1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  30 #include "gc_implementation/g1/heapRegion.inline.hpp"
  31 #include "gc_implementation/g1/heapRegionBounds.inline.hpp"
  32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  33 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  34 #include "gc_implementation/shared/liveRange.hpp"
  35 #include "memory/genOopClosures.inline.hpp"
  36 #include "memory/iterator.hpp"
  37 #include "memory/space.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "runtime/orderAccess.inline.hpp"
  40 
  41 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  42 
  43 int    HeapRegion::LogOfHRGrainBytes = 0;
  44 int    HeapRegion::LogOfHRGrainWords = 0;
  45 size_t HeapRegion::GrainBytes        = 0;
  46 size_t HeapRegion::GrainWords        = 0;
  47 size_t HeapRegion::CardsPerRegion    = 0;
  48 
  49 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  50                                  HeapRegion* hr, ExtendedOopClosure* cl,
  51                                  CardTableModRefBS::PrecisionStyle precision,
  52                                  FilterKind fk) :
  53   DirtyCardToOopClosure(hr, cl, precision, NULL),
  54   _hr(hr), _fk(fk), _g1(g1) { }
  55 
  56 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  57                                                    OopClosure* oc) :
  58   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  59 
  60 template<class ClosureType>
  61 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
  62                                HeapRegion* hr,
  63                                HeapWord* cur, HeapWord* top) {
  64   oop cur_oop = oop(cur);
  65   size_t oop_size = hr->block_size(cur);
  66   HeapWord* next_obj = cur + oop_size;
  67   while (next_obj < top) {
  68     // Keep filtering the remembered set.
  69     if (!g1h->is_obj_dead(cur_oop, hr)) {
  70       // Bottom lies entirely below top, so we can call the
  71       // non-memRegion version of oop_iterate below.
  72       cur_oop->oop_iterate(cl);
  73     }
  74     cur = next_obj;
  75     cur_oop = oop(cur);
  76     oop_size = hr->block_size(cur);
  77     next_obj = cur + oop_size;
  78   }
  79   return cur;
  80 }
  81 
  82 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
  83                                       HeapWord* bottom,
  84                                       HeapWord* top) {
  85   G1CollectedHeap* g1h = _g1;
  86   size_t oop_size;
  87   ExtendedOopClosure* cl2 = NULL;
  88 
  89   FilterIntoCSClosure intoCSFilt(this, g1h, _cl);
  90   FilterOutOfRegionClosure outOfRegionFilt(_hr, _cl);
  91 
  92   switch (_fk) {
  93   case NoFilterKind:          cl2 = _cl; break;
  94   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
  95   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
  96   default:                    ShouldNotReachHere();
  97   }
  98 
  99   // Start filtering what we add to the remembered set. If the object is
 100   // not considered dead, either because it is marked (in the mark bitmap)
 101   // or it was allocated after marking finished, then we add it. Otherwise
 102   // we can safely ignore the object.
 103   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 104     oop_size = oop(bottom)->oop_iterate(cl2, mr);
 105   } else {
 106     oop_size = _hr->block_size(bottom);
 107   }
 108 
 109   bottom += oop_size;
 110 
 111   if (bottom < top) {
 112     // We replicate the loop below for several kinds of possible filters.
 113     switch (_fk) {
 114     case NoFilterKind:
 115       bottom = walk_mem_region_loop(_cl, g1h, _hr, bottom, top);
 116       break;
 117 
 118     case IntoCSFilterKind: {
 119       FilterIntoCSClosure filt(this, g1h, _cl);
 120       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 121       break;
 122     }
 123 
 124     case OutOfRegionFilterKind: {
 125       FilterOutOfRegionClosure filt(_hr, _cl);
 126       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 127       break;
 128     }
 129 
 130     default:
 131       ShouldNotReachHere();
 132     }
 133 
 134     // Last object. Need to do dead-obj filtering here too.
 135     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 136       oop(bottom)->oop_iterate(cl2, mr);
 137     }
 138   }
 139 }
 140 
 141 size_t HeapRegion::max_region_size() {
 142   return HeapRegionBounds::max_size();
 143 }
 144 
 145 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 146   uintx region_size = G1HeapRegionSize;
 147   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 148     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 149     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
 150                        (uintx) HeapRegionBounds::min_size());
 151   }
 152 
 153   int region_size_log = log2_long((jlong) region_size);
 154   // Recalculate the region size to make sure it's a power of
 155   // 2. This means that region_size is the largest power of 2 that's
 156   // <= what we've calculated so far.
 157   region_size = ((uintx)1 << region_size_log);
 158 
 159   // Now make sure that we don't go over or under our limits.
