1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/metaspaceShared.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/instanceKlass.hpp"
  41 #include "oops/objArrayOop.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/symbol.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "prims/privilegedStack.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/atomic.inline.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/deoptimization.hpp"
  52 #include "runtime/fprofiler.hpp"
  53 #include "runtime/frame.inline.hpp"
  54 #include "runtime/init.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/javaCalls.hpp"
  58 #include "runtime/jniPeriodicChecker.hpp"
  59 #include "runtime/memprofiler.hpp"
  60 #include "runtime/mutexLocker.hpp"
  61 #include "runtime/objectMonitor.hpp"
  62 #include "runtime/orderAccess.inline.hpp"
  63 #include "runtime/osThread.hpp"
  64 #include "runtime/safepoint.hpp"
  65 #include "runtime/sharedRuntime.hpp"
  66 #include "runtime/statSampler.hpp"
  67 #include "runtime/stubRoutines.hpp"
  68 #include "runtime/task.hpp"
  69 #include "runtime/thread.inline.hpp"
  70 #include "runtime/threadCritical.hpp"
  71 #include "runtime/threadLocalStorage.hpp"
  72 #include "runtime/vframe.hpp"
  73 #include "runtime/vframeArray.hpp"
  74 #include "runtime/vframe_hp.hpp"
  75 #include "runtime/vmThread.hpp"
  76 #include "runtime/vm_operations.hpp"
  77 #include "services/attachListener.hpp"
  78 #include "services/management.hpp"
  79 #include "services/memTracker.hpp"
  80 #include "services/threadService.hpp"
  81 #include "trace/tracing.hpp"
  82 #include "trace/traceMacros.hpp"
  83 #include "utilities/defaultStream.hpp"
  84 #include "utilities/dtrace.hpp"
  85 #include "utilities/events.hpp"
  86 #include "utilities/preserveException.hpp"
  87 #include "utilities/macros.hpp"
  88 #ifdef TARGET_OS_FAMILY_linux
  89 # include "os_linux.inline.hpp"
  90 #endif
  91 #ifdef TARGET_OS_FAMILY_solaris
  92 # include "os_solaris.inline.hpp"
  93 #endif
  94 #ifdef TARGET_OS_FAMILY_windows
  95 # include "os_windows.inline.hpp"
  96 #endif
  97 #ifdef TARGET_OS_FAMILY_bsd
  98 # include "os_bsd.inline.hpp"
  99 #endif
 100 #if INCLUDE_ALL_GCS
 101 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 102 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 103 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 104 #endif // INCLUDE_ALL_GCS
 105 #ifdef COMPILER1
 106 #include "c1/c1_Compiler.hpp"
 107 #endif
 108 #ifdef COMPILER2
 109 #include "opto/c2compiler.hpp"
 110 #include "opto/idealGraphPrinter.hpp"
 111 #endif
 112 #if INCLUDE_RTM_OPT
 113 #include "runtime/rtmLocking.hpp"
 114 #endif
 115 
 116 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 117 
 118 #ifdef DTRACE_ENABLED
 119 
 120 // Only bother with this argument setup if dtrace is available
 121 
 122 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 123 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 124 
 125 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 126   {                                                                        \
 127     ResourceMark rm(this);                                                 \
 128     int len = 0;                                                           \
 129     const char* name = (javathread)->get_thread_name();                    \
 130     len = strlen(name);                                                    \
 131     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 132       (char *) name, len,                                                           \
 133       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 134       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 135       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 136   }
 137 
 138 #else //  ndef DTRACE_ENABLED
 139 
 140 #define DTRACE_THREAD_PROBE(probe, javathread)
 141 
 142 #endif // ndef DTRACE_ENABLED
 143 
 144 
 145 // Class hierarchy
 146 // - Thread
 147 //   - VMThread
 148 //   - WatcherThread
 149 //   - ConcurrentMarkSweepThread
 150 //   - JavaThread
 151 //     - CompilerThread
 152 
 153 // ======= Thread ========
 154 // Support for forcing alignment of thread objects for biased locking
 155 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 156   if (UseBiasedLocking) {
 157     const int alignment = markOopDesc::biased_lock_alignment;
 158     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 159     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 160                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 161                                               AllocFailStrategy::RETURN_NULL);
 162     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 163     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 164            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 165            "JavaThread alignment code overflowed allocated storage");
 166     if (TraceBiasedLocking) {
 167       if (aligned_addr != real_malloc_addr)
 168         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 169                       real_malloc_addr, aligned_addr);
 170     }
 171     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 172     return aligned_addr;
 173   } else {
 174     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 175                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 176   }
 177 }
 178 
 179 void Thread::operator delete(void* p) {
 180   if (UseBiasedLocking) {
 181     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 182     FreeHeap(real_malloc_addr, mtThread);
 183   } else {
 184     FreeHeap(p, mtThread);
 185   }
 186 }
 187 
 188 
 189 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 190 // JavaThread
 191 
 192 
 193 Thread::Thread() {
 194   // stack and get_thread
 195   set_stack_base(NULL);
 196   set_stack_size(0);
 197   set_self_raw_id(0);
 198   set_lgrp_id(-1);
 199 
 200   // allocated data structures
 201   set_osthread(NULL);
 202   set_resource_area(new (mtThread)ResourceArea());
 203   DEBUG_ONLY(_current_resource_mark = NULL;)
 204   set_handle_area(new (mtThread) HandleArea(NULL));
 205   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 206   set_active_handles(NULL);
 207   set_free_handle_block(NULL);
 208   set_last_handle_mark(NULL);
 209 
 210   // This initial value ==> never claimed.
