1 /*
   2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/handles.inline.hpp"
  31 #include "runtime/interfaceSupport.hpp"
  32 #include "runtime/mutexLocker.hpp"
  33 #include "runtime/objectMonitor.hpp"
  34 #include "runtime/objectMonitor.inline.hpp"
  35 #include "runtime/orderAccess.inline.hpp"
  36 #include "runtime/osThread.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "runtime/thread.inline.hpp"
  39 #include "services/threadService.hpp"
  40 #include "trace/tracing.hpp"
  41 #include "trace/traceMacros.hpp"
  42 #include "utilities/dtrace.hpp"
  43 #include "utilities/macros.hpp"
  44 #include "utilities/preserveException.hpp"
  45 #ifdef TARGET_OS_FAMILY_linux
  46 # include "os_linux.inline.hpp"
  47 #endif
  48 #ifdef TARGET_OS_FAMILY_solaris
  49 # include "os_solaris.inline.hpp"
  50 #endif
  51 #ifdef TARGET_OS_FAMILY_windows
  52 # include "os_windows.inline.hpp"
  53 #endif
  54 #ifdef TARGET_OS_FAMILY_bsd
  55 # include "os_bsd.inline.hpp"
  56 #endif
  57 
  58 #if defined(__GNUC__) && !defined(IA64) && !defined(PPC64)
  59   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  60   #define ATTR __attribute__((noinline))
  61 #else
  62   #define ATTR
  63 #endif
  64 
  65 
  66 #ifdef DTRACE_ENABLED
  67 
  68 // Only bother with this argument setup if dtrace is available
  69 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  70 
  71 
  72 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  73   char* bytes = NULL;                                                      \
  74   int len = 0;                                                             \
  75   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  76   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  77   if (klassname != NULL) {                                                 \
  78     bytes = (char*)klassname->bytes();                                     \
  79     len = klassname->utf8_length();                                        \
  80   }
  81 
  82 #ifndef USDT2
  83 
  84 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
  85   jlong, uintptr_t, char*, int);
  86 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
  87   jlong, uintptr_t, char*, int);
  88 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
  89   jlong, uintptr_t, char*, int);
  90 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
  91   jlong, uintptr_t, char*, int);
  92 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
  93   jlong, uintptr_t, char*, int);
  94 
  95 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)       \
  96   {                                                                        \
  97     if (DTraceMonitorProbes) {                                            \
  98       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
  99       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
 100                        (monitor), bytes, len, (millis));                   \
 101     }                                                                      \
 102   }
 103 
 104 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)             \
 105   {                                                                        \
 106     if (DTraceMonitorProbes) {                                            \
 107       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
 108       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
 109                        (uintptr_t)(monitor), bytes, len);                  \
 110     }                                                                      \
 111   }
 112 
 113 #else /* USDT2 */
 114 
 115 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
 116   {                                                                        \
 117     if (DTraceMonitorProbes) {                                            \
 118       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 119       HOTSPOT_MONITOR_WAIT(jtid,                                           \
 120                        (monitor), bytes, len, (millis));                   \
 121     }                                                                      \
 122   }
 123 
 124 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
 125 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
 126 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
 127 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
 128 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
 129 
 130 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
 131   {                                                                        \
 132     if (DTraceMonitorProbes) {                                            \
 133       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 134       HOTSPOT_MONITOR_##probe(jtid,                                               \
 135                        (uintptr_t)(monitor), bytes, len);                  \
 136     }                                                                      \
 137   }
 138 
 139 #endif /* USDT2 */
 140 #else //  ndef DTRACE_ENABLED
 141 
 142 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 143 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 144 
 145 #endif // ndef DTRACE_ENABLED
 146 
 147 // Tunables ...
 148 // The knob* variables are effectively final.  Once set they should
 149 // never be modified hence.  Consider using __read_mostly with GCC.
 150 
 151 int ObjectMonitor::Knob_Verbose    = 0 ;
 152 int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
 153 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
 154 static int Knob_HandOff            = 0 ;
 155 static int Knob_ReportSettings     = 0 ;
 156 
 157 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
 158 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
 159 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
 160 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
 161 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
 162 static int Knob_SpinEarly          = 1 ;
 163 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
 164 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
 165 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
 166 static int Knob_Bonus              = 100 ;     // spin success bonus
 167 static int Knob_BonusB             = 100 ;     // spin success bonus
 168 static int Knob_Penalty            = 200 ;     // spin failure penalty
 169 static int Knob_Poverty            = 1000 ;
 170 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
 171 static int Knob_FixedSpin          = 0 ;
 172 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
 173 static int Knob_UsePause           = 1 ;
 174 static int Knob_ExitPolicy         = 0 ;
 175 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
 176 static int Knob_ResetEvent         = 0 ;
 177 static int BackOffMask             = 0 ;
 178 
 179 static int Knob_FastHSSEC          = 0 ;
 180 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
 181 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
 182 static volatile int InitDone       = 0 ;
 183 
 184 #define TrySpin TrySpin_VaryDuration
 185 
 186 // -----------------------------------------------------------------------------
 187 // Theory of operations -- Monitors lists, thread residency, etc:
 188 //
 189 // * A thread acquires ownership of a monitor by successfully
 190 //   CAS()ing the _owner field from null to non-null.
 191 //
 192 // * Invariant: A thread appears on at most one monitor list --
 193 //   cxq, EntryList or WaitSet -- at any one time.
 194 //
 195 // * Contending threads "push" themselves onto the cxq with CAS
 196 //   and then spin/park.
 197 //
 198 // * After a contending thread eventually acquires the lock it must
 199 //   dequeue itself from either the EntryList or the cxq.
 200 //
 201 // * The exiting thread identifies and unparks an "heir presumptive"
 202 //   tentative successor thread on the EntryList.  Critically, the
 203 //   exiting thread doesn't unlink the successor thread from the EntryList.
 204 //   After having been unparked, the wakee will recontend for ownership of
 205 //   the monitor.   The successor (wakee) will either acquire the lock or
 206 //   re-park itself.
 207 //
 208 //   Succession is provided for by a policy of competitive handoff.
 209 //   The exiting thread does _not_ grant or pass ownership to the
 210 //   successor thread.  (This is also referred to as "handoff" succession").
 211 //   Instead the exiting thread releases ownership and possibly wakes
 212 //   a successor, so the successor can (re)compete for ownership of the lock.
 213 //   If the EntryList is empty but the cxq is populated the exiting
 214 //   thread will drain the cxq into the EntryList.  It does so by
 215 //   by detaching the cxq (installing null with CAS) and folding
 216 //   the threads from the cxq into the EntryList.  The EntryList is
 217 //   doubly linked, while the cxq is singly linked because of the
 218 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 219 //
 220 // * Concurrency invariants:
 221 //
 222 //   -- only the monitor owner may access or mutate the EntryList.
 223 //      The mutex property of the monitor itself protects the EntryList
 224 //      from concurrent interference.
 225 //   -- Only the monitor owner may detach the cxq.
 226 //
 227 // * The monitor entry list operations avoid locks, but strictly speaking
 228 //   they're not lock-free.  Enter is lock-free, exit is not.
 229 //   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
 230 //
 231 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 232 //   detaching thread.  This mechanism is immune from the ABA corruption.
 233 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 234 //
 235 // * Taken together, the cxq and the EntryList constitute or form a
 236 //   single logical queue of threads stalled trying to acquire the lock.
 237 //   We use two distinct lists to improve the odds of a constant-time
 238 //   dequeue operation after acquisition (in the ::enter() epilog) and
 239 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 240 //   A key desideratum is to minimize queue & monitor metadata manipulation
 241 //   that occurs while holding the monitor lock -- that is, we want to
 242 //   minimize monitor lock holds times.  Note that even a small amount of
 243 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 244 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 245 //   locks and monitor metadata.
 246 //
 247 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
 248 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 249 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 250 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 251 //
 252 //   The EntryList is ordered by the prevailing queue discipline and
 253 //   can be organized in any convenient fashion, such as a doubly-linked list or
 254 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 255 //   to operate in constant-time.  If we need a priority queue then something akin
 256 //   to Solaris' sleepq would work nicely.  Viz.,
 257 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 258 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 259 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 260 //   EntryList accordingly.
 261 //
 262 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 263 //   somewhat similar to an elevator-scan.
 264 //
 265 // * The monitor synchronization subsystem avoids the use of native
 266 //   synchronization primitives except for the narrow platform-specific
 267 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 268 //   the semantics of park-unpark.  Put another way, this monitor implementation
 269 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 270 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 271 //   underlying OS manages the READY<->RUN transitions.
 272 //
 273 // * Waiting threads reside on the WaitSet list -- wait() puts
 274 //   the caller onto the WaitSet.
 275 //
 276 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 277 //   either the EntryList or cxq.  Subsequent exit() operations will
 278 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 279 //   it's likely the notifyee would simply impale itself on the lock held
 280 //   by the notifier.
 281 //
 282 // * An interesting alternative is to encode cxq as (List,LockByte) where
 283 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 284 //   variable, like _recursions, in the scheme.  The threads or Events that form
 285 //   the list would have to be aligned in 256-byte addresses.  A thread would
 286 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 287 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 288 //   Note that is is *not* word-tearing, but it does presume that full-word
 289 //   CAS operations are coherent with intermix with STB operations.  That's true
 290 //   on most common processors.
 291 //
 292 // * See also http://blogs.sun.com/dave
 293 
 294 
 295 // -----------------------------------------------------------------------------
 296 // Enter support
 297 
 298 bool ObjectMonitor::try_enter(Thread* THREAD) {
 299   if (THREAD != _owner) {
 300     if (THREAD->is_lock_owned ((address)_owner)) {
 301        assert(_recursions == 0, "internal state error");
 302        _owner = THREAD ;
 303        _recursions = 1 ;
 304        OwnerIsThread = 1 ;
 305        return true;
 306     }
 307     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
 308       return false;
 309     }
 310     return true;
 311   } else {
 312     _recursions++;
 313     return true;
 314   }
 315 }
 316 
 317 void ATTR ObjectMonitor::enter(TRAPS) {
 318   // The following code is ordered to check the most common cases first
 319   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 320   Thread * const Self = THREAD ;
 321   void * cur ;
 322 
 323   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
 324   if (cur == NULL) {
 325      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 326      assert (_recursions == 0   , "invariant") ;
 327      assert (_owner      == Self, "invariant") ;
 328      // CONSIDER: set or assert OwnerIsThread == 1
 329      return ;
 330   }
 331 
 332   if (cur == Self) {
 333      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 334      _recursions ++ ;
 335      return ;
 336   }
 337 
 338   if (Self->is_lock_owned ((address)cur)) {
 339     assert (_recursions == 0, "internal state error");
 340     _recursions = 1 ;
 341     // Commute owner from a thread-specific on-stack BasicLockObject address to
 342     // a full-fledged "Thread *".
 343     _owner = Self ;
 344     OwnerIsThread = 1 ;
 345     return ;
 346   }
 347 
 348   // We've encountered genuine contention.
 349   assert (Self->_Stalled == 0, "invariant") ;
 350   Self->_Stalled = intptr_t(this) ;
 351 
 352   // Try one round of spinning *before* enqueueing Self
 353   // and before going through the awkward and expensive state
 354   // transitions.  The following spin is strictly optional ...
 355   // Note that if we acquire the monitor from an initial spin
 356   // we forgo posting JVMTI events and firing DTRACE probes.
 357   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 358      assert (_owner == Self      , "invariant") ;
 359      assert (_recursions == 0    , "invariant") ;
 360      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 361      Self->_Stalled = 0 ;
 362      return ;
 363   }
 364 
 365   assert (_owner != Self          , "invariant") ;
 366   assert (_succ  != Self          , "invariant") ;
 367   assert (Self->is_Java_thread()  , "invariant") ;
 368   JavaThread * jt = (JavaThread *) Self ;
 369   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
 370   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
 371   assert (this->object() != NULL  , "invariant") ;
 372   assert (_count >= 0, "invariant") ;
 373 
 374   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 375   // Ensure the object-monitor relationship remains stable while there's contention.