 160   if (region_size < HeapRegionBounds::min_size()) {
 161     region_size = HeapRegionBounds::min_size();
 162   } else if (region_size > HeapRegionBounds::max_size()) {
 163     region_size = HeapRegionBounds::max_size();
 164   }
 165 
 166   // And recalculate the log.
 167   region_size_log = log2_long((jlong) region_size);
 168 
 169   // Now, set up the globals.
 170   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 171   LogOfHRGrainBytes = region_size_log;
 172 
 173   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 174   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 175 
 176   guarantee(GrainBytes == 0, "we should only set it once");
 177   // The cast to int is safe, given that we've bounded region_size by
 178   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 179   GrainBytes = (size_t)region_size;
 180 
 181   guarantee(GrainWords == 0, "we should only set it once");
 182   GrainWords = GrainBytes >> LogHeapWordSize;
 183   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 184 
 185   guarantee(CardsPerRegion == 0, "we should only set it once");
 186   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 187 }
 188 
 189 void HeapRegion::reset_after_compaction() {
 190   G1OffsetTableContigSpace::reset_after_compaction();
 191   // After a compaction the mark bitmap is invalid, so we must
 192   // treat all objects as being inside the unmarked area.
 193   zero_marked_bytes();
 194   init_top_at_mark_start();
 195 }
 196 
 197 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
 198   assert(_humongous_type == NotHumongous,
 199          "we should have already filtered out humongous regions");
 200   assert(_humongous_start_region == NULL,
 201          "we should have already filtered out humongous regions");
 202   assert(_end == _orig_end,
 203          "we should have already filtered out humongous regions");
 204 
 205   _in_collection_set = false;
 206 
 207   set_allocation_context(AllocationContext::system());
 208   set_young_index_in_cset(-1);
 209   uninstall_surv_rate_group();
 210   set_young_type(NotYoung);
 211   reset_pre_dummy_top();
 212 
 213   if (!par) {
 214     // If this is parallel, this will be done later.
 215     HeapRegionRemSet* hrrs = rem_set();
 216     if (locked) {
 217       hrrs->clear_locked();
 218     } else {
 219       hrrs->clear();
 220     }
 221     _claimed = InitialClaimValue;
 222   }
 223   zero_marked_bytes();
 224 
 225   _offsets.resize(HeapRegion::GrainWords);
 226   init_top_at_mark_start();
 227   if (clear_space) clear(SpaceDecorator::Mangle);
 228 }
 229 
 230 void HeapRegion::par_clear() {
 231   assert(used() == 0, "the region should have been already cleared");
 232   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 233   HeapRegionRemSet* hrrs = rem_set();
 234   hrrs->clear();
 235   CardTableModRefBS* ct_bs =
 236                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
 237   ct_bs->clear(MemRegion(bottom(), end()));
 238 }
 239 
 240 void HeapRegion::calc_gc_efficiency() {
 241   // GC efficiency is the ratio of how much space would be
 242   // reclaimed over how long we predict it would take to reclaim it.
 243   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 244   G1CollectorPolicy* g1p = g1h->g1_policy();
 245 
 246   // Retrieve a prediction of the elapsed time for this region for
 247   // a mixed gc because the region will only be evacuated during a
 248   // mixed gc.
 249   double region_elapsed_time_ms =
 250     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 251   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 252 }
 253 
 254 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
 255   assert(!isHumongous(), "sanity / pre-condition");
 256   assert(end() == _orig_end,
 257          "Should be normal before the humongous object allocation");
 258   assert(top() == bottom(), "should be empty");
 259   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 260 
 261   _humongous_type = StartsHumongous;
 262   _humongous_start_region = this;
 263 
 264   set_end(new_end);
 265   _offsets.set_for_starts_humongous(new_top);
 266 }
 267 
 268 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
 269   assert(!isHumongous(), "sanity / pre-condition");
 270   assert(end() == _orig_end,
 271          "Should be normal before the humongous object allocation");
 272   assert(top() == bottom(), "should be empty");
 273   assert(first_hr->startsHumongous(), "pre-condition");
 274 
 275   _humongous_type = ContinuesHumongous;
 276   _humongous_start_region = first_hr;
 277 }
 278 
 279 void HeapRegion::set_notHumongous() {
 280   assert(isHumongous(), "pre-condition");
 281 
 282   if (startsHumongous()) {
 283     assert(top() <= end(), "pre-condition");
 284     set_end(_orig_end);
 285     if (top() > end()) {
 286       // at least one "continues humongous" region after it
 287       set_top(end());
 288     }
 289   } else {
 290     // continues humongous
 291     assert(end() == _orig_end, "sanity");
 292   }
 293 
 294   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 295   _humongous_type = NotHumongous;
 296   _humongous_start_region = NULL;
 297 }
 298 
 299 bool HeapRegion::claimHeapRegion(jint claimValue) {
 300   jint current = _claimed;
 301   if (current != claimValue) {
 302     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
 303     if (res == current) {
 304       return true;
 305     }
 306   }
 307   return false;
 308 }
 309 
 310 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
 311   HeapWord* low = addr;
 312   HeapWord* high = end();
 313   while (low < high) {
 314     size_t diff = pointer_delta(high, low);
 315     // Must add one below to bias toward the high amount.  Otherwise, if
 316   // "high" were at the desired value, and "low" were one less, we
 317     // would not converge on "high".  This is not symmetric, because
 318     // we set "high" to a block start, which might be the right one,
 319     // which we don't do for "low".