 211   _oops_do_parity = 0;
 212 
 213   // the handle mark links itself to last_handle_mark
 214   new HandleMark(this);
 215 
 216   // plain initialization
 217   debug_only(_owned_locks = NULL;)
 218   debug_only(_allow_allocation_count = 0;)
 219   NOT_PRODUCT(_allow_safepoint_count = 0;)
 220   NOT_PRODUCT(_skip_gcalot = false;)
 221   _jvmti_env_iteration_count = 0;
 222   set_allocated_bytes(0);
 223   _vm_operation_started_count = 0;
 224   _vm_operation_completed_count = 0;
 225   _current_pending_monitor = NULL;
 226   _current_pending_monitor_is_from_java = true;
 227   _current_waiting_monitor = NULL;
 228   _num_nested_signal = 0;
 229   omFreeList = NULL;
 230   omFreeCount = 0;
 231   omFreeProvision = 32;
 232   omInUseList = NULL;
 233   omInUseCount = 0;
 234 
 235 #ifdef ASSERT
 236   _visited_for_critical_count = false;
 237 #endif
 238 
 239   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 240   _suspend_flags = 0;
 241 
 242   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 243   _hashStateX = os::random();
 244   _hashStateY = 842502087;
 245   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 246   _hashStateW = 273326509;
 247 
 248   _OnTrap   = 0;
 249   _schedctl = NULL;
 250   _Stalled  = 0;
 251   _TypeTag  = 0x2BAD;
 252 
 253   // Many of the following fields are effectively final - immutable
 254   // Note that nascent threads can't use the Native Monitor-Mutex
 255   // construct until the _MutexEvent is initialized ...
 256   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 257   // we might instead use a stack of ParkEvents that we could provision on-demand.
 258   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 259   // and ::Release()
 260   _ParkEvent   = ParkEvent::Allocate(this);
 261   _SleepEvent  = ParkEvent::Allocate(this);
 262   _MutexEvent  = ParkEvent::Allocate(this);
 263   _MuxEvent    = ParkEvent::Allocate(this);
 264 
 265 #ifdef CHECK_UNHANDLED_OOPS
 266   if (CheckUnhandledOops) {
 267     _unhandled_oops = new UnhandledOops(this);
 268   }
 269 #endif // CHECK_UNHANDLED_OOPS
 270 #ifdef ASSERT
 271   if (UseBiasedLocking) {
 272     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 273     assert(this == _real_malloc_address ||
 274            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 275            "bug in forced alignment of thread objects");
 276   }
 277 #endif /* ASSERT */
 278 }
 279 
 280 void Thread::initialize_thread_local_storage() {
 281   // Note: Make sure this method only calls
 282   // non-blocking operations. Otherwise, it might not work
 283   // with the thread-startup/safepoint interaction.
 284 
 285   // During Java thread startup, safepoint code should allow this
 286   // method to complete because it may need to allocate memory to
 287   // store information for the new thread.
