1 /*
   2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/atomic.inline.hpp"
  31 #include "runtime/biasedLocking.hpp"
  32 #include "runtime/handles.inline.hpp"
  33 #include "runtime/interfaceSupport.hpp"
  34 #include "runtime/mutexLocker.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/objectMonitor.inline.hpp"
  37 #include "runtime/osThread.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "runtime/synchronizer.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "utilities/dtrace.hpp"
  42 #include "utilities/events.hpp"
  43 #include "utilities/preserveException.hpp"
  44 
  45 #if defined(__GNUC__) && !defined(PPC64)
  46   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  47   #define ATTR __attribute__((noinline))
  48 #else
  49   #define ATTR
  50 #endif
  51 
  52 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  53 
  54 // The "core" versions of monitor enter and exit reside in this file.
  55 // The interpreter and compilers contain specialized transliterated
  56 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  57 // for instance.  If you make changes here, make sure to modify the
  58 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  59 //
  60 //
  61 // -----------------------------------------------------------------------------
  62 
  63 #ifdef DTRACE_ENABLED
  64 
  65 // Only bother with this argument setup if dtrace is available
  66 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  67 
  68 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  69   char* bytes = NULL;                                                      \
  70   int len = 0;                                                             \
  71   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  72   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  73   if (klassname != NULL) {                                                 \
  74     bytes = (char*)klassname->bytes();                                     \
  75     len = klassname->utf8_length();                                        \
  76   }
  77 
  78 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  79   {                                                                        \
  80     if (DTraceMonitorProbes) {                                            \
  81       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  82       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  83                            (uintptr_t)(monitor), bytes, len, (millis));  \
  84     }                                                                      \
  85   }
  86 
  87 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  88 
  89 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  90   {                                                                        \
  91     if (DTraceMonitorProbes) {                                            \
  92       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  93       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  94                        (uintptr_t)(monitor), bytes, len);                  \
  95     }                                                                      \
  96   }
  97 
  98 #else //  ndef DTRACE_ENABLED
  99 
 100 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 101 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 102 
 103 #endif // ndef DTRACE_ENABLED
 104 
 105 // This exists only as a workaround of dtrace bug 6254741
 106 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 107   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 108   return 0;
 109 }
 110 
 111 #define NINFLATIONLOCKS 256
 112 static volatile intptr_t InflationLocks[NINFLATIONLOCKS];
 113 
 114 ObjectMonitor * ObjectSynchronizer::gBlockList = NULL;
 115 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL;
 116 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL;
 117 int ObjectSynchronizer::gOmInUseCount = 0;
 118 static volatile intptr_t ListLock = 0;      // protects global monitor free-list cache
 119 static volatile int MonitorFreeCount  = 0;      // # on gFreeList
 120 static volatile int MonitorPopulation = 0;      // # Extant -- in circulation
 121 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 122 
 123 // -----------------------------------------------------------------------------
 124 //  Fast Monitor Enter/Exit
 125 // This the fast monitor enter. The interpreter and compiler use
 126 // some assembly copies of this code. Make sure update those code
 127 // if the following function is changed. The implementation is
 128 // extremely sensitive to race condition. Be careful.
 129 
 130 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
 131  if (UseBiasedLocking) {
 132     if (!SafepointSynchronize::is_at_safepoint()) {
 133       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 134       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 135         return;
 136       }
 137     } else {
 138       assert(!attempt_rebias, "can not rebias toward VM thread");
 139       BiasedLocking::revoke_at_safepoint(obj);
 140     }
 141     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 142  }
 143 
 144  slow_enter(obj, lock, THREAD);
 145 }
 146 
 147 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 148   assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
 149   // if displaced header is null, the previous enter is recursive enter, no-op
 150   markOop dhw = lock->displaced_header();
 151   markOop mark;
 152   if (dhw == NULL) {
 153      // Recursive stack-lock.
 154      // Diagnostics -- Could be: stack-locked, inflating, inflated.
 155      mark = object->mark();
 156      assert(!mark->is_neutral(), "invariant");
 157      if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
 158         assert(THREAD->is_lock_owned((address)mark->locker()), "invariant");
 159      }
 160      if (mark->has_monitor()) {
 161         ObjectMonitor * m = mark->monitor();
 162         assert(((oop)(m->object()))->mark() == mark, "invariant");
 163         assert(m->is_entered(THREAD), "invariant");
 164      }
 165      return;
 166   }
 167 
 168   mark = object->mark();
 169 
 170   // If the object is stack-locked by the current thread, try to
 171   // swing the displaced header from the box back to the mark.
 172   if (mark == (markOop) lock) {
 173      assert(dhw->is_neutral(), "invariant");
 174      if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
 175         TEVENT(fast_exit: release stacklock);
 176         return;
 177      }
 178   }
 179 
 180   ObjectSynchronizer::inflate(THREAD, object)->exit(true, THREAD);
 181 }
 182 
 183 // -----------------------------------------------------------------------------
 184 // Interpreter/Compiler Slow Case
 185 // This routine is used to handle interpreter/compiler slow case
 186 // We don't need to use fast path here, because it must have been
 187 // failed in the interpreter/compiler code.
 188 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 189   markOop mark = obj->mark();
 190   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 191 
 192   if (mark->is_neutral()) {
 193     // Anticipate successful CAS -- the ST of the displaced mark must
 194     // be visible <= the ST performed by the CAS.
 195     lock->set_displaced_header(mark);
 196     if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
 197       TEVENT(slow_enter: release stacklock);
 198       return;
 199     }
 200     // Fall through to inflate() ...
 201   } else
 202   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 203     assert(lock != mark->locker(), "must not re-lock the same lock");
 204     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 205     lock->set_displaced_header(NULL);
 206     return;
 207   }
 208 
 209 #if 0
 210   // The following optimization isn't particularly useful.
 211   if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
 212     lock->set_displaced_header(NULL);
 213     return;
 214   }
 215 #endif
 216 
 217   // The object header will never be displaced to this lock,
 218   // so it does not matter what the value is, except that it
 219   // must be non-zero to avoid looking like a re-entrant lock,
 220   // and must not look locked either.
 221   lock->set_displaced_header(markOopDesc::unused_mark());
 222   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
 223 }
 224 
 225 // This routine is used to handle interpreter/compiler slow case
 226 // We don't need to use fast path here, because it must have
 227 // failed in the interpreter/compiler code. Simply use the heavy
 228 // weight monitor should be ok, unless someone find otherwise.
 229 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 230   fast_exit(object, lock, THREAD);
 231 }
 232 
 233 // -----------------------------------------------------------------------------
 234 // Class Loader  support to workaround deadlocks on the class loader lock objects
 235 // Also used by GC
 236 // complete_exit()/reenter() are used to wait on a nested lock
 237 // i.e. to give up an outer lock completely and then re-enter
 238 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 239 //  1) complete_exit lock1 - saving recursion count
 240 //  2) wait on lock2
 241 //  3) when notified on lock2, unlock lock2
 242 //  4) reenter lock1 with original recursion count
 243 //  5) lock lock2
 244 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 245 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 246   TEVENT(complete_exit);
 247   if (UseBiasedLocking) {
 248     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 249     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 250   }
 251 
 252   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 253 
 254   return monitor->complete_exit(THREAD);
 255 }
 256 
 257 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 258 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 259   TEVENT(reenter);
 260   if (UseBiasedLocking) {
 261     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 262     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 263   }
 264 
 265   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 266 
 267   monitor->reenter(recursion, THREAD);
 268 }
 269 // -----------------------------------------------------------------------------
 270 // JNI locks on java objects
 271 // NOTE: must use heavy weight monitor to handle jni monitor enter
 272 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
 273   // the current locking is from JNI instead of Java code
 274   TEVENT(jni_enter);
 275   if (UseBiasedLocking) {
 276     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 277     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 278   }
 279   THREAD->set_current_pending_monitor_is_from_java(false);
 280   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
 281   THREAD->set_current_pending_monitor_is_from_java(true);
 282 }
 283 
 284 // NOTE: must use heavy weight monitor to handle jni monitor enter
 285 bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
 286   if (UseBiasedLocking) {
 287     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 288     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 289   }
 290 
 291   ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
 292   return monitor->try_enter(THREAD);
 293 }
 294 
 295 
 296 // NOTE: must use heavy weight monitor to handle jni monitor exit
 297 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 298   TEVENT(jni_exit);
 299   if (UseBiasedLocking) {
 300     Handle h_obj(THREAD, obj);
 301     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 302     obj = h_obj();
 303   }
 304   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 305 
 306   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
 307   // If this thread has locked the object, exit the monitor.  Note:  can't use
 308   // monitor->check(CHECK); must exit even if an exception is pending.
