1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "gc_implementation/shared/vmGCOperations.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/allocation.inline.hpp"
  35 #ifdef ASSERT
  36 #include "memory/guardedMemory.hpp"
  37 #endif
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/jvm.h"
  40 #include "prims/jvm_misc.hpp"
  41 #include "prims/privilegedStack.hpp"
  42 #include "runtime/arguments.hpp"
  43 #include "runtime/atomic.inline.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/interfaceSupport.hpp"
  46 #include "runtime/java.hpp"
  47 #include "runtime/javaCalls.hpp"
  48 #include "runtime/mutexLocker.hpp"
  49 #include "runtime/os.inline.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "runtime/thread.inline.hpp"
  52 #include "services/attachListener.hpp"
  53 #include "services/memTracker.hpp"
  54 #include "services/threadService.hpp"
  55 #include "utilities/defaultStream.hpp"
  56 #include "utilities/events.hpp"
  57 
  58 # include <signal.h>
  59 
  60 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  61 
  62 OSThread*         os::_starting_thread    = NULL;
  63 address           os::_polling_page       = NULL;
  64 volatile int32_t* os::_mem_serialize_page = NULL;
  65 uintptr_t         os::_serialize_page_mask = 0;
  66 long              os::_rand_seed          = 1;
  67 int               os::_processor_count    = 0;
  68 size_t            os::_page_sizes[os::page_sizes_max];
  69 
  70 #ifndef PRODUCT
  71 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
  72 julong os::alloc_bytes = 0;         // # of bytes allocated
  73 julong os::num_frees = 0;           // # of calls to free
  74 julong os::free_bytes = 0;          // # of bytes freed
  75 #endif
  76 
  77 static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
  78 
  79 void os_init_globals() {
  80   // Called from init_globals().
  81   // See Threads::create_vm() in thread.cpp, and init.cpp.
  82   os::init_globals();
  83 }
  84 
  85 // Fill in buffer with current local time as an ISO-8601 string.
  86 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
  87 // Returns buffer, or NULL if it failed.
  88 // This would mostly be a call to
  89 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
  90 // except that on Windows the %z behaves badly, so we do it ourselves.
  91 // Also, people wanted milliseconds on there,
  92 // and strftime doesn't do milliseconds.
  93 char* os::iso8601_time(char* buffer, size_t buffer_length) {
  94   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
  95   //                                      1         2
  96   //                             12345678901234567890123456789
  97   static const char* iso8601_format =
  98     "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
  99   static const size_t needed_buffer = 29;
 100 
 101   // Sanity check the arguments
 102   if (buffer == NULL) {
 103     assert(false, "NULL buffer");
 104     return NULL;
 105   }
 106   if (buffer_length < needed_buffer) {
 107     assert(false, "buffer_length too small");
 108     return NULL;
 109   }
 110   // Get the current time
 111   jlong milliseconds_since_19700101 = javaTimeMillis();
 112   const int milliseconds_per_microsecond = 1000;
 113   const time_t seconds_since_19700101 =
 114     milliseconds_since_19700101 / milliseconds_per_microsecond;
 115   const int milliseconds_after_second =
 116     milliseconds_since_19700101 % milliseconds_per_microsecond;
 117   // Convert the time value to a tm and timezone variable
 118   struct tm time_struct;
 119   if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
 120     assert(false, "Failed localtime_pd");
 121     return NULL;
 122   }
 123 #if defined(_ALLBSD_SOURCE)
 124   const time_t zone = (time_t) time_struct.tm_gmtoff;
 125 #else
 126   const time_t zone = timezone;
 127 #endif
 128 
 129   // If daylight savings time is in effect,
 130   // we are 1 hour East of our time zone
 131   const time_t seconds_per_minute = 60;
 132   const time_t minutes_per_hour = 60;
 133   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
 134   time_t UTC_to_local = zone;
 135   if (time_struct.tm_isdst > 0) {
 136     UTC_to_local = UTC_to_local - seconds_per_hour;
 137   }
 138   // Compute the time zone offset.
 139   //    localtime_pd() sets timezone to the difference (in seconds)
 140   //    between UTC and and local time.
 141   //    ISO 8601 says we need the difference between local time and UTC,
 142   //    we change the sign of the localtime_pd() result.
 143   const time_t local_to_UTC = -(UTC_to_local);
 144   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
 145   char sign_local_to_UTC = '+';
 146   time_t abs_local_to_UTC = local_to_UTC;
 147   if (local_to_UTC < 0) {
 148     sign_local_to_UTC = '-';
 149     abs_local_to_UTC = -(abs_local_to_UTC);
 150   }
 151   // Convert time zone offset seconds to hours and minutes.
 152   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
 153   const time_t zone_min =
 154     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
 155 
 156   // Print an ISO 8601 date and time stamp into the buffer
 157   const int year = 1900 + time_struct.tm_year;
 158   const int month = 1 + time_struct.tm_mon;
 159   const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
 160                                    year,
 161                                    month,
 162                                    time_struct.tm_mday,
 163                                    time_struct.tm_hour,
 164                                    time_struct.tm_min,
 165                                    time_struct.tm_sec,
 166                                    milliseconds_after_second,
 167                                    sign_local_to_UTC,
 168                                    zone_hours,
 169                                    zone_min);
 170   if (printed == 0) {
 171     assert(false, "Failed jio_printf");
 172     return NULL;
 173   }
 174   return buffer;
 175 }
 176 
 177 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
 178 #ifdef ASSERT
 179   if (!(!thread->is_Java_thread() ||
 180          Thread::current() == thread  ||
 181          Threads_lock->owned_by_self()
 182          || thread->is_Compiler_thread()
 183         )) {
 184     assert(false, "possibility of dangling Thread pointer");
 185   }
 186 #endif
 187 
 188   if (p >= MinPriority && p <= MaxPriority) {
 189     int priority = java_to_os_priority[p];
 190     return set_native_priority(thread, priority);
 191   } else {
 192     assert(false, "Should not happen");
 193     return OS_ERR;
 194   }
 195 }
 196 
 197 // The mapping from OS priority back to Java priority may be inexact because
 198 // Java priorities can map M:1 with native priorities. If you want the definite
 199 // Java priority then use JavaThread::java_priority()
 200 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
 201   int p;
 202   int os_prio;
 203   OSReturn ret = get_native_priority(thread, &os_prio);
 204   if (ret != OS_OK) return ret;
 205 
 206   if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
 207     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
 208   } else {
 209     // niceness values are in reverse order
 210     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
 211   }
 212   priority = (ThreadPriority)p;
 213   return OS_OK;
 214 }
 215 
 216 
 217 // --------------------- sun.misc.Signal (optional) ---------------------
 218 
 219 
 220 // SIGBREAK is sent by the keyboard to query the VM state
 221 #ifndef SIGBREAK
 222 #define SIGBREAK SIGQUIT
 223 #endif
 224 
 225 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
 226 
 227 
 228 static void signal_thread_entry(JavaThread* thread, TRAPS) {
 229   os::set_priority(thread, NearMaxPriority);
 230   while (true) {
 231     int sig;
 232     {
 233       // FIXME : Currently we have not decided what should be the status
 234       //         for this java thread blocked here. Once we decide about
 235       //         that we should fix this.
