1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
  26 #define _WIN32_WINNT 0x500
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "prims/jniFastGetField.hpp"
  44 #include "prims/jvm.h"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/growableArray.hpp"
  70 #include "utilities/vmError.hpp"
  71 
  72 #ifdef _DEBUG
  73 #include <crtdbg.h>
  74 #endif
  75 
  76 
  77 #include <windows.h>
  78 #include <sys/types.h>
  79 #include <sys/stat.h>
  80 #include <sys/timeb.h>
  81 #include <objidl.h>
  82 #include <shlobj.h>
  83 
  84 #include <malloc.h>
  85 #include <signal.h>
  86 #include <direct.h>
  87 #include <errno.h>
  88 #include <fcntl.h>
  89 #include <io.h>
  90 #include <process.h>              // For _beginthreadex(), _endthreadex()
  91 #include <imagehlp.h>             // For os::dll_address_to_function_name
  92 /* for enumerating dll libraries */
  93 #include <vdmdbg.h>
  94 
  95 // for timer info max values which include all bits
  96 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  97 
  98 // For DLL loading/load error detection
  99 // Values of PE COFF
 100 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 101 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 102 
 103 static HANDLE main_process;
 104 static HANDLE main_thread;
 105 static int    main_thread_id;
 106 
 107 static FILETIME process_creation_time;
 108 static FILETIME process_exit_time;
 109 static FILETIME process_user_time;
 110 static FILETIME process_kernel_time;
 111 
 112 #ifdef _M_IA64
 113 #define __CPU__ ia64
 114 #elif _M_AMD64
 115 #define __CPU__ amd64
 116 #else
 117 #define __CPU__ i486
 118 #endif
 119 
 120 // save DLL module handle, used by GetModuleFileName
 121 
 122 HINSTANCE vm_lib_handle;
 123 
 124 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 125   switch (reason) {
 126     case DLL_PROCESS_ATTACH:
 127       vm_lib_handle = hinst;
 128       if(ForceTimeHighResolution)
 129         timeBeginPeriod(1L);
 130       break;
 131     case DLL_PROCESS_DETACH:
 132       if(ForceTimeHighResolution)
 133         timeEndPeriod(1L);
 134 
 135       break;
 136     default:
 137       break;
 138   }
 139   return true;
 140 }
 141 
 142 static inline double fileTimeAsDouble(FILETIME* time) {
 143   const double high  = (double) ((unsigned int) ~0);
 144   const double split = 10000000.0;
 145   double result = (time->dwLowDateTime / split) +
 146                    time->dwHighDateTime * (high/split);
 147   return result;
 148 }
 149 
 150 // Implementation of os
 151 
 152 bool os::getenv(const char* name, char* buffer, int len) {
 153  int result = GetEnvironmentVariable(name, buffer, len);
 154  return result > 0 && result < len;
 155 }
 156 
 157 bool os::unsetenv(const char* name) {
 158   assert(name != NULL, "Null pointer");
 159   return (SetEnvironmentVariable(name, NULL) == TRUE);
 160 }
 161 
 162 // No setuid programs under Windows.
 163 bool os::have_special_privileges() {
 164   return false;
 165 }
 166 
 167 
 168 // This method is  a periodic task to check for misbehaving JNI applications
 169 // under CheckJNI, we can add any periodic checks here.
 170 // For Windows at the moment does nothing
 171 void os::run_periodic_checks() {
 172   return;
 173 }
 174 
 175 #ifndef _WIN64
 176 // previous UnhandledExceptionFilter, if there is one
 177 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 178 
 179 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 180 #endif
 181 void os::init_system_properties_values() {
 182   /* sysclasspath, java_home, dll_dir */
 183   {
 184       char *home_path;
 185       char *dll_path;
 186       char *pslash;
 187       char *bin = "\\bin";
 188       char home_dir[MAX_PATH];
 189 
 190       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 191           os::jvm_path(home_dir, sizeof(home_dir));
 192           // Found the full path to jvm.dll.
 193           // Now cut the path to <java_home>/jre if we can.
 194           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
 195           pslash = strrchr(home_dir, '\\');
 196           if (pslash != NULL) {
 197               *pslash = '\0';                 /* get rid of \{client|server} */
 198               pslash = strrchr(home_dir, '\\');
 199               if (pslash != NULL)
 200                   *pslash = '\0';             /* get rid of \bin */
 201           }
 202       }
 203 
 204       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 205       if (home_path == NULL)
 206           return;
 207       strcpy(home_path, home_dir);
 208       Arguments::set_java_home(home_path);
 209 
 210       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
 211       if (dll_path == NULL)
 212           return;
 213       strcpy(dll_path, home_dir);
 214       strcat(dll_path, bin);
 215       Arguments::set_dll_dir(dll_path);
 216 
 217       if (!set_boot_path('\\', ';'))
 218           return;
 219   }
 220 
 221   /* library_path */
 222   #define EXT_DIR "\\lib\\ext"
 223   #define BIN_DIR "\\bin"
 224   #define PACKAGE_DIR "\\Sun\\Java"
 225   {
 226     /* Win32 library search order (See the documentation for LoadLibrary):
 227      *
 228      * 1. The directory from which application is loaded.
 229      * 2. The system wide Java Extensions directory (Java only)
 230      * 3. System directory (GetSystemDirectory)
 231      * 4. Windows directory (GetWindowsDirectory)
 232      * 5. The PATH environment variable
 233      * 6. The current directory
 234      */
 235 
 236     char *library_path;
 237     char tmp[MAX_PATH];
 238     char *path_str = ::getenv("PATH");
 239 
 240     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 241         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 242 
 243     library_path[0] = '\0';
 244 
 245     GetModuleFileName(NULL, tmp, sizeof(tmp));
 246     *(strrchr(tmp, '\\')) = '\0';
 247     strcat(library_path, tmp);
 248 
 249     GetWindowsDirectory(tmp, sizeof(tmp));
 250     strcat(library_path, ";");
 251     strcat(library_path, tmp);
 252     strcat(library_path, PACKAGE_DIR BIN_DIR);
 253 
 254     GetSystemDirectory(tmp, sizeof(tmp));
 255     strcat(library_path, ";");
 256     strcat(library_path, tmp);
 257 
 258     GetWindowsDirectory(tmp, sizeof(tmp));
 259     strcat(library_path, ";");
 260     strcat(library_path, tmp);
 261 
 262     if (path_str) {
 263         strcat(library_path, ";");
 264         strcat(library_path, path_str);
 265     }
 266 
 267     strcat(library_path, ";.");
 268 
 269     Arguments::set_library_path(library_path);
 270     FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
 271   }
 272 
 273   /* Default extensions directory */
 274   {
 275     char path[MAX_PATH];
 276     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 277     GetWindowsDirectory(path, MAX_PATH);
 278     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 279         path, PACKAGE_DIR, EXT_DIR);
 280     Arguments::set_ext_dirs(buf);
 281   }
 282   #undef EXT_DIR
 283   #undef BIN_DIR
 284   #undef PACKAGE_DIR
 285 
 286   /* Default endorsed standards directory. */
 287   {
 288     #define ENDORSED_DIR "\\lib\\endorsed"
 289     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
 290     char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
 291     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
 292     Arguments::set_endorsed_dirs(buf);
 293     #undef ENDORSED_DIR
 294   }
 295 
 296 #ifndef _WIN64
 297   // set our UnhandledExceptionFilter and save any previous one
 298   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 299 #endif
 300 
 301   // Done
 302   return;
 303 }
 304 
 305 void os::breakpoint() {
 306   DebugBreak();
 307 }
 308 
 309 // Invoked from the BREAKPOINT Macro
 310 extern "C" void breakpoint() {
 311   os::breakpoint();
 312 }
 313 
 314 /*
 315  * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 316  * So far, this method is only used by Native Memory Tracking, which is
 317  * only supported on Windows XP or later.
 318  */
 319 
 320 int os::get_native_stack(address* stack, int frames, int toSkip) {
 321 #ifdef _NMT_NOINLINE_
 322   toSkip ++;
 323 #endif
 324   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 325     (PVOID*)stack, NULL);
 326   for (int index = captured; index < frames; index ++) {
 327     stack[index] = NULL;
 328   }
 329   return captured;
 330 }
 331 
 332 
 333 // os::current_stack_base()
 334 //
 335 //   Returns the base of the stack, which is the stack's
 336 //   starting address.  This function must be called
 337 //   while running on the stack of the thread being queried.
 338 
 339 address os::current_stack_base() {
 340   MEMORY_BASIC_INFORMATION minfo;
 341   address stack_bottom;
 342   size_t stack_size;
 343 
 344   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 345   stack_bottom =  (address)minfo.AllocationBase;
 346   stack_size = minfo.RegionSize;
 347 
 348   // Add up the sizes of all the regions with the same
 349   // AllocationBase.
 350   while( 1 )
 351   {
 352     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 353     if ( stack_bottom == (address)minfo.AllocationBase )
 354       stack_size += minfo.RegionSize;
 355     else
 356       break;
 357   }
 358 
 359 #ifdef _M_IA64
 360   // IA64 has memory and register stacks
 361   //
 362   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 363   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 364   // growing downwards, 2MB summed up)
 365   //
 366   // ...
 367   // ------- top of stack (high address) -----
 368   // |
 369   // |      1MB
 370   // |      Backing Store (Register Stack)
 371   // |
 372   // |         / \
 373   // |          |
 374   // |          |
 375   // |          |
 376   // ------------------------ stack base -----
 377   // |      1MB
 378   // |      Memory Stack
 379   // |
 380   // |          |
 381   // |          |
 382   // |          |
 383   // |         \ /
 384   // |
 385   // ----- bottom of stack (low address) -----
 386   // ...
 387 
 388   stack_size = stack_size / 2;
 389 #endif
 390   return stack_bottom + stack_size;
 391 }
 392 
 393 size_t os::current_stack_size() {
 394   size_t sz;
 395   MEMORY_BASIC_INFORMATION minfo;
 396   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 397   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 398   return sz;
 399 }
 400 
 401 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 402   const struct tm* time_struct_ptr = localtime(clock);
 403   if (time_struct_ptr != NULL) {
 404     *res = *time_struct_ptr;
 405     return res;
 406   }
 407   return NULL;
 408 }
 409 
 410 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 411 
 412 // Thread start routine for all new Java threads
 413 static unsigned __stdcall java_start(Thread* thread) {
 414   // Try to randomize the cache line index of hot stack frames.
 415   // This helps when threads of the same stack traces evict each other's
 416   // cache lines. The threads can be either from the same JVM instance, or
 417   // from different JVM instances. The benefit is especially true for
 418   // processors with hyperthreading technology.
 419   static int counter = 0;
 420   int pid = os::current_process_id();
 421   _alloca(((pid ^ counter++) & 7) * 128);
 422 
 423   OSThread* osthr = thread->osthread();
 424   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 425 
 426   if (UseNUMA) {
 427     int lgrp_id = os::numa_get_group_id();
 428     if (lgrp_id != -1) {
 429       thread->set_lgrp_id(lgrp_id);
 430     }
 431   }
 432 
 433 
 434   // Install a win32 structured exception handler around every thread created
 435   // by VM, so VM can genrate error dump when an exception occurred in non-
 436   // Java thread (e.g. VM thread).
 437   __try {
 438      thread->run();
 439   } __except(topLevelExceptionFilter(
 440              (_EXCEPTION_POINTERS*)_exception_info())) {
 441       // Nothing to do.
 442   }
 443 
 444   // One less thread is executing
 445   // When the VMThread gets here, the main thread may have already exited
 446   // which frees the CodeHeap containing the Atomic::add code
 447   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 448     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 449   }
 450 
 451   return 0;
 452 }
 453 
 454 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
 455   // Allocate the OSThread object
 456   OSThread* osthread = new OSThread(NULL, NULL);
 457   if (osthread == NULL) return NULL;
 458 
 459   // Initialize support for Java interrupts
 460   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 461   if (interrupt_event == NULL) {
 462     delete osthread;
 463     return NULL;
 464   }
 465   osthread->set_interrupt_event(interrupt_event);
 466 
 467   // Store info on the Win32 thread into the OSThread
 468   osthread->set_thread_handle(thread_handle);
 469   osthread->set_thread_id(thread_id);
 470 
 471   if (UseNUMA) {
 472     int lgrp_id = os::numa_get_group_id();
 473     if (lgrp_id != -1) {
 474       thread->set_lgrp_id(lgrp_id);
 475     }
 476   }
 477 
 478   // Initial thread state is INITIALIZED, not SUSPENDED
 479   osthread->set_state(INITIALIZED);
 480 
 481   return osthread;
 482 }
 483 
 484 
 485 bool os::create_attached_thread(JavaThread* thread) {
 486 #ifdef ASSERT
 487   thread->verify_not_published();
 488 #endif
 489   HANDLE thread_h;
 490   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 491                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 492     fatal("DuplicateHandle failed\n");
 493   }
 494   OSThread* osthread = create_os_thread(thread, thread_h,
 495                                         (int)current_thread_id());
 496   if (osthread == NULL) {
 497      return false;
 498   }
 499 
 500   // Initial thread state is RUNNABLE
 501   osthread->set_state(RUNNABLE);
 502 
 503   thread->set_osthread(osthread);
 504   return true;
 505 }
 506 
 507 bool os::create_main_thread(JavaThread* thread) {
 508 #ifdef ASSERT
 509   thread->verify_not_published();
 510 #endif
 511   if (_starting_thread == NULL) {
 512     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 513      if (_starting_thread == NULL) {
 514         return false;
 515      }
 516   }
 517 
 518   // The primordial thread is runnable from the start)
 519   _starting_thread->set_state(RUNNABLE);
 520 
 521   thread->set_osthread(_starting_thread);
 522   return true;
 523 }
 524 
 525 // Allocate and initialize a new OSThread
 526 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 527   unsigned thread_id;
 528 
 529   // Allocate the OSThread object
 530   OSThread* osthread = new OSThread(NULL, NULL);
 531   if (osthread == NULL) {
 532     return false;
 533   }
 534 
 535   // Initialize support for Java interrupts
 536   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 537   if (interrupt_event == NULL) {
 538     delete osthread;
 539     return NULL;
 540   }
 541   osthread->set_interrupt_event(interrupt_event);
 542   osthread->set_interrupted(false);
 543 
 544   thread->set_osthread(osthread);
 545 
 546   if (stack_size == 0) {
 547     switch (thr_type) {
 548     case os::java_thread:
 549       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 550       if (JavaThread::stack_size_at_create() > 0)
 551         stack_size = JavaThread::stack_size_at_create();
 552       break;
 553     case os::compiler_thread:
 554       if (CompilerThreadStackSize > 0) {
 555         stack_size = (size_t)(CompilerThreadStackSize * K);
 556         break;
 557       } // else fall through:
 558         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 559     case os::vm_thread:
 560     case os::pgc_thread:
 561     case os::cgc_thread:
 562     case os::watcher_thread:
 563       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 564       break;
 565     }
 566   }
 567 
 568   // Create the Win32 thread
 569   //
 570   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 571   // does not specify stack size. Instead, it specifies the size of
 572   // initially committed space. The stack size is determined by
 573   // PE header in the executable. If the committed "stack_size" is larger
 574   // than default value in the PE header, the stack is rounded up to the
 575   // nearest multiple of 1MB. For example if the launcher has default
 576   // stack size of 320k, specifying any size less than 320k does not
 577   // affect the actual stack size at all, it only affects the initial
 578   // commitment. On the other hand, specifying 'stack_size' larger than
 579   // default value may cause significant increase in memory usage, because
 580   // not only the stack space will be rounded up to MB, but also the
 581   // entire space is committed upfront.
 582   //
 583   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 584   // for CreateThread() that can treat 'stack_size' as stack size. However we
 585   // are not supposed to call CreateThread() directly according to MSDN
 586   // document because JVM uses C runtime library. The good news is that the
 587   // flag appears to work with _beginthredex() as well.
 588 
 589 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 590 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 591 #endif
 592 
 593   HANDLE thread_handle =
 594     (HANDLE)_beginthreadex(NULL,
 595                            (unsigned)stack_size,
 596                            (unsigned (__stdcall *)(void*)) java_start,
 597                            thread,
 598                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 599                            &thread_id);
 600   if (thread_handle == NULL) {
 601     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 602     // without the flag.
 603     thread_handle =
 604     (HANDLE)_beginthreadex(NULL,
 605                            (unsigned)stack_size,
 606                            (unsigned (__stdcall *)(void*)) java_start,
 607                            thread,
 608                            CREATE_SUSPENDED,
 609                            &thread_id);
 610   }
 611   if (thread_handle == NULL) {
 612     // Need to clean up stuff we've allocated so far
 613     CloseHandle(osthread->interrupt_event());
 614     thread->set_osthread(NULL);
 615     delete osthread;
 616     return NULL;
 617   }
 618 
 619   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 620 
 621   // Store info on the Win32 thread into the OSThread
 622   osthread->set_thread_handle(thread_handle);
 623   osthread->set_thread_id(thread_id);
 624 
 625   // Initial thread state is INITIALIZED, not SUSPENDED
 626   osthread->set_state(INITIALIZED);
 627 
 628   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 629   return true;
 630 }
 631 
 632 
 633 // Free Win32 resources related to the OSThread
 634 void os::free_thread(OSThread* osthread) {
 635   assert(osthread != NULL, "osthread not set");
 636   CloseHandle(osthread->thread_handle());
 637   CloseHandle(osthread->interrupt_event());
 638   delete osthread;
 639 }
 640 
 641 
 642 static int    has_performance_count = 0;
 643 static jlong first_filetime;
 644 static jlong initial_performance_count;
 645 static jlong performance_frequency;
 646 
 647 
 648 jlong as_long(LARGE_INTEGER x) {
 649   jlong result = 0; // initialization to avoid warning
 650   set_high(&result, x.HighPart);
 651   set_low(&result,  x.LowPart);
 652   return result;
 653 }
 654 
 655 
 656 jlong os::elapsed_counter() {
 657   LARGE_INTEGER count;
 658   if (has_performance_count) {
 659     QueryPerformanceCounter(&count);
 660     return as_long(count) - initial_performance_count;
 661   } else {
 662     FILETIME wt;
 663     GetSystemTimeAsFileTime(&wt);
 664     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 665   }
 666 }
 667 
 668 
 669 jlong os::elapsed_frequency() {
 670   if (has_performance_count) {
 671     return performance_frequency;
 672   } else {
 673    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 674    return 10000000;
 675   }
 676 }
 677 
 678 
 679 julong os::available_memory() {
 680   return win32::available_memory();
 681 }
 682 
 683 julong os::win32::available_memory() {
 684   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 685   // value if total memory is larger than 4GB
 686   MEMORYSTATUSEX ms;
 687   ms.dwLength = sizeof(ms);
 688   GlobalMemoryStatusEx(&ms);
 689 
 690   return (julong)ms.ullAvailPhys;
 691 }
 692 
 693 julong os::physical_memory() {
 694   return win32::physical_memory();
 695 }
 696 
 697 bool os::has_allocatable_memory_limit(julong* limit) {
 698   MEMORYSTATUSEX ms;
 699   ms.dwLength = sizeof(ms);
 700   GlobalMemoryStatusEx(&ms);
 701 #ifdef _LP64
 702   *limit = (julong)ms.ullAvailVirtual;
 703   return true;
 704 #else
 705   // Limit to 1400m because of the 2gb address space wall
 706   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 707   return true;
 708 #endif
 709 }
 710 
 711 // VC6 lacks DWORD_PTR
 712 #if _MSC_VER < 1300
 713 typedef UINT_PTR DWORD_PTR;
 714 #endif
 715 
 716 int os::active_processor_count() {
 717   DWORD_PTR lpProcessAffinityMask = 0;
 718   DWORD_PTR lpSystemAffinityMask = 0;
 719   int proc_count = processor_count();
 720   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 721       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 722     // Nof active processors is number of bits in process affinity mask
 723     int bitcount = 0;
 724     while (lpProcessAffinityMask != 0) {
 725       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 726       bitcount++;
 727     }
 728     return bitcount;
 729   } else {
 730     return proc_count;
 731   }
 732 }
 733 
 734 void os::set_native_thread_name(const char *name) {
 735   // Not yet implemented.
 736   return;
 737 }
 738 
 739 bool os::distribute_processes(uint length, uint* distribution) {
 740   // Not yet implemented.
 741   return false;
 742 }
 743 
 744 bool os::bind_to_processor(uint processor_id) {
 745   // Not yet implemented.
