_id) {
2923   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2924     return cpu_to_node()->at(cpu_id);
2925   }
2926   return -1;
2927 }
2928 
2929 GrowableArray<int>* os::Linux::_cpu_to_node;
2930 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2931 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2932 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2933 os::Linux::numa_available_func_t os::Linux::_numa_available;
2934 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2935 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2936 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2937 unsigned long* os::Linux::_numa_all_nodes;
2938 
2939 bool os::pd_uncommit_memory(char* addr, size_t size) {
2940   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2941                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2942   return res  != (uintptr_t) MAP_FAILED;
2943 }
2944 
2945 static
2946 address get_stack_commited_bottom(address bottom, size_t size) {
2947   address nbot = bottom;
2948   address ntop = bottom + size;
2949 
2950   size_t page_sz = os::vm_page_size();
2951   unsigned pages = size / page_sz;
2952 
2953   unsigned char vec[1];
2954   unsigned imin = 1, imax = pages + 1, imid;
2955   int mincore_return_value = 0;
2956 
2957   assert(imin <= imax, "Unexpected page size");
2958 
2959   while (imin < imax) {
2960     imid = (imax + imin) / 2;
2961     nbot = ntop - (imid * page_sz);
2962 
2963     // Use a trick with mincore to check whether the page is mapped or not.
2964     // mincore sets vec to 1 if page resides in memory and to 0 if page
2965     // is swapped output but if page we are asking for is unmapped
2966     // it returns -1,ENOMEM
2967     mincore_return_value = mincore(nbot, page_sz, vec);
2968 
2969     if (mincore_return_value == -1) {
2970       // Page is not mapped go up
2971       // to find first mapped page
2972       if (errno != EAGAIN) {
2973         assert(errno == ENOMEM, "Unexpected mincore errno");
2974         imax = imid;
2975       }
2976     } else {
2977       // Page is mapped go down
2978       // to find first not mapped page
2979       imin = imid + 1;
2980     }
2981   }
2982 
2983   nbot = nbot + page_sz;
2984 
2985   // Adjust stack bottom one page up if last checked page is not mapped
2986   if (mincore_return_value == -1) {
2987     nbot = nbot + page_sz;
2988   }
2989 
2990   return nbot;
2991 }
2992 
2993 
2994 // Linux uses a growable mapping for the stack, and if the mapping for
2995 // the stack guard pages is not removed when we detach a thread the
2996 // stack cannot grow beyond the pages where the stack guard was
2997 // mapped.  If at some point later in the process the stack expands to
2998 // that point, the Linux kernel cannot expand the stack any further
2999 // because the guard pages are in the way, and a segfault occurs.
3000 //
3001 // However, it's essential not to split the stack region by unmapping
3002 // a region (leaving a hole) that's already part of the stack mapping,
3003 // so if the stack mapping has already grown beyond the guard pages at
3004 // the time we create them, we have to truncate the stack mapping.
3005 // So, we need to know the extent of the stack mapping when
3006 // create_stack_guard_pages() is called.
3007 
3008 // We only need this for stacks that are growable: at the time of
3009 // writing thread stacks don't use growable mappings (i.e. those
3010 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3011 // only applies to the main thread.
3012 
3013 // If the (growable) stack mapping already extends beyond the point
3014 // where we're going to put our guard pages, truncate the mapping at
3015 // that point by munmap()ping it.  This ensures that when we later
3016 // munmap() the guard pages we don't leave a hole in the stack
3017 // mapping. This only affects the main/initial thread
3018 
3019 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3020 
3021   if (os::Linux::is_initial_thread()) {
3022     // As we manually grow stack up to bottom inside create_attached_thread(),
3023     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3024     // we don't need to do anything special.
3025     // Check it first, before calling heavy function.
3026     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3027     unsigned char vec[1];
3028 
3029     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3030       // Fallback to slow path on all errors, including EAGAIN
3031       stack_extent = (uintptr_t) get_stack_commited_bottom(
3032                                     os::Linux::initial_thread_stack_bottom(),
3033                                     (size_t)addr - stack_extent);
3034     }
3035 
3036     if (stack_extent < (uintptr_t)addr) {
3037       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3038     }
3039   }
3040 
3041   return os::commit_memory(addr, size, !ExecMem);
3042 }
3043 
3044 // If this is a growable mapping, remove the guard pages entirely by
3045 // munmap()ping them.  If not, just call uncommit_memory(). This only
3046 // affects the main/initial thread, but guard against future OS changes
3047 // It's safe to always unmap guard pages for initial thread because we
3048 // always place it right after end of the mapped region
3049 
3050 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3051   uintptr_t stack_extent, stack_base;
3052 
3053   if (os::Linux::is_initial_thread()) {
3054     return ::munmap(addr, size) == 0;
3055   }
3056 
3057   return os::uncommit_memory(addr, size);
3058 }
3059 
3060 static address _highest_vm_reserved_address = NULL;
3061 
3062 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3063 // at 'requested_addr'. If there are existing memory mappings at the same
3064 // location, however, they will be overwritten. If 'fixed' is false,
3065 // 'requested_addr' is only treated as a hint, the return value may or
3066 // may not start from the requested address. Unlike Linux mmap(), this
3067 // function returns NULL to indicate failure.
3068 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3069   char * addr;
3070   int flags;
3071 
3072   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3073   if (fixed) {
3074     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3075     flags |= MAP_FIXED;
3076   }
3077 
3078   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3079   // touch an uncommitted page. Otherwise, the read/write might
3080   // succeed if we have enough swap space to back the physical page.
3081   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3082                        flags, -1, 0);
3083 
3084   if (addr != MAP_FAILED) {
3085     // anon_mmap() should only get called during VM initialization,
3086     // don't need lock (actually we can skip locking even it can be called
3087     // from multiple threads, because _highest_vm_reserved_address is just a
3088     // hint about the upper limit of non-stack memory regions.)
3089     if ((address)addr + bytes > _highest_vm_reserved_address) {
3090       _highest_vm_reserved_address = (address)addr + bytes;
3091     }
3092   }
3093 
3094   return addr == MAP_FAILED ? NULL : addr;
3095 }
3096 
3097 // Don't update _highest_vm_reserved_address, because there might be memory
3098 // regions above addr + size. If so, releasing a memory region only creates
3099 // a hole in the address space, it doesn't help prevent heap-stack collision.
3100 //
3101 static int anon_munmap(char * addr, size_t size) {
3102   return ::munmap(addr, size) == 0;
3103 }
3104 
3105 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3106                          size_t alignment_hint) {
3107   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3108 }
3109 
3110 bool os::pd_release_memory(char* addr, size_t size) {
3111   return anon_munmap(addr, size);
3112 }
3113 
3114 static address highest_vm_reserved_address() {
3115   return _highest_vm_reserved_address;
3116 }
3117 
3118 static bool linux_mprotect(char* addr, size_t size, int prot) {
3119   // Linux wants the mprotect address argument to be page aligned.
3120   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3121 
3122   // According to SUSv3, mprotect() should only be used with mappings
3123   // established by mmap(), and mmap() always maps whole pages. Unaligned
3124   // 'addr' likely indicates problem in the VM (e.g. trying to change
3125   // protection of malloc'ed or statically allocated memory). Check the
3126   // caller if you hit this assert.
3127   assert(addr == bottom, "sanity check");
3128 
3129   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3130   return ::mprotect(bottom, size, prot) == 0;
3131 }
3132 
3133 // Set protections specified
3134 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3135                         bool is_committed) {
3136   unsigned int p = 0;
3137   switch (prot) {
3138   case MEM_PROT_NONE: p = PROT_NONE; break;
3139   case MEM_PROT_READ: p = PROT_READ; break;
3140   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3141   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3142   default:
3143     ShouldNotReachHere();
3144   }
3145   // is_committed is unused.
3146   return linux_mprotect(addr, bytes, p);
3147 }
3148 
3149 bool os::guard_memory(char* addr, size_t size) {
3150   return linux_mprotect(addr, size, PROT_NONE);
3151 }
3152 
3153 bool os::unguard_memory(char* addr, size_t size) {
3154   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3155 }
3156 
3157 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3158   bool result = false;
3159   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3160                  MAP_ANONYMOUS|MAP_PRIVATE,
3161                  -1, 0);
3162   if (p != MAP_FAILED) {
3163     void *aligned_p = align_ptr_up(p, page_size);
3164 
3165     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3166 
3167     munmap(p, page_size * 2);
3168   }
3169 
3170   if (warn && !result) {
3171     warning("TransparentHugePages is not supported by the operating system.");
3172   }
3173 
3174   return result;
3175 }
3176 
3177 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3178   bool result = false;
3179   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3180                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3181                  -1, 0);
3182 
3183   if (p != MAP_FAILED) {
3184     // We don't know if this really is a huge page or not.
3185     FILE *fp = fopen("/proc/self/maps", "r");
3186     if (fp) {
3187       while (!feof(fp)) {
3188         char chars[257];
3189         long x = 0;
3190         if (fgets(chars, sizeof(chars), fp)) {
3191           if (sscanf(chars, "%lx-%*x", &x) == 1
3192               && x == (long)p) {
3193             if (strstr (chars, "hugepage")) {
3194               result = true;
3195               break;
3196             }
3197           }
3198         }
3199       }
3200       fclose(fp);
3201     }
3202     munmap(p, page_size);
3203   }
3204 
3205   if (warn && !result) {
3206     warning("HugeTLBFS is not supported by the operating system.");
3207   }
3208 
3209   return result;
3210 }
3211 
3212 /*
3213 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3214 *
3215 * From the coredump_filter documentation:
3216 *
3217 * - (bit 0) anonymous private memory
3218 * - (bit 1) anonymous shared memory
3219 * - (bit 2) file-backed private memory
3220 * - (bit 3) file-backed shared memory
3221 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3222 *           effective only if the bit 2 is cleared)
3223 * - (bit 5) hugetlb private memory
3224 * - (bit 6) hugetlb shared memory
3225 */
3226 static void set_coredump_filter(void) {
3227   FILE *f;
3228   long cdm;
3229 
3230   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3231     return;
3232   }
3233 
3234   if (fscanf(f, "%lx", &cdm) != 1) {
3235     fclose(f);
3236     return;
3237   }
3238 
3239   rewind(f);
3240 
3241   if ((cdm & LARGEPAGES_BIT) == 0) {
3242     cdm |= LARGEPAGES_BIT;
3243     fprintf(f, "%#lx", cdm);
3244   }
3245 
3246   fclose(f);
3247 }
3248 
3249 // Large page support
3250 
3251 static size_t _large_page_size = 0;
3252 
3253 size_t os::Linux::find_large_page_size() {
3254   size_t large_page_size = 0;
3255 
3256   // large_page_size on Linux is used to round up heap size. x86 uses either
3257   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3258   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3259   // page as large as 256M.
3260   //
3261   // Here we try to figure out page size by parsing /proc/meminfo and looking
3262   // for a line with the following format:
3263   //    Hugepagesize:     2048 kB
3264   //
3265   // If we can't determine the value (e.g. /proc is not mounted, or the text
3266   // format has been changed), we'll use the largest page size supported by
3267   // the processor.
3268 
3269 #ifndef ZERO
3270   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3271                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3272 #endif // ZERO
3273 
3274   FILE *fp = fopen("/proc/meminfo", "r");
3275   if (fp) {
3276     while (!feof(fp)) {
3277       int x = 0;
3278       char buf[16];
3279       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3280         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3281           large_page_size = x * K;
3282           break;
3283         }
3284       } else {
3285         // skip to next line
3286         for (;;) {
3287           int ch = fgetc(fp);
3288           if (ch == EOF || ch == (int)'\n') break;
3289         }
3290       }
3291     }
3292     fclose(fp);
3293   }
3294 
3295   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3296     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3297         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3298         proper_unit_for_byte_size(large_page_size));
3299   }
3300 
3301   return large_page_size;
3302 }
3303 
3304 size_t os::Linux::setup_large_page_size() {
3305   _large_page_size = Linux::find_large_page_size();
3306   const size_t default_page_size = (size_t)Linux::page_size();
3307   if (_large_page_size > default_page_size) {
3308     _page_sizes[0] = _large_page_size;
3309     _page_sizes[1] = default_page_size;
3310     _page_sizes[2] = 0;
3311   }
3312 
3313   return _large_page_size;
3314 }
3315 
3316 bool os::Linux::setup_large_page_type(size_t page_size) {
3317   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3318       FLAG_IS_DEFAULT(UseSHM) &&
3319       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3320 
3321     // The type of large pages has not been specified by the user.
3322 
3323     // Try UseHugeTLBFS and then UseSHM.
3324     UseHugeTLBFS = UseSHM = true;
3325 
3326     // Don't try UseTransparentHugePages since there are known
3327     // performance issues with it turned on. This might change in the future.
