1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 #define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
  27 #endif
  28 
  29 #include "precompiled.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  33 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  34 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  35 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  36 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  37 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  38 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  39 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  40 #include "gc_implementation/g1/g1EvacFailure.hpp"
  41 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  42 #include "gc_implementation/g1/g1Log.hpp"
  43 #include "gc_implementation/g1/g1MarkSweep.hpp"
  44 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  45 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  46 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  47 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  48 #include "gc_implementation/g1/g1StringDedup.hpp"
  49 #include "gc_implementation/g1/g1YCTypes.hpp"
  50 #include "gc_implementation/g1/heapRegion.inline.hpp"
  51 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  52 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  53 #include "gc_implementation/g1/vm_operations_g1.hpp"
  54 #include "gc_implementation/shared/gcHeapSummary.hpp"
  55 #include "gc_implementation/shared/gcTimer.hpp"
  56 #include "gc_implementation/shared/gcTrace.hpp"
  57 #include "gc_implementation/shared/gcTraceTime.hpp"
  58 #include "gc_implementation/shared/isGCActiveMark.hpp"
  59 #include "memory/allocation.hpp"
  60 #include "memory/gcLocker.inline.hpp"
  61 #include "memory/generationSpec.hpp"
  62 #include "memory/iterator.hpp"
  63 #include "memory/referenceProcessor.hpp"
  64 #include "oops/oop.inline.hpp"
  65 #include "oops/oop.pcgc.inline.hpp"
  66 #include "runtime/orderAccess.inline.hpp"
  67 #include "runtime/vmThread.hpp"
  68 
  69 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  70 
  71 // turn it on so that the contents of the young list (scan-only /
  72 // to-be-collected) are printed at "strategic" points before / during
  73 // / after the collection --- this is useful for debugging
  74 #define YOUNG_LIST_VERBOSE 0
  75 // CURRENT STATUS
  76 // This file is under construction.  Search for "FIXME".
  77 
  78 // INVARIANTS/NOTES
  79 //
  80 // All allocation activity covered by the G1CollectedHeap interface is
  81 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  82 // and allocate_new_tlab, which are the "entry" points to the
  83 // allocation code from the rest of the JVM.  (Note that this does not
  84 // apply to TLAB allocation, which is not part of this interface: it
  85 // is done by clients of this interface.)
  86 
  87 // Notes on implementation of parallelism in different tasks.
  88 //
  89 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  90 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  91 // It does use run_task() which sets _n_workers in the task.
  92 // G1ParTask executes g1_process_roots() ->
  93 // SharedHeap::process_roots() which calls eventually to
  94 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  95 // SequentialSubTasksDone.  SharedHeap::process_roots() also
  96 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  97 //
  98 
  99 // Local to this file.
 100 
 101 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 102   bool _concurrent;
 103 public:
 104   RefineCardTableEntryClosure() : _concurrent(true) { }
 105 
 106   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 107     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 108     // This path is executed by the concurrent refine or mutator threads,
 109     // concurrently, and so we do not care if card_ptr contains references
 110     // that point into the collection set.
 111     assert(!oops_into_cset, "should be");
 112 
 113     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 114       // Caller will actually yield.
 115       return false;
 116     }
 117     // Otherwise, we finished successfully; return true.
 118     return true;
 119   }
 120 
 121   void set_concurrent(bool b) { _concurrent = b; }
 122 };
 123 
 124 
 125 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 126   size_t _num_processed;
 127   CardTableModRefBS* _ctbs;
 128   int _histo[256];
 129 
 130  public:
 131   ClearLoggedCardTableEntryClosure() :
 132     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
 133   {
 134     for (int i = 0; i < 256; i++) _histo[i] = 0;
 135   }
 136 
 137   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 138     unsigned char* ujb = (unsigned char*)card_ptr;
 139     int ind = (int)(*ujb);
 140     _histo[ind]++;
 141 
 142     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
 143     _num_processed++;
 144 
 145     return true;
 146   }
 147 
 148   size_t num_processed() { return _num_processed; }
 149 
 150   void print_histo() {
 151     gclog_or_tty->print_cr("Card table value histogram:");
 152     for (int i = 0; i < 256; i++) {
 153       if (_histo[i] != 0) {
 154         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 155       }
 156     }
 157   }
 158 };
 159 
 160 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 161  private:
 162   size_t _num_processed;
 163 
 164  public:
 165   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 166 
 167   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 168     *card_ptr = CardTableModRefBS::dirty_card_val();
 169     _num_processed++;
 170     return true;
 171   }
 172 
 173   size_t num_processed() const { return _num_processed; }
 174 };
 175 
 176 YoungList::YoungList(G1CollectedHeap* g1h) :
 177     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 178     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 179   guarantee(check_list_empty(false), "just making sure...");
 180 }
 181 
 182 void YoungList::push_region(HeapRegion *hr) {
 183   assert(!hr->is_young(), "should not already be young");
 184   assert(hr->get_next_young_region() == NULL, "cause it should!");
 185 
 186   hr->set_next_young_region(_head);
 187   _head = hr;
 188 
 189   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 190   ++_length;
 191 }
 192 
 193 void YoungList::add_survivor_region(HeapRegion* hr) {
 194   assert(hr->is_survivor(), "should be flagged as survivor region");
 195   assert(hr->get_next_young_region() == NULL, "cause it should!");
 196 
 197   hr->set_next_young_region(_survivor_head);
 198   if (_survivor_head == NULL) {
 199     _survivor_tail = hr;
 200   }
 201   _survivor_head = hr;
 202   ++_survivor_length;
 203 }
 204 
 205 void YoungList::empty_list(HeapRegion* list) {
 206   while (list != NULL) {
 207     HeapRegion* next = list->get_next_young_region();
 208     list->set_next_young_region(NULL);
 209     list->uninstall_surv_rate_group();
 210     list->set_not_young();
 211     list = next;
 212   }
 213 }
 214 
 215 void YoungList::empty_list() {
 216   assert(check_list_well_formed(), "young list should be well formed");
 217 
 218   empty_list(_head);
 219   _head = NULL;
 220   _length = 0;
 221 
 222   empty_list(_survivor_head);
 223   _survivor_head = NULL;
 224   _survivor_tail = NULL;
 225   _survivor_length = 0;
 226 
 227   _last_sampled_rs_lengths = 0;
 228 
 229   assert(check_list_empty(false), "just making sure...");
 230 }
 231 
 232 bool YoungList::check_list_well_formed() {
 233   bool ret = true;
 234 
 235   uint length = 0;
 236   HeapRegion* curr = _head;
 237   HeapRegion* last = NULL;
 238   while (curr != NULL) {
 239     if (!curr->is_young()) {
 240       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 241                              "incorrectly tagged (y: %d, surv: %d)",
 242                              curr->bottom(), curr->end(),
 243                              curr->is_young(), curr->is_survivor());
 244       ret = false;
 245     }
 246     ++length;
 247     last = curr;
 248     curr = curr->get_next_young_region();
 249   }
 250   ret = ret && (length == _length);
 251 
 252   if (!ret) {
 253     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 254     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 255                            length, _length);
 256   }
 257 
 258   return ret;
 259 }
 260 
 261 bool YoungList::check_list_empty(bool check_sample) {
 262   bool ret = true;
 263 
 264   if (_length != 0) {
 265     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 266                   _length);
 267     ret = false;
 268   }
 269   if (check_sample && _last_sampled_rs_lengths != 0) {
 270     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 271     ret = false;
 272   }
 273   if (_head != NULL) {
 274     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 275     ret = false;
 276   }
 277   if (!ret) {
 278     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 279   }
 280 
 281   return ret;
 282 }
 283 
 284 void
 285 YoungList::rs_length_sampling_init() {
 286   _sampled_rs_lengths = 0;
 287   _curr               = _head;
 288 }
 289 
 290 bool
 291 YoungList::rs_length_sampling_more() {
 292   return _curr != NULL;
 293 }
 294 
 295 void
 296 YoungList::rs_length_sampling_next() {
 297   assert( _curr != NULL, "invariant" );
 298   size_t rs_length = _curr->rem_set()->occupied();
 299 
 300   _sampled_rs_lengths += rs_length;
 301 
 302   // The current region may not yet have been added to the
 303   // incremental collection set (it gets added when it is
 304   // retired as the current allocation region).
 305   if (_curr->in_collection_set()) {
 306     // Update the collection set policy information for this region
 307     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 308   }
 309 
 310   _curr = _curr->get_next_young_region();
 311   if (_curr == NULL) {
 312     _last_sampled_rs_lengths = _sampled_rs_lengths;
 313     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 314   }
 315 }
 316 
 317 void
 318 YoungList::reset_auxilary_lists() {
 319   guarantee( is_empty(), "young list should be empty" );
 320   assert(check_list_well_formed(), "young list should be well formed");
 321 
 322   // Add survivor regions to SurvRateGroup.
 323   _g1h->g1_policy()->note_start_adding_survivor_regions();
 324   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 325 
 326   int young_index_in_cset = 0;
 327   for (HeapRegion* curr = _survivor_head;
 328        curr != NULL;
 329        curr = curr->get_next_young_region()) {
 330     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 331 
 332     // The region is a non-empty survivor so let's add it to
 333     // the incremental collection set for the next evacuation
 334     // pause.
 335     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 336     young_index_in_cset += 1;
 337   }
 338   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 339   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 340 
 341   _head   = _survivor_head;
 342   _length = _survivor_length;
 343   if (_survivor_head != NULL) {
 344     assert(_survivor_tail != NULL, "cause it shouldn't be");
 345     assert(_survivor_length > 0, "invariant");
 346     _survivor_tail->set_next_young_region(NULL);
 347   }
 348 
 349   // Don't clear the survivor list handles until the start of
 350   // the next evacuation pause - we need it in order to re-tag
 351   // the survivor regions from this evacuation pause as 'young'
 352   // at the start of the next.
 353 
 354   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 355 
 356   assert(check_list_well_formed(), "young list should be well formed");
 357 }
 358 
 359 void YoungList::print() {
 360   HeapRegion* lists[] = {_head,   _survivor_head};
 361   const char* names[] = {"YOUNG", "SURVIVOR"};
 362 
 363   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 364     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 365     HeapRegion *curr = lists[list];
 366     if (curr == NULL)
 367       gclog_or_tty->print_cr("  empty");
 368     while (curr != NULL) {
 369       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 370                              HR_FORMAT_PARAMS(curr),
 371                              curr->prev_top_at_mark_start(),
 372                              curr->next_top_at_mark_start(),
 373                              curr->age_in_surv_rate_group_cond());
 374       curr = curr->get_next_young_region();
 375     }
 376   }
 377 
 378   gclog_or_tty->cr();
 379 }
 380 
 381 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 382   OtherRegionsTable::invalidate(start_idx, num_regions);
 383 }
 384 
 385 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions) {
 386   reset_from_card_cache(start_idx, num_regions);
 387 }
 388 
 389 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 390 {
 391   // Claim the right to put the region on the dirty cards region list
 392   // by installing a self pointer.
 393   HeapRegion* next = hr->get_next_dirty_cards_region();
 394   if (next == NULL) {
 395     HeapRegion* res = (HeapRegion*)
 396       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 397                           NULL);
 398     if (res == NULL) {
 399       HeapRegion* head;
 400       do {
 401         // Put the region to the dirty cards region list.
 402         head = _dirty_cards_region_list;
 403         next = (HeapRegion*)
 404           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 405         if (next == head) {
 406           assert(hr->get_next_dirty_cards_region() == hr,
 407                  "hr->get_next_dirty_cards_region() != hr");
 408           if (next == NULL) {
 409             // The last region in the list points to itself.
 410             hr->set_next_dirty_cards_region(hr);
 411           } else {
 412             hr->set_next_dirty_cards_region(next);
 413           }
 414         }
 415       } while (next != head);
 416     }
 417   }
 418 }
 419 
 420 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 421 {
 422   HeapRegion* head;
 423   HeapRegion* hr;
 424   do {
 425     head = _dirty_cards_region_list;
 426     if (head == NULL) {
 427       return NULL;
 428     }
 429     HeapRegion* new_head = head->get_next_dirty_cards_region();
 430     if (head == new_head) {
 431       // The last region.
 432       new_head = NULL;
 433     }
 434     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 435                                           head);
 436   } while (hr != head);
 437   assert(hr != NULL, "invariant");
 438   hr->set_next_dirty_cards_region(NULL);
 439   return hr;
 440 }
 441 
 442 #ifdef ASSERT
 443 // A region is added to the collection set as it is retired
 444 // so an address p can point to a region which will be in the
 445 // collection set but has not yet been retired.  This method
 446 // therefore is only accurate during a GC pause after all
 447 // regions have been retired.  It is used for debugging
 448 // to check if an nmethod has references to objects that can
 449 // be move during a partial collection.  Though it can be
 450 // inaccurate, it is sufficient for G1 because the conservative
 451 // implementation of is_scavengable() for G1 will indicate that
 452 // all nmethods must be scanned during a partial collection.
 453 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 454   if (p == NULL) {
 455     return false;
 456   }
 457   return heap_region_containing(p)->in_collection_set();
 458 }
 459 #endif
 460 
 461 // Returns true if the reference points to an object that
 462 // can move in an incremental collection.
 463 bool G1CollectedHeap::is_scavengable(const void* p) {
 464   HeapRegion* hr = heap_region_containing(p);
 465   return !hr->isHumongous();
 466 }
 467 
 468 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 469   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 470   CardTableModRefBS* ct_bs = g1_barrier_set();
 471 
 472   // Count the dirty cards at the start.
 473   CountNonCleanMemRegionClosure count1(this);
 474   ct_bs->mod_card_iterate(&count1);
 475   int orig_count = count1.n();
 476 
 477   // First clear the logged cards.
 478   ClearLoggedCardTableEntryClosure clear;
 479   dcqs.apply_closure_to_all_completed_buffers(&clear);
 480   dcqs.iterate_closure_all_threads(&clear, false);
 481   clear.print_histo();
 482 
 483   // Now ensure that there's no dirty cards.
 484   CountNonCleanMemRegionClosure count2(this);
 485   ct_bs->mod_card_iterate(&count2);
 486   if (count2.n() != 0) {
 487     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 488                            count2.n(), orig_count);
 489   }
 490   guarantee(count2.n() == 0, "Card table should be clean.");
 491 
 492   RedirtyLoggedCardTableEntryClosure redirty;
 493   dcqs.apply_closure_to_all_completed_buffers(&redirty);
 494   dcqs.iterate_closure_all_threads(&redirty, false);
 495   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 496                          clear.num_processed(), orig_count);
 497   guarantee(redirty.num_processed() == clear.num_processed(),
 498             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
 499                     redirty.num_processed(), clear.num_processed()));
 500 
 501   CountNonCleanMemRegionClosure count3(this);
 502   ct_bs->mod_card_iterate(&count3);
 503   if (count3.n() != orig_count) {
 504     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 505                            orig_count, count3.n());
 506     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 507   }
 508 }
 509 
 510 // Private class members.
 511 
 512 G1CollectedHeap* G1CollectedHeap::_g1h;
 513 
 514 // Private methods.
 515 
 516 HeapRegion*
 517 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 518   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 519   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 520     if (!_secondary_free_list.is_empty()) {
 521       if (G1ConcRegionFreeingVerbose) {
 522         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 523                                "secondary_free_list has %u entries",
 524                                _secondary_free_list.length());
 525       }
 526       // It looks as if there are free regions available on the
 527       // secondary_free_list. Let's move them to the free_list and try
 528       // again to allocate from it.
 529       append_secondary_free_list();
 530 
 531       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 532              "empty we should have moved at least one entry to the free_list");
 533       HeapRegion* res = _hrm.allocate_free_region(is_old);
 534       if (G1ConcRegionFreeingVerbose) {
 535         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 536                                "allocated "HR_FORMAT" from secondary_free_list",
 537                                HR_FORMAT_PARAMS(res));
 538       }
 539       return res;
 540     }
 541 
 542     // Wait here until we get notified either when (a) there are no
 543     // more free regions coming or (b) some regions have been moved on
 544     // the secondary_free_list.
 545     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 546   }
 547 
 548   if (G1ConcRegionFreeingVerbose) {
 549     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 550                            "could not allocate from secondary_free_list");
 551   }
 552   return NULL;
 553 }
 554 
 555 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 556   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 557          "the only time we use this to allocate a humongous region is "
 558          "when we are allocating a single humongous region");
 559 
 560   HeapRegion* res;
 561   if (G1StressConcRegionFreeing) {
 562     if (!_secondary_free_list.is_empty()) {
 563       if (G1ConcRegionFreeingVerbose) {
 564         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 565                                "forced to look at the secondary_free_list");
 566       }
 567       res = new_region_try_secondary_free_list(is_old);
 568       if (res != NULL) {
 569         return res;
 570       }
 571     }
 572   }
 573 
 574   res = _hrm.allocate_free_region(is_old);
 575 
 576   if (res == NULL) {
 577     if (G1ConcRegionFreeingVerbose) {
 578       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 579                              "res == NULL, trying the secondary_free_list");
 580     }
 581     res = new_region_try_secondary_free_list(is_old);
 582   }
 583   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 584     // Currently, only attempts to allocate GC alloc regions set
 585     // do_expand to true. So, we should only reach here during a
 586     // safepoint. If this assumption changes we might have to
 587     // reconsider the use of _expand_heap_after_alloc_failure.
 588     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 589 
 590     ergo_verbose1(ErgoHeapSizing,
 591                   "attempt heap expansion",
 592                   ergo_format_reason("region allocation request failed")
 593                   ergo_format_byte("allocation request"),
 594                   word_size * HeapWordSize);
 595     if (expand(word_size * HeapWordSize)) {
 596       // Given that expand() succeeded in expanding the heap, and we
 597       // always expand the heap by an amount aligned to the heap
 598       // region size, the free list should in theory not be empty.
 599       // In either case allocate_free_region() will check for NULL.
 600       res = _hrm.allocate_free_region(is_old);
 601     } else {
 602       _expand_heap_after_alloc_failure = false;
 603     }
 604   }
 605   return res;
 606 }
 607 
 608 HeapWord*
 609 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 610                                                            uint num_regions,
 611                                                            size_t word_size,
 612                                                            AllocationContext_t context) {
 613   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 614   assert(isHumongous(word_size), "word_size should be humongous");
 615   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 616 
 617   // Index of last region in the series + 1.
 618   uint last = first + num_regions;
 619 
 620   // We need to initialize the region(s) we just discovered. This is
 621   // a bit tricky given that it can happen concurrently with
 622   // refinement threads refining cards on these regions and
 623   // potentially wanting to refine the BOT as they are scanning
 624   // those cards (this can happen shortly after a cleanup; see CR
 625   // 6991377). So we have to set up the region(s) carefully and in
 626   // a specific order.
 627 
 628   // The word size sum of all the regions we will allocate.
 629   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 630   assert(word_size <= word_size_sum, "sanity");
 631 
 632   // This will be the "starts humongous" region.
 633   HeapRegion* first_hr = region_at(first);
 634   // The header of the new object will be placed at the bottom of
 635   // the first region.
 636   HeapWord* new_obj = first_hr->bottom();
 637   // This will be the new end of the first region in the series that
 638   // should also match the end of the last region in the series.
 639   HeapWord* new_end = new_obj + word_size_sum;
 640   // This will be the new top of the first region that will reflect
 641   // this allocation.
 642   HeapWord* new_top = new_obj + word_size;
 643 
 644   // First, we need to zero the header of the space that we will be
 645   // allocating. When we update top further down, some refinement
 646   // threads might try to scan the region. By zeroing the header we
 647   // ensure that any thread that will try to scan the region will
 648   // come across the zero klass word and bail out.
 649   //
 650   // NOTE: It would not have been correct to have used
 651   // CollectedHeap::fill_with_object() and make the space look like
 652   // an int array. The thread that is doing the allocation will
 653   // later update the object header to a potentially different array
 654   // type and, for a very short period of time, the klass and length
 655   // fields will be inconsistent. This could cause a refinement
 656   // thread to calculate the object size incorrectly.
 657   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 658 
 659   // We will set up the first region as "starts humongous". This
 660   // will also update the BOT covering all the regions to reflect
 661   // that there is a single object that starts at the bottom of the
 662   // first region.
 663   first_hr->set_startsHumongous(new_top, new_end);
 664   first_hr->set_allocation_context(context);
 665   // Then, if there are any, we will set up the "continues
 666   // humongous" regions.
 667   HeapRegion* hr = NULL;
 668   for (uint i = first + 1; i < last; ++i) {
 669     hr = region_at(i);
 670     hr->set_continuesHumongous(first_hr);
 671     hr->set_allocation_context(context);
 672   }
 673   // If we have "continues humongous" regions (hr != NULL), then the
 674   // end of the last one should match new_end.
 675   assert(hr == NULL || hr->end() == new_end, "sanity");
 676 
 677   // Up to this point no concurrent thread would have been able to
 678   // do any scanning on any region in this series. All the top
 679   // fields still point to bottom, so the intersection between
 680   // [bottom,top] and [card_start,card_end] will be empty. Before we
 681   // update the top fields, we'll do a storestore to make sure that
 682   // no thread sees the update to top before the zeroing of the
 683   // object header and the BOT initialization.
 684   OrderAccess::storestore();
 685 
 686   // Now that the BOT and the object header have been initialized,
 687   // we can update top of the "starts humongous" region.
 688   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 689          "new_top should be in this region");
 690   first_hr->set_top(new_top);
 691   if (_hr_printer.is_active()) {
 692     HeapWord* bottom = first_hr->bottom();
 693     HeapWord* end = first_hr->orig_end();
 694     if ((first + 1) == last) {
 695       // the series has a single humongous region
 696       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 697     } else {
 698       // the series has more than one humongous regions
 699       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 700     }
 701   }
 702 
 703   // Now, we will update the top fields of the "continues humongous"
 704   // regions. The reason we need to do this is that, otherwise,
 705   // these regions would look empty and this will confuse parts of
 706   // G1. For example, the code that looks for a consecutive number
 707   // of empty regions will consider them empty and try to
 708   // re-allocate them. We can extend is_empty() to also include
 709   // !continuesHumongous(), but it is easier to just update the top
 710   // fields here. The way we set top for all regions (i.e., top ==
 711   // end for all regions but the last one, top == new_top for the
 712   // last one) is actually used when we will free up the humongous
 713   // region in free_humongous_region().
 714   hr = NULL;
 715   for (uint i = first + 1; i < last; ++i) {
 716     hr = region_at(i);
 717     if ((i + 1) == last) {
 718       // last continues humongous region
 719       assert(hr->bottom() < new_top && new_top <= hr->end(),
 720              "new_top should fall on this region");
 721       hr->set_top(new_top);
 722       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 723     } else {
 724       // not last one
 725       assert(new_top > hr->end(), "new_top should be above this region");
 726       hr->set_top(hr->end());
 727       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 728     }
 729   }
 730   // If we have continues humongous regions (hr != NULL), then the
 731   // end of the last one should match new_end and its top should
 732   // match new_top.
 733   assert(hr == NULL ||
 734          (hr->end() == new_end && hr->top() == new_top), "sanity");
 735   check_bitmaps("Humongous Region Allocation", first_hr);
 736 
 737   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 738   _allocator->increase_used(first_hr->used());
 739   _humongous_set.add(first_hr);
 740 
 741   return new_obj;
 742 }
 743 
 744 // If could fit into free regions w/o expansion, try.
 745 // Otherwise, if can expand, do so.
 746 // Otherwise, if using ex regions might help, try with ex given back.
 747 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 748   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 749 
 750   verify_region_sets_optional();
 751 
 752   uint first = G1_NO_HRM_INDEX;
 753   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 754 
 755   if (obj_regions == 1) {
 756     // Only one region to allocate, try to use a fast path by directly allocating
 757     // from the free lists. Do not try to expand here, we will potentially do that
 758     // later.
 759     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 760     if (hr != NULL) {
 761       first = hr->hrm_index();
 762     }
 763   } else {
 764     // We can't allocate humongous regions spanning more than one region while
 765     // cleanupComplete() is running, since some of the regions we find to be
 766     // empty might not yet be added to the free list. It is not straightforward
 767     // to know in which list they are on so that we can remove them. We only
 768     // need to do this if we need to allocate more than one region to satisfy the
 769     // current humongous allocation request. If we are only allocating one region
 770     // we use the one-region region allocation code (see above), that already
 771     // potentially waits for regions from the secondary free list.
 772     wait_while_free_regions_coming();
 773     append_secondary_free_list_if_not_empty_with_lock();
 774 
 775     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 776     // are lucky enough to find some.
 777     first = _hrm.find_contiguous_only_empty(obj_regions);
 778     if (first != G1_NO_HRM_INDEX) {
 779       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 780     }
 781   }
 782 
 783   if (first == G1_NO_HRM_INDEX) {
 784     // Policy: We could not find enough regions for the humongous object in the
 785     // free list. Look through the heap to find a mix of free and uncommitted regions.
 786     // If so, try expansion.
 787     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 788     if (first != G1_NO_HRM_INDEX) {
 789       // We found something. Make sure these regions are committed, i.e. expand
 790       // the heap. Alternatively we could do a defragmentation GC.
 791       ergo_verbose1(ErgoHeapSizing,
 792                     "attempt heap expansion",
 793                     ergo_format_reason("humongous allocation request failed")
 794                     ergo_format_byte("allocation request"),
 795                     word_size * HeapWordSize);
 796 
 797       _hrm.expand_at(first, obj_regions);
 798       g1_policy()->record_new_heap_size(num_regions());
 799 
 800 #ifdef ASSERT
 801       for (uint i = first; i < first + obj_regions; ++i) {
 802         HeapRegion* hr = region_at(i);
 803         assert(hr->is_empty(), "sanity");
 804         assert(is_on_master_free_list(hr), "sanity");
 805       }
 806 #endif
 807       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 808     } else {
 809       // Policy: Potentially trigger a defragmentation GC.
 810     }
 811   }
 812 
 813   HeapWord* result = NULL;
 814   if (first != G1_NO_HRM_INDEX) {
 815     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 816                                                        word_size, context);
 817     assert(result != NULL, "it should always return a valid result");
 818 
 819     // A successful humongous object allocation changes the used space
 820     // information of the old generation so we need to recalculate the
 821     // sizes and update the jstat counters here.
 822     g1mm()->update_sizes();
 823   }
 824 
 825   verify_region_sets_optional();
 826 
 827   return result;
 828 }
 829 
 830 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 831   assert_heap_not_locked_and_not_at_safepoint();
 832   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 833 
 834   unsigned int dummy_gc_count_before;
 835   int dummy_gclocker_retry_count = 0;
 836   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 837 }
 838 
 839 HeapWord*
 840 G1CollectedHeap::mem_allocate(size_t word_size,
 841                               bool*  gc_overhead_limit_was_exceeded) {
 842   assert_heap_not_locked_and_not_at_safepoint();
 843 
 844   // Loop until the allocation is satisfied, or unsatisfied after GC.
 845   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 846     unsigned int gc_count_before;
 847 
 848     HeapWord* result = NULL;
 849     if (!isHumongous(word_size)) {
 850       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 851     } else {
 852       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 853     }
 854     if (result != NULL) {
 855       return result;
 856     }
 857 
 858     // Create the garbage collection operation...
 859     VM_G1CollectForAllocation op(gc_count_before, word_size);
 860     op.set_allocation_context(AllocationContext::current());
 861 
 862     // ...and get the VM thread to execute it.
 863     VMThread::execute(&op);
 864 
 865     if (op.prologue_succeeded() && op.pause_succeeded()) {
 866       // If the operation was successful we'll return the result even
 867       // if it is NULL. If the allocation attempt failed immediately
 868       // after a Full GC, it's unlikely we'll be able to allocate now.
 869       HeapWord* result = op.result();
 870       if (result != NULL && !isHumongous(word_size)) {
 871         // Allocations that take place on VM operations do not do any
 872         // card dirtying and we have to do it here. We only have to do
 873         // this for non-humongous allocations, though.