 236       sig = os::signal_wait();
 237     }
 238     if (sig == os::sigexitnum_pd()) {
 239        // Terminate the signal thread
 240        return;
 241     }
 242 
 243     switch (sig) {
 244       case SIGBREAK: {
 245         // Check if the signal is a trigger to start the Attach Listener - in that
 246         // case don't print stack traces.
 247         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
 248           continue;
 249         }
 250         // Print stack traces
 251         // Any SIGBREAK operations added here should make sure to flush
 252         // the output stream (e.g. tty->flush()) after output.  See 4803766.
 253         // Each module also prints an extra carriage return after its output.
 254         VM_PrintThreads op;
 255         VMThread::execute(&op);
 256         VM_PrintJNI jni_op;
 257         VMThread::execute(&jni_op);
 258         VM_FindDeadlocks op1(tty);
 259         VMThread::execute(&op1);
 260         Universe::print_heap_at_SIGBREAK();
 261         if (PrintClassHistogram) {
 262           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
 263           VMThread::execute(&op1);
 264         }
 265         if (JvmtiExport::should_post_data_dump()) {
 266           JvmtiExport::post_data_dump();
 267         }
 268         break;
 269       }
 270       default: {
 271         // Dispatch the signal to java
 272         HandleMark hm(THREAD);
 273         Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
 274         KlassHandle klass (THREAD, k);
 275         if (klass.not_null()) {
 276           JavaValue result(T_VOID);
 277           JavaCallArguments args;
 278           args.push_int(sig);
 279           JavaCalls::call_static(
 280             &result,
 281             klass,
 282             vmSymbols::dispatch_name(),
 283             vmSymbols::int_void_signature(),
 284             &args,
 285             THREAD
 286           );
 287         }
 288         if (HAS_PENDING_EXCEPTION) {
 289           // tty is initialized early so we don't expect it to be null, but
 290           // if it is we can't risk doing an initialization that might
 291           // trigger additional out-of-memory conditions
 292           if (tty != NULL) {
 293             char klass_name[256];
 294             char tmp_sig_name[16];
 295             const char* sig_name = "UNKNOWN";
 296             InstanceKlass::cast(PENDING_EXCEPTION->klass())->
 297               name()->as_klass_external_name(klass_name, 256);
 298             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
 299               sig_name = tmp_sig_name;
 300             warning("Exception %s occurred dispatching signal %s to handler"
 301                     "- the VM may need to be forcibly terminated",
 302                     klass_name, sig_name );
 303           }
 304           CLEAR_PENDING_EXCEPTION;
 305         }
 306       }
 307     }
 308   }
 309 }
 310 
 311 void os::init_before_ergo() {
 312   // We need to initialize large page support here because ergonomics takes some
 313   // decisions depending on large page support and the calculated large page size.
 314   large_page_init();
 315 }
 316 
 317 void os::signal_init() {
 318   if (!ReduceSignalUsage) {
 319     // Setup JavaThread for processing signals
 320     EXCEPTION_MARK;
 321     Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
 322     instanceKlassHandle klass (THREAD, k);
 323     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
 324 
 325     const char thread_name[] = "Signal Dispatcher";
 326     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
 327 
 328     // Initialize thread_oop to put it into the system threadGroup
 329     Handle thread_group (THREAD, Universe::system_thread_group());
 330     JavaValue result(T_VOID);
 331     JavaCalls::call_special(&result, thread_oop,
 332                            klass,
 333                            vmSymbols::object_initializer_name(),
 334                            vmSymbols::threadgroup_string_void_signature(),
 335                            thread_group,
 336                            string,
 337                            CHECK);
 338 
 339     KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
 340     JavaCalls::call_special(&result,
 341                             thread_group,
 342                             group,
 343                             vmSymbols::add_method_name(),
 344                             vmSymbols::thread_void_signature(),
 345                             thread_oop,         // ARG 1
 346                             CHECK);
 347 
 348     os::signal_init_pd();
 349 
 350     { MutexLocker mu(Threads_lock);
 351       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
 352 
 353       // At this point it may be possible that no osthread was created for the
 354       // JavaThread due to lack of memory. We would have to throw an exception
 355       // in that case. However, since this must work and we do not allow
 356       // exceptions anyway, check and abort if this fails.
 357       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
 358         vm_exit_during_initialization("java.lang.OutOfMemoryError",
 359                                       os::native_thread_creation_failed_msg());
 360       }
 361 
 362       java_lang_Thread::set_thread(thread_oop(), signal_thread);
 363       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
 364       java_lang_Thread::set_daemon(thread_oop());
 365 
 366       signal_thread->set_threadObj(thread_oop());
 367       Threads::add(signal_thread);
 368       Thread::start(signal_thread);
 369     }
 370     // Handle ^BREAK
 371     os::signal(SIGBREAK, os::user_handler());
 372   }
 373 }
 374 
 375 
 376 void os::terminate_signal_thread() {
 377   if (!ReduceSignalUsage)
 378     signal_notify(sigexitnum_pd());
 379 }
 380 
 381 
 382 // --------------------- loading libraries ---------------------
 383 
 384 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
 385 extern struct JavaVM_ main_vm;
 386 
 387 static void* _native_java_library = NULL;
 388 
 389 void* os::native_java_library() {
 390   if (_native_java_library == NULL) {
 391     char buffer[JVM_MAXPATHLEN];
 392     char ebuf[1024];
 393 
 394     // Try to load verify dll first. In 1.3 java dll depends on it and is not
 395     // always able to find it when the loading executable is outside the JDK.
 396     // In order to keep working with 1.2 we ignore any loading errors.