 376   Atomic::inc_ptr(&_count);
 377 
 378   EventJavaMonitorEnter event;
 379 
 380   { // Change java thread status to indicate blocked on monitor enter.
 381     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 382 
 383     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 384     if (JvmtiExport::should_post_monitor_contended_enter()) {
 385       JvmtiExport::post_monitor_contended_enter(jt, this);
 386 
 387       // The current thread does not yet own the monitor and does not
 388       // yet appear on any queues that would get it made the successor.
 389       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 390       // handler cannot accidentally consume an unpark() meant for the
 391       // ParkEvent associated with this ObjectMonitor.
 392     }
 393 
 394     OSThreadContendState osts(Self->osthread());
 395     ThreadBlockInVM tbivm(jt);
 396 
 397     Self->set_current_pending_monitor(this);
 398 
 399     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 400     for (;;) {
 401       jt->set_suspend_equivalent();
 402       // cleared by handle_special_suspend_equivalent_condition()
 403       // or java_suspend_self()
 404 
 405       EnterI (THREAD) ;
 406 
 407       if (!ExitSuspendEquivalent(jt)) break ;
 408 
 409       //
 410       // We have acquired the contended monitor, but while we were
 411       // waiting another thread suspended us. We don't want to enter
 412       // the monitor while suspended because that would surprise the
 413       // thread that suspended us.
 414       //
 415           _recursions = 0 ;
 416       _succ = NULL ;
 417       exit (false, Self) ;
 418 
 419       jt->java_suspend_self();
 420     }
 421     Self->set_current_pending_monitor(NULL);
 422 
 423     // We cleared the pending monitor info since we've just gotten past
 424     // the enter-check-for-suspend dance and we now own the monitor free
 425     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 426     // destructor can go to a safepoint at the end of this block. If we
 427     // do a thread dump during that safepoint, then this thread will show
 428     // as having "-locked" the monitor, but the OS and java.lang.Thread
 429     // states will still report that the thread is blocked trying to
 430     // acquire it.
 431   }
 432 
 433   Atomic::dec_ptr(&_count);
 434   assert (_count >= 0, "invariant") ;
 435   Self->_Stalled = 0 ;
 436 
 437   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 438   assert (_recursions == 0     , "invariant") ;
 439   assert (_owner == Self       , "invariant") ;
 440   assert (_succ  != Self       , "invariant") ;
 441   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 442 
 443   // The thread -- now the owner -- is back in vm mode.
 444   // Report the glorious news via TI,DTrace and jvmstat.
 445   // The probe effect is non-trivial.  All the reportage occurs
 446   // while we hold the monitor, increasing the length of the critical
 447   // section.  Amdahl's parallel speedup law comes vividly into play.
 448   //
 449   // Another option might be to aggregate the events (thread local or
 450   // per-monitor aggregation) and defer reporting until a more opportune
 451   // time -- such as next time some thread encounters contention but has
 452   // yet to acquire the lock.  While spinning that thread could
 453   // spinning we could increment JVMStat counters, etc.
 454 
 455   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 456   if (JvmtiExport::should_post_monitor_contended_entered()) {
 457     JvmtiExport::post_monitor_contended_entered(jt, this);
 458 
 459     // The current thread already owns the monitor and is not going to
 460     // call park() for the remainder of the monitor enter protocol. So
 461     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 462     // event handler consumed an unpark() issued by the thread that
 463     // just exited the monitor.
 464   }
 465 
 466   if (event.should_commit()) {
 467     event.set_klass(((oop)this->object())->klass());
 468     event.set_previousOwner((TYPE_JAVALANGTHREAD)_previous_owner_tid);
 469     event.set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
 470     event.commit();
 471   }
 472 
 473   if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
 474      ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
 475   }
 476 }
 477 
 478 
 479 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 480 // Callers must compensate as needed.
 481 
 482 int ObjectMonitor::TryLock (Thread * Self) {
 483    for (;;) {
 484       void * own = _owner ;
 485       if (own != NULL) return 0 ;
 486       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
 487          // Either guarantee _recursions == 0 or set _recursions = 0.
 488          assert (_recursions == 0, "invariant") ;
 489          assert (_owner == Self, "invariant") ;
 490          // CONSIDER: set or assert that OwnerIsThread == 1
 491          return 1 ;
 492       }
 493       // The lock had been free momentarily, but we lost the race to the lock.
 494       // Interference -- the CAS failed.
 495       // We can either return -1 or retry.
 496       // Retry doesn't make as much sense because the lock was just acquired.
 497       if (true) return -1 ;
 498    }
 499 }
 500 
 501 void ATTR ObjectMonitor::EnterI (TRAPS) {
 502     Thread * Self = THREAD ;
 503     assert (Self->is_Java_thread(), "invariant") ;
 504     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
 505 
 506     // Try the lock - TATAS
 507     if (TryLock (Self) > 0) {
 508         assert (_succ != Self              , "invariant") ;
 509         assert (_owner == Self             , "invariant") ;
 510         assert (_Responsible != Self       , "invariant") ;
 511         return ;
 512     }
 513 
 514     DeferredInitialize () ;
 515 
 516     // We try one round of spinning *before* enqueueing Self.
 517     //
 518     // If the _owner is ready but OFFPROC we could use a YieldTo()
 519     // operation to donate the remainder of this thread's quantum
 520     // to the owner.  This has subtle but beneficial affinity
 521     // effects.
 522 
 523     if (TrySpin (Self) > 0) {
 524         assert (_owner == Self        , "invariant") ;
 525         assert (_succ != Self         , "invariant") ;
 526         assert (_Responsible != Self  , "invariant") ;
 527         return ;
 528     }
 529 
 530     // The Spin failed -- Enqueue and park the thread ...
 531     assert (_succ  != Self            , "invariant") ;
 532     assert (_owner != Self            , "invariant") ;
 533     assert (_Responsible != Self      , "invariant") ;
 534 
 535     // Enqueue "Self" on ObjectMonitor's _cxq.
 536     //
 537     // Node acts as a proxy for Self.
 538     // As an aside, if were to ever rewrite the synchronization code mostly
 539     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 540     // Java objects.  This would avoid awkward lifecycle and liveness issues,
 541     // as well as eliminate a subset of ABA issues.
 542     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 543     //
 544 
 545     ObjectWaiter node(Self) ;
 546     Self->_ParkEvent->reset() ;
 547     node._prev   = (ObjectWaiter *) 0xBAD ;
 548     node.TState  = ObjectWaiter::TS_CXQ ;
 549 
 550     // Push "Self" onto the front of the _cxq.
 551     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 552     // Note that spinning tends to reduce the rate at which threads
 553     // enqueue and dequeue on EntryList|cxq.
 554     ObjectWaiter * nxt ;
 555     for (;;) {
 556         node._next = nxt = _cxq ;
 557         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
 558 
 559         // Interference - the CAS failed because _cxq changed.  Just retry.
 560         // As an optional optimization we retry the lock.
 561         if (TryLock (Self) > 0) {
 562             assert (_succ != Self         , "invariant") ;
 563             assert (_owner == Self        , "invariant") ;
 564             assert (_Responsible != Self  , "invariant") ;
 565             return ;
 566         }
 567     }
 568 
 569     // Check for cxq|EntryList edge transition to non-null.  This indicates
 570     // the onset of contention.  While contention persists exiting threads
 571     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 572     // operations revert to the faster 1-0 mode.  This enter operation may interleave
 573     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 574     // arrange for one of the contending thread to use a timed park() operations
 575     // to detect and recover from the race.  (Stranding is form of progress failure
 576     // where the monitor is unlocked but all the contending threads remain parked).
 577     // That is, at least one of the contended threads will periodically poll _owner.
 578     // One of the contending threads will become the designated "Responsible" thread.
 579     // The Responsible thread uses a timed park instead of a normal indefinite park
 580     // operation -- it periodically wakes and checks for and recovers from potential
 581     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 582     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 583     // be responsible for a monitor.
 584     //
 585     // Currently, one of the contended threads takes on the added role of "Responsible".
 586     // A viable alternative would be to use a dedicated "stranding checker" thread
 587     // that periodically iterated over all the threads (or active monitors) and unparked
 588     // successors where there was risk of stranding.  This would help eliminate the
 589     // timer scalability issues we see on some platforms as we'd only have one thread
 590     // -- the checker -- parked on a timer.
 591 
 592     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
 593         // Try to assume the role of responsible thread for the monitor.
 594         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 595         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 596     }
 597 
 598     // The lock have been released while this thread was occupied queueing
 599     // itself onto _cxq.  To close the race and avoid "stranding" and
 600     // progress-liveness failure we must resample-retry _owner before parking.
 601     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 602     // In this case the ST-MEMBAR is accomplished with CAS().
 603     //
 604     // TODO: Defer all thread state transitions until park-time.
 605     // Since state transitions are heavy and inefficient we'd like
 606     // to defer the state transitions until absolutely necessary,
 607     // and in doing so avoid some transitions ...
 608 
 609     TEVENT (Inflated enter - Contention) ;
 610     int nWakeups = 0 ;
 611     int RecheckInterval = 1 ;
 612 
 613     for (;;) {
 614 
 615         if (TryLock (Self) > 0) break ;
 616         assert (_owner != Self, "invariant") ;
 617 
 618         if ((SyncFlags & 2) && _Responsible == NULL) {
 619            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 620         }
 621 
 622         // park self
 623         if (_Responsible == Self || (SyncFlags & 1)) {
 624             TEVENT (Inflated enter - park TIMED) ;
 625             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
 626             // Increase the RecheckInterval, but clamp the value.
 627             RecheckInterval *= 8 ;
 628             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
 629         } else {
 630             TEVENT (Inflated enter - park UNTIMED) ;
 631             Self->_ParkEvent->park() ;
 632         }
 633 
 634         if (TryLock(Self) > 0) break ;
 635 
 636         // The lock is still contested.
 637         // Keep a tally of the # of futile wakeups.
 638         // Note that the counter is not protected by a lock or updated by atomics.
 639         // That is by design - we trade "lossy" counters which are exposed to
 640         // races during updates for a lower probe effect.
 641         TEVENT (Inflated enter - Futile wakeup) ;
 642         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 643            ObjectMonitor::_sync_FutileWakeups->inc() ;
 644         }
 645         ++ nWakeups ;
 646 
 647         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 648         // We can defer clearing _succ until after the spin completes
 649         // TrySpin() must tolerate being called with _succ == Self.
 650         // Try yet another round of adaptive spinning.
 651         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
 652 
 653         // We can find that we were unpark()ed and redesignated _succ while
 654         // we were spinning.  That's harmless.  If we iterate and call park(),
 655         // park() will consume the event and return immediately and we'll
 656         // just spin again.  This pattern can repeat, leaving _succ to simply
 657         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 658         // Alternately, we can sample fired() here, and if set, forgo spinning
 659         // in the next iteration.
 660 
 661         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 662            Self->_ParkEvent->reset() ;
 663            OrderAccess::fence() ;
 664         }
 665         if (_succ == Self) _succ = NULL ;
 666 
 667         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 668         OrderAccess::fence() ;
 669     }
 670 
 671     // Egress :
 672     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 673     // Normally we'll find Self on the EntryList .
 674     // From the perspective of the lock owner (this thread), the
 675     // EntryList is stable and cxq is prepend-only.
 676     // The head of cxq is volatile but the interior is stable.
 677     // In addition, Self.TState is stable.