 309   if (monitor->check(THREAD)) {
 310      monitor->exit(true, THREAD);
 311   }
 312 }
 313 
 314 // -----------------------------------------------------------------------------
 315 // Internal VM locks on java objects
 316 // standard constructor, allows locking failures
 317 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 318   _dolock = doLock;
 319   _thread = thread;
 320   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 321   _obj = obj;
 322 
 323   if (_dolock) {
 324     TEVENT(ObjectLocker);
 325 
 326     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 327   }
 328 }
 329 
 330 ObjectLocker::~ObjectLocker() {
 331   if (_dolock) {
 332     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 333   }
 334 }
 335 
 336 
 337 // -----------------------------------------------------------------------------
 338 //  Wait/Notify/NotifyAll
 339 // NOTE: must use heavy weight monitor to handle wait()
 340 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 341   if (UseBiasedLocking) {
 342     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 343     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 344   }
 345   if (millis < 0) {
 346     TEVENT(wait - throw IAX);
 347     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 348   }
 349   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 350   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 351   monitor->wait(millis, true, THREAD);
 352 
 353   // This dummy call is in place to get around dtrace bug 6254741.  Once
 354   // that's fixed we can uncomment the following line, remove the call
 355   // and change this function back into a "void" func.
 356   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 357   return dtrace_waited_probe(monitor, obj, THREAD);
 358 }
 359 
 360 void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
 361   if (UseBiasedLocking) {
 362     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 363     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 364   }
 365   if (millis < 0) {
 366     TEVENT(wait - throw IAX);
 367     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 368   }
 369   ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD);
 370 }
 371 
 372 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 373  if (UseBiasedLocking) {
 374     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 375     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 376   }
 377 
 378   markOop mark = obj->mark();
 379   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 380     return;
 381   }
 382   ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
 383 }
 384 
 385 // NOTE: see comment of notify()
 386 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 387   if (UseBiasedLocking) {
 388     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 389     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 390   }
 391 
 392   markOop mark = obj->mark();
 393   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 394     return;
 395   }
 396   ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
 397 }
 398 
 399 // -----------------------------------------------------------------------------
 400 // Hash Code handling
 401 //
 402 // Performance concern:
 403 // OrderAccess::storestore() calls release() which STs 0 into the global volatile
 404 // OrderAccess::Dummy variable.  This store is unnecessary for correctness.
 405 // Many threads STing into a common location causes considerable cache migration
 406 // or "sloshing" on large SMP system.  As such, I avoid using OrderAccess::storestore()
 407 // until it's repaired.  In some cases OrderAccess::fence() -- which incurs local
 408 // latency on the executing processor -- is a better choice as it scales on SMP
 409 // systems.  See http://blogs.sun.com/dave/entry/biased_locking_in_hotspot for a
 410 // discussion of coherency costs.  Note that all our current reference platforms
 411 // provide strong ST-ST order, so the issue is moot on IA32, x64, and SPARC.
 412 //
 413 // As a general policy we use "volatile" to control compiler-based reordering
 414 // and explicit fences (barriers) to control for architectural reordering performed
 415 // by the CPU(s) or platform.
 416 
 417 struct SharedGlobals {
 418     // These are highly shared mostly-read variables.
 419     // To avoid false-sharing they need to be the sole occupants of a $ line.
 420     double padPrefix[8];
 421     volatile int stwRandom;
 422     volatile int stwCycle;
 423 
 424     // Hot RW variables -- Sequester to avoid false-sharing
 425     double padSuffix[16];
 426     volatile int hcSequence;
 427     double padFinal[8];
 428 };
 429 
 430 static SharedGlobals GVars;
 431 static int MonitorScavengeThreshold = 1000000;
 432 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 433 
 434 static markOop ReadStableMark (oop obj) {
 435   markOop mark = obj->mark();
 436   if (!mark->is_being_inflated()) {
 437     return mark;       // normal fast-path return
 438   }
 439 
 440   int its = 0;
 441   for (;;) {
 442     markOop mark = obj->mark();
 443     if (!mark->is_being_inflated()) {
 444       return mark;    // normal fast-path return
 445     }
 446 
 447     // The object is being inflated by some other thread.
 448     // The caller of ReadStableMark() must wait for inflation to complete.
 449     // Avoid live-lock
 450     // TODO: consider calling SafepointSynchronize::do_call_back() while
 451     // spinning to see if there's a safepoint pending.  If so, immediately
 452     // yielding or blocking would be appropriate.  Avoid spinning while
 453     // there is a safepoint pending.
 454     // TODO: add inflation contention performance counters.
 455     // TODO: restrict the aggregate number of spinners.
 456 
 457     ++its;
 458     if (its > 10000 || !os::is_MP()) {
 459        if (its & 1) {
 460          os::NakedYield();
 461          TEVENT(Inflate: INFLATING - yield);
 462        } else {
 463          // Note that the following code attenuates the livelock problem but is not
 464          // a complete remedy.  A more complete solution would require that the inflating
 465          // thread hold the associated inflation lock.  The following code simply restricts
 466          // the number of spinners to at most one.  We'll have N-2 threads blocked
 467          // on the inflationlock, 1 thread holding the inflation lock and using
 468          // a yield/park strategy, and 1 thread in the midst of inflation.
 469          // A more refined approach would be to change the encoding of INFLATING
 470          // to allow encapsulation of a native thread pointer.  Threads waiting for
 471          // inflation to complete would use CAS to push themselves onto a singly linked
 472          // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 473          // and calling park().  When inflation was complete the thread that accomplished inflation
 474          // would detach the list and set the markword to inflated with a single CAS and
 475          // then for each thread on the list, set the flag and unpark() the thread.
 476          // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 477          // wakes at most one thread whereas we need to wake the entire list.
 478          int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 479          int YieldThenBlock = 0;
 480          assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 481          assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 482          Thread::muxAcquire(InflationLocks + ix, "InflationLock");
 483          while (obj->mark() == markOopDesc::INFLATING()) {
 484            // Beware: NakedYield() is advisory and has almost no effect on some platforms
 485            // so we periodically call Self->_ParkEvent->park(1).
 486            // We use a mixed spin/yield/block mechanism.