3328     UseTransparentHugePages = false;
3329   }
3330 
3331   if (UseTransparentHugePages) {
3332     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3333     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3334       UseHugeTLBFS = false;
3335       UseSHM = false;
3336       return true;
3337     }
3338     UseTransparentHugePages = false;
3339   }
3340 
3341   if (UseHugeTLBFS) {
3342     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3343     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3344       UseSHM = false;
3345       return true;
3346     }
3347     UseHugeTLBFS = false;
3348   }
3349 
3350   return UseSHM;
3351 }
3352 
3353 void os::large_page_init() {
3354   if (!UseLargePages &&
3355       !UseTransparentHugePages &&
3356       !UseHugeTLBFS &&
3357       !UseSHM) {
3358     // Not using large pages.
3359     return;
3360   }
3361 
3362   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3363     // The user explicitly turned off large pages.
3364     // Ignore the rest of the large pages flags.
3365     UseTransparentHugePages = false;
3366     UseHugeTLBFS = false;
3367     UseSHM = false;
3368     return;
3369   }
3370 
3371   size_t large_page_size = Linux::setup_large_page_size();
3372   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3373 
3374   set_coredump_filter();
3375 }
3376 
3377 #ifndef SHM_HUGETLB
3378 #define SHM_HUGETLB 04000
3379 #endif
3380 
3381 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3382   // "exec" is passed in but not used.  Creating the shared image for
3383   // the code cache doesn't have an SHM_X executable permission to check.
3384   assert(UseLargePages && UseSHM, "only for SHM large pages");
3385   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3386 
3387   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3388     return NULL; // Fallback to small pages.
3389   }
3390 
3391   key_t key = IPC_PRIVATE;
3392   char *addr;
3393 
3394   bool warn_on_failure = UseLargePages &&
3395                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3396                          !FLAG_IS_DEFAULT(UseSHM) ||
3397                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3398                         );
3399   char msg[128];
3400 
3401   // Create a large shared memory region to attach to based on size.
3402   // Currently, size is the total size of the heap
3403   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3404   if (shmid == -1) {
3405      // Possible reasons for shmget failure:
3406      // 1. shmmax is too small for Java heap.
3407      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3408      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3409      // 2. not enough large page memory.
3410      //    > check available large pages: cat /proc/meminfo
3411      //    > increase amount of large pages:
3412      //          echo new_value > /proc/sys/vm/nr_hugepages
3413      //      Note 1: different Linux may use different name for this property,
3414      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3415      //      Note 2: it's possible there's enough physical memory available but
3416      //            they are so fragmented after a long run that they can't
3417      //            coalesce into large pages. Try to reserve large pages when
3418      //            the system is still "fresh".
3419      if (warn_on_failure) {
3420        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3421        warning("%s", msg);
3422      }
3423      return NULL;
3424   }
3425 
3426   // attach to the region
3427   addr = (char*)shmat(shmid, req_addr, 0);
3428   int err = errno;
3429 
3430   // Remove shmid. If shmat() is successful, the actual shared memory segment
3431   // will be deleted when it's detached by shmdt() or when the process
3432   // terminates. If shmat() is not successful this will remove the shared
3433   // segment immediately.
3434   shmctl(shmid, IPC_RMID, NULL);
3435 
3436   if ((intptr_t)addr == -1) {
3437      if (warn_on_failure) {
3438        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3439        warning("%s", msg);
3440      }
3441      return NULL;
3442   }
3443 
3444   return addr;
3445 }
3446 
3447 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3448   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3449 
3450   bool warn_on_failure = UseLargePages &&
3451       (!FLAG_IS_DEFAULT(UseLargePages) ||
3452        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3453        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3454 
3455   if (warn_on_failure) {
3456     char msg[128];
3457     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3458         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3459     warning("%s", msg);
3460   }
3461 }
3462 
3463 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3464   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3465   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3466   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3467 
3468   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3469   char* addr = (char*)::mmap(req_addr, bytes, prot,
3470                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3471                              -1, 0);
3472 
3473   if (addr == MAP_FAILED) {
3474     warn_on_large_pages_failure(req_addr, bytes, errno);
3475     return NULL;
3476   }
3477 
3478   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3479 
3480   return addr;
3481 }
3482 
3483 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3484   size_t large_page_size = os::large_page_size();
3485 
3486   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3487 
3488   // Allocate small pages.
3489 
3490   char* start;
3491   if (req_addr != NULL) {
3492     assert(is_ptr_aligned(req_addr, alignment), "Must be");
3493     assert(is_size_aligned(bytes, alignment), "Must be");
3494     start = os::reserve_memory(bytes, req_addr);
3495     assert(start == NULL || start == req_addr, "Must be");
3496   } else {
3497     start = os::reserve_memory_aligned(bytes, alignment);
3498   }
3499 
3500   if (start == NULL) {
3501     return NULL;
3502   }
3503 
3504   assert(is_ptr_aligned(start, alignment), "Must be");
3505 
3506   if (MemTracker::tracking_level() > NMT_minimal) {
3507     // os::reserve_memory_special will record this memory area.
3508     // Need to release it here to prevent overlapping reservations.
3509     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3510     tkr.record((address)start, bytes);
3511   }
3512 
3513   char* end = start + bytes;
3514 
3515   // Find the regions of the allocated chunk that can be promoted to large pages.
3516   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3517   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3518 
3519   size_t lp_bytes = lp_end - lp_start;
3520 
3521   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3522 
3523   if (lp_bytes == 0) {
3524     // The mapped region doesn't even span the start and the end of a large page.
3525     // Fall back to allocate a non-special area.
3526     ::munmap(start, end - start);
3527     return NULL;
3528   }
3529 
3530   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3531 
3532 
3533   void* result;
3534 
3535   if (start != lp_start) {
3536     result = ::mmap(start, lp_start - start, prot,
3537                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3538                     -1, 0);
3539     if (result == MAP_FAILED) {
3540       ::munmap(lp_start, end - lp_start);
3541       return NULL;
3542     }
3543   }
3544 
3545   result = ::mmap(lp_start, lp_bytes, prot,
3546                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3547                   -1, 0);
3548   if (result == MAP_FAILED) {
3549     warn_on_large_pages_failure(req_addr, bytes, errno);
3550     // If the mmap above fails, the large pages region will be unmapped and we
3551     // have regions before and after with small pages. Release these regions.
3552     //
3553     // |  mapped  |  unmapped  |  mapped  |
3554     // ^          ^            ^          ^
3555     // start      lp_start     lp_end     end
3556     //
3557     ::munmap(start, lp_start - start);
3558     ::munmap(lp_end, end - lp_end);
3559     return NULL;
3560   }
3561 
3562   if (lp_end != end) {
3563       result = ::mmap(lp_end, end - lp_end, prot,
3564                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3565                       -1, 0);
3566     if (result == MAP_FAILED) {
3567       ::munmap(start, lp_end - start);
3568       return NULL;
3569     }
3570   }
3571 
3572   return start;
3573 }
3574 
3575 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3576   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3577   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3578   assert(is_power_of_2(alignment), "Must be");
3579   assert(is_power_of_2(os::large_page_size()), "Must be");
3580   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3581 
3582   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3583     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3584   } else {
3585     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3586   }
3587 }
3588 
3589 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3590   assert(UseLargePages, "only for large pages");
3591 
3592   char* addr;
3593   if (UseSHM) {
3594     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3595   } else {
3596     assert(UseHugeTLBFS, "must be");
3597     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3598   }
3599 
3600   if (addr != NULL) {
3601     if (UseNUMAInterleaving) {
3602       numa_make_global(addr, bytes);
3603     }
3604 
3605     // The memory is committed
3606     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3607   }
3608 
3609   return addr;
3610 }
3611 
3612 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3613   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3614   return shmdt(base) == 0;
3615 }
3616 
3617 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3618   return pd_release_memory(base, bytes);
3619 }
3620 
3621 bool os::release_memory_special(char* base, size_t bytes) {
3622   bool res;
3623   if (MemTracker::tracking_level() > NMT_minimal) {
3624     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3625     res = os::Linux::release_memory_special_impl(base, bytes);
3626     if (res) {
3627       tkr.record((address)base, bytes);
3628     }
3629 
3630   } else {
3631     res = os::Linux::release_memory_special_impl(base, bytes);
3632   }
3633   return res;
3634 }
3635 
3636 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3637   assert(UseLargePages, "only for large pages");
3638   bool res;
3639 
3640   if (UseSHM) {
3641     res = os::Linux::release_memory_special_shm(base, bytes);
3642   } else {
3643     assert(UseHugeTLBFS, "must be");
3644     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3645   }
3646   return res;
3647 }
3648 
3649 size_t os::large_page_size() {
3650   return _large_page_size;
3651 }
3652 
3653 // With SysV SHM the entire memory region must be allocated as shared
3654 // memory.
3655 // HugeTLBFS allows application to commit large page memory on demand.
3656 // However, when committing memory with HugeTLBFS fails, the region
3657 // that was supposed to be committed will lose the old reservation
3658 // and allow other threads to steal that memory region. Because of this
3659 // behavior we can't commit HugeTLBFS memory.
3660 bool os::can_commit_large_page_memory() {
3661   return UseTransparentHugePages;
3662 }
3663 
3664 bool os::can_execute_large_page_memory() {
3665   return UseTransparentHugePages || UseHugeTLBFS;
3666 }
3667 
3668 // Reserve memory at an arbitrary address, only if that area is
3669 // available (and not reserved for something else).
3670 
3671 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3672   const int max_tries = 10;
3673   char* base[max_tries];
3674   size_t size[max_tries];
3675   const size_t gap = 0x000000;
3676 
3677   // Assert only that the size is a multiple of the page size, since
3678   // that's all that mmap requires, and since that's all we really know
3679   // about at this low abstraction level.  If we need higher alignment,
3680   // we can either pass an alignment to this method or verify alignment
3681   // in one of the methods further up the call chain.  See bug 5044738.
3682   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3683 
3684   // Repeatedly allocate blocks until the block is allocated at the
3685   // right spot. Give up after max_tries. Note that reserve_memory() will
3686   // automatically update _highest_vm_reserved_address if the call is
3687   // successful. The variable tracks the highest memory address every reserved
3688   // by JVM. It is used to detect heap-stack collision if running with
3689   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3690   // space than needed, it could confuse the collision detecting code. To
3691   // solve the problem, save current _highest_vm_reserved_address and
3692   // calculate the correct value before return.
3693   address old_highest = _highest_vm_reserved_address;
3694 
3695   // Linux mmap allows caller to pass an address as hint; give it a try first,
3696   // if kernel honors the hint then we can return immediately.
3697   char * addr = anon_mmap(requested_addr, bytes, false);
3698   if (addr == requested_addr) {
3699      return requested_addr;
3700   }
3701 
3702   if (addr != NULL) {
3703      // mmap() is successful but it fails to reserve at the requested address
3704      anon_munmap(addr, bytes);
3705   }
3706 
3707   int i;
3708   for (i = 0; i < max_tries; ++i) {
3709     base[i] = reserve_memory(bytes);
3710 
3711     if (base[i] != NULL) {
3712       // Is this the block we wanted?
3713       if (base[i] == requested_addr) {
3714         size[i] = bytes;
3715         break;
3716       }
3717 
3718       // Does this overlap the block we wanted? Give back the overlapped
3719       // parts and try again.
3720 
3721       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3722       if (top_overlap >= 0 && top_overlap < bytes) {
3723         unmap_memory(base[i], top_overlap);
3724         base[i] += top_overlap;
3725         size[i] = bytes - top_overlap;
3726       } else {
3727         size_t bottom_overlap = base[i] + bytes - requested_addr;
3728         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3729           unmap_memory(requested_addr, bottom_overlap);
3730           size[i] = bytes - bottom_overlap;
3731         } else {
3732           size[i] = bytes;
3733         }
3734       }
3735     }
3736   }
3737 
3738   // Give back the unused reserved pieces.
3739 
3740   for (int j = 0; j < i; ++j) {
3741     if (base[j] != NULL) {
3742       unmap_memory(base[j], size[j]);
3743     }
3744   }
3745 
3746   if (i < max_tries) {
3747     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3748     return requested_addr;
3749   } else {
3750     _highest_vm_reserved_address = old_highest;
3751     return NULL;
3752   }
3753 }
3754 
3755 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3756   return ::read(fd, buf, nBytes);
3757 }
3758 
3759 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3760 // Solaris uses poll(), linux uses park().
3761 // Poll() is likely a better choice, assuming that Thread.interrupt()
3762 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3763 // SIGSEGV, see 4355769.