 288 
 289   // initialize structure dependent on thread local storage
 290   ThreadLocalStorage::set_thread(this);
 291 }
 292 
 293 void Thread::record_stack_base_and_size() {
 294   set_stack_base(os::current_stack_base());
 295   set_stack_size(os::current_stack_size());
 296   if (is_Java_thread()) {
 297     ((JavaThread*) this)->set_stack_overflow_limit();
 298   }
 299   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 300   // in initialize_thread(). Without the adjustment, stack size is
 301   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 302   // So far, only Solaris has real implementation of initialize_thread().
 303   //
 304   // set up any platform-specific state.
 305   os::initialize_thread(this);
 306 
 307 #if INCLUDE_NMT
 308   // record thread's native stack, stack grows downward
 309   address stack_low_addr = stack_base() - stack_size();
 310   MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
 311       CURRENT_PC);
 312 #endif // INCLUDE_NMT
 313 }
 314 
 315 
 316 Thread::~Thread() {
 317   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 318   ObjectSynchronizer::omFlush(this);
 319 
 320   EVENT_THREAD_DESTRUCT(this);
 321 
 322   // stack_base can be NULL if the thread is never started or exited before
 323   // record_stack_base_and_size called. Although, we would like to ensure
 324   // that all started threads do call record_stack_base_and_size(), there is
 325   // not proper way to enforce that.
 326 #if INCLUDE_NMT
 327   if (_stack_base != NULL) {
 328     address low_stack_addr = stack_base() - stack_size();
 329     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
 330 #ifdef ASSERT
 331     set_stack_base(NULL);
 332 #endif
 333   }
 334 #endif // INCLUDE_NMT
 335 
 336   // deallocate data structures
 337   delete resource_area();
 338   // since the handle marks are using the handle area, we have to deallocated the root
 339   // handle mark before deallocating the thread's handle area,
 340   assert(last_handle_mark() != NULL, "check we have an element");
 341   delete last_handle_mark();
 342   assert(last_handle_mark() == NULL, "check we have reached the end");
 343 
 344   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 345   // We NULL out the fields for good hygiene.
 346   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 347   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 348   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 349   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 350 
 351   delete handle_area();
 352   delete metadata_handles();
 353 
 354   // osthread() can be NULL, if creation of thread failed.
 355   if (osthread() != NULL) os::free_thread(osthread());
 356 
 357   delete _SR_lock;
 358 
 359   // clear thread local storage if the Thread is deleting itself
 360   if (this == Thread::current()) {
 361     ThreadLocalStorage::set_thread(NULL);
 362   } else {
 363     // In the case where we're not the current thread, invalidate all the
 364     // caches in case some code tries to get the current thread or the
 365     // thread that was destroyed, and gets stale information.
 366     ThreadLocalStorage::invalidate_all();
 367   }
 368   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 369 }
 370 
 371 // NOTE: dummy function for assertion purpose.
 372 void Thread::run() {
 373   ShouldNotReachHere();
 374 }
 375 
 376 #ifdef ASSERT
 377 // Private method to check for dangling thread pointer
 378 void check_for_dangling_thread_pointer(Thread *thread) {
 379  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 380          "possibility of dangling Thread pointer");
 381 }
 382 #endif
 383 
 384 
 385 #ifndef PRODUCT
 386 // Tracing method for basic thread operations
 387 void Thread::trace(const char* msg, const Thread* const thread) {
 388   if (!TraceThreadEvents) return;
 389   ResourceMark rm;
 390   ThreadCritical tc;
 391   const char *name = "non-Java thread";
 392   int prio = -1;
 393   if (thread->is_Java_thread()
 394       && !thread->is_Compiler_thread()) {
 395     // The Threads_lock must be held to get information about
 396     // this thread but may not be in some situations when
 397     // tracing  thread events.
 398     bool release_Threads_lock = false;
 399     if (!Threads_lock->owned_by_self()) {
 400       Threads_lock->lock();
 401       release_Threads_lock = true;
 402     }
 403     JavaThread* jt = (JavaThread *)thread;
 404     name = (char *)jt->get_thread_name();
 405     oop thread_oop = jt->threadObj();
 406     if (thread_oop != NULL) {
 407       prio = java_lang_Thread::priority(thread_oop);
 408     }
 409     if (release_Threads_lock) {
 410       Threads_lock->unlock();
 411     }
 412   }
 413   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 414 }
 415 #endif
 416 
 417 
 418 ThreadPriority Thread::get_priority(const Thread* const thread) {
 419   trace("get priority", thread);
 420   ThreadPriority priority;
 421   // Can return an error!