 678 
 679     assert (_owner == Self      , "invariant") ;
 680     assert (object() != NULL    , "invariant") ;
 681     // I'd like to write:
 682     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 683     // but as we're at a safepoint that's not safe.
 684 
 685     UnlinkAfterAcquire (Self, &node) ;
 686     if (_succ == Self) _succ = NULL ;
 687 
 688     assert (_succ != Self, "invariant") ;
 689     if (_Responsible == Self) {
 690         _Responsible = NULL ;
 691         OrderAccess::fence(); // Dekker pivot-point
 692 
 693         // We may leave threads on cxq|EntryList without a designated
 694         // "Responsible" thread.  This is benign.  When this thread subsequently
 695         // exits the monitor it can "see" such preexisting "old" threads --
 696         // threads that arrived on the cxq|EntryList before the fence, above --
 697         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 698         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 699         // non-null and elect a new "Responsible" timer thread.
 700         //
 701         // This thread executes:
 702         //    ST Responsible=null; MEMBAR    (in enter epilog - here)
 703         //    LD cxq|EntryList               (in subsequent exit)
 704         //
 705         // Entering threads in the slow/contended path execute:
 706         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 707         //    The (ST cxq; MEMBAR) is accomplished with CAS().
 708         //
 709         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 710         // exit operation from floating above the ST Responsible=null.
 711     }
 712 
 713     // We've acquired ownership with CAS().
 714     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 715     // But since the CAS() this thread may have also stored into _succ,
 716     // EntryList, cxq or Responsible.  These meta-data updates must be
 717     // visible __before this thread subsequently drops the lock.
 718     // Consider what could occur if we didn't enforce this constraint --
 719     // STs to monitor meta-data and user-data could reorder with (become
 720     // visible after) the ST in exit that drops ownership of the lock.
 721     // Some other thread could then acquire the lock, but observe inconsistent
 722     // or old monitor meta-data and heap data.  That violates the JMM.
 723     // To that end, the 1-0 exit() operation must have at least STST|LDST
 724     // "release" barrier semantics.  Specifically, there must be at least a
 725     // STST|LDST barrier in exit() before the ST of null into _owner that drops
 726     // the lock.   The barrier ensures that changes to monitor meta-data and data
 727     // protected by the lock will be visible before we release the lock, and
 728     // therefore before some other thread (CPU) has a chance to acquire the lock.
 729     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 730     //
 731     // Critically, any prior STs to _succ or EntryList must be visible before
 732     // the ST of null into _owner in the *subsequent* (following) corresponding
 733     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 734     // execute a serializing instruction.
 735 
 736     if (SyncFlags & 8) {
 737        OrderAccess::fence() ;
 738     }
 739     return ;
 740 }
 741 
 742 // ReenterI() is a specialized inline form of the latter half of the
 743 // contended slow-path from EnterI().  We use ReenterI() only for
 744 // monitor reentry in wait().
 745 //
 746 // In the future we should reconcile EnterI() and ReenterI(), adding
 747 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 748 // loop accordingly.
 749 
 750 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
 751     assert (Self != NULL                , "invariant") ;
 752     assert (SelfNode != NULL            , "invariant") ;
 753     assert (SelfNode->_thread == Self   , "invariant") ;
 754     assert (_waiters > 0                , "invariant") ;
 755     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
 756     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
 757     JavaThread * jt = (JavaThread *) Self ;
 758 
 759     int nWakeups = 0 ;
 760     for (;;) {
 761         ObjectWaiter::TStates v = SelfNode->TState ;
 762         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
 763         assert    (_owner != Self, "invariant") ;
 764 
 765         if (TryLock (Self) > 0) break ;
 766         if (TrySpin (Self) > 0) break ;
 767 
 768         TEVENT (Wait Reentry - parking) ;
 769 
 770         // State transition wrappers around park() ...
 771         // ReenterI() wisely defers state transitions until
 772         // it's clear we must park the thread.
 773         {
 774            OSThreadContendState osts(Self->osthread());
 775            ThreadBlockInVM tbivm(jt);
 776 
 777            // cleared by handle_special_suspend_equivalent_condition()
 778            // or java_suspend_self()
 779            jt->set_suspend_equivalent();
 780            if (SyncFlags & 1) {
 781               Self->_ParkEvent->park ((jlong)1000) ;
 782            } else {
 783               Self->_ParkEvent->park () ;
 784            }
 785 
 786            // were we externally suspended while we were waiting?
 787            for (;;) {
 788               if (!ExitSuspendEquivalent (jt)) break ;
 789               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 790               jt->java_suspend_self();
 791               jt->set_suspend_equivalent();
 792            }
 793         }
 794 
 795         // Try again, but just so we distinguish between futile wakeups and
 796         // successful wakeups.  The following test isn't algorithmically
 797         // necessary, but it helps us maintain sensible statistics.
 798         if (TryLock(Self) > 0) break ;
 799 
 800         // The lock is still contested.
 801         // Keep a tally of the # of futile wakeups.
 802         // Note that the counter is not protected by a lock or updated by atomics.
 803         // That is by design - we trade "lossy" counters which are exposed to
 804         // races during updates for a lower probe effect.
 805         TEVENT (Wait Reentry - futile wakeup) ;
 806         ++ nWakeups ;
 807 
 808         // Assuming this is not a spurious wakeup we'll normally
 809         // find that _succ == Self.
 810         if (_succ == Self) _succ = NULL ;
 811 
 812         // Invariant: after clearing _succ a contending thread
 813         // *must* retry  _owner before parking.
 814         OrderAccess::fence() ;
 815 
 816         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 817           ObjectMonitor::_sync_FutileWakeups->inc() ;
 818         }
 819     }
 820 
 821     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 822     // Normally we'll find Self on the EntryList.
 823     // Unlinking from the EntryList is constant-time and atomic-free.
 824     // From the perspective of the lock owner (this thread), the
 825     // EntryList is stable and cxq is prepend-only.
 826     // The head of cxq is volatile but the interior is stable.
 827     // In addition, Self.TState is stable.
 828 
 829     assert (_owner == Self, "invariant") ;
 830     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 831     UnlinkAfterAcquire (Self, SelfNode) ;
 832     if (_succ == Self) _succ = NULL ;
 833     assert (_succ != Self, "invariant") ;
 834     SelfNode->TState = ObjectWaiter::TS_RUN ;
 835     OrderAccess::fence() ;      // see comments at the end of EnterI()
 836 }
 837 
 838 // after the thread acquires the lock in ::enter().  Equally, we could defer
 839 // unlinking the thread until ::exit()-time.
 840 
 841 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
 842 {
 843     assert (_owner == Self, "invariant") ;
 844     assert (SelfNode->_thread == Self, "invariant") ;
 845 
 846     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 847         // Normal case: remove Self from the DLL EntryList .
 848         // This is a constant-time operation.
 849         ObjectWaiter * nxt = SelfNode->_next ;
 850         ObjectWaiter * prv = SelfNode->_prev ;
 851         if (nxt != NULL) nxt->_prev = prv ;
 852         if (prv != NULL) prv->_next = nxt ;
 853         if (SelfNode == _EntryList ) _EntryList = nxt ;
 854         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 855         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 856         TEVENT (Unlink from EntryList) ;
 857     } else {
 858         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 859         // Inopportune interleaving -- Self is still on the cxq.
 860         // This usually means the enqueue of self raced an exiting thread.
 861         // Normally we'll find Self near the front of the cxq, so
 862         // dequeueing is typically fast.  If needbe we can accelerate
 863         // this with some MCS/CHL-like bidirectional list hints and advisory
 864         // back-links so dequeueing from the interior will normally operate
 865         // in constant-time.
 866         // Dequeue Self from either the head (with CAS) or from the interior
 867         // with a linear-time scan and normal non-atomic memory operations.
 868         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 869         // and then unlink Self from EntryList.  We have to drain eventually,
 870         // so it might as well be now.
 871 
 872         ObjectWaiter * v = _cxq ;
 873         assert (v != NULL, "invariant") ;
 874         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
 875             // The CAS above can fail from interference IFF a "RAT" arrived.
 876             // In that case Self must be in the interior and can no longer be
 877             // at the head of cxq.
 878             if (v == SelfNode) {
 879                 assert (_cxq != v, "invariant") ;
 880                 v = _cxq ;          // CAS above failed - start scan at head of list
 881             }
 882             ObjectWaiter * p ;
 883             ObjectWaiter * q = NULL ;
 884             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
 885                 q = p ;
 886                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 887             }
 888             assert (v != SelfNode,  "invariant") ;
 889             assert (p == SelfNode,  "Node not found on cxq") ;
 890             assert (p != _cxq,      "invariant") ;
 891             assert (q != NULL,      "invariant") ;
 892             assert (q->_next == p,  "invariant") ;
 893             q->_next = p->_next ;
 894         }
 895         TEVENT (Unlink from cxq) ;
 896     }
 897 
 898     // Diagnostic hygiene ...
 899     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
 900     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
 901     SelfNode->TState = ObjectWaiter::TS_RUN ;
 902 }
 903 
 904 // -----------------------------------------------------------------------------
 905 // Exit support
 906 //
 907 // exit()
 908 // ~~~~~~
 909 // Note that the collector can't reclaim the objectMonitor or deflate
 910 // the object out from underneath the thread calling ::exit() as the
 911 // thread calling ::exit() never transitions to a stable state.
 912 // This inhibits GC, which in turn inhibits asynchronous (and
 913 // inopportune) reclamation of "this".
 914 //
 915 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 916 // There's one exception to the claim above, however.  EnterI() can call
 917 // exit() to drop a lock if the acquirer has been externally suspended.
 918 // In that case exit() is called with _thread_state as _thread_blocked,
 919 // but the monitor's _count field is > 0, which inhibits reclamation.
 920 //
 921 // 1-0 exit
 922 // ~~~~~~~~
 923 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 924 // the fast-path operators have been optimized so the common ::exit()
 925 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
 926 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 927 // greatly improves latency -- MEMBAR and CAS having considerable local
 928 // latency on modern processors -- but at the cost of "stranding".  Absent the
 929 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 930 // ::enter() path, resulting in the entering thread being stranding
 931 // and a progress-liveness failure.   Stranding is extremely rare.
 932 // We use timers (timed park operations) & periodic polling to detect
 933 // and recover from stranding.  Potentially stranded threads periodically
 934 // wake up and poll the lock.  See the usage of the _Responsible variable.
 935 //
 936 // The CAS() in enter provides for safety and exclusion, while the CAS or
 937 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 938 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
 939 // We detect and recover from stranding with timers.
 940 //
 941 // If a thread transiently strands it'll park until (a) another
 942 // thread acquires the lock and then drops the lock, at which time the
 943 // exiting thread will notice and unpark the stranded thread, or, (b)
 944 // the timer expires.  If the lock is high traffic then the stranding latency
 945 // will be low due to (a).  If the lock is low traffic then the odds of
 946 // stranding are lower, although the worst-case stranding latency
 947 // is longer.  Critically, we don't want to put excessive load in the
 948 // platform's timer subsystem.  We want to minimize both the timer injection
 949 // rate (timers created/sec) as well as the number of timers active at
 950 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 951 // the integral of the # of active timers at any instant over time).
 952 // Both impinge on OS scalability.  Given that, at most one thread parked on
 953 // a monitor will use a timer.
 954 
 955 void ATTR ObjectMonitor::exit(bool not_suspended, TRAPS) {
 956    Thread * Self = THREAD ;
 957    if (THREAD != _owner) {
 958      if (THREAD->is_lock_owned((address) _owner)) {
 959        // Transmute _owner from a BasicLock pointer to a Thread address.
 960        // We don't need to hold _mutex for this transition.
 961        // Non-null to Non-null is safe as long as all readers can
 962        // tolerate either flavor.