 874         dirty_young_block(result, word_size);
 875       }
 876       return result;
 877     } else {
 878       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 879         return NULL;
 880       }
 881       assert(op.result() == NULL,
 882              "the result should be NULL if the VM op did not succeed");
 883     }
 884 
 885     // Give a warning if we seem to be looping forever.
 886     if ((QueuedAllocationWarningCount > 0) &&
 887         (try_count % QueuedAllocationWarningCount == 0)) {
 888       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 889     }
 890   }
 891 
 892   ShouldNotReachHere();
 893   return NULL;
 894 }
 895 
 896 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 897                                                    AllocationContext_t context,
 898                                                    unsigned int *gc_count_before_ret,
 899                                                    int* gclocker_retry_count_ret) {
 900   // Make sure you read the note in attempt_allocation_humongous().
 901 
 902   assert_heap_not_locked_and_not_at_safepoint();
 903   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 904          "be called for humongous allocation requests");
 905 
 906   // We should only get here after the first-level allocation attempt
 907   // (attempt_allocation()) failed to allocate.
 908 
 909   // We will loop until a) we manage to successfully perform the
 910   // allocation or b) we successfully schedule a collection which
 911   // fails to perform the allocation. b) is the only case when we'll
 912   // return NULL.
 913   HeapWord* result = NULL;
 914   for (int try_count = 1; /* we'll return */; try_count += 1) {
 915     bool should_try_gc;
 916     unsigned int gc_count_before;
 917 
 918     {
 919       MutexLockerEx x(Heap_lock);
 920       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 921                                                                                     false /* bot_updates */);
 922       if (result != NULL) {
 923         return result;
 924       }
 925 
 926       // If we reach here, attempt_allocation_locked() above failed to
 927       // allocate a new region. So the mutator alloc region should be NULL.
 928       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 929 
 930       if (GC_locker::is_active_and_needs_gc()) {
 931         if (g1_policy()->can_expand_young_list()) {
 932           // No need for an ergo verbose message here,
 933           // can_expand_young_list() does this when it returns true.
 934           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 935                                                                                        false /* bot_updates */);
 936           if (result != NULL) {
 937             return result;
 938           }
 939         }
 940         should_try_gc = false;
 941       } else {
 942         // The GCLocker may not be active but the GCLocker initiated
 943         // GC may not yet have been performed (GCLocker::needs_gc()
 944         // returns true). In this case we do not try this GC and
 945         // wait until the GCLocker initiated GC is performed, and
 946         // then retry the allocation.
 947         if (GC_locker::needs_gc()) {
 948           should_try_gc = false;
 949         } else {
 950           // Read the GC count while still holding the Heap_lock.
 951           gc_count_before = total_collections();
 952           should_try_gc = true;
 953         }
 954       }
 955     }
 956 
 957     if (should_try_gc) {
 958       bool succeeded;
 959       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 960           GCCause::_g1_inc_collection_pause);
 961       if (result != NULL) {
 962         assert(succeeded, "only way to get back a non-NULL result");
 963         return result;
 964       }
 965 
 966       if (succeeded) {
 967         // If we get here we successfully scheduled a collection which
 968         // failed to allocate. No point in trying to allocate
 969         // further. We'll just return NULL.
 970         MutexLockerEx x(Heap_lock);
 971         *gc_count_before_ret = total_collections();
 972         return NULL;
 973       }
 974     } else {
 975       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 976         MutexLockerEx x(Heap_lock);
 977         *gc_count_before_ret = total_collections();
 978         return NULL;
 979       }
 980       // The GCLocker is either active or the GCLocker initiated
 981       // GC has not yet been performed. Stall until it is and
 982       // then retry the allocation.
 983       GC_locker::stall_until_clear();
 984       (*gclocker_retry_count_ret) += 1;
 985     }
 986 
 987     // We can reach here if we were unsuccessful in scheduling a
 988     // collection (because another thread beat us to it) or if we were
 989     // stalled due to the GC locker. In either can we should retry the
 990     // allocation attempt in case another thread successfully
 991     // performed a collection and reclaimed enough space. We do the
 992     // first attempt (without holding the Heap_lock) here and the
 993     // follow-on attempt will be at the start of the next loop
 994     // iteration (after taking the Heap_lock).
 995     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 996                                                                            false /* bot_updates */);
 997     if (result != NULL) {
 998       return result;
 999     }
1000 
1001     // Give a warning if we seem to be looping forever.
1002     if ((QueuedAllocationWarningCount > 0) &&
1003         (try_count % QueuedAllocationWarningCount == 0)) {
1004       warning("G1CollectedHeap::attempt_allocation_slow() "
1005               "retries %d times", try_count);
1006     }
1007   }
1008 
1009   ShouldNotReachHere();
1010   return NULL;
1011 }
1012 
1013 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1014                                                         unsigned int * gc_count_before_ret,
1015                                                         int* gclocker_retry_count_ret) {
1016   // The structure of this method has a lot of similarities to
1017   // attempt_allocation_slow(). The reason these two were not merged
1018   // into a single one is that such a method would require several "if
1019   // allocation is not humongous do this, otherwise do that"
1020   // conditional paths which would obscure its flow. In fact, an early
1021   // version of this code did use a unified method which was harder to
1022   // follow and, as a result, it had subtle bugs that were hard to
1023   // track down. So keeping these two methods separate allows each to
1024   // be more readable. It will be good to keep these two in sync as
1025   // much as possible.
1026 
1027   assert_heap_not_locked_and_not_at_safepoint();
1028   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1029          "should only be called for humongous allocations");
1030 
1031   // Humongous objects can exhaust the heap quickly, so we should check if we
1032   // need to start a marking cycle at each humongous object allocation. We do
1033   // the check before we do the actual allocation. The reason for doing it
1034   // before the allocation is that we avoid having to keep track of the newly
1035   // allocated memory while we do a GC.
1036   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1037                                            word_size)) {
1038     collect(GCCause::_g1_humongous_allocation);
1039   }
1040 
1041   // We will loop until a) we manage to successfully perform the
1042   // allocation or b) we successfully schedule a collection which
1043   // fails to perform the allocation. b) is the only case when we'll
1044   // return NULL.
1045   HeapWord* result = NULL;
1046   for (int try_count = 1; /* we'll return */; try_count += 1) {
1047     bool should_try_gc;
1048     unsigned int gc_count_before;
1049 
1050     {
1051       MutexLockerEx x(Heap_lock);
1052 
1053       // Given that humongous objects are not allocated in young
1054       // regions, we'll first try to do the allocation without doing a
1055       // collection hoping that there's enough space in the heap.
1056       result = humongous_obj_allocate(word_size, AllocationContext::current());
1057       if (result != NULL) {
1058         return result;
1059       }
1060 
1061       if (GC_locker::is_active_and_needs_gc()) {
1062         should_try_gc = false;
1063       } else {
1064          // The GCLocker may not be active but the GCLocker initiated
1065         // GC may not yet have been performed (GCLocker::needs_gc()
1066         // returns true). In this case we do not try this GC and
1067         // wait until the GCLocker initiated GC is performed, and
1068         // then retry the allocation.
1069         if (GC_locker::needs_gc()) {
1070           should_try_gc = false;
1071         } else {
1072           // Read the GC count while still holding the Heap_lock.
1073           gc_count_before = total_collections();
1074           should_try_gc = true;
1075         }
1076       }
1077     }
1078 
1079     if (should_try_gc) {
1080       // If we failed to allocate the humongous object, we should try to
1081       // do a collection pause (if we're allowed) in case it reclaims
1082       // enough space for the allocation to succeed after the pause.
1083 
1084       bool succeeded;
1085       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1086           GCCause::_g1_humongous_allocation);
1087       if (result != NULL) {
1088         assert(succeeded, "only way to get back a non-NULL result");
1089         return result;
1090       }
1091 
1092       if (succeeded) {
1093         // If we get here we successfully scheduled a collection which
1094         // failed to allocate. No point in trying to allocate
1095         // further. We'll just return NULL.
1096         MutexLockerEx x(Heap_lock);
1097         *gc_count_before_ret = total_collections();
1098         return NULL;
1099       }
1100     } else {
1101       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1102         MutexLockerEx x(Heap_lock);
1103         *gc_count_before_ret = total_collections();
1104         return NULL;
1105       }
1106       // The GCLocker is either active or the GCLocker initiated
1107       // GC has not yet been performed. Stall until it is and
1108       // then retry the allocation.
1109       GC_locker::stall_until_clear();
1110       (*gclocker_retry_count_ret) += 1;
1111     }
1112 
1113     // We can reach here if we were unsuccessful in scheduling a
1114     // collection (because another thread beat us to it) or if we were
1115     // stalled due to the GC locker. In either can we should retry the
1116     // allocation attempt in case another thread successfully
1117     // performed a collection and reclaimed enough space.  Give a
1118     // warning if we seem to be looping forever.
1119 
1120     if ((QueuedAllocationWarningCount > 0) &&
1121         (try_count % QueuedAllocationWarningCount == 0)) {
1122       warning("G1CollectedHeap::attempt_allocation_humongous() "
1123               "retries %d times", try_count);
1124     }
1125   }
1126 
1127   ShouldNotReachHere();
1128   return NULL;
1129 }
1130 
1131 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1132                                                            AllocationContext_t context,
1133                                                            bool expect_null_mutator_alloc_region) {
1134   assert_at_safepoint(true /* should_be_vm_thread */);
1135   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1136                                              !expect_null_mutator_alloc_region,
1137          "the current alloc region was unexpectedly found to be non-NULL");
1138 
1139   if (!isHumongous(word_size)) {
1140     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1141                                                       false /* bot_updates */);
1142   } else {
1143     HeapWord* result = humongous_obj_allocate(word_size, context);
1144     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1145       g1_policy()->set_initiate_conc_mark_if_possible();
1146     }
1147     return result;
1148   }
1149 
1150   ShouldNotReachHere();
1151 }
1152 
1153 class PostMCRemSetClearClosure: public HeapRegionClosure {
1154   G1CollectedHeap* _g1h;
1155   ModRefBarrierSet* _mr_bs;
1156 public:
1157   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1158     _g1h(g1h), _mr_bs(mr_bs) {}
1159 
1160   bool doHeapRegion(HeapRegion* r) {
1161     HeapRegionRemSet* hrrs = r->rem_set();
1162 
1163     if (r->continuesHumongous()) {
1164       // We'll assert that the strong code root list and RSet is empty
1165       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1166       assert(hrrs->occupied() == 0, "RSet should be empty");
1167       return false;
1168     }
1169 
1170     _g1h->reset_gc_time_stamps(r);
1171     hrrs->clear();
1172     // You might think here that we could clear just the cards
1173     // corresponding to the used region.  But no: if we leave a dirty card
1174     // in a region we might allocate into, then it would prevent that card
1175     // from being enqueued, and cause it to be missed.
1176     // Re: the performance cost: we shouldn't be doing full GC anyway!
1177     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1178 
1179     return false;
1180   }
1181 };
1182 
1183 void G1CollectedHeap::clear_rsets_post_compaction() {
1184   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1185   heap_region_iterate(&rs_clear);
1186 }
1187 
1188 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1189   G1CollectedHeap*   _g1h;
1190   UpdateRSOopClosure _cl;
1191   int                _worker_i;
1192 public:
1193   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1194     _cl(g1->g1_rem_set(), worker_i),
1195     _worker_i(worker_i),
1196     _g1h(g1)
1197   { }
1198 
1199   bool doHeapRegion(HeapRegion* r) {
1200     if (!r->continuesHumongous()) {
1201       _cl.set_from(r);
1202       r->oop_iterate(&_cl);
1203     }
1204     return false;
1205   }
1206 };
1207 
1208 class ParRebuildRSTask: public AbstractGangTask {
1209   G1CollectedHeap* _g1;
1210 public:
1211   ParRebuildRSTask(G1CollectedHeap* g1)
1212     : AbstractGangTask("ParRebuildRSTask"),
1213       _g1(g1)
1214   { }
1215 
1216   void work(uint worker_id) {
1217     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1218     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1219                                           _g1->workers()->active_workers(),
1220                                          HeapRegion::RebuildRSClaimValue);
1221   }
1222 };
1223 
1224 class PostCompactionPrinterClosure: public HeapRegionClosure {
1225 private:
1226   G1HRPrinter* _hr_printer;
1227 public:
1228   bool doHeapRegion(HeapRegion* hr) {
1229     assert(!hr->is_young(), "not expecting to find young regions");
1230     // We only generate output for non-empty regions.
1231     if (!hr->is_empty()) {
1232       if (!hr->isHumongous()) {
1233         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1234       } else if (hr->startsHumongous()) {
1235         if (hr->region_num() == 1) {
1236           // single humongous region
1237           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1238         } else {
1239           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1240         }
1241       } else {
1242         assert(hr->continuesHumongous(), "only way to get here");
1243         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1244       }
1245     }
1246     return false;
1247   }
1248 
1249   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1250     : _hr_printer(hr_printer) { }
1251 };
1252 
1253 void G1CollectedHeap::print_hrm_post_compaction() {
1254   PostCompactionPrinterClosure cl(hr_printer());
1255   heap_region_iterate(&cl);
1256 }
1257 
1258 bool G1CollectedHeap::do_collection(bool explicit_gc,
1259                                     bool clear_all_soft_refs,
1260                                     size_t word_size) {
1261   assert_at_safepoint(true /* should_be_vm_thread */);
1262 
1263   if (GC_locker::check_active_before_gc()) {
1264     return false;
1265   }
1266 
1267   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1268   gc_timer->register_gc_start();
1269 
1270   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1271   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1272 
1273   SvcGCMarker sgcm(SvcGCMarker::FULL);
1274   ResourceMark rm;
1275 
1276   print_heap_before_gc();
1277   trace_heap_before_gc(gc_tracer);
1278 
1279   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1280 
1281   verify_region_sets_optional();
1282 
1283   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1284                            collector_policy()->should_clear_all_soft_refs();
1285 
1286   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1287 
1288   {
1289     IsGCActiveMark x;
1290 
1291     // Timing
1292     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1293     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1294     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1295 
1296     {
1297       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1298       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1299       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1300 
1301       double start = os::elapsedTime();
1302       g1_policy()->record_full_collection_start();
1303 
1304       // Note: When we have a more flexible GC logging framework that
1305       // allows us to add optional attributes to a GC log record we
1306       // could consider timing and reporting how long we wait in the
1307       // following two methods.
1308       wait_while_free_regions_coming();
1309       // If we start the compaction before the CM threads finish
1310       // scanning the root regions we might trip them over as we'll
1311       // be moving objects / updating references. So let's wait until
1312       // they are done. By telling them to abort, they should complete
1313       // early.
1314       _cm->root_regions()->abort();
1315       _cm->root_regions()->wait_until_scan_finished();
1316       append_secondary_free_list_if_not_empty_with_lock();
1317 
1318       gc_prologue(true);
1319       increment_total_collections(true /* full gc */);
1320       increment_old_marking_cycles_started();
1321 
1322       assert(used() == recalculate_used(), "Should be equal");
1323 
1324       verify_before_gc();
1325 
1326       check_bitmaps("Full GC Start");
1327       pre_full_gc_dump(gc_timer);
1328 
1329       COMPILER2_PRESENT(DerivedPointerTable::clear());
1330 
1331       // Disable discovery and empty the discovered lists
1332       // for the CM ref processor.
1333       ref_processor_cm()->disable_discovery();
1334       ref_processor_cm()->abandon_partial_discovery();
1335       ref_processor_cm()->verify_no_references_recorded();
1336 
1337       // Abandon current iterations of concurrent marking and concurrent
1338       // refinement, if any are in progress. We have to do this before
1339       // wait_until_scan_finished() below.
1340       concurrent_mark()->abort();
1341 
1342       // Make sure we'll choose a new allocation region afterwards.
1343       _allocator->release_mutator_alloc_region();
1344       _allocator->abandon_gc_alloc_regions();
1345       g1_rem_set()->cleanupHRRS();
1346 
1347       // We should call this after we retire any currently active alloc
1348       // regions so that all the ALLOC / RETIRE events are generated
1349       // before the start GC event.
1350       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1351 
1352       // We may have added regions to the current incremental collection
1353       // set between the last GC or pause and now. We need to clear the
1354       // incremental collection set and then start rebuilding it afresh
1355       // after this full GC.
1356       abandon_collection_set(g1_policy()->inc_cset_head());
1357       g1_policy()->clear_incremental_cset();
1358       g1_policy()->stop_incremental_cset_building();
1359 
1360       tear_down_region_sets(false /* free_list_only */);
1361       g1_policy()->set_gcs_are_young(true);
1362 
1363       // See the comments in g1CollectedHeap.hpp and
1364       // G1CollectedHeap::ref_processing_init() about
1365       // how reference processing currently works in G1.
1366 
1367       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1368       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1369 
1370       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1371       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1372 
1373       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1374       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1375 
1376       // Do collection work
1377       {
1378         HandleMark hm;  // Discard invalid handles created during gc
1379         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1380       }
1381 
1382       assert(num_free_regions() == 0, "we should not have added any free regions");
1383       rebuild_region_sets(false /* free_list_only */);
1384 
1385       // Enqueue any discovered reference objects that have
1386       // not been removed from the discovered lists.
1387       ref_processor_stw()->enqueue_discovered_references();
1388 
1389       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1390 
1391       MemoryService::track_memory_usage();
1392 
1393       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1394       ref_processor_stw()->verify_no_references_recorded();
1395 
1396       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1397       ClassLoaderDataGraph::purge();
1398       MetaspaceAux::verify_metrics();
1399 
1400       // Note: since we've just done a full GC, concurrent
1401       // marking is no longer active. Therefore we need not
1402       // re-enable reference discovery for the CM ref processor.
1403       // That will be done at the start of the next marking cycle.
1404       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1405       ref_processor_cm()->verify_no_references_recorded();
1406 
1407       reset_gc_time_stamp();
1408       // Since everything potentially moved, we will clear all remembered
1409       // sets, and clear all cards.  Later we will rebuild remembered
1410       // sets. We will also reset the GC time stamps of the regions.
1411       clear_rsets_post_compaction();
1412       check_gc_time_stamps();
1413 
1414       // Resize the heap if necessary.
1415       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1416 
1417       if (_hr_printer.is_active()) {
1418         // We should do this after we potentially resize the heap so
1419         // that all the COMMIT / UNCOMMIT events are generated before
1420         // the end GC event.
1421 
1422         print_hrm_post_compaction();
1423         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1424       }
1425 
1426       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1427       if (hot_card_cache->use_cache()) {
1428         hot_card_cache->reset_card_counts();
1429         hot_card_cache->reset_hot_cache();
1430       }
1431 
1432       // Rebuild remembered sets of all regions.
1433       if (G1CollectedHeap::use_parallel_gc_threads()) {
1434         uint n_workers =
1435           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1436                                                   workers()->active_workers(),
1437                                                   Threads::number_of_non_daemon_threads());
1438         assert(UseDynamicNumberOfGCThreads ||
1439                n_workers == workers()->total_workers(),
1440                "If not dynamic should be using all the  workers");
1441         workers()->set_active_workers(n_workers);
1442         // Set parallel threads in the heap (_n_par_threads) only
1443         // before a parallel phase and always reset it to 0 after
1444         // the phase so that the number of parallel threads does
1445         // no get carried forward to a serial phase where there
1446         // may be code that is "possibly_parallel".
1447         set_par_threads(n_workers);
1448 
1449         ParRebuildRSTask rebuild_rs_task(this);
1450         assert(check_heap_region_claim_values(
1451                HeapRegion::InitialClaimValue), "sanity check");
1452         assert(UseDynamicNumberOfGCThreads ||
1453                workers()->active_workers() == workers()->total_workers(),
1454                "Unless dynamic should use total workers");
1455         // Use the most recent number of  active workers
1456         assert(workers()->active_workers() > 0,
1457                "Active workers not properly set");
1458         set_par_threads(workers()->active_workers());
1459         workers()->run_task(&rebuild_rs_task);
1460         set_par_threads(0);
1461         assert(check_heap_region_claim_values(
1462                HeapRegion::RebuildRSClaimValue), "sanity check");
1463         reset_heap_region_claim_values();
1464       } else {
1465         RebuildRSOutOfRegionClosure rebuild_rs(this);
1466         heap_region_iterate(&rebuild_rs);
1467       }
1468 
1469       // Rebuild the strong code root lists for each region
1470       rebuild_strong_code_roots();
1471 
1472       if (true) { // FIXME
1473         MetaspaceGC::compute_new_size();
1474       }
1475 
1476 #ifdef TRACESPINNING
1477       ParallelTaskTerminator::print_termination_counts();
1478 #endif
1479 
1480       // Discard all rset updates
1481       JavaThread::dirty_card_queue_set().abandon_logs();
1482       assert(!G1DeferredRSUpdate
1483              || (G1DeferredRSUpdate &&
1484                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1485 
1486       _young_list->reset_sampled_info();
1487       // At this point there should be no regions in the
1488       // entire heap tagged as young.
1489       assert(check_young_list_empty(true /* check_heap */),
1490              "young list should be empty at this point");
1491 
1492       // Update the number of full collections that have been completed.
1493       increment_old_marking_cycles_completed(false /* concurrent */);
1494 
1495       _hrm.verify_optional();
1496       verify_region_sets_optional();
1497 
1498       verify_after_gc();
1499 
1500       // Clear the previous marking bitmap, if needed for bitmap verification.
1501       // Note we cannot do this when we clear the next marking bitmap in
1502       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1503       // objects marked during a full GC against the previous bitmap.
1504       // But we need to clear it before calling check_bitmaps below since
1505       // the full GC has compacted objects and updated TAMS but not updated
1506       // the prev bitmap.
1507       if (G1VerifyBitmaps) {
1508         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1509       }
1510       check_bitmaps("Full GC End");
1511 
1512       // Start a new incremental collection set for the next pause
1513       assert(g1_policy()->collection_set() == NULL, "must be");
1514       g1_policy()->start_incremental_cset_building();
1515 
1516       clear_cset_fast_test();
1517 
1518       _allocator->init_mutator_alloc_region();
1519 
1520       double end = os::elapsedTime();
1521       g1_policy()->record_full_collection_end();
1522 
1523       if (G1Log::fine()) {
1524         g1_policy()->print_heap_transition();
1525       }
1526 
1527       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1528       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1529       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1530       // before any GC notifications are raised.
1531       g1mm()->update_sizes();
1532 
1533       gc_epilogue(true);
1534     }
1535 
1536     if (G1Log::finer()) {
1537       g1_policy()->print_detailed_heap_transition(true /* full */);
1538     }
1539 
1540     print_heap_after_gc();
1541     trace_heap_after_gc(gc_tracer);
1542 
1543     post_full_gc_dump(gc_timer);
1544 
1545     gc_timer->register_gc_end();
1546     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1547   }
1548 
1549   return true;
1550 }
1551 
1552 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1553   // do_collection() will return whether it succeeded in performing
1554   // the GC. Currently, there is no facility on the
1555   // do_full_collection() API to notify the caller than the collection
1556   // did not succeed (e.g., because it was locked out by the GC
1557   // locker). So, right now, we'll ignore the return value.
1558   bool dummy = do_collection(true,                /* explicit_gc */
1559                              clear_all_soft_refs,
1560                              0                    /* word_size */);
1561 }
1562 
1563 // This code is mostly copied from TenuredGeneration.
1564 void
1565 G1CollectedHeap::
1566 resize_if_necessary_after_full_collection(size_t word_size) {
1567   // Include the current allocation, if any, and bytes that will be
1568   // pre-allocated to support collections, as "used".
1569   const size_t used_after_gc = used();
1570   const size_t capacity_after_gc = capacity();
1571   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1572 
1573   // This is enforced in arguments.cpp.
1574   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1575          "otherwise the code below doesn't make sense");
1576 
1577   // We don't have floating point command-line arguments
1578   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1579   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1580   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1581   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1582 
1583   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1584   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1585 
1586   // We have to be careful here as these two calculations can overflow
1587   // 32-bit size_t's.
1588   double used_after_gc_d = (double) used_after_gc;
1589   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1590   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1591 
1592   // Let's make sure that they are both under the max heap size, which
1593   // by default will make them fit into a size_t.
1594   double desired_capacity_upper_bound = (double) max_heap_size;
1595   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1596                                     desired_capacity_upper_bound);
1597   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1598                                     desired_capacity_upper_bound);
1599 
1600   // We can now safely turn them into size_t's.
1601   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1602   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1603 
1604   // This assert only makes sense here, before we adjust them
1605   // with respect to the min and max heap size.
1606   assert(minimum_desired_capacity <= maximum_desired_capacity,
1607          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1608                  "maximum_desired_capacity = "SIZE_FORMAT,
1609                  minimum_desired_capacity, maximum_desired_capacity));
1610 
1611   // Should not be greater than the heap max size. No need to adjust
1612   // it with respect to the heap min size as it's a lower bound (i.e.,
1613   // we'll try to make the capacity larger than it, not smaller).
1614   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1615   // Should not be less than the heap min size. No need to adjust it
1616   // with respect to the heap max size as it's an upper bound (i.e.,
1617   // we'll try to make the capacity smaller than it, not greater).
1618   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1619 
1620   if (capacity_after_gc < minimum_desired_capacity) {
1621     // Don't expand unless it's significant
1622     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1623     ergo_verbose4(ErgoHeapSizing,
1624                   "attempt heap expansion",
1625                   ergo_format_reason("capacity lower than "
1626                                      "min desired capacity after Full GC")
1627                   ergo_format_byte("capacity")
1628                   ergo_format_byte("occupancy")
1629                   ergo_format_byte_perc("min desired capacity"),
1630                   capacity_after_gc, used_after_gc,
1631                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1632     expand(expand_bytes);
1633 
1634     // No expansion, now see if we want to shrink
1635   } else if (capacity_after_gc > maximum_desired_capacity) {
1636     // Capacity too large, compute shrinking size
1637     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1638     ergo_verbose4(ErgoHeapSizing,
1639                   "attempt heap shrinking",
1640                   ergo_format_reason("capacity higher than "
1641                                      "max desired capacity after Full GC")
1642                   ergo_format_byte("capacity")
1643                   ergo_format_byte("occupancy")
1644                   ergo_format_byte_perc("max desired capacity"),
1645                   capacity_after_gc, used_after_gc,
1646                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1647     shrink(shrink_bytes);
1648   }
1649 }
1650 
1651 
1652 HeapWord*
1653 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1654                                            AllocationContext_t context,
1655                                            bool* succeeded) {
1656   assert_at_safepoint(true /* should_be_vm_thread */);
1657 
1658   *succeeded = true;
1659   // Let's attempt the allocation first.
1660   HeapWord* result =
1661     attempt_allocation_at_safepoint(word_size,
1662                                     context,
1663                                     false /* expect_null_mutator_alloc_region */);
1664   if (result != NULL) {
1665     assert(*succeeded, "sanity");
1666     return result;
1667   }
1668 
1669   // In a G1 heap, we're supposed to keep allocation from failing by
1670   // incremental pauses.  Therefore, at least for now, we'll favor
1671   // expansion over collection.  (This might change in the future if we can
1672   // do something smarter than full collection to satisfy a failed alloc.)
1673   result = expand_and_allocate(word_size, context);
1674   if (result != NULL) {
1675     assert(*succeeded, "sanity");
1676     return result;
1677   }
1678 
1679   // Expansion didn't work, we'll try to do a Full GC.
1680   bool gc_succeeded = do_collection(false, /* explicit_gc */
1681                                     false, /* clear_all_soft_refs */
1682                                     word_size);
1683   if (!gc_succeeded) {
1684     *succeeded = false;
1685     return NULL;
1686   }
1687 
1688   // Retry the allocation
1689   result = attempt_allocation_at_safepoint(word_size,
1690                                            context,
1691                                            true /* expect_null_mutator_alloc_region */);
1692   if (result != NULL) {
1693     assert(*succeeded, "sanity");
1694     return result;
1695   }
1696 
1697   // Then, try a Full GC that will collect all soft references.