3764 
3765 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3766   assert(thread == Thread::current(),  "thread consistency check");
3767 
3768   ParkEvent * const slp = thread->_SleepEvent ;
3769   slp->reset() ;
3770   OrderAccess::fence() ;
3771 
3772   if (interruptible) {
3773     jlong prevtime = javaTimeNanos();
3774 
3775     for (;;) {
3776       if (os::is_interrupted(thread, true)) {
3777         return OS_INTRPT;
3778       }
3779 
3780       jlong newtime = javaTimeNanos();
3781 
3782       if (newtime - prevtime < 0) {
3783         // time moving backwards, should only happen if no monotonic clock
3784         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3785         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3786       } else {
3787         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3788       }
3789 
3790       if(millis <= 0) {
3791         return OS_OK;
3792       }
3793 
3794       prevtime = newtime;
3795 
3796       {
3797         assert(thread->is_Java_thread(), "sanity check");
3798         JavaThread *jt = (JavaThread *) thread;
3799         ThreadBlockInVM tbivm(jt);
3800         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3801 
3802         jt->set_suspend_equivalent();
3803         // cleared by handle_special_suspend_equivalent_condition() or
3804         // java_suspend_self() via check_and_wait_while_suspended()
3805 
3806         slp->park(millis);
3807 
3808         // were we externally suspended while we were waiting?
3809         jt->check_and_wait_while_suspended();
3810       }
3811     }
3812   } else {
3813     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3814     jlong prevtime = javaTimeNanos();
3815 
3816     for (;;) {
3817       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3818       // the 1st iteration ...
3819       jlong newtime = javaTimeNanos();
3820 
3821       if (newtime - prevtime < 0) {
3822         // time moving backwards, should only happen if no monotonic clock
3823         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3824         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3825       } else {
3826         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3827       }
3828 
3829       if(millis <= 0) break ;
3830 
3831       prevtime = newtime;
3832       slp->park(millis);
3833     }
3834     return OS_OK ;
3835   }
3836 }
3837 
3838 //
3839 // Short sleep, direct OS call.
3840 //
3841 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3842 // sched_yield(2) will actually give up the CPU:
3843 //
3844 //   * Alone on this pariticular CPU, keeps running.
3845 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3846 //     (pre 2.6.39).
3847 //
3848 // So calling this with 0 is an alternative.
3849 //
3850 void os::naked_short_sleep(jlong ms) {
3851   struct timespec req;
3852 
3853   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3854   req.tv_sec = 0;
3855   if (ms > 0) {
3856     req.tv_nsec = (ms % 1000) * 1000000;
3857   }
3858   else {
3859     req.tv_nsec = 1;
3860   }
3861 
3862   nanosleep(&req, NULL);
3863 
3864   return;
3865 }
3866 
3867 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3868 void os::infinite_sleep() {
3869   while (true) {    // sleep forever ...
3870     ::sleep(100);   // ... 100 seconds at a time
3871   }
3872 }
3873 
3874 // Used to convert frequent JVM_Yield() to nops
3875 bool os::dont_yield() {
3876   return DontYieldALot;
3877 }
3878 
3879 void os::yield() {
3880   sched_yield();
3881 }
3882 
3883 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3884 
3885 void os::yield_all(int attempts) {
3886   // Yields to all threads, including threads with lower priorities
3887   // Threads on Linux are all with same priority. The Solaris style
3888   // os::yield_all() with nanosleep(1ms) is not necessary.
3889   sched_yield();
3890 }
3891 
3892 // Called from the tight loops to possibly influence time-sharing heuristics
3893 void os::loop_breaker(int attempts) {
3894   os::yield_all(attempts);
3895 }
3896 
3897 ////////////////////////////////////////////////////////////////////////////////
3898 // thread priority support
3899 
3900 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3901 // only supports dynamic priority, static priority must be zero. For real-time
3902 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3903 // However, for large multi-threaded applications, SCHED_RR is not only slower
3904 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3905 // of 5 runs - Sep 2005).
3906 //
3907 // The following code actually changes the niceness of kernel-thread/LWP. It
3908 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3909 // not the entire user process, and user level threads are 1:1 mapped to kernel
3910 // threads. It has always been the case, but could change in the future. For
3911 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3912 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3913 
3914 int os::java_to_os_priority[CriticalPriority + 1] = {
3915   19,              // 0 Entry should never be used
3916 
3917    4,              // 1 MinPriority
3918    3,              // 2
3919    2,              // 3
3920 
3921    1,              // 4
3922    0,              // 5 NormPriority
3923   -1,              // 6
3924 
3925   -2,              // 7
3926   -3,              // 8
3927   -4,              // 9 NearMaxPriority
3928 
3929   -5,              // 10 MaxPriority
3930 
3931   -5               // 11 CriticalPriority
3932 };
3933 
3934 static int prio_init() {
3935   if (ThreadPriorityPolicy == 1) {
3936     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3937     // if effective uid is not root. Perhaps, a more elegant way of doing
3938     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3939     if (geteuid() != 0) {
3940       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3941         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3942       }
3943       ThreadPriorityPolicy = 0;
3944     }
3945   }
3946   if (UseCriticalJavaThreadPriority) {
3947     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3948   }
3949   return 0;
3950 }
3951 
3952 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3953   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3954 
3955   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3956   return (ret == 0) ? OS_OK : OS_ERR;
3957 }
3958 
3959 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3960   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3961     *priority_ptr = java_to_os_priority[NormPriority];
3962     return OS_OK;
3963   }
3964 
3965   errno = 0;
3966   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3967   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3968 }
3969 
3970 // Hint to the underlying OS that a task switch would not be good.
3971 // Void return because it's a hint and can fail.
3972 void os::hint_no_preempt() {}
3973 
3974 ////////////////////////////////////////////////////////////////////////////////
3975 // suspend/resume support
3976 
3977 //  the low-level signal-based suspend/resume support is a remnant from the
3978 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3979 //  within hotspot. Now there is a single use-case for this:
3980 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3981 //      that runs in the watcher thread.
3982 //  The remaining code is greatly simplified from the more general suspension
3983 //  code that used to be used.
3984 //
3985 //  The protocol is quite simple:
3986 //  - suspend:
3987 //      - sends a signal to the target thread
3988 //      - polls the suspend state of the osthread using a yield loop
3989 //      - target thread signal handler (SR_handler) sets suspend state
3990 //        and blocks in sigsuspend until continued
3991 //  - resume:
3992 //      - sets target osthread state to continue
3993 //      - sends signal to end the sigsuspend loop in the SR_handler
3994 //
3995 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3996 //
3997 
3998 static void resume_clear_context(OSThread *osthread) {
3999   osthread->set_ucontext(NULL);
4000   osthread->set_siginfo(NULL);
4001 }
4002 
4003 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
4004   osthread->set_ucontext(context);
4005   osthread->set_siginfo(siginfo);
4006 }
4007 
4008 //
4009 // Handler function invoked when a thread's execution is suspended or
4010 // resumed. We have to be careful that only async-safe functions are
4011 // called here (Note: most pthread functions are not async safe and
4012 // should be avoided.)
4013 //
4014 // Note: sigwait() is a more natural fit than sigsuspend() from an
4015 // interface point of view, but sigwait() prevents the signal hander
4016 // from being run. libpthread would get very confused by not having
4017 // its signal handlers run and prevents sigwait()'s use with the
4018 // mutex granting granting signal.
4019 //
4020 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4021 //
4022 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4023   // Save and restore errno to avoid confusing native code with EINTR
4024   // after sigsuspend.
4025   int old_errno = errno;
4026 
4027   Thread* thread = Thread::current();
4028   OSThread* osthread = thread->osthread();
4029   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4030 
4031   os::SuspendResume::State current = osthread->sr.state();
4032   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4033     suspend_save_context(osthread, siginfo, context);
4034 
4035     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4036     os::SuspendResume::State state = osthread->sr.suspended();
4037     if (state == os::SuspendResume::SR_SUSPENDED) {
4038       sigset_t suspend_set;  // signals for sigsuspend()
4039 
4040       // get current set of blocked signals and unblock resume signal
4041       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4042       sigdelset(&suspend_set, SR_signum);
4043 
4044       sr_semaphore.signal();
4045       // wait here until we are resumed
4046       while (1) {
4047         sigsuspend(&suspend_set);
4048 
4049         os::SuspendResume::State result = osthread->sr.running();
4050         if (result == os::SuspendResume::SR_RUNNING) {
4051           sr_semaphore.signal();
4052           break;
4053         }
4054       }
4055 
4056     } else if (state == os::SuspendResume::SR_RUNNING) {
4057       // request was cancelled, continue
4058     } else {
4059       ShouldNotReachHere();
4060     }
4061 
4062     resume_clear_context(osthread);
4063   } else if (current == os::SuspendResume::SR_RUNNING) {
4064     // request was cancelled, continue
4065   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4066     // ignore
4067   } else {
4068     // ignore
4069   }
4070 
4071   errno = old_errno;
4072 }
4073 
4074 
4075 static int SR_initialize() {
4076   struct sigaction act;
4077   char *s;
4078   /* Get signal number to use for suspend/resume */
4079   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4080     int sig = ::strtol(s, 0, 10);
4081     if (sig > 0 || sig < _NSIG) {
4082         SR_signum = sig;
4083     }
4084   }
4085 
4086   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4087         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4088 
4089   sigemptyset(&SR_sigset);
4090   sigaddset(&SR_sigset, SR_signum);
4091 
4092   /* Set up signal handler for suspend/resume */
4093   act.sa_flags = SA_RESTART|SA_SIGINFO;
4094   act.sa_handler = (void (*)(int)) SR_handler;
4095 
4096   // SR_signum is blocked by default.
4097   // 4528190 - We also need to block pthread restart signal (32 on all
4098   // supported Linux platforms). Note that LinuxThreads need to block
4099   // this signal for all threads to work properly. So we don't have
4100   // to use hard-coded signal number when setting up the mask.
4101   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4102 
4103   if (sigaction(SR_signum, &act, 0) == -1) {
4104     return -1;
4105   }
4106 
4107   // Save signal flag
4108   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4109   return 0;
4110 }
4111 
4112 static int sr_notify(OSThread* osthread) {
4113   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4114   assert_status(status == 0, status, "pthread_kill");
4115   return status;
4116 }
4117 
4118 // "Randomly" selected value for how long we want to spin
4119 // before bailing out on suspending a thread, also how often
4120 // we send a signal to a thread we want to resume
4121 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4122 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4123 
4124 // returns true on success and false on error - really an error is fatal
4125 // but this seems the normal response to library errors
4126 static bool do_suspend(OSThread* osthread) {
4127   assert(osthread->sr.is_running(), "thread should be running");
4128   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4129 
4130   // mark as suspended and send signal
4131   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4132     // failed to switch, state wasn't running?
4133     ShouldNotReachHere();
4134     return false;
4135   }
4136 
4137   if (sr_notify(osthread) != 0) {
4138     ShouldNotReachHere();
4139   }
4140 
4141   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4142   while (true) {
4143     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4144       break;
4145     } else {
4146       // timeout
4147       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4148       if (cancelled == os::SuspendResume::SR_RUNNING) {
4149         return false;
4150       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4151         // make sure that we consume the signal on the semaphore as well
4152         sr_semaphore.wait();
4153         break;
4154       } else {
4155         ShouldNotReachHere();
4156         return false;
4157       }
4158     }
4159   }
4160 
4161   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4162   return true;
4163 }
4164 
4165 static void do_resume(OSThread* osthread) {
4166   assert(osthread->sr.is_suspended(), "thread should be suspended");
4167   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4168 
4169   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4170     // failed to switch to WAKEUP_REQUEST
4171     ShouldNotReachHere();
4172     return;
4173   }
4174 
4175   while (true) {
4176     if (sr_notify(osthread) == 0) {
4177       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4178         if (osthread->sr.is_running()) {
4179           return;
4180         }
4181       }
4182     } else {
4183       ShouldNotReachHere();
4184     }
4185   }
4186 
4187   guarantee(osthread->sr.is_running(), "Must be running!");
4188 }
4189 
4190 ////////////////////////////////////////////////////////////////////////////////
4191 // interrupt support
4192 
4193 void os::interrupt(Thread* thread) {
4194   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4195     "possibility of dangling Thread pointer");
4196 
4197   OSThread* osthread = thread->osthread();
4198 
4199   if (!osthread->interrupted()) {
4200     osthread->set_interrupted(true);
4201     // More than one thread can get here with the same value of osthread,
4202     // resulting in multiple notifications.  We do, however, want the store
4203     // to interrupted() to be visible to other threads before we execute unpark().
4204     OrderAccess::fence();
4205     ParkEvent * const slp = thread->_SleepEvent ;
4206     if (slp != NULL) slp->unpark() ;
4207   }
4208 
4209   // For JSR166. Unpark even if interrupt status already was set
4210   if (thread->is_Java_thread())
4211     ((JavaThread*)thread)->parker()->unpark();
4212 
4213   ParkEvent * ev = thread->_ParkEvent ;
4214   if (ev != NULL) ev->unpark() ;
4215 
4216 }
4217 
4218 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4219   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4220     "possibility of dangling Thread pointer");
4221 
4222   OSThread* osthread = thread->osthread();
4223 
4224   bool interrupted = osthread->interrupted();
4225 
4226   if (interrupted && clear_interrupted) {
4227     osthread->set_interrupted(false);
4228     // consider thread->_SleepEvent->reset() ... optional optimization
4229   }
4230 
4231   return interrupted;
4232 }
4233 
4234 ///////////////////////////////////////////////////////////////////////////////////
4235 // signal handling (except suspend/resume)
4236 
4237 // This routine may be used by user applications as a "hook" to catch signals.