 487            if ((YieldThenBlock++) >= 16) {
 488               Thread::current()->_ParkEvent->park(1);
 489            } else {
 490               os::NakedYield();
 491            }
 492          }
 493          Thread::muxRelease(InflationLocks + ix);
 494          TEVENT(Inflate: INFLATING - yield/park);
 495        }
 496     } else {
 497        SpinPause();       // SMP-polite spinning
 498     }
 499   }
 500 }
 501 
 502 // hashCode() generation :
 503 //
 504 // Possibilities:
 505 // * MD5Digest of {obj,stwRandom}
 506 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 507 // * A DES- or AES-style SBox[] mechanism
 508 // * One of the Phi-based schemes, such as:
 509 //   2654435761 = 2^32 * Phi (golden ratio)
 510 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 511 // * A variation of Marsaglia's shift-xor RNG scheme.
 512 // * (obj ^ stwRandom) is appealing, but can result
 513 //   in undesirable regularity in the hashCode values of adjacent objects
 514 //   (objects allocated back-to-back, in particular).  This could potentially
 515 //   result in hashtable collisions and reduced hashtable efficiency.
 516 //   There are simple ways to "diffuse" the middle address bits over the
 517 //   generated hashCode values:
 518 //
 519 
 520 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 521   intptr_t value = 0;
 522   if (hashCode == 0) {
 523      // This form uses an unguarded global Park-Miller RNG,
 524      // so it's possible for two threads to race and generate the same RNG.
 525      // On MP system we'll have lots of RW access to a global, so the
 526      // mechanism induces lots of coherency traffic.
 527      value = os::random();
 528   } else
 529   if (hashCode == 1) {
 530      // This variation has the property of being stable (idempotent)
 531      // between STW operations.  This can be useful in some of the 1-0
 532      // synchronization schemes.
 533      intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3;
 534      value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom;
 535   } else
 536   if (hashCode == 2) {
 537      value = 1;            // for sensitivity testing
 538   } else
 539   if (hashCode == 3) {
 540      value = ++GVars.hcSequence;
 541   } else
 542   if (hashCode == 4) {
 543      value = cast_from_oop<intptr_t>(obj);
 544   } else {
 545      // Marsaglia's xor-shift scheme with thread-specific state
 546      // This is probably the best overall implementation -- we'll
 547      // likely make this the default in future releases.
 548      unsigned t = Self->_hashStateX;
 549      t ^= (t << 11);
 550      Self->_hashStateX = Self->_hashStateY;
 551      Self->_hashStateY = Self->_hashStateZ;
 552      Self->_hashStateZ = Self->_hashStateW;
 553      unsigned v = Self->_hashStateW;
 554      v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 555      Self->_hashStateW = v;
 556      value = v;
 557   }
 558 
 559   value &= markOopDesc::hash_mask;
 560   if (value == 0) value = 0xBAD;
 561   assert(value != markOopDesc::no_hash, "invariant");
 562   TEVENT(hashCode: GENERATE);
 563   return value;
 564 }
 565 //
 566 intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
 567   if (UseBiasedLocking) {
 568     // NOTE: many places throughout the JVM do not expect a safepoint
 569     // to be taken here, in particular most operations on perm gen
 570     // objects. However, we only ever bias Java instances and all of
 571     // the call sites of identity_hash that might revoke biases have
 572     // been checked to make sure they can handle a safepoint. The
 573     // added check of the bias pattern is to avoid useless calls to
 574     // thread-local storage.
 575     if (obj->mark()->has_bias_pattern()) {
 576       // Box and unbox the raw reference just in case we cause a STW safepoint.
 577       Handle hobj(Self, obj);
 578       // Relaxing assertion for bug 6320749.
 579       assert(Universe::verify_in_progress() ||
 580               !SafepointSynchronize::is_at_safepoint(),
 581              "biases should not be seen by VM thread here");
 582       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 583       obj = hobj();
 584       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 585     }
 586   }
 587 
 588   // hashCode() is a heap mutator ...
 589   // Relaxing assertion for bug 6320749.
 590   assert(Universe::verify_in_progress() ||
 591           !SafepointSynchronize::is_at_safepoint(), "invariant");
 592   assert(Universe::verify_in_progress() ||
 593           Self->is_Java_thread() , "invariant");
 594   assert(Universe::verify_in_progress() ||
 595          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 596 
 597   ObjectMonitor* monitor = NULL;
 598   markOop temp, test;
 599   intptr_t hash;
 600   markOop mark = ReadStableMark (obj);
 601 
 602   // object should remain ineligible for biased locking
 603   assert(!mark->has_bias_pattern(), "invariant");
 604 
 605   if (mark->is_neutral()) {
 606     hash = mark->hash();              // this is a normal header
 607     if (hash) {                       // if it has hash, just return it
 608       return hash;
 609     }
 610     hash = get_next_hash(Self, obj);  // allocate a new hash code
 611     temp = mark->copy_set_hash(hash); // merge the hash code into header
 612     // use (machine word version) atomic operation to install the hash
 613     test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
 614     if (test == mark) {
 615       return hash;
 616     }
 617     // If atomic operation failed, we must inflate the header
 618     // into heavy weight monitor. We could add more code here
 619     // for fast path, but it does not worth the complexity.
 620   } else if (mark->has_monitor()) {
 621     monitor = mark->monitor();
 622     temp = monitor->header();
 623     assert(temp->is_neutral(), "invariant");
 624     hash = temp->hash();
 625     if (hash) {
 626       return hash;
 627     }
 628     // Skip to the following code to reduce code size
 629   } else if (Self->is_lock_owned((address)mark->locker())) {
 630     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 631     assert(temp->is_neutral(), "invariant");
 632     hash = temp->hash();              // by current thread, check if the displaced
 633     if (hash) {                       // header contains hash code
 634       return hash;
 635     }
 636     // WARNING:
 637     //   The displaced header is strictly immutable.
 638     // It can NOT be changed in ANY cases. So we have
 639     // to inflate the header into heavyweight monitor
 640     // even the current thread owns the lock. The reason
 641     // is the BasicLock (stack slot) will be asynchronously
 642     // read by other threads during the inflate() function.
 643     // Any change to stack may not propagate to other threads
 644     // correctly.
 645   }
 646 
 647   // Inflate the monitor to set hash code
 648   monitor = ObjectSynchronizer::inflate(Self, obj);
 649   // Load displaced header and check it has hash code
 650   mark = monitor->header();
 651   assert(mark->is_neutral(), "invariant");
 652   hash = mark->hash();
 653   if (hash == 0) {
 654     hash = get_next_hash(Self, obj);
 655     temp = mark->copy_set_hash(hash); // merge hash code into header
 656     assert(temp->is_neutral(), "invariant");
 657     test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
 658     if (test != mark) {
 659       // The only update to the header in the monitor (outside GC)
 660       // is install the hash code. If someone add new usage of
 661       // displaced header, please update this code
 662       hash = test->hash();
 663       assert(test->is_neutral(), "invariant");
 664       assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 665     }
 666   }
 667   // We finally get the hash
 668   return hash;
 669 }
 670 
 671 // Deprecated -- use FastHashCode() instead.
 672 
 673 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 674   return FastHashCode(Thread::current(), obj());
 675 }
 676 
 677 
 678 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 679                                                    Handle h_obj) {
 680   if (UseBiasedLocking) {
 681     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 682     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 683   }
 684 
 685   assert(thread == JavaThread::current(), "Can only be called on current thread");
 686   oop obj = h_obj();
 687 
 688   markOop mark = ReadStableMark(obj);
 689 
 690   // Uncontended case, header points to stack
 691   if (mark->has_locker()) {
 692     return thread->is_lock_owned((address)mark->locker());
 693   }
 694   // Contended case, header points to ObjectMonitor (tagged pointer)
 695   if (mark->has_monitor()) {
 696     ObjectMonitor* monitor = mark->monitor();
 697     return monitor->is_entered(thread) != 0;
 698   }
 699   // Unlocked case, header in place
 700   assert(mark->is_neutral(), "sanity check");
 701   return false;
 702 }
 703 
 704 // Be aware of this method could revoke bias of the lock object.
