1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "jvm_solaris.h"
  34 #include "memory/allocation.inline.hpp"
  35 #include "mutex_solaris.inline.hpp"
  36 #include "os_share_solaris.hpp"
  37 #include "prims/jniFastGetField.hpp"
  38 #include "prims/jvm.h"
  39 #include "prims/jvm_misc.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/atomic.inline.hpp"
  42 #include "runtime/extendedPC.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/interfaceSupport.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/javaCalls.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/osThread.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "runtime/thread.inline.hpp"
  52 #include "runtime/timer.hpp"
  53 #include "utilities/events.hpp"
  54 #include "utilities/vmError.hpp"
  55 
  56 // put OS-includes here
  57 # include <sys/types.h>
  58 # include <sys/mman.h>
  59 # include <pthread.h>
  60 # include <signal.h>
  61 # include <setjmp.h>
  62 # include <errno.h>
  63 # include <dlfcn.h>
  64 # include <stdio.h>
  65 # include <unistd.h>
  66 # include <sys/resource.h>
  67 # include <thread.h>
  68 # include <sys/stat.h>
  69 # include <sys/time.h>
  70 # include <sys/filio.h>
  71 # include <sys/utsname.h>
  72 # include <sys/systeminfo.h>
  73 # include <sys/socket.h>
  74 # include <sys/trap.h>
  75 # include <sys/lwp.h>
  76 # include <pwd.h>
  77 # include <poll.h>
  78 # include <sys/lwp.h>
  79 # include <procfs.h>     //  see comment in <sys/procfs.h>
  80 
  81 #ifndef AMD64
  82 // QQQ seems useless at this point
  83 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
  84 #endif // AMD64
  85 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
  86 
  87 
  88 #define MAX_PATH (2 * K)
  89 
  90 // Minimum stack size for the VM.  It's easier to document a constant value
  91 // but it's different for x86 and sparc because the page sizes are different.
  92 #ifdef AMD64
  93 size_t os::Solaris::min_stack_allowed = 224*K;
  94 #define REG_SP REG_RSP
  95 #define REG_PC REG_RIP
  96 #define REG_FP REG_RBP
  97 #else
  98 size_t os::Solaris::min_stack_allowed = 64*K;
  99 #define REG_SP UESP
 100 #define REG_PC EIP
 101 #define REG_FP EBP
 102 // 4900493 counter to prevent runaway LDTR refresh attempt
 103 
 104 static volatile int ldtr_refresh = 0;
 105 // the libthread instruction that faults because of the stale LDTR
 106 
 107 static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
 108                        };
 109 #endif // AMD64
 110 
 111 char* os::non_memory_address_word() {
 112   // Must never look like an address returned by reserve_memory,
 113   // even in its subfields (as defined by the CPU immediate fields,
 114   // if the CPU splits constants across multiple instructions).
 115   return (char*) -1;
 116 }
 117 
 118 //
 119 // Validate a ucontext retrieved from walking a uc_link of a ucontext.
 120 // There are issues with libthread giving out uc_links for different threads
 121 // on the same uc_link chain and bad or circular links.
 122 //
 123 bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
 124   if (valid >= suspect ||
 125       valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
 126       valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
 127       valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
 128     DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
 129     return false;
 130   }
 131 
 132   if (thread->is_Java_thread()) {
 133     if (!valid_stack_address(thread, (address)suspect)) {
 134       DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
 135       return false;
 136     }
 137     if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
 138       DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
 139       return false;
 140     }
 141   }
 142   return true;
 143 }
 144 
 145 // We will only follow one level of uc_link since there are libthread
 146 // issues with ucontext linking and it is better to be safe and just
 147 // let caller retry later.