4238 // The user-defined signal handler must pass unrecognized signals to this
4239 // routine, and if it returns true (non-zero), then the signal handler must
4240 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4241 // routine will never retun false (zero), but instead will execute a VM panic
4242 // routine kill the process.
4243 //
4244 // If this routine returns false, it is OK to call it again.  This allows
4245 // the user-defined signal handler to perform checks either before or after
4246 // the VM performs its own checks.  Naturally, the user code would be making
4247 // a serious error if it tried to handle an exception (such as a null check
4248 // or breakpoint) that the VM was generating for its own correct operation.
4249 //
4250 // This routine may recognize any of the following kinds of signals:
4251 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4252 // It should be consulted by handlers for any of those signals.
4253 //
4254 // The caller of this routine must pass in the three arguments supplied
4255 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4256 // field of the structure passed to sigaction().  This routine assumes that
4257 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4258 //
4259 // Note that the VM will print warnings if it detects conflicting signal
4260 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4261 //
4262 extern "C" JNIEXPORT int
4263 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4264                         void* ucontext, int abort_if_unrecognized);
4265 
4266 void signalHandler(int sig, siginfo_t* info, void* uc) {
4267   assert(info != NULL && uc != NULL, "it must be old kernel");
4268   int orig_errno = errno;  // Preserve errno value over signal handler.
4269   JVM_handle_linux_signal(sig, info, uc, true);
4270   errno = orig_errno;
4271 }
4272 
4273 
4274 // This boolean allows users to forward their own non-matching signals
4275 // to JVM_handle_linux_signal, harmlessly.
4276 bool os::Linux::signal_handlers_are_installed = false;
4277 
4278 // For signal-chaining
4279 struct sigaction os::Linux::sigact[MAXSIGNUM];
4280 unsigned int os::Linux::sigs = 0;
4281 bool os::Linux::libjsig_is_loaded = false;
4282 typedef struct sigaction *(*get_signal_t)(int);
4283 get_signal_t os::Linux::get_signal_action = NULL;
4284 
4285 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4286   struct sigaction *actp = NULL;
4287 
4288   if (libjsig_is_loaded) {
4289     // Retrieve the old signal handler from libjsig
4290     actp = (*get_signal_action)(sig);
4291   }
4292   if (actp == NULL) {
4293     // Retrieve the preinstalled signal handler from jvm
4294     actp = get_preinstalled_handler(sig);
4295   }
4296 
4297   return actp;
4298 }
4299 
4300 static bool call_chained_handler(struct sigaction *actp, int sig,
4301                                  siginfo_t *siginfo, void *context) {
4302   // Call the old signal handler
4303   if (actp->sa_handler == SIG_DFL) {
4304     // It's more reasonable to let jvm treat it as an unexpected exception
4305     // instead of taking the default action.
4306     return false;
4307   } else if (actp->sa_handler != SIG_IGN) {
4308     if ((actp->sa_flags & SA_NODEFER) == 0) {
4309       // automaticlly block the signal
4310       sigaddset(&(actp->sa_mask), sig);
4311     }
4312 
4313     sa_handler_t hand;
4314     sa_sigaction_t sa;
4315     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4316     // retrieve the chained handler
4317     if (siginfo_flag_set) {
4318       sa = actp->sa_sigaction;
4319     } else {
4320       hand = actp->sa_handler;
4321     }
4322 
4323     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4324       actp->sa_handler = SIG_DFL;
4325     }
4326 
4327     // try to honor the signal mask
4328     sigset_t oset;
4329     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4330 
4331     // call into the chained handler
4332     if (siginfo_flag_set) {
4333       (*sa)(sig, siginfo, context);
4334     } else {
4335       (*hand)(sig);
4336     }
4337 
4338     // restore the signal mask
4339     pthread_sigmask(SIG_SETMASK, &oset, 0);
4340   }
4341   // Tell jvm's signal handler the signal is taken care of.
4342   return true;
4343 }
4344 
4345 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4346   bool chained = false;
4347   // signal-chaining
4348   if (UseSignalChaining) {
4349     struct sigaction *actp = get_chained_signal_action(sig);
4350     if (actp != NULL) {
4351       chained = call_chained_handler(actp, sig, siginfo, context);
4352     }
4353   }
4354   return chained;
4355 }
4356 
4357 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4358   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4359     return &sigact[sig];
4360   }
4361   return NULL;
4362 }
4363 
4364 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4365   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4366   sigact[sig] = oldAct;
4367   sigs |= (unsigned int)1 << sig;
4368 }
4369 
4370 // for diagnostic
4371 int os::Linux::sigflags[MAXSIGNUM];
4372 
4373 int os::Linux::get_our_sigflags(int sig) {
4374   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4375   return sigflags[sig];
4376 }
4377 
4378 void os::Linux::set_our_sigflags(int sig, int flags) {
4379   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4380   sigflags[sig] = flags;
4381 }
4382 
4383 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4384   // Check for overwrite.
4385   struct sigaction oldAct;
4386   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4387 
4388   void* oldhand = oldAct.sa_sigaction
4389                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4390                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4391   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4392       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4393       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4394     if (AllowUserSignalHandlers || !set_installed) {
4395       // Do not overwrite; user takes responsibility to forward to us.
4396       return;
4397     } else if (UseSignalChaining) {
4398       // save the old handler in jvm
4399       save_preinstalled_handler(sig, oldAct);
4400       // libjsig also interposes the sigaction() call below and saves the
4401       // old sigaction on it own.
4402     } else {
4403       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4404                     "%#lx for signal %d.", (long)oldhand, sig));
4405     }
4406   }
4407 
4408   struct sigaction sigAct;
4409   sigfillset(&(sigAct.sa_mask));
4410   sigAct.sa_handler = SIG_DFL;
4411   if (!set_installed) {
4412     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4413   } else {
4414     sigAct.sa_sigaction = signalHandler;
4415     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4416   }
4417   // Save flags, which are set by ours
4418   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4419   sigflags[sig] = sigAct.sa_flags;
4420 
4421   int ret = sigaction(sig, &sigAct, &oldAct);
4422   assert(ret == 0, "check");
4423 
4424   void* oldhand2  = oldAct.sa_sigaction
4425                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4426                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4427   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4428 }
4429 
4430 // install signal handlers for signals that HotSpot needs to
4431 // handle in order to support Java-level exception handling.
4432 
4433 void os::Linux::install_signal_handlers() {
4434   if (!signal_handlers_are_installed) {
4435     signal_handlers_are_installed = true;
4436 
4437     // signal-chaining
4438     typedef void (*signal_setting_t)();
4439     signal_setting_t begin_signal_setting = NULL;
4440     signal_setting_t end_signal_setting = NULL;
4441     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4442                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4443     if (begin_signal_setting != NULL) {
4444       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4445                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4446       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4447                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4448       libjsig_is_loaded = true;
4449       assert(UseSignalChaining, "should enable signal-chaining");
4450     }
4451     if (libjsig_is_loaded) {
4452       // Tell libjsig jvm is setting signal handlers
4453       (*begin_signal_setting)();
4454     }
4455 
4456     set_signal_handler(SIGSEGV, true);
4457     set_signal_handler(SIGPIPE, true);
4458     set_signal_handler(SIGBUS, true);
4459     set_signal_handler(SIGILL, true);
4460     set_signal_handler(SIGFPE, true);
4461 #if defined(PPC64)
4462     set_signal_handler(SIGTRAP, true);
4463 #endif
4464     set_signal_handler(SIGXFSZ, true);
4465 
4466     if (libjsig_is_loaded) {
4467       // Tell libjsig jvm finishes setting signal handlers
4468       (*end_signal_setting)();
4469     }
4470 
4471     // We don't activate signal checker if libjsig is in place, we trust ourselves
4472     // and if UserSignalHandler is installed all bets are off.
4473     // Log that signal checking is off only if -verbose:jni is specified.
4474     if (CheckJNICalls) {
4475       if (libjsig_is_loaded) {
4476         if (PrintJNIResolving) {
4477           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4478         }
4479         check_signals = false;
4480       }
4481       if (AllowUserSignalHandlers) {
4482         if (PrintJNIResolving) {
4483           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4484         }
4485         check_signals = false;
4486       }
4487     }
4488   }
4489 }
4490 
4491 // This is the fastest way to get thread cpu time on Linux.
4492 // Returns cpu time (user+sys) for any thread, not only for current.
4493 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4494 // It might work on 2.6.10+ with a special kernel/glibc patch.
4495 // For reference, please, see IEEE Std 1003.1-2004:
4496 //   http://www.unix.org/single_unix_specification
4497 
4498 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4499   struct timespec tp;
4500   int rc = os::Linux::clock_gettime(clockid, &tp);
4501   assert(rc == 0, "clock_gettime is expected to return 0 code");
4502 
4503   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4504 }
4505 
4506 /////
4507 // glibc on Linux platform uses non-documented flag
4508 // to indicate, that some special sort of signal
4509 // trampoline is used.
4510 // We will never set this flag, and we should
4511 // ignore this flag in our diagnostic
4512 #ifdef SIGNIFICANT_SIGNAL_MASK
4513 #undef SIGNIFICANT_SIGNAL_MASK
4514 #endif
4515 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4516 
4517 static const char* get_signal_handler_name(address handler,
4518                                            char* buf, int buflen) {
4519   int offset;
4520   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4521   if (found) {
4522     // skip directory names
4523     const char *p1, *p2;
4524     p1 = buf;
4525     size_t len = strlen(os::file_separator());
4526     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4527     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4528   } else {
4529     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4530   }
4531   return buf;
4532 }
4533 
4534 static void print_signal_handler(outputStream* st, int sig,
4535                                  char* buf, size_t buflen) {
4536   struct sigaction sa;
4537 
4538   sigaction(sig, NULL, &sa);
4539 
4540   // See comment for SIGNIFICANT_SIGNAL_MASK define
4541   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4542 
4543   st->print("%s: ", os::exception_name(sig, buf, buflen));
4544 
4545   address handler = (sa.sa_flags & SA_SIGINFO)
4546     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4547     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4548 
4549   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4550     st->print("SIG_DFL");
4551   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4552     st->print("SIG_IGN");
4553   } else {
4554     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4555   }
4556 
4557   st->print(", sa_mask[0]=");
4558   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4559 
4560   address rh = VMError::get_resetted_sighandler(sig);
4561   // May be, handler was resetted by VMError?
4562   if(rh != NULL) {
4563     handler = rh;
4564     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4565   }
4566 
4567   st->print(", sa_flags=");
4568   os::Posix::print_sa_flags(st, sa.sa_flags);
4569 
4570   // Check: is it our handler?
4571   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4572      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4573     // It is our signal handler
4574     // check for flags, reset system-used one!