 422   (void)os::get_priority(thread, priority);
 423   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 424   return priority;
 425 }
 426 
 427 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 428   trace("set priority", thread);
 429   debug_only(check_for_dangling_thread_pointer(thread);)
 430   // Can return an error!
 431   (void)os::set_priority(thread, priority);
 432 }
 433 
 434 
 435 void Thread::start(Thread* thread) {
 436   trace("start", thread);
 437   // Start is different from resume in that its safety is guaranteed by context or
 438   // being called from a Java method synchronized on the Thread object.
 439   if (!DisableStartThread) {
 440     if (thread->is_Java_thread()) {
 441       // Initialize the thread state to RUNNABLE before starting this thread.
 442       // Can not set it after the thread started because we do not know the
 443       // exact thread state at that time. It could be in MONITOR_WAIT or
 444       // in SLEEPING or some other state.
 445       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 446                                           java_lang_Thread::RUNNABLE);
 447     }
 448     os::start_thread(thread);
 449   }
 450 }
 451 
 452 // Enqueue a VM_Operation to do the job for us - sometime later
 453 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 454   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 455   VMThread::execute(vm_stop);
 456 }
 457 
 458 
 459 //
 460 // Check if an external suspend request has completed (or has been
 461 // cancelled). Returns true if the thread is externally suspended and
 462 // false otherwise.
 463 //
 464 // The bits parameter returns information about the code path through
 465 // the routine. Useful for debugging:
 466 //
 467 // set in is_ext_suspend_completed():
 468 // 0x00000001 - routine was entered
 469 // 0x00000010 - routine return false at end
 470 // 0x00000100 - thread exited (return false)
 471 // 0x00000200 - suspend request cancelled (return false)
 472 // 0x00000400 - thread suspended (return true)
 473 // 0x00001000 - thread is in a suspend equivalent state (return true)
 474 // 0x00002000 - thread is native and walkable (return true)
 475 // 0x00004000 - thread is native_trans and walkable (needed retry)
 476 //
 477 // set in wait_for_ext_suspend_completion():
 478 // 0x00010000 - routine was entered
 479 // 0x00020000 - suspend request cancelled before loop (return false)
 480 // 0x00040000 - thread suspended before loop (return true)
 481 // 0x00080000 - suspend request cancelled in loop (return false)
 482 // 0x00100000 - thread suspended in loop (return true)
 483 // 0x00200000 - suspend not completed during retry loop (return false)
 484 //
 485 
 486 // Helper class for tracing suspend wait debug bits.
 487 //
 488 // 0x00000100 indicates that the target thread exited before it could
 489 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 490 // 0x00080000 each indicate a cancelled suspend request so they don't
 491 // count as wait failures either.
 492 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 493 
 494 class TraceSuspendDebugBits : public StackObj {
 495  private:
 496   JavaThread * jt;
 497   bool         is_wait;
 498   bool         called_by_wait;  // meaningful when !is_wait
 499   uint32_t *   bits;
 500 
 501  public:
 502   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 503                         uint32_t *_bits) {
 504     jt             = _jt;
 505     is_wait        = _is_wait;
 506     called_by_wait = _called_by_wait;
 507     bits           = _bits;
 508   }
 509 
 510   ~TraceSuspendDebugBits() {
 511     if (!is_wait) {
 512 #if 1
 513       // By default, don't trace bits for is_ext_suspend_completed() calls.
 514       // That trace is very chatty.
 515       return;
 516 #else
 517       if (!called_by_wait) {
 518         // If tracing for is_ext_suspend_completed() is enabled, then only
 519         // trace calls to it from wait_for_ext_suspend_completion()
 520         return;
 521       }
 522 #endif
 523     }
 524 
 525     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 526       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 527         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 528         ResourceMark rm;
 529 
 530         tty->print_cr(
 531             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 532             jt->get_thread_name(), *bits);
 533 
 534         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 535       }
 536     }
 537   }
 538 };
 539 #undef DEBUG_FALSE_BITS
 540 
 541 
 542 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 543   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 544 
 545   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 546   bool do_trans_retry;           // flag to force the retry
 547 
 548   *bits |= 0x00000001;
 549 
 550   do {
 551     do_trans_retry = false;
 552 
 553     if (is_exiting()) {
 554       // Thread is in the process of exiting. This is always checked
 555       // first to reduce the risk of dereferencing a freed JavaThread.