 148 ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
 149   ucontext_t *uc) {
 150 
 151   ucontext_t *retuc = NULL;
 152 
 153   if (uc != NULL) {
 154     if (uc->uc_link == NULL) {
 155       // cannot validate without uc_link so accept current ucontext
 156       retuc = uc;
 157     } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
 158       // first ucontext is valid so try the next one
 159       uc = uc->uc_link;
 160       if (uc->uc_link == NULL) {
 161         // cannot validate without uc_link so accept current ucontext
 162         retuc = uc;
 163       } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
 164         // the ucontext one level down is also valid so return it
 165         retuc = uc;
 166       }
 167     }
 168   }
 169   return retuc;
 170 }
 171 
 172 // Assumes ucontext is valid
 173 ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
 174   return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
 175 }
 176 
 177 // Assumes ucontext is valid
 178 intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
 179   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 180 }
 181 
 182 // Assumes ucontext is valid
 183 intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
 184   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 185 }
 186 
 187 address os::Solaris::ucontext_get_pc(ucontext_t *uc) {
 188   return (address) uc->uc_mcontext.gregs[REG_PC];
 189 }
 190 
 191 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 192 // is currently interrupted by SIGPROF.
 193 //
 194 // The difference between this and os::fetch_frame_from_context() is that
 195 // here we try to skip nested signal frames.
 196 ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
 197   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 198 
 199   assert(thread != NULL, "just checking");
 200   assert(ret_sp != NULL, "just checking");
 201   assert(ret_fp != NULL, "just checking");
 202 
 203   ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
 204   return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
 205 }
 206 
 207 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
 208                     intptr_t** ret_sp, intptr_t** ret_fp) {
 209 
 210   ExtendedPC  epc;
 211   ucontext_t *uc = (ucontext_t*)ucVoid;
 212 
 213   if (uc != NULL) {
 214     epc = os::Solaris::ucontext_get_ExtendedPC(uc);
 215     if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
 216     if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
 217   } else {
 218     // construct empty ExtendedPC for return value checking
 219     epc = ExtendedPC(NULL);
 220     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 221     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 222   }
 223 
 224   return epc;
 225 }
 226 
 227 frame os::fetch_frame_from_context(void* ucVoid) {
 228   intptr_t* sp;
 229   intptr_t* fp;
 230   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 231   return frame(sp, fp, epc.pc());
 232 }
 233 
 234 frame os::get_sender_for_C_frame(frame* fr) {
 235   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 236 }
 237 
 238 extern "C" intptr_t *_get_current_sp();  // in .il file
 239 
 240 address os::current_stack_pointer() {
 241   return (address)_get_current_sp();
 242 }
 243 
 244 extern "C" intptr_t *_get_current_fp();  // in .il file
 245 
 246 frame os::current_frame() {
 247   intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
 248   frame myframe((intptr_t*)os::current_stack_pointer(),
 249                 (intptr_t*)fp,
 250                 CAST_FROM_FN_PTR(address, os::current_frame));
 251   if (os::is_first_C_frame(&myframe)) {
 252     // stack is not walkable
 253     frame ret; // This will be a null useless frame
 254     return ret;
 255   } else {
 256     return os::get_sender_for_C_frame(&myframe);
 257   }
 258 }
 259 
 260 static int threadgetstate(thread_t tid, int *flags, lwpid_t *lwp, stack_t *ss, gregset_t rs, lwpstatus_t *lwpstatus) {
 261   char lwpstatusfile[PROCFILE_LENGTH];
 262   int lwpfd, err;
 263 
 264   if (err = os::Solaris::thr_getstate(tid, flags, lwp, ss, rs))
 265     return (err);
 266   if (*flags == TRS_LWPID) {
 267     sprintf(lwpstatusfile, "/proc/%d/lwp/%d/lwpstatus", getpid(),
 268             *lwp);
 269     if ((lwpfd = open(lwpstatusfile, O_RDONLY)) < 0) {
 270       perror("thr_mutator_status: open lwpstatus");
 271       return (EINVAL);
 272     }