 397     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 398                        "verify")) {
 399       dll_load(buffer, ebuf, sizeof(ebuf));
 400     }
 401 
 402     // Load java dll
 403     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 404                        "java")) {
 405       _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
 406     }
 407     if (_native_java_library == NULL) {
 408       vm_exit_during_initialization("Unable to load native library", ebuf);
 409     }
 410 
 411 #if defined(__OpenBSD__)
 412     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
 413     // ignore errors
 414     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 415                        "net")) {
 416       dll_load(buffer, ebuf, sizeof(ebuf));
 417     }
 418 #endif
 419   }
 420   static jboolean onLoaded = JNI_FALSE;
 421   if (onLoaded) {
 422     // We may have to wait to fire OnLoad until TLS is initialized.
 423     if (ThreadLocalStorage::is_initialized()) {
 424       // The JNI_OnLoad handling is normally done by method load in
 425       // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
 426       // explicitly so we have to check for JNI_OnLoad as well
 427       const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
 428       JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
 429           JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
 430       if (JNI_OnLoad != NULL) {
 431         JavaThread* thread = JavaThread::current();
 432         ThreadToNativeFromVM ttn(thread);
 433         HandleMark hm(thread);
 434         jint ver = (*JNI_OnLoad)(&main_vm, NULL);
 435         onLoaded = JNI_TRUE;
 436         if (!Threads::is_supported_jni_version_including_1_1(ver)) {
 437           vm_exit_during_initialization("Unsupported JNI version");
 438         }
 439       }
 440     }
 441   }
 442   return _native_java_library;
 443 }
 444 
 445 /*
 446  * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
 447  * If check_lib == true then we are looking for an
 448  * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
 449  * this library is statically linked into the image.
 450  * If check_lib == false then we will look for the appropriate symbol in the
 451  * executable if agent_lib->is_static_lib() == true or in the shared library
 452  * referenced by 'handle'.
 453  */
 454 void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
 455                               const char *syms[], size_t syms_len) {
 456   assert(agent_lib != NULL, "sanity check");
 457   const char *lib_name;
 458   void *handle = agent_lib->os_lib();
 459   void *entryName = NULL;
 460   char *agent_function_name;
 461   size_t i;
 462 
 463   // If checking then use the agent name otherwise test is_static_lib() to
 464   // see how to process this lookup
 465   lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
 466   for (i = 0; i < syms_len; i++) {
 467     agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
 468     if (agent_function_name == NULL) {
 469       break;
 470     }
 471     entryName = dll_lookup(handle, agent_function_name);
 472     FREE_C_HEAP_ARRAY(char, agent_function_name, mtThread);
 473     if (entryName != NULL) {
 474       break;
 475     }
 476   }
 477   return entryName;
 478 }
 479 
 480 // See if the passed in agent is statically linked into the VM image.
 481 bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
 482                             size_t syms_len) {
 483   void *ret;
 484   void *proc_handle;
 485   void *save_handle;
 486 
 487   assert(agent_lib != NULL, "sanity check");
 488   if (agent_lib->name() == NULL) {
 489     return false;
 490   }
 491   proc_handle = get_default_process_handle();
 492   // Check for Agent_OnLoad/Attach_lib_name function
 493   save_handle = agent_lib->os_lib();
 494   // We want to look in this process' symbol table.
 495   agent_lib->set_os_lib(proc_handle);
 496   ret = find_agent_function(agent_lib, true, syms, syms_len);
 497   if (ret != NULL) {
 498     // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
 499     agent_lib->set_valid();
 500     agent_lib->set_static_lib(true);
 501     return true;
 502   }
 503   agent_lib->set_os_lib(save_handle);
 504   return false;
 505 }
 506 
 507 // --------------------- heap allocation utilities ---------------------
 508 
 509 char *os::strdup(const char *str, MEMFLAGS flags) {
 510   size_t size = strlen(str);
 511   char *dup_str = (char *)malloc(size + 1, flags);
 512   if (dup_str == NULL) return NULL;
 513   strcpy(dup_str, str);
 514   return dup_str;
 515 }
 516 
 517 
 518 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
 519 
 520 #ifdef ASSERT
 521 
 522 static void verify_memory(void* ptr) {
 523   GuardedMemory guarded(ptr);
 524   if (!guarded.verify_guards()) {
 525     tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
 526     tty->print_cr("## memory stomp:");
 527     guarded.print_on(tty);
 528     fatal("memory stomping error");
 529   }
 530 }
 531 
 532 #endif
 533 
 534 //
 535 // This function supports testing of the malloc out of memory
 536 // condition without really running the system out of memory.
 537 //
 538 static u_char* testMalloc(size_t alloc_size) {
 539   assert(MallocMaxTestWords > 0, "sanity check");
 540 
 541   if ((cur_malloc_words + (alloc_size / BytesPerWord)) > MallocMaxTestWords) {
 542     return NULL;
 543   }
 544 
 545   u_char* ptr = (u_char*)::malloc(alloc_size);
 546 
 547   if (ptr != NULL) {
 548     Atomic::add(((jint) (alloc_size / BytesPerWord)),
 549                 (volatile jint *) &cur_malloc_words);
 550   }
 551   return ptr;
 552 }
 553 
 554 void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
 555   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 556   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 557 
 558 #ifdef ASSERT
 559   // checking for the WatcherThread and crash_protection first
 560   // since os::malloc can be called when the libjvm.{dll,so} is
 561   // first loaded and we don't have a thread yet.
 562   // try to find the thread after we see that the watcher thread
 563   // exists and has crash protection.
 564   WatcherThread *wt = WatcherThread::watcher_thread();
 565   if (wt != NULL && wt->has_crash_protection()) {
 566     Thread* thread = ThreadLocalStorage::get_thread_slow();
 567     if (thread == wt) {
 568       assert(!wt->has_crash_protection(),
 569           "Can't malloc with crash protection from WatcherThread");
 570     }
 571   }
 572 #endif
 573 
 574   if (size == 0) {
 575     // return a valid pointer if size is zero
 576     // if NULL is returned the calling functions assume out of memory.
 577     size = 1;
 578   }
 579 
 580 #ifndef ASSERT
 581   const size_t alloc_size = size;
 582 #else
 583   const size_t alloc_size = GuardedMemory::get_total_size(size);
 584   if (size > alloc_size) { // Check for rollover.