 746   return false;
 747 }
 748 
 749 static void initialize_performance_counter() {
 750   LARGE_INTEGER count;
 751   if (QueryPerformanceFrequency(&count)) {
 752     has_performance_count = 1;
 753     performance_frequency = as_long(count);
 754     QueryPerformanceCounter(&count);
 755     initial_performance_count = as_long(count);
 756   } else {
 757     has_performance_count = 0;
 758     FILETIME wt;
 759     GetSystemTimeAsFileTime(&wt);
 760     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 761   }
 762 }
 763 
 764 
 765 double os::elapsedTime() {
 766   return (double) elapsed_counter() / (double) elapsed_frequency();
 767 }
 768 
 769 
 770 // Windows format:
 771 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 772 // Java format:
 773 //   Java standards require the number of milliseconds since 1/1/1970
 774 
 775 // Constant offset - calculated using offset()
 776 static jlong  _offset   = 116444736000000000;
 777 // Fake time counter for reproducible results when debugging
 778 static jlong  fake_time = 0;
 779 
 780 #ifdef ASSERT
 781 // Just to be safe, recalculate the offset in debug mode
 782 static jlong _calculated_offset = 0;
 783 static int   _has_calculated_offset = 0;
 784 
 785 jlong offset() {
 786   if (_has_calculated_offset) return _calculated_offset;
 787   SYSTEMTIME java_origin;
 788   java_origin.wYear          = 1970;
 789   java_origin.wMonth         = 1;
 790   java_origin.wDayOfWeek     = 0; // ignored
 791   java_origin.wDay           = 1;
 792   java_origin.wHour          = 0;
 793   java_origin.wMinute        = 0;
 794   java_origin.wSecond        = 0;
 795   java_origin.wMilliseconds  = 0;
 796   FILETIME jot;
 797   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 798     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 799   }
 800   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 801   _has_calculated_offset = 1;
 802   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 803   return _calculated_offset;
 804 }
 805 #else
 806 jlong offset() {
 807   return _offset;
 808 }
 809 #endif
 810 
 811 jlong windows_to_java_time(FILETIME wt) {
 812   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 813   return (a - offset()) / 10000;
 814 }
 815 
 816 FILETIME java_to_windows_time(jlong l) {
 817   jlong a = (l * 10000) + offset();
 818   FILETIME result;
 819   result.dwHighDateTime = high(a);
 820   result.dwLowDateTime  = low(a);
 821   return result;
 822 }
 823 
 824 bool os::supports_vtime() { return true; }
 825 bool os::enable_vtime() { return false; }
 826 bool os::vtime_enabled() { return false; }
 827 
 828 double os::elapsedVTime() {
 829   FILETIME created;
 830   FILETIME exited;
 831   FILETIME kernel;
 832   FILETIME user;
 833   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 834     // the resolution of windows_to_java_time() should be sufficient (ms)
 835     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 836   } else {
 837     return elapsedTime();
 838   }
 839 }
 840 
 841 jlong os::javaTimeMillis() {
 842   if (UseFakeTimers) {
 843     return fake_time++;
 844   } else {
 845     FILETIME wt;
 846     GetSystemTimeAsFileTime(&wt);
 847     return windows_to_java_time(wt);
 848   }
 849 }
 850 
 851 jlong os::javaTimeNanos() {
 852   if (!has_performance_count) {
 853     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 854   } else {
 855     LARGE_INTEGER current_count;
 856     QueryPerformanceCounter(&current_count);
 857     double current = as_long(current_count);
 858     double freq = performance_frequency;
 859     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 860     return time;
 861   }
 862 }
 863 
 864 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 865   if (!has_performance_count) {
 866     // javaTimeMillis() doesn't have much percision,
 867     // but it is not going to wrap -- so all 64 bits
 868     info_ptr->max_value = ALL_64_BITS;
 869 
 870     // this is a wall clock timer, so may skip
 871     info_ptr->may_skip_backward = true;
 872     info_ptr->may_skip_forward = true;
 873   } else {
 874     jlong freq = performance_frequency;
 875     if (freq < NANOSECS_PER_SEC) {
 876       // the performance counter is 64 bits and we will
 877       // be multiplying it -- so no wrap in 64 bits
 878       info_ptr->max_value = ALL_64_BITS;
 879     } else if (freq > NANOSECS_PER_SEC) {
 880       // use the max value the counter can reach to
 881       // determine the max value which could be returned
 882       julong max_counter = (julong)ALL_64_BITS;
 883       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 884     } else {
 885       // the performance counter is 64 bits and we will
 886       // be using it directly -- so no wrap in 64 bits
 887       info_ptr->max_value = ALL_64_BITS;
 888     }
 889 
 890     // using a counter, so no skipping
 891     info_ptr->may_skip_backward = false;
 892     info_ptr->may_skip_forward = false;
 893   }
 894   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 895 }
 896 
 897 char* os::local_time_string(char *buf, size_t buflen) {
 898   SYSTEMTIME st;
 899   GetLocalTime(&st);
 900   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 901                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 902   return buf;
 903 }
 904 
 905 bool os::getTimesSecs(double* process_real_time,
 906                      double* process_user_time,
 907                      double* process_system_time) {
 908   HANDLE h_process = GetCurrentProcess();
 909   FILETIME create_time, exit_time, kernel_time, user_time;
 910   BOOL result = GetProcessTimes(h_process,
 911                                &create_time,
 912                                &exit_time,
 913                                &kernel_time,
 914                                &user_time);
 915   if (result != 0) {
 916     FILETIME wt;
 917     GetSystemTimeAsFileTime(&wt);
 918     jlong rtc_millis = windows_to_java_time(wt);
 919     jlong user_millis = windows_to_java_time(user_time);
 920     jlong system_millis = windows_to_java_time(kernel_time);
 921     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 922     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 923     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 924     return true;
 925   } else {
 926     return false;
 927   }
 928 }
 929 
 930 void os::shutdown() {
 931 
 932   // allow PerfMemory to attempt cleanup of any persistent resources
 933   perfMemory_exit();
 934 
 935   // flush buffered output, finish log files
 936   ostream_abort();
 937 
 938   // Check for abort hook
 939   abort_hook_t abort_hook = Arguments::abort_hook();
 940   if (abort_hook != NULL) {
 941     abort_hook();
 942   }
 943 }
 944 
 945 
 946 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 947                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
 948 
 949 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
 950   HINSTANCE dbghelp;
 951   EXCEPTION_POINTERS ep;
 952   MINIDUMP_EXCEPTION_INFORMATION mei;
 953   MINIDUMP_EXCEPTION_INFORMATION* pmei;
 954 
 955   HANDLE hProcess = GetCurrentProcess();
 956   DWORD processId = GetCurrentProcessId();
 957   HANDLE dumpFile;
 958   MINIDUMP_TYPE dumpType;
 959   static const char* cwd;
 960 
 961 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
 962 #ifndef ASSERT
 963   // If running on a client version of Windows and user has not explicitly enabled dumping
 964   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
 965     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
 966     return;
 967     // If running on a server version of Windows and user has explictly disabled dumping
 968   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 969     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 970     return;
 971   }
 972 #else
 973   if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 974     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 975     return;
 976   }
 977 #endif
 978 
 979   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
 980 
 981   if (dbghelp == NULL) {
 982     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
 983     return;
 984   }
 985 
 986   _MiniDumpWriteDump = CAST_TO_FN_PTR(
 987     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 988     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
 989     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
 990 
 991   if (_MiniDumpWriteDump == NULL) {
 992     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
 993     return;
 994   }
 995 
 996   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
 997 
 998 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
 999 // API_VERSION_NUMBER 11 or higher contains the ones we want though
1000 #if API_VERSION_NUMBER >= 11
1001   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1002     MiniDumpWithUnloadedModules);
1003 #endif
1004 
1005   cwd = get_current_directory(NULL, 0);
1006   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
1007   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
1008 
1009   if (dumpFile == INVALID_HANDLE_VALUE) {
1010     VMError::report_coredump_status("Failed to create file for dumping", false);
1011     return;
1012   }
1013   if (exceptionRecord != NULL && contextRecord != NULL) {
1014     ep.ContextRecord = (PCONTEXT) contextRecord;
1015     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
1016 
1017     mei.ThreadId = GetCurrentThreadId();
1018     mei.ExceptionPointers = &ep;
1019     pmei = &mei;
1020   } else {
1021     pmei = NULL;
1022   }
1023 
1024 
1025   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1026   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1027   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1028       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1029         DWORD error = GetLastError();
1030         LPTSTR msgbuf = NULL;
1031 
1032         if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
1033                       FORMAT_MESSAGE_FROM_SYSTEM |
1034                       FORMAT_MESSAGE_IGNORE_INSERTS,
1035                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
1036 
1037           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
1038           LocalFree(msgbuf);
1039         } else {
1040           // Call to FormatMessage failed, just include the result from GetLastError
1041           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
1042         }
1043         VMError::report_coredump_status(buffer, false);
1044   } else {
1045     VMError::report_coredump_status(buffer, true);
1046   }
1047 
1048   CloseHandle(dumpFile);
1049 }
1050 
1051 
1052 
1053 void os::abort(bool dump_core)
1054 {
1055   os::shutdown();
1056   // no core dump on Windows
1057   ::exit(1);
1058 }
1059 
1060 // Die immediately, no exit hook, no abort hook, no cleanup.
1061 void os::die() {
1062   _exit(-1);
1063 }
1064 
1065 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1066 //  * dirent_md.c       1.15 00/02/02
1067 //
1068 // The declarations for DIR and struct dirent are in jvm_win32.h.
1069 
1070 /* Caller must have already run dirname through JVM_NativePath, which removes
1071    duplicate slashes and converts all instances of '/' into '\\'. */
1072 
1073 DIR *
1074 os::opendir(const char *dirname)
1075 {
1076     assert(dirname != NULL, "just checking");   // hotspot change
1077     DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1078     DWORD fattr;                                // hotspot change
1079     char alt_dirname[4] = { 0, 0, 0, 0 };
1080 
1081     if (dirp == 0) {
1082         errno = ENOMEM;
1083         return 0;
1084     }
1085 
1086     /*
1087      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1088      * as a directory in FindFirstFile().  We detect this case here and
1089      * prepend the current drive name.
1090      */
1091     if (dirname[1] == '\0' && dirname[0] == '\\') {
1092         alt_dirname[0] = _getdrive() + 'A' - 1;
1093         alt_dirname[1] = ':';
1094         alt_dirname[2] = '\\';
1095         alt_dirname[3] = '\0';
1096         dirname = alt_dirname;
1097     }
1098 
1099     dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1100     if (dirp->path == 0) {
1101         free(dirp, mtInternal);
1102         errno = ENOMEM;
1103         return 0;
1104     }
1105     strcpy(dirp->path, dirname);
1106 
1107     fattr = GetFileAttributes(dirp->path);
1108     if (fattr == 0xffffffff) {
1109         free(dirp->path, mtInternal);
1110         free(dirp, mtInternal);
1111         errno = ENOENT;
1112         return 0;
1113     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1114         free(dirp->path, mtInternal);
1115         free(dirp, mtInternal);
1116         errno = ENOTDIR;
1117         return 0;
1118     }
1119 
1120     /* Append "*.*", or possibly "\\*.*", to path */
1121     if (dirp->path[1] == ':'
1122         && (dirp->path[2] == '\0'
1123             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1124         /* No '\\' needed for cases like "Z:" or "Z:\" */
1125         strcat(dirp->path, "*.*");
1126     } else {
1127         strcat(dirp->path, "\\*.*");
1128     }
1129 
1130     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1131     if (dirp->handle == INVALID_HANDLE_VALUE) {
1132         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1133             free(dirp->path, mtInternal);
1134             free(dirp, mtInternal);
1135             errno = EACCES;
1136             return 0;
1137         }
1138     }
1139     return dirp;
1140 }
1141 
1142 /* parameter dbuf unused on Windows */
1143 
1144 struct dirent *
1145 os::readdir(DIR *dirp, dirent *dbuf)
1146 {
1147     assert(dirp != NULL, "just checking");      // hotspot change
1148     if (dirp->handle == INVALID_HANDLE_VALUE) {
1149         return 0;
1150     }
1151 
1152     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1153 
1154     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1155         if (GetLastError() == ERROR_INVALID_HANDLE) {
1156             errno = EBADF;
1157             return 0;
1158         }
1159         FindClose(dirp->handle);
1160         dirp->handle = INVALID_HANDLE_VALUE;
1161     }
1162 
1163     return &dirp->dirent;
1164 }
1165 
1166 int
1167 os::closedir(DIR *dirp)
1168 {
1169     assert(dirp != NULL, "just checking");      // hotspot change
1170     if (dirp->handle != INVALID_HANDLE_VALUE) {
1171         if (!FindClose(dirp->handle)) {
1172             errno = EBADF;
1173             return -1;
1174         }
1175         dirp->handle = INVALID_HANDLE_VALUE;
1176     }
1177     free(dirp->path, mtInternal);
1178     free(dirp, mtInternal);
1179     return 0;
1180 }
1181 
1182 // This must be hard coded because it's the system's temporary
1183 // directory not the java application's temp directory, ala java.io.tmpdir.
1184 const char* os::get_temp_directory() {
1185   static char path_buf[MAX_PATH];
1186   if (GetTempPath(MAX_PATH, path_buf)>0)
1187     return path_buf;
1188   else{
1189     path_buf[0]='\0';
1190     return path_buf;
1191   }
1192 }
1193 
1194 static bool file_exists(const char* filename) {
1195   if (filename == NULL || strlen(filename) == 0) {
1196     return false;
1197   }
1198   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1199 }
1200 
1201 bool os::dll_build_name(char *buffer, size_t buflen,
1202                         const char* pname, const char* fname) {
1203   bool retval = false;
1204   const size_t pnamelen = pname ? strlen(pname) : 0;
1205   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1206 
1207   // Return error on buffer overflow.
1208   if (pnamelen + strlen(fname) + 10 > buflen) {
1209     return retval;
1210   }
1211 
1212   if (pnamelen == 0) {
1213     jio_snprintf(buffer, buflen, "%s.dll", fname);
1214     retval = true;
1215   } else if (c == ':' || c == '\\') {
1216     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1217     retval = true;
1218   } else if (strchr(pname, *os::path_separator()) != NULL) {
1219     int n;
1220     char** pelements = split_path(pname, &n);
1221     if (pelements == NULL) {
1222       return false;
1223     }
1224     for (int i = 0 ; i < n ; i++) {
1225       char* path = pelements[i];
1226       // Really shouldn't be NULL, but check can't hurt
1227       size_t plen = (path == NULL) ? 0 : strlen(path);
1228       if (plen == 0) {
1229         continue; // skip the empty path values
1230       }
1231       const char lastchar = path[plen - 1];
1232       if (lastchar == ':' || lastchar == '\\') {
1233         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1234       } else {
1235         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1236       }
1237       if (file_exists(buffer)) {
1238         retval = true;
1239         break;
1240       }
1241     }
1242     // release the storage
1243     for (int i = 0 ; i < n ; i++) {
1244       if (pelements[i] != NULL) {
1245         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1246       }
1247     }
1248     if (pelements != NULL) {
1249       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1250     }
1251   } else {
1252     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1253     retval = true;
1254   }
1255   return retval;
1256 }
1257 
1258 // Needs to be in os specific directory because windows requires another
1259 // header file <direct.h>
1260 const char* os::get_current_directory(char *buf, size_t buflen) {
1261   int n = static_cast<int>(buflen);
1262   if (buflen > INT_MAX)  n = INT_MAX;
1263   return _getcwd(buf, n);
1264 }
1265 
1266 //-----------------------------------------------------------
1267 // Helper functions for fatal error handler
1268 #ifdef _WIN64
1269 // Helper routine which returns true if address in
1270 // within the NTDLL address space.
1271 //
1272 static bool _addr_in_ntdll( address addr )
1273 {
1274   HMODULE hmod;
1275   MODULEINFO minfo;
1276 
1277   hmod = GetModuleHandle("NTDLL.DLL");
1278   if ( hmod == NULL ) return false;
1279   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
1280                                &minfo, sizeof(MODULEINFO)) )
1281     return false;
1282 
1283   if ( (addr >= minfo.lpBaseOfDll) &&
1284        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1285     return true;
1286   else
1287     return false;
1288 }
1289 #endif
1290 
1291 
1292 // Enumerate all modules for a given process ID
1293 //
1294 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1295 // different API for doing this. We use PSAPI.DLL on NT based
1296 // Windows and ToolHelp on 95/98/Me.
1297 
1298 // Callback function that is called by enumerate_modules() on
1299 // every DLL module.
1300 // Input parameters:
1301 //    int       pid,
1302 //    char*     module_file_name,
1303 //    address   module_base_addr,
1304 //    unsigned  module_size,
1305 //    void*     param
1306 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1307 
1308 // enumerate_modules for Windows NT, using PSAPI
1309 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1310 {
1311   HANDLE   hProcess ;
1312 
1313 # define MAX_NUM_MODULES 128
1314   HMODULE     modules[MAX_NUM_MODULES];
1315   static char filename[ MAX_PATH ];
1316   int         result = 0;
1317 
1318   if (!os::PSApiDll::PSApiAvailable()) {
1319     return 0;
1320   }
1321 
1322   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1323                          FALSE, pid ) ;
1324   if (hProcess == NULL) return 0;
1325 
1326   DWORD size_needed;
1327   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1328                            sizeof(modules), &size_needed)) {
1329       CloseHandle( hProcess );
1330       return 0;
1331   }
1332 
1333   // number of modules that are currently loaded
1334   int num_modules = size_needed / sizeof(HMODULE);
1335 
1336   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1337     // Get Full pathname:
1338     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1339                              filename, sizeof(filename))) {
1340         filename[0] = '\0';
1341     }
1342 
1343     MODULEINFO modinfo;
1344     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1345                                &modinfo, sizeof(modinfo))) {
1346         modinfo.lpBaseOfDll = NULL;
1347         modinfo.SizeOfImage = 0;
1348     }
1349 
1350     // Invoke callback function
1351     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1352                   modinfo.SizeOfImage, param);
1353     if (result) break;
1354   }
1355 
1356   CloseHandle( hProcess ) ;
1357   return result;
1358 }
1359 
1360 
1361 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1362 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1363 {
1364   HANDLE                hSnapShot ;
1365   static MODULEENTRY32  modentry ;
1366   int                   result = 0;
1367 
1368   if (!os::Kernel32Dll::HelpToolsAvailable()) {
1369     return 0;
1370   }
1371 
1372   // Get a handle to a Toolhelp snapshot of the system
1373   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1374   if( hSnapShot == INVALID_HANDLE_VALUE ) {
1375       return FALSE ;
1376   }
1377 
1378   // iterate through all modules
1379   modentry.dwSize = sizeof(MODULEENTRY32) ;
1380   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
1381 
1382   while( not_done ) {
1383     // invoke the callback
1384     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1385                 modentry.modBaseSize, param);
1386     if (result) break;
1387 
1388     modentry.dwSize = sizeof(MODULEENTRY32) ;
1389     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
1390   }
1391 
1392   CloseHandle(hSnapShot);
1393   return result;
1394 }
1395 
1396 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1397 {
1398   // Get current process ID if caller doesn't provide it.
1399   if (!pid) pid = os::current_process_id();
1400 
1401   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1402   else                    return _enumerate_modules_windows(pid, func, param);
1403 }
1404 
1405 struct _modinfo {
1406    address addr;
1407    char*   full_path;   // point to a char buffer
1408    int     buflen;      // size of the buffer
1409    address base_addr;
1410 };
1411 
1412 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1413                                   unsigned size, void * param) {
1414    struct _modinfo *pmod = (struct _modinfo *)param;
1415    if (!pmod) return -1;
1416 
1417    if (base_addr     <= pmod->addr &&
1418        base_addr+size > pmod->addr) {
1419      // if a buffer is provided, copy path name to the buffer
1420      if (pmod->full_path) {
1421        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1422      }
1423      pmod->base_addr = base_addr;
1424      return 1;
1425    }
1426    return 0;
1427 }
1428 
1429 bool os::dll_address_to_library_name(address addr, char* buf,
1430                                      int buflen, int* offset) {
1431   // buf is not optional, but offset is optional
1432   assert(buf != NULL, "sanity check");
1433 
1434 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1435 //       return the full path to the DLL file, sometimes it returns path
1436 //       to the corresponding PDB file (debug info); sometimes it only
1437 //       returns partial path, which makes life painful.