1698   gc_succeeded = do_collection(false, /* explicit_gc */
1699                                true,  /* clear_all_soft_refs */
1700                                word_size);
1701   if (!gc_succeeded) {
1702     *succeeded = false;
1703     return NULL;
1704   }
1705 
1706   // Retry the allocation once more
1707   result = attempt_allocation_at_safepoint(word_size,
1708                                            context,
1709                                            true /* expect_null_mutator_alloc_region */);
1710   if (result != NULL) {
1711     assert(*succeeded, "sanity");
1712     return result;
1713   }
1714 
1715   assert(!collector_policy()->should_clear_all_soft_refs(),
1716          "Flag should have been handled and cleared prior to this point");
1717 
1718   // What else?  We might try synchronous finalization later.  If the total
1719   // space available is large enough for the allocation, then a more
1720   // complete compaction phase than we've tried so far might be
1721   // appropriate.
1722   assert(*succeeded, "sanity");
1723   return NULL;
1724 }
1725 
1726 // Attempting to expand the heap sufficiently
1727 // to support an allocation of the given "word_size".  If
1728 // successful, perform the allocation and return the address of the
1729 // allocated block, or else "NULL".
1730 
1731 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1732   assert_at_safepoint(true /* should_be_vm_thread */);
1733 
1734   verify_region_sets_optional();
1735 
1736   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1737   ergo_verbose1(ErgoHeapSizing,
1738                 "attempt heap expansion",
1739                 ergo_format_reason("allocation request failed")
1740                 ergo_format_byte("allocation request"),
1741                 word_size * HeapWordSize);
1742   if (expand(expand_bytes)) {
1743     _hrm.verify_optional();
1744     verify_region_sets_optional();
1745     return attempt_allocation_at_safepoint(word_size,
1746                                            context,
1747                                            false /* expect_null_mutator_alloc_region */);
1748   }
1749   return NULL;
1750 }
1751 
1752 bool G1CollectedHeap::expand(size_t expand_bytes) {
1753   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1754   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1755                                        HeapRegion::GrainBytes);
1756   ergo_verbose2(ErgoHeapSizing,
1757                 "expand the heap",
1758                 ergo_format_byte("requested expansion amount")
1759                 ergo_format_byte("attempted expansion amount"),
1760                 expand_bytes, aligned_expand_bytes);
1761 
1762   if (is_maximal_no_gc()) {
1763     ergo_verbose0(ErgoHeapSizing,
1764                       "did not expand the heap",
1765                       ergo_format_reason("heap already fully expanded"));
1766     return false;
1767   }
1768 
1769   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1770   assert(regions_to_expand > 0, "Must expand by at least one region");
1771 
1772   uint expanded_by = _hrm.expand_by(regions_to_expand);
1773 
1774   if (expanded_by > 0) {
1775     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1776     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1777     g1_policy()->record_new_heap_size(num_regions());
1778   } else {
1779     ergo_verbose0(ErgoHeapSizing,
1780                   "did not expand the heap",
1781                   ergo_format_reason("heap expansion operation failed"));
1782     // The expansion of the virtual storage space was unsuccessful.
1783     // Let's see if it was because we ran out of swap.
1784     if (G1ExitOnExpansionFailure &&
1785         _hrm.available() >= regions_to_expand) {
1786       // We had head room...
1787       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1788     }
1789   }
1790   return regions_to_expand > 0;
1791 }
1792 
1793 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1794   size_t aligned_shrink_bytes =
1795     ReservedSpace::page_align_size_down(shrink_bytes);
1796   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1797                                          HeapRegion::GrainBytes);
1798   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1799 
1800   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1801   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1802 
1803   ergo_verbose3(ErgoHeapSizing,
1804                 "shrink the heap",
1805                 ergo_format_byte("requested shrinking amount")
1806                 ergo_format_byte("aligned shrinking amount")
1807                 ergo_format_byte("attempted shrinking amount"),
1808                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1809   if (num_regions_removed > 0) {
1810     g1_policy()->record_new_heap_size(num_regions());
1811   } else {
1812     ergo_verbose0(ErgoHeapSizing,
1813                   "did not shrink the heap",
1814                   ergo_format_reason("heap shrinking operation failed"));
1815   }
1816 }
1817 
1818 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1819   verify_region_sets_optional();
1820 
1821   // We should only reach here at the end of a Full GC which means we
1822   // should not not be holding to any GC alloc regions. The method
1823   // below will make sure of that and do any remaining clean up.
1824   _allocator->abandon_gc_alloc_regions();
1825 
1826   // Instead of tearing down / rebuilding the free lists here, we
1827   // could instead use the remove_all_pending() method on free_list to
1828   // remove only the ones that we need to remove.
1829   tear_down_region_sets(true /* free_list_only */);
1830   shrink_helper(shrink_bytes);
1831   rebuild_region_sets(true /* free_list_only */);
1832 
1833   _hrm.verify_optional();
1834   verify_region_sets_optional();
1835 }
1836 
1837 // Public methods.
1838 
1839 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1840 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1841 #endif // _MSC_VER
1842 
1843 
1844 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1845   SharedHeap(policy_),
1846   _g1_policy(policy_),
1847   _dirty_card_queue_set(false),
1848   _into_cset_dirty_card_queue_set(false),
1849   _is_alive_closure_cm(this),
1850   _is_alive_closure_stw(this),
1851   _ref_processor_cm(NULL),
1852   _ref_processor_stw(NULL),
1853   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1854   _bot_shared(NULL),
1855   _evac_failure_scan_stack(NULL),
1856   _mark_in_progress(false),
1857   _cg1r(NULL),
1858   _g1mm(NULL),
1859   _refine_cte_cl(NULL),
1860   _full_collection(false),
1861   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1862   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1863   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1864   _humongous_is_live(),
1865   _has_humongous_reclaim_candidates(false),
1866   _free_regions_coming(false),
1867   _young_list(new YoungList(this)),
1868   _gc_time_stamp(0),
1869   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1870   _old_plab_stats(OldPLABSize, PLABWeight),
1871   _expand_heap_after_alloc_failure(true),
1872   _surviving_young_words(NULL),
1873   _old_marking_cycles_started(0),
1874   _old_marking_cycles_completed(0),
1875   _concurrent_cycle_started(false),
1876   _in_cset_fast_test(),
1877   _dirty_cards_region_list(NULL),
1878   _worker_cset_start_region(NULL),
1879   _worker_cset_start_region_time_stamp(NULL),
1880   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1881   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1882   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1883   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1884 
1885   _g1h = this;
1886   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1887     vm_exit_during_initialization("Failed necessary allocation.");
1888   }
1889 
1890   _allocator = G1Allocator::create_allocator(_g1h);
1891   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1892 
1893   int n_queues = MAX2((int)ParallelGCThreads, 1);
1894   _task_queues = new RefToScanQueueSet(n_queues);
1895 
1896   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1897   assert(n_rem_sets > 0, "Invariant.");
1898 
1899   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1900   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1901   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1902 
1903   for (int i = 0; i < n_queues; i++) {
1904     RefToScanQueue* q = new RefToScanQueue();
1905     q->initialize();
1906     _task_queues->register_queue(i, q);
1907     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1908   }
1909   clear_cset_start_regions();
1910 
1911   // Initialize the G1EvacuationFailureALot counters and flags.
1912   NOT_PRODUCT(reset_evacuation_should_fail();)
1913 
1914   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1915 }
1916 
1917 jint G1CollectedHeap::initialize() {
1918   CollectedHeap::pre_initialize();
1919   os::enable_vtime();
1920 
1921   G1Log::init();
1922 
1923   // Necessary to satisfy locking discipline assertions.
1924 
1925   MutexLocker x(Heap_lock);
1926 
1927   // We have to initialize the printer before committing the heap, as
1928   // it will be used then.
1929   _hr_printer.set_active(G1PrintHeapRegions);
1930 
1931   // While there are no constraints in the GC code that HeapWordSize
1932   // be any particular value, there are multiple other areas in the
1933   // system which believe this to be true (e.g. oop->object_size in some
1934   // cases incorrectly returns the size in wordSize units rather than
1935   // HeapWordSize).
1936   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1937 
1938   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1939   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1940   size_t heap_alignment = collector_policy()->heap_alignment();
1941 
1942   // Ensure that the sizes are properly aligned.
1943   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1944   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1945   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1946 
1947   _refine_cte_cl = new RefineCardTableEntryClosure();
1948 
1949   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1950 
1951   // Reserve the maximum.
1952 
1953   // When compressed oops are enabled, the preferred heap base
1954   // is calculated by subtracting the requested size from the
1955   // 32Gb boundary and using the result as the base address for
1956   // heap reservation. If the requested size is not aligned to
1957   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1958   // into the ReservedHeapSpace constructor) then the actual
1959   // base of the reserved heap may end up differing from the
1960   // address that was requested (i.e. the preferred heap base).
1961   // If this happens then we could end up using a non-optimal
1962   // compressed oops mode.
1963 
1964   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1965                                                  heap_alignment);
1966 
1967   // It is important to do this in a way such that concurrent readers can't
1968   // temporarily think something is in the heap.  (I've actually seen this
1969   // happen in asserts: DLD.)
1970   _reserved.set_word_size(0);
1971   _reserved.set_start((HeapWord*)heap_rs.base());
1972   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
1973 
1974   // Create the gen rem set (and barrier set) for the entire reserved region.
1975   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
1976   set_barrier_set(rem_set()->bs());
1977   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
1978     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
1979     return JNI_ENOMEM;
1980   }
1981 
1982   // Also create a G1 rem set.
1983   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1984 
1985   // Carve out the G1 part of the heap.
1986 
1987   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1988   G1RegionToSpaceMapper* heap_storage =
1989     G1RegionToSpaceMapper::create_mapper(g1_rs,
1990                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1991                                          HeapRegion::GrainBytes,
1992                                          1,
1993                                          mtJavaHeap);
1994   heap_storage->set_mapping_changed_listener(&_listener);
1995 
1996   // Reserve space for the block offset table. We do not support automatic uncommit
1997   // for the card table at this time. BOT only.
1998   ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1999   G1RegionToSpaceMapper* bot_storage =
2000     G1RegionToSpaceMapper::create_mapper(bot_rs,
2001                                          os::vm_page_size(),
2002                                          HeapRegion::GrainBytes,
2003                                          G1BlockOffsetSharedArray::N_bytes,
2004                                          mtGC);
2005 
2006   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
2007   G1RegionToSpaceMapper* cardtable_storage =
2008     G1RegionToSpaceMapper::create_mapper(cardtable_rs,
2009                                          os::vm_page_size(),
2010                                          HeapRegion::GrainBytes,
2011                                          G1BlockOffsetSharedArray::N_bytes,
2012                                          mtGC);
2013 
2014   // Reserve space for the card counts table.
2015   ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
2016   G1RegionToSpaceMapper* card_counts_storage =
2017     G1RegionToSpaceMapper::create_mapper(card_counts_rs,
2018                                          os::vm_page_size(),
2019                                          HeapRegion::GrainBytes,
2020                                          G1BlockOffsetSharedArray::N_bytes,
2021                                          mtGC);
2022 
2023   // Reserve space for prev and next bitmap.
2024   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2025 
2026   ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
2027   G1RegionToSpaceMapper* prev_bitmap_storage =
2028     G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
2029                                          os::vm_page_size(),
2030                                          HeapRegion::GrainBytes,
2031                                          CMBitMap::mark_distance(),
2032                                          mtGC);
2033 
2034   ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
2035   G1RegionToSpaceMapper* next_bitmap_storage =
2036     G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
2037                                          os::vm_page_size(),
2038                                          HeapRegion::GrainBytes,
2039                                          CMBitMap::mark_distance(),
2040                                          mtGC);
2041 
2042   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2043   g1_barrier_set()->initialize(cardtable_storage);
2044    // Do later initialization work for concurrent refinement.
2045   _cg1r->init(card_counts_storage);
2046 
2047   // 6843694 - ensure that the maximum region index can fit
2048   // in the remembered set structures.
2049   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2050   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2051 
2052   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2053   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2054   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2055             "too many cards per region");
2056 
2057   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2058 
2059   _bot_shared = new G1BlockOffsetSharedArray(_reserved, bot_storage);
2060 
2061   _g1h = this;
2062 
2063   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
2064   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
2065 
2066   // Create the ConcurrentMark data structure and thread.
2067   // (Must do this late, so that "max_regions" is defined.)
2068   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2069   if (_cm == NULL || !_cm->completed_initialization()) {
2070     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2071     return JNI_ENOMEM;
2072   }
2073   _cmThread = _cm->cmThread();
2074 
2075   // Initialize the from_card cache structure of HeapRegionRemSet.
2076   HeapRegionRemSet::init_heap(max_regions());
2077 
2078   // Now expand into the initial heap size.
2079   if (!expand(init_byte_size)) {
2080     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2081     return JNI_ENOMEM;
2082   }
2083 
2084   // Perform any initialization actions delegated to the policy.
2085   g1_policy()->init();
2086 
2087   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2088                                                SATB_Q_FL_lock,
2089                                                G1SATBProcessCompletedThreshold,
2090                                                Shared_SATB_Q_lock);
2091 
2092   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2093                                                 DirtyCardQ_CBL_mon,
2094                                                 DirtyCardQ_FL_lock,
2095                                                 concurrent_g1_refine()->yellow_zone(),
2096                                                 concurrent_g1_refine()->red_zone(),
2097                                                 Shared_DirtyCardQ_lock);
2098 
2099   if (G1DeferredRSUpdate) {
2100     dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2101                                       DirtyCardQ_CBL_mon,
2102                                       DirtyCardQ_FL_lock,
2103                                       -1, // never trigger processing
2104                                       -1, // no limit on length
2105                                       Shared_DirtyCardQ_lock,
2106                                       &JavaThread::dirty_card_queue_set());
2107   }
2108 
2109   // Initialize the card queue set used to hold cards containing
2110   // references into the collection set.
2111   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2112                                              DirtyCardQ_CBL_mon,
2113                                              DirtyCardQ_FL_lock,
2114                                              -1, // never trigger processing
2115                                              -1, // no limit on length
2116                                              Shared_DirtyCardQ_lock,
2117                                              &JavaThread::dirty_card_queue_set());
2118 
2119   // In case we're keeping closure specialization stats, initialize those
2120   // counts and that mechanism.
2121   SpecializationStats::clear();
2122 
2123   // Here we allocate the dummy HeapRegion that is required by the
2124   // G1AllocRegion class.
2125   HeapRegion* dummy_region = _hrm.get_dummy_region();
2126 
2127   // We'll re-use the same region whether the alloc region will
2128   // require BOT updates or not and, if it doesn't, then a non-young
2129   // region will complain that it cannot support allocations without
2130   // BOT updates. So we'll tag the dummy region as young to avoid that.
2131   dummy_region->set_young();
2132   // Make sure it's full.
2133   dummy_region->set_top(dummy_region->end());
2134   G1AllocRegion::setup(this, dummy_region);
2135 
2136   _allocator->init_mutator_alloc_region();
2137 
2138   // Do create of the monitoring and management support so that
2139   // values in the heap have been properly initialized.
2140   _g1mm = new G1MonitoringSupport(this);
2141 
2142   G1StringDedup::initialize();
2143 
2144   return JNI_OK;
2145 }
2146 
2147 void G1CollectedHeap::stop() {
2148   // Stop all concurrent threads. We do this to make sure these threads
2149   // do not continue to execute and access resources (e.g. gclog_or_tty)
2150   // that are destroyed during shutdown.
2151   _cg1r->stop();
2152   _cmThread->stop();
2153   if (G1StringDedup::is_enabled()) {
2154     G1StringDedup::stop();
2155   }
2156 }
2157 
2158 void G1CollectedHeap::clear_humongous_is_live_table() {
2159   guarantee(G1ReclaimDeadHumongousObjectsAtYoungGC, "Should only be called if true");
2160   _humongous_is_live.clear();
2161 }
2162 
2163 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2164   return HeapRegion::max_region_size();
2165 }
2166 
2167 void G1CollectedHeap::ref_processing_init() {
2168   // Reference processing in G1 currently works as follows:
2169   //
2170   // * There are two reference processor instances. One is
2171   //   used to record and process discovered references
2172   //   during concurrent marking; the other is used to
2173   //   record and process references during STW pauses
2174   //   (both full and incremental).
2175   // * Both ref processors need to 'span' the entire heap as
2176   //   the regions in the collection set may be dotted around.
2177   //
2178   // * For the concurrent marking ref processor:
2179   //   * Reference discovery is enabled at initial marking.
2180   //   * Reference discovery is disabled and the discovered
2181   //     references processed etc during remarking.
2182   //   * Reference discovery is MT (see below).
2183   //   * Reference discovery requires a barrier (see below).
2184   //   * Reference processing may or may not be MT
2185   //     (depending on the value of ParallelRefProcEnabled
2186   //     and ParallelGCThreads).
2187   //   * A full GC disables reference discovery by the CM
2188   //     ref processor and abandons any entries on it's
2189   //     discovered lists.
2190   //
2191   // * For the STW processor:
2192   //   * Non MT discovery is enabled at the start of a full GC.
2193   //   * Processing and enqueueing during a full GC is non-MT.
2194   //   * During a full GC, references are processed after marking.
2195   //
2196   //   * Discovery (may or may not be MT) is enabled at the start
2197   //     of an incremental evacuation pause.
2198   //   * References are processed near the end of a STW evacuation pause.
2199   //   * For both types of GC:
2200   //     * Discovery is atomic - i.e. not concurrent.
2201   //     * Reference discovery will not need a barrier.
2202 
2203   SharedHeap::ref_processing_init();
2204   MemRegion mr = reserved_region();
2205 
2206   // Concurrent Mark ref processor
2207   _ref_processor_cm =
2208     new ReferenceProcessor(mr,    // span
2209                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2210                                 // mt processing
2211                            (int) ParallelGCThreads,
2212                                 // degree of mt processing
2213                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2214                                 // mt discovery
2215                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2216                                 // degree of mt discovery
2217                            false,
2218                                 // Reference discovery is not atomic
2219                            &_is_alive_closure_cm);
2220                                 // is alive closure
2221                                 // (for efficiency/performance)
2222 
2223   // STW ref processor
2224   _ref_processor_stw =
2225     new ReferenceProcessor(mr,    // span
2226                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2227                                 // mt processing
2228                            MAX2((int)ParallelGCThreads, 1),
2229                                 // degree of mt processing
2230                            (ParallelGCThreads > 1),
2231                                 // mt discovery
2232                            MAX2((int)ParallelGCThreads, 1),
2233                                 // degree of mt discovery
2234                            true,
2235                                 // Reference discovery is atomic
2236                            &_is_alive_closure_stw);
2237                                 // is alive closure
2238                                 // (for efficiency/performance)
2239 }
2240 
2241 size_t G1CollectedHeap::capacity() const {
2242   return _hrm.length() * HeapRegion::GrainBytes;
2243 }
2244 
2245 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2246   assert(!hr->continuesHumongous(), "pre-condition");
2247   hr->reset_gc_time_stamp();
2248   if (hr->startsHumongous()) {
2249     uint first_index = hr->hrm_index() + 1;
2250     uint last_index = hr->last_hc_index();
2251     for (uint i = first_index; i < last_index; i += 1) {
2252       HeapRegion* chr = region_at(i);
2253       assert(chr->continuesHumongous(), "sanity");
2254       chr->reset_gc_time_stamp();
2255     }
2256   }
2257 }
2258 
2259 #ifndef PRODUCT
2260 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2261 private:
2262   unsigned _gc_time_stamp;
2263   bool _failures;
2264 
2265 public:
2266   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2267     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2268 
2269   virtual bool doHeapRegion(HeapRegion* hr) {
2270     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2271     if (_gc_time_stamp != region_gc_time_stamp) {
2272       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2273                              "expected %d", HR_FORMAT_PARAMS(hr),
2274                              region_gc_time_stamp, _gc_time_stamp);
2275       _failures = true;
2276     }
2277     return false;
2278   }
2279 
2280   bool failures() { return _failures; }
2281 };
2282 
2283 void G1CollectedHeap::check_gc_time_stamps() {
2284   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2285   heap_region_iterate(&cl);
2286   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2287 }
2288 #endif // PRODUCT
2289 
2290 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2291                                                  DirtyCardQueue* into_cset_dcq,
2292                                                  bool concurrent,
2293                                                  uint worker_i) {
2294   // Clean cards in the hot card cache
2295   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2296   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2297 
2298   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2299   int n_completed_buffers = 0;
2300   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2301     n_completed_buffers++;
2302   }
2303   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2304   dcqs.clear_n_completed_buffers();
2305   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2306 }
2307 
2308 
2309 // Computes the sum of the storage used by the various regions.
2310 size_t G1CollectedHeap::used() const {
2311   return _allocator->used();
2312 }
2313 
2314 size_t G1CollectedHeap::used_unlocked() const {
2315   return _allocator->used_unlocked();
2316 }
2317 
2318 class SumUsedClosure: public HeapRegionClosure {
2319   size_t _used;
2320 public:
2321   SumUsedClosure() : _used(0) {}
2322   bool doHeapRegion(HeapRegion* r) {
2323     if (!r->continuesHumongous()) {
2324       _used += r->used();
2325     }
2326     return false;
2327   }
2328   size_t result() { return _used; }
2329 };
2330 
2331 size_t G1CollectedHeap::recalculate_used() const {
2332   double recalculate_used_start = os::elapsedTime();
2333 
2334   SumUsedClosure blk;
2335   heap_region_iterate(&blk);
2336 
2337   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2338   return blk.result();
2339 }
2340 
2341 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2342   switch (cause) {
2343     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2344     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2345     case GCCause::_g1_humongous_allocation: return true;
2346     default:                                return false;
2347   }
2348 }
2349 
2350 #ifndef PRODUCT
2351 void G1CollectedHeap::allocate_dummy_regions() {
2352   // Let's fill up most of the region
2353   size_t word_size = HeapRegion::GrainWords - 1024;
2354   // And as a result the region we'll allocate will be humongous.
2355   guarantee(isHumongous(word_size), "sanity");
2356 
2357   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2358     // Let's use the existing mechanism for the allocation
2359     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2360                                                  AllocationContext::system());
2361     if (dummy_obj != NULL) {
2362       MemRegion mr(dummy_obj, word_size);
2363       CollectedHeap::fill_with_object(mr);
2364     } else {
2365       // If we can't allocate once, we probably cannot allocate
2366       // again. Let's get out of the loop.
2367       break;
2368     }
2369   }
2370 }
2371 #endif // !PRODUCT
2372 
2373 void G1CollectedHeap::increment_old_marking_cycles_started() {
2374   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2375     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2376     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2377     _old_marking_cycles_started, _old_marking_cycles_completed));
2378 
2379   _old_marking_cycles_started++;
2380 }
2381 
2382 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2383   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2384 
2385   // We assume that if concurrent == true, then the caller is a
2386   // concurrent thread that was joined the Suspendible Thread
2387   // Set. If there's ever a cheap way to check this, we should add an
2388   // assert here.
2389 
2390   // Given that this method is called at the end of a Full GC or of a
2391   // concurrent cycle, and those can be nested (i.e., a Full GC can
2392   // interrupt a concurrent cycle), the number of full collections
2393   // completed should be either one (in the case where there was no
2394   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2395   // behind the number of full collections started.
2396 
2397   // This is the case for the inner caller, i.e. a Full GC.
2398   assert(concurrent ||
2399          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2400          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2401          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2402                  "is inconsistent with _old_marking_cycles_completed = %u",
2403                  _old_marking_cycles_started, _old_marking_cycles_completed));
2404 
2405   // This is the case for the outer caller, i.e. the concurrent cycle.
2406   assert(!concurrent ||
2407          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2408          err_msg("for outer caller (concurrent cycle): "
2409                  "_old_marking_cycles_started = %u "
2410                  "is inconsistent with _old_marking_cycles_completed = %u",
2411                  _old_marking_cycles_started, _old_marking_cycles_completed));
2412 
2413   _old_marking_cycles_completed += 1;
2414 
2415   // We need to clear the "in_progress" flag in the CM thread before
2416   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2417   // is set) so that if a waiter requests another System.gc() it doesn't
2418   // incorrectly see that a marking cycle is still in progress.
2419   if (concurrent) {
2420     _cmThread->clear_in_progress();
2421   }
2422 
2423   // This notify_all() will ensure that a thread that called
2424   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2425   // and it's waiting for a full GC to finish will be woken up. It is
2426   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2427   FullGCCount_lock->notify_all();
2428 }
2429 
2430 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2431   _concurrent_cycle_started = true;
2432   _gc_timer_cm->register_gc_start(start_time);
2433 
2434   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2435   trace_heap_before_gc(_gc_tracer_cm);
2436 }
2437 
2438 void G1CollectedHeap::register_concurrent_cycle_end() {
2439   if (_concurrent_cycle_started) {
2440     if (_cm->has_aborted()) {
2441       _gc_tracer_cm->report_concurrent_mode_failure();
2442     }
2443 
2444     _gc_timer_cm->register_gc_end();
2445     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2446 
2447     _concurrent_cycle_started = false;
2448   }
2449 }
2450 
2451 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2452   if (_concurrent_cycle_started) {
2453     trace_heap_after_gc(_gc_tracer_cm);
2454   }
2455 }
2456 
2457 G1YCType G1CollectedHeap::yc_type() {
2458   bool is_young = g1_policy()->gcs_are_young();
2459   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2460   bool is_during_mark = mark_in_progress();
2461 
2462   if (is_initial_mark) {
2463     return InitialMark;
2464   } else if (is_during_mark) {
2465     return DuringMark;
2466   } else if (is_young) {
2467     return Normal;
2468   } else {
2469     return Mixed;
2470   }
2471 }
2472 
2473 void G1CollectedHeap::collect(GCCause::Cause cause) {
2474   assert_heap_not_locked();
2475 
2476   unsigned int gc_count_before;
2477   unsigned int old_marking_count_before;
2478   bool retry_gc;
2479 
2480   do {
2481     retry_gc = false;
2482 
2483     {
2484       MutexLocker ml(Heap_lock);
2485 
2486       // Read the GC count while holding the Heap_lock
2487       gc_count_before = total_collections();
2488       old_marking_count_before = _old_marking_cycles_started;
2489     }
2490 
2491     if (should_do_concurrent_full_gc(cause)) {
2492       // Schedule an initial-mark evacuation pause that will start a
2493       // concurrent cycle. We're setting word_size to 0 which means that
2494       // we are not requesting a post-GC allocation.
2495       VM_G1IncCollectionPause op(gc_count_before,
2496                                  0,     /* word_size */
2497                                  true,  /* should_initiate_conc_mark */
2498                                  g1_policy()->max_pause_time_ms(),
2499                                  cause);
2500       op.set_allocation_context(AllocationContext::current());
2501 
2502       VMThread::execute(&op);
2503       if (!op.pause_succeeded()) {
2504         if (old_marking_count_before == _old_marking_cycles_started) {
2505           retry_gc = op.should_retry_gc();
2506         } else {
2507           // A Full GC happened while we were trying to schedule the
2508           // initial-mark GC. No point in starting a new cycle given
2509           // that the whole heap was collected anyway.
2510         }
2511 
2512         if (retry_gc) {
2513           if (GC_locker::is_active_and_needs_gc()) {
2514             GC_locker::stall_until_clear();
2515           }
2516         }
2517       }
2518     } else {
2519       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2520           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2521 
2522         // Schedule a standard evacuation pause. We're setting word_size
2523         // to 0 which means that we are not requesting a post-GC allocation.
2524         VM_G1IncCollectionPause op(gc_count_before,
2525                                    0,     /* word_size */
2526                                    false, /* should_initiate_conc_mark */
2527                                    g1_policy()->max_pause_time_ms(),
2528                                    cause);
2529         VMThread::execute(&op);
2530       } else {
2531         // Schedule a Full GC.