 556       *bits |= 0x00000100;
 557       return false;
 558     }
 559 
 560     if (!is_external_suspend()) {
 561       // Suspend request is cancelled. This is always checked before
 562       // is_ext_suspended() to reduce the risk of a rogue resume
 563       // confusing the thread that made the suspend request.
 564       *bits |= 0x00000200;
 565       return false;
 566     }
 567 
 568     if (is_ext_suspended()) {
 569       // thread is suspended
 570       *bits |= 0x00000400;
 571       return true;
 572     }
 573 
 574     // Now that we no longer do hard suspends of threads running
 575     // native code, the target thread can be changing thread state
 576     // while we are in this routine:
 577     //
 578     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 579     //
 580     // We save a copy of the thread state as observed at this moment
 581     // and make our decision about suspend completeness based on the
 582     // copy. This closes the race where the thread state is seen as
 583     // _thread_in_native_trans in the if-thread_blocked check, but is
 584     // seen as _thread_blocked in if-thread_in_native_trans check.
 585     JavaThreadState save_state = thread_state();
 586 
 587     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 588       // If the thread's state is _thread_blocked and this blocking
 589       // condition is known to be equivalent to a suspend, then we can
 590       // consider the thread to be externally suspended. This means that
 591       // the code that sets _thread_blocked has been modified to do
 592       // self-suspension if the blocking condition releases. We also
 593       // used to check for CONDVAR_WAIT here, but that is now covered by
 594       // the _thread_blocked with self-suspension check.
 595       //
 596       // Return true since we wouldn't be here unless there was still an
 597       // external suspend request.
 598       *bits |= 0x00001000;
 599       return true;
 600     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 601       // Threads running native code will self-suspend on native==>VM/Java
 602       // transitions. If its stack is walkable (should always be the case
 603       // unless this function is called before the actual java_suspend()
 604       // call), then the wait is done.
 605       *bits |= 0x00002000;
 606       return true;
 607     } else if (!called_by_wait && !did_trans_retry &&
 608                save_state == _thread_in_native_trans &&
 609                frame_anchor()->walkable()) {
 610       // The thread is transitioning from thread_in_native to another
 611       // thread state. check_safepoint_and_suspend_for_native_trans()
 612       // will force the thread to self-suspend. If it hasn't gotten
 613       // there yet we may have caught the thread in-between the native
 614       // code check above and the self-suspend. Lucky us. If we were
 615       // called by wait_for_ext_suspend_completion(), then it
 616       // will be doing the retries so we don't have to.
 617       //
 618       // Since we use the saved thread state in the if-statement above,
 619       // there is a chance that the thread has already transitioned to
 620       // _thread_blocked by the time we get here. In that case, we will
 621       // make a single unnecessary pass through the logic below. This
 622       // doesn't hurt anything since we still do the trans retry.
 623 
 624       *bits |= 0x00004000;
 625 
 626       // Once the thread leaves thread_in_native_trans for another
 627       // thread state, we break out of this retry loop. We shouldn't
 628       // need this flag to prevent us from getting back here, but
 629       // sometimes paranoia is good.
 630       did_trans_retry = true;
 631 
 632       // We wait for the thread to transition to a more usable state.
 633       for (int i = 1; i <= SuspendRetryCount; i++) {
 634         // We used to do an "os::yield_all(i)" call here with the intention
 635         // that yielding would increase on each retry. However, the parameter
 636         // is ignored on Linux which means the yield didn't scale up. Waiting
 637         // on the SR_lock below provides a much more predictable scale up for
 638         // the delay. It also provides a simple/direct point to check for any
 639         // safepoint requests from the VMThread
 640 
 641         // temporarily drops SR_lock while doing wait with safepoint check
 642         // (if we're a JavaThread - the WatcherThread can also call this)
 643         // and increase delay with each retry
 644         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 645 
 646         // check the actual thread state instead of what we saved above
 647         if (thread_state() != _thread_in_native_trans) {
 648           // the thread has transitioned to another thread state so
 649           // try all the checks (except this one) one more time.
 650           do_trans_retry = true;
 651           break;
 652         }
 653       } // end retry loop
 654 
 655 
 656     }
 657   } while (do_trans_retry);
 658 
 659   *bits |= 0x00000010;
 660   return false;
 661 }
 662 
 663 //
 664 // Wait for an external suspend request to complete (or be cancelled).
 665 // Returns true if the thread is externally suspended and false otherwise.