 320     HeapWord* middle = low + (diff+1)/2;
 321     if (middle == high) return high;
 322     HeapWord* mid_bs = block_start_careful(middle);
 323     if (mid_bs < addr) {
 324       low = middle;
 325     } else {
 326       high = mid_bs;
 327     }
 328   }
 329   assert(low == high && low >= addr, "Didn't work.");
 330   return low;
 331 }
 332 
 333 HeapRegion::HeapRegion(uint hrm_index,
 334                        G1BlockOffsetSharedArray* sharedOffsetArray,
 335                        MemRegion mr) :
 336     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 337     _hrm_index(hrm_index),
 338     _allocation_context(AllocationContext::system()),
 339     _humongous_type(NotHumongous), _humongous_start_region(NULL),
 340     _in_collection_set(false),
 341     _next_in_special_set(NULL), _orig_end(NULL),
 342     _claimed(InitialClaimValue), _evacuation_failed(false),
 343     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 344     _young_type(NotYoung), _next_young_region(NULL),
 345     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
 346 #ifdef ASSERT
 347     _containing_set(NULL),
 348 #endif // ASSERT
 349      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 350     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 351     _predicted_bytes_to_copy(0)
 352 {
 353   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
 354   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 355 
 356   initialize(mr);
 357 }
 358 
 359 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 360   assert(_rem_set->is_empty(), "Remembered set must be empty");
 361 
 362   G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
 363 
 364   _orig_end = mr.end();
 365   hr_clear(false /*par*/, false /*clear_space*/);
 366   set_top(bottom());
 367   record_top_and_timestamp();
 368 }
 369 
 370 CompactibleSpace* HeapRegion::next_compaction_space() const {
 371   return G1CollectedHeap::heap()->next_compaction_region(this);
 372 }
 373 
 374 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 375                                                     bool during_conc_mark) {
 376   // We always recreate the prev marking info and we'll explicitly
 377   // mark all objects we find to be self-forwarded on the prev
 378   // bitmap. So all objects need to be below PTAMS.
 379   _prev_marked_bytes = 0;
 380 
 381   if (during_initial_mark) {
 382     // During initial-mark, we'll also explicitly mark all objects
 383     // we find to be self-forwarded on the next bitmap. So all
 384     // objects need to be below NTAMS.
 385     _next_top_at_mark_start = top();
 386     _next_marked_bytes = 0;
 387   } else if (during_conc_mark) {
 388     // During concurrent mark, all objects in the CSet (including
 389     // the ones we find to be self-forwarded) are implicitly live.
 390     // So all objects need to be above NTAMS.
 391     _next_top_at_mark_start = bottom();
 392     _next_marked_bytes = 0;
 393   }
 394 }
 395 
 396 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 397                                                   bool during_conc_mark,
 398                                                   size_t marked_bytes) {
 399   assert(0 <= marked_bytes && marked_bytes <= used(),
 400          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
 401                  marked_bytes, used()));
 402   _prev_top_at_mark_start = top();
 403   _prev_marked_bytes = marked_bytes;
 404 }
 405 
 406 HeapWord*
 407 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 408                                                  ObjectClosure* cl) {
 409   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 410   // We used to use "block_start_careful" here.  But we're actually happy
 411   // to update the BOT while we do this...
 412   HeapWord* cur = block_start(mr.start());
 413   mr = mr.intersection(used_region());
 414   if (mr.is_empty()) return NULL;
 415   // Otherwise, find the obj that extends onto mr.start().
 416 
 417   assert(cur <= mr.start()
 418          && (oop(cur)->klass_or_null() == NULL ||
 419              cur + oop(cur)->size() > mr.start()),
 420          "postcondition of block_start");
 421   oop obj;
 422   while (cur < mr.end()) {
 423     obj = oop(cur);
 424     if (obj->klass_or_null() == NULL) {
 425       // Ran into an unparseable point.