 585     return NULL;
 586   }
 587 #endif
 588 
 589   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 590 
 591   u_char* ptr;
 592   if (MallocMaxTestWords > 0) {
 593     ptr = testMalloc(alloc_size);
 594   } else {
 595     ptr = (u_char*)::malloc(alloc_size);
 596   }
 597 
 598 #ifdef ASSERT
 599   if (ptr == NULL) {
 600     return NULL;
 601   }
 602   // Wrap memory with guard
 603   GuardedMemory guarded(ptr, size);
 604   ptr = guarded.get_user_ptr();
 605 #endif
 606   if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
 607     tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
 608     breakpoint();
 609   }
 610   debug_only(if (paranoid) verify_memory(ptr));
 611   if (PrintMalloc && tty != NULL) {
 612     tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
 613   }
 614 
 615   // we do not track guard memory
 616   MemTracker::record_malloc((address)ptr, size, memflags, caller == 0 ? CALLER_PC : caller);
 617 
 618   return ptr;
 619 }
 620 
 621 
 622 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
 623 #ifndef ASSERT
 624   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 625   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 626   MemTracker::Tracker tkr = MemTracker::get_realloc_tracker();
 627   void* ptr = ::realloc(memblock, size);
 628   if (ptr != NULL) {
 629     tkr.record((address)memblock, (address)ptr, size, memflags,
 630      caller == 0 ? CALLER_PC : caller);
 631   } else {
 632     tkr.discard();
 633   }
 634   return ptr;
 635 #else
 636   if (memblock == NULL) {
 637     return os::malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
 638   }
 639   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 640     tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
 641     breakpoint();
 642   }
 643   verify_memory(memblock);
 644   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 645   if (size == 0) {
 646     return NULL;
 647   }
 648   // always move the block
 649   void* ptr = os::malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
 650   if (PrintMalloc) {
 651     tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
 652   }
 653   // Copy to new memory if malloc didn't fail
 654   if ( ptr != NULL ) {
 655     GuardedMemory guarded(memblock);
 656     memcpy(ptr, memblock, MIN2(size, guarded.get_user_size()));
 657     if (paranoid) verify_memory(ptr);
 658     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
 659       tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
 660       breakpoint();
 661     }
 662     os::free(memblock);
 663   }
 664   return ptr;
 665 #endif
 666 }
 667 
 668 
 669 void  os::free(void *memblock, MEMFLAGS memflags) {
 670   address trackp = (address) memblock;
 671   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
 672 #ifdef ASSERT
 673   if (memblock == NULL) return;
 674   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 675     if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
 676     breakpoint();
 677   }
 678   verify_memory(memblock);
 679   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 680 
 681   GuardedMemory guarded(memblock);
 682   size_t size = guarded.get_user_size();
 683   inc_stat_counter(&free_bytes, size);
 684   memblock = guarded.release_for_freeing();
 685   if (PrintMalloc && tty != NULL) {
 686       fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
 687   }
 688 #endif
 689   MemTracker::record_free(trackp, memflags);
 690 
 691   ::free(memblock);
 692 }
 693 
 694 void os::init_random(long initval) {
 695   _rand_seed = initval;
 696 }
 697 
 698 
 699 long os::random() {
 700   /* standard, well-known linear congruential random generator with
 701    * next_rand = (16807*seed) mod (2**31-1)
 702    * see
 703    * (1) "Random Number Generators: Good Ones Are Hard to Find",
 704    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
 705    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
 706    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
 707   */
 708   const long a = 16807;
 709   const unsigned long m = 2147483647;
 710   const long q = m / a;        assert(q == 127773, "weird math");
 711   const long r = m % a;        assert(r == 2836, "weird math");
 712 
 713   // compute az=2^31p+q
 714   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
 715   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
 716   lo += (hi & 0x7FFF) << 16;
 717 
 718   // if q overflowed, ignore the overflow and increment q
 719   if (lo > m) {
 720     lo &= m;
 721     ++lo;
 722   }
 723   lo += hi >> 15;
 724 
 725   // if (p+q) overflowed, ignore the overflow and increment (p+q)
 726   if (lo > m) {
 727     lo &= m;
 728     ++lo;
 729   }
 730   return (_rand_seed = lo);
 731 }
 732 
 733 // The INITIALIZED state is distinguished from the SUSPENDED state because the
 734 // conditions in which a thread is first started are different from those in which
 735 // a suspension is resumed.  These differences make it hard for us to apply the
 736 // tougher checks when starting threads that we want to do when resuming them.
 737 // However, when start_thread is called as a result of Thread.start, on a Java
 738 // thread, the operation is synchronized on the Java Thread object.  So there
 739 // cannot be a race to start the thread and hence for the thread to exit while
 740 // we are working on it.  Non-Java threads that start Java threads either have
 741 // to do so in a context in which races are impossible, or should do appropriate
 742 // locking.
 743 
 744 void os::start_thread(Thread* thread) {
 745   // guard suspend/resume
 746   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
 747   OSThread* osthread = thread->osthread();
 748   osthread->set_state(RUNNABLE);
 749   pd_start_thread(thread);
 750 }
 751 
 752 //---------------------------------------------------------------------------
 753 // Helper functions for fatal error handler
 754 
 755 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
 756   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
 757 
 758   int cols = 0;
 759   int cols_per_line = 0;
 760   switch (unitsize) {
 761     case 1: cols_per_line = 16; break;
 762     case 2: cols_per_line = 8;  break;
 763     case 4: cols_per_line = 4;  break;
 764     case 8: cols_per_line = 2;  break;
 765     default: return;
 766   }
 767 
 768   address p = start;
 769   st->print(PTR_FORMAT ":   ", start);
 770   while (p < end) {
 771     switch (unitsize) {
 772       case 1: st->print("%02x", *(u1*)p); break;
 773       case 2: st->print("%04x", *(u2*)p); break;
 774       case 4: st->print("%08x", *(u4*)p); break;
 775       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
 776     }
 777     p += unitsize;
 778     cols++;
 779     if (cols >= cols_per_line && p < end) {
 780        cols = 0;
 781        st->cr();
 782        st->print(PTR_FORMAT ":   ", p);
 783     } else {
 784        st->print(" ");
 785     }
 786   }
 787   st->cr();
 788 }
 789 
 790 void os::print_environment_variables(outputStream* st, const char** env_list,
 791                                      char* buffer, int len) {
 792   if (env_list) {
 793     st->print_cr("Environment Variables:");
 794 
 795     for (int i = 0; env_list[i] != NULL; i++) {
 796       if (getenv(env_list[i], buffer, len)) {
 797         st->print("%s", env_list[i]);
 798         st->print("=");
 799         st->print_cr("%s", buffer);
 800       }
 801     }
 802   }
 803 }
 804 
 805 void os::print_cpu_info(outputStream* st) {
 806   // cpu
 807   st->print("CPU:");
 808   st->print("total %d", os::processor_count());
 809   // It's not safe to query number of active processors after crash
 810   // st->print("(active %d)", os::active_processor_count());
 811   st->print(" %s", VM_Version::cpu_features());
 812   st->cr();
 813   pd_print_cpu_info(st);
 814 }
 815 
 816 void os::print_date_and_time(outputStream *st) {
 817   const int secs_per_day  = 86400;
 818   const int secs_per_hour = 3600;
 819   const int secs_per_min  = 60;
 820 
 821   time_t tloc;
 822   (void)time(&tloc);
 823   st->print("time: %s", ctime(&tloc));  // ctime adds newline.