1438 
1439   struct _modinfo mi;
1440   mi.addr      = addr;
1441   mi.full_path = buf;
1442   mi.buflen    = buflen;
1443   int pid = os::current_process_id();
1444   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1445     // buf already contains path name
1446     if (offset) *offset = addr - mi.base_addr;
1447     return true;
1448   }
1449 
1450   buf[0] = '\0';
1451   if (offset) *offset = -1;
1452   return false;
1453 }
1454 
1455 bool os::dll_address_to_function_name(address addr, char *buf,
1456                                       int buflen, int *offset) {
1457   // buf is not optional, but offset is optional
1458   assert(buf != NULL, "sanity check");
1459 
1460   if (Decoder::decode(addr, buf, buflen, offset)) {
1461     return true;
1462   }
1463   if (offset != NULL)  *offset  = -1;
1464   buf[0] = '\0';
1465   return false;
1466 }
1467 
1468 // save the start and end address of jvm.dll into param[0] and param[1]
1469 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1470                     unsigned size, void * param) {
1471    if (!param) return -1;
1472 
1473    if (base_addr     <= (address)_locate_jvm_dll &&
1474        base_addr+size > (address)_locate_jvm_dll) {
1475          ((address*)param)[0] = base_addr;
1476          ((address*)param)[1] = base_addr + size;
1477          return 1;
1478    }
1479    return 0;
1480 }
1481 
1482 address vm_lib_location[2];    // start and end address of jvm.dll
1483 
1484 // check if addr is inside jvm.dll
1485 bool os::address_is_in_vm(address addr) {
1486   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1487     int pid = os::current_process_id();
1488     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1489       assert(false, "Can't find jvm module.");
1490       return false;
1491     }
1492   }
1493 
1494   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1495 }
1496 
1497 // print module info; param is outputStream*
1498 static int _print_module(int pid, char* fname, address base,
1499                          unsigned size, void* param) {
1500    if (!param) return -1;
1501 
1502    outputStream* st = (outputStream*)param;
1503 
1504    address end_addr = base + size;
1505    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1506    return 0;
1507 }
1508 
1509 // Loads .dll/.so and
1510 // in case of error it checks if .dll/.so was built for the
1511 // same architecture as Hotspot is running on
1512 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1513 {
1514   void * result = LoadLibrary(name);
1515   if (result != NULL)
1516   {
1517     return result;
1518   }
1519 
1520   DWORD errcode = GetLastError();
1521   if (errcode == ERROR_MOD_NOT_FOUND) {
1522     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1523     ebuf[ebuflen-1]='\0';
1524     return NULL;
1525   }
1526 
1527   // Parsing dll below
1528   // If we can read dll-info and find that dll was built
1529   // for an architecture other than Hotspot is running in
1530   // - then print to buffer "DLL was built for a different architecture"
1531   // else call os::lasterror to obtain system error message
1532 
1533   // Read system error message into ebuf
1534   // It may or may not be overwritten below (in the for loop and just above)
1535   lasterror(ebuf, (size_t) ebuflen);
1536   ebuf[ebuflen-1]='\0';
1537   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1538   if (file_descriptor<0)
1539   {
1540     return NULL;
1541   }
1542 
1543   uint32_t signature_offset;
1544   uint16_t lib_arch=0;
1545   bool failed_to_get_lib_arch=
1546   (
1547     //Go to position 3c in the dll
1548     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1549     ||
1550     // Read loacation of signature
1551     (sizeof(signature_offset)!=
1552       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1553     ||
1554     //Go to COFF File Header in dll
1555     //that is located after"signature" (4 bytes long)
1556     (os::seek_to_file_offset(file_descriptor,
1557       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1558     ||
1559     //Read field that contains code of architecture
1560     // that dll was build for
1561     (sizeof(lib_arch)!=
1562       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1563   );
1564 
1565   ::close(file_descriptor);
1566   if (failed_to_get_lib_arch)
1567   {
1568     // file i/o error - report os::lasterror(...) msg
1569     return NULL;
1570   }
1571 
1572   typedef struct
1573   {
1574     uint16_t arch_code;
1575     char* arch_name;
1576   } arch_t;
1577 
1578   static const arch_t arch_array[]={
1579     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1580     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1581     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1582   };
1583   #if   (defined _M_IA64)
1584     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1585   #elif (defined _M_AMD64)
1586     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1587   #elif (defined _M_IX86)
1588     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1589   #else
1590     #error Method os::dll_load requires that one of following \
1591            is defined :_M_IA64,_M_AMD64 or _M_IX86
1592   #endif
1593 
1594 
1595   // Obtain a string for printf operation
1596   // lib_arch_str shall contain string what platform this .dll was built for
1597   // running_arch_str shall string contain what platform Hotspot was built for
1598   char *running_arch_str=NULL,*lib_arch_str=NULL;
1599   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1600   {
1601     if (lib_arch==arch_array[i].arch_code)
1602       lib_arch_str=arch_array[i].arch_name;
1603     if (running_arch==arch_array[i].arch_code)
1604       running_arch_str=arch_array[i].arch_name;
1605   }
1606 
1607   assert(running_arch_str,
1608     "Didn't find runing architecture code in arch_array");
1609 
1610   // If the architure is right
1611   // but some other error took place - report os::lasterror(...) msg
1612   if (lib_arch == running_arch)
1613   {
1614     return NULL;
1615   }
1616 
1617   if (lib_arch_str!=NULL)
1618   {
1619     ::_snprintf(ebuf, ebuflen-1,
1620       "Can't load %s-bit .dll on a %s-bit platform",
1621       lib_arch_str,running_arch_str);
1622   }
1623   else
1624   {
1625     // don't know what architecture this dll was build for
1626     ::_snprintf(ebuf, ebuflen-1,
1627       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1628       lib_arch,running_arch_str);
1629   }
1630 
1631   return NULL;
1632 }
1633 
1634 
1635 void os::print_dll_info(outputStream *st) {
1636    int pid = os::current_process_id();
1637    st->print_cr("Dynamic libraries:");
1638    enumerate_modules(pid, _print_module, (void *)st);
1639 }
1640 
1641 void os::print_os_info_brief(outputStream* st) {
1642   os::print_os_info(st);
1643 }
1644 
1645 void os::print_os_info(outputStream* st) {
1646   st->print("OS:");
1647 
1648   os::win32::print_windows_version(st);
1649 }
1650 
1651 void os::win32::print_windows_version(outputStream* st) {
1652   OSVERSIONINFOEX osvi;
1653   SYSTEM_INFO si;
1654 
1655   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1656   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1657 
1658   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1659     st->print_cr("N/A");
1660     return;
1661   }
1662 
1663   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1664 
1665   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1666   if (os_vers >= 5002) {
1667     // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1668     // find out whether we are running on 64 bit processor or not.
1669     if (os::Kernel32Dll::GetNativeSystemInfoAvailable()) {
1670       os::Kernel32Dll::GetNativeSystemInfo(&si);
1671     } else {
1672       GetSystemInfo(&si);
1673     }
1674   }
1675 
1676   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1677     switch (os_vers) {
1678     case 3051: st->print(" Windows NT 3.51"); break;
1679     case 4000: st->print(" Windows NT 4.0"); break;
1680     case 5000: st->print(" Windows 2000"); break;
1681     case 5001: st->print(" Windows XP"); break;
1682     case 5002:
1683       if (osvi.wProductType == VER_NT_WORKSTATION &&
1684           si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1685         st->print(" Windows XP x64 Edition");
1686       } else {
1687         st->print(" Windows Server 2003 family");
1688       }
1689       break;
1690 
1691     case 6000:
1692       if (osvi.wProductType == VER_NT_WORKSTATION) {
1693         st->print(" Windows Vista");
1694       } else {
1695         st->print(" Windows Server 2008");
1696       }
1697       break;
1698 
1699     case 6001:
1700       if (osvi.wProductType == VER_NT_WORKSTATION) {
1701         st->print(" Windows 7");
1702       } else {
1703         st->print(" Windows Server 2008 R2");
1704       }
1705       break;
1706 
1707     case 6002:
1708       if (osvi.wProductType == VER_NT_WORKSTATION) {
1709         st->print(" Windows 8");
1710       } else {
1711         st->print(" Windows Server 2012");
1712       }
1713       break;
1714 
1715     case 6003:
1716       if (osvi.wProductType == VER_NT_WORKSTATION) {
1717         st->print(" Windows 8.1");
1718       } else {
1719         st->print(" Windows Server 2012 R2");
1720       }
1721       break;
1722 
1723     default: // future os
1724       // Unrecognized windows, print out its major and minor versions
1725       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1726     }
1727   } else {
1728     switch (os_vers) {
1729     case 4000: st->print(" Windows 95"); break;
1730     case 4010: st->print(" Windows 98"); break;
1731     case 4090: st->print(" Windows Me"); break;
1732     default: // future windows, print out its major and minor versions
1733       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1734     }
1735   }
1736 
1737   if (os_vers >= 6000 && si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1738     st->print(" , 64 bit");
1739   }
1740 
1741   st->print(" Build %d", osvi.dwBuildNumber);
1742   st->print(" %s", osvi.szCSDVersion);           // service pack
1743   st->cr();
1744 }
1745 
1746 void os::pd_print_cpu_info(outputStream* st) {
1747   // Nothing to do for now.
1748 }
1749 
1750 void os::print_memory_info(outputStream* st) {
1751   st->print("Memory:");
1752   st->print(" %dk page", os::vm_page_size()>>10);
1753 
1754   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1755   // value if total memory is larger than 4GB
1756   MEMORYSTATUSEX ms;
1757   ms.dwLength = sizeof(ms);
1758   GlobalMemoryStatusEx(&ms);
1759 
1760   st->print(", physical %uk", os::physical_memory() >> 10);
1761   st->print("(%uk free)", os::available_memory() >> 10);
1762 
1763   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1764   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1765   st->cr();
1766 }
1767 
1768 void os::print_siginfo(outputStream *st, void *siginfo) {
1769   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1770   st->print("siginfo:");
1771   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1772 
1773   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1774       er->NumberParameters >= 2) {
1775       switch (er->ExceptionInformation[0]) {
1776       case 0: st->print(", reading address"); break;
1777       case 1: st->print(", writing address"); break;
1778       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1779                             er->ExceptionInformation[0]);
1780       }
1781       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1782   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1783              er->NumberParameters >= 2 && UseSharedSpaces) {
1784     FileMapInfo* mapinfo = FileMapInfo::current_info();
1785     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1786       st->print("\n\nError accessing class data sharing archive."       \
1787                 " Mapped file inaccessible during execution, "          \
1788                 " possible disk/network problem.");
1789     }
1790   } else {
1791     int num = er->NumberParameters;
1792     if (num > 0) {
1793       st->print(", ExceptionInformation=");
1794       for (int i = 0; i < num; i++) {
1795         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1796       }
1797     }
1798   }
1799   st->cr();
1800 }
1801 
1802 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1803   // do nothing
1804 }
1805 
1806 static char saved_jvm_path[MAX_PATH] = {0};
1807 
1808 // Find the full path to the current module, jvm.dll
1809 void os::jvm_path(char *buf, jint buflen) {
1810   // Error checking.
1811   if (buflen < MAX_PATH) {
1812     assert(false, "must use a large-enough buffer");
1813     buf[0] = '\0';
1814     return;
1815   }
1816   // Lazy resolve the path to current module.
1817   if (saved_jvm_path[0] != 0) {
1818     strcpy(buf, saved_jvm_path);
1819     return;
1820   }
1821 
1822   buf[0] = '\0';
1823   if (Arguments::created_by_gamma_launcher()) {
1824      // Support for the gamma launcher. Check for an
1825      // JAVA_HOME environment variable
1826      // and fix up the path so it looks like
1827      // libjvm.so is installed there (append a fake suffix
1828      // hotspot/libjvm.so).
1829      char* java_home_var = ::getenv("JAVA_HOME");
1830      if (java_home_var != NULL && java_home_var[0] != 0 &&
1831          strlen(java_home_var) < (size_t)buflen) {
1832 
1833         strncpy(buf, java_home_var, buflen);
1834 
1835         // determine if this is a legacy image or modules image
1836         // modules image doesn't have "jre" subdirectory
1837         size_t len = strlen(buf);
1838         char* jrebin_p = buf + len;
1839         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1840         if (0 != _access(buf, 0)) {
1841           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1842         }
1843         len = strlen(buf);
1844         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1845      }
1846   }
1847 
1848   if(buf[0] == '\0') {
1849     GetModuleFileName(vm_lib_handle, buf, buflen);
1850   }
1851   strncpy(saved_jvm_path, buf, MAX_PATH);
1852 }
1853 
1854 
1855 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1856 #ifndef _WIN64
1857   st->print("_");
1858 #endif
1859 }
1860 
1861 
1862 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1863 #ifndef _WIN64
1864   st->print("@%d", args_size  * sizeof(int));
1865 #endif
1866 }
1867 
1868 // This method is a copy of JDK's sysGetLastErrorString
1869 // from src/windows/hpi/src/system_md.c
1870 
1871 size_t os::lasterror(char* buf, size_t len) {
1872   DWORD errval;
1873 
1874   if ((errval = GetLastError()) != 0) {
1875     // DOS error
1876     size_t n = (size_t)FormatMessage(
1877           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1878           NULL,
1879           errval,
1880           0,
1881           buf,
1882           (DWORD)len,
1883           NULL);
1884     if (n > 3) {
1885       // Drop final '.', CR, LF
1886       if (buf[n - 1] == '\n') n--;
1887       if (buf[n - 1] == '\r') n--;
1888       if (buf[n - 1] == '.') n--;
1889       buf[n] = '\0';
1890     }
1891     return n;
1892   }
1893 
1894   if (errno != 0) {
1895     // C runtime error that has no corresponding DOS error code
1896     const char* s = strerror(errno);
1897     size_t n = strlen(s);
1898     if (n >= len) n = len - 1;
1899     strncpy(buf, s, n);
1900     buf[n] = '\0';
1901     return n;
1902   }
1903 
1904   return 0;
1905 }
1906 
1907 int os::get_last_error() {
1908   DWORD error = GetLastError();
1909   if (error == 0)
1910     error = errno;
1911   return (int)error;
1912 }
1913 
1914 // sun.misc.Signal
1915 // NOTE that this is a workaround for an apparent kernel bug where if
1916 // a signal handler for SIGBREAK is installed then that signal handler
1917 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1918 // See bug 4416763.
1919 static void (*sigbreakHandler)(int) = NULL;
1920 
1921 static void UserHandler(int sig, void *siginfo, void *context) {
1922   os::signal_notify(sig);
1923   // We need to reinstate the signal handler each time...
1924   os::signal(sig, (void*)UserHandler);
1925 }
1926 
1927 void* os::user_handler() {
1928   return (void*) UserHandler;
1929 }
1930 
1931 void* os::signal(int signal_number, void* handler) {
1932   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1933     void (*oldHandler)(int) = sigbreakHandler;
1934     sigbreakHandler = (void (*)(int)) handler;
1935     return (void*) oldHandler;
1936   } else {
1937     return (void*)::signal(signal_number, (void (*)(int))handler);
1938   }
1939 }
1940 
1941 void os::signal_raise(int signal_number) {
1942   raise(signal_number);
1943 }
1944 
1945 // The Win32 C runtime library maps all console control events other than ^C
1946 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1947 // logoff, and shutdown events.  We therefore install our own console handler
1948 // that raises SIGTERM for the latter cases.
1949 //
1950 static BOOL WINAPI consoleHandler(DWORD event) {
1951   switch(event) {
1952     case CTRL_C_EVENT:
1953       if (is_error_reported()) {
1954         // Ctrl-C is pressed during error reporting, likely because the error
1955         // handler fails to abort. Let VM die immediately.
1956         os::die();
1957       }
1958 
1959       os::signal_raise(SIGINT);
1960       return TRUE;
1961       break;
1962     case CTRL_BREAK_EVENT:
1963       if (sigbreakHandler != NULL) {
1964         (*sigbreakHandler)(SIGBREAK);
1965       }
1966       return TRUE;
1967       break;
1968     case CTRL_LOGOFF_EVENT: {
1969       // Don't terminate JVM if it is running in a non-interactive session,
1970       // such as a service process.
1971       USEROBJECTFLAGS flags;
1972       HANDLE handle = GetProcessWindowStation();
1973       if (handle != NULL &&
1974           GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1975             sizeof( USEROBJECTFLAGS), NULL)) {
1976         // If it is a non-interactive session, let next handler to deal
1977         // with it.
1978         if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1979           return FALSE;
1980         }
1981       }
1982     }
1983     case CTRL_CLOSE_EVENT:
1984     case CTRL_SHUTDOWN_EVENT:
1985       os::signal_raise(SIGTERM);
1986       return TRUE;
1987       break;
1988     default:
1989       break;
1990   }
1991   return FALSE;
1992 }
1993 
1994 /*
1995  * The following code is moved from os.cpp for making this
1996  * code platform specific, which it is by its very nature.
1997  */
1998 
1999 // Return maximum OS signal used + 1 for internal use only
2000 // Used as exit signal for signal_thread
2001 int os::sigexitnum_pd(){
2002   return NSIG;
2003 }
2004 
2005 // a counter for each possible signal value, including signal_thread exit signal
2006 static volatile jint pending_signals[NSIG+1] = { 0 };
2007 static HANDLE sig_sem = NULL;
2008 
2009 void os::signal_init_pd() {
2010   // Initialize signal structures
2011   memset((void*)pending_signals, 0, sizeof(pending_signals));
2012 
2013   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2014 
2015   // Programs embedding the VM do not want it to attempt to receive
2016   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2017   // shutdown hooks mechanism introduced in 1.3.  For example, when
2018   // the VM is run as part of a Windows NT service (i.e., a servlet
2019   // engine in a web server), the correct behavior is for any console
2020   // control handler to return FALSE, not TRUE, because the OS's
2021   // "final" handler for such events allows the process to continue if
2022   // it is a service (while terminating it if it is not a service).
2023   // To make this behavior uniform and the mechanism simpler, we
2024   // completely disable the VM's usage of these console events if -Xrs
2025   // (=ReduceSignalUsage) is specified.  This means, for example, that
2026   // the CTRL-BREAK thread dump mechanism is also disabled in this
2027   // case.  See bugs 4323062, 4345157, and related bugs.
2028 
2029   if (!ReduceSignalUsage) {
2030     // Add a CTRL-C handler
2031     SetConsoleCtrlHandler(consoleHandler, TRUE);
2032   }
2033 }
2034 
2035 void os::signal_notify(int signal_number) {
2036   BOOL ret;
2037   if (sig_sem != NULL) {
2038     Atomic::inc(&pending_signals[signal_number]);
2039     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2040     assert(ret != 0, "ReleaseSemaphore() failed");
2041   }
2042 }
2043 
2044 static int check_pending_signals(bool wait_for_signal) {
2045   DWORD ret;
2046   while (true) {
2047     for (int i = 0; i < NSIG + 1; i++) {
2048       jint n = pending_signals[i];
2049       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2050         return i;
2051       }
2052     }
2053     if (!wait_for_signal) {
2054       return -1;
2055     }
2056 
2057     JavaThread *thread = JavaThread::current();
2058 
2059     ThreadBlockInVM tbivm(thread);
2060 
2061     bool threadIsSuspended;
2062     do {
2063       thread->set_suspend_equivalent();
2064       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2065       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2066       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2067 
2068       // were we externally suspended while we were waiting?
2069       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2070       if (threadIsSuspended) {
2071         //
2072         // The semaphore has been incremented, but while we were waiting
2073         // another thread suspended us. We don't want to continue running
2074         // while suspended because that would surprise the thread that
2075         // suspended us.
2076         //
2077         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2078         assert(ret != 0, "ReleaseSemaphore() failed");
2079 
2080         thread->java_suspend_self();
2081       }
2082     } while (threadIsSuspended);
2083   }
2084 }
2085 
2086 int os::signal_lookup() {
2087   return check_pending_signals(false);
2088 }
2089 
2090 int os::signal_wait() {
2091   return check_pending_signals(true);
2092 }
2093 
2094 // Implicit OS exception handling
2095 
2096 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
2097   JavaThread* thread = JavaThread::current();
2098   // Save pc in thread
2099 #ifdef _M_IA64
2100   // Do not blow up if no thread info available.
2101   if (thread) {
2102     // Saving PRECISE pc (with slot information) in thread.
2103     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2104     // Convert precise PC into "Unix" format
2105     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2106     thread->set_saved_exception_pc((address)precise_pc);
2107   }
2108   // Set pc to handler
2109   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2110   // Clear out psr.ri (= Restart Instruction) in order to continue
2111   // at the beginning of the target bundle.
2112   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2113   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2114 #elif _M_AMD64
2115   // Do not blow up if no thread info available.
2116   if (thread) {
2117     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2118   }
2119   // Set pc to handler
2120   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2121 #else
2122   // Do not blow up if no thread info available.
2123   if (thread) {
2124     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2125   }
2126   // Set pc to handler
2127   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2128 #endif
2129 
2130   // Continue the execution
2131   return EXCEPTION_CONTINUE_EXECUTION;
2132 }
2133 
2134 
2135 // Used for PostMortemDump
2136 extern "C" void safepoints();
2137 extern "C" void find(int x);
2138 extern "C" void events();
2139 
2140 // According to Windows API documentation, an illegal instruction sequence should generate
2141 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2142 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2143 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2144 
2145 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2146 
2147 // From "Execution Protection in the Windows Operating System" draft 0.35
2148 // Once a system header becomes available, the "real" define should be
2149 // included or copied here.
2150 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2151 
2152 // Handle NAT Bit consumption on IA64.
2153 #ifdef _M_IA64
2154 #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2155 #endif
2156 
2157 // Windows Vista/2008 heap corruption check
2158 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2159 
2160 #define def_excpt(val) #val, val
2161 
2162 struct siglabel {
2163   char *name;
2164   int   number;
2165 };
2166 
2167 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2168 // C++ compiler contain this error code. Because this is a compiler-generated
2169 // error, the code is not listed in the Win32 API header files.
2170 // The code is actually a cryptic mnemonic device, with the initial "E"
2171 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2172 // ASCII values of "msc".