 426       return cur;
 427     } else if (!g1h->is_obj_dead(obj)) {
 428       cl->do_object(obj);
 429     }
 430     if (cl->abort()) return cur;
 431     // The check above must occur before the operation below, since an
 432     // abort might invalidate the "size" operation.
 433     cur += block_size(cur);
 434   }
 435   return NULL;
 436 }
 437 
 438 HeapWord*
 439 HeapRegion::
 440 oops_on_card_seq_iterate_careful(MemRegion mr,
 441                                  FilterOutOfRegionClosure* cl,
 442                                  bool filter_young,
 443                                  jbyte* card_ptr) {
 444   // Currently, we should only have to clean the card if filter_young
 445   // is true and vice versa.
 446   if (filter_young) {
 447     assert(card_ptr != NULL, "pre-condition");
 448   } else {
 449     assert(card_ptr == NULL, "pre-condition");
 450   }
 451   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 452 
 453   // If we're within a stop-world GC, then we might look at a card in a
 454   // GC alloc region that extends onto a GC LAB, which may not be
 455   // parseable.  Stop such at the "saved_mark" of the region.
 456   if (g1h->is_gc_active()) {
 457     mr = mr.intersection(used_region_at_save_marks());
 458   } else {
 459     mr = mr.intersection(used_region());
 460   }
 461   if (mr.is_empty()) return NULL;
 462   // Otherwise, find the obj that extends onto mr.start().
 463 
 464   // The intersection of the incoming mr (for the card) and the
 465   // allocated part of the region is non-empty. This implies that
 466   // we have actually allocated into this region. The code in
 467   // G1CollectedHeap.cpp that allocates a new region sets the
 468   // is_young tag on the region before allocating. Thus we
 469   // safely know if this region is young.
 470   if (is_young() && filter_young) {
 471     return NULL;
 472   }
 473 
 474   assert(!is_young(), "check value of filter_young");
 475 
 476   // We can only clean the card here, after we make the decision that
 477   // the card is not young. And we only clean the card if we have been
 478   // asked to (i.e., card_ptr != NULL).
 479   if (card_ptr != NULL) {
 480     *card_ptr = CardTableModRefBS::clean_card_val();
 481     // We must complete this write before we do any of the reads below.
 482     OrderAccess::storeload();
 483   }
 484 
 485   // Cache the boundaries of the memory region in some const locals
 486   HeapWord* const start = mr.start();
 487   HeapWord* const end = mr.end();
 488 
 489   // We used to use "block_start_careful" here.  But we're actually happy
 490   // to update the BOT while we do this...
 491   HeapWord* cur = block_start(start);
 492   assert(cur <= start, "Postcondition");
 493 
 494   oop obj;
 495 
 496   HeapWord* next = cur;
 497   while (next <= start) {
 498     cur = next;
 499     obj = oop(cur);
 500     if (obj->klass_or_null() == NULL) {
 501       // Ran into an unparseable point.
 502       return cur;
 503     }
 504     // Otherwise...
 505     next = cur + block_size(cur);
 506   }
 507 
 508   // If we finish the above loop...We have a parseable object that
 509   // begins on or before the start of the memory region, and ends
 510   // inside or spans the entire region.
 511 
 512   assert(obj == oop(cur), "sanity");
 513   assert(cur <= start, "Loop postcondition");
 514   assert(obj->klass_or_null() != NULL, "Loop postcondition");
 515   assert((cur + block_size(cur)) > start, "Loop postcondition");
 516 
 517   if (!g1h->is_obj_dead(obj)) {
 518     obj->oop_iterate(cl, mr);
 519   }
 520 
 521   while (cur < end) {
 522     obj = oop(cur);
 523     if (obj->klass_or_null() == NULL) {
 524       // Ran into an unparseable point.
 525       return cur;
 526     };
 527 
 528     // Otherwise:
 529     next = cur + block_size(cur);
 530 
 531     if (!g1h->is_obj_dead(obj)) {
 532       if (next < end || !obj->is_objArray()) {
 533         // This object either does not span the MemRegion
 534         // boundary, or if it does it's not an array.
 535         // Apply closure to whole object.
 536         obj->oop_iterate(cl);
 537       } else {
 538         // This obj is an array that spans the boundary.
 539         // Stop at the boundary.