 824 
 825   double t = os::elapsedTime();
 826   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
 827   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
 828   //       before printf. We lost some precision, but who cares?
 829   int eltime = (int)t;  // elapsed time in seconds
 830 
 831   // print elapsed time in a human-readable format:
 832   int eldays = eltime / secs_per_day;
 833   int day_secs = eldays * secs_per_day;
 834   int elhours = (eltime - day_secs) / secs_per_hour;
 835   int hour_secs = elhours * secs_per_hour;
 836   int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
 837   int minute_secs = elmins * secs_per_min;
 838   int elsecs = (eltime - day_secs - hour_secs - minute_secs);
 839   st->print_cr("elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
 840 }
 841 
 842 // moved from debug.cpp (used to be find()) but still called from there
 843 // The verbose parameter is only set by the debug code in one case
 844 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
 845   address addr = (address)x;
 846   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
 847   if (b != NULL) {
 848     if (b->is_buffer_blob()) {
 849       // the interpreter is generated into a buffer blob
 850       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
 851       if (i != NULL) {
 852         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
 853         i->print_on(st);
 854         return;
 855       }
 856       if (Interpreter::contains(addr)) {
 857         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
 858                      " (not bytecode specific)", addr);
 859         return;
 860       }
 861       //
 862       if (AdapterHandlerLibrary::contains(b)) {
 863         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
 864         AdapterHandlerLibrary::print_handler_on(st, b);
 865       }
 866       // the stubroutines are generated into a buffer blob
 867       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
 868       if (d != NULL) {
 869         st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
 870         d->print_on(st);
 871         st->cr();
 872         return;
 873       }
 874       if (StubRoutines::contains(addr)) {
 875         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
 876                      "stub routine", addr);
 877         return;
 878       }
 879       // the InlineCacheBuffer is using stubs generated into a buffer blob
 880       if (InlineCacheBuffer::contains(addr)) {
 881         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
 882         return;
 883       }
 884       VtableStub* v = VtableStubs::stub_containing(addr);
 885       if (v != NULL) {
 886         st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
 887         v->print_on(st);
 888         st->cr();
 889         return;
 890       }
 891     }
 892     nmethod* nm = b->as_nmethod_or_null();
 893     if (nm != NULL) {
 894       ResourceMark rm;
 895       st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
 896                 addr, (int)(addr - nm->entry_point()), nm);
 897       if (verbose) {
 898         st->print(" for ");
 899         nm->method()->print_value_on(st);
 900       }
 901       st->cr();
 902       nm->print_nmethod(verbose);
 903       return;
 904     }
 905     st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
 906     b->print_on(st);
 907     return;
 908   }
 909 
 910   if (Universe::heap()->is_in(addr)) {
 911     HeapWord* p = Universe::heap()->block_start(addr);
 912     bool print = false;
 913     // If we couldn't find it it just may mean that heap wasn't parsable
 914     // See if we were just given an oop directly
 915     if (p != NULL && Universe::heap()->block_is_obj(p)) {
 916       print = true;
 917     } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
 918       p = (HeapWord*) addr;
 919       print = true;
 920     }
 921     if (print) {
 922       if (p == (HeapWord*) addr) {
 923         st->print_cr(INTPTR_FORMAT " is an oop", addr);
 924       } else {
 925         st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
 926       }
 927       oop(p)->print_on(st);
 928       return;
 929     }
 930   } else {
 931     if (Universe::heap()->is_in_reserved(addr)) {
 932       st->print_cr(INTPTR_FORMAT " is an unallocated location "
 933                    "in the heap", addr);
 934       return;
 935     }
 936   }
 937   if (JNIHandles::is_global_handle((jobject) addr)) {
 938     st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
 939     return;
 940   }
 941   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
 942     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
 943     return;
 944   }
 945 #ifndef PRODUCT
 946   // we don't keep the block list in product mode
 947   if (JNIHandleBlock::any_contains((jobject) addr)) {
 948     st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
 949     return;
 950   }
 951 #endif
 952 
 953   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
 954     // Check for privilege stack
 955     if (thread->privileged_stack_top() != NULL &&
 956         thread->privileged_stack_top()->contains(addr)) {
 957       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
 958                    "for thread: " INTPTR_FORMAT, addr, thread);
 959       if (verbose) thread->print_on(st);
 960       return;
 961     }
 962     // If the addr is a java thread print information about that.
 963     if (addr == (address)thread) {
 964       if (verbose) {
 965         thread->print_on(st);
 966       } else {
 967         st->print_cr(INTPTR_FORMAT " is a thread", addr);
 968       }
 969       return;
 970     }
 971     // If the addr is in the stack region for this thread then report that
 972     // and print thread info
 973     if (thread->stack_base() >= addr &&
 974         addr > (thread->stack_base() - thread->stack_size())) {
 975       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
 976                    INTPTR_FORMAT, addr, thread);
 977       if (verbose) thread->print_on(st);
 978       return;
 979     }
 980 
 981   }
 982 
 983   // Check if in metaspace and print types that have vptrs (only method now)
 984   if (Metaspace::contains(addr)) {
 985     if (Method::has_method_vptr((const void*)addr)) {
 986       ((Method*)addr)->print_value_on(st);
 987       st->cr();
 988     } else {
 989       // Use addr->print() from the debugger instead (not here)
 990       st->print_cr(INTPTR_FORMAT " is pointing into metadata", addr);
 991     }
 992     return;
 993   }
 994 
 995   // Try an OS specific find
 996   if (os::find(addr, st)) {
 997     return;
 998   }
 999 
1000   st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
1001 }
1002 
1003 // Looks like all platforms except IA64 can use the same function to check
1004 // if C stack is walkable beyond current frame. The check for fp() is not
1005 // necessary on Sparc, but it's harmless.