 963        assert (_recursions == 0, "invariant") ;
 964        _owner = THREAD ;
 965        _recursions = 0 ;
 966        OwnerIsThread = 1 ;
 967      } else {
 968        // NOTE: we need to handle unbalanced monitor enter/exit
 969        // in native code by throwing an exception.
 970        // TODO: Throw an IllegalMonitorStateException ?
 971        TEVENT (Exit - Throw IMSX) ;
 972        assert(false, "Non-balanced monitor enter/exit!");
 973        if (false) {
 974           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 975        }
 976        return;
 977      }
 978    }
 979 
 980    if (_recursions != 0) {
 981      _recursions--;        // this is simple recursive enter
 982      TEVENT (Inflated exit - recursive) ;
 983      return ;
 984    }
 985 
 986    // Invariant: after setting Responsible=null an thread must execute
 987    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 988    if ((SyncFlags & 4) == 0) {
 989       _Responsible = NULL ;
 990    }
 991 
 992 #if INCLUDE_TRACE
 993    // get the owner's thread id for the MonitorEnter event
 994    // if it is enabled and the thread isn't suspended
 995    if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) {
 996      _previous_owner_tid = SharedRuntime::get_java_tid(Self);
 997    }
 998 #endif
 999 
1000    for (;;) {
1001       assert (THREAD == _owner, "invariant") ;
1002 
1003 
1004       if (Knob_ExitPolicy == 0) {
1005          // release semantics: prior loads and stores from within the critical section
1006          // must not float (reorder) past the following store that drops the lock.
1007          // On SPARC that requires MEMBAR #loadstore|#storestore.
1008          // But of course in TSO #loadstore|#storestore is not required.
1009          // I'd like to write one of the following:
1010          // A.  OrderAccess::release() ; _owner = NULL
1011          // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
1012          // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
1013          // store into a _dummy variable.  That store is not needed, but can result
1014          // in massive wasteful coherency traffic on classic SMP systems.
1015          // Instead, I use release_store(), which is implemented as just a simple
1016          // ST on x64, x86 and SPARC.
1017          OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
1018          OrderAccess::storeload() ;                         // See if we need to wake a successor
1019          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1020             TEVENT (Inflated exit - simple egress) ;
1021             return ;
1022          }
1023          TEVENT (Inflated exit - complex egress) ;
1024 
1025          // Normally the exiting thread is responsible for ensuring succession,
1026          // but if other successors are ready or other entering threads are spinning
1027          // then this thread can simply store NULL into _owner and exit without
1028          // waking a successor.  The existence of spinners or ready successors
1029          // guarantees proper succession (liveness).  Responsibility passes to the
1030          // ready or running successors.  The exiting thread delegates the duty.
1031          // More precisely, if a successor already exists this thread is absolved
1032          // of the responsibility of waking (unparking) one.
1033          //
1034          // The _succ variable is critical to reducing futile wakeup frequency.
1035          // _succ identifies the "heir presumptive" thread that has been made
1036          // ready (unparked) but that has not yet run.  We need only one such
1037          // successor thread to guarantee progress.
1038          // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1039          // section 3.3 "Futile Wakeup Throttling" for details.
1040          //
1041          // Note that spinners in Enter() also set _succ non-null.
1042          // In the current implementation spinners opportunistically set
1043          // _succ so that exiting threads might avoid waking a successor.
1044          // Another less appealing alternative would be for the exiting thread
1045          // to drop the lock and then spin briefly to see if a spinner managed
1046          // to acquire the lock.  If so, the exiting thread could exit
1047          // immediately without waking a successor, otherwise the exiting
1048          // thread would need to dequeue and wake a successor.
1049          // (Note that we'd need to make the post-drop spin short, but no
1050          // shorter than the worst-case round-trip cache-line migration time.
1051          // The dropped lock needs to become visible to the spinner, and then
1052          // the acquisition of the lock by the spinner must become visible to
1053          // the exiting thread).
1054          //
1055 
1056          // It appears that an heir-presumptive (successor) must be made ready.
1057          // Only the current lock owner can manipulate the EntryList or
1058          // drain _cxq, so we need to reacquire the lock.  If we fail
1059          // to reacquire the lock the responsibility for ensuring succession
1060          // falls to the new owner.
1061          //
1062          if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1063             return ;
1064          }
1065          TEVENT (Exit - Reacquired) ;
1066       } else {
1067          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1068             OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
1069             OrderAccess::storeload() ;
1070             // Ratify the previously observed values.
1071             if (_cxq == NULL || _succ != NULL) {
1072                 TEVENT (Inflated exit - simple egress) ;
1073                 return ;
1074             }
1075 
1076             // inopportune interleaving -- the exiting thread (this thread)
1077             // in the fast-exit path raced an entering thread in the slow-enter
1078             // path.
1079             // We have two choices:
1080             // A.  Try to reacquire the lock.
1081             //     If the CAS() fails return immediately, otherwise
1082             //     we either restart/rerun the exit operation, or simply
1083             //     fall-through into the code below which wakes a successor.
1084             // B.  If the elements forming the EntryList|cxq are TSM
1085             //     we could simply unpark() the lead thread and return
1086             //     without having set _succ.
1087             if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1088                TEVENT (Inflated exit - reacquired succeeded) ;
1089                return ;
1090             }
1091             TEVENT (Inflated exit - reacquired failed) ;
1092          } else {
1093             TEVENT (Inflated exit - complex egress) ;
1094          }
1095       }
1096 
1097       guarantee (_owner == THREAD, "invariant") ;
1098 
1099       ObjectWaiter * w = NULL ;
1100       int QMode = Knob_QMode ;
1101 
1102       if (QMode == 2 && _cxq != NULL) {
1103           // QMode == 2 : cxq has precedence over EntryList.
1104           // Try to directly wake a successor from the cxq.
1105           // If successful, the successor will need to unlink itself from cxq.
1106           w = _cxq ;
1107           assert (w != NULL, "invariant") ;
1108           assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1109           ExitEpilog (Self, w) ;
1110           return ;
1111       }
1112 
1113       if (QMode == 3 && _cxq != NULL) {
1114           // Aggressively drain cxq into EntryList at the first opportunity.
1115           // This policy ensure that recently-run threads live at the head of EntryList.
1116           // Drain _cxq into EntryList - bulk transfer.
1117           // First, detach _cxq.
1118           // The following loop is tantamount to: w = swap (&cxq, NULL)
1119           w = _cxq ;
1120           for (;;) {
1121              assert (w != NULL, "Invariant") ;
1122              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1123              if (u == w) break ;
1124              w = u ;
1125           }
1126           assert (w != NULL              , "invariant") ;
1127 
1128           ObjectWaiter * q = NULL ;
1129           ObjectWaiter * p ;
1130           for (p = w ; p != NULL ; p = p->_next) {
1131               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1132               p->TState = ObjectWaiter::TS_ENTER ;
1133               p->_prev = q ;
1134               q = p ;
1135           }
1136 
1137           // Append the RATs to the EntryList
1138           // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1139           ObjectWaiter * Tail ;
1140           for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
1141           if (Tail == NULL) {
1142               _EntryList = w ;
1143           } else {
1144               Tail->_next = w ;
1145               w->_prev = Tail ;
1146           }
1147 
1148           // Fall thru into code that tries to wake a successor from EntryList
1149       }
1150 
1151       if (QMode == 4 && _cxq != NULL) {
1152           // Aggressively drain cxq into EntryList at the first opportunity.
1153           // This policy ensure that recently-run threads live at the head of EntryList.
1154 
1155           // Drain _cxq into EntryList - bulk transfer.
1156           // First, detach _cxq.
1157           // The following loop is tantamount to: w = swap (&cxq, NULL)
1158           w = _cxq ;
1159           for (;;) {
1160              assert (w != NULL, "Invariant") ;
1161              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1162              if (u == w) break ;
1163              w = u ;
1164           }
1165           assert (w != NULL              , "invariant") ;
1166 
1167           ObjectWaiter * q = NULL ;
1168           ObjectWaiter * p ;
1169           for (p = w ; p != NULL ; p = p->_next) {
1170               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1171               p->TState = ObjectWaiter::TS_ENTER ;
1172               p->_prev = q ;
1173               q = p ;
1174           }
1175 
1176           // Prepend the RATs to the EntryList
1177           if (_EntryList != NULL) {
1178               q->_next = _EntryList ;
1179               _EntryList->_prev = q ;
1180           }
1181           _EntryList = w ;
1182 
1183           // Fall thru into code that tries to wake a successor from EntryList
1184       }
1185 
1186       w = _EntryList  ;
1187       if (w != NULL) {
1188           // I'd like to write: guarantee (w->_thread != Self).
1189           // But in practice an exiting thread may find itself on the EntryList.
1190           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1191           // then calls exit().  Exit release the lock by setting O._owner to NULL.
1192           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
1193           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1194           // release the lock "O".  T2 resumes immediately after the ST of null into
1195           // _owner, above.  T2 notices that the EntryList is populated, so it
1196           // reacquires the lock and then finds itself on the EntryList.
1197           // Given all that, we have to tolerate the circumstance where "w" is
1198           // associated with Self.
1199           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1200           ExitEpilog (Self, w) ;
1201           return ;
1202       }
1203 
1204       // If we find that both _cxq and EntryList are null then just
1205       // re-run the exit protocol from the top.
1206       w = _cxq ;
1207       if (w == NULL) continue ;
1208 
1209       // Drain _cxq into EntryList - bulk transfer.
1210       // First, detach _cxq.
1211       // The following loop is tantamount to: w = swap (&cxq, NULL)
1212       for (;;) {
1213           assert (w != NULL, "Invariant") ;
1214           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1215           if (u == w) break ;
1216           w = u ;
1217       }
1218       TEVENT (Inflated exit - drain cxq into EntryList) ;
1219 
1220       assert (w != NULL              , "invariant") ;
1221       assert (_EntryList  == NULL    , "invariant") ;
1222 
1223       // Convert the LIFO SLL anchored by _cxq into a DLL.
1224       // The list reorganization step operates in O(LENGTH(w)) time.
1225       // It's critical that this step operate quickly as
1226       // "Self" still holds the outer-lock, restricting parallelism
1227       // and effectively lengthening the critical section.
1228       // Invariant: s chases t chases u.
1229       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1230       // we have faster access to the tail.
1231 
1232       if (QMode == 1) {
1233          // QMode == 1 : drain cxq to EntryList, reversing order
1234          // We also reverse the order of the list.
1235          ObjectWaiter * s = NULL ;
1236          ObjectWaiter * t = w ;
1237          ObjectWaiter * u = NULL ;
1238          while (t != NULL) {
1239              guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
1240              t->TState = ObjectWaiter::TS_ENTER ;
1241              u = t->_next ;
1242              t->_prev = u ;
1243              t->_next = s ;
1244              s = t;
1245              t = u ;
1246          }
1247          _EntryList  = s ;
1248          assert (s != NULL, "invariant") ;
1249       } else {
1250          // QMode == 0 or QMode == 2
1251          _EntryList = w ;
1252          ObjectWaiter * q = NULL ;
1253          ObjectWaiter * p ;
1254          for (p = w ; p != NULL ; p = p->_next) {
1255              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1256              p->TState = ObjectWaiter::TS_ENTER ;
1257              p->_prev = q ;
1258              q = p ;
1259          }
1260       }
1261 
1262       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1263       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1264 
1265       // See if we can abdicate to a spinner instead of waking a thread.
1266       // A primary goal of the implementation is to reduce the
1267       // context-switch rate.
1268       if (_succ != NULL) continue;
1269 
1270       w = _EntryList  ;
1271       if (w != NULL) {
1272           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1273           ExitEpilog (Self, w) ;
1274           return ;
1275       }
1276    }
1277 }
1278 
1279 // ExitSuspendEquivalent:
1280 // A faster alternate to handle_special_suspend_equivalent_condition()
1281 //
1282 // handle_special_suspend_equivalent_condition() unconditionally
1283 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1284 // operations have high latency.  Note that in ::enter() we call HSSEC
1285 // while holding the monitor, so we effectively lengthen the critical sections.