 540         obj->oop_iterate(cl, mr);
 541       }
 542     }
 543     cur = next;
 544   }
 545   return NULL;
 546 }
 547 
 548 // Code roots support
 549 
 550 void HeapRegion::add_strong_code_root(nmethod* nm) {
 551   HeapRegionRemSet* hrrs = rem_set();
 552   hrrs->add_strong_code_root(nm);
 553 }
 554 
 555 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 556   HeapRegionRemSet* hrrs = rem_set();
 557   hrrs->remove_strong_code_root(nm);
 558 }
 559 
 560 void HeapRegion::migrate_strong_code_roots() {
 561   assert(in_collection_set(), "only collection set regions");
 562   assert(!isHumongous(),
 563           err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
 564                   HR_FORMAT_PARAMS(this)));
 565 
 566   HeapRegionRemSet* hrrs = rem_set();
 567   hrrs->migrate_strong_code_roots();
 568 }
 569 
 570 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 571   HeapRegionRemSet* hrrs = rem_set();
 572   hrrs->strong_code_roots_do(blk);
 573 }
 574 
 575 class VerifyStrongCodeRootOopClosure: public OopClosure {
 576   const HeapRegion* _hr;
 577   nmethod* _nm;
 578   bool _failures;
 579   bool _has_oops_in_region;
 580 
 581   template <class T> void do_oop_work(T* p) {
 582     T heap_oop = oopDesc::load_heap_oop(p);
 583     if (!oopDesc::is_null(heap_oop)) {
 584       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 585 
 586       // Note: not all the oops embedded in the nmethod are in the
 587       // current region. We only look at those which are.
 588       if (_hr->is_in(obj)) {
 589         // Object is in the region. Check that its less than top
 590         if (_hr->top() <= (HeapWord*)obj) {
 591           // Object is above top
 592           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
 593                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
 594                                  "top "PTR_FORMAT,
 595                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
 596           _failures = true;
 597           return;
 598         }
 599         // Nmethod has at least one oop in the current region
 600         _has_oops_in_region = true;
 601       }
 602     }
 603   }
 604 
 605 public:
 606   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 607     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 608 
 609   void do_oop(narrowOop* p) { do_oop_work(p); }
 610   void do_oop(oop* p)       { do_oop_work(p); }
 611 
 612   bool failures()           { return _failures; }
 613   bool has_oops_in_region() { return _has_oops_in_region; }
 614 };
 615 
 616 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 617   const HeapRegion* _hr;
 618   bool _failures;
 619 public:
 620   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 621     _hr(hr), _failures(false) {}
 622 
 623   void do_code_blob(CodeBlob* cb) {
 624     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 625     if (nm != NULL) {
 626       // Verify that the nemthod is live
 627       if (!nm->is_alive()) {
 628         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
 629                                PTR_FORMAT" in its strong code roots",
 630                                _hr->bottom(), _hr->end(), nm);
 631         _failures = true;
 632       } else {
 633         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 634         nm->oops_do(&oop_cl);
 635         if (!oop_cl.has_oops_in_region()) {
 636           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
 637                                  PTR_FORMAT" in its strong code roots "
 638                                  "with no pointers into region",
 639                                  _hr->bottom(), _hr->end(), nm);
 640           _failures = true;
 641         } else if (oop_cl.failures()) {
 642           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
 643                                  "failures for nmethod "PTR_FORMAT,
 644                                  _hr->bottom(), _hr->end(), nm);
 645           _failures = true;
 646         }
 647       }
 648     }
 649   }
 650 
 651   bool failures()       { return _failures; }
 652 };
 653 
 654 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 655   if (!G1VerifyHeapRegionCodeRoots) {
 656     // We're not verifying code roots.
 657     return;
 658   }
 659   if (vo == VerifyOption_G1UseMarkWord) {
 660     // Marking verification during a full GC is performed after class
 661     // unloading, code cache unloading, etc so the strong code roots
 662     // attached to each heap region are in an inconsistent state. They won't
 663     // be consistent until the strong code roots are rebuilt after the
 664     // actual GC. Skip verifying the strong code roots in this particular
 665     // time.