2173 
2174 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2175 
2176 
2177 struct siglabel exceptlabels[] = {
2178     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2179     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2180     def_excpt(EXCEPTION_BREAKPOINT),
2181     def_excpt(EXCEPTION_SINGLE_STEP),
2182     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2183     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2184     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2185     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2186     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2187     def_excpt(EXCEPTION_FLT_OVERFLOW),
2188     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2189     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2190     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2191     def_excpt(EXCEPTION_INT_OVERFLOW),
2192     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2193     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2194     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2195     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2196     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2197     def_excpt(EXCEPTION_STACK_OVERFLOW),
2198     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2199     def_excpt(EXCEPTION_GUARD_PAGE),
2200     def_excpt(EXCEPTION_INVALID_HANDLE),
2201     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2202     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2203 #ifdef _M_IA64
2204     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2205 #endif
2206     NULL, 0
2207 };
2208 
2209 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2210   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2211     if (exceptlabels[i].number == exception_code) {
2212        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2213        return buf;
2214     }
2215   }
2216 
2217   return NULL;
2218 }
2219 
2220 //-----------------------------------------------------------------------------
2221 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2222   // handle exception caused by idiv; should only happen for -MinInt/-1
2223   // (division by zero is handled explicitly)
2224 #ifdef _M_IA64
2225   assert(0, "Fix Handle_IDiv_Exception");
2226 #elif _M_AMD64
2227   PCONTEXT ctx = exceptionInfo->ContextRecord;
2228   address pc = (address)ctx->Rip;
2229   assert(pc[0] == 0xF7, "not an idiv opcode");
2230   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2231   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2232   // set correct result values and continue after idiv instruction
2233   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2234   ctx->Rax = (DWORD)min_jint;      // result
2235   ctx->Rdx = (DWORD)0;             // remainder
2236   // Continue the execution
2237 #else
2238   PCONTEXT ctx = exceptionInfo->ContextRecord;
2239   address pc = (address)ctx->Eip;
2240   assert(pc[0] == 0xF7, "not an idiv opcode");
2241   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2242   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2243   // set correct result values and continue after idiv instruction
2244   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2245   ctx->Eax = (DWORD)min_jint;      // result
2246   ctx->Edx = (DWORD)0;             // remainder
2247   // Continue the execution
2248 #endif
2249   return EXCEPTION_CONTINUE_EXECUTION;
2250 }
2251 
2252 #ifndef  _WIN64
2253 //-----------------------------------------------------------------------------
2254 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2255   // handle exception caused by native method modifying control word
2256   PCONTEXT ctx = exceptionInfo->ContextRecord;
2257   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2258 
2259   switch (exception_code) {
2260     case EXCEPTION_FLT_DENORMAL_OPERAND:
2261     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2262     case EXCEPTION_FLT_INEXACT_RESULT:
2263     case EXCEPTION_FLT_INVALID_OPERATION:
2264     case EXCEPTION_FLT_OVERFLOW:
2265     case EXCEPTION_FLT_STACK_CHECK:
2266     case EXCEPTION_FLT_UNDERFLOW:
2267       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2268       if (fp_control_word != ctx->FloatSave.ControlWord) {
2269         // Restore FPCW and mask out FLT exceptions
2270         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2271         // Mask out pending FLT exceptions
2272         ctx->FloatSave.StatusWord &=  0xffffff00;
2273         return EXCEPTION_CONTINUE_EXECUTION;
2274       }
2275   }
2276 
2277   if (prev_uef_handler != NULL) {
2278     // We didn't handle this exception so pass it to the previous
2279     // UnhandledExceptionFilter.
2280     return (prev_uef_handler)(exceptionInfo);
2281   }
2282 
2283   return EXCEPTION_CONTINUE_SEARCH;
2284 }
2285 #else //_WIN64
2286 /*
2287   On Windows, the mxcsr control bits are non-volatile across calls
2288   See also CR 6192333
2289   If EXCEPTION_FLT_* happened after some native method modified
2290   mxcsr - it is not a jvm fault.
2291   However should we decide to restore of mxcsr after a faulty
2292   native method we can uncomment following code
2293       jint MxCsr = INITIAL_MXCSR;
2294         // we can't use StubRoutines::addr_mxcsr_std()
2295         // because in Win64 mxcsr is not saved there
2296       if (MxCsr != ctx->MxCsr) {
2297         ctx->MxCsr = MxCsr;
2298         return EXCEPTION_CONTINUE_EXECUTION;
2299       }
2300 
2301 */
2302 #endif // _WIN64
2303 
2304 
2305 static inline void report_error(Thread* t, DWORD exception_code,
2306                                 address addr, void* siginfo, void* context) {
2307   VMError err(t, exception_code, addr, siginfo, context);
2308   err.report_and_die();
2309 
2310   // If UseOsErrorReporting, this will return here and save the error file
2311   // somewhere where we can find it in the minidump.
2312 }
2313 
2314 //-----------------------------------------------------------------------------
2315 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2316   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2317   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2318 #ifdef _M_IA64
2319   // On Itanium, we need the "precise pc", which has the slot number coded
2320   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2321   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2322   // Convert the pc to "Unix format", which has the slot number coded
2323   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2324   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2325   // information is saved in the Unix format.
2326   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2327 #elif _M_AMD64
2328   address pc = (address) exceptionInfo->ContextRecord->Rip;
2329 #else
2330   address pc = (address) exceptionInfo->ContextRecord->Eip;
2331 #endif
2332   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2333 
2334   // Handle SafeFetch32 and SafeFetchN exceptions.
2335   if (StubRoutines::is_safefetch_fault(pc)) {
2336     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2337   }
2338 
2339 #ifndef _WIN64
2340   // Execution protection violation - win32 running on AMD64 only
2341   // Handled first to avoid misdiagnosis as a "normal" access violation;
2342   // This is safe to do because we have a new/unique ExceptionInformation
2343   // code for this condition.
2344   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2345     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2346     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2347     address addr = (address) exceptionRecord->ExceptionInformation[1];
2348 
2349     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2350       int page_size = os::vm_page_size();
2351 
2352       // Make sure the pc and the faulting address are sane.
2353       //
2354       // If an instruction spans a page boundary, and the page containing
2355       // the beginning of the instruction is executable but the following
2356       // page is not, the pc and the faulting address might be slightly
2357       // different - we still want to unguard the 2nd page in this case.
2358       //
2359       // 15 bytes seems to be a (very) safe value for max instruction size.
2360       bool pc_is_near_addr =
2361         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2362       bool instr_spans_page_boundary =
2363         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2364                          (intptr_t) page_size) > 0);
2365 
2366       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2367         static volatile address last_addr =
2368           (address) os::non_memory_address_word();
2369 
2370         // In conservative mode, don't unguard unless the address is in the VM
2371         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2372             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2373 
2374           // Set memory to RWX and retry
2375           address page_start =
2376             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2377           bool res = os::protect_memory((char*) page_start, page_size,
2378                                         os::MEM_PROT_RWX);
2379 
2380           if (PrintMiscellaneous && Verbose) {
2381             char buf[256];
2382             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2383                          "at " INTPTR_FORMAT
2384                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2385                          page_start, (res ? "success" : strerror(errno)));
2386             tty->print_raw_cr(buf);
2387           }
2388 
2389           // Set last_addr so if we fault again at the same address, we don't
2390           // end up in an endless loop.
2391           //
2392           // There are two potential complications here.  Two threads trapping
2393           // at the same address at the same time could cause one of the
2394           // threads to think it already unguarded, and abort the VM.  Likely
2395           // very rare.
2396           //
2397           // The other race involves two threads alternately trapping at
2398           // different addresses and failing to unguard the page, resulting in
2399           // an endless loop.  This condition is probably even more unlikely
2400           // than the first.
2401           //
2402           // Although both cases could be avoided by using locks or thread
2403           // local last_addr, these solutions are unnecessary complication:
2404           // this handler is a best-effort safety net, not a complete solution.
2405           // It is disabled by default and should only be used as a workaround
2406           // in case we missed any no-execute-unsafe VM code.
2407 
2408           last_addr = addr;
2409 
2410           return EXCEPTION_CONTINUE_EXECUTION;
2411         }
2412       }
2413 
2414       // Last unguard failed or not unguarding
2415       tty->print_raw_cr("Execution protection violation");
2416       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2417                    exceptionInfo->ContextRecord);
2418       return EXCEPTION_CONTINUE_SEARCH;
2419     }
2420   }
2421 #endif // _WIN64
2422 
2423   // Check to see if we caught the safepoint code in the
2424   // process of write protecting the memory serialization page.
2425   // It write enables the page immediately after protecting it
2426   // so just return.
2427   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2428     JavaThread* thread = (JavaThread*) t;
2429     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2430     address addr = (address) exceptionRecord->ExceptionInformation[1];
2431     if ( os::is_memory_serialize_page(thread, addr) ) {
2432       // Block current thread until the memory serialize page permission restored.
2433       os::block_on_serialize_page_trap();
2434       return EXCEPTION_CONTINUE_EXECUTION;
2435     }
2436   }
2437 
2438   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2439       VM_Version::is_cpuinfo_segv_addr(pc)) {
2440     // Verify that OS save/restore AVX registers.
2441     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2442   }
2443 
2444   if (t != NULL && t->is_Java_thread()) {
2445     JavaThread* thread = (JavaThread*) t;
2446     bool in_java = thread->thread_state() == _thread_in_Java;
2447 
2448     // Handle potential stack overflows up front.
2449     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2450       if (os::uses_stack_guard_pages()) {
2451 #ifdef _M_IA64
2452         // Use guard page for register stack.
2453         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2454         address addr = (address) exceptionRecord->ExceptionInformation[1];
2455         // Check for a register stack overflow on Itanium
2456         if (thread->addr_inside_register_stack_red_zone(addr)) {
2457           // Fatal red zone violation happens if the Java program
2458           // catches a StackOverflow error and does so much processing
2459           // that it runs beyond the unprotected yellow guard zone. As
2460           // a result, we are out of here.
2461           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2462         } else if(thread->addr_inside_register_stack(addr)) {
2463           // Disable the yellow zone which sets the state that
2464           // we've got a stack overflow problem.
2465           if (thread->stack_yellow_zone_enabled()) {
2466             thread->disable_stack_yellow_zone();
2467           }
2468           // Give us some room to process the exception.
2469           thread->disable_register_stack_guard();
2470           // Tracing with +Verbose.
2471           if (Verbose) {
2472             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2473             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2474             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2475             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2476                           thread->register_stack_base(),
2477                           thread->register_stack_base() + thread->stack_size());
2478           }
2479 
2480           // Reguard the permanent register stack red zone just to be sure.
2481           // We saw Windows silently disabling this without telling us.
2482           thread->enable_register_stack_red_zone();
2483 
2484           return Handle_Exception(exceptionInfo,
2485             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2486         }
2487 #endif
2488         if (thread->stack_yellow_zone_enabled()) {
2489           // Yellow zone violation.  The o/s has unprotected the first yellow
2490           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2491           // update the enabled status, even if the zone contains only one page.
2492           thread->disable_stack_yellow_zone();
2493           // If not in java code, return and hope for the best.
2494           return in_java ? Handle_Exception(exceptionInfo,
2495             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2496             :  EXCEPTION_CONTINUE_EXECUTION;
2497         } else {
2498           // Fatal red zone violation.
2499           thread->disable_stack_red_zone();
2500           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2501           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2502                        exceptionInfo->ContextRecord);
2503           return EXCEPTION_CONTINUE_SEARCH;
2504         }
2505       } else if (in_java) {
2506         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2507         // a one-time-only guard page, which it has released to us.  The next
2508         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2509         return Handle_Exception(exceptionInfo,
2510           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2511       } else {
2512         // Can only return and hope for the best.  Further stack growth will
2513         // result in an ACCESS_VIOLATION.
2514         return EXCEPTION_CONTINUE_EXECUTION;
2515       }
2516     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2517       // Either stack overflow or null pointer exception.
2518       if (in_java) {
2519         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2520         address addr = (address) exceptionRecord->ExceptionInformation[1];
2521         address stack_end = thread->stack_base() - thread->stack_size();
2522         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2523           // Stack overflow.
2524           assert(!os::uses_stack_guard_pages(),
2525             "should be caught by red zone code above.");
2526           return Handle_Exception(exceptionInfo,
2527             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2528         }
2529         //
2530         // Check for safepoint polling and implicit null
2531         // We only expect null pointers in the stubs (vtable)
2532         // the rest are checked explicitly now.
2533         //
2534         CodeBlob* cb = CodeCache::find_blob(pc);
2535         if (cb != NULL) {
2536           if (os::is_poll_address(addr)) {
2537             address stub = SharedRuntime::get_poll_stub(pc);
2538             return Handle_Exception(exceptionInfo, stub);
2539           }
2540         }
2541         {
2542 #ifdef _WIN64
2543           //
2544           // If it's a legal stack address map the entire region in
2545           //
2546           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2547           address addr = (address) exceptionRecord->ExceptionInformation[1];
2548           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2549                   addr = (address)((uintptr_t)addr &
2550                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2551                   os::commit_memory((char *)addr, thread->stack_base() - addr,
2552                                     !ExecMem);
2553                   return EXCEPTION_CONTINUE_EXECUTION;
2554           }
2555           else
2556 #endif
2557           {
2558             // Null pointer exception.
2559 #ifdef _M_IA64
2560             // Process implicit null checks in compiled code. Note: Implicit null checks
2561             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2562             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2563               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2564               // Handle implicit null check in UEP method entry
2565               if (cb && (cb->is_frame_complete_at(pc) ||
2566                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2567                 if (Verbose) {
2568                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2569                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2570                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2571                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2572                                 *(bundle_start + 1), *bundle_start);
2573                 }
2574                 return Handle_Exception(exceptionInfo,
2575                   SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2576               }
2577             }
2578 
2579             // Implicit null checks were processed above.  Hence, we should not reach
2580             // here in the usual case => die!
2581             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2582             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2583                          exceptionInfo->ContextRecord);
2584             return EXCEPTION_CONTINUE_SEARCH;
2585 
2586 #else // !IA64
2587 
2588             // Windows 98 reports faulting addresses incorrectly
2589             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2590                 !os::win32::is_nt()) {
2591               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2592               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2593             }
2594             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2595                          exceptionInfo->ContextRecord);
2596             return EXCEPTION_CONTINUE_SEARCH;
2597 #endif
2598           }
2599         }
2600       }
2601 
2602 #ifdef _WIN64
2603       // Special care for fast JNI field accessors.
2604       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2605       // in and the heap gets shrunk before the field access.
2606       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2607         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2608         if (addr != (address)-1) {
2609           return Handle_Exception(exceptionInfo, addr);
2610         }
2611       }
2612 #endif
2613 
2614       // Stack overflow or null pointer exception in native code.
2615       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2616                    exceptionInfo->ContextRecord);
2617       return EXCEPTION_CONTINUE_SEARCH;
2618     } // /EXCEPTION_ACCESS_VIOLATION
2619     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2620 #if defined _M_IA64
2621     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2622               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2623       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2624 
2625       // Compiled method patched to be non entrant? Following conditions must apply:
2626       // 1. must be first instruction in bundle
2627       // 2. must be a break instruction with appropriate code
2628       if((((uint64_t) pc & 0x0F) == 0) &&
2629          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2630         return Handle_Exception(exceptionInfo,
2631                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2632       }
2633     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2634 #endif
2635 
2636 
2637     if (in_java) {
2638       switch (exception_code) {
2639       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2640         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2641 
2642       case EXCEPTION_INT_OVERFLOW:
2643         return Handle_IDiv_Exception(exceptionInfo);
2644 
2645       } // switch
2646     }
2647 #ifndef _WIN64
2648     if (((thread->thread_state() == _thread_in_Java) ||
2649         (thread->thread_state() == _thread_in_native)) &&
2650         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
2651     {
2652       LONG result=Handle_FLT_Exception(exceptionInfo);
2653       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2654     }
2655 #endif //_WIN64
2656   }
2657 
2658   if (exception_code != EXCEPTION_BREAKPOINT) {
2659     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2660                  exceptionInfo->ContextRecord);
2661   }
2662   return EXCEPTION_CONTINUE_SEARCH;
2663 }
2664 
2665 #ifndef _WIN64
2666 // Special care for fast JNI accessors.
2667 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2668 // the heap gets shrunk before the field access.
2669 // Need to install our own structured exception handler since native code may
2670 // install its own.
2671 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2672   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2673   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2674     address pc = (address) exceptionInfo->ContextRecord->Eip;
2675     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2676     if (addr != (address)-1) {
2677       return Handle_Exception(exceptionInfo, addr);
2678     }
2679   }
2680   return EXCEPTION_CONTINUE_SEARCH;
2681 }
2682 
2683 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2684 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2685   __try { \
2686     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2687   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2688   } \
2689   return 0; \
2690 }
2691 
2692 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2693 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2694 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2695 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2696 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2697 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2698 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2699 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2700 
2701 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2702   switch (type) {
2703     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2704     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2705     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2706     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2707     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2708     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2709     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2710     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2711     default:        ShouldNotReachHere();
2712   }
2713   return (address)-1;
2714 }
2715 #endif
2716 
2717 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
2718   // Install a win32 structured exception handler around the test
2719   // function call so the VM can generate an error dump if needed.
2720   __try {
2721     (*funcPtr)();
2722   } __except(topLevelExceptionFilter(
2723              (_EXCEPTION_POINTERS*)_exception_info())) {
2724     // Nothing to do.
2725   }
2726 }
2727 
2728 // Virtual Memory
2729 
2730 int os::vm_page_size() { return os::win32::vm_page_size(); }
2731 int os::vm_allocation_granularity() {
2732   return os::win32::vm_allocation_granularity();
2733 }
2734 
2735 // Windows large page support is available on Windows 2003. In order to use
2736 // large page memory, the administrator must first assign additional privilege
2737 // to the user:
2738 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2739 //   + select Local Policies -> User Rights Assignment
2740 //   + double click "Lock pages in memory", add users and/or groups
2741 //   + reboot
2742 // Note the above steps are needed for administrator as well, as administrators
2743 // by default do not have the privilege to lock pages in memory.
2744 //
2745 // Note about Windows 2003: although the API supports committing large page
2746 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2747 // scenario, I found through experiment it only uses large page if the entire
2748 // memory region is reserved and committed in a single VirtualAlloc() call.
2749 // This makes Windows large page support more or less like Solaris ISM, in
2750 // that the entire heap must be committed upfront. This probably will change
2751 // in the future, if so the code below needs to be revisited.
2752 
2753 #ifndef MEM_LARGE_PAGES
2754 #define MEM_LARGE_PAGES 0x20000000
2755 #endif
2756 
2757 static HANDLE    _hProcess;
2758 static HANDLE    _hToken;
2759 
2760 // Container for NUMA node list info
2761 class NUMANodeListHolder {
2762 private:
2763   int *_numa_used_node_list;  // allocated below
2764   int _numa_used_node_count;
2765 
2766   void free_node_list() {
2767     if (_numa_used_node_list != NULL) {
2768       FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
2769     }
2770   }
2771 
2772 public:
2773   NUMANodeListHolder() {
2774     _numa_used_node_count = 0;
2775     _numa_used_node_list = NULL;
2776     // do rest of initialization in build routine (after function pointers are set up)
2777   }
2778 
2779   ~NUMANodeListHolder() {
2780     free_node_list();
2781   }
2782 
2783   bool build() {
2784     DWORD_PTR proc_aff_mask;
2785     DWORD_PTR sys_aff_mask;
2786     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2787     ULONG highest_node_number;
2788     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2789     free_node_list();
2790     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2791     for (unsigned int i = 0; i <= highest_node_number; i++) {
2792       ULONGLONG proc_mask_numa_node;
2793       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2794       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2795         _numa_used_node_list[_numa_used_node_count++] = i;
2796       }
2797     }
2798     return (_numa_used_node_count > 1);
2799   }
2800 
2801   int get_count() {return _numa_used_node_count;}
2802   int get_node_list_entry(int n) {
2803     // for indexes out of range, returns -1
2804     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2805   }
2806 
2807 } numa_node_list_holder;
2808 
2809 
2810 
2811 static size_t _large_page_size = 0;
2812 
2813 static bool resolve_functions_for_large_page_init() {
2814   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2815     os::Advapi32Dll::AdvapiAvailable();
2816 }
2817 
2818 static bool request_lock_memory_privilege() {
2819   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2820                                 os::current_process_id());
2821 
2822   LUID luid;
2823   if (_hProcess != NULL &&
2824       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2825       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2826 
2827     TOKEN_PRIVILEGES tp;
2828     tp.PrivilegeCount = 1;
2829     tp.Privileges[0].Luid = luid;
2830     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2831 
2832     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2833     // privilege. Check GetLastError() too. See MSDN document.