1006 bool os::is_first_C_frame(frame* fr) {
1007 #if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
1008   // On IA64 we have to check if the callers bsp is still valid
1009   // (i.e. within the register stack bounds).
1010   // Notice: this only works for threads created by the VM and only if
1011   // we walk the current stack!!! If we want to be able to walk
1012   // arbitrary other threads, we'll have to somehow store the thread
1013   // object in the frame.
1014   Thread *thread = Thread::current();
1015   if ((address)fr->fp() <=
1016       thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1017     // This check is a little hacky, because on Linux the first C
1018     // frame's ('start_thread') register stack frame starts at
1019     // "register_stack_base + 0x48" while on HPUX, the first C frame's
1020     // ('__pthread_bound_body') register stack frame seems to really
1021     // start at "register_stack_base".
1022     return true;
1023   } else {
1024     return false;
1025   }
1026 #elif defined(IA64) && defined(_WIN32)
1027   return true;
1028 #else
1029   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1030   // Check usp first, because if that's bad the other accessors may fault
1031   // on some architectures.  Ditto ufp second, etc.
1032   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1033   // sp on amd can be 32 bit aligned.
1034   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1035 
1036   uintptr_t usp    = (uintptr_t)fr->sp();
1037   if ((usp & sp_align_mask) != 0) return true;
1038 
1039   uintptr_t ufp    = (uintptr_t)fr->fp();
1040   if ((ufp & fp_align_mask) != 0) return true;
1041 
1042   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1043   if ((old_sp & sp_align_mask) != 0) return true;
1044   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1045 
1046   uintptr_t old_fp = (uintptr_t)fr->link();
1047   if ((old_fp & fp_align_mask) != 0) return true;
1048   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1049 
1050   // stack grows downwards; if old_fp is below current fp or if the stack
1051   // frame is too large, either the stack is corrupted or fp is not saved
1052   // on stack (i.e. on x86, ebp may be used as general register). The stack
1053   // is not walkable beyond current frame.
1054   if (old_fp < ufp) return true;
1055   if (old_fp - ufp > 64 * K) return true;
1056 
1057   return false;
1058 #endif
1059 }
1060 
1061 #ifdef ASSERT
1062 extern "C" void test_random() {
1063   const double m = 2147483647;
1064   double mean = 0.0, variance = 0.0, t;
1065   long reps = 10000;
1066   unsigned long seed = 1;
1067 
1068   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1069   os::init_random(seed);
1070   long num;
1071   for (int k = 0; k < reps; k++) {
1072     num = os::random();
1073     double u = (double)num / m;
1074     assert(u >= 0.0 && u <= 1.0, "bad random number!");
1075 
1076     // calculate mean and variance of the random sequence
1077     mean += u;
1078     variance += (u*u);
1079   }
1080   mean /= reps;
1081   variance /= (reps - 1);
1082 
1083   assert(num == 1043618065, "bad seed");
1084   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1085   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1086   const double eps = 0.0001;
1087   t = fabsd(mean - 0.5018);
1088   assert(t < eps, "bad mean");
1089   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1090   assert(t < eps, "bad variance");
1091 }
1092 #endif
1093 
1094 
1095 // Set up the boot classpath.
1096 
1097 char* os::format_boot_path(const char* format_string,
1098                            const char* home,
1099                            int home_len,
1100                            char fileSep,
1101                            char pathSep) {
1102     assert((fileSep == '/' && pathSep == ':') ||
1103            (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1104 
1105     // Scan the format string to determine the length of the actual
1106     // boot classpath, and handle platform dependencies as well.
1107     int formatted_path_len = 0;
1108     const char* p;
1109     for (p = format_string; *p != 0; ++p) {
1110         if (*p == '%') formatted_path_len += home_len - 1;
1111         ++formatted_path_len;
1112     }
1113 
1114     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1115     if (formatted_path == NULL) {
1116         return NULL;
1117     }
1118 
1119     // Create boot classpath from format, substituting separator chars and
1120     // java home directory.
1121     char* q = formatted_path;
1122     for (p = format_string; *p != 0; ++p) {
1123         switch (*p) {
1124         case '%':
1125             strcpy(q, home);
1126             q += home_len;
1127             break;
1128         case '/':
1129             *q++ = fileSep;
1130             break;
1131         case ':':
1132             *q++ = pathSep;
1133             break;
1134         default:
1135             *q++ = *p;
1136         }
1137     }
1138     *q = '\0';
1139 
1140     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1141     return formatted_path;
1142 }
1143 
1144 
1145 bool os::set_boot_path(char fileSep, char pathSep) {
1146     const char* home = Arguments::get_java_home();
1147     int home_len = (int)strlen(home);
1148 
1149     static const char* meta_index_dir_format = "%/lib/";
1150     static const char* meta_index_format = "%/lib/meta-index";
1151     char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
1152     if (meta_index == NULL) return false;
1153     char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
1154     if (meta_index_dir == NULL) return false;
1155     Arguments::set_meta_index_path(meta_index, meta_index_dir);
1156 
1157     // Any modification to the JAR-file list, for the boot classpath must be
1158     // aligned with install/install/make/common/Pack.gmk. Note: boot class
1159     // path class JARs, are stripped for StackMapTable to reduce download size.
1160     static const char classpath_format[] =
1161         "%/lib/resources.jar:"
1162         "%/lib/rt.jar:"
1163         "%/lib/sunrsasign.jar:"
1164         "%/lib/jsse.jar:"
1165         "%/lib/jce.jar:"
1166         "%/lib/charsets.jar:"
1167         "%/lib/jfr.jar:"
1168         "%/classes";
1169     char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
1170     if (sysclasspath == NULL) return false;
1171     Arguments::set_sysclasspath(sysclasspath);
1172 
1173     return true;
1174 }
1175 
1176 /*
1177  * Splits a path, based on its separator, the number of
1178  * elements is returned back in n.
1179  * It is the callers responsibility to:
1180  *   a> check the value of n, and n may be 0.
1181  *   b> ignore any empty path elements
1182  *   c> free up the data.