 273     if (pread(lwpfd, lwpstatus, sizeof (lwpstatus_t), (off_t)0) !=
 274         sizeof (lwpstatus_t)) {
 275       perror("thr_mutator_status: read lwpstatus");
 276       (void) close(lwpfd);
 277       return (EINVAL);
 278     }
 279     (void) close(lwpfd);
 280   }
 281   return (0);
 282 }
 283 
 284 #ifndef AMD64
 285 
 286 // Detecting SSE support by OS
 287 // From solaris_i486.s
 288 extern "C" bool sse_check();
 289 extern "C" bool sse_unavailable();
 290 
 291 enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
 292 static int sse_status = SSE_UNKNOWN;
 293 
 294 
 295 static void  check_for_sse_support() {
 296   if (!VM_Version::supports_sse()) {
 297     sse_status = SSE_NOT_SUPPORTED;
 298     return;
 299   }
 300   // looking for _sse_hw in libc.so, if it does not exist or
 301   // the value (int) is 0, OS has no support for SSE
 302   int *sse_hwp;
 303   void *h;
 304 
 305   if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
 306     //open failed, presume no support for SSE
 307     sse_status = SSE_NOT_SUPPORTED;
 308     return;
 309   }
 310   if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
 311     sse_status = SSE_NOT_SUPPORTED;
 312   } else if (*sse_hwp == 0) {
 313     sse_status = SSE_NOT_SUPPORTED;
 314   }
 315   dlclose(h);
 316 
 317   if (sse_status == SSE_UNKNOWN) {
 318     bool (*try_sse)() = (bool (*)())sse_check;
 319     sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
 320   }
 321 
 322 }
 323 
 324 #endif // AMD64
 325 
 326 bool os::supports_sse() {
 327 #ifdef AMD64
 328   return true;
 329 #else
 330   if (sse_status == SSE_UNKNOWN)
 331     check_for_sse_support();
 332   return sse_status == SSE_SUPPORTED;
 333 #endif // AMD64
 334 }
 335 
 336 bool os::is_allocatable(size_t bytes) {
 337 #ifdef AMD64
 338   return true;
 339 #else
 340 
 341   if (bytes < 2 * G) {
 342     return true;
 343   }
 344 
 345   char* addr = reserve_memory(bytes, NULL);
 346 
 347   if (addr != NULL) {
 348     release_memory(addr, bytes);
 349   }
 350 
 351   return addr != NULL;
 352 #endif // AMD64
 353 
 354 }
 355 
 356 extern "C" JNIEXPORT int
 357 JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
 358                           int abort_if_unrecognized) {
 359   ucontext_t* uc = (ucontext_t*) ucVoid;
 360 
 361 #ifndef AMD64
 362   if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
 363     // the SSE instruction faulted. supports_sse() need return false.
 364     uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
 365     return true;
 366   }
 367 #endif // !AMD64
 368 
 369   Thread* t = ThreadLocalStorage::get_thread_slow();  // slow & steady
 370 
 371   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
 372   // (no destructors can be run)
 373   os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
 374 
 375   SignalHandlerMark shm(t);
 376 
 377   if(sig == SIGPIPE || sig == SIGXFSZ) {
 378     if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 379       return true;
 380     } else {
 381       if (PrintMiscellaneous && (WizardMode || Verbose)) {
 382         char buf[64];
 383         warning("Ignoring %s - see 4229104 or 6499219",
 384                 os::exception_name(sig, buf, sizeof(buf)));
 385 
 386       }
 387       return true;
 388     }
 389   }
 390 
 391   JavaThread* thread = NULL;
 392   VMThread* vmthread = NULL;
 393 
 394   if (os::Solaris::signal_handlers_are_installed) {
 395     if (t != NULL ){
 396       if(t->is_Java_thread()) {
 397         thread = (JavaThread*)t;
 398       }
 399       else if(t->is_VM_thread()){
 400         vmthread = (VMThread *)t;
 401       }
 402     }
 403   }
 404 
 405   guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs");
 406 
 407   if (sig == os::Solaris::SIGasync()) {
 408     if(thread || vmthread){
 409       OSThread::SR_handler(t, uc);
 410       return true;
 411     } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 412       return true;
 413     } else {
 414       // If os::Solaris::SIGasync not chained, and this is a non-vm and
 415       // non-java thread
 416       return true;
 417     }
 418   }
 419 
 420   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 421     // can't decode this kind of signal
 422     info = NULL;
 423   } else {
 424     assert(sig == info->si_signo, "bad siginfo");
 425   }
 426 
 427   // decide if this trap can be handled by a stub
 428   address stub = NULL;
 429 
 430   address pc          = NULL;
 431 