4575     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4576       st->print(
4577                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4578                 os::Linux::get_our_sigflags(sig));
4579     }
4580   }
4581   st->cr();
4582 }
4583 
4584 
4585 #define DO_SIGNAL_CHECK(sig) \
4586   if (!sigismember(&check_signal_done, sig)) \
4587     os::Linux::check_signal_handler(sig)
4588 
4589 // This method is a periodic task to check for misbehaving JNI applications
4590 // under CheckJNI, we can add any periodic checks here
4591 
4592 void os::run_periodic_checks() {
4593 
4594   if (check_signals == false) return;
4595 
4596   // SEGV and BUS if overridden could potentially prevent
4597   // generation of hs*.log in the event of a crash, debugging
4598   // such a case can be very challenging, so we absolutely
4599   // check the following for a good measure:
4600   DO_SIGNAL_CHECK(SIGSEGV);
4601   DO_SIGNAL_CHECK(SIGILL);
4602   DO_SIGNAL_CHECK(SIGFPE);
4603   DO_SIGNAL_CHECK(SIGBUS);
4604   DO_SIGNAL_CHECK(SIGPIPE);
4605   DO_SIGNAL_CHECK(SIGXFSZ);
4606 #if defined(PPC64)
4607   DO_SIGNAL_CHECK(SIGTRAP);
4608 #endif
4609 
4610   // ReduceSignalUsage allows the user to override these handlers
4611   // see comments at the very top and jvm_solaris.h
4612   if (!ReduceSignalUsage) {
4613     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4614     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4615     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4616     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4617   }
4618 
4619   DO_SIGNAL_CHECK(SR_signum);
4620   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4621 }
4622 
4623 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4624 
4625 static os_sigaction_t os_sigaction = NULL;
4626 
4627 void os::Linux::check_signal_handler(int sig) {
4628   char buf[O_BUFLEN];
4629   address jvmHandler = NULL;
4630 
4631 
4632   struct sigaction act;
4633   if (os_sigaction == NULL) {
4634     // only trust the default sigaction, in case it has been interposed
4635     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4636     if (os_sigaction == NULL) return;
4637   }
4638 
4639   os_sigaction(sig, (struct sigaction*)NULL, &act);
4640 
4641 
4642   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4643 
4644   address thisHandler = (act.sa_flags & SA_SIGINFO)
4645     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4646     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4647 
4648 
4649   switch(sig) {
4650   case SIGSEGV:
4651   case SIGBUS:
4652   case SIGFPE:
4653   case SIGPIPE:
4654   case SIGILL:
4655   case SIGXFSZ:
4656     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4657     break;
4658 
4659   case SHUTDOWN1_SIGNAL:
4660   case SHUTDOWN2_SIGNAL:
4661   case SHUTDOWN3_SIGNAL:
4662   case BREAK_SIGNAL:
4663     jvmHandler = (address)user_handler();
4664     break;
4665 
4666   case INTERRUPT_SIGNAL:
4667     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4668     break;
4669 
4670   default:
4671     if (sig == SR_signum) {
4672       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4673     } else {
4674       return;
4675     }
4676     break;
4677   }
4678 
4679   if (thisHandler != jvmHandler) {
4680     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4681     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4682     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4683     // No need to check this sig any longer
4684     sigaddset(&check_signal_done, sig);
4685   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4686     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4687     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4688     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4689     // No need to check this sig any longer
4690     sigaddset(&check_signal_done, sig);
4691   }
4692 
4693   // Dump all the signal
4694   if (sigismember(&check_signal_done, sig)) {
4695     print_signal_handlers(tty, buf, O_BUFLEN);
4696   }
4697 }
4698 
4699 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4700 
4701 extern bool signal_name(int signo, char* buf, size_t len);
4702 
4703 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4704   if (0 < exception_code && exception_code <= SIGRTMAX) {
4705     // signal
4706     if (!signal_name(exception_code, buf, size)) {
4707       jio_snprintf(buf, size, "SIG%d", exception_code);
4708     }
4709     return buf;
4710   } else {
4711     return NULL;
4712   }
4713 }
4714 
4715 // this is called _before_ the most of global arguments have been parsed
4716 void os::init(void) {
4717   char dummy;   /* used to get a guess on initial stack address */
4718 //  first_hrtime = gethrtime();
4719 
4720   // With LinuxThreads the JavaMain thread pid (primordial thread)
4721   // is different than the pid of the java launcher thread.
4722   // So, on Linux, the launcher thread pid is passed to the VM
4723   // via the sun.java.launcher.pid property.
4724   // Use this property instead of getpid() if it was correctly passed.
4725   // See bug 6351349.
4726   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4727 
4728   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4729 
4730   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4731 
4732   init_random(1234567);
4733 
4734   ThreadCritical::initialize();
4735 
4736   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4737   if (Linux::page_size() == -1) {
4738     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4739                   strerror(errno)));
4740   }
4741   init_page_sizes((size_t) Linux::page_size());
4742 
4743   Linux::initialize_system_info();
4744 
4745   // main_thread points to the aboriginal thread
4746   Linux::_main_thread = pthread_self();
4747 
4748   Linux::clock_init();
4749   initial_time_count = javaTimeNanos();
4750 
4751   // pthread_condattr initialization for monotonic clock
4752   int status;
4753   pthread_condattr_t* _condattr = os::Linux::condAttr();
4754   if ((status = pthread_condattr_init(_condattr)) != 0) {
4755     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4756   }
4757   // Only set the clock if CLOCK_MONOTONIC is available
4758   if (Linux::supports_monotonic_clock()) {
4759     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4760       if (status == EINVAL) {
4761         warning("Unable to use monotonic clock with relative timed-waits" \
4762                 " - changes to the time-of-day clock may have adverse affects");
4763       } else {
4764         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4765       }
4766     }
4767   }
4768   // else it defaults to CLOCK_REALTIME
4769 
4770   pthread_mutex_init(&dl_mutex, NULL);
4771 
4772   // If the pagesize of the VM is greater than 8K determine the appropriate
4773   // number of initial guard pages.  The user can change this with the
4774   // command line arguments, if needed.
4775   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4776     StackYellowPages = 1;
4777     StackRedPages = 1;
4778     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4779   }
4780 }
4781 
4782 // To install functions for atexit system call
4783 extern "C" {
4784   static void perfMemory_exit_helper() {
4785     perfMemory_exit();
4786   }
4787 }
4788 
4789 // this is called _after_ the global arguments have been parsed
4790 jint os::init_2(void)
4791 {
4792   Linux::fast_thread_clock_init();
4793 
4794   // Allocate a single page and mark it as readable for safepoint polling
4795   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4796   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4797 
4798   os::set_polling_page( polling_page );
4799 
4800 #ifndef PRODUCT
4801   if(Verbose && PrintMiscellaneous)
4802     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4803 #endif
4804 
4805   if (!UseMembar) {
4806     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4807     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4808     os::set_memory_serialize_page( mem_serialize_page );
4809 
4810 #ifndef PRODUCT
4811     if(Verbose && PrintMiscellaneous)
4812       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4813 #endif
4814   }
4815 
4816   // initialize suspend/resume support - must do this before signal_sets_init()
4817   if (SR_initialize() != 0) {
4818     perror("SR_initialize failed");
4819     return JNI_ERR;
4820   }
4821 
4822   Linux::signal_sets_init();
4823   Linux::install_signal_handlers();
4824 
4825   // Check minimum allowable stack size for thread creation and to initialize
4826   // the java system classes, including StackOverflowError - depends on page
4827   // size.  Add a page for compiler2 recursion in main thread.
4828   // Add in 2*BytesPerWord times page size to account for VM stack during
4829   // class initialization depending on 32 or 64 bit VM.
4830   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4831             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4832                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4833 
4834   size_t threadStackSizeInBytes = ThreadStackSize * K;
4835   if (threadStackSizeInBytes != 0 &&
4836       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4837         tty->print_cr("\nThe stack size specified is too small, "
4838                       "Specify at least %dk",
4839                       os::Linux::min_stack_allowed/ K);
4840         return JNI_ERR;
4841   }
4842 
4843   // Make the stack size a multiple of the page size so that
4844   // the yellow/red zones can be guarded.
4845   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4846         vm_page_size()));
4847 
4848   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4849 
4850 #if defined(IA32)
4851   workaround_expand_exec_shield_cs_limit();
4852 #endif
4853 
4854   Linux::libpthread_init();
4855   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4856      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4857           Linux::glibc_version(), Linux::libpthread_version(),
4858           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4859   }
4860 
4861   if (UseNUMA) {
4862     if (!Linux::libnuma_init()) {
4863       UseNUMA = false;
4864     } else {
4865       if ((Linux::numa_max_node() < 1)) {
4866         // There's only one node(they start from 0), disable NUMA.
4867         UseNUMA = false;
4868       }
4869     }
4870     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4871     // we can make the adaptive lgrp chunk resizing work. If the user specified
4872     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4873     // disable adaptive resizing.
4874     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4875       if (FLAG_IS_DEFAULT(UseNUMA)) {
4876         UseNUMA = false;
4877       } else {
4878         if (FLAG_IS_DEFAULT(UseLargePages) &&
4879             FLAG_IS_DEFAULT(UseSHM) &&
4880             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4881           UseLargePages = false;
4882         } else {
4883           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4884           UseAdaptiveSizePolicy = false;
4885           UseAdaptiveNUMAChunkSizing = false;
4886         }
4887       }
4888     }
4889     if (!UseNUMA && ForceNUMA) {
4890       UseNUMA = true;
4891     }
4892   }
4893 
4894   if (MaxFDLimit) {
4895     // set the number of file descriptors to max. print out error
4896     // if getrlimit/setrlimit fails but continue regardless.
4897     struct rlimit nbr_files;
4898     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4899     if (status != 0) {
4900       if (PrintMiscellaneous && (Verbose || WizardMode))
4901         perror("os::init_2 getrlimit failed");
4902     } else {
4903       nbr_files.rlim_cur = nbr_files.rlim_max;
4904       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4905       if (status != 0) {
4906         if (PrintMiscellaneous && (Verbose || WizardMode))
4907           perror("os::init_2 setrlimit failed");
4908       }
4909     }
4910   }
4911 
4912   // Initialize lock used to serialize thread creation (see os::create_thread)
4913   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4914 
4915   // at-exit methods are called in the reverse order of their registration.
4916   // atexit functions are called on return from main or as a result of a
4917   // call to exit(3C). There can be only 32 of these functions registered
4918   // and atexit() does not set errno.
4919 
4920   if (PerfAllowAtExitRegistration) {
4921     // only register atexit functions if PerfAllowAtExitRegistration is set.
4922     // atexit functions can be delayed until process exit time, which
4923     // can be problematic for embedded VM situations. Embedded VMs should
4924     // call DestroyJavaVM() to assure that VM resources are released.
4925 
4926     // note: perfMemory_exit_helper atexit function may be removed in
4927     // the future if the appropriate cleanup code can be added to the
4928     // VM_Exit VMOperation's doit method.
4929     if (atexit(perfMemory_exit_helper) != 0) {
4930       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4931     }
4932   }
4933 
4934   // initialize thread priority policy
4935   prio_init();
4936 
4937   return JNI_OK;
4938 }
4939 
4940 // this is called at the end of vm_initialization
4941 void os::init_3(void) {
4942 #ifdef JAVASE_EMBEDDED
4943   // Start the MemNotifyThread
4944   if (LowMemoryProtection) {
4945     MemNotifyThread::start();
4946   }
4947   return;
4948 #endif
4949 }
4950 
4951 // Mark the polling page as unreadable
4952 void os::make_polling_page_unreadable(void) {
4953   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4954     fatal("Could not disable polling page");
4955 };
4956 
4957 // Mark the polling page as readable
4958 void os::make_polling_page_readable(void) {
4959   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4960     fatal("Could not enable polling page");
4961   }
4962 };
4963 
4964 int os::active_processor_count() {
4965   // Linux doesn't yet have a (official) notion of processor sets,
4966   // so just return the number of online processors.
4967   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4968   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4969   return online_cpus;
4970 }
4971 
4972 void os::set_native_thread_name(const char *name) {
4973   // Not yet implemented.
4974   return;
4975 }
4976 
4977 bool os::distribute_processes(uint length, uint* distribution) {
4978   // Not yet implemented.
4979   return false;
4980 }
4981 
4982 bool os::bind_to_processor(uint processor_id) {
4983   // Not yet implemented.
4984   return false;
4985 }
4986 
4987 ///
4988 
4989 void os::SuspendedThreadTask::internal_do_task() {
4990   if (do_suspend(_thread->osthread())) {
4991     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4992     do_task(context);
4993     do_resume(_thread->osthread());
4994   }
4995 }
4996 
4997 class PcFetcher : public os::SuspendedThreadTask {
4998 public:
4999   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5000   ExtendedPC result();
5001 protected:
5002   void do_task(const os::SuspendedThreadTaskContext& context);
5003 private:
5004   ExtendedPC _epc;
5005 };
5006 
5007 ExtendedPC PcFetcher::result() {
5008   guarantee(is_done(), "task is not done yet.");
5009   return _epc;
5010 }
5011 
5012 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5013   Thread* thread = context.thread();
5014   OSThread* osthread = thread->osthread();
5015   if (osthread->ucontext() != NULL) {
5016     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
5017   } else {
5018     // NULL context is unexpected, double-check this is the VMThread
5019     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5020   }
5021 }
5022 
5023 // Suspends the target using the signal mechanism and then grabs the PC before
5024 // resuming the target. Used by the flat-profiler only
5025 ExtendedPC os::get_thread_pc(Thread* thread) {
5026   // Make sure that it is called by the watcher for the VMThread
5027   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5028   assert(thread->is_VM_thread(), "Can only be called for VMThread");
5029 
5030   PcFetcher fetcher(thread);
5031   fetcher.run();
5032   return fetcher.result();
5033 }
5034 
5035 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
5036 {
5037    if (is_NPTL()) {
5038       return pthread_cond_timedwait(_cond, _mutex, _abstime);
5039    } else {
5040       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
5041       // word back to default 64bit precision if condvar is signaled. Java
5042       // wants 53bit precision.  Save and restore current value.