 705 // This method queries the ownership of the lock handle specified by 'h_obj'.
 706 // If the current thread owns the lock, it returns owner_self. If no
 707 // thread owns the lock, it returns owner_none. Otherwise, it will return
 708 // owner_other.
 709 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 710 (JavaThread *self, Handle h_obj) {
 711   // The caller must beware this method can revoke bias, and
 712   // revocation can result in a safepoint.
 713   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 714   assert(self->thread_state() != _thread_blocked , "invariant");
 715 
 716   // Possible mark states: neutral, biased, stack-locked, inflated
 717 
 718   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 719     // CASE: biased
 720     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 721     assert(!h_obj->mark()->has_bias_pattern(),
 722            "biases should be revoked by now");
 723   }
 724 
 725   assert(self == JavaThread::current(), "Can only be called on current thread");
 726   oop obj = h_obj();
 727   markOop mark = ReadStableMark(obj);
 728 
 729   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 730   if (mark->has_locker()) {
 731     return self->is_lock_owned((address)mark->locker()) ?
 732       owner_self : owner_other;
 733   }
 734 
 735   // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
 736   // The Object:ObjectMonitor relationship is stable as long as we're
 737   // not at a safepoint.
 738   if (mark->has_monitor()) {
 739     void * owner = mark->monitor()->_owner;
 740     if (owner == NULL) return owner_none;
 741     return (owner == self ||
 742             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 743   }
 744 
 745   // CASE: neutral
 746   assert(mark->is_neutral(), "sanity check");
 747   return owner_none;           // it's unlocked
 748 }
 749 
 750 // FIXME: jvmti should call this
 751 JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
 752   if (UseBiasedLocking) {
 753     if (SafepointSynchronize::is_at_safepoint()) {
 754       BiasedLocking::revoke_at_safepoint(h_obj);
 755     } else {
 756       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 757     }
 758     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 759   }
 760 
 761   oop obj = h_obj();
 762   address owner = NULL;
 763 
 764   markOop mark = ReadStableMark(obj);
 765 
 766   // Uncontended case, header points to stack
 767   if (mark->has_locker()) {
 768     owner = (address) mark->locker();
 769   }
 770 
 771   // Contended case, header points to ObjectMonitor (tagged pointer)
 772   if (mark->has_monitor()) {
 773     ObjectMonitor* monitor = mark->monitor();
 774     assert(monitor != NULL, "monitor should be non-null");
 775     owner = (address) monitor->owner();
 776   }
 777 
 778   if (owner != NULL) {
 779     // owning_thread_from_monitor_owner() may also return NULL here
 780     return Threads::owning_thread_from_monitor_owner(owner, doLock);
 781   }
 782 
 783   // Unlocked case, header in place
 784   // Cannot have assertion since this object may have been
 785   // locked by another thread when reaching here.
 786   // assert(mark->is_neutral(), "sanity check");
 787 
 788   return NULL;
 789 }
 790 // Visitors ...
 791 
 792 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 793   ObjectMonitor* block = gBlockList;
 794   ObjectMonitor* mid;
 795   while (block) {
 796     assert(block->object() == CHAINMARKER, "must be a block header");
 797     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 798       mid = block + i;
 799       oop object = (oop) mid->object();
 800       if (object != NULL) {
 801         closure->do_monitor(mid);
 802       }
 803     }
 804     block = (ObjectMonitor*) block->FreeNext;
 805   }
 806 }
 807 
 808 // Get the next block in the block list.
 809 static inline ObjectMonitor* next(ObjectMonitor* block) {
 810   assert(block->object() == CHAINMARKER, "must be a block header");
 811   block = block->FreeNext;
 812   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
 813   return block;
 814 }
 815 
 816 
 817 void ObjectSynchronizer::oops_do(OopClosure* f) {
 818   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 819   for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
 820     assert(block->object() == CHAINMARKER, "must be a block header");
 821     for (int i = 1; i < _BLOCKSIZE; i++) {
 822       ObjectMonitor* mid = &block[i];
 823       if (mid->object() != NULL) {
 824         f->do_oop((oop*)mid->object_addr());
 825       }
 826     }
 827   }
 828 }
 829 
 830 
 831 // -----------------------------------------------------------------------------
 832 // ObjectMonitor Lifecycle
 833 // -----------------------
 834 // Inflation unlinks monitors from the global gFreeList and
 835 // associates them with objects.  Deflation -- which occurs at
 836 // STW-time -- disassociates idle monitors from objects.  Such
 837 // scavenged monitors are returned to the gFreeList.
 838 //
 839 // The global list is protected by ListLock.  All the critical sections
 840 // are short and operate in constant-time.
 841 //
 842 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
 843 //
 844 // Lifecycle:
 845 // --   unassigned and on the global free list
 846 // --   unassigned and on a thread's private omFreeList
 847 // --   assigned to an object.  The object is inflated and the mark refers
 848 //      to the objectmonitor.
 849 //
 850 
 851 
 852 // Constraining monitor pool growth via MonitorBound ...
 853 //
 854 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
 855 // the rate of scavenging is driven primarily by GC.  As such,  we can find
 856 // an inordinate number of monitors in circulation.
 857 // To avoid that scenario we can artificially induce a STW safepoint
 858 // if the pool appears to be growing past some reasonable bound.
 859 // Generally we favor time in space-time tradeoffs, but as there's no
 860 // natural back-pressure on the # of extant monitors we need to impose some
 861 // type of limit.  Beware that if MonitorBound is set to too low a value
 862 // we could just loop. In addition, if MonitorBound is set to a low value
 863 // we'll incur more safepoints, which are harmful to performance.
 864 // See also: GuaranteedSafepointInterval
 865 //
 866 // The current implementation uses asynchronous VM operations.
 867 //
 868 
 869 static void InduceScavenge (Thread * Self, const char * Whence) {
 870   // Induce STW safepoint to trim monitors
 871   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
 872   // More precisely, trigger an asynchronous STW safepoint as the number
 873   // of active monitors passes the specified threshold.
 874   // TODO: assert thread state is reasonable
 875 
 876   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
 877     if (ObjectMonitor::Knob_Verbose) {
 878       ::printf ("Monitor scavenge - Induced STW @%s (%d)\n", Whence, ForceMonitorScavenge) ;
 879       ::fflush(stdout);
 880     }
 881     // Induce a 'null' safepoint to scavenge monitors
 882     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
 883     // to the VMthread and have a lifespan longer than that of this activation record.
 884     // The VMThread will delete the op when completed.
 885     VMThread::execute(new VM_ForceAsyncSafepoint());
 886 
 887     if (ObjectMonitor::Knob_Verbose) {
 888       ::printf ("Monitor scavenge - STW posted @%s (%d)\n", Whence, ForceMonitorScavenge) ;
 889       ::fflush(stdout);
 890     }
 891   }
 892 }
 893 /* Too slow for general assert or debug
 894 void ObjectSynchronizer::verifyInUse (Thread *Self) {
 895    ObjectMonitor* mid;
 896    int inusetally = 0;
 897    for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
 898      inusetally ++;
 899    }
 900    assert(inusetally == Self->omInUseCount, "inuse count off");
 901 
 902    int freetally = 0;
 903    for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
 904      freetally ++;
 905    }
 906    assert(freetally == Self->omFreeCount, "free count off");
 907 }
 908 */
 909 ObjectMonitor * ATTR ObjectSynchronizer::omAlloc (Thread * Self) {
 910     // A large MAXPRIVATE value reduces both list lock contention
 911     // and list coherency traffic, but also tends to increase the
 912     // number of objectMonitors in circulation as well as the STW
 913     // scavenge costs.  As usual, we lean toward time in space-time
 914     // tradeoffs.