 432   //%note os_trap_1
 433   if (info != NULL && uc != NULL && thread != NULL) {
 434     // factor me: getPCfromContext
 435     pc = (address) uc->uc_mcontext.gregs[REG_PC];
 436 
 437     if (StubRoutines::is_safefetch_fault(pc)) {
 438       uc->uc_mcontext.gregs[REG_PC] = intptr_t(StubRoutines::continuation_for_safefetch_fault(pc));
 439       return true;
 440     }
 441 
 442     // Handle ALL stack overflow variations here
 443     if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
 444       address addr = (address) info->si_addr;
 445       if (thread->in_stack_yellow_zone(addr)) {
 446         thread->disable_stack_yellow_zone();
 447         if (thread->thread_state() == _thread_in_Java) {
 448           // Throw a stack overflow exception.  Guard pages will be reenabled
 449           // while unwinding the stack.
 450           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 451         } else {
 452           // Thread was in the vm or native code.  Return and try to finish.
 453           return true;
 454         }
 455       } else if (thread->in_stack_red_zone(addr)) {
 456         // Fatal red zone violation.  Disable the guard pages and fall through
 457         // to handle_unexpected_exception way down below.
 458         thread->disable_stack_red_zone();
 459         tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 460       }
 461     }
 462 
 463     if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
 464       // Verify that OS save/restore AVX registers.
 465       stub = VM_Version::cpuinfo_cont_addr();
 466     }
 467 
 468     if (thread->thread_state() == _thread_in_vm) {
 469       if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
 470         stub = StubRoutines::handler_for_unsafe_access();
 471       }
 472     }
 473 
 474     if (thread->thread_state() == _thread_in_Java) {
 475       // Support Safepoint Polling
 476       if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 477         stub = SharedRuntime::get_poll_stub(pc);
 478       }
 479       else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
 480         // BugId 4454115: A read from a MappedByteBuffer can fault
 481         // here if the underlying file has been truncated.
 482         // Do not crash the VM in such a case.
 483         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 484         if (cb != NULL) {
 485           nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
 486           if (nm != NULL && nm->has_unsafe_access()) {
 487             stub = StubRoutines::handler_for_unsafe_access();
 488           }
 489         }
 490       }
 491       else
 492       if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
 493         // integer divide by zero
 494         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 495       }
 496 #ifndef AMD64
 497       else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
 498         // floating-point divide by zero
 499         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 500       }
 501       else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
 502         // The encoding of D2I in i486.ad can cause an exception prior
 503         // to the fist instruction if there was an invalid operation
 504         // pending. We want to dismiss that exception. From the win_32
 505         // side it also seems that if it really was the fist causing
 506         // the exception that we do the d2i by hand with different
 507         // rounding. Seems kind of weird. QQQ TODO
 508         // Note that we take the exception at the NEXT floating point instruction.
 509         if (pc[0] == 0xDB) {
 510             assert(pc[0] == 0xDB, "not a FIST opcode");
 511             assert(pc[1] == 0x14, "not a FIST opcode");
 512             assert(pc[2] == 0x24, "not a FIST opcode");
 513             return true;
 514         } else {
 515             assert(pc[-3] == 0xDB, "not an flt invalid opcode");
 516             assert(pc[-2] == 0x14, "not an flt invalid opcode");
 517             assert(pc[-1] == 0x24, "not an flt invalid opcode");
 518         }
 519       }
 520       else if (sig == SIGFPE ) {
 521         tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
 522       }
 523 #endif // !AMD64
 524 
 525         // QQQ It doesn't seem that we need to do this on x86 because we should be able
 526         // to return properly from the handler without this extra stuff on the back side.