 666     assert(VerifyDuringGC, "only way to get here");
 667     return;
 668   }
 669 
 670   HeapRegionRemSet* hrrs = rem_set();
 671   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 672 
 673   // if this region is empty then there should be no entries
 674   // on its strong code root list
 675   if (is_empty()) {
 676     if (strong_code_roots_length > 0) {
 677       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
 678                              "but has "SIZE_FORMAT" code root entries",
 679                              bottom(), end(), strong_code_roots_length);
 680       *failures = true;
 681     }
 682     return;
 683   }
 684 
 685   if (continuesHumongous()) {
 686     if (strong_code_roots_length > 0) {
 687       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
 688                              "region but has "SIZE_FORMAT" code root entries",
 689                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
 690       *failures = true;
 691     }
 692     return;
 693   }
 694 
 695   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 696   strong_code_roots_do(&cb_cl);
 697 
 698   if (cb_cl.failures()) {
 699     *failures = true;
 700   }
 701 }
 702 
 703 void HeapRegion::print() const { print_on(gclog_or_tty); }
 704 void HeapRegion::print_on(outputStream* st) const {
 705   st->print("AC%4u", allocation_context());
 706 
 707   if (isHumongous()) {
 708     if (startsHumongous())
 709       st->print(" HS");
 710     else
 711       st->print(" HC");
 712   } else {
 713     st->print("   ");
 714   }
 715   if (in_collection_set())
 716     st->print(" CS");
 717   else
 718     st->print("   ");
 719   if (is_young())
 720     st->print(is_survivor() ? " SU" : " Y ");
 721   else
 722     st->print("   ");
 723   if (is_empty())
 724     st->print(" F");
 725   else
 726     st->print("  ");
 727   st->print(" TS %5d", _gc_time_stamp);
 728   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
 729             prev_top_at_mark_start(), next_top_at_mark_start());
 730   G1OffsetTableContigSpace::print_on(st);
 731 }
 732 
 733 class VerifyLiveClosure: public OopClosure {
 734 private:
 735   G1CollectedHeap* _g1h;
 736   CardTableModRefBS* _bs;
 737   oop _containing_obj;
 738   bool _failures;
 739   int _n_failures;
 740   VerifyOption _vo;
 741 public:
 742   // _vo == UsePrevMarking -> use "prev" marking information,
 743   // _vo == UseNextMarking -> use "next" marking information,
 744   // _vo == UseMarkWord    -> use mark word from object header.
 745   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 746     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
 747     _failures(false), _n_failures(0), _vo(vo)
 748   {
 749     BarrierSet* bs = _g1h->barrier_set();
 750     if (bs->is_a(BarrierSet::CardTableModRef))
 751       _bs = (CardTableModRefBS*)bs;
 752   }
 753 
 754   void set_containing_obj(oop obj) {
 755     _containing_obj = obj;
 756   }
 757 
 758   bool failures() { return _failures; }
 759   int n_failures() { return _n_failures; }
 760 
 761   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 762   virtual void do_oop(      oop* p) { do_oop_work(p); }
 763 
 764   void print_object(outputStream* out, oop obj) {
 765 #ifdef PRODUCT
 766     Klass* k = obj->klass();
 767     const char* class_name = InstanceKlass::cast(k)->external_name();
 768     out->print_cr("class name %s", class_name);
 769 #else // PRODUCT
 770     obj->print_on(out);
 771 #endif // PRODUCT
 772   }
 773 
 774   template <class T>
 775   void do_oop_work(T* p) {
 776     assert(_containing_obj != NULL, "Precondition");
 777     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 778            "Precondition");
 779     T heap_oop = oopDesc::load_heap_oop(p);
 780     if (!oopDesc::is_null(heap_oop)) {
 781       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 782       bool failed = false;
 783       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 784         MutexLockerEx x(ParGCRareEvent_lock,
 785                         Mutex::_no_safepoint_check_flag);
 786 
 787         if (!_failures) {
 788           gclog_or_tty->cr();
 789           gclog_or_tty->print_cr("----------");
 790         }
 791         if (!_g1h->is_in_closed_subset(obj)) {
 792           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 793           gclog_or_tty->print_cr("Field "PTR_FORMAT
 794                                  " of live obj "PTR_FORMAT" in region "
 795                                  "["PTR_FORMAT", "PTR_FORMAT")",
 796                                  p, (void*) _containing_obj,
 797                                  from->bottom(), from->end());
 798           print_object(gclog_or_tty, _containing_obj);
 799           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
 800                                  (void*) obj);
 801         } else {
 802           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 803           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 804           gclog_or_tty->print_cr("Field "PTR_FORMAT
 805                                  " of live obj "PTR_FORMAT" in region "
 806                                  "["PTR_FORMAT", "PTR_FORMAT")",
 807                                  p, (void*) _containing_obj,
 808                                  from->bottom(), from->end());
 809           print_object(gclog_or_tty, _containing_obj);
 810           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
 811                                  "["PTR_FORMAT", "PTR_FORMAT")",
 812                                  (void*) obj, to->bottom(), to->end());
 813           print_object(gclog_or_tty, obj);
 814         }
 815         gclog_or_tty->print_cr("----------");
 816         gclog_or_tty->flush();
 817         _failures = true;
 818         failed = true;
 819         _n_failures++;
 820       }
 821 
 822       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
 823         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 824         HeapRegion* to   = _g1h->heap_region_containing(obj);
 825         if (from != NULL && to != NULL &&
 826             from != to &&
 827             !to->isHumongous()) {
 828           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 829           jbyte cv_field = *_bs->byte_for_const(p);
 830           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 831 
 832           bool is_bad = !(from->is_young()
 833                           || to->rem_set()->contains_reference(p)
 834                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 835                               (_containing_obj->is_objArray() ?