 915     const int MAXPRIVATE = 1024;
 916     for (;;) {
 917         ObjectMonitor * m;
 918 
 919         // 1: try to allocate from the thread's local omFreeList.
 920         // Threads will attempt to allocate first from their local list, then
 921         // from the global list, and only after those attempts fail will the thread
 922         // attempt to instantiate new monitors.   Thread-local free lists take
 923         // heat off the ListLock and improve allocation latency, as well as reducing
 924         // coherency traffic on the shared global list.
 925         m = Self->omFreeList;
 926         if (m != NULL) {
 927            Self->omFreeList = m->FreeNext;
 928            Self->omFreeCount--;
 929            // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
 930            guarantee(m->object() == NULL, "invariant");
 931            if (MonitorInUseLists) {
 932              m->FreeNext = Self->omInUseList;
 933              Self->omInUseList = m;
 934              Self->omInUseCount++;
 935              // verifyInUse(Self);
 936            } else {
 937              m->FreeNext = NULL;
 938            }
 939            return m;
 940         }
 941 
 942         // 2: try to allocate from the global gFreeList
 943         // CONSIDER: use muxTry() instead of muxAcquire().
 944         // If the muxTry() fails then drop immediately into case 3.
 945         // If we're using thread-local free lists then try
 946         // to reprovision the caller's free list.
 947         if (gFreeList != NULL) {
 948             // Reprovision the thread's omFreeList.
 949             // Use bulk transfers to reduce the allocation rate and heat
 950             // on various locks.
 951             Thread::muxAcquire(&ListLock, "omAlloc");
 952             for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) {
 953                 MonitorFreeCount--;
 954                 ObjectMonitor * take = gFreeList;
 955                 gFreeList = take->FreeNext;
 956                 guarantee(take->object() == NULL, "invariant");
 957                 guarantee(!take->is_busy(), "invariant");
 958                 take->Recycle();
 959                 omRelease(Self, take, false);
 960             }
 961             Thread::muxRelease(&ListLock);
 962             Self->omFreeProvision += 1 + (Self->omFreeProvision/2);
 963             if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE;
 964             TEVENT(omFirst - reprovision);
 965 
 966             const int mx = MonitorBound;
 967             if (mx > 0 && (MonitorPopulation-MonitorFreeCount) > mx) {
 968               // We can't safely induce a STW safepoint from omAlloc() as our thread
 969               // state may not be appropriate for such activities and callers may hold
 970               // naked oops, so instead we defer the action.
 971               InduceScavenge(Self, "omAlloc");
 972             }
 973             continue;
 974         }
 975 
 976         // 3: allocate a block of new ObjectMonitors
 977         // Both the local and global free lists are empty -- resort to malloc().
 978         // In the current implementation objectMonitors are TSM - immortal.
 979         assert(_BLOCKSIZE > 1, "invariant");
 980         ObjectMonitor * temp = new ObjectMonitor[_BLOCKSIZE];
 981 
 982         // NOTE: (almost) no way to recover if allocation failed.
 983         // We might be able to induce a STW safepoint and scavenge enough
 984         // objectMonitors to permit progress.
 985         if (temp == NULL) {
 986             vm_exit_out_of_memory(sizeof (ObjectMonitor[_BLOCKSIZE]), OOM_MALLOC_ERROR,
 987                                    "Allocate ObjectMonitors");
 988         }
 989 
 990         // Format the block.
 991         // initialize the linked list, each monitor points to its next
 992         // forming the single linked free list, the very first monitor
 993         // will points to next block, which forms the block list.
 994         // The trick of using the 1st element in the block as gBlockList
 995         // linkage should be reconsidered.  A better implementation would
 996         // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
 997 
 998         for (int i = 1; i < _BLOCKSIZE; i++) {
 999            temp[i].FreeNext = &temp[i+1];
1000         }
1001 
1002         // terminate the last monitor as the end of list
1003         temp[_BLOCKSIZE - 1].FreeNext = NULL;
1004 
1005         // Element [0] is reserved for global list linkage
1006         temp[0].set_object(CHAINMARKER);
1007 
1008         // Consider carving out this thread's current request from the
1009         // block in hand.  This avoids some lock traffic and redundant
1010         // list activity.
1011 
1012         // Acquire the ListLock to manipulate BlockList and FreeList.
1013         // An Oyama-Taura-Yonezawa scheme might be more efficient.
1014         Thread::muxAcquire(&ListLock, "omAlloc [2]");
1015         MonitorPopulation += _BLOCKSIZE-1;
1016         MonitorFreeCount += _BLOCKSIZE-1;
1017 
1018         // Add the new block to the list of extant blocks (gBlockList).
1019         // The very first objectMonitor in a block is reserved and dedicated.
1020         // It serves as blocklist "next" linkage.
1021         temp[0].FreeNext = gBlockList;
1022         gBlockList = temp;
1023 
1024         // Add the new string of objectMonitors to the global free list
1025         temp[_BLOCKSIZE - 1].FreeNext = gFreeList;
1026         gFreeList = temp + 1;
1027         Thread::muxRelease(&ListLock);
1028         TEVENT(Allocate block of monitors);
1029     }
1030 }
1031 
1032 // Place "m" on the caller's private per-thread omFreeList.
1033 // In practice there's no need to clamp or limit the number of
1034 // monitors on a thread's omFreeList as the only time we'll call
1035 // omRelease is to return a monitor to the free list after a CAS
1036 // attempt failed.  This doesn't allow unbounded #s of monitors to
1037 // accumulate on a thread's free list.
1038 //
1039 
1040 void ObjectSynchronizer::omRelease (Thread * Self, ObjectMonitor * m, bool fromPerThreadAlloc) {
1041     guarantee(m->object() == NULL, "invariant");
1042 
1043     // Remove from omInUseList
1044     if (MonitorInUseLists && fromPerThreadAlloc) {
1045       ObjectMonitor* curmidinuse = NULL;
1046       for (ObjectMonitor* mid = Self->omInUseList; mid != NULL;) {
1047        if (m == mid) {
1048          // extract from per-thread in-use-list
1049          if (mid == Self->omInUseList) {
1050            Self->omInUseList = mid->FreeNext;
1051          } else if (curmidinuse != NULL) {
1052            curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
1053          }
1054          Self->omInUseCount--;
1055          // verifyInUse(Self);
1056          break;
1057        } else {
1058          curmidinuse = mid;
1059          mid = mid->FreeNext;
1060       }
1061     }
1062   }
1063 
1064   // FreeNext is used for both onInUseList and omFreeList, so clear old before setting new
1065   m->FreeNext = Self->omFreeList;
1066   Self->omFreeList = m;
1067   Self->omFreeCount++;
1068 }
1069 
1070 // Return the monitors of a moribund thread's local free list to
1071 // the global free list.  Typically a thread calls omFlush() when
1072 // it's dying.  We could also consider having the VM thread steal
1073 // monitors from threads that have not run java code over a few
1074 // consecutive STW safepoints.  Relatedly, we might decay
1075 // omFreeProvision at STW safepoints.
1076 //
1077 // Also return the monitors of a moribund thread"s omInUseList to
1078 // a global gOmInUseList under the global list lock so these
1079 // will continue to be scanned.
1080 //
1081 // We currently call omFlush() from the Thread:: dtor _after the thread
1082 // has been excised from the thread list and is no longer a mutator.