5043       int fpu = get_fpu_control_word();
5044       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
5045       set_fpu_control_word(fpu);
5046       return status;
5047    }
5048 }
5049 
5050 ////////////////////////////////////////////////////////////////////////////////
5051 // debug support
5052 
5053 bool os::find(address addr, outputStream* st) {
5054   Dl_info dlinfo;
5055   memset(&dlinfo, 0, sizeof(dlinfo));
5056   if (dladdr(addr, &dlinfo) != 0) {
5057     st->print(PTR_FORMAT ": ", addr);
5058     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5059       st->print("%s+%#x", dlinfo.dli_sname,
5060                  addr - (intptr_t)dlinfo.dli_saddr);
5061     } else if (dlinfo.dli_fbase != NULL) {
5062       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5063     } else {
5064       st->print("<absolute address>");
5065     }
5066     if (dlinfo.dli_fname != NULL) {
5067       st->print(" in %s", dlinfo.dli_fname);
5068     }
5069     if (dlinfo.dli_fbase != NULL) {
5070       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5071     }
5072     st->cr();
5073 
5074     if (Verbose) {
5075       // decode some bytes around the PC
5076       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5077       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5078       address       lowest = (address) dlinfo.dli_sname;
5079       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5080       if (begin < lowest)  begin = lowest;
5081       Dl_info dlinfo2;
5082       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5083           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5084         end = (address) dlinfo2.dli_saddr;
5085       Disassembler::decode(begin, end, st);
5086     }
5087     return true;
5088   }
5089   return false;
5090 }
5091 
5092 ////////////////////////////////////////////////////////////////////////////////
5093 // misc
5094 
5095 // This does not do anything on Linux. This is basically a hook for being
5096 // able to use structured exception handling (thread-local exception filters)
5097 // on, e.g., Win32.
5098 void
5099 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5100                          JavaCallArguments* args, Thread* thread) {
5101   f(value, method, args, thread);
5102 }
5103 
5104 void os::print_statistics() {
5105 }
5106 
5107 int os::message_box(const char* title, const char* message) {
5108   int i;
5109   fdStream err(defaultStream::error_fd());
5110   for (i = 0; i < 78; i++) err.print_raw("=");
5111   err.cr();
5112   err.print_raw_cr(title);
5113   for (i = 0; i < 78; i++) err.print_raw("-");
5114   err.cr();
5115   err.print_raw_cr(message);
5116   for (i = 0; i < 78; i++) err.print_raw("=");
5117   err.cr();
5118 
5119   char buf[16];
5120   // Prevent process from exiting upon "read error" without consuming all CPU
5121   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5122 
5123   return buf[0] == 'y' || buf[0] == 'Y';
5124 }
5125 
5126 int os::stat(const char *path, struct stat *sbuf) {
5127   char pathbuf[MAX_PATH];
5128   if (strlen(path) > MAX_PATH - 1) {
5129     errno = ENAMETOOLONG;
5130     return -1;
5131   }
5132   os::native_path(strcpy(pathbuf, path));
5133   return ::stat(pathbuf, sbuf);
5134 }
5135 
5136 bool os::check_heap(bool force) {
5137   return true;
5138 }
5139 
5140 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5141   return ::vsnprintf(buf, count, format, args);
5142 }
5143 
5144 // Is a (classpath) directory empty?
5145 bool os::dir_is_empty(const char* path) {
5146   DIR *dir = NULL;
5147   struct dirent *ptr;
5148 
5149   dir = opendir(path);
5150   if (dir == NULL) return true;
5151 
5152   /* Scan the directory */
5153   bool result = true;
5154   char buf[sizeof(struct dirent) + MAX_PATH];
5155   while (result && (ptr = ::readdir(dir)) != NULL) {
5156     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5157       result = false;
5158     }
5159   }
5160   closedir(dir);
5161   return result;
5162 }
5163 
5164 // This code originates from JDK's sysOpen and open64_w
5165 // from src/solaris/hpi/src/system_md.c
5166 
5167 #ifndef O_DELETE
5168 #define O_DELETE 0x10000
5169 #endif
5170 
5171 // Open a file. Unlink the file immediately after open returns
5172 // if the specified oflag has the O_DELETE flag set.
5173 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5174 
5175 int os::open(const char *path, int oflag, int mode) {
5176 
5177   if (strlen(path) > MAX_PATH - 1) {
5178     errno = ENAMETOOLONG;
5179     return -1;
5180   }
5181   int fd;
5182   int o_delete = (oflag & O_DELETE);
5183   oflag = oflag & ~O_DELETE;
5184 
5185   fd = ::open64(path, oflag, mode);
5186   if (fd == -1) return -1;
5187 
5188   //If the open succeeded, the file might still be a directory
5189   {
5190     struct stat64 buf64;
5191     int ret = ::fstat64(fd, &buf64);
5192     int st_mode = buf64.st_mode;
5193 
5194     if (ret != -1) {
5195       if ((st_mode & S_IFMT) == S_IFDIR) {
5196         errno = EISDIR;
5197         ::close(fd);
5198         return -1;
5199       }
5200     } else {
5201       ::close(fd);
5202       return -1;
5203     }
5204   }
5205 
5206     /*
5207      * All file descriptors that are opened in the JVM and not
5208      * specifically destined for a subprocess should have the
5209      * close-on-exec flag set.  If we don't set it, then careless 3rd
5210      * party native code might fork and exec without closing all
5211      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5212      * UNIXProcess.c), and this in turn might:
5213      *
5214      * - cause end-of-file to fail to be detected on some file
5215      *   descriptors, resulting in mysterious hangs, or
5216      *
5217      * - might cause an fopen in the subprocess to fail on a system
5218      *   suffering from bug 1085341.
5219      *
5220      * (Yes, the default setting of the close-on-exec flag is a Unix
5221      * design flaw)
5222      *
5223      * See:
5224      * 1085341: 32-bit stdio routines should support file descriptors >255
5225      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5226      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5227      */
5228 #ifdef FD_CLOEXEC
5229     {
5230         int flags = ::fcntl(fd, F_GETFD);
5231         if (flags != -1)
5232             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5233     }
5234 #endif
5235 
5236   if (o_delete != 0) {
5237     ::unlink(path);
5238   }
5239   return fd;
5240 }
5241 
5242 
5243 // create binary file, rewriting existing file if required
5244 int os::create_binary_file(const char* path, bool rewrite_existing) {
5245   int oflags = O_WRONLY | O_CREAT;
5246   if (!rewrite_existing) {
5247     oflags |= O_EXCL;
5248   }
5249   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5250 }
5251 
5252 // return current position of file pointer
5253 jlong os::current_file_offset(int fd) {
5254   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5255 }
5256 
5257 // move file pointer to the specified offset
5258 jlong os::seek_to_file_offset(int fd, jlong offset) {
5259   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5260 }
5261 
5262 // This code originates from JDK's sysAvailable
5263 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5264 
5265 int os::available(int fd, jlong *bytes) {
5266   jlong cur, end;
5267   int mode;
5268   struct stat64 buf64;
5269 
5270   if (::fstat64(fd, &buf64) >= 0) {
5271     mode = buf64.st_mode;
5272     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5273       /*
5274       * XXX: is the following call interruptible? If so, this might
5275       * need to go through the INTERRUPT_IO() wrapper as for other
5276       * blocking, interruptible calls in this file.
5277       */
5278       int n;
5279       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5280         *bytes = n;
5281         return 1;
5282       }
5283     }
5284   }
5285   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5286     return 0;
5287   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5288     return 0;
5289   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5290     return 0;
5291   }
5292   *bytes = end - cur;
5293   return 1;
5294 }
5295 
5296 int os::socket_available(int fd, jint *pbytes) {
5297   // Linux doc says EINTR not returned, unlike Solaris
5298   int ret = ::ioctl(fd, FIONREAD, pbytes);
5299 
5300   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5301   // is expected to return 0 on failure and 1 on success to the jdk.
5302   return (ret < 0) ? 0 : 1;
5303 }
5304 
5305 // Map a block of memory.
5306 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5307                      char *addr, size_t bytes, bool read_only,
5308                      bool allow_exec) {
5309   int prot;
5310   int flags = MAP_PRIVATE;
5311 
5312   if (read_only) {
5313     prot = PROT_READ;
5314   } else {
5315     prot = PROT_READ | PROT_WRITE;
5316   }
5317 
5318   if (allow_exec) {
5319     prot |= PROT_EXEC;
5320   }
5321 
5322   if (addr != NULL) {
5323     flags |= MAP_FIXED;
5324   }
5325 
5326   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5327                                      fd, file_offset);
5328   if (mapped_address == MAP_FAILED) {
5329     return NULL;
5330   }
5331   return mapped_address;
5332 }
5333 
5334 
5335 // Remap a block of memory.
5336 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5337                        char *addr, size_t bytes, bool read_only,
5338                        bool allow_exec) {
5339   // same as map_memory() on this OS
5340   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5341                         allow_exec);
5342 }
5343 
5344 
5345 // Unmap a block of memory.
5346 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5347   return munmap(addr, bytes) == 0;
5348 }
5349 
5350 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5351 
5352 static clockid_t thread_cpu_clockid(Thread* thread) {
5353   pthread_t tid = thread->osthread()->pthread_id();
5354   clockid_t clockid;
5355 
5356   // Get thread clockid
5357   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5358   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5359   return clockid;
5360 }
5361 
5362 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5363 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5364 // of a thread.
5365 //
5366 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5367 // the fast estimate available on the platform.
5368 
5369 jlong os::current_thread_cpu_time() {
5370   if (os::Linux::supports_fast_thread_cpu_time()) {
5371     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5372   } else {
5373     // return user + sys since the cost is the same
5374     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5375   }
5376 }
5377 
5378 jlong os::thread_cpu_time(Thread* thread) {
5379   // consistent with what current_thread_cpu_time() returns
5380   if (os::Linux::supports_fast_thread_cpu_time()) {
5381     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5382   } else {
5383     return slow_thread_cpu_time(thread, true /* user + sys */);
5384   }
5385 }
5386 
5387 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5388   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5389     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5390   } else {
5391     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5392   }
5393 }
5394 
5395 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5396   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5397     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5398   } else {
5399     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5400   }
5401 }
5402 
5403 //
5404 //  -1 on error.
5405 //
5406 
5407 PRAGMA_DIAG_PUSH
5408 PRAGMA_FORMAT_NONLITERAL_IGNORED
5409 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5410   static bool proc_task_unchecked = true;
5411   static const char *proc_stat_path = "/proc/%d/stat";
5412   pid_t  tid = thread->osthread()->thread_id();
5413   char *s;
5414   char stat[2048];
5415   int statlen;
5416   char proc_name[64];
5417   int count;
5418   long sys_time, user_time;
5419   char cdummy;
5420   int idummy;
5421   long ldummy;
5422   FILE *fp;
5423 
5424   // The /proc/<tid>/stat aggregates per-process usage on
5425   // new Linux kernels 2.6+ where NPTL is supported.
5426   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5427   // See bug 6328462.
5428   // There possibly can be cases where there is no directory
5429   // /proc/self/task, so we check its availability.
5430   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5431     // This is executed only once
5432     proc_task_unchecked = false;
5433     fp = fopen("/proc/self/task", "r");
5434     if (fp != NULL) {
5435       proc_stat_path = "/proc/self/task/%d/stat";
5436       fclose(fp);
5437     }
5438   }
5439 
5440   sprintf(proc_name, proc_stat_path, tid);
5441   fp = fopen(proc_name, "r");
5442   if ( fp == NULL ) return -1;
5443   statlen = fread(stat, 1, 2047, fp);
5444   stat[statlen] = '\0';
5445   fclose(fp);
5446 
5447   // Skip pid and the command string. Note that we could be dealing with
5448   // weird command names, e.g. user could decide to rename java launcher
5449   // to "java 1.4.2 :)", then the stat file would look like
5450   //                1234 (java 1.4.2 :)) R ... ...
5451   // We don't really need to know the command string, just find the last
5452   // occurrence of ")" and then start parsing from there. See bug 4726580.
5453   s = strrchr(stat, ')');
5454   if (s == NULL ) return -1;
5455 
5456   // Skip blank chars
5457   do s++; while (isspace(*s));
5458 
5459   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5460                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5461                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5462                  &user_time, &sys_time);
5463   if ( count != 13 ) return -1;
5464   if (user_sys_cpu_time) {
5465     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5466   } else {
5467     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5468   }
5469 }
5470 PRAGMA_DIAG_POP
5471 
5472 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5473   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5474   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5475   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5476   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5477 }
5478 
5479 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5480   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5481   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5482   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5483   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5484 }
5485 
5486 bool os::is_thread_cpu_time_supported() {
5487   return true;
5488 }
5489 
5490 // System loadavg support.  Returns -1 if load average cannot be obtained.
5491 // Linux doesn't yet have a (official) notion of processor sets,
5492 // so just return the system wide load average.
5493 int os::loadavg(double loadavg[], int nelem) {
5494   return ::getloadavg(loadavg, nelem);
5495 }
5496 
5497 void os::pause() {
5498   char filename[MAX_PATH];
5499   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5500     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5501   } else {
5502     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5503   }
5504 
5505   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5506   if (fd != -1) {
5507     struct stat buf;
5508     ::close(fd);
5509     while (::stat(filename, &buf) == 0) {
5510       (void)::poll(NULL, 0, 100);
5511     }
5512   } else {
5513     jio_fprintf(stderr,
5514       "Could not open pause file '%s', continuing immediately.\n", filename);
5515   }
5516 }
5517 
5518 
5519 // Refer to the comments in os_solaris.cpp park-unpark.