 666 //
 667 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 668        uint32_t *bits) {
 669   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 670                              false /* !called_by_wait */, bits);
 671 
 672   // local flag copies to minimize SR_lock hold time
 673   bool is_suspended;
 674   bool pending;
 675   uint32_t reset_bits;
 676 
 677   // set a marker so is_ext_suspend_completed() knows we are the caller
 678   *bits |= 0x00010000;
 679 
 680   // We use reset_bits to reinitialize the bits value at the top of
 681   // each retry loop. This allows the caller to make use of any
 682   // unused bits for their own marking purposes.
 683   reset_bits = *bits;
 684 
 685   {
 686     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 687     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 688                                             delay, bits);
 689     pending = is_external_suspend();
 690   }
 691   // must release SR_lock to allow suspension to complete
 692 
 693   if (!pending) {
 694     // A cancelled suspend request is the only false return from
 695     // is_ext_suspend_completed() that keeps us from entering the
 696     // retry loop.
 697     *bits |= 0x00020000;
 698     return false;
 699   }
 700 
 701   if (is_suspended) {
 702     *bits |= 0x00040000;
 703     return true;
 704   }
 705 
 706   for (int i = 1; i <= retries; i++) {
 707     *bits = reset_bits;  // reinit to only track last retry
 708 
 709     // We used to do an "os::yield_all(i)" call here with the intention
 710     // that yielding would increase on each retry. However, the parameter
 711     // is ignored on Linux which means the yield didn't scale up. Waiting
 712     // on the SR_lock below provides a much more predictable scale up for
 713     // the delay. It also provides a simple/direct point to check for any
 714     // safepoint requests from the VMThread
 715 
 716     {
 717       MutexLocker ml(SR_lock());
 718       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 719       // can also call this)  and increase delay with each retry
 720       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 721 
 722       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 723                                               delay, bits);
 724 
 725       // It is possible for the external suspend request to be cancelled
 726       // (by a resume) before the actual suspend operation is completed.
 727       // Refresh our local copy to see if we still need to wait.
 728       pending = is_external_suspend();
 729     }
 730 
 731     if (!pending) {
 732       // A cancelled suspend request is the only false return from
 733       // is_ext_suspend_completed() that keeps us from staying in the
 734       // retry loop.
 735       *bits |= 0x00080000;
 736       return false;
 737     }
 738 
 739     if (is_suspended) {
 740       *bits |= 0x00100000;
 741       return true;
 742     }
 743   } // end retry loop
 744 
 745   // thread did not suspend after all our retries
 746   *bits |= 0x00200000;
 747   return false;
 748 }
 749 
 750 #ifndef PRODUCT
 751 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 752 
 753   // This should not need to be atomic as the only way for simultaneous
 754   // updates is via interrupts. Even then this should be rare or non-existent
 755   // and we don't care that much anyway.
 756 
 757   int index = _jmp_ring_index;
 758   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 759   _jmp_ring[index]._target = (intptr_t) target;
 760   _jmp_ring[index]._instruction = (intptr_t) instr;
 761   _jmp_ring[index]._file = file;
 762   _jmp_ring[index]._line = line;
 763 }
 764 #endif /* PRODUCT */
 765 
 766 // Called by flat profiler
 767 // Callers have already called wait_for_ext_suspend_completion
 768 // The assertion for that is currently too complex to put here:
 769 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 770   bool gotframe = false;
 771   // self suspension saves needed state.
 772   if (has_last_Java_frame() && _anchor.walkable()) {
 773      *_fr = pd_last_frame();
 774      gotframe = true;
 775   }
 776   return gotframe;
 777 }
 778 
 779 void Thread::interrupt(Thread* thread) {
 780   trace("interrupt", thread);
 781   debug_only(check_for_dangling_thread_pointer(thread);)
 782   os::interrupt(thread);
 783 }
 784 
 785 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 786   trace("is_interrupted", thread);
 787   debug_only(check_for_dangling_thread_pointer(thread);)
 788   // Note:  If clear_interrupted==false, this simply fetches and
 789   // returns the value of the field osthread()->interrupted().