1083 // That means that omFlush() can run concurrently with a safepoint and
1084 // the scavenge operator.  Calling omFlush() from JavaThread::exit() might
1085 // be a better choice as we could safely reason that that the JVM is
1086 // not at a safepoint at the time of the call, and thus there could
1087 // be not inopportune interleavings between omFlush() and the scavenge
1088 // operator.
1089 
1090 void ObjectSynchronizer::omFlush (Thread * Self) {
1091     ObjectMonitor * List = Self->omFreeList;  // Null-terminated SLL
1092     Self->omFreeList = NULL;
1093     ObjectMonitor * Tail = NULL;
1094     int Tally = 0;
1095     if (List != NULL) {
1096       ObjectMonitor * s;
1097       for (s = List; s != NULL; s = s->FreeNext) {
1098           Tally++;
1099           Tail = s;
1100           guarantee(s->object() == NULL, "invariant");
1101           guarantee(!s->is_busy(), "invariant");
1102           s->set_owner(NULL);   // redundant but good hygiene
1103           TEVENT(omFlush - Move one);
1104       }
1105       guarantee(Tail != NULL && List != NULL, "invariant");
1106     }
1107 
1108     ObjectMonitor * InUseList = Self->omInUseList;
1109     ObjectMonitor * InUseTail = NULL;
1110     int InUseTally = 0;
1111     if (InUseList != NULL) {
1112       Self->omInUseList = NULL;
1113       ObjectMonitor *curom;
1114       for (curom = InUseList; curom != NULL; curom = curom->FreeNext) {
1115         InUseTail = curom;
1116         InUseTally++;
1117       }
1118 // TODO debug
1119       assert(Self->omInUseCount == InUseTally, "inuse count off");
1120       Self->omInUseCount = 0;
1121       guarantee(InUseTail != NULL && InUseList != NULL, "invariant");
1122     }
1123 
1124     Thread::muxAcquire(&ListLock, "omFlush");
1125     if (Tail != NULL) {
1126       Tail->FreeNext = gFreeList;
1127       gFreeList = List;
1128       MonitorFreeCount += Tally;
1129     }
1130 
1131     if (InUseTail != NULL) {
1132       InUseTail->FreeNext = gOmInUseList;
1133       gOmInUseList = InUseList;
1134       gOmInUseCount += InUseTally;
1135     }
1136 
1137     Thread::muxRelease(&ListLock);
1138     TEVENT(omFlush);
1139 }
1140 
1141 // Fast path code shared by multiple functions
1142 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
1143   markOop mark = obj->mark();
1144   if (mark->has_monitor()) {
1145     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
1146     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
1147     return mark->monitor();
1148   }
1149   return ObjectSynchronizer::inflate(Thread::current(), obj);
1150 }
1151 
1152 
1153 // Note that we could encounter some performance loss through false-sharing as
1154 // multiple locks occupy the same $ line.  Padding might be appropriate.
1155 
1156 
1157 ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
1158   // Inflate mutates the heap ...
1159   // Relaxing assertion for bug 6320749.
1160   assert(Universe::verify_in_progress() ||
1161           !SafepointSynchronize::is_at_safepoint(), "invariant");
1162 
1163   for (;;) {
1164       const markOop mark = object->mark();
1165       assert(!mark->has_bias_pattern(), "invariant");
1166 
1167       // The mark can be in one of the following states:
1168       // *  Inflated     - just return
1169       // *  Stack-locked - coerce it to inflated
1170       // *  INFLATING    - busy wait for conversion to complete
1171       // *  Neutral      - aggressively inflate the object.
1172       // *  BIASED       - Illegal.  We should never see this
1173 
1174       // CASE: inflated
1175       if (mark->has_monitor()) {
1176           ObjectMonitor * inf = mark->monitor();
1177           assert(inf->header()->is_neutral(), "invariant");
1178           assert(inf->object() == object, "invariant");
1179           assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1180           return inf;
1181       }
1182 
1183       // CASE: inflation in progress - inflating over a stack-lock.
1184       // Some other thread is converting from stack-locked to inflated.
1185       // Only that thread can complete inflation -- other threads must wait.
1186       // The INFLATING value is transient.
1187       // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1188       // We could always eliminate polling by parking the thread on some auxiliary list.
1189       if (mark == markOopDesc::INFLATING()) {
1190          TEVENT(Inflate: spin while INFLATING);
1191          ReadStableMark(object);
1192          continue;
1193       }
1194 
1195       // CASE: stack-locked
1196       // Could be stack-locked either by this thread or by some other thread.
1197       //
1198       // Note that we allocate the objectmonitor speculatively, _before_ attempting
1199       // to install INFLATING into the mark word.  We originally installed INFLATING,
1200       // allocated the objectmonitor, and then finally STed the address of the
1201       // objectmonitor into the mark.  This was correct, but artificially lengthened
1202       // the interval in which INFLATED appeared in the mark, thus increasing
1203       // the odds of inflation contention.
1204       //
1205       // We now use per-thread private objectmonitor free lists.
1206       // These list are reprovisioned from the global free list outside the
1207       // critical INFLATING...ST interval.  A thread can transfer
1208       // multiple objectmonitors en-mass from the global free list to its local free list.
1209       // This reduces coherency traffic and lock contention on the global free list.
1210       // Using such local free lists, it doesn't matter if the omAlloc() call appears
1211       // before or after the CAS(INFLATING) operation.
1212       // See the comments in omAlloc().
1213 
1214       if (mark->has_locker()) {
1215           ObjectMonitor * m = omAlloc(Self);
1216           // Optimistically prepare the objectmonitor - anticipate successful CAS
1217           // We do this before the CAS in order to minimize the length of time
1218           // in which INFLATING appears in the mark.
1219           m->Recycle();
1220           m->_Responsible  = NULL;
1221           m->OwnerIsThread = 0;
1222           m->_recursions   = 0;
1223           m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1224 
1225           markOop cmp = (markOop) Atomic::cmpxchg_ptr(markOopDesc::INFLATING(), object->mark_addr(), mark);
1226           if (cmp != mark) {
1227              omRelease(Self, m, true);
1228              continue;       // Interference -- just retry
1229           }
1230 
1231           // We've successfully installed INFLATING (0) into the mark-word.
1232           // This is the only case where 0 will appear in a mark-work.
1233           // Only the singular thread that successfully swings the mark-word
1234           // to 0 can perform (or more precisely, complete) inflation.
1235           //
1236           // Why do we CAS a 0 into the mark-word instead of just CASing the
1237           // mark-word from the stack-locked value directly to the new inflated state?
1238           // Consider what happens when a thread unlocks a stack-locked object.
1239           // It attempts to use CAS to swing the displaced header value from the
1240           // on-stack basiclock back into the object header.  Recall also that the
1241           // header value (hashcode, etc) can reside in (a) the object header, or
1242           // (b) a displaced header associated with the stack-lock, or (c) a displaced
1243           // header in an objectMonitor.  The inflate() routine must copy the header
1244           // value from the basiclock on the owner's stack to the objectMonitor, all
1245           // the while preserving the hashCode stability invariants.  If the owner
1246           // decides to release the lock while the value is 0, the unlock will fail
1247           // and control will eventually pass from slow_exit() to inflate.  The owner
1248           // will then spin, waiting for the 0 value to disappear.   Put another way,
1249           // the 0 causes the owner to stall if the owner happens to try to
1250           // drop the lock (restoring the header from the basiclock to the object)
1251           // while inflation is in-progress.  This protocol avoids races that might
1252           // would otherwise permit hashCode values to change or "flicker" for an object.
1253           // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1254           // 0 serves as a "BUSY" inflate-in-progress indicator.
1255 
1256 
1257           // fetch the displaced mark from the owner's stack.