1183  */
1184 char** os::split_path(const char* path, int* n) {
1185   *n = 0;
1186   if (path == NULL || strlen(path) == 0) {
1187     return NULL;
1188   }
1189   const char psepchar = *os::path_separator();
1190   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1191   if (inpath == NULL) {
1192     return NULL;
1193   }
1194   strcpy(inpath, path);
1195   int count = 1;
1196   char* p = strchr(inpath, psepchar);
1197   // Get a count of elements to allocate memory
1198   while (p != NULL) {
1199     count++;
1200     p++;
1201     p = strchr(p, psepchar);
1202   }
1203   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1204   if (opath == NULL) {
1205     return NULL;
1206   }
1207 
1208   // do the actual splitting
1209   p = inpath;
1210   for (int i = 0 ; i < count ; i++) {
1211     size_t len = strcspn(p, os::path_separator());
1212     if (len > JVM_MAXPATHLEN) {
1213       return NULL;
1214     }
1215     // allocate the string and add terminator storage
1216     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1217     if (s == NULL) {
1218       return NULL;
1219     }
1220     strncpy(s, p, len);
1221     s[len] = '\0';
1222     opath[i] = s;
1223     p += len + 1;
1224   }
1225   FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
1226   *n = count;
1227   return opath;
1228 }
1229 
1230 void os::set_memory_serialize_page(address page) {
1231   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1232   _mem_serialize_page = (volatile int32_t *)page;
1233   // We initialize the serialization page shift count here
1234   // We assume a cache line size of 64 bytes
1235   assert(SerializePageShiftCount == count,
1236          "thread size changed, fix SerializePageShiftCount constant");
1237   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1238 }
1239 
1240 static volatile intptr_t SerializePageLock = 0;
1241 
1242 // This method is called from signal handler when SIGSEGV occurs while the current
1243 // thread tries to store to the "read-only" memory serialize page during state
1244 // transition.
1245 void os::block_on_serialize_page_trap() {
1246   if (TraceSafepoint) {
1247     tty->print_cr("Block until the serialize page permission restored");
1248   }
1249   // When VMThread is holding the SerializePageLock during modifying the
1250   // access permission of the memory serialize page, the following call
1251   // will block until the permission of that page is restored to rw.
1252   // Generally, it is unsafe to manipulate locks in signal handlers, but in
1253   // this case, it's OK as the signal is synchronous and we know precisely when
1254   // it can occur.
1255   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1256   Thread::muxRelease(&SerializePageLock);
1257 }
1258 
1259 // Serialize all thread state variables
1260 void os::serialize_thread_states() {
1261   // On some platforms such as Solaris & Linux, the time duration of the page
1262   // permission restoration is observed to be much longer than expected  due to
1263   // scheduler starvation problem etc. To avoid the long synchronization
1264   // time and expensive page trap spinning, 'SerializePageLock' is used to block
1265   // the mutator thread if such case is encountered. See bug 6546278 for details.
1266   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1267   os::protect_memory((char *)os::get_memory_serialize_page(),
1268                      os::vm_page_size(), MEM_PROT_READ);
1269   os::protect_memory((char *)os::get_memory_serialize_page(),
1270                      os::vm_page_size(), MEM_PROT_RW);
1271   Thread::muxRelease(&SerializePageLock);
1272 }
1273 
1274 // Returns true if the current stack pointer is above the stack shadow
1275 // pages, false otherwise.
1276 
1277 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
1278   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1279   address sp = current_stack_pointer();
1280   // Check if we have StackShadowPages above the yellow zone.  This parameter
1281   // is dependent on the depth of the maximum VM call stack possible from
1282   // the handler for stack overflow.  'instanceof' in the stack overflow
1283   // handler or a println uses at least 8k stack of VM and native code
1284   // respectively.
1285   const int framesize_in_bytes =
1286     Interpreter::size_top_interpreter_activation(method()) * wordSize;
1287   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
1288                       * vm_page_size()) + framesize_in_bytes;
1289   // The very lower end of the stack
1290   address stack_limit = thread->stack_base() - thread->stack_size();
1291   return (sp > (stack_limit + reserved_area));
1292 }
1293 
1294 size_t os::page_size_for_region(size_t region_size, size_t min_pages) {
1295   assert(min_pages > 0, "sanity");
1296   if (UseLargePages) {
1297     const size_t max_page_size = region_size / min_pages;
1298 
1299     for (size_t i = 0; _page_sizes[i] != 0; ++i) {
1300       const size_t page_size = _page_sizes[i];
1301       if (page_size <= max_page_size && is_size_aligned(region_size, page_size)) {
1302         return page_size;
1303       }
1304     }
1305   }
1306 
1307   return vm_page_size();
1308 }
1309 
1310 #ifndef PRODUCT
1311 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1312 {
1313   if (TracePageSizes) {
1314     tty->print("%s: ", str);
1315     for (int i = 0; i < count; ++i) {
1316       tty->print(" " SIZE_FORMAT, page_sizes[i]);
1317     }
1318     tty->cr();
1319   }
1320 }
1321 
1322 void os::trace_page_sizes(const char* str, const size_t region_min_size,
1323                           const size_t region_max_size, const size_t page_size,
1324                           const char* base, const size_t size)
1325 {
1326   if (TracePageSizes) {
1327     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1328                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1329                   " size=" SIZE_FORMAT,
1330                   str, region_min_size, region_max_size,
1331                   page_size, base, size);
1332   }
1333 }
1334 #endif  // #ifndef PRODUCT
1335 
1336 // This is the working definition of a server class machine:
1337 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
1338 // because the graphics memory (?) sometimes masks physical memory.
1339 // If you want to change the definition of a server class machine
1340 // on some OS or platform, e.g., >=4GB on Windows platforms,
1341 // then you'll have to parameterize this method based on that state,
1342 // as was done for logical processors here, or replicate and
1343 // specialize this method for each platform.  (Or fix os to have
1344 // some inheritance structure and use subclassing.  Sigh.)
1345 // If you want some platform to always or never behave as a server
1346 // class machine, change the setting of AlwaysActAsServerClassMachine
1347 // and NeverActAsServerClassMachine in globals*.hpp.
1348 bool os::is_server_class_machine() {
1349   // First check for the early returns
1350   if (NeverActAsServerClassMachine) {
1351     return false;
1352   }
1353   if (AlwaysActAsServerClassMachine) {
1354     return true;
1355   }
1356   // Then actually look at the machine
1357   bool         result            = false;
1358   const unsigned int    server_processors = 2;
1359   const julong server_memory     = 2UL * G;
1360   // We seem not to get our full complement of memory.