1286 //
1287 // There are a number of possible solutions:
1288 //
1289 // A.  To ameliorate the problem we might also defer state transitions
1290 //     to as late as possible -- just prior to parking.
1291 //     Given that, we'd call HSSEC after having returned from park(),
1292 //     but before attempting to acquire the monitor.  This is only a
1293 //     partial solution.  It avoids calling HSSEC while holding the
1294 //     monitor (good), but it still increases successor reacquisition latency --
1295 //     the interval between unparking a successor and the time the successor
1296 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1297 //     If we use this technique we can also avoid EnterI()-exit() loop
1298 //     in ::enter() where we iteratively drop the lock and then attempt
1299 //     to reacquire it after suspending.
1300 //
1301 // B.  In the future we might fold all the suspend bits into a
1302 //     composite per-thread suspend flag and then update it with CAS().
1303 //     Alternately, a Dekker-like mechanism with multiple variables
1304 //     would suffice:
1305 //       ST Self->_suspend_equivalent = false
1306 //       MEMBAR
1307 //       LD Self_>_suspend_flags
1308 //
1309 
1310 
1311 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
1312    int Mode = Knob_FastHSSEC ;
1313    if (Mode && !jSelf->is_external_suspend()) {
1314       assert (jSelf->is_suspend_equivalent(), "invariant") ;
1315       jSelf->clear_suspend_equivalent() ;
1316       if (2 == Mode) OrderAccess::storeload() ;
1317       if (!jSelf->is_external_suspend()) return false ;
1318       // We raced a suspension -- fall thru into the slow path
1319       TEVENT (ExitSuspendEquivalent - raced) ;
1320       jSelf->set_suspend_equivalent() ;
1321    }
1322    return jSelf->handle_special_suspend_equivalent_condition() ;
1323 }
1324 
1325 
1326 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
1327    assert (_owner == Self, "invariant") ;
1328 
1329    // Exit protocol:
1330    // 1. ST _succ = wakee
1331    // 2. membar #loadstore|#storestore;
1332    // 2. ST _owner = NULL
1333    // 3. unpark(wakee)
1334 
1335    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
1336    ParkEvent * Trigger = Wakee->_event ;
1337 
1338    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1339    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1340    // out-of-scope (non-extant).
1341    Wakee  = NULL ;
1342 
1343    // Drop the lock
1344    OrderAccess::release_store_ptr (&_owner, NULL) ;
1345    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
1346 
1347    if (SafepointSynchronize::do_call_back()) {
1348       TEVENT (unpark before SAFEPOINT) ;
1349    }
1350 
1351    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1352    Trigger->unpark() ;
1353 
1354    // Maintain stats and report events to JVMTI
1355    if (ObjectMonitor::_sync_Parks != NULL) {
1356       ObjectMonitor::_sync_Parks->inc() ;
1357    }
1358 }
1359 
1360 
1361 // -----------------------------------------------------------------------------
1362 // Class Loader deadlock handling.
1363 //
1364 // complete_exit exits a lock returning recursion count
1365 // complete_exit/reenter operate as a wait without waiting
1366 // complete_exit requires an inflated monitor
1367 // The _owner field is not always the Thread addr even with an
1368 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1369 // thread due to contention.
1370 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1371    Thread * const Self = THREAD;
1372    assert(Self->is_Java_thread(), "Must be Java thread!");
1373    JavaThread *jt = (JavaThread *)THREAD;
1374 
1375    DeferredInitialize();
1376 
1377    if (THREAD != _owner) {
1378     if (THREAD->is_lock_owned ((address)_owner)) {
1379        assert(_recursions == 0, "internal state error");
1380        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
1381        _recursions = 0 ;
1382        OwnerIsThread = 1 ;
1383     }
1384    }
1385 
1386    guarantee(Self == _owner, "complete_exit not owner");
1387    intptr_t save = _recursions; // record the old recursion count
1388    _recursions = 0;        // set the recursion level to be 0
1389    exit (true, Self) ;           // exit the monitor
1390    guarantee (_owner != Self, "invariant");
1391    return save;
1392 }
1393 
1394 // reenter() enters a lock and sets recursion count
1395 // complete_exit/reenter operate as a wait without waiting
1396 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1397    Thread * const Self = THREAD;
1398    assert(Self->is_Java_thread(), "Must be Java thread!");
1399    JavaThread *jt = (JavaThread *)THREAD;
1400 
1401    guarantee(_owner != Self, "reenter already owner");
1402    enter (THREAD);       // enter the monitor
1403    guarantee (_recursions == 0, "reenter recursion");
1404    _recursions = recursions;
1405    return;
1406 }
1407 
1408 
1409 // -----------------------------------------------------------------------------
1410 // A macro is used below because there may already be a pending
1411 // exception which should not abort the execution of the routines
1412 // which use this (which is why we don't put this into check_slow and
1413 // call it with a CHECK argument).
1414 
1415 #define CHECK_OWNER()                                                             \
1416   do {                                                                            \
1417     if (THREAD != _owner) {                                                       \
1418       if (THREAD->is_lock_owned((address) _owner)) {                              \
1419         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
1420         _recursions = 0;                                                          \
1421         OwnerIsThread = 1 ;                                                       \
1422       } else {                                                                    \
1423         TEVENT (Throw IMSX) ;                                                     \
1424         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
1425       }                                                                           \
1426     }                                                                             \
1427   } while (false)
1428 
1429 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1430 // TODO-FIXME: remove check_slow() -- it's likely dead.
1431 
1432 void ObjectMonitor::check_slow(TRAPS) {
1433   TEVENT (check_slow - throw IMSX) ;
1434   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1435   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1436 }
1437 
1438 static int Adjust (volatile int * adr, int dx) {
1439   int v ;
1440   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
1441   return v ;
1442 }
1443 
1444 // helper method for posting a monitor wait event
1445 void ObjectMonitor::post_monitor_wait_event(EventJavaMonitorWait* event,
1446                                                            jlong notifier_tid,
1447                                                            jlong timeout,
1448                                                            bool timedout) {
1449   event->set_klass(((oop)this->object())->klass());
1450   event->set_timeout((TYPE_ULONG)timeout);
1451   event->set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
1452   event->set_notifier((TYPE_OSTHREAD)notifier_tid);
1453   event->set_timedOut((TYPE_BOOLEAN)timedout);
1454   event->commit();
1455 }
1456 
1457 // -----------------------------------------------------------------------------
1458 // Wait/Notify/NotifyAll
1459 //
1460 // Note: a subset of changes to ObjectMonitor::wait()
1461 // will need to be replicated in complete_exit above
1462 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1463    Thread * const Self = THREAD ;
1464    assert(Self->is_Java_thread(), "Must be Java thread!");
1465    JavaThread *jt = (JavaThread *)THREAD;
1466 
1467    DeferredInitialize () ;
1468 
1469    // Throw IMSX or IEX.
1470    CHECK_OWNER();
1471 
1472    EventJavaMonitorWait event;
1473 
1474    // check for a pending interrupt
1475    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1476      // post monitor waited event.  Note that this is past-tense, we are done waiting.
1477      if (JvmtiExport::should_post_monitor_waited()) {
1478         // Note: 'false' parameter is passed here because the
1479         // wait was not timed out due to thread interrupt.
1480         JvmtiExport::post_monitor_waited(jt, this, false);
1481 
1482         // In this short circuit of the monitor wait protocol, the
1483         // current thread never drops ownership of the monitor and
1484         // never gets added to the wait queue so the current thread
1485         // cannot be made the successor. This means that the
1486         // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1487         // consume an unpark() meant for the ParkEvent associated with
1488         // this ObjectMonitor.
1489      }
1490      if (event.should_commit()) {
1491        post_monitor_wait_event(&event, 0, millis, false);
1492      }
1493      TEVENT (Wait - Throw IEX) ;
1494      THROW(vmSymbols::java_lang_InterruptedException());
1495      return ;
1496    }
1497 
1498    TEVENT (Wait) ;
1499 
1500    assert (Self->_Stalled == 0, "invariant") ;
1501    Self->_Stalled = intptr_t(this) ;
1502    jt->set_current_waiting_monitor(this);
1503 
1504    // create a node to be put into the queue
1505    // Critically, after we reset() the event but prior to park(), we must check
1506    // for a pending interrupt.
1507    ObjectWaiter node(Self);
1508    node.TState = ObjectWaiter::TS_WAIT ;
1509    Self->_ParkEvent->reset() ;
1510    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1511 
1512    // Enter the waiting queue, which is a circular doubly linked list in this case
1513    // but it could be a priority queue or any data structure.
1514    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1515    // by the the owner of the monitor *except* in the case where park()
1516    // returns because of a timeout of interrupt.  Contention is exceptionally rare
1517    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1518 
1519    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
1520    AddWaiter (&node) ;
1521    Thread::SpinRelease (&_WaitSetLock) ;
1522 
1523    if ((SyncFlags & 4) == 0) {
1524       _Responsible = NULL ;
1525    }
1526    intptr_t save = _recursions; // record the old recursion count
1527    _waiters++;                  // increment the number of waiters
1528    _recursions = 0;             // set the recursion level to be 1
1529    exit (true, Self) ;                    // exit the monitor
1530    guarantee (_owner != Self, "invariant") ;
1531 
1532    // The thread is on the WaitSet list - now park() it.
1533    // On MP systems it's conceivable that a brief spin before we park
1534    // could be profitable.
1535    //
1536    // TODO-FIXME: change the following logic to a loop of the form
1537    //   while (!timeout && !interrupted && _notified == 0) park()
1538 
1539    int ret = OS_OK ;
1540    int WasNotified = 0 ;
1541    { // State transition wrappers
1542      OSThread* osthread = Self->osthread();
1543      OSThreadWaitState osts(osthread, true);
1544      {
1545        ThreadBlockInVM tbivm(jt);
1546        // Thread is in thread_blocked state and oop access is unsafe.
1547        jt->set_suspend_equivalent();
1548 
1549        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1550            // Intentionally empty
1551        } else
1552        if (node._notified == 0) {
1553          if (millis <= 0) {
1554             Self->_ParkEvent->park () ;
1555          } else {
1556             ret = Self->_ParkEvent->park (millis) ;
1557          }
1558        }
1559 
1560        // were we externally suspended while we were waiting?
1561        if (ExitSuspendEquivalent (jt)) {
1562           // TODO-FIXME: add -- if succ == Self then succ = null.
1563           jt->java_suspend_self();
1564        }
1565 
1566      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1567 
1568 
1569      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1570      // from the WaitSet to the EntryList.
1571      // See if we need to remove Node from the WaitSet.
1572      // We use double-checked locking to avoid grabbing _WaitSetLock
1573      // if the thread is not on the wait queue.
1574      //
1575      // Note that we don't need a fence before the fetch of TState.
1576      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1577      // written by the is thread. (perhaps the fetch might even be satisfied
1578      // by a look-aside into the processor's own store buffer, although given
1579      // the length of the code path between the prior ST and this load that's
1580      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1581      // then we'll acquire the lock and then re-fetch a fresh TState value.
1582      // That is, we fail toward safety.
1583 
1584      if (node.TState == ObjectWaiter::TS_WAIT) {
1585          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
1586          if (node.TState == ObjectWaiter::TS_WAIT) {
1587             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
1588             assert(node._notified == 0, "invariant");
1589             node.TState = ObjectWaiter::TS_RUN ;
1590          }
1591          Thread::SpinRelease (&_WaitSetLock) ;
1592      }
1593 
1594      // The thread is now either on off-list (TS_RUN),
1595      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1596      // The Node's TState variable is stable from the perspective of this thread.