1258           // The owner can't die or unwind past the lock while our INFLATING
1259           // object is in the mark.  Furthermore the owner can't complete
1260           // an unlock on the object, either.
1261           markOop dmw = mark->displaced_mark_helper();
1262           assert(dmw->is_neutral(), "invariant");
1263 
1264           // Setup monitor fields to proper values -- prepare the monitor
1265           m->set_header(dmw);
1266 
1267           // Optimization: if the mark->locker stack address is associated
1268           // with this thread we could simply set m->_owner = Self and
1269           // m->OwnerIsThread = 1. Note that a thread can inflate an object
1270           // that it has stack-locked -- as might happen in wait() -- directly
1271           // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1272           m->set_owner(mark->locker());
1273           m->set_object(object);
1274           // TODO-FIXME: assert BasicLock->dhw != 0.
1275 
1276           // Must preserve store ordering. The monitor state must
1277           // be stable at the time of publishing the monitor address.
1278           guarantee(object->mark() == markOopDesc::INFLATING(), "invariant");
1279           object->release_set_mark(markOopDesc::encode(m));
1280 
1281           // Hopefully the performance counters are allocated on distinct cache lines
1282           // to avoid false sharing on MP systems ...
1283           if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc();
1284           TEVENT(Inflate: overwrite stacklock);
1285           if (TraceMonitorInflation) {
1286             if (object->is_instance()) {
1287               ResourceMark rm;
1288               tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1289                 (void *) object, (intptr_t) object->mark(),
1290                 object->klass()->external_name());
1291             }
1292           }
1293           return m;
1294       }
1295 
1296       // CASE: neutral
1297       // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1298       // If we know we're inflating for entry it's better to inflate by swinging a
1299       // pre-locked objectMonitor pointer into the object header.   A successful
1300       // CAS inflates the object *and* confers ownership to the inflating thread.
1301       // In the current implementation we use a 2-step mechanism where we CAS()
1302       // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1303       // An inflateTry() method that we could call from fast_enter() and slow_enter()
1304       // would be useful.
1305 
1306       assert(mark->is_neutral(), "invariant");
1307       ObjectMonitor * m = omAlloc(Self);
1308       // prepare m for installation - set monitor to initial state
1309       m->Recycle();
1310       m->set_header(mark);
1311       m->set_owner(NULL);
1312       m->set_object(object);
1313       m->OwnerIsThread = 1;
1314       m->_recursions   = 0;
1315       m->_Responsible  = NULL;
1316       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1317 
1318       if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
1319           m->set_object(NULL);
1320           m->set_owner(NULL);
1321           m->OwnerIsThread = 0;
1322           m->Recycle();
1323           omRelease(Self, m, true);
1324           m = NULL;
1325           continue;
1326           // interference - the markword changed - just retry.
1327           // The state-transitions are one-way, so there's no chance of
1328           // live-lock -- "Inflated" is an absorbing state.
1329       }
1330 
1331       // Hopefully the performance counters are allocated on distinct
1332       // cache lines to avoid false sharing on MP systems ...
1333       if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc();
1334       TEVENT(Inflate: overwrite neutral);
1335       if (TraceMonitorInflation) {
1336         if (object->is_instance()) {
1337           ResourceMark rm;
1338           tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1339             (void *) object, (intptr_t) object->mark(),
1340             object->klass()->external_name());
1341         }
1342       }
1343       return m;
1344   }
1345 }
1346 
1347 // Note that we could encounter some performance loss through false-sharing as
1348 // multiple locks occupy the same $ line.  Padding might be appropriate.
1349 
1350 
1351 // Deflate_idle_monitors() is called at all safepoints, immediately
1352 // after all mutators are stopped, but before any objects have moved.
1353 // It traverses the list of known monitors, deflating where possible.
1354 // The scavenged monitor are returned to the monitor free list.
1355 //
1356 // Beware that we scavenge at *every* stop-the-world point.
1357 // Having a large number of monitors in-circulation negatively
1358 // impacts the performance of some applications (e.g., PointBase).
1359 // Broadly, we want to minimize the # of monitors in circulation.
1360 //
1361 // We have added a flag, MonitorInUseLists, which creates a list
1362 // of active monitors for each thread. deflate_idle_monitors()
1363 // only scans the per-thread inuse lists. omAlloc() puts all
1364 // assigned monitors on the per-thread list. deflate_idle_monitors()
1365 // returns the non-busy monitors to the global free list.
1366 // When a thread dies, omFlush() adds the list of active monitors for
1367 // that thread to a global gOmInUseList acquiring the
1368 // global list lock. deflate_idle_monitors() acquires the global
1369 // list lock to scan for non-busy monitors to the global free list.
1370 // An alternative could have used a single global inuse list. The
1371 // downside would have been the additional cost of acquiring the global list lock
1372 // for every omAlloc().
1373 //
1374 // Perversely, the heap size -- and thus the STW safepoint rate --
1375 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1376 // which in turn can mean large(r) numbers of objectmonitors in circulation.
1377 // This is an unfortunate aspect of this design.
1378 //
1379 
1380 enum ManifestConstants {
1381     ClearResponsibleAtSTW   = 0,
1382     MaximumRecheckInterval  = 1000
1383 };
1384 
1385 // Deflate a single monitor if not in use
1386 // Return true if deflated, false if in use
1387 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1388                                          ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
1389   bool deflated;
1390   // Normal case ... The monitor is associated with obj.
1391   guarantee(obj->mark() == markOopDesc::encode(mid), "invariant");
1392   guarantee(mid == obj->mark()->monitor(), "invariant");
1393   guarantee(mid->header()->is_neutral(), "invariant");
1394 
1395   if (mid->is_busy()) {
1396      if (ClearResponsibleAtSTW) mid->_Responsible = NULL;
1397      deflated = false;
1398   } else {
1399      // Deflate the monitor if it is no longer being used
1400      // It's idle - scavenge and return to the global free list
1401      // plain old deflation ...
1402      TEVENT(deflate_idle_monitors - scavenge1);
1403      if (TraceMonitorInflation) {
1404        if (obj->is_instance()) {
1405          ResourceMark rm;
1406            tty->print_cr("Deflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1407                 (void *) obj, (intptr_t) obj->mark(), obj->klass()->external_name());
1408        }
1409      }
1410 
1411      // Restore the header back to obj
1412      obj->release_set_mark(mid->header());
1413      mid->clear();
1414 
1415      assert(mid->object() == NULL, "invariant");
1416 
1417      // Move the object to the working free list defined by FreeHead,FreeTail.