2834     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2835         (GetLastError() == ERROR_SUCCESS)) {
2836       return true;
2837     }
2838   }
2839 
2840   return false;
2841 }
2842 
2843 static void cleanup_after_large_page_init() {
2844   if (_hProcess) CloseHandle(_hProcess);
2845   _hProcess = NULL;
2846   if (_hToken) CloseHandle(_hToken);
2847   _hToken = NULL;
2848 }
2849 
2850 static bool numa_interleaving_init() {
2851   bool success = false;
2852   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2853 
2854   // print a warning if UseNUMAInterleaving flag is specified on command line
2855   bool warn_on_failure = use_numa_interleaving_specified;
2856 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2857 
2858   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2859   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2860   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2861 
2862   if (os::Kernel32Dll::NumaCallsAvailable()) {
2863     if (numa_node_list_holder.build()) {
2864       if (PrintMiscellaneous && Verbose) {
2865         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2866         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2867           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2868         }
2869         tty->print("\n");
2870       }
2871       success = true;
2872     } else {
2873       WARN("Process does not cover multiple NUMA nodes.");
2874     }
2875   } else {
2876     WARN("NUMA Interleaving is not supported by the operating system.");
2877   }
2878   if (!success) {
2879     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2880   }
2881   return success;
2882 #undef WARN
2883 }
2884 
2885 // this routine is used whenever we need to reserve a contiguous VA range
2886 // but we need to make separate VirtualAlloc calls for each piece of the range
2887 // Reasons for doing this:
2888 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2889 //  * UseNUMAInterleaving requires a separate node for each piece
2890 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
2891                                          bool should_inject_error=false) {
2892   char * p_buf;
2893   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2894   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2895   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2896 
2897   // first reserve enough address space in advance since we want to be
2898   // able to break a single contiguous virtual address range into multiple
2899   // large page commits but WS2003 does not allow reserving large page space
2900   // so we just use 4K pages for reserve, this gives us a legal contiguous
2901   // address space. then we will deallocate that reservation, and re alloc
2902   // using large pages
2903   const size_t size_of_reserve = bytes + chunk_size;
2904   if (bytes > size_of_reserve) {
2905     // Overflowed.
2906     return NULL;
2907   }
2908   p_buf = (char *) VirtualAlloc(addr,
2909                                 size_of_reserve,  // size of Reserve
2910                                 MEM_RESERVE,
2911                                 PAGE_READWRITE);
2912   // If reservation failed, return NULL
2913   if (p_buf == NULL) return NULL;
2914   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2915   os::release_memory(p_buf, bytes + chunk_size);
2916 
2917   // we still need to round up to a page boundary (in case we are using large pages)
2918   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2919   // instead we handle this in the bytes_to_rq computation below
2920   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2921 
2922   // now go through and allocate one chunk at a time until all bytes are
2923   // allocated
2924   size_t  bytes_remaining = bytes;
2925   // An overflow of align_size_up() would have been caught above
2926   // in the calculation of size_of_reserve.
2927   char * next_alloc_addr = p_buf;
2928   HANDLE hProc = GetCurrentProcess();
2929 
2930 #ifdef ASSERT
2931   // Variable for the failure injection
2932   long ran_num = os::random();
2933   size_t fail_after = ran_num % bytes;
2934 #endif
2935 
2936   int count=0;
2937   while (bytes_remaining) {
2938     // select bytes_to_rq to get to the next chunk_size boundary
2939 
2940     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2941     // Note allocate and commit
2942     char * p_new;
2943 
2944 #ifdef ASSERT
2945     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2946 #else
2947     const bool inject_error_now = false;
2948 #endif
2949 
2950     if (inject_error_now) {
2951       p_new = NULL;
2952     } else {
2953       if (!UseNUMAInterleaving) {
2954         p_new = (char *) VirtualAlloc(next_alloc_addr,
2955                                       bytes_to_rq,
2956                                       flags,
2957                                       prot);
2958       } else {
2959         // get the next node to use from the used_node_list
2960         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2961         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2962         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2963                                                             next_alloc_addr,
2964                                                             bytes_to_rq,
2965                                                             flags,
2966                                                             prot,
2967                                                             node);
2968       }
2969     }
2970 
2971     if (p_new == NULL) {
2972       // Free any allocated pages
2973       if (next_alloc_addr > p_buf) {
2974         // Some memory was committed so release it.
2975         size_t bytes_to_release = bytes - bytes_remaining;
2976         // NMT has yet to record any individual blocks, so it
2977         // need to create a dummy 'reserve' record to match
2978         // the release.
2979         MemTracker::record_virtual_memory_reserve((address)p_buf,
2980           bytes_to_release, CALLER_PC);
2981         os::release_memory(p_buf, bytes_to_release);
2982       }
2983 #ifdef ASSERT
2984       if (should_inject_error) {
2985         if (TracePageSizes && Verbose) {
2986           tty->print_cr("Reserving pages individually failed.");
2987         }
2988       }
2989 #endif
2990       return NULL;
2991     }
2992 
2993     bytes_remaining -= bytes_to_rq;
2994     next_alloc_addr += bytes_to_rq;
2995     count++;
2996   }
2997   // Although the memory is allocated individually, it is returned as one.
2998   // NMT records it as one block.
2999   if ((flags & MEM_COMMIT) != 0) {
3000     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3001   } else {
3002     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3003   }
3004 
3005   // made it this far, success
3006   return p_buf;
3007 }
3008 
3009 
3010 
3011 void os::large_page_init() {
3012   if (!UseLargePages) return;
3013 
3014   // print a warning if any large page related flag is specified on command line
3015   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3016                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3017   bool success = false;
3018 
3019 # define WARN(msg) if (warn_on_failure) { warning(msg); }
3020   if (resolve_functions_for_large_page_init()) {
3021     if (request_lock_memory_privilege()) {
3022       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3023       if (s) {
3024 #if defined(IA32) || defined(AMD64)
3025         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3026           WARN("JVM cannot use large pages bigger than 4mb.");
3027         } else {
3028 #endif
3029           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3030             _large_page_size = LargePageSizeInBytes;
3031           } else {
3032             _large_page_size = s;
3033           }
3034           success = true;
3035 #if defined(IA32) || defined(AMD64)
3036         }
3037 #endif
3038       } else {
3039         WARN("Large page is not supported by the processor.");
3040       }
3041     } else {
3042       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3043     }
3044   } else {
3045     WARN("Large page is not supported by the operating system.");
3046   }
3047 #undef WARN
3048 
3049   const size_t default_page_size = (size_t) vm_page_size();
3050   if (success && _large_page_size > default_page_size) {
3051     _page_sizes[0] = _large_page_size;
3052     _page_sizes[1] = default_page_size;
3053     _page_sizes[2] = 0;
3054   }
3055 
3056   cleanup_after_large_page_init();
3057   UseLargePages = success;
3058 }
3059 
3060 // On win32, one cannot release just a part of reserved memory, it's an
3061 // all or nothing deal.  When we split a reservation, we must break the
3062 // reservation into two reservations.
3063 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3064                               bool realloc) {
3065   if (size > 0) {
3066     release_memory(base, size);
3067     if (realloc) {
3068       reserve_memory(split, base);
3069     }
3070     if (size != split) {
3071       reserve_memory(size - split, base + split);
3072     }
3073   }
3074 }
3075 
3076 // Multiple threads can race in this code but it's not possible to unmap small sections of
3077 // virtual space to get requested alignment, like posix-like os's.
3078 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3079 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3080   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3081       "Alignment must be a multiple of allocation granularity (page size)");
3082   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3083 
3084   size_t extra_size = size + alignment;
3085   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3086 
3087   char* aligned_base = NULL;
3088 
3089   do {
3090     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3091     if (extra_base == NULL) {
3092       return NULL;
3093     }
3094     // Do manual alignment
3095     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3096 
3097     os::release_memory(extra_base, extra_size);
3098 
3099     aligned_base = os::reserve_memory(size, aligned_base);
3100 
3101   } while (aligned_base == NULL);
3102 
3103   return aligned_base;
3104 }
3105 
3106 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3107   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3108          "reserve alignment");
3109   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
3110   char* res;
3111   // note that if UseLargePages is on, all the areas that require interleaving
3112   // will go thru reserve_memory_special rather than thru here.
3113   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3114   if (!use_individual) {
3115     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3116   } else {
3117     elapsedTimer reserveTimer;
3118     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
3119     // in numa interleaving, we have to allocate pages individually
3120     // (well really chunks of NUMAInterleaveGranularity size)
3121     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3122     if (res == NULL) {
3123       warning("NUMA page allocation failed");
3124     }
3125     if( Verbose && PrintMiscellaneous ) {
3126       reserveTimer.stop();
3127       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3128                     reserveTimer.milliseconds(), reserveTimer.ticks());
3129     }
3130   }
3131   assert(res == NULL || addr == NULL || addr == res,
3132          "Unexpected address from reserve.");
3133 
3134   return res;
3135 }
3136 
3137 // Reserve memory at an arbitrary address, only if that area is
3138 // available (and not reserved for something else).
3139 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3140   // Windows os::reserve_memory() fails of the requested address range is
3141   // not avilable.
3142   return reserve_memory(bytes, requested_addr);
3143 }
3144 
3145 size_t os::large_page_size() {
3146   return _large_page_size;
3147 }
3148 
3149 bool os::can_commit_large_page_memory() {
3150   // Windows only uses large page memory when the entire region is reserved
3151   // and committed in a single VirtualAlloc() call. This may change in the
3152   // future, but with Windows 2003 it's not possible to commit on demand.
3153   return false;
3154 }
3155 
3156 bool os::can_execute_large_page_memory() {
3157   return true;
3158 }
3159 
3160 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr, bool exec) {
3161   assert(UseLargePages, "only for large pages");
3162 
3163   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3164     return NULL; // Fallback to small pages.
3165   }
3166 
3167   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3168   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3169 
3170   // with large pages, there are two cases where we need to use Individual Allocation
3171   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3172   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3173   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3174     if (TracePageSizes && Verbose) {
3175        tty->print_cr("Reserving large pages individually.");
3176     }
3177     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3178     if (p_buf == NULL) {
3179       // give an appropriate warning message
3180       if (UseNUMAInterleaving) {
3181         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3182       }
3183       if (UseLargePagesIndividualAllocation) {
3184         warning("Individually allocated large pages failed, "
3185                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3186       }
3187       return NULL;
3188     }
3189 
3190     return p_buf;
3191 
3192   } else {
3193     if (TracePageSizes && Verbose) {
3194        tty->print_cr("Reserving large pages in a single large chunk.");
3195     }
3196     // normal policy just allocate it all at once
3197     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3198     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3199     if (res != NULL) {
3200       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3201     }
3202 
3203     return res;
3204   }
3205 }
3206 
3207 bool os::release_memory_special(char* base, size_t bytes) {
3208   assert(base != NULL, "Sanity check");
3209   return release_memory(base, bytes);
3210 }
3211 
3212 void os::print_statistics() {
3213 }
3214 
3215 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3216   int err = os::get_last_error();
3217   char buf[256];
3218   size_t buf_len = os::lasterror(buf, sizeof(buf));
3219   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3220           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3221           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3222 }
3223 
3224 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3225   if (bytes == 0) {
3226     // Don't bother the OS with noops.
3227     return true;
3228   }
3229   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3230   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3231   // Don't attempt to print anything if the OS call fails. We're
3232   // probably low on resources, so the print itself may cause crashes.
3233 
3234   // unless we have NUMAInterleaving enabled, the range of a commit
3235   // is always within a reserve covered by a single VirtualAlloc
3236   // in that case we can just do a single commit for the requested size
3237   if (!UseNUMAInterleaving) {
3238     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3239       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3240       return false;
3241     }
3242     if (exec) {
3243       DWORD oldprot;
3244       // Windows doc says to use VirtualProtect to get execute permissions
3245       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3246         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3247         return false;
3248       }
3249     }
3250     return true;
3251   } else {
3252 
3253     // when NUMAInterleaving is enabled, the commit might cover a range that
3254     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3255     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3256     // returns represents the number of bytes that can be committed in one step.
3257     size_t bytes_remaining = bytes;
3258     char * next_alloc_addr = addr;
3259     while (bytes_remaining > 0) {
3260       MEMORY_BASIC_INFORMATION alloc_info;
3261       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3262       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3263       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3264                        PAGE_READWRITE) == NULL) {
3265         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3266                                             exec);)
3267         return false;
3268       }
3269       if (exec) {
3270         DWORD oldprot;
3271         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3272                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3273           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3274                                               exec);)
3275           return false;
3276         }
3277       }
3278       bytes_remaining -= bytes_to_rq;
3279       next_alloc_addr += bytes_to_rq;
3280     }
3281   }
3282   // if we made it this far, return true
3283   return true;
3284 }
3285 
3286 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3287                        bool exec) {
3288   // alignment_hint is ignored on this OS
3289   return pd_commit_memory(addr, size, exec);
3290 }
3291 
3292 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3293                                   const char* mesg) {
3294   assert(mesg != NULL, "mesg must be specified");
3295   if (!pd_commit_memory(addr, size, exec)) {
3296     warn_fail_commit_memory(addr, size, exec);
3297     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3298   }
3299 }
3300 
3301 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3302                                   size_t alignment_hint, bool exec,
3303                                   const char* mesg) {
3304   // alignment_hint is ignored on this OS
3305   pd_commit_memory_or_exit(addr, size, exec, mesg);
3306 }
3307 
3308 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3309   if (bytes == 0) {
3310     // Don't bother the OS with noops.
3311     return true;
3312   }
3313   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3314   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3315   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3316 }
3317 
3318 bool os::pd_release_memory(char* addr, size_t bytes) {
3319   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3320 }
3321 
3322 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3323   return os::commit_memory(addr, size, !ExecMem);
3324 }
3325 
3326 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3327   return os::uncommit_memory(addr, size);
3328 }
3329 
3330 // Set protections specified
3331 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3332                         bool is_committed) {
3333   unsigned int p = 0;
3334   switch (prot) {
3335   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3336   case MEM_PROT_READ: p = PAGE_READONLY; break;
3337   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3338   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3339   default:
3340     ShouldNotReachHere();
3341   }
3342 
3343   DWORD old_status;
3344 
3345   // Strange enough, but on Win32 one can change protection only for committed
3346   // memory, not a big deal anyway, as bytes less or equal than 64K
3347   if (!is_committed) {
3348     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3349                           "cannot commit protection page");
3350   }
3351   // One cannot use os::guard_memory() here, as on Win32 guard page
3352   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3353   //
3354   // Pages in the region become guard pages. Any attempt to access a guard page
3355   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3356   // the guard page status. Guard pages thus act as a one-time access alarm.
3357   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3358 }
3359 
3360 bool os::guard_memory(char* addr, size_t bytes) {
3361   DWORD old_status;
3362   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3363 }
3364 
3365 bool os::unguard_memory(char* addr, size_t bytes) {
3366   DWORD old_status;
3367   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3368 }
3369 
3370 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3371 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3372 void os::numa_make_global(char *addr, size_t bytes)    { }
3373 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3374 bool os::numa_topology_changed()                       { return false; }
3375 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3376 int os::numa_get_group_id()                            { return 0; }
3377 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3378   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3379     // Provide an answer for UMA systems
3380     ids[0] = 0;
3381     return 1;
3382   } else {
3383     // check for size bigger than actual groups_num
3384     size = MIN2(size, numa_get_groups_num());
3385     for (int i = 0; i < (int)size; i++) {
3386       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3387     }
3388     return size;
3389   }
3390 }
3391 
3392 bool os::get_page_info(char *start, page_info* info) {
3393   return false;
3394 }
3395 
3396 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
3397   return end;
3398 }
3399 
3400 char* os::non_memory_address_word() {
3401   // Must never look like an address returned by reserve_memory,
3402   // even in its subfields (as defined by the CPU immediate fields,
3403   // if the CPU splits constants across multiple instructions).
3404   return (char*)-1;
3405 }
3406 
3407 #define MAX_ERROR_COUNT 100
3408 #define SYS_THREAD_ERROR 0xffffffffUL
3409 
3410 void os::pd_start_thread(Thread* thread) {
3411   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3412   // Returns previous suspend state:
3413   // 0:  Thread was not suspended
3414   // 1:  Thread is running now
3415   // >1: Thread is still suspended.
3416   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3417 }
3418 
3419 class HighResolutionInterval : public CHeapObj<mtThread> {
3420   // The default timer resolution seems to be 10 milliseconds.
3421   // (Where is this written down?)
3422   // If someone wants to sleep for only a fraction of the default,
3423   // then we set the timer resolution down to 1 millisecond for
3424   // the duration of their interval.
3425   // We carefully set the resolution back, since otherwise we
3426   // seem to incur an overhead (3%?) that we don't need.
3427   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3428   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3429   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3430   // timeBeginPeriod() if the relative error exceeded some threshold.
3431   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3432   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3433   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3434   // resolution timers running.
3435 private:
3436     jlong resolution;
3437 public:
3438   HighResolutionInterval(jlong ms) {
3439     resolution = ms % 10L;
3440     if (resolution != 0) {
3441       MMRESULT result = timeBeginPeriod(1L);
3442     }
3443   }
3444   ~HighResolutionInterval() {
3445     if (resolution != 0) {
3446       MMRESULT result = timeEndPeriod(1L);
3447     }
3448     resolution = 0L;
3449   }
3450 };
3451 
3452 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3453   jlong limit = (jlong) MAXDWORD;
3454 
3455   while(ms > limit) {
3456     int res;
3457     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
3458       return res;
3459     ms -= limit;
3460   }
3461 
3462   assert(thread == Thread::current(),  "thread consistency check");
3463   OSThread* osthread = thread->osthread();
3464   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3465   int result;
3466   if (interruptable) {
3467     assert(thread->is_Java_thread(), "must be java thread");
3468     JavaThread *jt = (JavaThread *) thread;
3469     ThreadBlockInVM tbivm(jt);
3470 
3471     jt->set_suspend_equivalent();
3472     // cleared by handle_special_suspend_equivalent_condition() or
3473     // java_suspend_self() via check_and_wait_while_suspended()
3474 
3475     HANDLE events[1];
3476     events[0] = osthread->interrupt_event();
3477     HighResolutionInterval *phri=NULL;
3478     if(!ForceTimeHighResolution)
3479       phri = new HighResolutionInterval( ms );
3480     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3481       result = OS_TIMEOUT;
3482     } else {
3483       ResetEvent(osthread->interrupt_event());
3484       osthread->set_interrupted(false);
3485       result = OS_INTRPT;
3486     }
3487     delete phri; //if it is NULL, harmless
3488 
3489     // were we externally suspended while we were waiting?
3490     jt->check_and_wait_while_suspended();
3491   } else {
3492     assert(!thread->is_Java_thread(), "must not be java thread");
3493     Sleep((long) ms);
3494     result = OS_TIMEOUT;
3495   }
3496   return result;
3497 }
3498 
3499 //
3500 // Short sleep, direct OS call.
3501 //
3502 // ms = 0, means allow others (if any) to run.
3503 //
3504 void os::naked_short_sleep(jlong ms) {
3505   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3506   Sleep(ms);
3507 }
3508 
3509 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3510 void os::infinite_sleep() {
3511   while (true) {    // sleep forever ...
3512     Sleep(100000);  // ... 100 seconds at a time
3513   }
3514 }
3515 
3516 typedef BOOL (WINAPI * STTSignature)(void) ;
3517 
3518 os::YieldResult os::NakedYield() {
3519   // Use either SwitchToThread() or Sleep(0)
3520   // Consider passing back the return value from SwitchToThread().
3521   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3522     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3523   } else {
3524     Sleep(0);
3525   }
3526   return os::YIELD_UNKNOWN ;
3527 }
3528 
3529 void os::yield() {  os::NakedYield(); }
3530 
3531 void os::yield_all(int attempts) {
3532   // Yields to all threads, including threads with lower priorities
3533   Sleep(1);
3534 }
3535 
3536 // Win32 only gives you access to seven real priorities at a time,
3537 // so we compress Java's ten down to seven.  It would be better
3538 // if we dynamically adjusted relative priorities.
3539 
3540 int os::java_to_os_priority[CriticalPriority + 1] = {
3541   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3542   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3543   THREAD_PRIORITY_LOWEST,                       // 2
3544   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3545   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3546   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3547   THREAD_PRIORITY_NORMAL,                       // 6
3548   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3549   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3550   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3551   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3552   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3553 };
3554 
3555 int prio_policy1[CriticalPriority + 1] = {
3556   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3557   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3558   THREAD_PRIORITY_LOWEST,                       // 2
3559   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3560   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3561   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3562   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3563   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3564   THREAD_PRIORITY_HIGHEST,                      // 8
3565   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3566   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3567   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3568 };
3569 
3570 static int prio_init() {
3571   // If ThreadPriorityPolicy is 1, switch tables
3572   if (ThreadPriorityPolicy == 1) {
3573     int i;
3574     for (i = 0; i < CriticalPriority + 1; i++) {
3575       os::java_to_os_priority[i] = prio_policy1[i];
3576     }
3577   }
3578   if (UseCriticalJavaThreadPriority) {
3579     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
3580   }
3581   return 0;
3582 }
3583 
3584 OSReturn os::set_native_priority(Thread* thread, int priority) {
3585   if (!UseThreadPriorities) return OS_OK;
3586   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3587   return ret ? OS_OK : OS_ERR;
3588 }
3589 
3590 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3591   if ( !UseThreadPriorities ) {
3592     *priority_ptr = java_to_os_priority[NormPriority];
3593     return OS_OK;
3594   }
3595   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3596   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3597     assert(false, "GetThreadPriority failed");
3598     return OS_ERR;
3599   }
3600   *priority_ptr = os_prio;
3601   return OS_OK;
3602 }
3603 
3604 
3605 // Hint to the underlying OS that a task switch would not be good.
3606 // Void return because it's a hint and can fail.