 836                                   cv_field == dirty
 837                                : cv_obj == dirty || cv_field == dirty));
 838           if (is_bad) {
 839             MutexLockerEx x(ParGCRareEvent_lock,
 840                             Mutex::_no_safepoint_check_flag);
 841 
 842             if (!_failures) {
 843               gclog_or_tty->cr();
 844               gclog_or_tty->print_cr("----------");
 845             }
 846             gclog_or_tty->print_cr("Missing rem set entry:");
 847             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
 848                                    "of obj "PTR_FORMAT", "
 849                                    "in region "HR_FORMAT,
 850                                    p, (void*) _containing_obj,
 851                                    HR_FORMAT_PARAMS(from));
 852             _containing_obj->print_on(gclog_or_tty);
 853             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
 854                                    "in region "HR_FORMAT,
 855                                    (void*) obj,
 856                                    HR_FORMAT_PARAMS(to));
 857             obj->print_on(gclog_or_tty);
 858             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 859                           cv_obj, cv_field);
 860             gclog_or_tty->print_cr("----------");
 861             gclog_or_tty->flush();
 862             _failures = true;
 863             if (!failed) _n_failures++;
 864           }
 865         }
 866       }
 867     }
 868   }
 869 };
 870 
 871 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 872 // We would need a mechanism to make that code skip dead objects.
 873 
 874 void HeapRegion::verify(VerifyOption vo,
 875                         bool* failures) const {
 876   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 877   *failures = false;
 878   HeapWord* p = bottom();
 879   HeapWord* prev_p = NULL;
 880   VerifyLiveClosure vl_cl(g1, vo);
 881   bool is_humongous = isHumongous();
 882   bool do_bot_verify = !is_young();
 883   size_t object_num = 0;
 884   while (p < top()) {
 885     oop obj = oop(p);
 886     size_t obj_size = block_size(p);
 887     object_num += 1;
 888 
 889     if (is_humongous != g1->isHumongous(obj_size) &&
 890         !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
 891       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
 892                              SIZE_FORMAT" words) in a %shumongous region",
 893                              p, g1->isHumongous(obj_size) ? "" : "non-",
 894                              obj_size, is_humongous ? "" : "non-");
 895        *failures = true;
 896        return;
 897     }
 898 
 899     // If it returns false, verify_for_object() will output the
 900     // appropriate message.
 901     if (do_bot_verify &&
 902         !g1->is_obj_dead(obj, this) &&
 903         !_offsets.verify_for_object(p, obj_size)) {
 904       *failures = true;
 905       return;
 906     }
 907 
 908     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 909       if (obj->is_oop()) {
 910         Klass* klass = obj->klass();
 911         bool is_metaspace_object = Metaspace::contains(klass) ||
 912                                    (vo == VerifyOption_G1UsePrevMarking &&
 913                                    ClassLoaderDataGraph::unload_list_contains(klass));
 914         if (!is_metaspace_object) {
 915           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 916                                  "not metadata", klass, (void *)obj);
 917           *failures = true;
 918           return;
 919         } else if (!klass->is_klass()) {
 920           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 921                                  "not a klass", klass, (void *)obj);
 922           *failures = true;
 923           return;
 924         } else {
 925           vl_cl.set_containing_obj(obj);
 926           obj->oop_iterate_no_header(&vl_cl);
 927           if (vl_cl.failures()) {
 928             *failures = true;
 929           }
 930           if (G1MaxVerifyFailures >= 0 &&
 931               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 932             return;
 933           }
 934         }
 935       } else {
 936         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
 937         *failures = true;
 938         return;
 939       }
 940     }
 941     prev_p = p;
 942     p += obj_size;
 943   }
 944 
 945   if (p != top()) {
 946     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
 947                            "does not match top "PTR_FORMAT, p, top());
 948     *failures = true;
 949     return;
 950   }
 951 
 952   HeapWord* the_end = end();
 953   assert(p == top(), "it should still hold");
 954   // Do some extra BOT consistency checking for addresses in the
 955   // range [top, end). BOT look-ups in this range should yield
 956   // top. No point in doing that if top == end (there's nothing there).