2532         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2533         VMThread::execute(&op);
2534       }
2535     }
2536   } while (retry_gc);
2537 }
2538 
2539 bool G1CollectedHeap::is_in(const void* p) const {
2540   if (_hrm.reserved().contains(p)) {
2541     // Given that we know that p is in the reserved space,
2542     // heap_region_containing_raw() should successfully
2543     // return the containing region.
2544     HeapRegion* hr = heap_region_containing_raw(p);
2545     return hr->is_in(p);
2546   } else {
2547     return false;
2548   }
2549 }
2550 
2551 #ifdef ASSERT
2552 bool G1CollectedHeap::is_in_exact(const void* p) const {
2553   bool contains = reserved_region().contains(p);
2554   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2555   if (contains && available) {
2556     return true;
2557   } else {
2558     return false;
2559   }
2560 }
2561 #endif
2562 
2563 // Iteration functions.
2564 
2565 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2566 
2567 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2568   ExtendedOopClosure* _cl;
2569 public:
2570   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2571   bool doHeapRegion(HeapRegion* r) {
2572     if (!r->continuesHumongous()) {
2573       r->oop_iterate(_cl);
2574     }
2575     return false;
2576   }
2577 };
2578 
2579 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2580   IterateOopClosureRegionClosure blk(cl);
2581   heap_region_iterate(&blk);
2582 }
2583 
2584 // Iterates an ObjectClosure over all objects within a HeapRegion.
2585 
2586 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2587   ObjectClosure* _cl;
2588 public:
2589   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2590   bool doHeapRegion(HeapRegion* r) {
2591     if (! r->continuesHumongous()) {
2592       r->object_iterate(_cl);
2593     }
2594     return false;
2595   }
2596 };
2597 
2598 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2599   IterateObjectClosureRegionClosure blk(cl);
2600   heap_region_iterate(&blk);
2601 }
2602 
2603 // Calls a SpaceClosure on a HeapRegion.
2604 
2605 class SpaceClosureRegionClosure: public HeapRegionClosure {
2606   SpaceClosure* _cl;
2607 public:
2608   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2609   bool doHeapRegion(HeapRegion* r) {
2610     _cl->do_space(r);
2611     return false;
2612   }
2613 };
2614 
2615 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2616   SpaceClosureRegionClosure blk(cl);
2617   heap_region_iterate(&blk);
2618 }
2619 
2620 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2621   _hrm.iterate(cl);
2622 }
2623 
2624 void
2625 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2626                                                  uint worker_id,
2627                                                  uint num_workers,
2628                                                  jint claim_value) const {
2629   _hrm.par_iterate(cl, worker_id, num_workers, claim_value);
2630 }
2631 
2632 class ResetClaimValuesClosure: public HeapRegionClosure {
2633 public:
2634   bool doHeapRegion(HeapRegion* r) {
2635     r->set_claim_value(HeapRegion::InitialClaimValue);
2636     return false;
2637   }
2638 };
2639 
2640 void G1CollectedHeap::reset_heap_region_claim_values() {
2641   ResetClaimValuesClosure blk;
2642   heap_region_iterate(&blk);
2643 }
2644 
2645 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2646   ResetClaimValuesClosure blk;
2647   collection_set_iterate(&blk);
2648 }
2649 
2650 #ifdef ASSERT
2651 // This checks whether all regions in the heap have the correct claim
2652 // value. I also piggy-backed on this a check to ensure that the
2653 // humongous_start_region() information on "continues humongous"
2654 // regions is correct.
2655 
2656 class CheckClaimValuesClosure : public HeapRegionClosure {
2657 private:
2658   jint _claim_value;
2659   uint _failures;
2660   HeapRegion* _sh_region;
2661 
2662 public:
2663   CheckClaimValuesClosure(jint claim_value) :
2664     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2665   bool doHeapRegion(HeapRegion* r) {
2666     if (r->claim_value() != _claim_value) {
2667       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2668                              "claim value = %d, should be %d",
2669                              HR_FORMAT_PARAMS(r),
2670                              r->claim_value(), _claim_value);
2671       ++_failures;
2672     }
2673     if (!r->isHumongous()) {
2674       _sh_region = NULL;
2675     } else if (r->startsHumongous()) {
2676       _sh_region = r;
2677     } else if (r->continuesHumongous()) {
2678       if (r->humongous_start_region() != _sh_region) {
2679         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2680                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2681                                HR_FORMAT_PARAMS(r),
2682                                r->humongous_start_region(),
2683                                _sh_region);
2684         ++_failures;
2685       }
2686     }
2687     return false;
2688   }
2689   uint failures() { return _failures; }
2690 };
2691 
2692 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2693   CheckClaimValuesClosure cl(claim_value);
2694   heap_region_iterate(&cl);
2695   return cl.failures() == 0;
2696 }
2697 
2698 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2699 private:
2700   jint _claim_value;
2701   uint _failures;
2702 
2703 public:
2704   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2705     _claim_value(claim_value), _failures(0) { }
2706 
2707   uint failures() { return _failures; }
2708 
2709   bool doHeapRegion(HeapRegion* hr) {
2710     assert(hr->in_collection_set(), "how?");
2711     assert(!hr->isHumongous(), "H-region in CSet");
2712     if (hr->claim_value() != _claim_value) {
2713       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2714                              "claim value = %d, should be %d",
2715                              HR_FORMAT_PARAMS(hr),
2716                              hr->claim_value(), _claim_value);
2717       _failures += 1;
2718     }
2719     return false;
2720   }
2721 };
2722 
2723 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2724   CheckClaimValuesInCSetHRClosure cl(claim_value);
2725   collection_set_iterate(&cl);
2726   return cl.failures() == 0;
2727 }
2728 #endif // ASSERT
2729 
2730 // Clear the cached CSet starting regions and (more importantly)
2731 // the time stamps. Called when we reset the GC time stamp.
2732 void G1CollectedHeap::clear_cset_start_regions() {
2733   assert(_worker_cset_start_region != NULL, "sanity");
2734   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2735 
2736   int n_queues = MAX2((int)ParallelGCThreads, 1);
2737   for (int i = 0; i < n_queues; i++) {
2738     _worker_cset_start_region[i] = NULL;
2739     _worker_cset_start_region_time_stamp[i] = 0;
2740   }
2741 }
2742 
2743 // Given the id of a worker, obtain or calculate a suitable
2744 // starting region for iterating over the current collection set.
2745 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2746   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2747 
2748   HeapRegion* result = NULL;
2749   unsigned gc_time_stamp = get_gc_time_stamp();
2750 
2751   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2752     // Cached starting region for current worker was set
2753     // during the current pause - so it's valid.
2754     // Note: the cached starting heap region may be NULL
2755     // (when the collection set is empty).
2756     result = _worker_cset_start_region[worker_i];
2757     assert(result == NULL || result->in_collection_set(), "sanity");
2758     return result;
2759   }
2760 
2761   // The cached entry was not valid so let's calculate
2762   // a suitable starting heap region for this worker.
2763 
2764   // We want the parallel threads to start their collection
2765   // set iteration at different collection set regions to
2766   // avoid contention.
2767   // If we have:
2768   //          n collection set regions
2769   //          p threads
2770   // Then thread t will start at region floor ((t * n) / p)
2771 
2772   result = g1_policy()->collection_set();
2773   if (G1CollectedHeap::use_parallel_gc_threads()) {
2774     uint cs_size = g1_policy()->cset_region_length();
2775     uint active_workers = workers()->active_workers();
2776     assert(UseDynamicNumberOfGCThreads ||
2777              active_workers == workers()->total_workers(),
2778              "Unless dynamic should use total workers");
2779 
2780     uint end_ind   = (cs_size * worker_i) / active_workers;
2781     uint start_ind = 0;
2782 
2783     if (worker_i > 0 &&
2784         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2785       // Previous workers starting region is valid
2786       // so let's iterate from there
2787       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2788       result = _worker_cset_start_region[worker_i - 1];
2789     }
2790 
2791     for (uint i = start_ind; i < end_ind; i++) {
2792       result = result->next_in_collection_set();
2793     }
2794   }
2795 
2796   // Note: the calculated starting heap region may be NULL
2797   // (when the collection set is empty).
2798   assert(result == NULL || result->in_collection_set(), "sanity");
2799   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2800          "should be updated only once per pause");
2801   _worker_cset_start_region[worker_i] = result;
2802   OrderAccess::storestore();
2803   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2804   return result;
2805 }
2806 
2807 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2808   HeapRegion* r = g1_policy()->collection_set();
2809   while (r != NULL) {
2810     HeapRegion* next = r->next_in_collection_set();
2811     if (cl->doHeapRegion(r)) {
2812       cl->incomplete();
2813       return;
2814     }
2815     r = next;
2816   }
2817 }
2818 
2819 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2820                                                   HeapRegionClosure *cl) {
2821   if (r == NULL) {
2822     // The CSet is empty so there's nothing to do.
2823     return;
2824   }
2825 
2826   assert(r->in_collection_set(),
2827          "Start region must be a member of the collection set.");
2828   HeapRegion* cur = r;
2829   while (cur != NULL) {
2830     HeapRegion* next = cur->next_in_collection_set();
2831     if (cl->doHeapRegion(cur) && false) {
2832       cl->incomplete();
2833       return;
2834     }
2835     cur = next;
2836   }
2837   cur = g1_policy()->collection_set();
2838   while (cur != r) {
2839     HeapRegion* next = cur->next_in_collection_set();
2840     if (cl->doHeapRegion(cur) && false) {
2841       cl->incomplete();
2842       return;
2843     }
2844     cur = next;
2845   }
2846 }
2847 
2848 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2849   HeapRegion* result = _hrm.next_region_in_heap(from);
2850   while (result != NULL && result->isHumongous()) {
2851     result = _hrm.next_region_in_heap(result);
2852   }
2853   return result;
2854 }
2855 
2856 Space* G1CollectedHeap::space_containing(const void* addr) const {
2857   return heap_region_containing(addr);
2858 }
2859 
2860 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2861   Space* sp = space_containing(addr);
2862   return sp->block_start(addr);
2863 }
2864 
2865 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2866   Space* sp = space_containing(addr);
2867   return sp->block_size(addr);
2868 }
2869 
2870 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2871   Space* sp = space_containing(addr);
2872   return sp->block_is_obj(addr);
2873 }
2874 
2875 bool G1CollectedHeap::supports_tlab_allocation() const {
2876   return true;
2877 }
2878 
2879 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2880   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2881 }
2882 
2883 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2884   return young_list()->eden_used_bytes();
2885 }
2886 
2887 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2888 // must be smaller than the humongous object limit.
2889 size_t G1CollectedHeap::max_tlab_size() const {
2890   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2891 }
2892 
2893 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2894   // Return the remaining space in the cur alloc region, but not less than
2895   // the min TLAB size.
2896 
2897   // Also, this value can be at most the humongous object threshold,
2898   // since we can't allow tlabs to grow big enough to accommodate
2899   // humongous objects.
2900 
2901   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2902   size_t max_tlab = max_tlab_size() * wordSize;
2903   if (hr == NULL) {
2904     return max_tlab;
2905   } else {
2906     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2907   }
2908 }
2909 
2910 size_t G1CollectedHeap::max_capacity() const {
2911   return _hrm.reserved().byte_size();
2912 }
2913 
2914 jlong G1CollectedHeap::millis_since_last_gc() {
2915   // assert(false, "NYI");
2916   return 0;
2917 }
2918 
2919 void G1CollectedHeap::prepare_for_verify() {
2920   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2921     ensure_parsability(false);
2922   }
2923   g1_rem_set()->prepare_for_verify();
2924 }
2925 
2926 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2927                                               VerifyOption vo) {
2928   switch (vo) {
2929   case VerifyOption_G1UsePrevMarking:
2930     return hr->obj_allocated_since_prev_marking(obj);
2931   case VerifyOption_G1UseNextMarking:
2932     return hr->obj_allocated_since_next_marking(obj);
2933   case VerifyOption_G1UseMarkWord:
2934     return false;
2935   default:
2936     ShouldNotReachHere();
2937   }
2938   return false; // keep some compilers happy
2939 }
2940 
2941 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2942   switch (vo) {
2943   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2944   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2945   case VerifyOption_G1UseMarkWord:    return NULL;
2946   default:                            ShouldNotReachHere();
2947   }
2948   return NULL; // keep some compilers happy
2949 }
2950 
2951 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2952   switch (vo) {
2953   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2954   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2955   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2956   default:                            ShouldNotReachHere();
2957   }
2958   return false; // keep some compilers happy
2959 }
2960 
2961 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2962   switch (vo) {
2963   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2964   case VerifyOption_G1UseNextMarking: return "NTAMS";
2965   case VerifyOption_G1UseMarkWord:    return "NONE";
2966   default:                            ShouldNotReachHere();
2967   }
2968   return NULL; // keep some compilers happy
2969 }
2970 
2971 class VerifyRootsClosure: public OopClosure {
2972 private:
2973   G1CollectedHeap* _g1h;
2974   VerifyOption     _vo;
2975   bool             _failures;
2976 public:
2977   // _vo == UsePrevMarking -> use "prev" marking information,
2978   // _vo == UseNextMarking -> use "next" marking information,
2979   // _vo == UseMarkWord    -> use mark word from object header.
2980   VerifyRootsClosure(VerifyOption vo) :
2981     _g1h(G1CollectedHeap::heap()),
2982     _vo(vo),
2983     _failures(false) { }
2984 
2985   bool failures() { return _failures; }
2986 
2987   template <class T> void do_oop_nv(T* p) {
2988     T heap_oop = oopDesc::load_heap_oop(p);
2989     if (!oopDesc::is_null(heap_oop)) {
2990       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2991       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2992         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2993                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2994         if (_vo == VerifyOption_G1UseMarkWord) {
2995           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2996         }
2997         obj->print_on(gclog_or_tty);
2998         _failures = true;
2999       }
3000     }
3001   }
3002 
3003   void do_oop(oop* p)       { do_oop_nv(p); }
3004   void do_oop(narrowOop* p) { do_oop_nv(p); }
3005 };
3006 
3007 class G1VerifyCodeRootOopClosure: public OopClosure {
3008   G1CollectedHeap* _g1h;
3009   OopClosure* _root_cl;
3010   nmethod* _nm;
3011   VerifyOption _vo;
3012   bool _failures;
3013 
3014   template <class T> void do_oop_work(T* p) {
3015     // First verify that this root is live
3016     _root_cl->do_oop(p);
3017 
3018     if (!G1VerifyHeapRegionCodeRoots) {
3019       // We're not verifying the code roots attached to heap region.
3020       return;
3021     }
3022 
3023     // Don't check the code roots during marking verification in a full GC
3024     if (_vo == VerifyOption_G1UseMarkWord) {
3025       return;
3026     }
3027 
3028     // Now verify that the current nmethod (which contains p) is
3029     // in the code root list of the heap region containing the
3030     // object referenced by p.
3031 
3032     T heap_oop = oopDesc::load_heap_oop(p);
3033     if (!oopDesc::is_null(heap_oop)) {
3034       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3035 
3036       // Now fetch the region containing the object
3037       HeapRegion* hr = _g1h->heap_region_containing(obj);
3038       HeapRegionRemSet* hrrs = hr->rem_set();
3039       // Verify that the strong code root list for this region
3040       // contains the nmethod
3041       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3042         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
3043                               "from nmethod "PTR_FORMAT" not in strong "
3044                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3045                               p, _nm, hr->bottom(), hr->end());
3046         _failures = true;
3047       }
3048     }
3049   }
3050 
3051 public:
3052   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3053     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3054 
3055   void do_oop(oop* p) { do_oop_work(p); }
3056   void do_oop(narrowOop* p) { do_oop_work(p); }
3057 
3058   void set_nmethod(nmethod* nm) { _nm = nm; }
3059   bool failures() { return _failures; }
3060 };
3061 
3062 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3063   G1VerifyCodeRootOopClosure* _oop_cl;
3064 
3065 public:
3066   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3067     _oop_cl(oop_cl) {}
3068 
3069   void do_code_blob(CodeBlob* cb) {
3070     nmethod* nm = cb->as_nmethod_or_null();
3071     if (nm != NULL) {
3072       _oop_cl->set_nmethod(nm);
3073       nm->oops_do(_oop_cl);
3074     }
3075   }
3076 };
3077 
3078 class YoungRefCounterClosure : public OopClosure {
3079   G1CollectedHeap* _g1h;
3080   int              _count;
3081  public:
3082   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3083   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3084   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3085 
3086   int count() { return _count; }
3087   void reset_count() { _count = 0; };
3088 };
3089 
3090 class VerifyKlassClosure: public KlassClosure {
3091   YoungRefCounterClosure _young_ref_counter_closure;
3092   OopClosure *_oop_closure;
3093  public:
3094   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3095   void do_klass(Klass* k) {
3096     k->oops_do(_oop_closure);
3097 
3098     _young_ref_counter_closure.reset_count();
3099     k->oops_do(&_young_ref_counter_closure);
3100     if (_young_ref_counter_closure.count() > 0) {
3101       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3102     }
3103   }
3104 };
3105 
3106 class VerifyLivenessOopClosure: public OopClosure {
3107   G1CollectedHeap* _g1h;
3108   VerifyOption _vo;
3109 public:
3110   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3111     _g1h(g1h), _vo(vo)
3112   { }
3113   void do_oop(narrowOop *p) { do_oop_work(p); }
3114   void do_oop(      oop *p) { do_oop_work(p); }
3115 
3116   template <class T> void do_oop_work(T *p) {
3117     oop obj = oopDesc::load_decode_heap_oop(p);
3118     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3119               "Dead object referenced by a not dead object");
3120   }
3121 };
3122 
3123 class VerifyObjsInRegionClosure: public ObjectClosure {
3124 private:
3125   G1CollectedHeap* _g1h;
3126   size_t _live_bytes;
3127   HeapRegion *_hr;
3128   VerifyOption _vo;
3129 public:
3130   // _vo == UsePrevMarking -> use "prev" marking information,
3131   // _vo == UseNextMarking -> use "next" marking information,
3132   // _vo == UseMarkWord    -> use mark word from object header.
3133   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3134     : _live_bytes(0), _hr(hr), _vo(vo) {
3135     _g1h = G1CollectedHeap::heap();
3136   }
3137   void do_object(oop o) {
3138     VerifyLivenessOopClosure isLive(_g1h, _vo);
3139     assert(o != NULL, "Huh?");
3140     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3141       // If the object is alive according to the mark word,
3142       // then verify that the marking information agrees.
3143       // Note we can't verify the contra-positive of the
3144       // above: if the object is dead (according to the mark
3145       // word), it may not be marked, or may have been marked
3146       // but has since became dead, or may have been allocated
3147       // since the last marking.
3148       if (_vo == VerifyOption_G1UseMarkWord) {
3149         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3150       }
3151 
3152       o->oop_iterate_no_header(&isLive);
3153       if (!_hr->obj_allocated_since_prev_marking(o)) {
3154         size_t obj_size = o->size();    // Make sure we don't overflow
3155         _live_bytes += (obj_size * HeapWordSize);
3156       }
3157     }
3158   }
3159   size_t live_bytes() { return _live_bytes; }
3160 };
3161 
3162 class PrintObjsInRegionClosure : public ObjectClosure {
3163   HeapRegion *_hr;
3164   G1CollectedHeap *_g1;
3165 public:
3166   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3167     _g1 = G1CollectedHeap::heap();
3168   };
3169 
3170   void do_object(oop o) {
3171     if (o != NULL) {
3172       HeapWord *start = (HeapWord *) o;
3173       size_t word_sz = o->size();
3174       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3175                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3176                           (void*) o, word_sz,
3177                           _g1->isMarkedPrev(o),
3178                           _g1->isMarkedNext(o),
3179                           _hr->obj_allocated_since_prev_marking(o));
3180       HeapWord *end = start + word_sz;
3181       HeapWord *cur;
3182       int *val;
3183       for (cur = start; cur < end; cur++) {
3184         val = (int *) cur;
3185         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3186       }
3187     }
3188   }
3189 };
3190 
3191 class VerifyRegionClosure: public HeapRegionClosure {
3192 private:
3193   bool             _par;
3194   VerifyOption     _vo;
3195   bool             _failures;
3196 public:
3197   // _vo == UsePrevMarking -> use "prev" marking information,
3198   // _vo == UseNextMarking -> use "next" marking information,
3199   // _vo == UseMarkWord    -> use mark word from object header.
3200   VerifyRegionClosure(bool par, VerifyOption vo)
3201     : _par(par),
3202       _vo(vo),
3203       _failures(false) {}
3204 
3205   bool failures() {
3206     return _failures;
3207   }
3208 
3209   bool doHeapRegion(HeapRegion* r) {
3210     if (!r->continuesHumongous()) {
3211       bool failures = false;
3212       r->verify(_vo, &failures);
3213       if (failures) {
3214         _failures = true;
3215       } else {
3216         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3217         r->object_iterate(&not_dead_yet_cl);
3218         if (_vo != VerifyOption_G1UseNextMarking) {
3219           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3220             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3221                                    "max_live_bytes "SIZE_FORMAT" "
3222                                    "< calculated "SIZE_FORMAT,
3223                                    r->bottom(), r->end(),
3224                                    r->max_live_bytes(),
3225                                  not_dead_yet_cl.live_bytes());
3226             _failures = true;
3227           }
3228         } else {
3229           // When vo == UseNextMarking we cannot currently do a sanity
3230           // check on the live bytes as the calculation has not been
3231           // finalized yet.
3232         }
3233       }
3234     }
3235     return false; // stop the region iteration if we hit a failure
3236   }
3237 };
3238 
3239 // This is the task used for parallel verification of the heap regions
3240 
3241 class G1ParVerifyTask: public AbstractGangTask {
3242 private:
3243   G1CollectedHeap* _g1h;
3244   VerifyOption     _vo;
3245   bool             _failures;
3246 
3247 public:
3248   // _vo == UsePrevMarking -> use "prev" marking information,
3249   // _vo == UseNextMarking -> use "next" marking information,
3250   // _vo == UseMarkWord    -> use mark word from object header.
3251   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3252     AbstractGangTask("Parallel verify task"),
3253     _g1h(g1h),
3254     _vo(vo),
3255     _failures(false) { }
3256 
3257   bool failures() {
3258     return _failures;
3259   }
3260 
3261   void work(uint worker_id) {
3262     HandleMark hm;
3263     VerifyRegionClosure blk(true, _vo);
3264     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3265                                           _g1h->workers()->active_workers(),
3266                                           HeapRegion::ParVerifyClaimValue);
3267     if (blk.failures()) {
3268       _failures = true;
3269     }
3270   }
3271 };
3272 
3273 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3274   if (SafepointSynchronize::is_at_safepoint()) {
3275     assert(Thread::current()->is_VM_thread(),
3276            "Expected to be executed serially by the VM thread at this point");
3277 
3278     if (!silent) { gclog_or_tty->print("Roots "); }
3279     VerifyRootsClosure rootsCl(vo);
3280     VerifyKlassClosure klassCl(this, &rootsCl);
3281     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3282 
3283     // We apply the relevant closures to all the oops in the
3284     // system dictionary, class loader data graph, the string table
3285     // and the nmethods in the code cache.
3286     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3287     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3288 
3289     process_all_roots(true,            // activate StrongRootsScope
3290                       SO_AllCodeCache, // roots scanning options
3291                       &rootsCl,
3292                       &cldCl,
3293                       &blobsCl);
3294 
3295     bool failures = rootsCl.failures() || codeRootsCl.failures();
3296 
3297     if (vo != VerifyOption_G1UseMarkWord) {
3298       // If we're verifying during a full GC then the region sets
3299       // will have been torn down at the start of the GC. Therefore
3300       // verifying the region sets will fail. So we only verify
3301       // the region sets when not in a full GC.
3302       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3303       verify_region_sets();
3304     }
3305 
3306     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3307     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3308       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3309              "sanity check");
3310 
3311       G1ParVerifyTask task(this, vo);
3312       assert(UseDynamicNumberOfGCThreads ||
3313         workers()->active_workers() == workers()->total_workers(),
3314         "If not dynamic should be using all the workers");
3315       int n_workers = workers()->active_workers();
3316       set_par_threads(n_workers);
3317       workers()->run_task(&task);
3318       set_par_threads(0);
3319       if (task.failures()) {
3320         failures = true;
3321       }
3322 
3323       // Checks that the expected amount of parallel work was done.
3324       // The implication is that n_workers is > 0.
3325       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3326              "sanity check");
3327 
3328       reset_heap_region_claim_values();
3329 
3330       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3331              "sanity check");
3332     } else {
3333       VerifyRegionClosure blk(false, vo);
3334       heap_region_iterate(&blk);
3335       if (blk.failures()) {
3336         failures = true;
3337       }
3338     }
3339     if (!silent) gclog_or_tty->print("RemSet ");
3340     rem_set()->verify();
3341 
3342     if (G1StringDedup::is_enabled()) {
3343       if (!silent) gclog_or_tty->print("StrDedup ");
3344       G1StringDedup::verify();
3345     }
3346 
3347     if (failures) {
3348       gclog_or_tty->print_cr("Heap:");
3349       // It helps to have the per-region information in the output to
3350       // help us track down what went wrong. This is why we call
3351       // print_extended_on() instead of print_on().
3352       print_extended_on(gclog_or_tty);
3353       gclog_or_tty->cr();
3354 #ifndef PRODUCT
3355       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3356         concurrent_mark()->print_reachable("at-verification-failure",
3357                                            vo, false /* all */);
3358       }
3359 #endif
3360       gclog_or_tty->flush();
3361     }
3362     guarantee(!failures, "there should not have been any failures");
3363   } else {
3364     if (!silent) {
3365       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3366       if (G1StringDedup::is_enabled()) {
3367         gclog_or_tty->print(", StrDedup");
3368       }
3369       gclog_or_tty->print(") ");
3370     }
3371   }
3372 }
3373 
3374 void G1CollectedHeap::verify(bool silent) {
3375   verify(silent, VerifyOption_G1UsePrevMarking);
3376 }
3377 
3378 double G1CollectedHeap::verify(bool guard, const char* msg) {
3379   double verify_time_ms = 0.0;
3380 
3381   if (guard && total_collections() >= VerifyGCStartAt) {
3382     double verify_start = os::elapsedTime();
3383     HandleMark hm;  // Discard invalid handles created during verification
3384     prepare_for_verify();
3385     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3386     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3387   }
3388 
3389   return verify_time_ms;
3390 }
3391 
3392 void G1CollectedHeap::verify_before_gc() {
3393   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3394   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3395 }
3396 
3397 void G1CollectedHeap::verify_after_gc() {
3398   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3399   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3400 }
3401 
3402 class PrintRegionClosure: public HeapRegionClosure {
3403   outputStream* _st;
3404 public:
3405   PrintRegionClosure(outputStream* st) : _st(st) {}
3406   bool doHeapRegion(HeapRegion* r) {
3407     r->print_on(_st);
3408     return false;
3409   }
3410 };
3411 
3412 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3413                                        const HeapRegion* hr,
3414                                        const VerifyOption vo) const {
3415   switch (vo) {
3416   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3417   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3418   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3419   default:                            ShouldNotReachHere();
3420   }
3421   return false; // keep some compilers happy
3422 }
3423 
3424 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3425                                        const VerifyOption vo) const {
3426   switch (vo) {
3427   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3428   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3429   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3430   default:                            ShouldNotReachHere();
3431   }
3432   return false; // keep some compilers happy
3433 }
3434 
3435 void G1CollectedHeap::print_on(outputStream* st) const {
3436   st->print(" %-20s", "garbage-first heap");
3437   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3438             capacity()/K, used_unlocked()/K);
3439   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3440             _hrm.reserved().start(),
3441             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3442             _hrm.reserved().end());
3443   st->cr();
3444   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3445   uint young_regions = _young_list->length();
3446   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3447             (size_t) young_regions * HeapRegion::GrainBytes / K);
3448   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3449   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3450             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3451   st->cr();
3452   MetaspaceAux::print_on(st);
3453 }
3454 
3455 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3456   print_on(st);
3457 
3458   // Print the per-region information.