 527 
 528       else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 529         // Determination of interpreter/vtable stub/compiled code null exception
 530         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 531       }
 532     }
 533 
 534     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 535     // and the heap gets shrunk before the field access.
 536     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 537       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 538       if (addr != (address)-1) {
 539         stub = addr;
 540       }
 541     }
 542 
 543     // Check to see if we caught the safepoint code in the
 544     // process of write protecting the memory serialization page.
 545     // It write enables the page immediately after protecting it
 546     // so we can just return to retry the write.
 547     if ((sig == SIGSEGV) &&
 548         os::is_memory_serialize_page(thread, (address)info->si_addr)) {
 549       // Block current thread until the memory serialize page permission restored.
 550       os::block_on_serialize_page_trap();
 551       return true;
 552     }
 553   }
 554 
 555   // Execution protection violation
 556   //
 557   // Preventative code for future versions of Solaris which may
 558   // enable execution protection when running the 32-bit VM on AMD64.
 559   //
 560   // This should be kept as the last step in the triage.  We don't
 561   // have a dedicated trap number for a no-execute fault, so be
 562   // conservative and allow other handlers the first shot.
 563   //
 564   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 565   // this si_code is so generic that it is almost meaningless; and
 566   // the si_code for this condition may change in the future.
 567   // Furthermore, a false-positive should be harmless.
 568   if (UnguardOnExecutionViolation > 0 &&
 569       (sig == SIGSEGV || sig == SIGBUS) &&
 570       uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
 571     int page_size = os::vm_page_size();
 572     address addr = (address) info->si_addr;
 573     address pc = (address) uc->uc_mcontext.gregs[REG_PC];
 574     // Make sure the pc and the faulting address are sane.
 575     //
 576     // If an instruction spans a page boundary, and the page containing
 577     // the beginning of the instruction is executable but the following
 578     // page is not, the pc and the faulting address might be slightly
 579     // different - we still want to unguard the 2nd page in this case.
 580     //
 581     // 15 bytes seems to be a (very) safe value for max instruction size.
 582     bool pc_is_near_addr =
 583       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 584     bool instr_spans_page_boundary =
 585       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 586                        (intptr_t) page_size) > 0);
 587 
 588     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 589       static volatile address last_addr =
 590         (address) os::non_memory_address_word();
 591 
 592       // In conservative mode, don't unguard unless the address is in the VM
 593       if (addr != last_addr &&
 594           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 595 
 596         // Make memory rwx and retry
 597         address page_start =
 598           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 599         bool res = os::protect_memory((char*) page_start, page_size,
 600                                       os::MEM_PROT_RWX);
 601 
 602         if (PrintMiscellaneous && Verbose) {
 603           char buf[256];
 604           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
 605                        "at " INTPTR_FORMAT
 606                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
 607                        page_start, (res ? "success" : "failed"), errno);
 608           tty->print_raw_cr(buf);
 609         }
 610         stub = pc;
 611 
 612         // Set last_addr so if we fault again at the same address, we don't end
 613         // up in an endless loop.
 614         //
 615         // There are two potential complications here.  Two threads trapping at
 616         // the same address at the same time could cause one of the threads to
 617         // think it already unguarded, and abort the VM.  Likely very rare.
 618         //
 619         // The other race involves two threads alternately trapping at
 620         // different addresses and failing to unguard the page, resulting in
 621         // an endless loop.  This condition is probably even more unlikely than
 622         // the first.
 623         //
 624         // Although both cases could be avoided by using locks or thread local
 625         // last_addr, these solutions are unnecessary complication: this
 626         // handler is a best-effort safety net, not a complete solution.  It is
 627         // disabled by default and should only be used as a workaround in case
 628         // we missed any no-execute-unsafe VM code.