1597      // No other threads will asynchronously modify TState.
1598      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
1599      OrderAccess::loadload() ;
1600      if (_succ == Self) _succ = NULL ;
1601      WasNotified = node._notified ;
1602 
1603      // Reentry phase -- reacquire the monitor.
1604      // re-enter contended monitor after object.wait().
1605      // retain OBJECT_WAIT state until re-enter successfully completes
1606      // Thread state is thread_in_vm and oop access is again safe,
1607      // although the raw address of the object may have changed.
1608      // (Don't cache naked oops over safepoints, of course).
1609 
1610      // post monitor waited event. Note that this is past-tense, we are done waiting.
1611      if (JvmtiExport::should_post_monitor_waited()) {
1612        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1613 
1614        if (node._notified != 0 && _succ == Self) {
1615          // In this part of the monitor wait-notify-reenter protocol it
1616          // is possible (and normal) for another thread to do a fastpath
1617          // monitor enter-exit while this thread is still trying to get
1618          // to the reenter portion of the protocol.
1619          //
1620          // The ObjectMonitor was notified and the current thread is
1621          // the successor which also means that an unpark() has already
1622          // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1623          // consume the unpark() that was done when the successor was
1624          // set because the same ParkEvent is shared between Java
1625          // monitors and JVM/TI RawMonitors (for now).
1626          //
1627          // We redo the unpark() to ensure forward progress, i.e., we
1628          // don't want all pending threads hanging (parked) with none
1629          // entering the unlocked monitor.
1630          node._event->unpark();
1631        }
1632      }
1633 
1634      if (event.should_commit()) {
1635        post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
1636      }
1637 
1638      OrderAccess::fence() ;
1639 
1640      assert (Self->_Stalled != 0, "invariant") ;
1641      Self->_Stalled = 0 ;
1642 
1643      assert (_owner != Self, "invariant") ;
1644      ObjectWaiter::TStates v = node.TState ;
1645      if (v == ObjectWaiter::TS_RUN) {
1646          enter (Self) ;
1647      } else {
1648          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
1649          ReenterI (Self, &node) ;
1650          node.wait_reenter_end(this);
1651      }
1652 
1653      // Self has reacquired the lock.
1654      // Lifecycle - the node representing Self must not appear on any queues.
1655      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1656      // want residual elements associated with this thread left on any lists.
1657      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
1658      assert    (_owner == Self, "invariant") ;
1659      assert    (_succ != Self , "invariant") ;
1660    } // OSThreadWaitState()
1661 
1662    jt->set_current_waiting_monitor(NULL);
1663 
1664    guarantee (_recursions == 0, "invariant") ;
1665    _recursions = save;     // restore the old recursion count
1666    _waiters--;             // decrement the number of waiters
1667 
1668    // Verify a few postconditions
1669    assert (_owner == Self       , "invariant") ;
1670    assert (_succ  != Self       , "invariant") ;
1671    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
1672 
1673    if (SyncFlags & 32) {
1674       OrderAccess::fence() ;
1675    }
1676 
1677    // check if the notification happened
1678    if (!WasNotified) {
1679      // no, it could be timeout or Thread.interrupt() or both
1680      // check for interrupt event, otherwise it is timeout
1681      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1682        TEVENT (Wait - throw IEX from epilog) ;
1683        THROW(vmSymbols::java_lang_InterruptedException());
1684      }
1685    }
1686 
1687    // NOTE: Spurious wake up will be consider as timeout.
1688    // Monitor notify has precedence over thread interrupt.
1689 }
1690 
1691 
1692 // Consider:
1693 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1694 // then instead of transferring a thread from the WaitSet to the EntryList
1695 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1696 
1697 void ObjectMonitor::notify(TRAPS) {
1698   CHECK_OWNER();
1699   if (_WaitSet == NULL) {
1700      TEVENT (Empty-Notify) ;
1701      return ;
1702   }
1703   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1704 
1705   int Policy = Knob_MoveNotifyee ;
1706 
1707   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
1708   ObjectWaiter * iterator = DequeueWaiter() ;
1709   if (iterator != NULL) {
1710      TEVENT (Notify1 - Transfer) ;
1711      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1712      guarantee (iterator->_notified == 0, "invariant") ;
1713      if (Policy != 4) {
1714         iterator->TState = ObjectWaiter::TS_ENTER ;
1715      }
1716      iterator->_notified = 1 ;
1717      Thread * Self = THREAD;
1718      iterator->_notifier_tid = Self->osthread()->thread_id();
1719 
1720      ObjectWaiter * List = _EntryList ;
1721      if (List != NULL) {
1722         assert (List->_prev == NULL, "invariant") ;
1723         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1724         assert (List != iterator, "invariant") ;
1725      }
1726 
1727      if (Policy == 0) {       // prepend to EntryList
1728          if (List == NULL) {
1729              iterator->_next = iterator->_prev = NULL ;
1730              _EntryList = iterator ;
1731          } else {
1732              List->_prev = iterator ;
1733              iterator->_next = List ;
1734              iterator->_prev = NULL ;
1735              _EntryList = iterator ;
1736         }
1737      } else
1738      if (Policy == 1) {      // append to EntryList
1739          if (List == NULL) {
1740              iterator->_next = iterator->_prev = NULL ;
1741              _EntryList = iterator ;
1742          } else {
1743             // CONSIDER:  finding the tail currently requires a linear-time walk of
1744             // the EntryList.  We can make tail access constant-time by converting to
1745             // a CDLL instead of using our current DLL.
1746             ObjectWaiter * Tail ;
1747             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1748             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1749             Tail->_next = iterator ;
1750             iterator->_prev = Tail ;
1751             iterator->_next = NULL ;
1752         }
1753      } else
1754      if (Policy == 2) {      // prepend to cxq
1755          // prepend to cxq
1756          if (List == NULL) {
1757              iterator->_next = iterator->_prev = NULL ;
1758              _EntryList = iterator ;
1759          } else {
1760             iterator->TState = ObjectWaiter::TS_CXQ ;
1761             for (;;) {
1762                 ObjectWaiter * Front = _cxq ;
1763                 iterator->_next = Front ;
1764                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1765                     break ;
1766                 }
1767             }
1768          }
1769      } else
1770      if (Policy == 3) {      // append to cxq
1771         iterator->TState = ObjectWaiter::TS_CXQ ;
1772         for (;;) {
1773             ObjectWaiter * Tail ;
1774             Tail = _cxq ;
1775             if (Tail == NULL) {
1776                 iterator->_next = NULL ;
1777                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1778                    break ;
1779                 }
1780             } else {
1781                 while (Tail->_next != NULL) Tail = Tail->_next ;
1782                 Tail->_next = iterator ;
1783                 iterator->_prev = Tail ;
1784                 iterator->_next = NULL ;
1785                 break ;
1786             }
1787         }
1788      } else {
1789         ParkEvent * ev = iterator->_event ;
1790         iterator->TState = ObjectWaiter::TS_RUN ;
1791         OrderAccess::fence() ;
1792         ev->unpark() ;
1793      }
1794 
1795      if (Policy < 4) {
1796        iterator->wait_reenter_begin(this);
1797      }
1798 
1799      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1800      // move the add-to-EntryList operation, above, outside the critical section
1801      // protected by _WaitSetLock.  In practice that's not useful.  With the
1802      // exception of  wait() timeouts and interrupts the monitor owner
1803      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1804      // on _WaitSetLock so it's not profitable to reduce the length of the
1805      // critical section.
1806   }
1807 
1808   Thread::SpinRelease (&_WaitSetLock) ;
1809 
1810   if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
1811      ObjectMonitor::_sync_Notifications->inc() ;
1812   }
1813 }
1814 
1815 
1816 void ObjectMonitor::notifyAll(TRAPS) {
1817   CHECK_OWNER();
1818   ObjectWaiter* iterator;
1819   if (_WaitSet == NULL) {
1820       TEVENT (Empty-NotifyAll) ;
1821       return ;
1822   }
1823   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1824 
1825   int Policy = Knob_MoveNotifyee ;
1826   int Tally = 0 ;
1827   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
1828 
1829   for (;;) {
1830      iterator = DequeueWaiter () ;
1831      if (iterator == NULL) break ;
1832      TEVENT (NotifyAll - Transfer1) ;
1833      ++Tally ;
1834 
1835      // Disposition - what might we do with iterator ?
1836      // a.  add it directly to the EntryList - either tail or head.
1837      // b.  push it onto the front of the _cxq.
1838      // For now we use (a).
1839 
1840      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1841      guarantee (iterator->_notified == 0, "invariant") ;
1842      iterator->_notified = 1 ;
1843      Thread * Self = THREAD;
1844      iterator->_notifier_tid = Self->osthread()->thread_id();
1845      if (Policy != 4) {
1846         iterator->TState = ObjectWaiter::TS_ENTER ;
1847      }
1848 
1849      ObjectWaiter * List = _EntryList ;
1850      if (List != NULL) {
1851         assert (List->_prev == NULL, "invariant") ;
1852         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1853         assert (List != iterator, "invariant") ;
1854      }
1855 
1856      if (Policy == 0) {       // prepend to EntryList
1857          if (List == NULL) {
1858              iterator->_next = iterator->_prev = NULL ;
1859              _EntryList = iterator ;
1860          } else {
1861              List->_prev = iterator ;
1862              iterator->_next = List ;
1863              iterator->_prev = NULL ;
1864              _EntryList = iterator ;
1865         }
1866      } else
1867      if (Policy == 1) {      // append to EntryList
1868          if (List == NULL) {
1869              iterator->_next = iterator->_prev = NULL ;
1870              _EntryList = iterator ;
1871          } else {
1872             // CONSIDER:  finding the tail currently requires a linear-time walk of
1873             // the EntryList.  We can make tail access constant-time by converting to
1874             // a CDLL instead of using our current DLL.
1875             ObjectWaiter * Tail ;
1876             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1877             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1878             Tail->_next = iterator ;
1879             iterator->_prev = Tail ;
1880             iterator->_next = NULL ;
1881         }
1882      } else
1883      if (Policy == 2) {      // prepend to cxq
1884          // prepend to cxq
1885          iterator->TState = ObjectWaiter::TS_CXQ ;
1886          for (;;) {
1887              ObjectWaiter * Front = _cxq ;
1888              iterator->_next = Front ;
1889              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1890                  break ;
1891              }
1892          }
1893      } else
1894      if (Policy == 3) {      // append to cxq
1895         iterator->TState = ObjectWaiter::TS_CXQ ;
1896         for (;;) {
1897             ObjectWaiter * Tail ;
1898             Tail = _cxq ;
1899             if (Tail == NULL) {
1900                 iterator->_next = NULL ;
1901                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1902                    break ;
1903                 }
1904             } else {
1905                 while (Tail->_next != NULL) Tail = Tail->_next ;
1906                 Tail->_next = iterator ;
1907                 iterator->_prev = Tail ;
1908                 iterator->_next = NULL ;
1909                 break ;
1910             }
1911         }
1912      } else {
1913         ParkEvent * ev = iterator->_event ;
1914         iterator->TState = ObjectWaiter::TS_RUN ;
1915         OrderAccess::fence() ;
1916         ev->unpark() ;
1917      }
1918 
1919      if (Policy < 4) {
1920        iterator->wait_reenter_begin(this);
1921      }
1922 
1923      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1924      // move the add-to-EntryList operation, above, outside the critical section
1925      // protected by _WaitSetLock.  In practice that's not useful.  With the
1926      // exception of  wait() timeouts and interrupts the monitor owner
1927      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1928      // on _WaitSetLock so it's not profitable to reduce the length of the
1929      // critical section.