3459   st->cr();
3460   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3461                "HS=humongous(starts), HC=humongous(continues), "
3462                "CS=collection set, F=free, TS=gc time stamp, "
3463                "PTAMS=previous top-at-mark-start, "
3464                "NTAMS=next top-at-mark-start)");
3465   PrintRegionClosure blk(st);
3466   heap_region_iterate(&blk);
3467 }
3468 
3469 void G1CollectedHeap::print_on_error(outputStream* st) const {
3470   this->CollectedHeap::print_on_error(st);
3471 
3472   if (_cm != NULL) {
3473     st->cr();
3474     _cm->print_on_error(st);
3475   }
3476 }
3477 
3478 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3479   if (G1CollectedHeap::use_parallel_gc_threads()) {
3480     workers()->print_worker_threads_on(st);
3481   }
3482   _cmThread->print_on(st);
3483   st->cr();
3484   _cm->print_worker_threads_on(st);
3485   _cg1r->print_worker_threads_on(st);
3486   if (G1StringDedup::is_enabled()) {
3487     G1StringDedup::print_worker_threads_on(st);
3488   }
3489 }
3490 
3491 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3492   if (G1CollectedHeap::use_parallel_gc_threads()) {
3493     workers()->threads_do(tc);
3494   }
3495   tc->do_thread(_cmThread);
3496   _cg1r->threads_do(tc);
3497   if (G1StringDedup::is_enabled()) {
3498     G1StringDedup::threads_do(tc);
3499   }
3500 }
3501 
3502 void G1CollectedHeap::print_tracing_info() const {
3503   // We'll overload this to mean "trace GC pause statistics."
3504   if (TraceGen0Time || TraceGen1Time) {
3505     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3506     // to that.
3507     g1_policy()->print_tracing_info();
3508   }
3509   if (G1SummarizeRSetStats) {
3510     g1_rem_set()->print_summary_info();
3511   }
3512   if (G1SummarizeConcMark) {
3513     concurrent_mark()->print_summary_info();
3514   }
3515   g1_policy()->print_yg_surv_rate_info();
3516   SpecializationStats::print();
3517 }
3518 
3519 #ifndef PRODUCT
3520 // Helpful for debugging RSet issues.
3521 
3522 class PrintRSetsClosure : public HeapRegionClosure {
3523 private:
3524   const char* _msg;
3525   size_t _occupied_sum;
3526 
3527 public:
3528   bool doHeapRegion(HeapRegion* r) {
3529     HeapRegionRemSet* hrrs = r->rem_set();
3530     size_t occupied = hrrs->occupied();
3531     _occupied_sum += occupied;
3532 
3533     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3534                            HR_FORMAT_PARAMS(r));
3535     if (occupied == 0) {
3536       gclog_or_tty->print_cr("  RSet is empty");
3537     } else {
3538       hrrs->print();
3539     }
3540     gclog_or_tty->print_cr("----------");
3541     return false;
3542   }
3543 
3544   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3545     gclog_or_tty->cr();
3546     gclog_or_tty->print_cr("========================================");
3547     gclog_or_tty->print_cr("%s", msg);
3548     gclog_or_tty->cr();
3549   }
3550 
3551   ~PrintRSetsClosure() {
3552     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3553     gclog_or_tty->print_cr("========================================");
3554     gclog_or_tty->cr();
3555   }
3556 };
3557 
3558 void G1CollectedHeap::print_cset_rsets() {
3559   PrintRSetsClosure cl("Printing CSet RSets");
3560   collection_set_iterate(&cl);
3561 }
3562 
3563 void G1CollectedHeap::print_all_rsets() {
3564   PrintRSetsClosure cl("Printing All RSets");;
3565   heap_region_iterate(&cl);
3566 }
3567 #endif // PRODUCT
3568 
3569 G1CollectedHeap* G1CollectedHeap::heap() {
3570   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3571          "not a garbage-first heap");
3572   return _g1h;
3573 }
3574 
3575 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3576   // always_do_update_barrier = false;
3577   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3578   // Fill TLAB's and such
3579   accumulate_statistics_all_tlabs();
3580   ensure_parsability(true);
3581 
3582   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3583       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3584     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3585   }
3586 }
3587 
3588 void G1CollectedHeap::gc_epilogue(bool full) {
3589 
3590   if (G1SummarizeRSetStats &&
3591       (G1SummarizeRSetStatsPeriod > 0) &&
3592       // we are at the end of the GC. Total collections has already been increased.
3593       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3594     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3595   }
3596 
3597   // FIXME: what is this about?
3598   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3599   // is set.
3600   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3601                         "derived pointer present"));
3602   // always_do_update_barrier = true;
3603 
3604   resize_all_tlabs();
3605   allocation_context_stats().update(full);
3606 
3607   // We have just completed a GC. Update the soft reference
3608   // policy with the new heap occupancy
3609   Universe::update_heap_info_at_gc();
3610 }
3611 
3612 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3613                                                unsigned int gc_count_before,
3614                                                bool* succeeded,
3615                                                GCCause::Cause gc_cause) {
3616   assert_heap_not_locked_and_not_at_safepoint();
3617   g1_policy()->record_stop_world_start();
3618   VM_G1IncCollectionPause op(gc_count_before,
3619                              word_size,
3620                              false, /* should_initiate_conc_mark */
3621                              g1_policy()->max_pause_time_ms(),
3622                              gc_cause);
3623 
3624   op.set_allocation_context(AllocationContext::current());
3625   VMThread::execute(&op);
3626 
3627   HeapWord* result = op.result();
3628   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3629   assert(result == NULL || ret_succeeded,
3630          "the result should be NULL if the VM did not succeed");
3631   *succeeded = ret_succeeded;
3632 
3633   assert_heap_not_locked();
3634   return result;
3635 }
3636 
3637 void
3638 G1CollectedHeap::doConcurrentMark() {
3639   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3640   if (!_cmThread->in_progress()) {
3641     _cmThread->set_started();
3642     CGC_lock->notify();
3643   }
3644 }
3645 
3646 size_t G1CollectedHeap::pending_card_num() {
3647   size_t extra_cards = 0;
3648   JavaThread *curr = Threads::first();
3649   while (curr != NULL) {
3650     DirtyCardQueue& dcq = curr->dirty_card_queue();
3651     extra_cards += dcq.size();
3652     curr = curr->next();
3653   }
3654   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3655   size_t buffer_size = dcqs.buffer_size();
3656   size_t buffer_num = dcqs.completed_buffers_num();
3657 
3658   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3659   // in bytes - not the number of 'entries'. We need to convert
3660   // into a number of cards.
3661   return (buffer_size * buffer_num + extra_cards) / oopSize;
3662 }
3663 
3664 size_t G1CollectedHeap::cards_scanned() {
3665   return g1_rem_set()->cardsScanned();
3666 }
3667 
3668 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
3669   HeapRegion* region = region_at(index);
3670   assert(region->startsHumongous(), "Must start a humongous object");
3671   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
3672 }
3673 
3674 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3675  private:
3676   size_t _total_humongous;
3677   size_t _candidate_humongous;
3678  public:
3679   RegisterHumongousWithInCSetFastTestClosure() : _total_humongous(0), _candidate_humongous(0) {
3680   }
3681 
3682   virtual bool doHeapRegion(HeapRegion* r) {
3683     if (!r->startsHumongous()) {
3684       return false;
3685     }
3686     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3687 
3688     uint region_idx = r->hrm_index();
3689     bool is_candidate = !g1h->humongous_region_is_always_live(region_idx);
3690     // Is_candidate already filters out humongous regions with some remembered set.
3691     // This will not lead to humongous object that we mistakenly keep alive because
3692     // during young collection the remembered sets will only be added to.
3693     if (is_candidate) {
3694       g1h->register_humongous_region_with_in_cset_fast_test(region_idx);
3695       _candidate_humongous++;
3696     }
3697     _total_humongous++;
3698 
3699     return false;
3700   }
3701 
3702   size_t total_humongous() const { return _total_humongous; }
3703   size_t candidate_humongous() const { return _candidate_humongous; }
3704 };
3705 
3706 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
3707   if (!G1ReclaimDeadHumongousObjectsAtYoungGC) {
3708     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0, 0);
3709     return;
3710   }
3711 
3712   RegisterHumongousWithInCSetFastTestClosure cl;
3713   heap_region_iterate(&cl);
3714   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(cl.total_humongous(),
3715                                                                   cl.candidate_humongous());
3716   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3717 
3718   if (_has_humongous_reclaim_candidates) {
3719     clear_humongous_is_live_table();
3720   }
3721 }
3722 
3723 void
3724 G1CollectedHeap::setup_surviving_young_words() {
3725   assert(_surviving_young_words == NULL, "pre-condition");
3726   uint array_length = g1_policy()->young_cset_region_length();
3727   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3728   if (_surviving_young_words == NULL) {
3729     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3730                           "Not enough space for young surv words summary.");
3731   }
3732   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3733 #ifdef ASSERT
3734   for (uint i = 0;  i < array_length; ++i) {
3735     assert( _surviving_young_words[i] == 0, "memset above" );
3736   }
3737 #endif // !ASSERT
3738 }
3739 
3740 void
3741 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3742   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3743   uint array_length = g1_policy()->young_cset_region_length();
3744   for (uint i = 0; i < array_length; ++i) {
3745     _surviving_young_words[i] += surv_young_words[i];
3746   }
3747 }
3748 
3749 void
3750 G1CollectedHeap::cleanup_surviving_young_words() {
3751   guarantee( _surviving_young_words != NULL, "pre-condition" );
3752   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3753   _surviving_young_words = NULL;
3754 }
3755 
3756 #ifdef ASSERT
3757 class VerifyCSetClosure: public HeapRegionClosure {
3758 public:
3759   bool doHeapRegion(HeapRegion* hr) {
3760     // Here we check that the CSet region's RSet is ready for parallel
3761     // iteration. The fields that we'll verify are only manipulated
3762     // when the region is part of a CSet and is collected. Afterwards,
3763     // we reset these fields when we clear the region's RSet (when the
3764     // region is freed) so they are ready when the region is
3765     // re-allocated. The only exception to this is if there's an
3766     // evacuation failure and instead of freeing the region we leave
3767     // it in the heap. In that case, we reset these fields during
3768     // evacuation failure handling.
3769     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3770 
3771     // Here's a good place to add any other checks we'd like to
3772     // perform on CSet regions.
3773     return false;
3774   }
3775 };
3776 #endif // ASSERT
3777 
3778 #if TASKQUEUE_STATS
3779 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3780   st->print_raw_cr("GC Task Stats");
3781   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3782   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3783 }
3784 
3785 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3786   print_taskqueue_stats_hdr(st);
3787 
3788   TaskQueueStats totals;
3789   const int n = workers() != NULL ? workers()->total_workers() : 1;
3790   for (int i = 0; i < n; ++i) {
3791     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3792     totals += task_queue(i)->stats;
3793   }
3794   st->print_raw("tot "); totals.print(st); st->cr();
3795 
3796   DEBUG_ONLY(totals.verify());
3797 }
3798 
3799 void G1CollectedHeap::reset_taskqueue_stats() {
3800   const int n = workers() != NULL ? workers()->total_workers() : 1;
3801   for (int i = 0; i < n; ++i) {
3802     task_queue(i)->stats.reset();
3803   }
3804 }
3805 #endif // TASKQUEUE_STATS
3806 
3807 void G1CollectedHeap::log_gc_header() {
3808   if (!G1Log::fine()) {
3809     return;
3810   }
3811 
3812   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3813 
3814   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3815     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3816     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3817 
3818   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3819 }
3820 
3821 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3822   if (!G1Log::fine()) {
3823     return;
3824   }
3825 
3826   if (G1Log::finer()) {
3827     if (evacuation_failed()) {
3828       gclog_or_tty->print(" (to-space exhausted)");
3829     }
3830     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3831     g1_policy()->phase_times()->note_gc_end();
3832     g1_policy()->phase_times()->print(pause_time_sec);
3833     g1_policy()->print_detailed_heap_transition();
3834   } else {
3835     if (evacuation_failed()) {
3836       gclog_or_tty->print("--");
3837     }
3838     g1_policy()->print_heap_transition();
3839     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3840   }
3841   gclog_or_tty->flush();
3842 }
3843 
3844 bool
3845 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3846   assert_at_safepoint(true /* should_be_vm_thread */);
3847   guarantee(!is_gc_active(), "collection is not reentrant");
3848 
3849   if (GC_locker::check_active_before_gc()) {
3850     return false;
3851   }
3852 
3853   _gc_timer_stw->register_gc_start();
3854 
3855   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3856 
3857   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3858   ResourceMark rm;
3859 
3860   print_heap_before_gc();
3861   trace_heap_before_gc(_gc_tracer_stw);
3862 
3863   verify_region_sets_optional();
3864   verify_dirty_young_regions();
3865 
3866   // This call will decide whether this pause is an initial-mark
3867   // pause. If it is, during_initial_mark_pause() will return true
3868   // for the duration of this pause.
3869   g1_policy()->decide_on_conc_mark_initiation();
3870 
3871   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3872   assert(!g1_policy()->during_initial_mark_pause() ||
3873           g1_policy()->gcs_are_young(), "sanity");
3874 
3875   // We also do not allow mixed GCs during marking.
3876   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3877 
3878   // Record whether this pause is an initial mark. When the current
3879   // thread has completed its logging output and it's safe to signal
3880   // the CM thread, the flag's value in the policy has been reset.
3881   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3882 
3883   // Inner scope for scope based logging, timers, and stats collection
3884   {
3885     EvacuationInfo evacuation_info;
3886 
3887     if (g1_policy()->during_initial_mark_pause()) {
3888       // We are about to start a marking cycle, so we increment the
3889       // full collection counter.
3890       increment_old_marking_cycles_started();
3891       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3892     }
3893 
3894     _gc_tracer_stw->report_yc_type(yc_type());
3895 
3896     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3897 
3898     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3899                                 workers()->active_workers() : 1);
3900     double pause_start_sec = os::elapsedTime();
3901     g1_policy()->phase_times()->note_gc_start(active_workers);
3902     log_gc_header();
3903 
3904     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3905     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3906 
3907     // If the secondary_free_list is not empty, append it to the
3908     // free_list. No need to wait for the cleanup operation to finish;
3909     // the region allocation code will check the secondary_free_list
3910     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3911     // set, skip this step so that the region allocation code has to
3912     // get entries from the secondary_free_list.
3913     if (!G1StressConcRegionFreeing) {
3914       append_secondary_free_list_if_not_empty_with_lock();
3915     }
3916 
3917     assert(check_young_list_well_formed(), "young list should be well formed");
3918     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3919            "sanity check");
3920 
3921     // Don't dynamically change the number of GC threads this early.  A value of
3922     // 0 is used to indicate serial work.  When parallel work is done,
3923     // it will be set.
3924 
3925     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3926       IsGCActiveMark x;
3927 
3928       gc_prologue(false);
3929       increment_total_collections(false /* full gc */);
3930       increment_gc_time_stamp();
3931 
3932       verify_before_gc();
3933       check_bitmaps("GC Start");
3934 
3935       COMPILER2_PRESENT(DerivedPointerTable::clear());
3936 
3937       // Please see comment in g1CollectedHeap.hpp and
3938       // G1CollectedHeap::ref_processing_init() to see how
3939       // reference processing currently works in G1.
3940 
3941       // Enable discovery in the STW reference processor
3942       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3943                                             true /*verify_no_refs*/);
3944 
3945       {
3946         // We want to temporarily turn off discovery by the
3947         // CM ref processor, if necessary, and turn it back on
3948         // on again later if we do. Using a scoped
3949         // NoRefDiscovery object will do this.
3950         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3951 
3952         // Forget the current alloc region (we might even choose it to be part
3953         // of the collection set!).
3954         _allocator->release_mutator_alloc_region();
3955 
3956         // We should call this after we retire the mutator alloc
3957         // region(s) so that all the ALLOC / RETIRE events are generated
3958         // before the start GC event.
3959         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3960 
3961         // This timing is only used by the ergonomics to handle our pause target.
3962         // It is unclear why this should not include the full pause. We will
3963         // investigate this in CR 7178365.
3964         //
3965         // Preserving the old comment here if that helps the investigation:
3966         //
3967         // The elapsed time induced by the start time below deliberately elides
3968         // the possible verification above.
3969         double sample_start_time_sec = os::elapsedTime();
3970 
3971 #if YOUNG_LIST_VERBOSE
3972         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3973         _young_list->print();
3974         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3975 #endif // YOUNG_LIST_VERBOSE
3976 
3977         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3978 
3979         double scan_wait_start = os::elapsedTime();
3980         // We have to wait until the CM threads finish scanning the
3981         // root regions as it's the only way to ensure that all the
3982         // objects on them have been correctly scanned before we start
3983         // moving them during the GC.
3984         bool waited = _cm->root_regions()->wait_until_scan_finished();
3985         double wait_time_ms = 0.0;
3986         if (waited) {
3987           double scan_wait_end = os::elapsedTime();
3988           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3989         }
3990         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3991 
3992 #if YOUNG_LIST_VERBOSE
3993         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3994         _young_list->print();
3995 #endif // YOUNG_LIST_VERBOSE
3996 
3997         if (g1_policy()->during_initial_mark_pause()) {
3998           concurrent_mark()->checkpointRootsInitialPre();
3999         }
4000 
4001 #if YOUNG_LIST_VERBOSE
4002         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4003         _young_list->print();
4004         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4005 #endif // YOUNG_LIST_VERBOSE
4006 
4007         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4008 
4009         register_humongous_regions_with_in_cset_fast_test();
4010 
4011         _cm->note_start_of_gc();
4012         // We should not verify the per-thread SATB buffers given that
4013         // we have not filtered them yet (we'll do so during the
4014         // GC). We also call this after finalize_cset() to
4015         // ensure that the CSet has been finalized.
4016         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4017                                  true  /* verify_enqueued_buffers */,
4018                                  false /* verify_thread_buffers */,
4019                                  true  /* verify_fingers */);
4020 
4021         if (_hr_printer.is_active()) {
4022           HeapRegion* hr = g1_policy()->collection_set();
4023           while (hr != NULL) {
4024             G1HRPrinter::RegionType type;
4025             if (!hr->is_young()) {
4026               type = G1HRPrinter::Old;
4027             } else if (hr->is_survivor()) {
4028               type = G1HRPrinter::Survivor;
4029             } else {
4030               type = G1HRPrinter::Eden;
4031             }
4032             _hr_printer.cset(hr);
4033             hr = hr->next_in_collection_set();
4034           }
4035         }
4036 
4037 #ifdef ASSERT
4038         VerifyCSetClosure cl;
4039         collection_set_iterate(&cl);
4040 #endif // ASSERT
4041 
4042         setup_surviving_young_words();
4043 
4044         // Initialize the GC alloc regions.
4045         _allocator->init_gc_alloc_regions(evacuation_info);
4046 
4047         // Actually do the work...
4048         evacuate_collection_set(evacuation_info);
4049 
4050         // We do this to mainly verify the per-thread SATB buffers
4051         // (which have been filtered by now) since we didn't verify
4052         // them earlier. No point in re-checking the stacks / enqueued
4053         // buffers given that the CSet has not changed since last time
4054         // we checked.
4055         _cm->verify_no_cset_oops(false /* verify_stacks */,
4056                                  false /* verify_enqueued_buffers */,
4057                                  true  /* verify_thread_buffers */,
4058                                  true  /* verify_fingers */);
4059 
4060         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4061 
4062         eagerly_reclaim_humongous_regions();
4063 
4064         g1_policy()->clear_collection_set();
4065 
4066         cleanup_surviving_young_words();
4067 
4068         // Start a new incremental collection set for the next pause.
4069         g1_policy()->start_incremental_cset_building();
4070 
4071         clear_cset_fast_test();
4072 
4073         _young_list->reset_sampled_info();
4074 
4075         // Don't check the whole heap at this point as the
4076         // GC alloc regions from this pause have been tagged
4077         // as survivors and moved on to the survivor list.
4078         // Survivor regions will fail the !is_young() check.
4079         assert(check_young_list_empty(false /* check_heap */),
4080           "young list should be empty");
4081 
4082 #if YOUNG_LIST_VERBOSE
4083         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4084         _young_list->print();
4085 #endif // YOUNG_LIST_VERBOSE
4086 
4087         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4088                                              _young_list->first_survivor_region(),
4089                                              _young_list->last_survivor_region());
4090 
4091         _young_list->reset_auxilary_lists();
4092 
4093         if (evacuation_failed()) {
4094           _allocator->set_used(recalculate_used());
4095           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4096           for (uint i = 0; i < n_queues; i++) {
4097             if (_evacuation_failed_info_array[i].has_failed()) {
4098               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4099             }
4100           }
4101         } else {
4102           // The "used" of the the collection set have already been subtracted
4103           // when they were freed.  Add in the bytes evacuated.
4104           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
4105         }
4106 
4107         if (g1_policy()->during_initial_mark_pause()) {
4108           // We have to do this before we notify the CM threads that
4109           // they can start working to make sure that all the
4110           // appropriate initialization is done on the CM object.
4111           concurrent_mark()->checkpointRootsInitialPost();
4112           set_marking_started();
4113           // Note that we don't actually trigger the CM thread at
4114           // this point. We do that later when we're sure that
4115           // the current thread has completed its logging output.
4116         }
4117 
4118         allocate_dummy_regions();
4119 
4120 #if YOUNG_LIST_VERBOSE
4121         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4122         _young_list->print();
4123         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4124 #endif // YOUNG_LIST_VERBOSE
4125 
4126         _allocator->init_mutator_alloc_region();
4127 
4128         {
4129           size_t expand_bytes = g1_policy()->expansion_amount();
4130           if (expand_bytes > 0) {
4131             size_t bytes_before = capacity();
4132             // No need for an ergo verbose message here,
4133             // expansion_amount() does this when it returns a value > 0.
4134             if (!expand(expand_bytes)) {
4135               // We failed to expand the heap. Cannot do anything about it.
4136             }
4137           }
4138         }
4139 
4140         // We redo the verification but now wrt to the new CSet which
4141         // has just got initialized after the previous CSet was freed.
4142         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4143                                  true  /* verify_enqueued_buffers */,
4144                                  true  /* verify_thread_buffers */,
4145                                  true  /* verify_fingers */);
4146         _cm->note_end_of_gc();
4147 
4148         // This timing is only used by the ergonomics to handle our pause target.
4149         // It is unclear why this should not include the full pause. We will
4150         // investigate this in CR 7178365.
4151         double sample_end_time_sec = os::elapsedTime();
4152         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4153         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4154 
4155         MemoryService::track_memory_usage();
4156 
4157         // In prepare_for_verify() below we'll need to scan the deferred
4158         // update buffers to bring the RSets up-to-date if
4159         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4160         // the update buffers we'll probably need to scan cards on the
4161         // regions we just allocated to (i.e., the GC alloc
4162         // regions). However, during the last GC we called
4163         // set_saved_mark() on all the GC alloc regions, so card
4164         // scanning might skip the [saved_mark_word()...top()] area of
4165         // those regions (i.e., the area we allocated objects into
4166         // during the last GC). But it shouldn't. Given that
4167         // saved_mark_word() is conditional on whether the GC time stamp
4168         // on the region is current or not, by incrementing the GC time
4169         // stamp here we invalidate all the GC time stamps on all the
4170         // regions and saved_mark_word() will simply return top() for
4171         // all the regions. This is a nicer way of ensuring this rather
4172         // than iterating over the regions and fixing them. In fact, the
4173         // GC time stamp increment here also ensures that
4174         // saved_mark_word() will return top() between pauses, i.e.,
4175         // during concurrent refinement. So we don't need the
4176         // is_gc_active() check to decided which top to use when
4177         // scanning cards (see CR 7039627).
4178         increment_gc_time_stamp();
4179 
4180         verify_after_gc();
4181         check_bitmaps("GC End");
4182 
4183         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4184         ref_processor_stw()->verify_no_references_recorded();
4185 
4186         // CM reference discovery will be re-enabled if necessary.
4187       }
4188 
4189       // We should do this after we potentially expand the heap so
4190       // that all the COMMIT events are generated before the end GC
4191       // event, and after we retire the GC alloc regions so that all
4192       // RETIRE events are generated before the end GC event.
4193       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4194 
4195 #ifdef TRACESPINNING
4196       ParallelTaskTerminator::print_termination_counts();
4197 #endif
4198 
4199       gc_epilogue(false);
4200     }
4201 
4202     // Print the remainder of the GC log output.
4203     log_gc_footer(os::elapsedTime() - pause_start_sec);
4204 
4205     // It is not yet to safe to tell the concurrent mark to
4206     // start as we have some optional output below. We don't want the
4207     // output from the concurrent mark thread interfering with this
4208     // logging output either.
4209 
4210     _hrm.verify_optional();
4211     verify_region_sets_optional();
4212 
4213     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4214     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4215 
4216     print_heap_after_gc();
4217     trace_heap_after_gc(_gc_tracer_stw);
4218 
4219     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4220     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4221     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4222     // before any GC notifications are raised.
4223     g1mm()->update_sizes();
4224 
4225     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4226     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4227     _gc_timer_stw->register_gc_end();
4228     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4229   }
4230   // It should now be safe to tell the concurrent mark thread to start
4231   // without its logging output interfering with the logging output
4232   // that came from the pause.
4233 
4234   if (should_start_conc_mark) {
4235     // CAUTION: after the doConcurrentMark() call below,
4236     // the concurrent marking thread(s) could be running
4237     // concurrently with us. Make sure that anything after
4238     // this point does not assume that we are the only GC thread
4239     // running. Note: of course, the actual marking work will
4240     // not start until the safepoint itself is released in
4241     // SuspendibleThreadSet::desynchronize().
4242     doConcurrentMark();
4243   }
4244 
4245   return true;
4246 }
4247 
4248 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4249 {
4250   size_t gclab_word_size;
4251   switch (purpose) {
4252     case GCAllocForSurvived:
4253       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4254       break;
4255     case GCAllocForTenured:
4256       gclab_word_size = _old_plab_stats.desired_plab_sz();
4257       break;
4258     default:
4259       assert(false, "unknown GCAllocPurpose");
4260       gclab_word_size = _old_plab_stats.desired_plab_sz();
4261       break;
4262   }
4263 
4264   // Prevent humongous PLAB sizes for two reasons:
4265   // * PLABs are allocated using a similar paths as oops, but should
4266   //   never be in a humongous region
4267   // * Allowing humongous PLABs needlessly churns the region free lists
4268   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4269 }
4270 
4271 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4272   _drain_in_progress = false;
4273   set_evac_failure_closure(cl);
4274   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4275 }
4276 
4277 void G1CollectedHeap::finalize_for_evac_failure() {
4278   assert(_evac_failure_scan_stack != NULL &&
4279          _evac_failure_scan_stack->length() == 0,
4280          "Postcondition");
4281   assert(!_drain_in_progress, "Postcondition");
4282   delete _evac_failure_scan_stack;
4283   _evac_failure_scan_stack = NULL;
4284 }
4285 
4286 void G1CollectedHeap::remove_self_forwarding_pointers() {
4287   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4288 
4289   double remove_self_forwards_start = os::elapsedTime();
4290 
4291   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4292 
4293   if (G1CollectedHeap::use_parallel_gc_threads()) {
4294     set_par_threads();
4295     workers()->run_task(&rsfp_task);
4296     set_par_threads(0);
4297   } else {
4298     rsfp_task.work(0);
4299   }
4300 
4301   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4302 
4303   // Reset the claim values in the regions in the collection set.
4304   reset_cset_heap_region_claim_values();
4305 
4306   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4307 
4308   // Now restore saved marks, if any.