5520 //
5521 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5522 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5523 // For specifics regarding the bug see GLIBC BUGID 261237 :
5524 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5525 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5526 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5527 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5528 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5529 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5530 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5531 // of libpthread avoids the problem, but isn't practical.
5532 //
5533 // Possible remedies:
5534 //
5535 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5536 //      This is palliative and probabilistic, however.  If the thread is preempted
5537 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5538 //      than the minimum period may have passed, and the abstime may be stale (in the
5539 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5540 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5541 //
5542 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5543 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5544 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5545 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5546 //      thread.
5547 //
5548 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5549 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5550 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5551 //      This also works well.  In fact it avoids kernel-level scalability impediments
5552 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5553 //      timers in a graceful fashion.
5554 //
5555 // 4.   When the abstime value is in the past it appears that control returns
5556 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5557 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5558 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5559 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5560 //      It may be possible to avoid reinitialization by checking the return
5561 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5562 //      condvar we must establish the invariant that cond_signal() is only called
5563 //      within critical sections protected by the adjunct mutex.  This prevents
5564 //      cond_signal() from "seeing" a condvar that's in the midst of being
5565 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5566 //      desirable signal-after-unlock optimization that avoids futile context switching.
5567 //
5568 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5569 //      structure when a condvar is used or initialized.  cond_destroy()  would
5570 //      release the helper structure.  Our reinitialize-after-timedwait fix
5571 //      put excessive stress on malloc/free and locks protecting the c-heap.
5572 //
5573 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5574 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5575 // and only enabling the work-around for vulnerable environments.
5576 
5577 // utility to compute the abstime argument to timedwait:
5578 // millis is the relative timeout time
5579 // abstime will be the absolute timeout time
5580 // TODO: replace compute_abstime() with unpackTime()
5581 
5582 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5583   if (millis < 0)  millis = 0;
5584 
5585   jlong seconds = millis / 1000;
5586   millis %= 1000;
5587   if (seconds > 50000000) { // see man cond_timedwait(3T)
5588     seconds = 50000000;
5589   }
5590 
5591   if (os::Linux::supports_monotonic_clock()) {
5592     struct timespec now;
5593     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5594     assert_status(status == 0, status, "clock_gettime");
5595     abstime->tv_sec = now.tv_sec  + seconds;
5596     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5597     if (nanos >= NANOSECS_PER_SEC) {
5598       abstime->tv_sec += 1;
5599       nanos -= NANOSECS_PER_SEC;
5600     }
5601     abstime->tv_nsec = nanos;
5602   } else {
5603     struct timeval now;
5604     int status = gettimeofday(&now, NULL);
5605     assert(status == 0, "gettimeofday");
5606     abstime->tv_sec = now.tv_sec  + seconds;
5607     long usec = now.tv_usec + millis * 1000;
5608     if (usec >= 1000000) {
5609       abstime->tv_sec += 1;
5610       usec -= 1000000;
5611     }
5612     abstime->tv_nsec = usec * 1000;
5613   }
5614   return abstime;
5615 }
5616 
5617 
5618 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5619 // Conceptually TryPark() should be equivalent to park(0).
5620 
5621 int os::PlatformEvent::TryPark() {
5622   for (;;) {
5623     const int v = _Event ;
5624     guarantee ((v == 0) || (v == 1), "invariant") ;
5625     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5626   }
5627 }
5628 
5629 void os::PlatformEvent::park() {       // AKA "down()"
5630   // Invariant: Only the thread associated with the Event/PlatformEvent
5631   // may call park().
5632   // TODO: assert that _Assoc != NULL or _Assoc == Self
5633   int v ;
5634   for (;;) {
5635       v = _Event ;
5636       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5637   }
5638   guarantee (v >= 0, "invariant") ;
5639   if (v == 0) {
5640      // Do this the hard way by blocking ...
5641      int status = pthread_mutex_lock(_mutex);
5642      assert_status(status == 0, status, "mutex_lock");
5643      guarantee (_nParked == 0, "invariant") ;
5644      ++ _nParked ;
5645      while (_Event < 0) {
5646         status = pthread_cond_wait(_cond, _mutex);
5647         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5648         // Treat this the same as if the wait was interrupted
5649         if (status == ETIME) { status = EINTR; }
5650         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5651      }
5652      -- _nParked ;
5653 
5654     _Event = 0 ;
5655      status = pthread_mutex_unlock(_mutex);
5656      assert_status(status == 0, status, "mutex_unlock");
5657     // Paranoia to ensure our locked and lock-free paths interact
5658     // correctly with each other.
5659     OrderAccess::fence();
5660   }
5661   guarantee (_Event >= 0, "invariant") ;
5662 }
5663 
5664 int os::PlatformEvent::park(jlong millis) {
5665   guarantee (_nParked == 0, "invariant") ;
5666 
5667   int v ;
5668   for (;;) {
5669       v = _Event ;
5670       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5671   }
5672   guarantee (v >= 0, "invariant") ;
5673   if (v != 0) return OS_OK ;
5674 
5675   // We do this the hard way, by blocking the thread.
5676   // Consider enforcing a minimum timeout value.
5677   struct timespec abst;
5678   compute_abstime(&abst, millis);
5679 
5680   int ret = OS_TIMEOUT;
5681   int status = pthread_mutex_lock(_mutex);
5682   assert_status(status == 0, status, "mutex_lock");
5683   guarantee (_nParked == 0, "invariant") ;
5684   ++_nParked ;
5685 
5686   // Object.wait(timo) will return because of
5687   // (a) notification
5688   // (b) timeout
5689   // (c) thread.interrupt
5690   //
5691   // Thread.interrupt and object.notify{All} both call Event::set.
5692   // That is, we treat thread.interrupt as a special case of notification.
5693   // The underlying Solaris implementation, cond_timedwait, admits
5694   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5695   // JVM from making those visible to Java code.  As such, we must
5696   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5697   //
5698   // TODO: properly differentiate simultaneous notify+interrupt.
5699   // In that case, we should propagate the notify to another waiter.
5700 
5701   while (_Event < 0) {
5702     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5703     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5704       pthread_cond_destroy (_cond);
5705       pthread_cond_init (_cond, os::Linux::condAttr()) ;
5706     }
5707     assert_status(status == 0 || status == EINTR ||
5708                   status == ETIME || status == ETIMEDOUT,
5709                   status, "cond_timedwait");
5710     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5711     if (status == ETIME || status == ETIMEDOUT) break ;
5712     // We consume and ignore EINTR and spurious wakeups.
5713   }
5714   --_nParked ;
5715   if (_Event >= 0) {
5716      ret = OS_OK;
5717   }
5718   _Event = 0 ;
5719   status = pthread_mutex_unlock(_mutex);
5720   assert_status(status == 0, status, "mutex_unlock");
5721   assert (_nParked == 0, "invariant") ;
5722   // Paranoia to ensure our locked and lock-free paths interact
5723   // correctly with each other.
5724   OrderAccess::fence();
5725   return ret;
5726 }
5727 
5728 void os::PlatformEvent::unpark() {
5729   // Transitions for _Event:
5730   //    0 :=> 1
5731   //    1 :=> 1
5732   //   -1 :=> either 0 or 1; must signal target thread
5733   //          That is, we can safely transition _Event from -1 to either
5734   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5735   //          unpark() calls.
5736   // See also: "Semaphores in Plan 9" by Mullender & Cox
5737   //
5738   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5739   // that it will take two back-to-back park() calls for the owning
5740   // thread to block. This has the benefit of forcing a spurious return
5741   // from the first park() call after an unpark() call which will help
5742   // shake out uses of park() and unpark() without condition variables.
5743 
5744   if (Atomic::xchg(1, &_Event) >= 0) return;
5745 
5746   // Wait for the thread associated with the event to vacate
5747   int status = pthread_mutex_lock(_mutex);
5748   assert_status(status == 0, status, "mutex_lock");
5749   int AnyWaiters = _nParked;
5750   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5751   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5752     AnyWaiters = 0;
5753     pthread_cond_signal(_cond);
5754   }
5755   status = pthread_mutex_unlock(_mutex);
5756   assert_status(status == 0, status, "mutex_unlock");
5757   if (AnyWaiters != 0) {
5758     status = pthread_cond_signal(_cond);
5759     assert_status(status == 0, status, "cond_signal");
5760   }
5761 
5762   // Note that we signal() _after dropping the lock for "immortal" Events.
5763   // This is safe and avoids a common class of  futile wakeups.  In rare
5764   // circumstances this can cause a thread to return prematurely from
5765   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5766   // simply re-test the condition and re-park itself.
5767 }
5768 
5769 
5770 // JSR166
5771 // -------------------------------------------------------
5772 
5773 /*
5774  * The solaris and linux implementations of park/unpark are fairly
5775  * conservative for now, but can be improved. They currently use a
5776  * mutex/condvar pair, plus a a count.
5777  * Park decrements count if > 0, else does a condvar wait.  Unpark
5778  * sets count to 1 and signals condvar.  Only one thread ever waits
5779  * on the condvar. Contention seen when trying to park implies that someone
5780  * is unparking you, so don't wait. And spurious returns are fine, so there
5781  * is no need to track notifications.
5782  */
5783 
5784 /*
5785  * This code is common to linux and solaris and will be moved to a
5786  * common place in dolphin.
5787  *
5788  * The passed in time value is either a relative time in nanoseconds
5789  * or an absolute time in milliseconds. Either way it has to be unpacked
5790  * into suitable seconds and nanoseconds components and stored in the
5791  * given timespec structure.
5792  * Given time is a 64-bit value and the time_t used in the timespec is only
5793  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5794  * overflow if times way in the future are given. Further on Solaris versions
5795  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5796  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5797  * As it will be 28 years before "now + 100000000" will overflow we can
5798  * ignore overflow and just impose a hard-limit on seconds using the value
5799  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5800  * years from "now".
5801  */
5802 
5803 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5804   assert (time > 0, "convertTime");
5805   time_t max_secs = 0;
5806 
5807   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
5808     struct timeval now;
5809     int status = gettimeofday(&now, NULL);
5810     assert(status == 0, "gettimeofday");
5811 
5812     max_secs = now.tv_sec + MAX_SECS;
5813 
5814     if (isAbsolute) {
5815       jlong secs = time / 1000;
5816       if (secs > max_secs) {
5817         absTime->tv_sec = max_secs;
5818       } else {
5819         absTime->tv_sec = secs;
5820       }
5821       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5822     } else {
5823       jlong secs = time / NANOSECS_PER_SEC;
5824       if (secs >= MAX_SECS) {
5825         absTime->tv_sec = max_secs;
5826         absTime->tv_nsec = 0;
5827       } else {
5828         absTime->tv_sec = now.tv_sec + secs;
5829         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5830         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5831           absTime->tv_nsec -= NANOSECS_PER_SEC;
5832           ++absTime->tv_sec; // note: this must be <= max_secs
5833         }
5834       }
5835     }
5836   } else {
5837     // must be relative using monotonic clock
5838     struct timespec now;
5839     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5840     assert_status(status == 0, status, "clock_gettime");
5841     max_secs = now.tv_sec + MAX_SECS;
5842     jlong secs = time / NANOSECS_PER_SEC;
5843     if (secs >= MAX_SECS) {
5844       absTime->tv_sec = max_secs;
5845       absTime->tv_nsec = 0;
5846     } else {
5847       absTime->tv_sec = now.tv_sec + secs;
5848       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5849       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5850         absTime->tv_nsec -= NANOSECS_PER_SEC;
5851         ++absTime->tv_sec; // note: this must be <= max_secs
5852       }
5853     }
5854   }
5855   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5856   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5857   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5858   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5859 }
5860 
5861 void Parker::park(bool isAbsolute, jlong time) {
5862   // Ideally we'd do something useful while spinning, such
5863   // as calling unpackTime().
5864 
5865   // Optional fast-path check:
5866   // Return immediately if a permit is available.
5867   // We depend on Atomic::xchg() having full barrier semantics
5868   // since we are doing a lock-free update to _counter.
5869   if (Atomic::xchg(0, &_counter) > 0) return;
5870 
5871   Thread* thread = Thread::current();
5872   assert(thread->is_Java_thread(), "Must be JavaThread");
5873   JavaThread *jt = (JavaThread *)thread;
5874 
5875   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5876   // Check interrupt before trying to wait
5877   if (Thread::is_interrupted(thread, false)) {
5878     return;
5879   }
5880 
5881   // Next, demultiplex/decode time arguments
5882   timespec absTime;
5883   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5884     return;
5885   }
5886   if (time > 0) {
5887     unpackTime(&absTime, isAbsolute, time);
5888   }
5889 
5890 
5891   // Enter safepoint region
5892   // Beware of deadlocks such as 6317397.
5893   // The per-thread Parker:: mutex is a classic leaf-lock.