1361   //     We allow some part (1/8?) of the memory to be "missing",
1362   //     based on the sizes of DIMMs, and maybe graphics cards.
1363   const julong missing_memory   = 256UL * M;
1364 
1365   /* Is this a server class machine? */
1366   if ((os::active_processor_count() >= (int)server_processors) &&
1367       (os::physical_memory() >= (server_memory - missing_memory))) {
1368     const unsigned int logical_processors =
1369       VM_Version::logical_processors_per_package();
1370     if (logical_processors > 1) {
1371       const unsigned int physical_packages =
1372         os::active_processor_count() / logical_processors;
1373       if (physical_packages > server_processors) {
1374         result = true;
1375       }
1376     } else {
1377       result = true;
1378     }
1379   }
1380   return result;
1381 }
1382 
1383 void os::SuspendedThreadTask::run() {
1384   assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1385   internal_do_task();
1386   _done = true;
1387 }
1388 
1389 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1390   return os::pd_create_stack_guard_pages(addr, bytes);
1391 }
1392 
1393 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1394   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1395   if (result != NULL) {
1396     MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1397   }
1398 
1399   return result;
1400 }
1401 
1402 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1403    MEMFLAGS flags) {
1404   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1405   if (result != NULL) {
1406     MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1407     MemTracker::record_virtual_memory_type((address)result, flags);
1408   }
1409 
1410   return result;
1411 }
1412 
1413 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1414   char* result = pd_attempt_reserve_memory_at(bytes, addr);
1415   if (result != NULL) {
1416     MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1417   }
1418   return result;
1419 }
1420 
1421 void os::split_reserved_memory(char *base, size_t size,
1422                                  size_t split, bool realloc) {
1423   pd_split_reserved_memory(base, size, split, realloc);
1424 }
1425 
1426 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1427   bool res = pd_commit_memory(addr, bytes, executable);
1428   if (res) {
1429     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1430   }
1431   return res;
1432 }
1433 
1434 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1435                               bool executable) {
1436   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1437   if (res) {
1438     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1439   }
1440   return res;
1441 }
1442 
1443 void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1444                                const char* mesg) {
1445   pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1446   MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1447 }
1448 
1449 void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1450                                bool executable, const char* mesg) {
1451   os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1452   MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1453 }
1454 
1455 bool os::uncommit_memory(char* addr, size_t bytes) {
1456   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1457   bool res = pd_uncommit_memory(addr, bytes);
1458   if (res) {
1459     tkr.record((address)addr, bytes);
1460   } else {
1461     tkr.discard();
1462   }
1463   return res;
1464 }
1465 
1466 bool os::release_memory(char* addr, size_t bytes) {
1467   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1468   bool res = pd_release_memory(addr, bytes);
1469   if (res) {
1470     tkr.record((address)addr, bytes);
1471   } else {
1472     tkr.discard();
1473   }
1474   return res;
1475 }
1476 
1477 
1478 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1479                            char *addr, size_t bytes, bool read_only,
1480                            bool allow_exec) {
1481   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1482   if (result != NULL) {
1483     MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, mtNone, CALLER_PC);
1484   }
1485   return result;
1486 }
1487 
1488 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1489                              char *addr, size_t bytes, bool read_only,
1490                              bool allow_exec) {
1491   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1492                     read_only, allow_exec);
1493 }
1494 
1495 bool os::unmap_memory(char *addr, size_t bytes) {
1496   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1497   bool result = pd_unmap_memory(addr, bytes);
1498   if (result) {
1499     tkr.record((address)addr, bytes);
1500   } else {
1501     tkr.discard();
1502   }
1503   return result;
1504 }
1505 
1506 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1507   pd_free_memory(addr, bytes, alignment_hint);
1508 }
1509 
1510 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1511   pd_realign_memory(addr, bytes, alignment_hint);
1512 }
1513 
1514 #ifndef TARGET_OS_FAMILY_windows
1515 /* try to switch state from state "from" to state "to"
1516  * returns the state set after the method is complete
1517  */
1518 os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1519                                                          os::SuspendResume::State to)
1520 {
1521   os::SuspendResume::State result =
1522     (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1523   if (result == from) {
1524     // success
1525     return to;
1526   }
1527   return result;
1528 }
1529 #endif
1530 
1531 /////////////// Unit tests ///////////////
1532 
1533 #ifndef PRODUCT
1534 
1535 #define assert_eq(a,b) assert(a == b, err_msg(SIZE_FORMAT " != " SIZE_FORMAT, a, b))
1536 
1537 class TestOS : AllStatic {
1538   static size_t small_page_size() {
1539     return os::vm_page_size();
1540   }
1541 
1542   static size_t large_page_size() {
1543     const size_t large_page_size_example = 4 * M;
1544     return os::page_size_for_region(large_page_size_example, 1);
1545   }
1546 
1547   static void test_page_size_for_region() {
1548     if (UseLargePages) {
1549       const size_t small_page = small_page_size();
1550       const size_t large_page = large_page_size();
1551 
1552       if (large_page > small_page) {
1553         size_t num_small_pages_in_large = large_page / small_page;
1554         size_t page = os::page_size_for_region(large_page, num_small_pages_in_large);
1555 
1556         assert_eq(page, small_page);
1557       }
1558     }
1559   }
1560 
1561   static void test_page_size_for_region_alignment() {
1562     if (UseLargePages) {
1563       const size_t small_page = small_page_size();
1564       const size_t large_page = large_page_size();
1565       if (large_page > small_page) {
1566         const size_t unaligned_region = large_page + 17;
1567         size_t page = os::page_size_for_region(unaligned_region, 1);
1568         assert_eq(page, small_page);
1569 
1570         const size_t num_pages = 5;
1571         const size_t aligned_region = large_page * num_pages;
1572         page = os::page_size_for_region(aligned_region, num_pages);
1573         assert_eq(page, large_page);
1574       }
1575     }
1576   }
1577 
1578  public:
1579   static void run_tests() {
1580     test_page_size_for_region();
1581     test_page_size_for_region_alignment();
1582   }
1583 };
1584 
1585 void TestOS_test() {
1586   TestOS::run_tests();
1587 }
1588 
1589 #endif // PRODUCT