4309   assert(_objs_with_preserved_marks.size() ==
4310             _preserved_marks_of_objs.size(), "Both or none.");
4311   while (!_objs_with_preserved_marks.is_empty()) {
4312     oop obj = _objs_with_preserved_marks.pop();
4313     markOop m = _preserved_marks_of_objs.pop();
4314     obj->set_mark(m);
4315   }
4316   _objs_with_preserved_marks.clear(true);
4317   _preserved_marks_of_objs.clear(true);
4318 
4319   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4320 }
4321 
4322 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4323   _evac_failure_scan_stack->push(obj);
4324 }
4325 
4326 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4327   assert(_evac_failure_scan_stack != NULL, "precondition");
4328 
4329   while (_evac_failure_scan_stack->length() > 0) {
4330      oop obj = _evac_failure_scan_stack->pop();
4331      _evac_failure_closure->set_region(heap_region_containing(obj));
4332      obj->oop_iterate_backwards(_evac_failure_closure);
4333   }
4334 }
4335 
4336 oop
4337 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4338                                                oop old) {
4339   assert(obj_in_cs(old),
4340          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4341                  (HeapWord*) old));
4342   markOop m = old->mark();
4343   oop forward_ptr = old->forward_to_atomic(old);
4344   if (forward_ptr == NULL) {
4345     // Forward-to-self succeeded.
4346     assert(_par_scan_state != NULL, "par scan state");
4347     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4348     uint queue_num = _par_scan_state->queue_num();
4349 
4350     _evacuation_failed = true;
4351     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4352     if (_evac_failure_closure != cl) {
4353       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4354       assert(!_drain_in_progress,
4355              "Should only be true while someone holds the lock.");
4356       // Set the global evac-failure closure to the current thread's.
4357       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4358       set_evac_failure_closure(cl);
4359       // Now do the common part.
4360       handle_evacuation_failure_common(old, m);
4361       // Reset to NULL.
4362       set_evac_failure_closure(NULL);
4363     } else {
4364       // The lock is already held, and this is recursive.
4365       assert(_drain_in_progress, "This should only be the recursive case.");
4366       handle_evacuation_failure_common(old, m);
4367     }
4368     return old;
4369   } else {
4370     // Forward-to-self failed. Either someone else managed to allocate
4371     // space for this object (old != forward_ptr) or they beat us in
4372     // self-forwarding it (old == forward_ptr).
4373     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4374            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4375                    "should not be in the CSet",
4376                    (HeapWord*) old, (HeapWord*) forward_ptr));
4377     return forward_ptr;
4378   }
4379 }
4380 
4381 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4382   preserve_mark_if_necessary(old, m);
4383 
4384   HeapRegion* r = heap_region_containing(old);
4385   if (!r->evacuation_failed()) {
4386     r->set_evacuation_failed(true);
4387     _hr_printer.evac_failure(r);
4388   }
4389 
4390   push_on_evac_failure_scan_stack(old);
4391 
4392   if (!_drain_in_progress) {
4393     // prevent recursion in copy_to_survivor_space()
4394     _drain_in_progress = true;
4395     drain_evac_failure_scan_stack();
4396     _drain_in_progress = false;
4397   }
4398 }
4399 
4400 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4401   assert(evacuation_failed(), "Oversaving!");
4402   // We want to call the "for_promotion_failure" version only in the
4403   // case of a promotion failure.
4404   if (m->must_be_preserved_for_promotion_failure(obj)) {
4405     _objs_with_preserved_marks.push(obj);
4406     _preserved_marks_of_objs.push(m);
4407   }
4408 }
4409 
4410 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4411                                                   size_t word_size,
4412                                                   AllocationContext_t context) {
4413   if (purpose == GCAllocForSurvived) {
4414     HeapWord* result = survivor_attempt_allocation(word_size, context);
4415     if (result != NULL) {
4416       return result;
4417     } else {
4418       // Let's try to allocate in the old gen in case we can fit the
4419       // object there.
4420       return old_attempt_allocation(word_size, context);
4421     }
4422   } else {
4423     assert(purpose ==  GCAllocForTenured, "sanity");
4424     HeapWord* result = old_attempt_allocation(word_size, context);
4425     if (result != NULL) {
4426       return result;
4427     } else {
4428       // Let's try to allocate in the survivors in case we can fit the
4429       // object there.
4430       return survivor_attempt_allocation(word_size, context);
4431     }
4432   }
4433 
4434   ShouldNotReachHere();
4435   // Trying to keep some compilers happy.
4436   return NULL;
4437 }
4438 
4439 void G1ParCopyHelper::mark_object(oop obj) {
4440   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4441 
4442   // We know that the object is not moving so it's safe to read its size.
4443   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4444 }
4445 
4446 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4447   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4448   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4449   assert(from_obj != to_obj, "should not be self-forwarded");
4450 
4451   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4452   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4453 
4454   // The object might be in the process of being copied by another
4455   // worker so we cannot trust that its to-space image is
4456   // well-formed. So we have to read its size from its from-space
4457   // image which we know should not be changing.
4458   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4459 }
4460 
4461 template <class T>
4462 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4463   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4464     _scanned_klass->record_modified_oops();
4465   }
4466 }
4467 
4468 template <G1Barrier barrier, G1Mark do_mark_object>
4469 template <class T>
4470 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4471   T heap_oop = oopDesc::load_heap_oop(p);
4472 
4473   if (oopDesc::is_null(heap_oop)) {
4474     return;
4475   }
4476 
4477   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4478 
4479   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4480 
4481   G1CollectedHeap::in_cset_state_t state = _g1->in_cset_state(obj);
4482 
4483   if (state == G1CollectedHeap::InCSet) {
4484     oop forwardee;
4485     if (obj->is_forwarded()) {
4486       forwardee = obj->forwardee();
4487     } else {
4488       forwardee = _par_scan_state->copy_to_survivor_space(obj);
4489     }
4490     assert(forwardee != NULL, "forwardee should not be NULL");
4491     oopDesc::encode_store_heap_oop(p, forwardee);
4492     if (do_mark_object != G1MarkNone && forwardee != obj) {
4493       // If the object is self-forwarded we don't need to explicitly
4494       // mark it, the evacuation failure protocol will do so.
4495       mark_forwarded_object(obj, forwardee);
4496     }
4497 
4498     if (barrier == G1BarrierKlass) {
4499       do_klass_barrier(p, forwardee);
4500     }
4501   } else {
4502     if (state == G1CollectedHeap::IsHumongous) {
4503       _g1->set_humongous_is_live(obj);
4504     }
4505     // The object is not in collection set. If we're a root scanning
4506     // closure during an initial mark pause then attempt to mark the object.
4507     if (do_mark_object == G1MarkFromRoot) {
4508       mark_object(obj);
4509     }
4510   }
4511 
4512   if (barrier == G1BarrierEvac) {
4513     _par_scan_state->update_rs(_from, p, _worker_id);
4514   }
4515 }
4516 
4517 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4518 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4519 
4520 class G1ParEvacuateFollowersClosure : public VoidClosure {
4521 protected:
4522   G1CollectedHeap*              _g1h;
4523   G1ParScanThreadState*         _par_scan_state;
4524   RefToScanQueueSet*            _queues;
4525   ParallelTaskTerminator*       _terminator;
4526 
4527   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4528   RefToScanQueueSet*      queues()         { return _queues; }
4529   ParallelTaskTerminator* terminator()     { return _terminator; }
4530 
4531 public:
4532   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4533                                 G1ParScanThreadState* par_scan_state,
4534                                 RefToScanQueueSet* queues,
4535                                 ParallelTaskTerminator* terminator)
4536     : _g1h(g1h), _par_scan_state(par_scan_state),
4537       _queues(queues), _terminator(terminator) {}
4538 
4539   void do_void();
4540 
4541 private:
4542   inline bool offer_termination();
4543 };
4544 
4545 bool G1ParEvacuateFollowersClosure::offer_termination() {
4546   G1ParScanThreadState* const pss = par_scan_state();
4547   pss->start_term_time();
4548   const bool res = terminator()->offer_termination();
4549   pss->end_term_time();
4550   return res;
4551 }
4552 
4553 void G1ParEvacuateFollowersClosure::do_void() {
4554   G1ParScanThreadState* const pss = par_scan_state();
4555   pss->trim_queue();
4556   do {
4557     pss->steal_and_trim_queue(queues());
4558   } while (!offer_termination());
4559 }
4560 
4561 class G1KlassScanClosure : public KlassClosure {
4562  G1ParCopyHelper* _closure;
4563  bool             _process_only_dirty;
4564  int              _count;
4565  public:
4566   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4567       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4568   void do_klass(Klass* klass) {
4569     // If the klass has not been dirtied we know that there's
4570     // no references into  the young gen and we can skip it.
4571    if (!_process_only_dirty || klass->has_modified_oops()) {
4572       // Clean the klass since we're going to scavenge all the metadata.
4573       klass->clear_modified_oops();
4574 
4575       // Tell the closure that this klass is the Klass to scavenge
4576       // and is the one to dirty if oops are left pointing into the young gen.
4577       _closure->set_scanned_klass(klass);
4578 
4579       klass->oops_do(_closure);
4580 
4581       _closure->set_scanned_klass(NULL);
4582     }
4583     _count++;
4584   }
4585 };
4586 
4587 class G1ParTask : public AbstractGangTask {
4588 protected:
4589   G1CollectedHeap*       _g1h;
4590   RefToScanQueueSet      *_queues;
4591   ParallelTaskTerminator _terminator;
4592   uint _n_workers;
4593 
4594   Mutex _stats_lock;
4595   Mutex* stats_lock() { return &_stats_lock; }
4596 
4597 public:
4598   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
4599     : AbstractGangTask("G1 collection"),
4600       _g1h(g1h),
4601       _queues(task_queues),
4602       _terminator(0, _queues),
4603       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4604   {}
4605 
4606   RefToScanQueueSet* queues() { return _queues; }
4607 
4608   RefToScanQueue *work_queue(int i) {
4609     return queues()->queue(i);
4610   }
4611 
4612   ParallelTaskTerminator* terminator() { return &_terminator; }
4613 
4614   virtual void set_for_termination(int active_workers) {
4615     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4616     // in the young space (_par_seq_tasks) in the G1 heap
4617     // for SequentialSubTasksDone.
4618     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4619     // both of which need setting by set_n_termination().
4620     _g1h->SharedHeap::set_n_termination(active_workers);
4621     _g1h->set_n_termination(active_workers);
4622     terminator()->reset_for_reuse(active_workers);
4623     _n_workers = active_workers;
4624   }
4625 
4626   // Helps out with CLD processing.
4627   //
4628   // During InitialMark we need to:
4629   // 1) Scavenge all CLDs for the young GC.
4630   // 2) Mark all objects directly reachable from strong CLDs.
4631   template <G1Mark do_mark_object>
4632   class G1CLDClosure : public CLDClosure {
4633     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4634     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4635     G1KlassScanClosure                                _klass_in_cld_closure;
4636     bool                                              _claim;
4637 
4638    public:
4639     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4640                  bool only_young, bool claim)
4641         : _oop_closure(oop_closure),
4642           _oop_in_klass_closure(oop_closure->g1(),
4643                                 oop_closure->pss(),
4644                                 oop_closure->rp()),
4645           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4646           _claim(claim) {
4647 
4648     }
4649 
4650     void do_cld(ClassLoaderData* cld) {
4651       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4652     }
4653   };
4654 
4655   class G1CodeBlobClosure: public CodeBlobClosure {
4656     OopClosure* _f;
4657 
4658    public:
4659     G1CodeBlobClosure(OopClosure* f) : _f(f) {}
4660     void do_code_blob(CodeBlob* blob) {
4661       nmethod* that = blob->as_nmethod_or_null();
4662       if (that != NULL) {
4663         if (!that->test_set_oops_do_mark()) {
4664           that->oops_do(_f);
4665           that->fix_oop_relocations();
4666         }
4667       }
4668     }
4669   };
4670 
4671   void work(uint worker_id) {
4672     if (worker_id >= _n_workers) return;  // no work needed this round
4673 
4674     double start_time_ms = os::elapsedTime() * 1000.0;
4675     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4676 
4677     {
4678       ResourceMark rm;
4679       HandleMark   hm;
4680 
4681       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4682 
4683       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4684       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4685 
4686       pss.set_evac_failure_closure(&evac_failure_cl);
4687 
4688       bool only_young = _g1h->g1_policy()->gcs_are_young();
4689 
4690       // Non-IM young GC.
4691       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4692       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4693                                                                                only_young, // Only process dirty klasses.
4694                                                                                false);     // No need to claim CLDs.
4695       // IM young GC.
4696       //    Strong roots closures.
4697       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4698       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4699                                                                                false, // Process all klasses.
4700                                                                                true); // Need to claim CLDs.
4701       //    Weak roots closures.
4702       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4703       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4704                                                                                     false, // Process all klasses.
4705                                                                                     true); // Need to claim CLDs.
4706 
4707       G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
4708       G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
4709       // IM Weak code roots are handled later.
4710 
4711       OopClosure* strong_root_cl;
4712       OopClosure* weak_root_cl;
4713       CLDClosure* strong_cld_cl;
4714       CLDClosure* weak_cld_cl;
4715       CodeBlobClosure* strong_code_cl;
4716 
4717       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4718         // We also need to mark copied objects.
4719         strong_root_cl = &scan_mark_root_cl;
4720         strong_cld_cl  = &scan_mark_cld_cl;
4721         strong_code_cl = &scan_mark_code_cl;
4722         if (ClassUnloadingWithConcurrentMark) {
4723           weak_root_cl = &scan_mark_weak_root_cl;
4724           weak_cld_cl  = &scan_mark_weak_cld_cl;
4725         } else {
4726           weak_root_cl = &scan_mark_root_cl;
4727           weak_cld_cl  = &scan_mark_cld_cl;
4728         }
4729       } else {
4730         strong_root_cl = &scan_only_root_cl;
4731         weak_root_cl   = &scan_only_root_cl;
4732         strong_cld_cl  = &scan_only_cld_cl;
4733         weak_cld_cl    = &scan_only_cld_cl;
4734         strong_code_cl = &scan_only_code_cl;
4735       }
4736 
4737 
4738       G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
4739 
4740       pss.start_strong_roots();
4741       _g1h->g1_process_roots(strong_root_cl,
4742                              weak_root_cl,
4743                              &push_heap_rs_cl,
4744                              strong_cld_cl,
4745                              weak_cld_cl,
4746                              strong_code_cl,
4747                              worker_id);
4748 
4749       pss.end_strong_roots();
4750 
4751       {
4752         double start = os::elapsedTime();
4753         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4754         evac.do_void();
4755         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4756         double term_ms = pss.term_time()*1000.0;
4757         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4758         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4759       }
4760       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4761       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4762 
4763       if (ParallelGCVerbose) {
4764         MutexLocker x(stats_lock());
4765         pss.print_termination_stats(worker_id);
4766       }
4767 
4768       assert(pss.queue_is_empty(), "should be empty");
4769 
4770       // Close the inner scope so that the ResourceMark and HandleMark
4771       // destructors are executed here and are included as part of the
4772       // "GC Worker Time".
4773     }
4774 
4775     double end_time_ms = os::elapsedTime() * 1000.0;
4776     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4777   }
4778 };
4779 
4780 // *** Common G1 Evacuation Stuff
4781 
4782 // This method is run in a GC worker.
4783 
4784 void
4785 G1CollectedHeap::
4786 g1_process_roots(OopClosure* scan_non_heap_roots,
4787                  OopClosure* scan_non_heap_weak_roots,
4788                  OopsInHeapRegionClosure* scan_rs,
4789                  CLDClosure* scan_strong_clds,
4790                  CLDClosure* scan_weak_clds,
4791                  CodeBlobClosure* scan_strong_code,
4792                  uint worker_i) {
4793 
4794   // First scan the shared roots.
4795   double ext_roots_start = os::elapsedTime();
4796   double closure_app_time_sec = 0.0;
4797 
4798   bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
4799   bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
4800 
4801   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4802   BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
4803 
4804   process_roots(false, // no scoping; this is parallel code
4805                 SharedHeap::SO_None,
4806                 &buf_scan_non_heap_roots,
4807                 &buf_scan_non_heap_weak_roots,
4808                 scan_strong_clds,
4809                 // Unloading Initial Marks handle the weak CLDs separately.
4810                 (trace_metadata ? NULL : scan_weak_clds),
4811                 scan_strong_code);
4812 
4813   // Now the CM ref_processor roots.
4814   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4815     // We need to treat the discovered reference lists of the
4816     // concurrent mark ref processor as roots and keep entries
4817     // (which are added by the marking threads) on them live
4818     // until they can be processed at the end of marking.
4819     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4820   }
4821 
4822   if (trace_metadata) {
4823     // Barrier to make sure all workers passed
4824     // the strong CLD and strong nmethods phases.
4825     active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());
4826 
4827     // Now take the complement of the strong CLDs.
4828     ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
4829   }
4830 
4831   // Finish up any enqueued closure apps (attributed as object copy time).
4832   buf_scan_non_heap_roots.done();
4833   buf_scan_non_heap_weak_roots.done();
4834 
4835   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
4836       + buf_scan_non_heap_weak_roots.closure_app_seconds();
4837 
4838   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4839 
4840   double ext_root_time_ms =
4841     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4842 
4843   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4844 
4845   // During conc marking we have to filter the per-thread SATB buffers
4846   // to make sure we remove any oops into the CSet (which will show up
4847   // as implicitly live).
4848   double satb_filtering_ms = 0.0;
4849   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
4850     if (mark_in_progress()) {
4851       double satb_filter_start = os::elapsedTime();
4852 
4853       JavaThread::satb_mark_queue_set().filter_thread_buffers();
4854 
4855       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
4856     }
4857   }
4858   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
4859 
4860   // Now scan the complement of the collection set.
4861   MarkingCodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots, CodeBlobToOopClosure::FixRelocations);
4862 
4863   g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
4864 
4865   _process_strong_tasks->all_tasks_completed();
4866 }
4867 
4868 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4869 private:
4870   BoolObjectClosure* _is_alive;
4871   int _initial_string_table_size;
4872   int _initial_symbol_table_size;
4873 
4874   bool  _process_strings;
4875   int _strings_processed;
4876   int _strings_removed;
4877 
4878   bool  _process_symbols;
4879   int _symbols_processed;
4880   int _symbols_removed;
4881 
4882   bool _do_in_parallel;
4883 public:
4884   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4885     AbstractGangTask("String/Symbol Unlinking"),
4886     _is_alive(is_alive),
4887     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
4888     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4889     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4890 
4891     _initial_string_table_size = StringTable::the_table()->table_size();
4892     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4893     if (process_strings) {
4894       StringTable::clear_parallel_claimed_index();
4895     }
4896     if (process_symbols) {
4897       SymbolTable::clear_parallel_claimed_index();
4898     }
4899   }
4900 
4901   ~G1StringSymbolTableUnlinkTask() {
4902     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4903               err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
4904                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4905     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4906               err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
4907                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4908 
4909     if (G1TraceStringSymbolTableScrubbing) {
4910       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4911                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4912                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4913                              strings_processed(), strings_removed(),
4914                              symbols_processed(), symbols_removed());
4915     }
4916   }
4917 
4918   void work(uint worker_id) {
4919     if (_do_in_parallel) {
4920       int strings_processed = 0;
4921       int strings_removed = 0;
4922       int symbols_processed = 0;
4923       int symbols_removed = 0;
4924       if (_process_strings) {
4925         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4926         Atomic::add(strings_processed, &_strings_processed);
4927         Atomic::add(strings_removed, &_strings_removed);
4928       }
4929       if (_process_symbols) {
4930         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4931         Atomic::add(symbols_processed, &_symbols_processed);
4932         Atomic::add(symbols_removed, &_symbols_removed);
4933       }
4934     } else {
4935       if (_process_strings) {
4936         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
4937       }
4938       if (_process_symbols) {
4939         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
4940       }
4941     }
4942   }
4943 
4944   size_t strings_processed() const { return (size_t)_strings_processed; }
4945   size_t strings_removed()   const { return (size_t)_strings_removed; }
4946 
4947   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4948   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4949 };
4950 
4951 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4952 private:
4953   static Monitor* _lock;
4954 
4955   BoolObjectClosure* const _is_alive;
4956   const bool               _unloading_occurred;
4957   const uint               _num_workers;
4958 
4959   // Variables used to claim nmethods.
4960   nmethod* _first_nmethod;
4961   volatile nmethod* _claimed_nmethod;
4962 
4963   // The list of nmethods that need to be processed by the second pass.
4964   volatile nmethod* _postponed_list;
4965   volatile uint     _num_entered_barrier;
4966 
4967  public:
4968   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4969       _is_alive(is_alive),
4970       _unloading_occurred(unloading_occurred),
4971       _num_workers(num_workers),
4972       _first_nmethod(NULL),
4973       _claimed_nmethod(NULL),
4974       _postponed_list(NULL),
4975       _num_entered_barrier(0)
4976   {
4977     nmethod::increase_unloading_clock();
4978     _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
4979     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4980   }
4981 
4982   ~G1CodeCacheUnloadingTask() {
4983     CodeCache::verify_clean_inline_caches();
4984 
4985     CodeCache::set_needs_cache_clean(false);
4986     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4987 
4988     CodeCache::verify_icholder_relocations();
4989   }
4990 
4991  private:
4992   void add_to_postponed_list(nmethod* nm) {
4993       nmethod* old;
4994       do {
4995         old = (nmethod*)_postponed_list;
4996         nm->set_unloading_next(old);
4997       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4998   }
4999 
5000   void clean_nmethod(nmethod* nm) {
5001     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
5002 
5003     if (postponed) {
5004       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
5005       add_to_postponed_list(nm);
5006     }
5007 
5008     // Mark that this thread has been cleaned/unloaded.
5009     // After this call, it will be safe to ask if this nmethod was unloaded or not.
5010     nm->set_unloading_clock(nmethod::global_unloading_clock());
5011   }
5012 
5013   void clean_nmethod_postponed(nmethod* nm) {
5014     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
5015   }
5016 
5017   static const int MaxClaimNmethods = 16;
5018 
5019   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
5020     nmethod* first;
5021     nmethod* last;
5022 
5023     do {
5024       *num_claimed_nmethods = 0;
5025 
5026       first = last = (nmethod*)_claimed_nmethod;
5027 
5028       if (first != NULL) {
5029         for (int i = 0; i < MaxClaimNmethods; i++) {
5030           last = CodeCache::alive_nmethod(CodeCache::next(last));
5031 
5032           if (last == NULL) {
5033             break;
5034           }
5035 
5036           claimed_nmethods[i] = last;
5037           (*num_claimed_nmethods)++;
5038         }
5039       }
5040 
5041     } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
5042   }
5043 
5044   nmethod* claim_postponed_nmethod() {
5045     nmethod* claim;
5046     nmethod* next;
5047 
5048     do {
5049       claim = (nmethod*)_postponed_list;
5050       if (claim == NULL) {
5051         return NULL;
5052       }
5053 
5054       next = claim->unloading_next();
5055 
5056     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
5057 
5058     return claim;
5059   }
5060 
5061  public:
5062   // Mark that we're done with the first pass of nmethod cleaning.
5063   void barrier_mark(uint worker_id) {
5064     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
5065     _num_entered_barrier++;
5066     if (_num_entered_barrier == _num_workers) {
5067       ml.notify_all();
5068     }
5069   }
5070 
5071   // See if we have to wait for the other workers to
5072   // finish their first-pass nmethod cleaning work.
5073   void barrier_wait(uint worker_id) {
5074     if (_num_entered_barrier < _num_workers) {
5075       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
5076       while (_num_entered_barrier < _num_workers) {
5077           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
5078       }
5079     }
5080   }
5081 
5082   // Cleaning and unloading of nmethods. Some work has to be postponed
5083   // to the second pass, when we know which nmethods survive.
5084   void work_first_pass(uint worker_id) {
5085     // The first nmethods is claimed by the first worker.
5086     if (worker_id == 0 && _first_nmethod != NULL) {
5087       clean_nmethod(_first_nmethod);
5088       _first_nmethod = NULL;
5089     }
5090 
5091     int num_claimed_nmethods;
5092     nmethod* claimed_nmethods[MaxClaimNmethods];
5093 
5094     while (true) {
5095       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
5096 
5097       if (num_claimed_nmethods == 0) {
5098         break;
5099       }
5100 
5101       for (int i = 0; i < num_claimed_nmethods; i++) {
5102         clean_nmethod(claimed_nmethods[i]);
5103       }
5104     }
5105   }
5106 
5107   void work_second_pass(uint worker_id) {
5108     nmethod* nm;
5109     // Take care of postponed nmethods.
5110     while ((nm = claim_postponed_nmethod()) != NULL) {
5111       clean_nmethod_postponed(nm);
5112     }
5113   }
5114 };
5115 
5116 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");
5117 
5118 class G1KlassCleaningTask : public StackObj {
5119   BoolObjectClosure*                      _is_alive;
5120   volatile jint                           _clean_klass_tree_claimed;
5121   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
5122 
5123  public:
5124   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
5125       _is_alive(is_alive),
5126       _clean_klass_tree_claimed(0),
5127       _klass_iterator() {
5128   }
5129 
5130  private:
5131   bool claim_clean_klass_tree_task() {
5132     if (_clean_klass_tree_claimed) {
5133       return false;
5134     }
5135 
5136     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
5137   }
5138 
5139   InstanceKlass* claim_next_klass() {
5140     Klass* klass;
5141     do {
5142       klass =_klass_iterator.next_klass();
5143     } while (klass != NULL && !klass->oop_is_instance());
5144 
5145     return (InstanceKlass*)klass;
5146   }
5147 
5148 public:
5149 
5150   void clean_klass(InstanceKlass* ik) {
5151     ik->clean_implementors_list(_is_alive);
5152     ik->clean_method_data(_is_alive);
5153 
5154     // G1 specific cleanup work that has
5155     // been moved here to be done in parallel.
5156     ik->clean_dependent_nmethods();
5157   }
5158 
5159   void work() {
5160     ResourceMark rm;
5161 
5162     // One worker will clean the subklass/sibling klass tree.
5163     if (claim_clean_klass_tree_task()) {
5164       Klass::clean_subklass_tree(_is_alive);
5165     }
5166 
5167     // All workers will help cleaning the classes,
5168     InstanceKlass* klass;
5169     while ((klass = claim_next_klass()) != NULL) {
5170       clean_klass(klass);
5171     }
5172   }
5173 };
5174 
5175 // To minimize the remark pause times, the tasks below are done in parallel.
5176 class G1ParallelCleaningTask : public AbstractGangTask {
5177 private:
5178   G1StringSymbolTableUnlinkTask _string_symbol_task;
5179   G1CodeCacheUnloadingTask      _code_cache_task;
5180   G1KlassCleaningTask           _klass_cleaning_task;
5181 
5182 public:
5183   // The constructor is run in the VMThread.
5184   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
5185       AbstractGangTask("Parallel Cleaning"),
5186       _string_symbol_task(is_alive, process_strings, process_symbols),
5187       _code_cache_task(num_workers, is_alive, unloading_occurred),
5188       _klass_cleaning_task(is_alive) {
5189   }
5190 
5191   // The parallel work done by all worker threads.
5192   void work(uint worker_id) {
5193     // Do first pass of code cache cleaning.
5194     _code_cache_task.work_first_pass(worker_id);
5195 
5196     // Let the threads mark that the first pass is done.
5197     _code_cache_task.barrier_mark(worker_id);
5198 
5199     // Clean the Strings and Symbols.
5200     _string_symbol_task.work(worker_id);
5201 
5202     // Wait for all workers to finish the first code cache cleaning pass.
5203     _code_cache_task.barrier_wait(worker_id);
5204 
5205     // Do the second code cache cleaning work, which realize on
5206     // the liveness information gathered during the first pass.
5207     _code_cache_task.work_second_pass(worker_id);
5208 
5209     // Clean all klasses that were not unloaded.