 629 
 630         last_addr = addr;
 631       }
 632     }
 633   }
 634 
 635   if (stub != NULL) {
 636     // save all thread context in case we need to restore it
 637 
 638     if (thread != NULL) thread->set_saved_exception_pc(pc);
 639     // 12/02/99: On Sparc it appears that the full context is also saved
 640     // but as yet, no one looks at or restores that saved context
 641     // factor me: setPC
 642     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
 643     return true;
 644   }
 645 
 646   // signal-chaining
 647   if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 648     return true;
 649   }
 650 
 651 #ifndef AMD64
 652   // Workaround (bug 4900493) for Solaris kernel bug 4966651.
 653   // Handle an undefined selector caused by an attempt to assign
 654   // fs in libthread getipriptr(). With the current libthread design every 512
 655   // thread creations the LDT for a private thread data structure is extended
 656   // and thre is a hazard that and another thread attempting a thread creation
 657   // will use a stale LDTR that doesn't reflect the structure's growth,
 658   // causing a GP fault.
 659   // Enforce the probable limit of passes through here to guard against an
 660   // infinite loop if some other move to fs caused the GP fault. Note that
 661   // this loop counter is ultimately a heuristic as it is possible for
 662   // more than one thread to generate this fault at a time in an MP system.
 663   // In the case of the loop count being exceeded or if the poll fails
 664   // just fall through to a fatal error.
 665   // If there is some other source of T_GPFLT traps and the text at EIP is
 666   // unreadable this code will loop infinitely until the stack is exausted.
 667   // The key to diagnosis in this case is to look for the bottom signal handler
 668   // frame.
 669 
 670   if(! IgnoreLibthreadGPFault) {
 671     if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
 672       const unsigned char *p =
 673                         (unsigned const char *) uc->uc_mcontext.gregs[EIP];
 674 
 675       // Expected instruction?
 676 
 677       if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
 678 
 679         Atomic::inc(&ldtr_refresh);
 680 
 681         // Infinite loop?
 682 
 683         if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
 684 
 685           // No, force scheduling to get a fresh view of the LDTR
 686 
 687           if(poll(NULL, 0, 10) == 0) {
 688 
 689             // Retry the move
 690 
 691             return false;
 692           }
 693         }
 694       }
 695     }
 696   }
 697 #endif // !AMD64
 698 
 699   if (!abort_if_unrecognized) {
 700     // caller wants another chance, so give it to him
 701     return false;
 702   }
 703 
 704   if (!os::Solaris::libjsig_is_loaded) {
 705     struct sigaction oldAct;
 706     sigaction(sig, (struct sigaction *)0, &oldAct);
 707     if (oldAct.sa_sigaction != signalHandler) {
 708       void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
 709                                           : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
 710       warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
 711     }
 712   }
 713 
 714   if (pc == NULL && uc != NULL) {
 715     pc = (address) uc->uc_mcontext.gregs[REG_PC];
 716   }
 717 
 718   // unmask current signal
 719   sigset_t newset;
 720   sigemptyset(&newset);
 721   sigaddset(&newset, sig);
 722   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 723 
 724   // Determine which sort of error to throw.  Out of swap may signal
 725   // on the thread stack, which could get a mapping error when touched.
 726   address addr = (address) info->si_addr;
 727   if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
 728     vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
 729   }
 730 
 731   VMError err(t, sig, pc, info, ucVoid);
 732   err.report_and_die();
 733 
 734   ShouldNotReachHere();
 735   return false;
 736 }
 737 
 738 void os::print_context(outputStream *st, void *context) {
 739   if (context == NULL) return;
 740 
 741   ucontext_t *uc = (ucontext_t*)context;
 742   st->print_cr("Registers:");
 743 #ifdef AMD64
 744   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 745   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 746   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 747   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 748   st->cr();
 749   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 750   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 751   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 752   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 753   st->cr();
 754   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 755   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 756   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 757   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 758   st->cr();
 759   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 760   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 761   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 762   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 763   st->cr();
 764   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
 765   st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
 766 #else
 767   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
 768   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
 769   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
 770   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
 771   st->cr();
 772   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
 773   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
 774   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
 775   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
 776   st->cr();
 777   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
 778   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
 779 #endif // AMD64
 780   st->cr();
 781   st->cr();
 782 
 783   intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
 784   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
 785   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 786   st->cr();
 787 
 788   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 789   // point to garbage if entry point in an nmethod is corrupted. Leave
 790   // this at the end, and hope for the best.