1930   }
1931 
1932   Thread::SpinRelease (&_WaitSetLock) ;
1933 
1934   if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
1935      ObjectMonitor::_sync_Notifications->inc(Tally) ;
1936   }
1937 }
1938 
1939 // -----------------------------------------------------------------------------
1940 // Adaptive Spinning Support
1941 //
1942 // Adaptive spin-then-block - rational spinning
1943 //
1944 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1945 // algorithm.  On high order SMP systems it would be better to start with
1946 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1947 // a contending thread could enqueue itself on the cxq and then spin locally
1948 // on a thread-specific variable such as its ParkEvent._Event flag.
1949 // That's left as an exercise for the reader.  Note that global spinning is
1950 // not problematic on Niagara, as the L2$ serves the interconnect and has both
1951 // low latency and massive bandwidth.
1952 //
1953 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1954 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1955 // (duration) or we can fix the count at approximately the duration of
1956 // a context switch and vary the frequency.   Of course we could also
1957 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1958 // See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
1959 //
1960 // This implementation varies the duration "D", where D varies with
1961 // the success rate of recent spin attempts. (D is capped at approximately
1962 // length of a round-trip context switch).  The success rate for recent
1963 // spin attempts is a good predictor of the success rate of future spin
1964 // attempts.  The mechanism adapts automatically to varying critical
1965 // section length (lock modality), system load and degree of parallelism.
1966 // D is maintained per-monitor in _SpinDuration and is initialized
1967 // optimistically.  Spin frequency is fixed at 100%.
1968 //
1969 // Note that _SpinDuration is volatile, but we update it without locks
1970 // or atomics.  The code is designed so that _SpinDuration stays within
1971 // a reasonable range even in the presence of races.  The arithmetic
1972 // operations on _SpinDuration are closed over the domain of legal values,
1973 // so at worst a race will install and older but still legal value.
1974 // At the very worst this introduces some apparent non-determinism.
1975 // We might spin when we shouldn't or vice-versa, but since the spin
1976 // count are relatively short, even in the worst case, the effect is harmless.
1977 //
1978 // Care must be taken that a low "D" value does not become an
1979 // an absorbing state.  Transient spinning failures -- when spinning
1980 // is overall profitable -- should not cause the system to converge
1981 // on low "D" values.  We want spinning to be stable and predictable
1982 // and fairly responsive to change and at the same time we don't want
1983 // it to oscillate, become metastable, be "too" non-deterministic,
1984 // or converge on or enter undesirable stable absorbing states.
1985 //
1986 // We implement a feedback-based control system -- using past behavior
1987 // to predict future behavior.  We face two issues: (a) if the
1988 // input signal is random then the spin predictor won't provide optimal
1989 // results, and (b) if the signal frequency is too high then the control
1990 // system, which has some natural response lag, will "chase" the signal.
1991 // (b) can arise from multimodal lock hold times.  Transient preemption
1992 // can also result in apparent bimodal lock hold times.
1993 // Although sub-optimal, neither condition is particularly harmful, as
1994 // in the worst-case we'll spin when we shouldn't or vice-versa.
1995 // The maximum spin duration is rather short so the failure modes aren't bad.
1996 // To be conservative, I've tuned the gain in system to bias toward
1997 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1998 // "rings" or oscillates between spinning and not spinning.  This happens
1999 // when spinning is just on the cusp of profitability, however, so the
2000 // situation is not dire.  The state is benign -- there's no need to add
2001 // hysteresis control to damp the transition rate between spinning and
2002 // not spinning.
2003 //
2004 
2005 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
2006 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
2007 
2008 // Spinning: Fixed frequency (100%), vary duration
2009 
2010 
2011 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
2012 
2013     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
2014     int ctr = Knob_FixedSpin ;
2015     if (ctr != 0) {
2016         while (--ctr >= 0) {
2017             if (TryLock (Self) > 0) return 1 ;
2018             SpinPause () ;
2019         }
2020         return 0 ;
2021     }
2022 
2023     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
2024       if (TryLock(Self) > 0) {
2025         // Increase _SpinDuration ...
2026         // Note that we don't clamp SpinDuration precisely at SpinLimit.
2027         // Raising _SpurDuration to the poverty line is key.
2028         int x = _SpinDuration ;
2029         if (x < Knob_SpinLimit) {
2030            if (x < Knob_Poverty) x = Knob_Poverty ;
2031            _SpinDuration = x + Knob_BonusB ;
2032         }
2033         return 1 ;
2034       }
2035       SpinPause () ;
2036     }
2037 
2038     // Admission control - verify preconditions for spinning
2039     //
2040     // We always spin a little bit, just to prevent _SpinDuration == 0 from
2041     // becoming an absorbing state.  Put another way, we spin briefly to
2042     // sample, just in case the system load, parallelism, contention, or lock
2043     // modality changed.
2044     //
2045     // Consider the following alternative:
2046     // Periodically set _SpinDuration = _SpinLimit and try a long/full
2047     // spin attempt.  "Periodically" might mean after a tally of
2048     // the # of failed spin attempts (or iterations) reaches some threshold.
2049     // This takes us into the realm of 1-out-of-N spinning, where we
2050     // hold the duration constant but vary the frequency.
2051 
2052     ctr = _SpinDuration  ;
2053     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
2054     if (ctr <= 0) return 0 ;
2055 
2056     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
2057     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
2058        TEVENT (Spin abort - notrunnable [TOP]);
2059        return 0 ;
2060     }
2061 
2062     int MaxSpin = Knob_MaxSpinners ;
2063     if (MaxSpin >= 0) {
2064        if (_Spinner > MaxSpin) {
2065           TEVENT (Spin abort -- too many spinners) ;
2066           return 0 ;
2067        }
2068        // Slighty racy, but benign ...
2069        Adjust (&_Spinner, 1) ;
2070     }
2071 
2072     // We're good to spin ... spin ingress.
2073     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
2074     // when preparing to LD...CAS _owner, etc and the CAS is likely
2075     // to succeed.
2076     int hits    = 0 ;
2077     int msk     = 0 ;
2078     int caspty  = Knob_CASPenalty ;
2079     int oxpty   = Knob_OXPenalty ;
2080     int sss     = Knob_SpinSetSucc ;
2081     if (sss && _succ == NULL ) _succ = Self ;
2082     Thread * prv = NULL ;
2083 
2084     // There are three ways to exit the following loop:
2085     // 1.  A successful spin where this thread has acquired the lock.
2086     // 2.  Spin failure with prejudice
2087     // 3.  Spin failure without prejudice
2088 
2089     while (--ctr >= 0) {
2090 
2091       // Periodic polling -- Check for pending GC
2092       // Threads may spin while they're unsafe.
2093       // We don't want spinning threads to delay the JVM from reaching
2094       // a stop-the-world safepoint or to steal cycles from GC.
2095       // If we detect a pending safepoint we abort in order that
2096       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
2097       // this thread, if safe, doesn't steal cycles from GC.
2098       // This is in keeping with the "no loitering in runtime" rule.
2099       // We periodically check to see if there's a safepoint pending.
2100       if ((ctr & 0xFF) == 0) {
2101          if (SafepointSynchronize::do_call_back()) {
2102             TEVENT (Spin: safepoint) ;
2103             goto Abort ;           // abrupt spin egress
2104          }
2105          if (Knob_UsePause & 1) SpinPause () ;
2106 
2107          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
2108          if (hits > 50 && scb != NULL) {
2109             int abend = (*scb)(SpinCallbackArgument, 0) ;
2110          }
2111       }
2112 
2113       if (Knob_UsePause & 2) SpinPause() ;
2114 
2115       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
2116       // This is useful on classic SMP systems, but is of less utility on
2117       // N1-style CMT platforms.
2118       //
2119       // Trade-off: lock acquisition latency vs coherency bandwidth.
2120       // Lock hold times are typically short.  A histogram
2121       // of successful spin attempts shows that we usually acquire
2122       // the lock early in the spin.  That suggests we want to
2123       // sample _owner frequently in the early phase of the spin,
2124       // but then back-off and sample less frequently as the spin
2125       // progresses.  The back-off makes a good citizen on SMP big
2126       // SMP systems.  Oversampling _owner can consume excessive
2127       // coherency bandwidth.  Relatedly, if we _oversample _owner we
2128       // can inadvertently interfere with the the ST m->owner=null.
2129       // executed by the lock owner.
2130       if (ctr & msk) continue ;
2131       ++hits ;
2132       if ((hits & 0xF) == 0) {
2133         // The 0xF, above, corresponds to the exponent.
2134         // Consider: (msk+1)|msk
2135         msk = ((msk << 2)|3) & BackOffMask ;
2136       }
2137 
2138       // Probe _owner with TATAS
2139       // If this thread observes the monitor transition or flicker
2140       // from locked to unlocked to locked, then the odds that this
2141       // thread will acquire the lock in this spin attempt go down
2142       // considerably.  The same argument applies if the CAS fails
2143       // or if we observe _owner change from one non-null value to
2144       // another non-null value.   In such cases we might abort
2145       // the spin without prejudice or apply a "penalty" to the
2146       // spin count-down variable "ctr", reducing it by 100, say.
2147 
2148       Thread * ox = (Thread *) _owner ;
2149       if (ox == NULL) {
2150          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
2151          if (ox == NULL) {
2152             // The CAS succeeded -- this thread acquired ownership
2153             // Take care of some bookkeeping to exit spin state.
2154             if (sss && _succ == Self) {
2155                _succ = NULL ;
2156             }
2157             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
2158 
2159             // Increase _SpinDuration :
2160             // The spin was successful (profitable) so we tend toward
2161             // longer spin attempts in the future.
2162             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2163             // If we acquired the lock early in the spin cycle it
2164             // makes sense to increase _SpinDuration proportionally.
2165             // Note that we don't clamp SpinDuration precisely at SpinLimit.
2166             int x = _SpinDuration ;
2167             if (x < Knob_SpinLimit) {
2168                 if (x < Knob_Poverty) x = Knob_Poverty ;
2169                 _SpinDuration = x + Knob_Bonus ;
2170             }
2171             return 1 ;
2172          }
2173 
2174          // The CAS failed ... we can take any of the following actions:
2175          // * penalize: ctr -= Knob_CASPenalty
2176          // * exit spin with prejudice -- goto Abort;
2177          // * exit spin without prejudice.
2178          // * Since CAS is high-latency, retry again immediately.
2179          prv = ox ;
2180          TEVENT (Spin: cas failed) ;
2181          if (caspty == -2) break ;
2182          if (caspty == -1) goto Abort ;
2183          ctr -= caspty ;
2184          continue ;
2185       }
2186 
2187       // Did lock ownership change hands ?
2188       if (ox != prv && prv != NULL ) {
2189           TEVENT (spin: Owner changed)
2190           if (oxpty == -2) break ;
2191           if (oxpty == -1) goto Abort ;
2192           ctr -= oxpty ;
2193       }
2194       prv = ox ;
2195 
2196       // Abort the spin if the owner is not executing.
2197       // The owner must be executing in order to drop the lock.
2198       // Spinning while the owner is OFFPROC is idiocy.
2199       // Consider: ctr -= RunnablePenalty ;
2200       if (Knob_OState && NotRunnable (Self, ox)) {
2201          TEVENT (Spin abort - notrunnable);
2202          goto Abort ;
2203       }
2204       if (sss && _succ == NULL ) _succ = Self ;
2205    }
2206 
2207    // Spin failed with prejudice -- reduce _SpinDuration.
2208    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2209    // AIMD is globally stable.
2210    TEVENT (Spin failure) ;
2211    {
2212      int x = _SpinDuration ;
2213      if (x > 0) {
2214         // Consider an AIMD scheme like: x -= (x >> 3) + 100
2215         // This is globally sample and tends to damp the response.