3607 void os::hint_no_preempt() {}
3608 
3609 void os::interrupt(Thread* thread) {
3610   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3611          "possibility of dangling Thread pointer");
3612 
3613   OSThread* osthread = thread->osthread();
3614   osthread->set_interrupted(true);
3615   // More than one thread can get here with the same value of osthread,
3616   // resulting in multiple notifications.  We do, however, want the store
3617   // to interrupted() to be visible to other threads before we post
3618   // the interrupt event.
3619   OrderAccess::release();
3620   SetEvent(osthread->interrupt_event());
3621   // For JSR166:  unpark after setting status
3622   if (thread->is_Java_thread())
3623     ((JavaThread*)thread)->parker()->unpark();
3624 
3625   ParkEvent * ev = thread->_ParkEvent ;
3626   if (ev != NULL) ev->unpark() ;
3627 
3628 }
3629 
3630 
3631 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3632   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3633          "possibility of dangling Thread pointer");
3634 
3635   OSThread* osthread = thread->osthread();
3636   // There is no synchronization between the setting of the interrupt
3637   // and it being cleared here. It is critical - see 6535709 - that
3638   // we only clear the interrupt state, and reset the interrupt event,
3639   // if we are going to report that we were indeed interrupted - else
3640   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3641   // depending on the timing. By checking thread interrupt event to see
3642   // if the thread gets real interrupt thus prevent spurious wakeup.
3643   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3644   if (interrupted && clear_interrupted) {
3645     osthread->set_interrupted(false);
3646     ResetEvent(osthread->interrupt_event());
3647   } // Otherwise leave the interrupted state alone
3648 
3649   return interrupted;
3650 }
3651 
3652 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3653 ExtendedPC os::get_thread_pc(Thread* thread) {
3654   CONTEXT context;
3655   context.ContextFlags = CONTEXT_CONTROL;
3656   HANDLE handle = thread->osthread()->thread_handle();
3657 #ifdef _M_IA64
3658   assert(0, "Fix get_thread_pc");
3659   return ExtendedPC(NULL);
3660 #else
3661   if (GetThreadContext(handle, &context)) {
3662 #ifdef _M_AMD64
3663     return ExtendedPC((address) context.Rip);
3664 #else
3665     return ExtendedPC((address) context.Eip);
3666 #endif
3667   } else {
3668     return ExtendedPC(NULL);
3669   }
3670 #endif
3671 }
3672 
3673 // GetCurrentThreadId() returns DWORD
3674 intx os::current_thread_id()          { return GetCurrentThreadId(); }
3675 
3676 static int _initial_pid = 0;
3677 
3678 int os::current_process_id()
3679 {
3680   return (_initial_pid ? _initial_pid : _getpid());
3681 }
3682 
3683 int    os::win32::_vm_page_size       = 0;
3684 int    os::win32::_vm_allocation_granularity = 0;
3685 int    os::win32::_processor_type     = 0;
3686 // Processor level is not available on non-NT systems, use vm_version instead
3687 int    os::win32::_processor_level    = 0;
3688 julong os::win32::_physical_memory    = 0;
3689 size_t os::win32::_default_stack_size = 0;
3690 
3691          intx os::win32::_os_thread_limit    = 0;
3692 volatile intx os::win32::_os_thread_count    = 0;
3693 
3694 bool   os::win32::_is_nt              = false;
3695 bool   os::win32::_is_windows_2003    = false;
3696 bool   os::win32::_is_windows_server  = false;
3697 
3698 void os::win32::initialize_system_info() {
3699   SYSTEM_INFO si;
3700   GetSystemInfo(&si);
3701   _vm_page_size    = si.dwPageSize;
3702   _vm_allocation_granularity = si.dwAllocationGranularity;
3703   _processor_type  = si.dwProcessorType;
3704   _processor_level = si.wProcessorLevel;
3705   set_processor_count(si.dwNumberOfProcessors);
3706 
3707   MEMORYSTATUSEX ms;
3708   ms.dwLength = sizeof(ms);
3709 
3710   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3711   // dwMemoryLoad (% of memory in use)
3712   GlobalMemoryStatusEx(&ms);
3713   _physical_memory = ms.ullTotalPhys;
3714 
3715   OSVERSIONINFOEX oi;
3716   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3717   GetVersionEx((OSVERSIONINFO*)&oi);
3718   switch(oi.dwPlatformId) {
3719     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3720     case VER_PLATFORM_WIN32_NT:
3721       _is_nt = true;
3722       {
3723         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3724         if (os_vers == 5002) {
3725           _is_windows_2003 = true;
3726         }
3727         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3728           oi.wProductType == VER_NT_SERVER) {
3729             _is_windows_server = true;
3730         }
3731       }
3732       break;
3733     default: fatal("Unknown platform");
3734   }
3735 
3736   _default_stack_size = os::current_stack_size();
3737   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3738   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3739     "stack size not a multiple of page size");
3740 
3741   initialize_performance_counter();
3742 
3743   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3744   // known to deadlock the system, if the VM issues to thread operations with
3745   // a too high frequency, e.g., such as changing the priorities.
3746   // The 6000 seems to work well - no deadlocks has been notices on the test
3747   // programs that we have seen experience this problem.
3748   if (!os::win32::is_nt()) {
3749     StarvationMonitorInterval = 6000;
3750   }
3751 }
3752 
3753 
3754 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
3755   char path[MAX_PATH];
3756   DWORD size;
3757   DWORD pathLen = (DWORD)sizeof(path);
3758   HINSTANCE result = NULL;
3759 
3760   // only allow library name without path component
3761   assert(strchr(name, '\\') == NULL, "path not allowed");
3762   assert(strchr(name, ':') == NULL, "path not allowed");
3763   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3764     jio_snprintf(ebuf, ebuflen,
3765       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3766     return NULL;
3767   }
3768 
3769   // search system directory
3770   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3771     strcat(path, "\\");
3772     strcat(path, name);
3773     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3774       return result;
3775     }
3776   }
3777 
3778   // try Windows directory
3779   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3780     strcat(path, "\\");
3781     strcat(path, name);
3782     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3783       return result;
3784     }
3785   }
3786 
3787   jio_snprintf(ebuf, ebuflen,
3788     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3789   return NULL;
3790 }
3791 
3792 void os::win32::setmode_streams() {
3793   _setmode(_fileno(stdin), _O_BINARY);
3794   _setmode(_fileno(stdout), _O_BINARY);
3795   _setmode(_fileno(stderr), _O_BINARY);
3796 }
3797 
3798 
3799 bool os::is_debugger_attached() {
3800   return IsDebuggerPresent() ? true : false;
3801 }
3802 
3803 
3804 void os::wait_for_keypress_at_exit(void) {
3805   if (PauseAtExit) {
3806     fprintf(stderr, "Press any key to continue...\n");
3807     fgetc(stdin);
3808   }
3809 }
3810 
3811 
3812 int os::message_box(const char* title, const char* message) {
3813   int result = MessageBox(NULL, message, title,
3814                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3815   return result == IDYES;
3816 }
3817 
3818 int os::allocate_thread_local_storage() {
3819   return TlsAlloc();
3820 }
3821 
3822 
3823 void os::free_thread_local_storage(int index) {
3824   TlsFree(index);
3825 }
3826 
3827 
3828 void os::thread_local_storage_at_put(int index, void* value) {
3829   TlsSetValue(index, value);
3830   assert(thread_local_storage_at(index) == value, "Just checking");
3831 }
3832 
3833 
3834 void* os::thread_local_storage_at(int index) {
3835   return TlsGetValue(index);
3836 }
3837 
3838 
3839 #ifndef PRODUCT
3840 #ifndef _WIN64
3841 // Helpers to check whether NX protection is enabled
3842 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3843   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3844       pex->ExceptionRecord->NumberParameters > 0 &&
3845       pex->ExceptionRecord->ExceptionInformation[0] ==
3846       EXCEPTION_INFO_EXEC_VIOLATION) {
3847     return EXCEPTION_EXECUTE_HANDLER;
3848   }
3849   return EXCEPTION_CONTINUE_SEARCH;
3850 }
3851 
3852 void nx_check_protection() {
3853   // If NX is enabled we'll get an exception calling into code on the stack
3854   char code[] = { (char)0xC3 }; // ret
3855   void *code_ptr = (void *)code;
3856   __try {
3857     __asm call code_ptr
3858   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3859     tty->print_raw_cr("NX protection detected.");
3860   }
3861 }
3862 #endif // _WIN64
3863 #endif // PRODUCT
3864 
3865 // this is called _before_ the global arguments have been parsed
3866 void os::init(void) {
3867   _initial_pid = _getpid();
3868 
3869   init_random(1234567);
3870 
3871   win32::initialize_system_info();
3872   win32::setmode_streams();
3873   init_page_sizes((size_t) win32::vm_page_size());
3874 
3875   // For better scalability on MP systems (must be called after initialize_system_info)
3876 #ifndef PRODUCT
3877   if (is_MP()) {
3878     NoYieldsInMicrolock = true;
3879   }
3880 #endif
3881   // This may be overridden later when argument processing is done.
3882   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3883     os::win32::is_windows_2003());
3884 
3885   // Initialize main_process and main_thread
3886   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3887  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3888                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3889     fatal("DuplicateHandle failed\n");
3890   }
3891   main_thread_id = (int) GetCurrentThreadId();
3892 }
3893 
3894 // To install functions for atexit processing
3895 extern "C" {
3896   static void perfMemory_exit_helper() {
3897     perfMemory_exit();
3898   }
3899 }
3900 
3901 static jint initSock();
3902 
3903 // this is called _after_ the global arguments have been parsed
3904 jint os::init_2(void) {
3905   // Allocate a single page and mark it as readable for safepoint polling
3906   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3907   guarantee( polling_page != NULL, "Reserve Failed for polling page");
3908 
3909   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3910   guarantee( return_page != NULL, "Commit Failed for polling page");
3911 
3912   os::set_polling_page( polling_page );
3913 
3914 #ifndef PRODUCT
3915   if( Verbose && PrintMiscellaneous )
3916     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3917 #endif
3918 
3919   if (!UseMembar) {
3920     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3921     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3922 
3923     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3924     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3925 
3926     os::set_memory_serialize_page( mem_serialize_page );
3927 
3928 #ifndef PRODUCT
3929     if(Verbose && PrintMiscellaneous)
3930       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3931 #endif
3932   }
3933 
3934   // Setup Windows Exceptions
3935 
3936   // for debugging float code generation bugs
3937   if (ForceFloatExceptions) {
3938 #ifndef  _WIN64
3939     static long fp_control_word = 0;
3940     __asm { fstcw fp_control_word }
3941     // see Intel PPro Manual, Vol. 2, p 7-16
3942     const long precision = 0x20;
3943     const long underflow = 0x10;
3944     const long overflow  = 0x08;
3945     const long zero_div  = 0x04;
3946     const long denorm    = 0x02;
3947     const long invalid   = 0x01;
3948     fp_control_word |= invalid;
3949     __asm { fldcw fp_control_word }
3950 #endif
3951   }
3952 
3953   // If stack_commit_size is 0, windows will reserve the default size,
3954   // but only commit a small portion of it.
3955   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3956   size_t default_reserve_size = os::win32::default_stack_size();
3957   size_t actual_reserve_size = stack_commit_size;
3958   if (stack_commit_size < default_reserve_size) {
3959     // If stack_commit_size == 0, we want this too
3960     actual_reserve_size = default_reserve_size;
3961   }
3962 
3963   // Check minimum allowable stack size for thread creation and to initialize
3964   // the java system classes, including StackOverflowError - depends on page
3965   // size.  Add a page for compiler2 recursion in main thread.
3966   // Add in 2*BytesPerWord times page size to account for VM stack during
3967   // class initialization depending on 32 or 64 bit VM.
3968   size_t min_stack_allowed =
3969             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3970             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3971   if (actual_reserve_size < min_stack_allowed) {
3972     tty->print_cr("\nThe stack size specified is too small, "
3973                   "Specify at least %dk",
3974                   min_stack_allowed / K);
3975     return JNI_ERR;
3976   }
3977 
3978   JavaThread::set_stack_size_at_create(stack_commit_size);
3979 
3980   // Calculate theoretical max. size of Threads to guard gainst artifical
3981   // out-of-memory situations, where all available address-space has been
3982   // reserved by thread stacks.
3983   assert(actual_reserve_size != 0, "Must have a stack");
3984 
3985   // Calculate the thread limit when we should start doing Virtual Memory
3986   // banging. Currently when the threads will have used all but 200Mb of space.
3987   //
3988   // TODO: consider performing a similar calculation for commit size instead
3989   // as reserve size, since on a 64-bit platform we'll run into that more
3990   // often than running out of virtual memory space.  We can use the
3991   // lower value of the two calculations as the os_thread_limit.
3992   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3993   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3994 
3995   // at exit methods are called in the reverse order of their registration.
3996   // there is no limit to the number of functions registered. atexit does
3997   // not set errno.
3998 
3999   if (PerfAllowAtExitRegistration) {
4000     // only register atexit functions if PerfAllowAtExitRegistration is set.
4001     // atexit functions can be delayed until process exit time, which
4002     // can be problematic for embedded VM situations. Embedded VMs should
4003     // call DestroyJavaVM() to assure that VM resources are released.
4004 
4005     // note: perfMemory_exit_helper atexit function may be removed in
4006     // the future if the appropriate cleanup code can be added to the
4007     // VM_Exit VMOperation's doit method.
4008     if (atexit(perfMemory_exit_helper) != 0) {
4009       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4010     }
4011   }
4012 
4013 #ifndef _WIN64
4014   // Print something if NX is enabled (win32 on AMD64)
4015   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4016 #endif
4017 
4018   // initialize thread priority policy
4019   prio_init();
4020 
4021   if (UseNUMA && !ForceNUMA) {
4022     UseNUMA = false; // We don't fully support this yet
4023   }
4024 
4025   if (UseNUMAInterleaving) {
4026     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4027     bool success = numa_interleaving_init();
4028     if (!success) UseNUMAInterleaving = false;
4029   }
4030 
4031   if (initSock() != JNI_OK) {
4032     return JNI_ERR;
4033   }
4034 
4035   return JNI_OK;
4036 }
4037 
4038 void os::init_3(void) {
4039   return;
4040 }
4041 
4042 // Mark the polling page as unreadable
4043 void os::make_polling_page_unreadable(void) {
4044   DWORD old_status;
4045   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
4046     fatal("Could not disable polling page");
4047 };
4048 
4049 // Mark the polling page as readable
4050 void os::make_polling_page_readable(void) {
4051   DWORD old_status;
4052   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
4053     fatal("Could not enable polling page");
4054 };
4055 
4056 
4057 int os::stat(const char *path, struct stat *sbuf) {
4058   char pathbuf[MAX_PATH];
4059   if (strlen(path) > MAX_PATH - 1) {
4060     errno = ENAMETOOLONG;
4061     return -1;
4062   }
4063   os::native_path(strcpy(pathbuf, path));
4064   int ret = ::stat(pathbuf, sbuf);
4065   if (sbuf != NULL && UseUTCFileTimestamp) {
4066     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4067     // the system timezone and so can return different values for the
4068     // same file if/when daylight savings time changes.  This adjustment
4069     // makes sure the same timestamp is returned regardless of the TZ.
4070     //
4071     // See:
4072     // http://msdn.microsoft.com/library/
4073     //   default.asp?url=/library/en-us/sysinfo/base/
4074     //   time_zone_information_str.asp
4075     // and
4076     // http://msdn.microsoft.com/library/default.asp?url=
4077     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4078     //
4079     // NOTE: there is a insidious bug here:  If the timezone is changed
4080     // after the call to stat() but before 'GetTimeZoneInformation()', then
4081     // the adjustment we do here will be wrong and we'll return the wrong
4082     // value (which will likely end up creating an invalid class data
4083     // archive).  Absent a better API for this, or some time zone locking
4084     // mechanism, we'll have to live with this risk.
4085     TIME_ZONE_INFORMATION tz;
4086     DWORD tzid = GetTimeZoneInformation(&tz);
4087     int daylightBias =
4088       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4089     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4090   }
4091   return ret;
4092 }
4093 
4094 
4095 #define FT2INT64(ft) \
4096   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4097 
4098 
4099 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4100 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4101 // of a thread.
4102 //
4103 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4104 // the fast estimate available on the platform.
4105 
4106 // current_thread_cpu_time() is not optimized for Windows yet
4107 jlong os::current_thread_cpu_time() {
4108   // return user + sys since the cost is the same
4109   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4110 }
4111 
4112 jlong os::thread_cpu_time(Thread* thread) {
4113   // consistent with what current_thread_cpu_time() returns.
4114   return os::thread_cpu_time(thread, true /* user+sys */);
4115 }
4116 
4117 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4118   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4119 }
4120 
4121 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4122   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4123   // If this function changes, os::is_thread_cpu_time_supported() should too
4124   if (os::win32::is_nt()) {
4125     FILETIME CreationTime;
4126     FILETIME ExitTime;
4127     FILETIME KernelTime;
4128     FILETIME UserTime;
4129 
4130     if ( GetThreadTimes(thread->osthread()->thread_handle(),
4131                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4132       return -1;
4133     else
4134       if (user_sys_cpu_time) {
4135         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4136       } else {
4137         return FT2INT64(UserTime) * 100;
4138       }
4139   } else {
4140     return (jlong) timeGetTime() * 1000000;
4141   }
4142 }
4143 
4144 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4145   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4146   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4147   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4148   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4149 }
4150 
4151 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4152   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4153   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4154   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4155   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4156 }
4157 
4158 bool os::is_thread_cpu_time_supported() {
4159   // see os::thread_cpu_time
4160   if (os::win32::is_nt()) {
4161     FILETIME CreationTime;
4162     FILETIME ExitTime;
4163     FILETIME KernelTime;
4164     FILETIME UserTime;
4165 
4166     if ( GetThreadTimes(GetCurrentThread(),
4167                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4168       return false;
4169     else
4170       return true;
4171   } else {
4172     return false;
4173   }
4174 }
4175 
4176 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4177 // It does have primitives (PDH API) to get CPU usage and run queue length.
4178 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4179 // If we wanted to implement loadavg on Windows, we have a few options:
4180 //
4181 // a) Query CPU usage and run queue length and "fake" an answer by
4182 //    returning the CPU usage if it's under 100%, and the run queue
4183 //    length otherwise.  It turns out that querying is pretty slow
4184 //    on Windows, on the order of 200 microseconds on a fast machine.
4185 //    Note that on the Windows the CPU usage value is the % usage
4186 //    since the last time the API was called (and the first call
4187 //    returns 100%), so we'd have to deal with that as well.
4188 //
4189 // b) Sample the "fake" answer using a sampling thread and store
4190 //    the answer in a global variable.  The call to loadavg would
4191 //    just return the value of the global, avoiding the slow query.
4192 //
4193 // c) Sample a better answer using exponential decay to smooth the
4194 //    value.  This is basically the algorithm used by UNIX kernels.
4195 //
4196 // Note that sampling thread starvation could affect both (b) and (c).
4197 int os::loadavg(double loadavg[], int nelem) {
4198   return -1;
4199 }
4200 
4201 
4202 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4203 bool os::dont_yield() {
4204   return DontYieldALot;
4205 }
4206 
4207 // This method is a slightly reworked copy of JDK's sysOpen
4208 // from src/windows/hpi/src/sys_api_md.c
4209 
4210 int os::open(const char *path, int oflag, int mode) {
4211   char pathbuf[MAX_PATH];
4212 
4213   if (strlen(path) > MAX_PATH - 1) {
4214     errno = ENAMETOOLONG;
4215           return -1;
4216   }
4217   os::native_path(strcpy(pathbuf, path));
4218   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4219 }
4220 
4221 FILE* os::open(int fd, const char* mode) {
4222   return ::_fdopen(fd, mode);
4223 }
4224 
4225 // Is a (classpath) directory empty?
4226 bool os::dir_is_empty(const char* path) {
4227   WIN32_FIND_DATA fd;
4228   HANDLE f = FindFirstFile(path, &fd);
4229   if (f == INVALID_HANDLE_VALUE) {
4230     return true;
4231   }
4232   FindClose(f);
4233   return false;
4234 }
4235 
4236 // create binary file, rewriting existing file if required
4237 int os::create_binary_file(const char* path, bool rewrite_existing) {
4238   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4239   if (!rewrite_existing) {
4240     oflags |= _O_EXCL;
4241   }
4242   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4243 }
4244 
4245 // return current position of file pointer
4246 jlong os::current_file_offset(int fd) {
4247   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4248 }
4249 
4250 // move file pointer to the specified offset
4251 jlong os::seek_to_file_offset(int fd, jlong offset) {
4252   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4253 }
4254 
4255 
4256 jlong os::lseek(int fd, jlong offset, int whence) {
4257   return (jlong) ::_lseeki64(fd, offset, whence);
4258 }
4259 
4260 // This method is a slightly reworked copy of JDK's sysNativePath
4261 // from src/windows/hpi/src/path_md.c
4262 
4263 /* Convert a pathname to native format.  On win32, this involves forcing all
4264    separators to be '\\' rather than '/' (both are legal inputs, but Win95
4265    sometimes rejects '/') and removing redundant separators.  The input path is
4266    assumed to have been converted into the character encoding used by the local
4267    system.  Because this might be a double-byte encoding, care is taken to
4268    treat double-byte lead characters correctly.