 791   ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
 792   address pc = epc.pc();
 793   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
 794   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
 795 }
 796 
 797 void os::print_register_info(outputStream *st, void *context) {
 798   if (context == NULL) return;
 799 
 800   ucontext_t *uc = (ucontext_t*)context;
 801 
 802   st->print_cr("Register to memory mapping:");
 803   st->cr();
 804 
 805   // this is horrendously verbose but the layout of the registers in the
 806   // context does not match how we defined our abstract Register set, so
 807   // we can't just iterate through the gregs area
 808 
 809   // this is only for the "general purpose" registers
 810 
 811 #ifdef AMD64
 812   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 813   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 814   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 815   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 816   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 817   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 818   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 819   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 820   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 821   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 822   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 823   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 824   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 825   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 826   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 827   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 828 #else
 829   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
 830   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
 831   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
 832   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
 833   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
 834   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
 835   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
 836   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
 837 #endif
 838 
 839   st->cr();
 840 }
 841 
 842 
 843 #ifdef AMD64
 844 void os::Solaris::init_thread_fpu_state(void) {
 845   // Nothing to do
 846 }
 847 #else
 848 // From solaris_i486.s
 849 extern "C" void fixcw();
 850 
 851 void os::Solaris::init_thread_fpu_state(void) {
 852   // Set fpu to 53 bit precision. This happens too early to use a stub.
 853   fixcw();
 854 }
 855 
 856 // These routines are the initial value of atomic_xchg_entry(),
 857 // atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
 858 // until initialization is complete.
 859 // TODO - replace with .il implementation when compiler supports it.
 860 
 861 typedef jint  xchg_func_t        (jint,  volatile jint*);
 862 typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
 863 typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
 864 typedef jint  add_func_t         (jint,  volatile jint*);
 865 
 866 jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
 867   // try to use the stub:
 868   xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
 869 
 870   if (func != NULL) {
 871     os::atomic_xchg_func = func;
 872     return (*func)(exchange_value, dest);
 873   }
 874   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 875 
 876   jint old_value = *dest;
 877   *dest = exchange_value;
 878   return old_value;
 879 }
 880 
 881 jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
 882   // try to use the stub:
 883   cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
 884 
 885   if (func != NULL) {
 886     os::atomic_cmpxchg_func = func;
 887     return (*func)(exchange_value, dest, compare_value);
 888   }
 889   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 890 
 891   jint old_value = *dest;
 892   if (old_value == compare_value)
 893     *dest = exchange_value;
 894   return old_value;
 895 }
 896 
 897 jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
 898   // try to use the stub:
 899   cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
 900 
 901   if (func != NULL) {
 902     os::atomic_cmpxchg_long_func = func;
 903     return (*func)(exchange_value, dest, compare_value);
 904   }
 905   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 906 
 907   jlong old_value = *dest;
 908   if (old_value == compare_value)
 909     *dest = exchange_value;
 910   return old_value;
 911 }
 912 
 913 jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
 914   // try to use the stub:
 915   add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
 916 
 917   if (func != NULL) {
 918     os::atomic_add_func = func;
 919     return (*func)(add_value, dest);
 920   }
 921   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 922 
 923   return (*dest) += add_value;
 924 }
 925 
 926 xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
 927 cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
 928 cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
 929 add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
 930 
 931 extern "C" void _solaris_raw_setup_fpu(address ptr);
 932 void os::setup_fpu() {
 933   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 934   _solaris_raw_setup_fpu(fpu_cntrl);
 935 }
 936 #endif // AMD64
 937 
 938 #ifndef PRODUCT
 939 void os::verify_stack_alignment() {
 940 #ifdef AMD64
 941   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 942 #endif
 943 }
 944 #endif