1418      if (*FreeHeadp == NULL) *FreeHeadp = mid;
1419      if (*FreeTailp != NULL) {
1420        ObjectMonitor * prevtail = *FreeTailp;
1421        assert(prevtail->FreeNext == NULL, "cleaned up deflated?"); // TODO KK
1422        prevtail->FreeNext = mid;
1423       }
1424      *FreeTailp = mid;
1425      deflated = true;
1426   }
1427   return deflated;
1428 }
1429 
1430 // Caller acquires ListLock
1431 int ObjectSynchronizer::walk_monitor_list(ObjectMonitor** listheadp,
1432                                           ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
1433   ObjectMonitor* mid;
1434   ObjectMonitor* next;
1435   ObjectMonitor* curmidinuse = NULL;
1436   int deflatedcount = 0;
1437 
1438   for (mid = *listheadp; mid != NULL;) {
1439      oop obj = (oop) mid->object();
1440      bool deflated = false;
1441      if (obj != NULL) {
1442        deflated = deflate_monitor(mid, obj, FreeHeadp, FreeTailp);
1443      }
1444      if (deflated) {
1445        // extract from per-thread in-use-list
1446        if (mid == *listheadp) {
1447          *listheadp = mid->FreeNext;
1448        } else if (curmidinuse != NULL) {
1449          curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
1450        }
1451        next = mid->FreeNext;
1452        mid->FreeNext = NULL;  // This mid is current tail in the FreeHead list
1453        mid = next;
1454        deflatedcount++;
1455      } else {
1456        curmidinuse = mid;
1457        mid = mid->FreeNext;
1458     }
1459   }
1460   return deflatedcount;
1461 }
1462 
1463 void ObjectSynchronizer::deflate_idle_monitors() {
1464   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1465   int nInuse = 0;              // currently associated with objects
1466   int nInCirculation = 0;      // extant
1467   int nScavenged = 0;          // reclaimed
1468   bool deflated = false;
1469 
1470   ObjectMonitor * FreeHead = NULL;  // Local SLL of scavenged monitors
1471   ObjectMonitor * FreeTail = NULL;
1472 
1473   TEVENT(deflate_idle_monitors);
1474   // Prevent omFlush from changing mids in Thread dtor's during deflation
1475   // And in case the vm thread is acquiring a lock during a safepoint
1476   // See e.g. 6320749
1477   Thread::muxAcquire(&ListLock, "scavenge - return");
1478 
1479   if (MonitorInUseLists) {
1480     int inUse = 0;
1481     for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
1482       nInCirculation+= cur->omInUseCount;
1483       int deflatedcount = walk_monitor_list(cur->omInUseList_addr(), &FreeHead, &FreeTail);
1484       cur->omInUseCount-= deflatedcount;
1485       // verifyInUse(cur);
1486       nScavenged += deflatedcount;
1487       nInuse += cur->omInUseCount;
1488      }
1489 
1490    // For moribund threads, scan gOmInUseList
1491    if (gOmInUseList) {
1492      nInCirculation += gOmInUseCount;
1493      int deflatedcount = walk_monitor_list((ObjectMonitor **)&gOmInUseList, &FreeHead, &FreeTail);
1494      gOmInUseCount-= deflatedcount;
1495      nScavenged += deflatedcount;
1496      nInuse += gOmInUseCount;
1497     }
1498 
1499   } else for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
1500   // Iterate over all extant monitors - Scavenge all idle monitors.
1501     assert(block->object() == CHAINMARKER, "must be a block header");
1502     nInCirculation += _BLOCKSIZE;
1503     for (int i = 1; i < _BLOCKSIZE; i++) {
1504       ObjectMonitor* mid = &block[i];
1505       oop obj = (oop) mid->object();
1506 
1507       if (obj == NULL) {
1508         // The monitor is not associated with an object.
1509         // The monitor should either be a thread-specific private
1510         // free list or the global free list.
1511         // obj == NULL IMPLIES mid->is_busy() == 0
1512         guarantee(!mid->is_busy(), "invariant");
1513         continue;
1514       }
1515       deflated = deflate_monitor(mid, obj, &FreeHead, &FreeTail);
1516 
1517       if (deflated) {
1518         mid->FreeNext = NULL;
1519         nScavenged++;
1520       } else {
1521         nInuse++;
1522       }
1523     }
1524   }
1525 
1526   MonitorFreeCount += nScavenged;
1527 
1528   // Consider: audit gFreeList to ensure that MonitorFreeCount and list agree.
1529 
1530   if (ObjectMonitor::Knob_Verbose) {
1531     ::printf("Deflate: InCirc=%d InUse=%d Scavenged=%d ForceMonitorScavenge=%d : pop=%d free=%d\n",
1532         nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
1533         MonitorPopulation, MonitorFreeCount);
1534     ::fflush(stdout);
1535   }
1536 
1537   ForceMonitorScavenge = 0;    // Reset
1538 
1539   // Move the scavenged monitors back to the global free list.
1540   if (FreeHead != NULL) {
1541      guarantee(FreeTail != NULL && nScavenged > 0, "invariant");
1542      assert(FreeTail->FreeNext == NULL, "invariant");
1543      // constant-time list splice - prepend scavenged segment to gFreeList
1544      FreeTail->FreeNext = gFreeList;
1545      gFreeList = FreeHead;
1546   }
1547   Thread::muxRelease(&ListLock);
1548 
1549   if (ObjectMonitor::_sync_Deflations != NULL) ObjectMonitor::_sync_Deflations->inc(nScavenged);
1550   if (ObjectMonitor::_sync_MonExtant  != NULL) ObjectMonitor::_sync_MonExtant ->set_value(nInCirculation);
1551 
1552   // TODO: Add objectMonitor leak detection.
1553   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
1554   GVars.stwRandom = os::random();
1555   GVars.stwCycle++;
1556 }
1557 
1558 // Monitor cleanup on JavaThread::exit
1559 
1560 // Iterate through monitor cache and attempt to release thread's monitors
1561 // Gives up on a particular monitor if an exception occurs, but continues
1562 // the overall iteration, swallowing the exception.
1563 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1564 private:
1565   TRAPS;
1566 
1567 public:
1568   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1569   void do_monitor(ObjectMonitor* mid) {
1570     if (mid->owner() == THREAD) {
1571       (void)mid->complete_exit(CHECK);
1572     }
1573   }
1574 };
1575 
1576 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
1577 // ignored.  This is meant to be called during JNI thread detach which assumes
1578 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1579 // Scanning the extant monitor list can be time consuming.
1580 // A simple optimization is to add a per-thread flag that indicates a thread
1581 // called jni_monitorenter() during its lifetime.
1582 //
1583 // Instead of No_Savepoint_Verifier it might be cheaper to
1584 // use an idiom of the form:
1585 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1586 //   <code that must not run at safepoint>
1587 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1588 // Since the tests are extremely cheap we could leave them enabled
1589 // for normal product builds.
1590 
1591 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1592   assert(THREAD == JavaThread::current(), "must be current Java thread");
1593   No_Safepoint_Verifier nsv;
1594   ReleaseJavaMonitorsClosure rjmc(THREAD);
1595   Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
1596   ObjectSynchronizer::monitors_iterate(&rjmc);
1597   Thread::muxRelease(&ListLock);
1598   THREAD->clear_pending_exception();
1599 }
1600 
1601 //------------------------------------------------------------------------------
1602 // Non-product code
1603 
1604 #ifndef PRODUCT
1605 
1606 // Verify all monitors in the monitor cache, the verification is weak.
1607 void ObjectSynchronizer::verify() {
1608   ObjectMonitor* block = gBlockList;
1609   ObjectMonitor* mid;
1610   while (block) {
1611     assert(block->object() == CHAINMARKER, "must be a block header");
1612     for (int i = 1; i < _BLOCKSIZE; i++) {
1613       mid = block + i;
1614       oop object = (oop) mid->object();
1615       if (object != NULL) {
1616         mid->verify();
1617       }
1618     }
1619     block = (ObjectMonitor*) block->FreeNext;
1620   }
1621 }
1622 
1623 // Check if monitor belongs to the monitor cache
1624 // The list is grow-only so it's *relatively* safe to traverse
1625 // the list of extant blocks without taking a lock.
1626 
1627 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
1628   ObjectMonitor* block = gBlockList;
1629 
1630   while (block) {
1631     assert(block->object() == CHAINMARKER, "must be a block header");
1632     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
1633       address mon = (address) monitor;
1634       address blk = (address) block;
1635       size_t diff = mon - blk;
1636       assert((diff % sizeof(ObjectMonitor)) == 0, "check");
1637       return 1;
1638     }
1639     block = (ObjectMonitor*) block->FreeNext;
1640   }
1641   return 0;
1642 }
1643 
1644 #endif