4269 
4270    This procedure modifies the given path in place, as the result is never
4271    longer than the original.  There is no error return; this operation always
4272    succeeds. */
4273 char * os::native_path(char *path) {
4274   char *src = path, *dst = path, *end = path;
4275   char *colon = NULL;           /* If a drive specifier is found, this will
4276                                         point to the colon following the drive
4277                                         letter */
4278 
4279   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
4280   assert(((!::IsDBCSLeadByte('/'))
4281     && (!::IsDBCSLeadByte('\\'))
4282     && (!::IsDBCSLeadByte(':'))),
4283     "Illegal lead byte");
4284 
4285   /* Check for leading separators */
4286 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4287   while (isfilesep(*src)) {
4288     src++;
4289   }
4290 
4291   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4292     /* Remove leading separators if followed by drive specifier.  This
4293       hack is necessary to support file URLs containing drive
4294       specifiers (e.g., "file://c:/path").  As a side effect,
4295       "/c:/path" can be used as an alternative to "c:/path". */
4296     *dst++ = *src++;
4297     colon = dst;
4298     *dst++ = ':';
4299     src++;
4300   } else {
4301     src = path;
4302     if (isfilesep(src[0]) && isfilesep(src[1])) {
4303       /* UNC pathname: Retain first separator; leave src pointed at
4304          second separator so that further separators will be collapsed
4305          into the second separator.  The result will be a pathname
4306          beginning with "\\\\" followed (most likely) by a host name. */
4307       src = dst = path + 1;
4308       path[0] = '\\';     /* Force first separator to '\\' */
4309     }
4310   }
4311 
4312   end = dst;
4313 
4314   /* Remove redundant separators from remainder of path, forcing all
4315       separators to be '\\' rather than '/'. Also, single byte space
4316       characters are removed from the end of the path because those
4317       are not legal ending characters on this operating system.
4318   */
4319   while (*src != '\0') {
4320     if (isfilesep(*src)) {
4321       *dst++ = '\\'; src++;
4322       while (isfilesep(*src)) src++;
4323       if (*src == '\0') {
4324         /* Check for trailing separator */
4325         end = dst;
4326         if (colon == dst - 2) break;                      /* "z:\\" */
4327         if (dst == path + 1) break;                       /* "\\" */
4328         if (dst == path + 2 && isfilesep(path[0])) {
4329           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
4330             beginning of a UNC pathname.  Even though it is not, by
4331             itself, a valid UNC pathname, we leave it as is in order
4332             to be consistent with the path canonicalizer as well
4333             as the win32 APIs, which treat this case as an invalid
4334             UNC pathname rather than as an alias for the root
4335             directory of the current drive. */
4336           break;
4337         }
4338         end = --dst;  /* Path does not denote a root directory, so
4339                                     remove trailing separator */
4340         break;
4341       }
4342       end = dst;
4343     } else {
4344       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
4345         *dst++ = *src++;
4346         if (*src) *dst++ = *src++;
4347         end = dst;
4348       } else {         /* Copy a single-byte character */
4349         char c = *src++;
4350         *dst++ = c;
4351         /* Space is not a legal ending character */
4352         if (c != ' ') end = dst;
4353       }
4354     }
4355   }
4356 
4357   *end = '\0';
4358 
4359   /* For "z:", add "." to work around a bug in the C runtime library */
4360   if (colon == dst - 1) {
4361           path[2] = '.';
4362           path[3] = '\0';
4363   }
4364 
4365   return path;
4366 }
4367 
4368 // This code is a copy of JDK's sysSetLength
4369 // from src/windows/hpi/src/sys_api_md.c
4370 
4371 int os::ftruncate(int fd, jlong length) {
4372   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4373   long high = (long)(length >> 32);
4374   DWORD ret;
4375 
4376   if (h == (HANDLE)(-1)) {
4377     return -1;
4378   }
4379 
4380   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4381   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4382       return -1;
4383   }
4384 
4385   if (::SetEndOfFile(h) == FALSE) {
4386     return -1;
4387   }
4388 
4389   return 0;
4390 }
4391 
4392 
4393 // This code is a copy of JDK's sysSync
4394 // from src/windows/hpi/src/sys_api_md.c
4395 // except for the legacy workaround for a bug in Win 98
4396 
4397 int os::fsync(int fd) {
4398   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4399 
4400   if ( (!::FlushFileBuffers(handle)) &&
4401          (GetLastError() != ERROR_ACCESS_DENIED) ) {
4402     /* from winerror.h */
4403     return -1;
4404   }
4405   return 0;
4406 }
4407 
4408 static int nonSeekAvailable(int, long *);
4409 static int stdinAvailable(int, long *);
4410 
4411 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4412 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4413 
4414 // This code is a copy of JDK's sysAvailable
4415 // from src/windows/hpi/src/sys_api_md.c
4416 
4417 int os::available(int fd, jlong *bytes) {
4418   jlong cur, end;
4419   struct _stati64 stbuf64;
4420 
4421   if (::_fstati64(fd, &stbuf64) >= 0) {
4422     int mode = stbuf64.st_mode;
4423     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4424       int ret;
4425       long lpbytes;
4426       if (fd == 0) {
4427         ret = stdinAvailable(fd, &lpbytes);
4428       } else {
4429         ret = nonSeekAvailable(fd, &lpbytes);
4430       }
4431       (*bytes) = (jlong)(lpbytes);
4432       return ret;
4433     }
4434     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4435       return FALSE;
4436     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4437       return FALSE;
4438     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4439       return FALSE;
4440     }
4441     *bytes = end - cur;
4442     return TRUE;
4443   } else {
4444     return FALSE;
4445   }
4446 }
4447 
4448 // This code is a copy of JDK's nonSeekAvailable
4449 // from src/windows/hpi/src/sys_api_md.c
4450 
4451 static int nonSeekAvailable(int fd, long *pbytes) {
4452   /* This is used for available on non-seekable devices
4453     * (like both named and anonymous pipes, such as pipes
4454     *  connected to an exec'd process).
4455     * Standard Input is a special case.
4456     *
4457     */
4458   HANDLE han;
4459 
4460   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4461     return FALSE;
4462   }
4463 
4464   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4465         /* PeekNamedPipe fails when at EOF.  In that case we
4466          * simply make *pbytes = 0 which is consistent with the
4467          * behavior we get on Solaris when an fd is at EOF.
4468          * The only alternative is to raise an Exception,
4469          * which isn't really warranted.
4470          */
4471     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4472       return FALSE;
4473     }
4474     *pbytes = 0;
4475   }
4476   return TRUE;
4477 }
4478 
4479 #define MAX_INPUT_EVENTS 2000
4480 
4481 // This code is a copy of JDK's stdinAvailable
4482 // from src/windows/hpi/src/sys_api_md.c
4483 
4484 static int stdinAvailable(int fd, long *pbytes) {
4485   HANDLE han;
4486   DWORD numEventsRead = 0;      /* Number of events read from buffer */
4487   DWORD numEvents = 0;  /* Number of events in buffer */
4488   DWORD i = 0;          /* Loop index */
4489   DWORD curLength = 0;  /* Position marker */
4490   DWORD actualLength = 0;       /* Number of bytes readable */
4491   BOOL error = FALSE;         /* Error holder */
4492   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
4493 
4494   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4495         return FALSE;
4496   }
4497 
4498   /* Construct an array of input records in the console buffer */
4499   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4500   if (error == 0) {
4501     return nonSeekAvailable(fd, pbytes);
4502   }
4503 
4504   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
4505   if (numEvents > MAX_INPUT_EVENTS) {
4506     numEvents = MAX_INPUT_EVENTS;
4507   }
4508 
4509   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4510   if (lpBuffer == NULL) {
4511     return FALSE;
4512   }
4513 
4514   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4515   if (error == 0) {
4516     os::free(lpBuffer, mtInternal);
4517     return FALSE;
4518   }
4519 
4520   /* Examine input records for the number of bytes available */
4521   for(i=0; i<numEvents; i++) {
4522     if (lpBuffer[i].EventType == KEY_EVENT) {
4523 
4524       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4525                                       &(lpBuffer[i].Event);
4526       if (keyRecord->bKeyDown == TRUE) {
4527         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4528         curLength++;
4529         if (*keyPressed == '\r') {
4530           actualLength = curLength;
4531         }
4532       }
4533     }
4534   }
4535 
4536   if(lpBuffer != NULL) {
4537     os::free(lpBuffer, mtInternal);
4538   }
4539 
4540   *pbytes = (long) actualLength;
4541   return TRUE;
4542 }
4543 
4544 // Map a block of memory.
4545 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4546                      char *addr, size_t bytes, bool read_only,
4547                      bool allow_exec) {
4548   HANDLE hFile;
4549   char* base;
4550 
4551   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4552                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4553   if (hFile == NULL) {
4554     if (PrintMiscellaneous && Verbose) {
4555       DWORD err = GetLastError();
4556       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4557     }
4558     return NULL;
4559   }
4560 
4561   if (allow_exec) {
4562     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4563     // unless it comes from a PE image (which the shared archive is not.)
4564     // Even VirtualProtect refuses to give execute access to mapped memory
4565     // that was not previously executable.
4566     //
4567     // Instead, stick the executable region in anonymous memory.  Yuck.
4568     // Penalty is that ~4 pages will not be shareable - in the future
4569     // we might consider DLLizing the shared archive with a proper PE
4570     // header so that mapping executable + sharing is possible.
4571 
4572     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4573                                 PAGE_READWRITE);
4574     if (base == NULL) {
4575       if (PrintMiscellaneous && Verbose) {
4576         DWORD err = GetLastError();
4577         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4578       }
4579       CloseHandle(hFile);
4580       return NULL;
4581     }
4582 
4583     DWORD bytes_read;
4584     OVERLAPPED overlapped;
4585     overlapped.Offset = (DWORD)file_offset;
4586     overlapped.OffsetHigh = 0;
4587     overlapped.hEvent = NULL;
4588     // ReadFile guarantees that if the return value is true, the requested
4589     // number of bytes were read before returning.
4590     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4591     if (!res) {
4592       if (PrintMiscellaneous && Verbose) {
4593         DWORD err = GetLastError();
4594         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4595       }
4596       release_memory(base, bytes);
4597       CloseHandle(hFile);
4598       return NULL;
4599     }
4600   } else {
4601     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4602                                     NULL /*file_name*/);
4603     if (hMap == NULL) {
4604       if (PrintMiscellaneous && Verbose) {
4605         DWORD err = GetLastError();
4606         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4607       }
4608       CloseHandle(hFile);
4609       return NULL;
4610     }
4611 
4612     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4613     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4614                                   (DWORD)bytes, addr);
4615     if (base == NULL) {
4616       if (PrintMiscellaneous && Verbose) {
4617         DWORD err = GetLastError();
4618         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4619       }
4620       CloseHandle(hMap);
4621       CloseHandle(hFile);
4622       return NULL;
4623     }
4624 
4625     if (CloseHandle(hMap) == 0) {
4626       if (PrintMiscellaneous && Verbose) {
4627         DWORD err = GetLastError();
4628         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4629       }
4630       CloseHandle(hFile);
4631       return base;
4632     }
4633   }
4634 
4635   if (allow_exec) {
4636     DWORD old_protect;
4637     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4638     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4639 
4640     if (!res) {
4641       if (PrintMiscellaneous && Verbose) {
4642         DWORD err = GetLastError();
4643         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4644       }
4645       // Don't consider this a hard error, on IA32 even if the
4646       // VirtualProtect fails, we should still be able to execute
4647       CloseHandle(hFile);
4648       return base;
4649     }
4650   }
4651 
4652   if (CloseHandle(hFile) == 0) {
4653     if (PrintMiscellaneous && Verbose) {
4654       DWORD err = GetLastError();
4655       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4656     }
4657     return base;
4658   }
4659 
4660   return base;
4661 }
4662 
4663 
4664 // Remap a block of memory.
4665 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4666                        char *addr, size_t bytes, bool read_only,
4667                        bool allow_exec) {
4668   // This OS does not allow existing memory maps to be remapped so we
4669   // have to unmap the memory before we remap it.
4670   if (!os::unmap_memory(addr, bytes)) {
4671     return NULL;
4672   }
4673 
4674   // There is a very small theoretical window between the unmap_memory()
4675   // call above and the map_memory() call below where a thread in native
4676   // code may be able to access an address that is no longer mapped.
4677 
4678   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4679            read_only, allow_exec);
4680 }
4681 
4682 
4683 // Unmap a block of memory.
4684 // Returns true=success, otherwise false.
4685 
4686 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4687   BOOL result = UnmapViewOfFile(addr);
4688   if (result == 0) {
4689     if (PrintMiscellaneous && Verbose) {
4690       DWORD err = GetLastError();
4691       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4692     }
4693     return false;
4694   }
4695   return true;
4696 }
4697 
4698 void os::pause() {
4699   char filename[MAX_PATH];
4700   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4701     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4702   } else {
4703     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4704   }
4705 
4706   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4707   if (fd != -1) {
4708     struct stat buf;
4709     ::close(fd);
4710     while (::stat(filename, &buf) == 0) {
4711       Sleep(100);
4712     }
4713   } else {
4714     jio_fprintf(stderr,
4715       "Could not open pause file '%s', continuing immediately.\n", filename);
4716   }
4717 }
4718 
4719 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4720   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4721 }
4722 
4723 /*
4724  * See the caveats for this class in os_windows.hpp
4725  * Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4726  * into this method and returns false. If no OS EXCEPTION was raised, returns
4727  * true.
4728  * The callback is supposed to provide the method that should be protected.
4729  */
4730 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4731   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4732   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4733       "crash_protection already set?");
4734 
4735   bool success = true;
4736   __try {
4737     WatcherThread::watcher_thread()->set_crash_protection(this);
4738     cb.call();
4739   } __except(EXCEPTION_EXECUTE_HANDLER) {
4740     // only for protection, nothing to do
4741     success = false;
4742   }
4743   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4744   return success;
4745 }
4746 
4747 // An Event wraps a win32 "CreateEvent" kernel handle.
4748 //
4749 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4750 //
4751 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4752 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4753 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4754 //     In addition, an unpark() operation might fetch the handle field, but the
4755 //     event could recycle between the fetch and the SetEvent() operation.
4756 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4757 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4758 //     on an stale but recycled handle would be harmless, but in practice this might
4759 //     confuse other non-Sun code, so it's not a viable approach.
4760 //
4761 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4762 //     with the Event.  The event handle is never closed.  This could be construed
4763 //     as handle leakage, but only up to the maximum # of threads that have been extant
4764 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4765 //     permit a process to have hundreds of thousands of open handles.
4766 //
4767 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4768 //     and release unused handles.
4769 //
4770 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4771 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4772 //
4773 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4774 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4775 //
4776 // We use (2).
4777 //
4778 // TODO-FIXME:
4779 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4780 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4781 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4782 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4783 //     into a single win32 CreateEvent() handle.
4784 //
4785 // _Event transitions in park()
4786 //   -1 => -1 : illegal
4787 //    1 =>  0 : pass - return immediately
4788 //    0 => -1 : block
4789 //
4790 // _Event serves as a restricted-range semaphore :
4791 //    -1 : thread is blocked
4792 //     0 : neutral  - thread is running or ready
4793 //     1 : signaled - thread is running or ready
4794 //
4795 // Another possible encoding of _Event would be
4796 // with explicit "PARKED" and "SIGNALED" bits.
4797 
4798 int os::PlatformEvent::park (jlong Millis) {
4799     guarantee (_ParkHandle != NULL , "Invariant") ;
4800     guarantee (Millis > 0          , "Invariant") ;
4801     int v ;
4802 
4803     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4804     // the initial park() operation.
4805 
4806     for (;;) {
4807         v = _Event ;
4808         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4809     }
4810     guarantee ((v == 0) || (v == 1), "invariant") ;
4811     if (v != 0) return OS_OK ;
4812 
4813     // Do this the hard way by blocking ...
4814     // TODO: consider a brief spin here, gated on the success of recent
4815     // spin attempts by this thread.
4816     //
4817     // We decompose long timeouts into series of shorter timed waits.
4818     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4819     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4820     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4821     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4822     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4823     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4824     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4825     // for the already waited time.  This policy does not admit any new outcomes.
4826     // In the future, however, we might want to track the accumulated wait time and
4827     // adjust Millis accordingly if we encounter a spurious wakeup.
4828 
4829     const int MAXTIMEOUT = 0x10000000 ;
4830     DWORD rv = WAIT_TIMEOUT ;
4831     while (_Event < 0 && Millis > 0) {
4832        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
4833        if (Millis > MAXTIMEOUT) {
4834           prd = MAXTIMEOUT ;
4835        }
4836        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
4837        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
4838        if (rv == WAIT_TIMEOUT) {
4839            Millis -= prd ;
4840        }
4841     }
4842     v = _Event ;
4843     _Event = 0 ;
4844     // see comment at end of os::PlatformEvent::park() below:
4845     OrderAccess::fence() ;
4846     // If we encounter a nearly simultanous timeout expiry and unpark()
4847     // we return OS_OK indicating we awoke via unpark().
4848     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4849     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
4850 }
4851 
4852 void os::PlatformEvent::park () {
4853     guarantee (_ParkHandle != NULL, "Invariant") ;
4854     // Invariant: Only the thread associated with the Event/PlatformEvent
4855     // may call park().
4856     int v ;
4857     for (;;) {
4858         v = _Event ;
4859         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4860     }
4861     guarantee ((v == 0) || (v == 1), "invariant") ;
4862     if (v != 0) return ;
4863 
4864     // Do this the hard way by blocking ...
4865     // TODO: consider a brief spin here, gated on the success of recent
4866     // spin attempts by this thread.
4867     while (_Event < 0) {
4868        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
4869        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
4870     }
4871 
4872     // Usually we'll find _Event == 0 at this point, but as
4873     // an optional optimization we clear it, just in case can
4874     // multiple unpark() operations drove _Event up to 1.
4875     _Event = 0 ;
4876     OrderAccess::fence() ;
4877     guarantee (_Event >= 0, "invariant") ;
4878 }
4879 
4880 void os::PlatformEvent::unpark() {
4881   guarantee (_ParkHandle != NULL, "Invariant") ;
4882 
4883   // Transitions for _Event:
4884   //    0 :=> 1
4885   //    1 :=> 1
4886   //   -1 :=> either 0 or 1; must signal target thread
4887   //          That is, we can safely transition _Event from -1 to either
4888   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4889   //          unpark() calls.
4890   // See also: "Semaphores in Plan 9" by Mullender & Cox
4891   //
4892   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4893   // that it will take two back-to-back park() calls for the owning
4894   // thread to block. This has the benefit of forcing a spurious return
4895   // from the first park() call after an unpark() call which will help
4896   // shake out uses of park() and unpark() without condition variables.
4897 
4898   if (Atomic::xchg(1, &_Event) >= 0) return;
4899 
4900   ::SetEvent(_ParkHandle);
4901 }
4902 
4903 
4904 // JSR166
4905 // -------------------------------------------------------
4906 
4907 /*
4908  * The Windows implementation of Park is very straightforward: Basic
4909  * operations on Win32 Events turn out to have the right semantics to
4910  * use them directly. We opportunistically resuse the event inherited
4911  * from Monitor.
4912  */
4913 
4914 
4915 void Parker::park(bool isAbsolute, jlong time) {
4916   guarantee (_ParkEvent != NULL, "invariant") ;
4917   // First, demultiplex/decode time arguments
4918   if (time < 0) { // don't wait
4919     return;
4920   }
4921   else if (time == 0 && !isAbsolute) {
4922     time = INFINITE;
4923   }
4924   else if  (isAbsolute) {
4925     time -= os::javaTimeMillis(); // convert to relative time
4926     if (time <= 0) // already elapsed
4927       return;
4928   }
4929   else { // relative
4930     time /= 1000000; // Must coarsen from nanos to millis
4931     if (time == 0)   // Wait for the minimal time unit if zero
4932       time = 1;
4933   }
4934 
4935   JavaThread* thread = (JavaThread*)(Thread::current());
4936   assert(thread->is_Java_thread(), "Must be JavaThread");
4937   JavaThread *jt = (JavaThread *)thread;
4938 
4939   // Don't wait if interrupted or already triggered
4940   if (Thread::is_interrupted(thread, false) ||
4941     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4942     ResetEvent(_ParkEvent);
4943     return;
4944   }
4945   else {
4946     ThreadBlockInVM tbivm(jt);
4947     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4948     jt->set_suspend_equivalent();
4949 
4950     WaitForSingleObject(_ParkEvent,  time);
4951     ResetEvent(_ParkEvent);
4952 
4953     // If externally suspended while waiting, re-suspend
4954     if (jt->handle_special_suspend_equivalent_condition()) {
4955       jt->java_suspend_self();
4956     }
4957   }
4958 }
4959 
4960 void Parker::unpark() {
4961   guarantee (_ParkEvent != NULL, "invariant") ;
4962   SetEvent(_ParkEvent);
4963 }
4964 
4965 // Run the specified command in a separate process. Return its exit value,
4966 // or -1 on failure (e.g. can't create a new process).