5894   // In particular a thread must never block on the Threads_lock while
5895   // holding the Parker:: mutex.  If safepoints are pending both the
5896   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5897   ThreadBlockInVM tbivm(jt);
5898 
5899   // Don't wait if cannot get lock since interference arises from
5900   // unblocking.  Also. check interrupt before trying wait
5901   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5902     return;
5903   }
5904 
5905   int status ;
5906   if (_counter > 0)  { // no wait needed
5907     _counter = 0;
5908     status = pthread_mutex_unlock(_mutex);
5909     assert (status == 0, "invariant") ;
5910     // Paranoia to ensure our locked and lock-free paths interact
5911     // correctly with each other and Java-level accesses.
5912     OrderAccess::fence();
5913     return;
5914   }
5915 
5916 #ifdef ASSERT
5917   // Don't catch signals while blocked; let the running threads have the signals.
5918   // (This allows a debugger to break into the running thread.)
5919   sigset_t oldsigs;
5920   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5921   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5922 #endif
5923 
5924   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5925   jt->set_suspend_equivalent();
5926   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5927 
5928   assert(_cur_index == -1, "invariant");
5929   if (time == 0) {
5930     _cur_index = REL_INDEX; // arbitrary choice when not timed
5931     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
5932   } else {
5933     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5934     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
5935     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5936       pthread_cond_destroy (&_cond[_cur_index]) ;
5937       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5938     }
5939   }
5940   _cur_index = -1;
5941   assert_status(status == 0 || status == EINTR ||
5942                 status == ETIME || status == ETIMEDOUT,
5943                 status, "cond_timedwait");
5944 
5945 #ifdef ASSERT
5946   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5947 #endif
5948 
5949   _counter = 0 ;
5950   status = pthread_mutex_unlock(_mutex) ;
5951   assert_status(status == 0, status, "invariant") ;
5952   // Paranoia to ensure our locked and lock-free paths interact
5953   // correctly with each other and Java-level accesses.
5954   OrderAccess::fence();
5955 
5956   // If externally suspended while waiting, re-suspend
5957   if (jt->handle_special_suspend_equivalent_condition()) {
5958     jt->java_suspend_self();
5959   }
5960 }
5961 
5962 void Parker::unpark() {
5963   int s, status ;
5964   status = pthread_mutex_lock(_mutex);
5965   assert (status == 0, "invariant") ;
5966   s = _counter;
5967   _counter = 1;
5968   if (s < 1) {
5969     // thread might be parked
5970     if (_cur_index != -1) {
5971       // thread is definitely parked
5972       if (WorkAroundNPTLTimedWaitHang) {
5973         status = pthread_cond_signal (&_cond[_cur_index]);
5974         assert (status == 0, "invariant");
5975         status = pthread_mutex_unlock(_mutex);
5976         assert (status == 0, "invariant");
5977       } else {
5978         status = pthread_mutex_unlock(_mutex);
5979         assert (status == 0, "invariant");
5980         status = pthread_cond_signal (&_cond[_cur_index]);
5981         assert (status == 0, "invariant");
5982       }
5983     } else {
5984       pthread_mutex_unlock(_mutex);
5985       assert (status == 0, "invariant") ;
5986     }
5987   } else {
5988     pthread_mutex_unlock(_mutex);
5989     assert (status == 0, "invariant") ;
5990   }
5991 }
5992 
5993 
5994 extern char** environ;
5995 
5996 #ifndef __NR_fork
5997 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5998 #endif
5999 
6000 #ifndef __NR_execve
6001 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
6002 #endif
6003 
6004 // Run the specified command in a separate process. Return its exit value,
6005 // or -1 on failure (e.g. can't fork a new process).
6006 // Unlike system(), this function can be called from signal handler. It
6007 // doesn't block SIGINT et al.
6008 int os::fork_and_exec(char* cmd) {
6009   const char * argv[4] = {"sh", "-c", cmd, NULL};
6010 
6011   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
6012   // pthread_atfork handlers and reset pthread library. All we need is a
6013   // separate process to execve. Make a direct syscall to fork process.
6014   // On IA64 there's no fork syscall, we have to use fork() and hope for
6015   // the best...
6016   pid_t pid = NOT_IA64(syscall(__NR_fork);)
6017               IA64_ONLY(fork();)
6018 
6019   if (pid < 0) {
6020     // fork failed
6021     return -1;
6022 
6023   } else if (pid == 0) {
6024     // child process
6025 
6026     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
6027     // first to kill every thread on the thread list. Because this list is
6028     // not reset by fork() (see notes above), execve() will instead kill
6029     // every thread in the parent process. We know this is the only thread
6030     // in the new process, so make a system call directly.
6031     // IA64 should use normal execve() from glibc to match the glibc fork()
6032     // above.
6033     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
6034     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
6035 
6036     // execve failed
6037     _exit(-1);
6038 
6039   } else  {
6040     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6041     // care about the actual exit code, for now.
6042 
6043     int status;
6044 
6045     // Wait for the child process to exit.  This returns immediately if
6046     // the child has already exited. */
6047     while (waitpid(pid, &status, 0) < 0) {
6048         switch (errno) {
6049         case ECHILD: return 0;
6050         case EINTR: break;
6051         default: return -1;
6052         }
6053     }
6054 
6055     if (WIFEXITED(status)) {
6056        // The child exited normally; get its exit code.
6057        return WEXITSTATUS(status);
6058     } else if (WIFSIGNALED(status)) {
6059        // The child exited because of a signal
6060        // The best value to return is 0x80 + signal number,
6061        // because that is what all Unix shells do, and because
6062        // it allows callers to distinguish between process exit and
6063        // process death by signal.
6064        return 0x80 + WTERMSIG(status);
6065     } else {
6066        // Unknown exit code; pass it through
6067        return status;
6068     }
6069   }
6070 }
6071 
6072 // is_headless_jre()
6073 //
6074 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
6075 // in order to report if we are running in a headless jre
6076 //
6077 // Since JDK8 xawt/libmawt.so was moved into the same directory
6078 // as libawt.so, and renamed libawt_xawt.so
6079 //
6080 bool os::is_headless_jre() {
6081     struct stat statbuf;
6082     char buf[MAXPATHLEN];
6083     char libmawtpath[MAXPATHLEN];
6084     const char *xawtstr  = "/xawt/libmawt.so";
6085     const char *new_xawtstr = "/libawt_xawt.so";
6086     char *p;
6087 
6088     // Get path to libjvm.so
6089     os::jvm_path(buf, sizeof(buf));
6090 
6091     // Get rid of libjvm.so
6092     p = strrchr(buf, '/');
6093     if (p == NULL) return false;
6094     else *p = '\0';
6095 
6096     // Get rid of client or server
6097     p = strrchr(buf, '/');
6098     if (p == NULL) return false;
6099     else *p = '\0';
6100 
6101     // check xawt/libmawt.so
6102     strcpy(libmawtpath, buf);
6103     strcat(libmawtpath, xawtstr);
6104     if (::stat(libmawtpath, &statbuf) == 0) return false;
6105 
6106     // check libawt_xawt.so
6107     strcpy(libmawtpath, buf);
6108     strcat(libmawtpath, new_xawtstr);
6109     if (::stat(libmawtpath, &statbuf) == 0) return false;
6110 
6111     return true;
6112 }
6113 
6114 // Get the default path to the core file
6115 // Returns the length of the string
6116 int os::get_core_path(char* buffer, size_t bufferSize) {
6117   const char* p = get_current_directory(buffer, bufferSize);
6118 
6119   if (p == NULL) {
6120     assert(p != NULL, "failed to get current directory");
6121     return 0;
6122   }
6123 
6124   return strlen(buffer);
6125 }
6126 
6127 #ifdef JAVASE_EMBEDDED
6128 //
6129 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
6130 //
6131 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
6132 
6133 // ctor
6134 //
6135 MemNotifyThread::MemNotifyThread(int fd): Thread() {
6136   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
6137   _fd = fd;
6138 
6139   if (os::create_thread(this, os::os_thread)) {
6140     _memnotify_thread = this;
6141     os::set_priority(this, NearMaxPriority);
6142     os::start_thread(this);
6143   }
6144 }
6145 
6146 // Where all the work gets done
6147 //
6148 void MemNotifyThread::run() {
6149   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
6150 
6151   // Set up the select arguments
6152   fd_set rfds;
6153   if (_fd != -1) {
6154     FD_ZERO(&rfds);
6155     FD_SET(_fd, &rfds);
6156   }
6157 
6158   // Now wait for the mem_notify device to wake up
6159   while (1) {
6160     // Wait for the mem_notify device to signal us..
6161     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6162     if (rc == -1) {
6163       perror("select!\n");
6164       break;
6165     } else if (rc) {
6166       //ssize_t free_before = os::available_memory();
6167       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6168 
6169       // The kernel is telling us there is not much memory left...
6170       // try to do something about that
6171 
6172       // If we are not already in a GC, try one.
6173       if (!Universe::heap()->is_gc_active()) {
6174         Universe::heap()->collect(GCCause::_allocation_failure);
6175 
6176         //ssize_t free_after = os::available_memory();
6177         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6178         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6179       }
6180       // We might want to do something like the following if we find the GC's are not helping...
6181       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6182     }
6183   }
6184 }
6185 
6186 //
6187 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6188 //
6189 void MemNotifyThread::start() {
6190   int    fd;
6191   fd = open ("/dev/mem_notify", O_RDONLY, 0);
6192   if (fd < 0) {
6193       return;
6194   }
6195 
6196   if (memnotify_thread() == NULL) {
6197     new MemNotifyThread(fd);
6198   }
6199 }
6200 
6201 #endif // JAVASE_EMBEDDED
6202 
6203 
6204 /////////////// Unit tests ///////////////
6205 
6206 #ifndef PRODUCT
6207 
6208 #define test_log(...) \
6209   do {\
6210     if (VerboseInternalVMTests) { \
6211       tty->print_cr(__VA_ARGS__); \
6212       tty->flush(); \
6213     }\
6214   } while (false)
6215 
6216 class TestReserveMemorySpecial : AllStatic {
6217  public:
6218   static void small_page_write(void* addr, size_t size) {
6219     size_t page_size = os::vm_page_size();
6220 
6221     char* end = (char*)addr + size;
6222     for (char* p = (char*)addr; p < end; p += page_size) {
6223       *p = 1;
6224     }
6225   }
6226 
6227   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6228     if (!UseHugeTLBFS) {
6229       return;
6230     }
6231 
6232     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6233 
6234     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6235 
6236     if (addr != NULL) {
6237       small_page_write(addr, size);
6238 
6239       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6240     }
6241   }
6242 
6243   static void test_reserve_memory_special_huge_tlbfs_only() {
6244     if (!UseHugeTLBFS) {
6245       return;
6246     }
6247 
6248     size_t lp = os::large_page_size();
6249 
6250     for (size_t size = lp; size <= lp * 10; size += lp) {
6251       test_reserve_memory_special_huge_tlbfs_only(size);
6252     }
6253   }
6254 
6255   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6256     if (!UseHugeTLBFS) {
6257         return;
6258     }
6259 
6260     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6261         size, alignment);
6262 
6263     assert(size >= os::large_page_size(), "Incorrect input to test");
6264 
6265     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6266 
6267     if (addr != NULL) {
6268       small_page_write(addr, size);
6269 
6270       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6271     }
6272   }
6273 
6274   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6275     size_t lp = os::large_page_size();
6276     size_t ag = os::vm_allocation_granularity();
6277 
6278     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6279       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6280     }
6281   }
6282 
6283   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6284     size_t lp = os::large_page_size();
6285     size_t ag = os::vm_allocation_granularity();
6286 
6287     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6288     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6289     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6290     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6291     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6292     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6293     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6294     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6295     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6296   }
6297 
6298   static void test_reserve_memory_special_huge_tlbfs() {
6299     if (!UseHugeTLBFS) {
6300       return;
6301     }
6302 
6303     test_reserve_memory_special_huge_tlbfs_only();
6304     test_reserve_memory_special_huge_tlbfs_mixed();
6305   }
6306 
6307   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6308     if (!UseSHM) {
6309       return;
6310     }
6311 
6312     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6313 
6314     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6315 
6316     if (addr != NULL) {
6317       assert(is_ptr_aligned(addr, alignment), "Check");
6318       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6319 
6320       small_page_write(addr, size);
6321 
6322       os::Linux::release_memory_special_shm(addr, size);
6323     }
6324   }
6325 
6326   static void test_reserve_memory_special_shm() {
6327     size_t lp = os::large_page_size();
6328     size_t ag = os::vm_allocation_granularity();
6329 
6330     for (size_t size = ag; size < lp * 3; size += ag) {
6331       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6332         test_reserve_memory_special_shm(size, alignment);
6333       }
6334     }
6335   }
6336 
6337   static void test() {
6338     test_reserve_memory_special_huge_tlbfs();
6339     test_reserve_memory_special_shm();
6340   }
6341 };
6342 
6343 void TestReserveMemorySpecial_test() {
6344   TestReserveMemorySpecial::test();
6345 }
6346 
6347 #endif