 957   if (p < the_end) {
 958     // Look up top
 959     HeapWord* addr_1 = p;
 960     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
 961     if (b_start_1 != p) {
 962       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
 963                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 964                              addr_1, b_start_1, p);
 965       *failures = true;
 966       return;
 967     }
 968 
 969     // Look up top + 1
 970     HeapWord* addr_2 = p + 1;
 971     if (addr_2 < the_end) {
 972       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
 973       if (b_start_2 != p) {
 974         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
 975                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 976                                addr_2, b_start_2, p);
 977         *failures = true;
 978         return;
 979       }
 980     }
 981 
 982     // Look up an address between top and end
 983     size_t diff = pointer_delta(the_end, p) / 2;
 984     HeapWord* addr_3 = p + diff;
 985     if (addr_3 < the_end) {
 986       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
 987       if (b_start_3 != p) {
 988         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
 989                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 990                                addr_3, b_start_3, p);
 991         *failures = true;
 992         return;
 993       }
 994     }
 995 
 996     // Loook up end - 1
 997     HeapWord* addr_4 = the_end - 1;
 998     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
 999     if (b_start_4 != p) {
1000       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
1001                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1002                              addr_4, b_start_4, p);
1003       *failures = true;
1004       return;
1005     }
1006   }
1007 
1008   if (is_humongous && object_num > 1) {
1009     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
1010                            "but has "SIZE_FORMAT", objects",
1011                            bottom(), end(), object_num);
1012     *failures = true;
1013     return;
1014   }
1015 
1016   verify_strong_code_roots(vo, failures);
1017 }
1018 
1019 void HeapRegion::verify() const {
1020   bool dummy = false;
1021   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
1022 }
1023 
1024 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
1025 // away eventually.
1026 
1027 void G1OffsetTableContigSpace::clear(bool mangle_space) {
1028   set_top(bottom());
1029   set_saved_mark_word(bottom());
1030   CompactibleSpace::clear(mangle_space);
1031   reset_bot();
1032 }
1033 
1034 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
1035   Space::set_bottom(new_bottom);
1036   _offsets.set_bottom(new_bottom);
1037 }
1038 
1039 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
1040   Space::set_end(new_end);
1041   _offsets.resize(new_end - bottom());
1042 }
1043 
1044 void G1OffsetTableContigSpace::print() const {
1045   print_short();
1046   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
1047                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
1048                 bottom(), top(), _offsets.threshold(), end());
1049 }
1050 
1051 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
1052   return _offsets.initialize_threshold();
1053 }
1054 
1055 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
1056                                                     HeapWord* end) {
1057   _offsets.alloc_block(start, end);
1058   return _offsets.threshold();
1059 }
1060 
1061 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
1062   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1063   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
1064   if (_gc_time_stamp < g1h->get_gc_time_stamp())
1065     return top();
1066   else
1067     return Space::saved_mark_word();
1068 }
1069 
1070 void G1OffsetTableContigSpace::record_top_and_timestamp() {
1071   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1072   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
1073 
1074   if (_gc_time_stamp < curr_gc_time_stamp) {
1075     // The order of these is important, as another thread might be
1076     // about to start scanning this region. If it does so after
1077     // set_saved_mark and before _gc_time_stamp = ..., then the latter
1078     // will be false, and it will pick up top() as the high water mark
1079     // of region. If it does so after _gc_time_stamp = ..., then it
1080     // will pick up the right saved_mark_word() as the high water mark
1081     // of the region. Either way, the behaviour will be correct.
1082     Space::set_saved_mark_word(top());
1083     OrderAccess::storestore();
1084     _gc_time_stamp = curr_gc_time_stamp;
1085     // No need to do another barrier to flush the writes above. If
1086     // this is called in parallel with other threads trying to
1087     // allocate into the region, the caller should call this while
1088     // holding a lock and when the lock is released the writes will be
1089     // flushed.
1090   }
1091 }
1092 
1093 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
1094   object_iterate(blk);
1095 }
1096 
1097 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
1098   HeapWord* p = bottom();
1099   while (p < top()) {
1100     if (block_is_obj(p)) {
1101       blk->do_object(oop(p));
1102     }
1103     p += block_size(p);
1104   }
1105 }
1106 
1107 #define block_is_always_obj(q) true
1108 void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
1109   SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
1110 }
1111 #undef block_is_always_obj
1112 
1113 G1OffsetTableContigSpace::
1114 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
1115                          MemRegion mr) :
1116   _offsets(sharedOffsetArray, mr),
1117   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1118   _gc_time_stamp(0)
1119 {
1120   _offsets.set_space(this);
1121 }
1122 
1123 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
1124   CompactibleSpace::initialize(mr, clear_space, mangle_space);
1125   _top = bottom();
1126   reset_bot();
1127 }
1128