4967 int os::fork_and_exec(char* cmd) {
4968   STARTUPINFO si;
4969   PROCESS_INFORMATION pi;
4970 
4971   memset(&si, 0, sizeof(si));
4972   si.cb = sizeof(si);
4973   memset(&pi, 0, sizeof(pi));
4974   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4975                             cmd,    // command line
4976                             NULL,   // process security attribute
4977                             NULL,   // thread security attribute
4978                             TRUE,   // inherits system handles
4979                             0,      // no creation flags
4980                             NULL,   // use parent's environment block
4981                             NULL,   // use parent's starting directory
4982                             &si,    // (in) startup information
4983                             &pi);   // (out) process information
4984 
4985   if (rslt) {
4986     // Wait until child process exits.
4987     WaitForSingleObject(pi.hProcess, INFINITE);
4988 
4989     DWORD exit_code;
4990     GetExitCodeProcess(pi.hProcess, &exit_code);
4991 
4992     // Close process and thread handles.
4993     CloseHandle(pi.hProcess);
4994     CloseHandle(pi.hThread);
4995 
4996     return (int)exit_code;
4997   } else {
4998     return -1;
4999   }
5000 }
5001 
5002 //--------------------------------------------------------------------------------------------------
5003 // Non-product code
5004 
5005 static int mallocDebugIntervalCounter = 0;
5006 static int mallocDebugCounter = 0;
5007 bool os::check_heap(bool force) {
5008   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5009   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5010     // Note: HeapValidate executes two hardware breakpoints when it finds something
5011     // wrong; at these points, eax contains the address of the offending block (I think).
5012     // To get to the exlicit error message(s) below, just continue twice.
5013     HANDLE heap = GetProcessHeap();
5014     { HeapLock(heap);
5015       PROCESS_HEAP_ENTRY phe;
5016       phe.lpData = NULL;
5017       while (HeapWalk(heap, &phe) != 0) {
5018         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5019             !HeapValidate(heap, 0, phe.lpData)) {
5020           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5021           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5022           fatal("corrupted C heap");
5023         }
5024       }
5025       DWORD err = GetLastError();
5026       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5027         fatal(err_msg("heap walk aborted with error %d", err));
5028       }
5029       HeapUnlock(heap);
5030     }
5031     mallocDebugIntervalCounter = 0;
5032   }
5033   return true;
5034 }
5035 
5036 
5037 bool os::find(address addr, outputStream* st) {
5038   // Nothing yet
5039   return false;
5040 }
5041 
5042 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5043   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5044 
5045   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
5046     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5047     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5048     address addr = (address) exceptionRecord->ExceptionInformation[1];
5049 
5050     if (os::is_memory_serialize_page(thread, addr))
5051       return EXCEPTION_CONTINUE_EXECUTION;
5052   }
5053 
5054   return EXCEPTION_CONTINUE_SEARCH;
5055 }
5056 
5057 // We don't build a headless jre for Windows
5058 bool os::is_headless_jre() { return false; }
5059 
5060 static jint initSock() {
5061   WSADATA wsadata;
5062 
5063   if (!os::WinSock2Dll::WinSock2Available()) {
5064     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5065       ::GetLastError());
5066     return JNI_ERR;
5067   }
5068 
5069   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5070     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5071       ::GetLastError());
5072     return JNI_ERR;
5073   }
5074   return JNI_OK;
5075 }
5076 
5077 struct hostent* os::get_host_by_name(char* name) {
5078   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5079 }
5080 
5081 int os::socket_close(int fd) {
5082   return ::closesocket(fd);
5083 }
5084 
5085 int os::socket_available(int fd, jint *pbytes) {
5086   int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
5087   return (ret < 0) ? 0 : 1;
5088 }
5089 
5090 int os::socket(int domain, int type, int protocol) {
5091   return ::socket(domain, type, protocol);
5092 }
5093 
5094 int os::listen(int fd, int count) {
5095   return ::listen(fd, count);
5096 }
5097 
5098 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5099   return ::connect(fd, him, len);
5100 }
5101 
5102 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
5103   return ::accept(fd, him, len);
5104 }
5105 
5106 int os::sendto(int fd, char* buf, size_t len, uint flags,
5107                struct sockaddr* to, socklen_t tolen) {
5108 
5109   return ::sendto(fd, buf, (int)len, flags, to, tolen);
5110 }
5111 
5112 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
5113                  sockaddr* from, socklen_t* fromlen) {
5114 
5115   return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
5116 }
5117 
5118 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5119   return ::recv(fd, buf, (int)nBytes, flags);
5120 }
5121 
5122 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5123   return ::send(fd, buf, (int)nBytes, flags);
5124 }
5125 
5126 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5127   return ::send(fd, buf, (int)nBytes, flags);
5128 }
5129 
5130 int os::timeout(int fd, long timeout) {
5131   fd_set tbl;
5132   struct timeval t;
5133 
5134   t.tv_sec  = timeout / 1000;
5135   t.tv_usec = (timeout % 1000) * 1000;
5136 
5137   tbl.fd_count    = 1;
5138   tbl.fd_array[0] = fd;
5139 
5140   return ::select(1, &tbl, 0, 0, &t);
5141 }
5142 
5143 int os::get_host_name(char* name, int namelen) {
5144   return ::gethostname(name, namelen);
5145 }
5146 
5147 int os::socket_shutdown(int fd, int howto) {
5148   return ::shutdown(fd, howto);
5149 }
5150 
5151 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
5152   return ::bind(fd, him, len);
5153 }
5154 
5155 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
5156   return ::getsockname(fd, him, len);
5157 }
5158 
5159 int os::get_sock_opt(int fd, int level, int optname,
5160                      char* optval, socklen_t* optlen) {
5161   return ::getsockopt(fd, level, optname, optval, optlen);
5162 }
5163 
5164 int os::set_sock_opt(int fd, int level, int optname,
5165                      const char* optval, socklen_t optlen) {
5166   return ::setsockopt(fd, level, optname, optval, optlen);
5167 }
5168 
5169 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5170 #if defined(IA32)
5171 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5172 #elif defined (AMD64)
5173 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5174 #endif
5175 
5176 // returns true if thread could be suspended,
5177 // false otherwise
5178 static bool do_suspend(HANDLE* h) {
5179   if (h != NULL) {
5180     if (SuspendThread(*h) != ~0) {
5181       return true;
5182     }
5183   }
5184   return false;
5185 }
5186 
5187 // resume the thread
5188 // calling resume on an active thread is a no-op
5189 static void do_resume(HANDLE* h) {
5190   if (h != NULL) {
5191     ResumeThread(*h);
5192   }
5193 }
5194 
5195 // retrieve a suspend/resume context capable handle
5196 // from the tid. Caller validates handle return value.
5197 void get_thread_handle_for_extended_context(HANDLE* h, OSThread::thread_id_t tid) {
5198   if (h != NULL) {
5199     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5200   }
5201 }
5202 
5203 //
5204 // Thread sampling implementation
5205 //
5206 void os::SuspendedThreadTask::internal_do_task() {
5207   CONTEXT    ctxt;
5208   HANDLE     h = NULL;
5209 
5210   // get context capable handle for thread
5211   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5212 
5213   // sanity
5214   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5215     return;
5216   }
5217 
5218   // suspend the thread
5219   if (do_suspend(&h)) {
5220     ctxt.ContextFlags = sampling_context_flags;
5221     // get thread context
5222     GetThreadContext(h, &ctxt);
5223     SuspendedThreadTaskContext context(_thread, &ctxt);
5224     // pass context to Thread Sampling impl
5225     do_task(context);
5226     // resume thread
5227     do_resume(&h);
5228   }
5229 
5230   // close handle
5231   CloseHandle(h);
5232 }
5233 
5234 
5235 // Kernel32 API
5236 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5237 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5238 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
5239 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
5240 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5241 
5242 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5243 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5244 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5245 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5246 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5247 
5248 
5249 BOOL                        os::Kernel32Dll::initialized = FALSE;
5250 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5251   assert(initialized && _GetLargePageMinimum != NULL,
5252     "GetLargePageMinimumAvailable() not yet called");
5253   return _GetLargePageMinimum();
5254 }
5255 
5256 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5257   if (!initialized) {
5258     initialize();
5259   }
5260   return _GetLargePageMinimum != NULL;
5261 }
5262 
5263 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5264   if (!initialized) {
5265     initialize();
5266   }
5267   return _VirtualAllocExNuma != NULL;
5268 }
5269 
5270 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
5271   assert(initialized && _VirtualAllocExNuma != NULL,
5272     "NUMACallsAvailable() not yet called");
5273 
5274   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5275 }
5276 
5277 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5278   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5279     "NUMACallsAvailable() not yet called");
5280 
5281   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5282 }
5283 
5284 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
5285   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5286     "NUMACallsAvailable() not yet called");
5287 
5288   return _GetNumaNodeProcessorMask(node, proc_mask);
5289 }
5290 
5291 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5292   ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
5293     if (!initialized) {
5294       initialize();
5295     }
5296 
5297     if (_RtlCaptureStackBackTrace != NULL) {
5298       return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5299         BackTrace, BackTraceHash);
5300     } else {
5301       return 0;
5302     }
5303 }
5304 
5305 void os::Kernel32Dll::initializeCommon() {
5306   if (!initialized) {
5307     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5308     assert(handle != NULL, "Just check");
5309     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5310     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5311     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5312     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5313     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5314     initialized = TRUE;
5315   }
5316 }
5317 
5318 
5319 
5320 #ifndef JDK6_OR_EARLIER
5321 
5322 void os::Kernel32Dll::initialize() {
5323   initializeCommon();
5324 }
5325 
5326 
5327 // Kernel32 API
5328 inline BOOL os::Kernel32Dll::SwitchToThread() {
5329   return ::SwitchToThread();
5330 }
5331 
5332 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5333   return true;
5334 }
5335 
5336   // Help tools
5337 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5338   return true;
5339 }
5340 
5341 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5342   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5343 }
5344 
5345 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5346   return ::Module32First(hSnapshot, lpme);
5347 }
5348 
5349 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5350   return ::Module32Next(hSnapshot, lpme);
5351 }
5352 
5353 
5354 inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5355   return true;
5356 }
5357 
5358 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5359   ::GetNativeSystemInfo(lpSystemInfo);
5360 }
5361 
5362 // PSAPI API
5363 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5364   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5365 }
5366 
5367 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5368   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5369 }
5370 
5371 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5372   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5373 }
5374 
5375 inline BOOL os::PSApiDll::PSApiAvailable() {
5376   return true;
5377 }
5378 
5379 
5380 // WinSock2 API
5381 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5382   return ::WSAStartup(wVersionRequested, lpWSAData);
5383 }
5384 
5385 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5386   return ::gethostbyname(name);
5387 }
5388 
5389 inline BOOL os::WinSock2Dll::WinSock2Available() {
5390   return true;
5391 }
5392 
5393 // Advapi API
5394 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5395    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5396    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5397      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5398        BufferLength, PreviousState, ReturnLength);
5399 }
5400 
5401 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5402   PHANDLE TokenHandle) {
5403     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5404 }
5405 
5406 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5407   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5408 }
5409 
5410 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5411   return true;
5412 }
5413 
5414 void* os::get_default_process_handle() {
5415   return (void*)GetModuleHandle(NULL);
5416 }
5417 
5418 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5419 // which is used to find statically linked in agents.
5420 // Additionally for windows, takes into account __stdcall names.
5421 // Parameters:
5422 //            sym_name: Symbol in library we are looking for
5423 //            lib_name: Name of library to look in, NULL for shared libs.
5424 //            is_absolute_path == true if lib_name is absolute path to agent
5425 //                                     such as "C:/a/b/L.dll"
5426 //            == false if only the base name of the library is passed in
5427 //               such as "L"
5428 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5429                                     bool is_absolute_path) {
5430   char *agent_entry_name;
5431   size_t len;
5432   size_t name_len;
5433   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5434   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5435   const char *start;
5436 
5437   if (lib_name != NULL) {
5438     len = name_len = strlen(lib_name);
5439     if (is_absolute_path) {
5440       // Need to strip path, prefix and suffix
5441       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5442         lib_name = ++start;
5443       } else {
5444         // Need to check for drive prefix
5445         if ((start = strchr(lib_name, ':')) != NULL) {
5446           lib_name = ++start;
5447         }
5448       }
5449       if (len <= (prefix_len + suffix_len)) {
5450         return NULL;
5451       }
5452       lib_name += prefix_len;
5453       name_len = strlen(lib_name) - suffix_len;
5454     }
5455   }
5456   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5457   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5458   if (agent_entry_name == NULL) {
5459     return NULL;
5460   }
5461   if (lib_name != NULL) {
5462     const char *p = strrchr(sym_name, '@');
5463     if (p != NULL && p != sym_name) {
5464       // sym_name == _Agent_OnLoad@XX
5465       strncpy(agent_entry_name, sym_name, (p - sym_name));
5466       agent_entry_name[(p-sym_name)] = '\0';
5467       // agent_entry_name == _Agent_OnLoad
5468       strcat(agent_entry_name, "_");
5469       strncat(agent_entry_name, lib_name, name_len);
5470       strcat(agent_entry_name, p);
5471       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5472     } else {
5473       strcpy(agent_entry_name, sym_name);
5474       strcat(agent_entry_name, "_");
5475       strncat(agent_entry_name, lib_name, name_len);
5476     }
5477   } else {
5478     strcpy(agent_entry_name, sym_name);
5479   }
5480   return agent_entry_name;
5481 }
5482 
5483 #else
5484 // Kernel32 API
5485 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5486 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
5487 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
5488 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
5489 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5490 
5491 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5492 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5493 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5494 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5495 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5496 
5497 void os::Kernel32Dll::initialize() {
5498   if (!initialized) {
5499     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5500     assert(handle != NULL, "Just check");
5501 
5502     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5503     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5504       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5505     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5506     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5507     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5508     initializeCommon();  // resolve the functions that always need resolving
5509 
5510     initialized = TRUE;
5511   }
5512 }
5513 
5514 BOOL os::Kernel32Dll::SwitchToThread() {
5515   assert(initialized && _SwitchToThread != NULL,
5516     "SwitchToThreadAvailable() not yet called");
5517   return _SwitchToThread();
5518 }
5519 
5520 
5521 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5522   if (!initialized) {
5523     initialize();
5524   }
5525   return _SwitchToThread != NULL;
5526 }
5527 
5528 // Help tools
5529 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5530   if (!initialized) {
5531     initialize();
5532   }
5533   return _CreateToolhelp32Snapshot != NULL &&
5534          _Module32First != NULL &&
5535          _Module32Next != NULL;
5536 }
5537 
5538 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5539   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5540     "HelpToolsAvailable() not yet called");
5541 
5542   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5543 }
5544 
5545 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5546   assert(initialized && _Module32First != NULL,
5547     "HelpToolsAvailable() not yet called");
5548 
5549   return _Module32First(hSnapshot, lpme);
5550 }
5551 
5552 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5553   assert(initialized && _Module32Next != NULL,
5554     "HelpToolsAvailable() not yet called");
5555 
5556   return _Module32Next(hSnapshot, lpme);
5557 }
5558 
5559 
5560 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5561   if (!initialized) {
5562     initialize();
5563   }
5564   return _GetNativeSystemInfo != NULL;
5565 }
5566 
5567 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5568   assert(initialized && _GetNativeSystemInfo != NULL,
5569     "GetNativeSystemInfoAvailable() not yet called");
5570 
5571   _GetNativeSystemInfo(lpSystemInfo);
5572 }
5573 
5574 // PSAPI API
5575 
5576 
5577 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5578 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
5579 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5580 
5581 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5582 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5583 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5584 BOOL                    os::PSApiDll::initialized = FALSE;
5585 
5586 void os::PSApiDll::initialize() {
5587   if (!initialized) {
5588     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5589     if (handle != NULL) {
5590       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5591         "EnumProcessModules");
5592       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5593         "GetModuleFileNameExA");
5594       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5595         "GetModuleInformation");
5596     }
5597     initialized = TRUE;
5598   }
5599 }
5600 
5601 
5602 
5603 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5604   assert(initialized && _EnumProcessModules != NULL,
5605     "PSApiAvailable() not yet called");
5606   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5607 }
5608 
5609 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5610   assert(initialized && _GetModuleFileNameEx != NULL,
5611     "PSApiAvailable() not yet called");
5612   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5613 }
5614 
5615 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5616   assert(initialized && _GetModuleInformation != NULL,
5617     "PSApiAvailable() not yet called");
5618   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5619 }
5620 
5621 BOOL os::PSApiDll::PSApiAvailable() {
5622   if (!initialized) {
5623     initialize();
5624   }
5625   return _EnumProcessModules != NULL &&
5626     _GetModuleFileNameEx != NULL &&
5627     _GetModuleInformation != NULL;
5628 }
5629 
5630 
5631 // WinSock2 API
5632 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5633 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5634 
5635 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5636 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5637 BOOL             os::WinSock2Dll::initialized = FALSE;
5638 
5639 void os::WinSock2Dll::initialize() {
5640   if (!initialized) {
5641     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5642     if (handle != NULL) {
5643       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5644       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5645     }
5646     initialized = TRUE;
5647   }
5648 }
5649 
5650 
5651 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5652   assert(initialized && _WSAStartup != NULL,
5653     "WinSock2Available() not yet called");
5654   return _WSAStartup(wVersionRequested, lpWSAData);
5655 }
5656 
5657 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5658   assert(initialized && _gethostbyname != NULL,
5659     "WinSock2Available() not yet called");
5660   return _gethostbyname(name);
5661 }
5662 
5663 BOOL os::WinSock2Dll::WinSock2Available() {
5664   if (!initialized) {
5665     initialize();
5666   }
5667   return _WSAStartup != NULL &&
5668     _gethostbyname != NULL;
5669 }
5670 
5671 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5672 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5673 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5674 
5675 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5676 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5677 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5678 BOOL                     os::Advapi32Dll::initialized = FALSE;
5679 
5680 void os::Advapi32Dll::initialize() {
5681   if (!initialized) {
5682     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5683     if (handle != NULL) {
5684       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5685         "AdjustTokenPrivileges");
5686       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5687         "OpenProcessToken");
5688       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5689         "LookupPrivilegeValueA");
5690     }
5691     initialized = TRUE;
5692   }
5693 }
5694 
5695 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5696    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5697    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5698    assert(initialized && _AdjustTokenPrivileges != NULL,
5699      "AdvapiAvailable() not yet called");
5700    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5701        BufferLength, PreviousState, ReturnLength);
5702 }
5703 
5704 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5705   PHANDLE TokenHandle) {
5706    assert(initialized && _OpenProcessToken != NULL,
5707      "AdvapiAvailable() not yet called");
5708     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5709 }
5710 
5711 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5712    assert(initialized && _LookupPrivilegeValue != NULL,
5713      "AdvapiAvailable() not yet called");
5714   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5715 }
5716 
5717 BOOL os::Advapi32Dll::AdvapiAvailable() {
5718   if (!initialized) {
5719     initialize();
5720   }
5721   return _AdjustTokenPrivileges != NULL &&
5722     _OpenProcessToken != NULL &&
5723     _LookupPrivilegeValue != NULL;
5724 }
5725 
5726 #endif
5727 
5728 #ifndef PRODUCT
5729 
5730 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5731 // contiguous memory block at a particular address.
5732 // The test first tries to find a good approximate address to allocate at by using the same
5733 // method to allocate some memory at any address. The test then tries to allocate memory in
5734 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5735 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5736 // the previously allocated memory is available for allocation. The only actual failure
5737 // that is reported is when the test tries to allocate at a particular location but gets a
5738 // different valid one. A NULL return value at this point is not considered an error but may
5739 // be legitimate.
5740 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5741 void TestReserveMemorySpecial_test() {
5742   if (!UseLargePages) {
5743     if (VerboseInternalVMTests) {
5744       gclog_or_tty->print("Skipping test because large pages are disabled");
5745     }
5746     return;
5747   }
5748   // save current value of globals
5749   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5750   bool old_use_numa_interleaving = UseNUMAInterleaving;
5751 
5752   // set globals to make sure we hit the correct code path
5753   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5754 
5755   // do an allocation at an address selected by the OS to get a good one.
5756   const size_t large_allocation_size = os::large_page_size() * 4;
5757   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5758   if (result == NULL) {
5759     if (VerboseInternalVMTests) {
5760       gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5761         large_allocation_size);
5762     }
5763   } else {
5764     os::release_memory_special(result, large_allocation_size);
5765 
5766     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5767     // we managed to get it once.
5768     const size_t expected_allocation_size = os::large_page_size();
5769     char* expected_location = result + os::large_page_size();
5770     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5771     if (actual_location == NULL) {
5772       if (VerboseInternalVMTests) {
5773         gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5774           expected_location, large_allocation_size);
5775       }
5776     } else {
5777       // release memory
5778       os::release_memory_special(actual_location, expected_allocation_size);
5779       // only now check, after releasing any memory to avoid any leaks.
5780       assert(actual_location == expected_location,
5781         err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5782           expected_location, expected_allocation_size, actual_location));
5783     }
5784   }
5785 
5786   // restore globals
5787   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5788   UseNUMAInterleaving = old_use_numa_interleaving;
5789 }
5790 #endif // PRODUCT
5791