5210     _klass_cleaning_task.work();
5211   }
5212 };
5213 
5214 
5215 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5216                                         bool process_strings,
5217                                         bool process_symbols,
5218                                         bool class_unloading_occurred) {
5219   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5220                     workers()->active_workers() : 1);
5221 
5222   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5223                                         n_workers, class_unloading_occurred);
5224   if (G1CollectedHeap::use_parallel_gc_threads()) {
5225     set_par_threads(n_workers);
5226     workers()->run_task(&g1_unlink_task);
5227     set_par_threads(0);
5228   } else {
5229     g1_unlink_task.work(0);
5230   }
5231 }
5232 
5233 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5234                                                      bool process_strings, bool process_symbols) {
5235   {
5236     uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5237                      _g1h->workers()->active_workers() : 1);
5238     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5239     if (G1CollectedHeap::use_parallel_gc_threads()) {
5240       set_par_threads(n_workers);
5241       workers()->run_task(&g1_unlink_task);
5242       set_par_threads(0);
5243     } else {
5244       g1_unlink_task.work(0);
5245     }
5246   }
5247 
5248   if (G1StringDedup::is_enabled()) {
5249     G1StringDedup::unlink(is_alive);
5250   }
5251 }
5252 
5253 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5254  private:
5255   DirtyCardQueueSet* _queue;
5256  public:
5257   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5258 
5259   virtual void work(uint worker_id) {
5260     double start_time = os::elapsedTime();
5261 
5262     RedirtyLoggedCardTableEntryClosure cl;
5263     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
5264       _queue->par_apply_closure_to_all_completed_buffers(&cl);
5265     } else {
5266       _queue->apply_closure_to_all_completed_buffers(&cl);
5267     }
5268 
5269     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
5270     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
5271     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
5272   }
5273 };
5274 
5275 void G1CollectedHeap::redirty_logged_cards() {
5276   guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
5277   double redirty_logged_cards_start = os::elapsedTime();
5278 
5279   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5280                    _g1h->workers()->active_workers() : 1);
5281 
5282   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5283   dirty_card_queue_set().reset_for_par_iteration();
5284   if (use_parallel_gc_threads()) {
5285     set_par_threads(n_workers);
5286     workers()->run_task(&redirty_task);
5287     set_par_threads(0);
5288   } else {
5289     redirty_task.work(0);
5290   }
5291 
5292   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5293   dcq.merge_bufferlists(&dirty_card_queue_set());
5294   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5295 
5296   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5297 }
5298 
5299 // Weak Reference Processing support
5300 
5301 // An always "is_alive" closure that is used to preserve referents.
5302 // If the object is non-null then it's alive.  Used in the preservation
5303 // of referent objects that are pointed to by reference objects
5304 // discovered by the CM ref processor.
5305 class G1AlwaysAliveClosure: public BoolObjectClosure {
5306   G1CollectedHeap* _g1;
5307 public:
5308   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5309   bool do_object_b(oop p) {
5310     if (p != NULL) {
5311       return true;
5312     }
5313     return false;
5314   }
5315 };
5316 
5317 bool G1STWIsAliveClosure::do_object_b(oop p) {
5318   // An object is reachable if it is outside the collection set,
5319   // or is inside and copied.
5320   return !_g1->obj_in_cs(p) || p->is_forwarded();
5321 }
5322 
5323 // Non Copying Keep Alive closure
5324 class G1KeepAliveClosure: public OopClosure {
5325   G1CollectedHeap* _g1;
5326 public:
5327   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5328   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5329   void do_oop(oop* p) {
5330     oop obj = *p;
5331 
5332     G1CollectedHeap::in_cset_state_t cset_state = _g1->in_cset_state(obj);
5333     if (obj == NULL || cset_state == G1CollectedHeap::InNeither) {
5334       return;
5335     }
5336     if (cset_state == G1CollectedHeap::InCSet) {
5337       assert( obj->is_forwarded(), "invariant" );
5338       *p = obj->forwardee();
5339     } else {
5340       assert(!obj->is_forwarded(), "invariant" );
5341       assert(cset_state == G1CollectedHeap::IsHumongous,
5342              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state));
5343       _g1->set_humongous_is_live(obj);
5344     }
5345   }
5346 };
5347 
5348 // Copying Keep Alive closure - can be called from both
5349 // serial and parallel code as long as different worker
5350 // threads utilize different G1ParScanThreadState instances
5351 // and different queues.
5352 
5353 class G1CopyingKeepAliveClosure: public OopClosure {
5354   G1CollectedHeap*         _g1h;
5355   OopClosure*              _copy_non_heap_obj_cl;
5356   G1ParScanThreadState*    _par_scan_state;
5357 
5358 public:
5359   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5360                             OopClosure* non_heap_obj_cl,
5361                             G1ParScanThreadState* pss):
5362     _g1h(g1h),
5363     _copy_non_heap_obj_cl(non_heap_obj_cl),
5364     _par_scan_state(pss)
5365   {}
5366 
5367   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5368   virtual void do_oop(      oop* p) { do_oop_work(p); }
5369 
5370   template <class T> void do_oop_work(T* p) {
5371     oop obj = oopDesc::load_decode_heap_oop(p);
5372 
5373     if (_g1h->is_in_cset_or_humongous(obj)) {
5374       // If the referent object has been forwarded (either copied
5375       // to a new location or to itself in the event of an
5376       // evacuation failure) then we need to update the reference
5377       // field and, if both reference and referent are in the G1
5378       // heap, update the RSet for the referent.
5379       //
5380       // If the referent has not been forwarded then we have to keep
5381       // it alive by policy. Therefore we have copy the referent.
5382       //
5383       // If the reference field is in the G1 heap then we can push
5384       // on the PSS queue. When the queue is drained (after each
5385       // phase of reference processing) the object and it's followers
5386       // will be copied, the reference field set to point to the
5387       // new location, and the RSet updated. Otherwise we need to
5388       // use the the non-heap or metadata closures directly to copy
5389       // the referent object and update the pointer, while avoiding
5390       // updating the RSet.
5391 
5392       if (_g1h->is_in_g1_reserved(p)) {
5393         _par_scan_state->push_on_queue(p);
5394       } else {
5395         assert(!Metaspace::contains((const void*)p),
5396                err_msg("Unexpectedly found a pointer from metadata: "
5397                               PTR_FORMAT, p));
5398         _copy_non_heap_obj_cl->do_oop(p);
5399       }
5400     }
5401   }
5402 };
5403 
5404 // Serial drain queue closure. Called as the 'complete_gc'
5405 // closure for each discovered list in some of the
5406 // reference processing phases.
5407 
5408 class G1STWDrainQueueClosure: public VoidClosure {
5409 protected:
5410   G1CollectedHeap* _g1h;
5411   G1ParScanThreadState* _par_scan_state;
5412 
5413   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5414 
5415 public:
5416   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5417     _g1h(g1h),
5418     _par_scan_state(pss)
5419   { }
5420 
5421   void do_void() {
5422     G1ParScanThreadState* const pss = par_scan_state();
5423     pss->trim_queue();
5424   }
5425 };
5426 
5427 // Parallel Reference Processing closures
5428 
5429 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5430 // processing during G1 evacuation pauses.
5431 
5432 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5433 private:
5434   G1CollectedHeap*   _g1h;
5435   RefToScanQueueSet* _queues;
5436   FlexibleWorkGang*  _workers;
5437   int                _active_workers;
5438 
5439 public:
5440   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5441                         FlexibleWorkGang* workers,
5442                         RefToScanQueueSet *task_queues,
5443                         int n_workers) :
5444     _g1h(g1h),
5445     _queues(task_queues),
5446     _workers(workers),
5447     _active_workers(n_workers)
5448   {
5449     assert(n_workers > 0, "shouldn't call this otherwise");
5450   }
5451 
5452   // Executes the given task using concurrent marking worker threads.
5453   virtual void execute(ProcessTask& task);
5454   virtual void execute(EnqueueTask& task);
5455 };
5456 
5457 // Gang task for possibly parallel reference processing
5458 
5459 class G1STWRefProcTaskProxy: public AbstractGangTask {
5460   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5461   ProcessTask&     _proc_task;
5462   G1CollectedHeap* _g1h;
5463   RefToScanQueueSet *_task_queues;
5464   ParallelTaskTerminator* _terminator;
5465 
5466 public:
5467   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5468                      G1CollectedHeap* g1h,
5469                      RefToScanQueueSet *task_queues,
5470                      ParallelTaskTerminator* terminator) :
5471     AbstractGangTask("Process reference objects in parallel"),
5472     _proc_task(proc_task),
5473     _g1h(g1h),
5474     _task_queues(task_queues),
5475     _terminator(terminator)
5476   {}
5477 
5478   virtual void work(uint worker_id) {
5479     // The reference processing task executed by a single worker.
5480     ResourceMark rm;
5481     HandleMark   hm;
5482 
5483     G1STWIsAliveClosure is_alive(_g1h);
5484 
5485     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5486     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5487 
5488     pss.set_evac_failure_closure(&evac_failure_cl);
5489 
5490     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5491 
5492     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5493 
5494     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5495 
5496     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5497       // We also need to mark copied objects.
5498       copy_non_heap_cl = &copy_mark_non_heap_cl;
5499     }
5500 
5501     // Keep alive closure.
5502     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5503 
5504     // Complete GC closure
5505     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5506 
5507     // Call the reference processing task's work routine.
5508     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5509 
5510     // Note we cannot assert that the refs array is empty here as not all
5511     // of the processing tasks (specifically phase2 - pp2_work) execute
5512     // the complete_gc closure (which ordinarily would drain the queue) so
5513     // the queue may not be empty.
5514   }
5515 };
5516 
5517 // Driver routine for parallel reference processing.
5518 // Creates an instance of the ref processing gang
5519 // task and has the worker threads execute it.
5520 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5521   assert(_workers != NULL, "Need parallel worker threads.");
5522 
5523   ParallelTaskTerminator terminator(_active_workers, _queues);
5524   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5525 
5526   _g1h->set_par_threads(_active_workers);
5527   _workers->run_task(&proc_task_proxy);
5528   _g1h->set_par_threads(0);
5529 }
5530 
5531 // Gang task for parallel reference enqueueing.
5532 
5533 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5534   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5535   EnqueueTask& _enq_task;
5536 
5537 public:
5538   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5539     AbstractGangTask("Enqueue reference objects in parallel"),
5540     _enq_task(enq_task)
5541   { }
5542 
5543   virtual void work(uint worker_id) {
5544     _enq_task.work(worker_id);
5545   }
5546 };
5547 
5548 // Driver routine for parallel reference enqueueing.
5549 // Creates an instance of the ref enqueueing gang
5550 // task and has the worker threads execute it.
5551 
5552 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5553   assert(_workers != NULL, "Need parallel worker threads.");
5554 
5555   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5556 
5557   _g1h->set_par_threads(_active_workers);
5558   _workers->run_task(&enq_task_proxy);
5559   _g1h->set_par_threads(0);
5560 }
5561 
5562 // End of weak reference support closures
5563 
5564 // Abstract task used to preserve (i.e. copy) any referent objects
5565 // that are in the collection set and are pointed to by reference
5566 // objects discovered by the CM ref processor.
5567 
5568 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5569 protected:
5570   G1CollectedHeap* _g1h;
5571   RefToScanQueueSet      *_queues;
5572   ParallelTaskTerminator _terminator;
5573   uint _n_workers;
5574 
5575 public:
5576   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5577     AbstractGangTask("ParPreserveCMReferents"),
5578     _g1h(g1h),
5579     _queues(task_queues),
5580     _terminator(workers, _queues),
5581     _n_workers(workers)
5582   { }
5583 
5584   void work(uint worker_id) {
5585     ResourceMark rm;
5586     HandleMark   hm;
5587 
5588     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5589     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5590 
5591     pss.set_evac_failure_closure(&evac_failure_cl);
5592 
5593     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5594 
5595     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5596 
5597     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5598 
5599     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5600 
5601     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5602       // We also need to mark copied objects.
5603       copy_non_heap_cl = &copy_mark_non_heap_cl;
5604     }
5605 
5606     // Is alive closure
5607     G1AlwaysAliveClosure always_alive(_g1h);
5608 
5609     // Copying keep alive closure. Applied to referent objects that need
5610     // to be copied.
5611     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5612 
5613     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5614 
5615     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5616     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5617 
5618     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5619     // So this must be true - but assert just in case someone decides to
5620     // change the worker ids.
5621     assert(0 <= worker_id && worker_id < limit, "sanity");
5622     assert(!rp->discovery_is_atomic(), "check this code");
5623 
5624     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5625     for (uint idx = worker_id; idx < limit; idx += stride) {
5626       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5627 
5628       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5629       while (iter.has_next()) {
5630         // Since discovery is not atomic for the CM ref processor, we
5631         // can see some null referent objects.
5632         iter.load_ptrs(DEBUG_ONLY(true));
5633         oop ref = iter.obj();
5634 
5635         // This will filter nulls.
5636         if (iter.is_referent_alive()) {
5637           iter.make_referent_alive();
5638         }
5639         iter.move_to_next();
5640       }
5641     }
5642 
5643     // Drain the queue - which may cause stealing
5644     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5645     drain_queue.do_void();
5646     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5647     assert(pss.queue_is_empty(), "should be");
5648   }
5649 };
5650 
5651 // Weak Reference processing during an evacuation pause (part 1).
5652 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5653   double ref_proc_start = os::elapsedTime();
5654 
5655   ReferenceProcessor* rp = _ref_processor_stw;
5656   assert(rp->discovery_enabled(), "should have been enabled");
5657 
5658   // Any reference objects, in the collection set, that were 'discovered'
5659   // by the CM ref processor should have already been copied (either by
5660   // applying the external root copy closure to the discovered lists, or
5661   // by following an RSet entry).
5662   //
5663   // But some of the referents, that are in the collection set, that these
5664   // reference objects point to may not have been copied: the STW ref
5665   // processor would have seen that the reference object had already
5666   // been 'discovered' and would have skipped discovering the reference,
5667   // but would not have treated the reference object as a regular oop.
5668   // As a result the copy closure would not have been applied to the
5669   // referent object.
5670   //
5671   // We need to explicitly copy these referent objects - the references
5672   // will be processed at the end of remarking.
5673   //
5674   // We also need to do this copying before we process the reference
5675   // objects discovered by the STW ref processor in case one of these
5676   // referents points to another object which is also referenced by an
5677   // object discovered by the STW ref processor.
5678 
5679   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5680            no_of_gc_workers == workers()->active_workers(),
5681            "Need to reset active GC workers");
5682 
5683   set_par_threads(no_of_gc_workers);
5684   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5685                                                  no_of_gc_workers,
5686                                                  _task_queues);
5687 
5688   if (G1CollectedHeap::use_parallel_gc_threads()) {
5689     workers()->run_task(&keep_cm_referents);
5690   } else {
5691     keep_cm_referents.work(0);
5692   }
5693 
5694   set_par_threads(0);
5695 
5696   // Closure to test whether a referent is alive.
5697   G1STWIsAliveClosure is_alive(this);
5698 
5699   // Even when parallel reference processing is enabled, the processing
5700   // of JNI refs is serial and performed serially by the current thread
5701   // rather than by a worker. The following PSS will be used for processing
5702   // JNI refs.
5703 
5704   // Use only a single queue for this PSS.
5705   G1ParScanThreadState            pss(this, 0, NULL);
5706 
5707   // We do not embed a reference processor in the copying/scanning
5708   // closures while we're actually processing the discovered
5709   // reference objects.
5710   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5711 
5712   pss.set_evac_failure_closure(&evac_failure_cl);
5713 
5714   assert(pss.queue_is_empty(), "pre-condition");
5715 
5716   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5717 
5718   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5719 
5720   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5721 
5722   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5723     // We also need to mark copied objects.
5724     copy_non_heap_cl = &copy_mark_non_heap_cl;
5725   }
5726 
5727   // Keep alive closure.
5728   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5729 
5730   // Serial Complete GC closure
5731   G1STWDrainQueueClosure drain_queue(this, &pss);
5732 
5733   // Setup the soft refs policy...
5734   rp->setup_policy(false);
5735 
5736   ReferenceProcessorStats stats;
5737   if (!rp->processing_is_mt()) {
5738     // Serial reference processing...
5739     stats = rp->process_discovered_references(&is_alive,
5740                                               &keep_alive,
5741                                               &drain_queue,
5742                                               NULL,
5743                                               _gc_timer_stw,
5744                                               _gc_tracer_stw->gc_id());
5745   } else {
5746     // Parallel reference processing
5747     assert(rp->num_q() == no_of_gc_workers, "sanity");
5748     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5749 
5750     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5751     stats = rp->process_discovered_references(&is_alive,
5752                                               &keep_alive,
5753                                               &drain_queue,
5754                                               &par_task_executor,
5755                                               _gc_timer_stw,
5756                                               _gc_tracer_stw->gc_id());
5757   }
5758 
5759   _gc_tracer_stw->report_gc_reference_stats(stats);
5760 
5761   // We have completed copying any necessary live referent objects.
5762   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5763 
5764   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5765   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5766 }
5767 
5768 // Weak Reference processing during an evacuation pause (part 2).
5769 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5770   double ref_enq_start = os::elapsedTime();
5771 
5772   ReferenceProcessor* rp = _ref_processor_stw;
5773   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5774 
5775   // Now enqueue any remaining on the discovered lists on to
5776   // the pending list.
5777   if (!rp->processing_is_mt()) {
5778     // Serial reference processing...
5779     rp->enqueue_discovered_references();
5780   } else {
5781     // Parallel reference enqueueing
5782 
5783     assert(no_of_gc_workers == workers()->active_workers(),
5784            "Need to reset active workers");
5785     assert(rp->num_q() == no_of_gc_workers, "sanity");
5786     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5787 
5788     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5789     rp->enqueue_discovered_references(&par_task_executor);
5790   }
5791 
5792   rp->verify_no_references_recorded();
5793   assert(!rp->discovery_enabled(), "should have been disabled");
5794 
5795   // FIXME
5796   // CM's reference processing also cleans up the string and symbol tables.
5797   // Should we do that here also? We could, but it is a serial operation
5798   // and could significantly increase the pause time.
5799 
5800   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5801   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5802 }
5803 
5804 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5805   _expand_heap_after_alloc_failure = true;
5806   _evacuation_failed = false;
5807 
5808   // Should G1EvacuationFailureALot be in effect for this GC?
5809   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5810 
5811   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5812 
5813   // Disable the hot card cache.
5814   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5815   hot_card_cache->reset_hot_cache_claimed_index();
5816   hot_card_cache->set_use_cache(false);
5817 
5818   uint n_workers;
5819   if (G1CollectedHeap::use_parallel_gc_threads()) {
5820     n_workers =
5821       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5822                                      workers()->active_workers(),
5823                                      Threads::number_of_non_daemon_threads());
5824     assert(UseDynamicNumberOfGCThreads ||
5825            n_workers == workers()->total_workers(),
5826            "If not dynamic should be using all the  workers");
5827     workers()->set_active_workers(n_workers);
5828     set_par_threads(n_workers);
5829   } else {
5830     assert(n_par_threads() == 0,
5831            "Should be the original non-parallel value");
5832     n_workers = 1;
5833   }
5834 
5835   G1ParTask g1_par_task(this, _task_queues);
5836 
5837   init_for_evac_failure(NULL);
5838 
5839   rem_set()->prepare_for_younger_refs_iterate(true);
5840 
5841   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5842   double start_par_time_sec = os::elapsedTime();
5843   double end_par_time_sec;
5844 
5845   {
5846     StrongRootsScope srs(this);
5847     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5848     if (g1_policy()->during_initial_mark_pause()) {
5849       ClassLoaderDataGraph::clear_claimed_marks();
5850     }
5851 
5852     if (G1CollectedHeap::use_parallel_gc_threads()) {
5853       // The individual threads will set their evac-failure closures.
5854       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5855       // These tasks use ShareHeap::_process_strong_tasks
5856       assert(UseDynamicNumberOfGCThreads ||
5857              workers()->active_workers() == workers()->total_workers(),
5858              "If not dynamic should be using all the  workers");
5859       workers()->run_task(&g1_par_task);
5860     } else {
5861       g1_par_task.set_for_termination(n_workers);
5862       g1_par_task.work(0);
5863     }
5864     end_par_time_sec = os::elapsedTime();
5865 
5866     // Closing the inner scope will execute the destructor
5867     // for the StrongRootsScope object. We record the current
5868     // elapsed time before closing the scope so that time
5869     // taken for the SRS destructor is NOT included in the
5870     // reported parallel time.
5871   }
5872 
5873   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5874   g1_policy()->phase_times()->record_par_time(par_time_ms);
5875 
5876   double code_root_fixup_time_ms =
5877         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5878   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5879 
5880   set_par_threads(0);
5881 
5882   // Process any discovered reference objects - we have
5883   // to do this _before_ we retire the GC alloc regions
5884   // as we may have to copy some 'reachable' referent
5885   // objects (and their reachable sub-graphs) that were
5886   // not copied during the pause.
5887   process_discovered_references(n_workers);
5888 
5889   // Weak root processing.
5890   {
5891     G1STWIsAliveClosure is_alive(this);
5892     G1KeepAliveClosure keep_alive(this);
5893     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5894     if (G1StringDedup::is_enabled()) {
5895       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
5896     }
5897   }
5898 
5899   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5900   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5901 
5902   // Reset and re-enable the hot card cache.
5903   // Note the counts for the cards in the regions in the
5904   // collection set are reset when the collection set is freed.
5905   hot_card_cache->reset_hot_cache();
5906   hot_card_cache->set_use_cache(true);
5907 
5908   // Migrate the strong code roots attached to each region in
5909   // the collection set. Ideally we would like to do this
5910   // after we have finished the scanning/evacuation of the
5911   // strong code roots for a particular heap region.
5912   migrate_strong_code_roots();
5913 
5914   purge_code_root_memory();
5915 
5916   if (g1_policy()->during_initial_mark_pause()) {
5917     // Reset the claim values set during marking the strong code roots
5918     reset_heap_region_claim_values();
5919   }
5920 
5921   finalize_for_evac_failure();
5922 
5923   if (evacuation_failed()) {
5924     remove_self_forwarding_pointers();
5925 
5926     // Reset the G1EvacuationFailureALot counters and flags
5927     // Note: the values are reset only when an actual
5928     // evacuation failure occurs.
5929     NOT_PRODUCT(reset_evacuation_should_fail();)
5930   }
5931 
5932   // Enqueue any remaining references remaining on the STW
5933   // reference processor's discovered lists. We need to do
5934   // this after the card table is cleaned (and verified) as
5935   // the act of enqueueing entries on to the pending list
5936   // will log these updates (and dirty their associated
5937   // cards). We need these updates logged to update any
5938   // RSets.
5939   enqueue_discovered_references(n_workers);
5940 
5941   if (G1DeferredRSUpdate) {
5942     redirty_logged_cards();
5943   }
5944   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5945 }
5946 
5947 void G1CollectedHeap::free_region(HeapRegion* hr,
5948                                   FreeRegionList* free_list,
5949                                   bool par,
5950                                   bool locked) {
5951   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5952   assert(!hr->is_empty(), "the region should not be empty");
5953   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5954   assert(free_list != NULL, "pre-condition");
5955 
5956   if (G1VerifyBitmaps) {
5957     MemRegion mr(hr->bottom(), hr->end());
5958     concurrent_mark()->clearRangePrevBitmap(mr);
5959   }
5960 
5961   // Clear the card counts for this region.
5962   // Note: we only need to do this if the region is not young
5963   // (since we don't refine cards in young regions).
5964   if (!hr->is_young()) {
5965     _cg1r->hot_card_cache()->reset_card_counts(hr);
5966   }
5967   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5968   free_list->add_ordered(hr);
5969 }
5970 
5971 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5972                                      FreeRegionList* free_list,
5973                                      bool par) {
5974   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5975   assert(free_list != NULL, "pre-condition");
5976 
5977   size_t hr_capacity = hr->capacity();
5978   // We need to read this before we make the region non-humongous,
5979   // otherwise the information will be gone.
5980   uint last_index = hr->last_hc_index();
5981   hr->set_notHumongous();
5982   free_region(hr, free_list, par);
5983 
5984   uint i = hr->hrm_index() + 1;
5985   while (i < last_index) {
5986     HeapRegion* curr_hr = region_at(i);
5987     assert(curr_hr->continuesHumongous(), "invariant");
5988     curr_hr->set_notHumongous();
5989     free_region(curr_hr, free_list, par);
5990     i += 1;
5991   }
5992 }
5993 
5994 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5995                                        const HeapRegionSetCount& humongous_regions_removed) {
5996   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5997     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5998     _old_set.bulk_remove(old_regions_removed);
5999     _humongous_set.bulk_remove(humongous_regions_removed);
6000   }
6001 
6002 }
6003 
6004 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
6005   assert(list != NULL, "list can't be null");
6006   if (!list->is_empty()) {
6007     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
6008     _hrm.insert_list_into_free_list(list);
6009   }
6010 }
6011 
6012 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
6013   _allocator->decrease_used(bytes);
6014 }
6015 
6016 class G1ParCleanupCTTask : public AbstractGangTask {
6017   G1SATBCardTableModRefBS* _ct_bs;
6018   G1CollectedHeap* _g1h;
6019   HeapRegion* volatile _su_head;
6020 public:
6021   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6022                      G1CollectedHeap* g1h) :
6023     AbstractGangTask("G1 Par Cleanup CT Task"),
6024     _ct_bs(ct_bs), _g1h(g1h) { }
6025 
6026   void work(uint worker_id) {
6027     HeapRegion* r;
6028     while (r = _g1h->pop_dirty_cards_region()) {
6029       clear_cards(r);
6030     }
6031   }
6032 
6033   void clear_cards(HeapRegion* r) {
6034     // Cards of the survivors should have already been dirtied.
6035     if (!r->is_survivor()) {
6036       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
6037     }
6038   }
6039 };
6040 
6041 #ifndef PRODUCT
6042 class G1VerifyCardTableCleanup: public HeapRegionClosure {
6043   G1CollectedHeap* _g1h;
6044   G1SATBCardTableModRefBS* _ct_bs;
6045 public:
6046   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6047     : _g1h(g1h), _ct_bs(ct_bs) { }
6048   virtual bool doHeapRegion(HeapRegion* r) {
6049     if (r->is_survivor()) {
6050       _g1h->verify_dirty_region(r);
6051     } else {
6052       _g1h->verify_not_dirty_region(r);
6053     }
6054     return false;
6055   }
6056 };
6057 
6058 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6059   // All of the region should be clean.
6060   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6061   MemRegion mr(hr->bottom(), hr->end());
6062   ct_bs->verify_not_dirty_region(mr);
6063 }
6064 
6065 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6066   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
6067   // dirty allocated blocks as they allocate them. The thread that
6068   // retires each region and replaces it with a new one will do a
6069   // maximal allocation to fill in [pre_dummy_top(),end()] but will
6070   // not dirty that area (one less thing to have to do while holding
6071   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
6072   // is dirty.
6073   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6074   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6075   if (hr->is_young()) {
6076     ct_bs->verify_g1_young_region(mr);
6077   } else {
6078     ct_bs->verify_dirty_region(mr);
6079   }
6080 }
6081 
6082 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6083   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6084   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6085     verify_dirty_region(hr);
6086   }
6087 }
6088 
6089 void G1CollectedHeap::verify_dirty_young_regions() {
6090   verify_dirty_young_list(_young_list->first_region());
6091 }
6092 
6093 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
6094                                                HeapWord* tams, HeapWord* end) {
6095   guarantee(tams <= end,
6096             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
6097   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
6098   if (result < end) {
6099     gclog_or_tty->cr();
6100     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
6101                            bitmap_name, result);
6102     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
6103                            bitmap_name, tams, end);
6104     return false;
6105   }
6106   return true;
6107 }
6108 
6109 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
6110   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
6111   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
6112 
6113   HeapWord* bottom = hr->bottom();
6114   HeapWord* ptams  = hr->prev_top_at_mark_start();
6115   HeapWord* ntams  = hr->next_top_at_mark_start();
6116   HeapWord* end    = hr->end();
6117 
6118   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
6119 
6120   bool res_n = true;
6121   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
6122   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
6123   // if we happen to be in that state.