2216         x -= Knob_Penalty ;
2217         if (x < 0) x = 0 ;
2218         _SpinDuration = x ;
2219      }
2220    }
2221 
2222  Abort:
2223    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
2224    if (sss && _succ == Self) {
2225       _succ = NULL ;
2226       // Invariant: after setting succ=null a contending thread
2227       // must recheck-retry _owner before parking.  This usually happens
2228       // in the normal usage of TrySpin(), but it's safest
2229       // to make TrySpin() as foolproof as possible.
2230       OrderAccess::fence() ;
2231       if (TryLock(Self) > 0) return 1 ;
2232    }
2233    return 0 ;
2234 }
2235 
2236 // NotRunnable() -- informed spinning
2237 //
2238 // Don't bother spinning if the owner is not eligible to drop the lock.
2239 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
2240 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2241 // The thread must be runnable in order to drop the lock in timely fashion.
2242 // If the _owner is not runnable then spinning will not likely be
2243 // successful (profitable).
2244 //
2245 // Beware -- the thread referenced by _owner could have died
2246 // so a simply fetch from _owner->_thread_state might trap.
2247 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2248 // Because of the lifecycle issues the schedctl and _thread_state values
2249 // observed by NotRunnable() might be garbage.  NotRunnable must
2250 // tolerate this and consider the observed _thread_state value
2251 // as advisory.
2252 //
2253 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2254 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
2255 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2256 // with the LSB of _owner.  Another option would be to probablistically probe
2257 // the putative _owner->TypeTag value.
2258 //
2259 // Checking _thread_state isn't perfect.  Even if the thread is
2260 // in_java it might be blocked on a page-fault or have been preempted
2261 // and sitting on a ready/dispatch queue.  _thread state in conjunction
2262 // with schedctl.sc_state gives us a good picture of what the
2263 // thread is doing, however.
2264 //
2265 // TODO: check schedctl.sc_state.
2266 // We'll need to use SafeFetch32() to read from the schedctl block.
2267 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2268 //
2269 // The return value from NotRunnable() is *advisory* -- the
2270 // result is based on sampling and is not necessarily coherent.
2271 // The caller must tolerate false-negative and false-positive errors.
2272 // Spinning, in general, is probabilistic anyway.
2273 
2274 
2275 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
2276     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
2277     if (!OwnerIsThread) return 0 ;
2278 
2279     if (ox == NULL) return 0 ;
2280 
2281     // Avoid transitive spinning ...
2282     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2283     // Immediately after T1 acquires L it's possible that T2, also
2284     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2285     // This occurs transiently after T1 acquired L but before
2286     // T1 managed to clear T1.Stalled.  T2 does not need to abort
2287     // its spin in this circumstance.
2288     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
2289 
2290     if (BlockedOn == 1) return 1 ;
2291     if (BlockedOn != 0) {
2292       return BlockedOn != intptr_t(this) && _owner == ox ;
2293     }
2294 
2295     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
2296     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
2297     // consider also: jst != _thread_in_Java -- but that's overspecific.
2298     return jst == _thread_blocked || jst == _thread_in_native ;
2299 }
2300 
2301 
2302 // -----------------------------------------------------------------------------
2303 // WaitSet management ...
2304 
2305 ObjectWaiter::ObjectWaiter(Thread* thread) {
2306   _next     = NULL;
2307   _prev     = NULL;
2308   _notified = 0;
2309   TState    = TS_RUN ;
2310   _thread   = thread;
2311   _event    = thread->_ParkEvent ;
2312   _active   = false;
2313   assert (_event != NULL, "invariant") ;
2314 }
2315 
2316 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
2317   JavaThread *jt = (JavaThread *)this->_thread;
2318   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2319 }
2320 
2321 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
2322   JavaThread *jt = (JavaThread *)this->_thread;
2323   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2324 }
2325 
2326 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2327   assert(node != NULL, "should not dequeue NULL node");
2328   assert(node->_prev == NULL, "node already in list");
2329   assert(node->_next == NULL, "node already in list");
2330   // put node at end of queue (circular doubly linked list)
2331   if (_WaitSet == NULL) {
2332     _WaitSet = node;
2333     node->_prev = node;
2334     node->_next = node;
2335   } else {
2336     ObjectWaiter* head = _WaitSet ;
2337     ObjectWaiter* tail = head->_prev;
2338     assert(tail->_next == head, "invariant check");
2339     tail->_next = node;
2340     head->_prev = node;
2341     node->_next = head;
2342     node->_prev = tail;
2343   }
2344 }
2345 
2346 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2347   // dequeue the very first waiter
2348   ObjectWaiter* waiter = _WaitSet;
2349   if (waiter) {
2350     DequeueSpecificWaiter(waiter);
2351   }
2352   return waiter;
2353 }
2354 
2355 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2356   assert(node != NULL, "should not dequeue NULL node");
2357   assert(node->_prev != NULL, "node already removed from list");
2358   assert(node->_next != NULL, "node already removed from list");
2359   // when the waiter has woken up because of interrupt,
2360   // timeout or other spurious wake-up, dequeue the
2361   // waiter from waiting list
2362   ObjectWaiter* next = node->_next;
2363   if (next == node) {
2364     assert(node->_prev == node, "invariant check");
2365     _WaitSet = NULL;
2366   } else {
2367     ObjectWaiter* prev = node->_prev;
2368     assert(prev->_next == node, "invariant check");
2369     assert(next->_prev == node, "invariant check");
2370     next->_prev = prev;
2371     prev->_next = next;
2372     if (_WaitSet == node) {
2373       _WaitSet = next;
2374     }
2375   }
2376   node->_next = NULL;
2377   node->_prev = NULL;
2378 }
2379 
2380 // -----------------------------------------------------------------------------
2381 // PerfData support
2382 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
2383 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
2384 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
2385 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
2386 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
2387 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
2388 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
2389 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
2390 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
2391 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
2392 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
2393 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
2394 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
2395 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
2396 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
2397 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
2398 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
2399 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
2400 
2401 // One-shot global initialization for the sync subsystem.
2402 // We could also defer initialization and initialize on-demand
2403 // the first time we call inflate().  Initialization would
2404 // be protected - like so many things - by the MonitorCache_lock.
2405 
2406 void ObjectMonitor::Initialize () {
2407   static int InitializationCompleted = 0 ;
2408   assert (InitializationCompleted == 0, "invariant") ;
2409   InitializationCompleted = 1 ;
2410   if (UsePerfData) {
2411       EXCEPTION_MARK ;
2412       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
2413       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
2414       NEWPERFCOUNTER(_sync_Inflations) ;
2415       NEWPERFCOUNTER(_sync_Deflations) ;
2416       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
2417       NEWPERFCOUNTER(_sync_FutileWakeups) ;
2418       NEWPERFCOUNTER(_sync_Parks) ;
2419       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
2420       NEWPERFCOUNTER(_sync_Notifications) ;
2421       NEWPERFCOUNTER(_sync_SlowEnter) ;
2422       NEWPERFCOUNTER(_sync_SlowExit) ;
2423       NEWPERFCOUNTER(_sync_SlowNotify) ;
2424       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
2425       NEWPERFCOUNTER(_sync_FailedSpins) ;
2426       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
2427       NEWPERFCOUNTER(_sync_PrivateA) ;
2428       NEWPERFCOUNTER(_sync_PrivateB) ;
2429       NEWPERFCOUNTER(_sync_MonInCirculation) ;
2430       NEWPERFCOUNTER(_sync_MonScavenged) ;
2431       NEWPERFVARIABLE(_sync_MonExtant) ;
2432       #undef NEWPERFCOUNTER
2433   }
2434 }
2435 
2436 
2437 // Compile-time asserts
2438 // When possible, it's better to catch errors deterministically at
2439 // compile-time than at runtime.  The down-side to using compile-time
2440 // asserts is that error message -- often something about negative array
2441 // indices -- is opaque.
2442 
2443 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
2444 
2445 void ObjectMonitor::ctAsserts() {
2446   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
2447 }
2448 
2449 
2450 static char * kvGet (char * kvList, const char * Key) {
2451     if (kvList == NULL) return NULL ;
2452     size_t n = strlen (Key) ;
2453     char * Search ;
2454     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
2455         if (strncmp (Search, Key, n) == 0) {
2456             if (Search[n] == '=') return Search + n + 1 ;
2457             if (Search[n] == 0)   return (char *) "1" ;
2458         }
2459     }
2460     return NULL ;
2461 }
2462 
2463 static int kvGetInt (char * kvList, const char * Key, int Default) {
2464     char * v = kvGet (kvList, Key) ;
2465     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
2466     if (Knob_ReportSettings && v != NULL) {
2467         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
2468         ::fflush (stdout) ;
2469     }
2470     return rslt ;
2471 }
2472 
2473 void ObjectMonitor::DeferredInitialize () {
2474   if (InitDone > 0) return ;
2475   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2476       while (InitDone != 1) ;
2477       return ;
2478   }
2479 
2480   // One-shot global initialization ...
2481   // The initialization is idempotent, so we don't need locks.
2482   // In the future consider doing this via os::init_2().
2483   // SyncKnobs consist of <Key>=<Value> pairs in the style
2484   // of environment variables.  Start by converting ':' to NUL.
2485 
2486   if (SyncKnobs == NULL) SyncKnobs = "" ;
2487 
2488   size_t sz = strlen (SyncKnobs) ;
2489   char * knobs = (char *) malloc (sz + 2) ;
2490   if (knobs == NULL) {
2491      vm_exit_out_of_memory (sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs") ;
2492      guarantee (0, "invariant") ;
2493   }
2494   strcpy (knobs, SyncKnobs) ;
2495   knobs[sz+1] = 0 ;
2496   for (char * p = knobs ; *p ; p++) {
2497      if (*p == ':') *p = 0 ;
2498   }
2499 
2500   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
2501   SETKNOB(ReportSettings) ;
2502   SETKNOB(Verbose) ;
2503   SETKNOB(FixedSpin) ;
2504   SETKNOB(SpinLimit) ;
2505   SETKNOB(SpinBase) ;
2506   SETKNOB(SpinBackOff);
2507   SETKNOB(CASPenalty) ;
2508   SETKNOB(OXPenalty) ;
2509   SETKNOB(LogSpins) ;
2510   SETKNOB(SpinSetSucc) ;
2511   SETKNOB(SuccEnabled) ;
2512   SETKNOB(SuccRestrict) ;
2513   SETKNOB(Penalty) ;
2514   SETKNOB(Bonus) ;
2515   SETKNOB(BonusB) ;
2516   SETKNOB(Poverty) ;
2517   SETKNOB(SpinAfterFutile) ;
2518   SETKNOB(UsePause) ;
2519   SETKNOB(SpinEarly) ;
2520   SETKNOB(OState) ;
2521   SETKNOB(MaxSpinners) ;
2522   SETKNOB(PreSpin) ;
2523   SETKNOB(ExitPolicy) ;
2524   SETKNOB(QMode);
2525   SETKNOB(ResetEvent) ;
2526   SETKNOB(MoveNotifyee) ;
2527   SETKNOB(FastHSSEC) ;
2528   #undef SETKNOB
2529 
2530   if (os::is_MP()) {
2531      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
2532      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
2533      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2534   } else {
2535      Knob_SpinLimit = 0 ;
2536      Knob_SpinBase  = 0 ;
2537      Knob_PreSpin   = 0 ;
2538      Knob_FixedSpin = -1 ;
2539   }
2540 
2541   if (Knob_LogSpins == 0) {
2542      ObjectMonitor::_sync_FailedSpins = NULL ;
2543   }
2544 
2545   free (knobs) ;
2546   OrderAccess::fence() ;
2547   InitDone = 1 ;
2548 }
2549 
2550 #ifndef PRODUCT
2551 void ObjectMonitor::verify() {
2552 }
2553 
2554 void ObjectMonitor::print() {
2555 }
2556 #endif