6124   if (mark_in_progress() || !_cmThread->in_progress()) {
6125     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
6126   }
6127   if (!res_p || !res_n) {
6128     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
6129                            HR_FORMAT_PARAMS(hr));
6130     gclog_or_tty->print_cr("#### Caller: %s", caller);
6131     return false;
6132   }
6133   return true;
6134 }
6135 
6136 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
6137   if (!G1VerifyBitmaps) return;
6138 
6139   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
6140 }
6141 
6142 class G1VerifyBitmapClosure : public HeapRegionClosure {
6143 private:
6144   const char* _caller;
6145   G1CollectedHeap* _g1h;
6146   bool _failures;
6147 
6148 public:
6149   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
6150     _caller(caller), _g1h(g1h), _failures(false) { }
6151 
6152   bool failures() { return _failures; }
6153 
6154   virtual bool doHeapRegion(HeapRegion* hr) {
6155     if (hr->continuesHumongous()) return false;
6156 
6157     bool result = _g1h->verify_bitmaps(_caller, hr);
6158     if (!result) {
6159       _failures = true;
6160     }
6161     return false;
6162   }
6163 };
6164 
6165 void G1CollectedHeap::check_bitmaps(const char* caller) {
6166   if (!G1VerifyBitmaps) return;
6167 
6168   G1VerifyBitmapClosure cl(caller, this);
6169   heap_region_iterate(&cl);
6170   guarantee(!cl.failures(), "bitmap verification");
6171 }
6172 #endif // PRODUCT
6173 
6174 void G1CollectedHeap::cleanUpCardTable() {
6175   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6176   double start = os::elapsedTime();
6177 
6178   {
6179     // Iterate over the dirty cards region list.
6180     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6181 
6182     if (G1CollectedHeap::use_parallel_gc_threads()) {
6183       set_par_threads();
6184       workers()->run_task(&cleanup_task);
6185       set_par_threads(0);
6186     } else {
6187       while (_dirty_cards_region_list) {
6188         HeapRegion* r = _dirty_cards_region_list;
6189         cleanup_task.clear_cards(r);
6190         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6191         if (_dirty_cards_region_list == r) {
6192           // The last region.
6193           _dirty_cards_region_list = NULL;
6194         }
6195         r->set_next_dirty_cards_region(NULL);
6196       }
6197     }
6198 #ifndef PRODUCT
6199     if (G1VerifyCTCleanup || VerifyAfterGC) {
6200       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6201       heap_region_iterate(&cleanup_verifier);
6202     }
6203 #endif
6204   }
6205 
6206   double elapsed = os::elapsedTime() - start;
6207   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6208 }
6209 
6210 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6211   size_t pre_used = 0;
6212   FreeRegionList local_free_list("Local List for CSet Freeing");
6213 
6214   double young_time_ms     = 0.0;
6215   double non_young_time_ms = 0.0;
6216 
6217   // Since the collection set is a superset of the the young list,
6218   // all we need to do to clear the young list is clear its
6219   // head and length, and unlink any young regions in the code below
6220   _young_list->clear();
6221 
6222   G1CollectorPolicy* policy = g1_policy();
6223 
6224   double start_sec = os::elapsedTime();
6225   bool non_young = true;
6226 
6227   HeapRegion* cur = cs_head;
6228   int age_bound = -1;
6229   size_t rs_lengths = 0;
6230 
6231   while (cur != NULL) {
6232     assert(!is_on_master_free_list(cur), "sanity");
6233     if (non_young) {
6234       if (cur->is_young()) {
6235         double end_sec = os::elapsedTime();
6236         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6237         non_young_time_ms += elapsed_ms;
6238 
6239         start_sec = os::elapsedTime();
6240         non_young = false;
6241       }
6242     } else {
6243       if (!cur->is_young()) {
6244         double end_sec = os::elapsedTime();
6245         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6246         young_time_ms += elapsed_ms;
6247 
6248         start_sec = os::elapsedTime();
6249         non_young = true;
6250       }
6251     }
6252 
6253     rs_lengths += cur->rem_set()->occupied_locked();
6254 
6255     HeapRegion* next = cur->next_in_collection_set();
6256     assert(cur->in_collection_set(), "bad CS");
6257     cur->set_next_in_collection_set(NULL);
6258     cur->set_in_collection_set(false);
6259 
6260     if (cur->is_young()) {
6261       int index = cur->young_index_in_cset();
6262       assert(index != -1, "invariant");
6263       assert((uint) index < policy->young_cset_region_length(), "invariant");
6264       size_t words_survived = _surviving_young_words[index];
6265       cur->record_surv_words_in_group(words_survived);
6266 
6267       // At this point the we have 'popped' cur from the collection set
6268       // (linked via next_in_collection_set()) but it is still in the
6269       // young list (linked via next_young_region()). Clear the
6270       // _next_young_region field.
6271       cur->set_next_young_region(NULL);
6272     } else {
6273       int index = cur->young_index_in_cset();
6274       assert(index == -1, "invariant");
6275     }
6276 
6277     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6278             (!cur->is_young() && cur->young_index_in_cset() == -1),
6279             "invariant" );
6280 
6281     if (!cur->evacuation_failed()) {
6282       MemRegion used_mr = cur->used_region();
6283 
6284       // And the region is empty.
6285       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6286       pre_used += cur->used();
6287       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6288     } else {
6289       cur->uninstall_surv_rate_group();
6290       if (cur->is_young()) {
6291         cur->set_young_index_in_cset(-1);
6292       }
6293       cur->set_not_young();
6294       cur->set_evacuation_failed(false);
6295       // The region is now considered to be old.
6296       _old_set.add(cur);
6297       evacuation_info.increment_collectionset_used_after(cur->used());
6298     }
6299     cur = next;
6300   }
6301 
6302   evacuation_info.set_regions_freed(local_free_list.length());
6303   policy->record_max_rs_lengths(rs_lengths);
6304   policy->cset_regions_freed();
6305 
6306   double end_sec = os::elapsedTime();
6307   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6308 
6309   if (non_young) {
6310     non_young_time_ms += elapsed_ms;
6311   } else {
6312     young_time_ms += elapsed_ms;
6313   }
6314 
6315   prepend_to_freelist(&local_free_list);
6316   decrement_summary_bytes(pre_used);
6317   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6318   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6319 }
6320 
6321 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6322  private:
6323   FreeRegionList* _free_region_list;
6324   HeapRegionSet* _proxy_set;
6325   HeapRegionSetCount _humongous_regions_removed;
6326   size_t _freed_bytes;
6327  public:
6328 
6329   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6330     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6331   }
6332 
6333   virtual bool doHeapRegion(HeapRegion* r) {
6334     if (!r->startsHumongous()) {
6335       return false;
6336     }
6337 
6338     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6339 
6340     oop obj = (oop)r->bottom();
6341     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6342 
6343     // The following checks whether the humongous object is live are sufficient.
6344     // The main additional check (in addition to having a reference from the roots
6345     // or the young gen) is whether the humongous object has a remembered set entry.
6346     //
6347     // A humongous object cannot be live if there is no remembered set for it
6348     // because:
6349     // - there can be no references from within humongous starts regions referencing
6350     // the object because we never allocate other objects into them.
6351     // (I.e. there are no intra-region references that may be missed by the
6352     // remembered set)
6353     // - as soon there is a remembered set entry to the humongous starts region
6354     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6355     // until the end of a concurrent mark.
6356     //
6357     // It is not required to check whether the object has been found dead by marking
6358     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6359     // all objects allocated during that time are considered live.
6360     // SATB marking is even more conservative than the remembered set.
6361     // So if at this point in the collection there is no remembered set entry,
6362     // nobody has a reference to it.
6363     // At the start of collection we flush all refinement logs, and remembered sets
6364     // are completely up-to-date wrt to references to the humongous object.
6365     //
6366     // Other implementation considerations:
6367     // - never consider object arrays: while they are a valid target, they have not
6368     // been observed to be used as temporary objects.
6369     // - they would also pose considerable effort for cleaning up the the remembered
6370     // sets.
6371     // While this cleanup is not strictly necessary to be done (or done instantly),
6372     // given that their occurrence is very low, this saves us this additional
6373     // complexity.
6374     uint region_idx = r->hrm_index();
6375     if (g1h->humongous_is_live(region_idx) ||
6376         g1h->humongous_region_is_always_live(region_idx)) {
6377 
6378       if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
6379         gclog_or_tty->print_cr("Live humongous %d region %d with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6380                                r->isHumongous(),
6381                                region_idx,
6382                                r->rem_set()->occupied(),
6383                                r->rem_set()->strong_code_roots_list_length(),
6384                                next_bitmap->isMarked(r->bottom()),
6385                                g1h->humongous_is_live(region_idx),
6386                                obj->is_objArray()
6387                               );
6388       }
6389 
6390       return false;
6391     }
6392 
6393     guarantee(!obj->is_objArray(),
6394               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
6395                       r->bottom()));
6396 
6397     if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
6398       gclog_or_tty->print_cr("Reclaim humongous region %d start "PTR_FORMAT" region %d length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6399                              r->isHumongous(),
6400                              r->bottom(),
6401                              region_idx,
6402                              r->region_num(),
6403                              r->rem_set()->occupied(),
6404                              r->rem_set()->strong_code_roots_list_length(),
6405                              next_bitmap->isMarked(r->bottom()),
6406                              g1h->humongous_is_live(region_idx),
6407                              obj->is_objArray()
6408                             );
6409     }
6410     // Need to clear mark bit of the humongous object if already set.
6411     if (next_bitmap->isMarked(r->bottom())) {
6412       next_bitmap->clear(r->bottom());
6413     }
6414     _freed_bytes += r->used();
6415     r->set_containing_set(NULL);
6416     _humongous_regions_removed.increment(1u, r->capacity());
6417     g1h->free_humongous_region(r, _free_region_list, false);
6418 
6419     return false;
6420   }
6421 
6422   HeapRegionSetCount& humongous_free_count() {
6423     return _humongous_regions_removed;
6424   }
6425 
6426   size_t bytes_freed() const {
6427     return _freed_bytes;
6428   }
6429 
6430   size_t humongous_reclaimed() const {
6431     return _humongous_regions_removed.length();
6432   }
6433 };
6434 
6435 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6436   assert_at_safepoint(true);
6437 
6438   if (!G1ReclaimDeadHumongousObjectsAtYoungGC || !_has_humongous_reclaim_candidates) {
6439     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6440     return;
6441   }
6442 
6443   double start_time = os::elapsedTime();
6444 
6445   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6446 
6447   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6448   heap_region_iterate(&cl);
6449 
6450   HeapRegionSetCount empty_set;
6451   remove_from_old_sets(empty_set, cl.humongous_free_count());
6452 
6453   G1HRPrinter* hr_printer = _g1h->hr_printer();
6454   if (hr_printer->is_active()) {
6455     FreeRegionListIterator iter(&local_cleanup_list);
6456     while (iter.more_available()) {
6457       HeapRegion* hr = iter.get_next();
6458       hr_printer->cleanup(hr);
6459     }
6460   }
6461 
6462   prepend_to_freelist(&local_cleanup_list);
6463   decrement_summary_bytes(cl.bytes_freed());
6464 
6465   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6466                                                                     cl.humongous_reclaimed());
6467 }
6468 
6469 // This routine is similar to the above but does not record
6470 // any policy statistics or update free lists; we are abandoning
6471 // the current incremental collection set in preparation of a
6472 // full collection. After the full GC we will start to build up
6473 // the incremental collection set again.
6474 // This is only called when we're doing a full collection
6475 // and is immediately followed by the tearing down of the young list.
6476 
6477 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6478   HeapRegion* cur = cs_head;
6479 
6480   while (cur != NULL) {
6481     HeapRegion* next = cur->next_in_collection_set();
6482     assert(cur->in_collection_set(), "bad CS");
6483     cur->set_next_in_collection_set(NULL);
6484     cur->set_in_collection_set(false);
6485     cur->set_young_index_in_cset(-1);
6486     cur = next;
6487   }
6488 }
6489 
6490 void G1CollectedHeap::set_free_regions_coming() {
6491   if (G1ConcRegionFreeingVerbose) {
6492     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6493                            "setting free regions coming");
6494   }
6495 
6496   assert(!free_regions_coming(), "pre-condition");
6497   _free_regions_coming = true;
6498 }
6499 
6500 void G1CollectedHeap::reset_free_regions_coming() {
6501   assert(free_regions_coming(), "pre-condition");
6502 
6503   {
6504     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6505     _free_regions_coming = false;
6506     SecondaryFreeList_lock->notify_all();
6507   }
6508 
6509   if (G1ConcRegionFreeingVerbose) {
6510     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6511                            "reset free regions coming");
6512   }
6513 }
6514 
6515 void G1CollectedHeap::wait_while_free_regions_coming() {
6516   // Most of the time we won't have to wait, so let's do a quick test
6517   // first before we take the lock.
6518   if (!free_regions_coming()) {
6519     return;
6520   }
6521 
6522   if (G1ConcRegionFreeingVerbose) {
6523     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6524                            "waiting for free regions");
6525   }
6526 
6527   {
6528     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6529     while (free_regions_coming()) {
6530       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6531     }
6532   }
6533 
6534   if (G1ConcRegionFreeingVerbose) {
6535     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6536                            "done waiting for free regions");
6537   }
6538 }
6539 
6540 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6541   assert(heap_lock_held_for_gc(),
6542               "the heap lock should already be held by or for this thread");
6543   _young_list->push_region(hr);
6544 }
6545 
6546 class NoYoungRegionsClosure: public HeapRegionClosure {
6547 private:
6548   bool _success;
6549 public:
6550   NoYoungRegionsClosure() : _success(true) { }
6551   bool doHeapRegion(HeapRegion* r) {
6552     if (r->is_young()) {
6553       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6554                              r->bottom(), r->end());
6555       _success = false;
6556     }
6557     return false;
6558   }
6559   bool success() { return _success; }
6560 };
6561 
6562 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6563   bool ret = _young_list->check_list_empty(check_sample);
6564 
6565   if (check_heap) {
6566     NoYoungRegionsClosure closure;
6567     heap_region_iterate(&closure);
6568     ret = ret && closure.success();
6569   }
6570 
6571   return ret;
6572 }
6573 
6574 class TearDownRegionSetsClosure : public HeapRegionClosure {
6575 private:
6576   HeapRegionSet *_old_set;
6577 
6578 public:
6579   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6580 
6581   bool doHeapRegion(HeapRegion* r) {
6582     if (r->is_empty()) {
6583       // We ignore empty regions, we'll empty the free list afterwards
6584     } else if (r->is_young()) {
6585       // We ignore young regions, we'll empty the young list afterwards
6586     } else if (r->isHumongous()) {
6587       // We ignore humongous regions, we're not tearing down the
6588       // humongous region set
6589     } else {
6590       // The rest should be old
6591       _old_set->remove(r);
6592     }
6593     return false;
6594   }
6595 
6596   ~TearDownRegionSetsClosure() {
6597     assert(_old_set->is_empty(), "post-condition");
6598   }
6599 };
6600 
6601 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6602   assert_at_safepoint(true /* should_be_vm_thread */);
6603 
6604   if (!free_list_only) {
6605     TearDownRegionSetsClosure cl(&_old_set);
6606     heap_region_iterate(&cl);
6607 
6608     // Note that emptying the _young_list is postponed and instead done as
6609     // the first step when rebuilding the regions sets again. The reason for
6610     // this is that during a full GC string deduplication needs to know if
6611     // a collected region was young or old when the full GC was initiated.
6612   }
6613   _hrm.remove_all_free_regions();
6614 }
6615 
6616 class RebuildRegionSetsClosure : public HeapRegionClosure {
6617 private:
6618   bool            _free_list_only;
6619   HeapRegionSet*   _old_set;
6620   HeapRegionManager*   _hrm;
6621   size_t          _total_used;
6622 
6623 public:
6624   RebuildRegionSetsClosure(bool free_list_only,
6625                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6626     _free_list_only(free_list_only),
6627     _old_set(old_set), _hrm(hrm), _total_used(0) {
6628     assert(_hrm->num_free_regions() == 0, "pre-condition");
6629     if (!free_list_only) {
6630       assert(_old_set->is_empty(), "pre-condition");
6631     }
6632   }
6633 
6634   bool doHeapRegion(HeapRegion* r) {
6635     if (r->continuesHumongous()) {
6636       return false;
6637     }
6638 
6639     if (r->is_empty()) {
6640       // Add free regions to the free list
6641       r->set_allocation_context(AllocationContext::system());
6642       _hrm->insert_into_free_list(r);
6643     } else if (!_free_list_only) {
6644       assert(!r->is_young(), "we should not come across young regions");
6645 
6646       if (r->isHumongous()) {
6647         // We ignore humongous regions, we left the humongous set unchanged
6648       } else {
6649         // The rest should be old, add them to the old set
6650         _old_set->add(r);
6651       }
6652       _total_used += r->used();
6653     }
6654 
6655     return false;
6656   }
6657 
6658   size_t total_used() {
6659     return _total_used;
6660   }
6661 };
6662 
6663 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6664   assert_at_safepoint(true /* should_be_vm_thread */);
6665 
6666   if (!free_list_only) {
6667     _young_list->empty_list();
6668   }
6669 
6670   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6671   heap_region_iterate(&cl);
6672 
6673   if (!free_list_only) {
6674     _allocator->set_used(cl.total_used());
6675   }
6676   assert(_allocator->used_unlocked() == recalculate_used(),
6677          err_msg("inconsistent _allocator->used_unlocked(), "
6678                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6679                  _allocator->used_unlocked(), recalculate_used()));
6680 }
6681 
6682 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6683   _refine_cte_cl->set_concurrent(concurrent);
6684 }
6685 
6686 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6687   HeapRegion* hr = heap_region_containing(p);
6688   return hr->is_in(p);
6689 }
6690 
6691 // Methods for the mutator alloc region
6692 
6693 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6694                                                       bool force) {
6695   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6696   assert(!force || g1_policy()->can_expand_young_list(),
6697          "if force is true we should be able to expand the young list");
6698   bool young_list_full = g1_policy()->is_young_list_full();
6699   if (force || !young_list_full) {
6700     HeapRegion* new_alloc_region = new_region(word_size,
6701                                               false /* is_old */,
6702                                               false /* do_expand */);
6703     if (new_alloc_region != NULL) {
6704       set_region_short_lived_locked(new_alloc_region);
6705       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6706       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6707       return new_alloc_region;
6708     }
6709   }
6710   return NULL;
6711 }
6712 
6713 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6714                                                   size_t allocated_bytes) {
6715   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6716   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6717 
6718   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6719   _allocator->increase_used(allocated_bytes);
6720   _hr_printer.retire(alloc_region);
6721   // We update the eden sizes here, when the region is retired,
6722   // instead of when it's allocated, since this is the point that its
6723   // used space has been recored in _summary_bytes_used.
6724   g1mm()->update_eden_size();
6725 }
6726 
6727 void G1CollectedHeap::set_par_threads() {
6728   // Don't change the number of workers.  Use the value previously set
6729   // in the workgroup.
6730   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6731   uint n_workers = workers()->active_workers();
6732   assert(UseDynamicNumberOfGCThreads ||
6733            n_workers == workers()->total_workers(),
6734       "Otherwise should be using the total number of workers");
6735   if (n_workers == 0) {
6736     assert(false, "Should have been set in prior evacuation pause.");
6737     n_workers = ParallelGCThreads;
6738     workers()->set_active_workers(n_workers);
6739   }
6740   set_par_threads(n_workers);
6741 }
6742 
6743 // Methods for the GC alloc regions
6744 
6745 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6746                                                  uint count,
6747                                                  GCAllocPurpose ap) {
6748   assert(FreeList_lock->owned_by_self(), "pre-condition");
6749 
6750   if (count < g1_policy()->max_regions(ap)) {
6751     bool survivor = (ap == GCAllocForSurvived);
6752     HeapRegion* new_alloc_region = new_region(word_size,
6753                                               !survivor,
6754                                               true /* do_expand */);
6755     if (new_alloc_region != NULL) {
6756       // We really only need to do this for old regions given that we
6757       // should never scan survivors. But it doesn't hurt to do it
6758       // for survivors too.
6759       new_alloc_region->record_top_and_timestamp();
6760       if (survivor) {
6761         new_alloc_region->set_survivor();
6762         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6763         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6764       } else {
6765         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6766         check_bitmaps("Old Region Allocation", new_alloc_region);
6767       }
6768       bool during_im = g1_policy()->during_initial_mark_pause();
6769       new_alloc_region->note_start_of_copying(during_im);
6770       return new_alloc_region;
6771     } else {
6772       g1_policy()->note_alloc_region_limit_reached(ap);
6773     }
6774   }
6775   return NULL;
6776 }
6777 
6778 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6779                                              size_t allocated_bytes,
6780                                              GCAllocPurpose ap) {
6781   bool during_im = g1_policy()->during_initial_mark_pause();
6782   alloc_region->note_end_of_copying(during_im);
6783   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6784   if (ap == GCAllocForSurvived) {
6785     young_list()->add_survivor_region(alloc_region);
6786   } else {
6787     _old_set.add(alloc_region);
6788   }
6789   _hr_printer.retire(alloc_region);
6790 }
6791 
6792 // Heap region set verification
6793 
6794 class VerifyRegionListsClosure : public HeapRegionClosure {
6795 private:
6796   HeapRegionSet*   _old_set;
6797   HeapRegionSet*   _humongous_set;
6798   HeapRegionManager*   _hrm;
6799 
6800 public:
6801   HeapRegionSetCount _old_count;
6802   HeapRegionSetCount _humongous_count;
6803   HeapRegionSetCount _free_count;
6804 
6805   VerifyRegionListsClosure(HeapRegionSet* old_set,
6806                            HeapRegionSet* humongous_set,
6807                            HeapRegionManager* hrm) :
6808     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6809     _old_count(), _humongous_count(), _free_count(){ }
6810 
6811   bool doHeapRegion(HeapRegion* hr) {
6812     if (hr->continuesHumongous()) {
6813       return false;
6814     }
6815 
6816     if (hr->is_young()) {
6817       // TODO
6818     } else if (hr->startsHumongous()) {
6819       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6820       _humongous_count.increment(1u, hr->capacity());
6821     } else if (hr->is_empty()) {
6822       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6823       _free_count.increment(1u, hr->capacity());
6824     } else {
6825       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6826       _old_count.increment(1u, hr->capacity());
6827     }
6828     return false;
6829   }
6830 
6831   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6832     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6833     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6834         old_set->total_capacity_bytes(), _old_count.capacity()));
6835 
6836     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6837     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6838         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6839 
6840     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6841     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6842         free_list->total_capacity_bytes(), _free_count.capacity()));
6843   }
6844 };
6845 
6846 void G1CollectedHeap::verify_region_sets() {
6847   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6848 
6849   // First, check the explicit lists.
6850   _hrm.verify();
6851   {
6852     // Given that a concurrent operation might be adding regions to
6853     // the secondary free list we have to take the lock before
6854     // verifying it.
6855     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6856     _secondary_free_list.verify_list();
6857   }
6858 
6859   // If a concurrent region freeing operation is in progress it will
6860   // be difficult to correctly attributed any free regions we come
6861   // across to the correct free list given that they might belong to
6862   // one of several (free_list, secondary_free_list, any local lists,
6863   // etc.). So, if that's the case we will skip the rest of the
6864   // verification operation. Alternatively, waiting for the concurrent
6865   // operation to complete will have a non-trivial effect on the GC's
6866   // operation (no concurrent operation will last longer than the
6867   // interval between two calls to verification) and it might hide
6868   // any issues that we would like to catch during testing.
6869   if (free_regions_coming()) {
6870     return;
6871   }
6872 
6873   // Make sure we append the secondary_free_list on the free_list so
6874   // that all free regions we will come across can be safely
6875   // attributed to the free_list.
6876   append_secondary_free_list_if_not_empty_with_lock();
6877 
6878   // Finally, make sure that the region accounting in the lists is
6879   // consistent with what we see in the heap.
6880 
6881   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6882   heap_region_iterate(&cl);
6883   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6884 }
6885 
6886 // Optimized nmethod scanning
6887 
6888 class RegisterNMethodOopClosure: public OopClosure {
6889   G1CollectedHeap* _g1h;
6890   nmethod* _nm;
6891 
6892   template <class T> void do_oop_work(T* p) {
6893     T heap_oop = oopDesc::load_heap_oop(p);
6894     if (!oopDesc::is_null(heap_oop)) {
6895       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6896       HeapRegion* hr = _g1h->heap_region_containing(obj);
6897       assert(!hr->continuesHumongous(),
6898              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6899                      " starting at "HR_FORMAT,
6900                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6901 
6902       // HeapRegion::add_strong_code_root() avoids adding duplicate
6903       // entries but having duplicates is  OK since we "mark" nmethods
6904       // as visited when we scan the strong code root lists during the GC.
6905       hr->add_strong_code_root(_nm);
6906       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
6907              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
6908                      _nm, HR_FORMAT_PARAMS(hr)));
6909     }
6910   }
6911 
6912 public:
6913   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6914     _g1h(g1h), _nm(nm) {}
6915 
6916   void do_oop(oop* p)       { do_oop_work(p); }
6917   void do_oop(narrowOop* p) { do_oop_work(p); }
6918 };
6919 
6920 class UnregisterNMethodOopClosure: public OopClosure {
6921   G1CollectedHeap* _g1h;
6922   nmethod* _nm;
6923 
6924   template <class T> void do_oop_work(T* p) {
6925     T heap_oop = oopDesc::load_heap_oop(p);
6926     if (!oopDesc::is_null(heap_oop)) {
6927       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6928       HeapRegion* hr = _g1h->heap_region_containing(obj);
6929       assert(!hr->continuesHumongous(),
6930              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6931                      " starting at "HR_FORMAT,
6932                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6933 
6934       hr->remove_strong_code_root(_nm);
6935       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
6936              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
6937                      _nm, HR_FORMAT_PARAMS(hr)));
6938     }
6939   }
6940 
6941 public:
6942   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6943     _g1h(g1h), _nm(nm) {}
6944 
6945   void do_oop(oop* p)       { do_oop_work(p); }
6946   void do_oop(narrowOop* p) { do_oop_work(p); }
6947 };
6948 
6949 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6950   CollectedHeap::register_nmethod(nm);
6951 
6952   guarantee(nm != NULL, "sanity");
6953   RegisterNMethodOopClosure reg_cl(this, nm);
6954   nm->oops_do(&reg_cl);
6955 }
6956 
6957 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6958   CollectedHeap::unregister_nmethod(nm);
6959 
6960   guarantee(nm != NULL, "sanity");
6961   UnregisterNMethodOopClosure reg_cl(this, nm);
6962   nm->oops_do(&reg_cl, true);
6963 }
6964 
6965 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
6966 public:
6967   bool doHeapRegion(HeapRegion *hr) {
6968     assert(!hr->isHumongous(),
6969            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
6970                    HR_FORMAT_PARAMS(hr)));
6971     hr->migrate_strong_code_roots();
6972     return false;
6973   }
6974 };
6975 
6976 void G1CollectedHeap::migrate_strong_code_roots() {
6977   MigrateCodeRootsHeapRegionClosure cl;
6978   double migrate_start = os::elapsedTime();
6979   collection_set_iterate(&cl);
6980   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
6981   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
6982 }
6983 
6984 void G1CollectedHeap::purge_code_root_memory() {
6985   double purge_start = os::elapsedTime();
6986   G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
6987   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6988   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6989 }
6990 
6991 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6992   G1CollectedHeap* _g1h;
6993 
6994 public:
6995   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6996     _g1h(g1h) {}
6997 
6998   void do_code_blob(CodeBlob* cb) {
6999     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
7000     if (nm == NULL) {
7001       return;
7002     }
7003 
7004     if (ScavengeRootsInCode) {
7005       _g1h->register_nmethod(nm);
7006     }
7007   }
7008 };
7009 
7010 void G1CollectedHeap::rebuild_strong_code_roots() {
7011   RebuildStrongCodeRootClosure blob_cl(this);
7012   CodeCache::blobs_do(&blob_cl);
7013 }