 790   return os::is_interrupted(thread, clear_interrupted);
 791 }
 792 
 793 
 794 // GC Support
 795 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 796   jint thread_parity = _oops_do_parity;
 797   if (thread_parity != strong_roots_parity) {
 798     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 799     if (res == thread_parity) {
 800       return true;
 801     } else {
 802       guarantee(res == strong_roots_parity, "Or else what?");
 803       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 804          "Should only fail when parallel.");
 805       return false;
 806     }
 807   }
 808   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 809          "Should only fail when parallel.");
 810   return false;
 811 }
 812 
 813 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 814   active_handles()->oops_do(f);
 815   // Do oop for ThreadShadow
 816   f->do_oop((oop*)&_pending_exception);
 817   handle_area()->oops_do(f);
 818 }
 819 
 820 void Thread::nmethods_do(CodeBlobClosure* cf) {
 821   // no nmethods in a generic thread...
 822 }
 823 
 824 void Thread::metadata_do(void f(Metadata*)) {
 825   if (metadata_handles() != NULL) {
 826     for (int i = 0; i< metadata_handles()->length(); i++) {
 827       f(metadata_handles()->at(i));
 828     }
 829   }
 830 }
 831 
 832 void Thread::print_on(outputStream* st) const {
 833   // get_priority assumes osthread initialized
 834   if (osthread() != NULL) {
 835     int os_prio;
 836     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 837       st->print("os_prio=%d ", os_prio);
 838     }
 839     st->print("tid=" INTPTR_FORMAT " ", this);
 840     osthread()->print_on(st);
 841   }
 842   debug_only(if (WizardMode) print_owned_locks_on(st);)
 843 }
 844 
 845 // Thread::print_on_error() is called by fatal error handler. Don't use
 846 // any lock or allocate memory.
 847 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 848   if (is_VM_thread())                  st->print("VMThread");
 849   else if (is_Compiler_thread())            st->print("CompilerThread");
 850   else if (is_Java_thread())                st->print("JavaThread");
 851   else if (is_GC_task_thread())             st->print("GCTaskThread");
 852   else if (is_Watcher_thread())             st->print("WatcherThread");
 853   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 854   else st->print("Thread");
 855 
 856   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 857             _stack_base - _stack_size, _stack_base);
 858 
 859   if (osthread()) {
 860     st->print(" [id=%d]", osthread()->thread_id());
 861   }
 862 }
 863 
 864 #ifdef ASSERT
 865 void Thread::print_owned_locks_on(outputStream* st) const {
 866   Monitor *cur = _owned_locks;
 867   if (cur == NULL) {
 868     st->print(" (no locks) ");
 869   } else {
 870     st->print_cr(" Locks owned:");
 871     while (cur) {
 872       cur->print_on(st);
 873       cur = cur->next();
 874     }
 875   }
 876 }
 877 
 878 static int ref_use_count  = 0;
 879 
 880 bool Thread::owns_locks_but_compiled_lock() const {
 881   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 882     if (cur != Compile_lock) return true;
 883   }
 884   return false;
 885 }
 886 
 887 
 888 #endif
 889 
 890 #ifndef PRODUCT
 891 
 892 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 893 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 894 // no threads which allow_vm_block's are held
 895 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 896     // Check if current thread is allowed to block at a safepoint
 897     if (!(_allow_safepoint_count == 0))
 898       fatal("Possible safepoint reached by thread that does not allow it");
 899     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 900       fatal("LEAF method calling lock?");
 901     }
 902 
 903 #ifdef ASSERT
 904     if (potential_vm_operation && is_Java_thread()
 905         && !Universe::is_bootstrapping()) {
 906       // Make sure we do not hold any locks that the VM thread also uses.
 907       // This could potentially lead to deadlocks
 908       for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 909         // Threads_lock is special, since the safepoint synchronization will not start before this is
 910         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 911         // since it is used to transfer control between JavaThreads and the VMThread
 912         // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 913         if ((cur->allow_vm_block() &&
 914               cur != Threads_lock &&
 915               cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 916               cur != VMOperationRequest_lock &&
 917               cur != VMOperationQueue_lock) ||
 918               cur->rank() == Mutex::special) {
 919           fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 920         }
 921       }
 922     }
 923 
 924     if (GCALotAtAllSafepoints) {
 925       // We could enter a safepoint here and thus have a gc
 926       InterfaceSupport::check_gc_alot();
 927     }
 928 #endif
 929 }
 930 #endif
 931 
 932 bool Thread::is_in_stack(address adr) const {
 933   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 934   address end = os::current_stack_pointer();
 935   // Allow non Java threads to call this without stack_base
 936   if (_stack_base == NULL) return true;
 937   if (stack_base() >= adr && adr >= end) return true;
 938 
 939   return false;
 940 }
 941 
 942 
 943 bool Thread::is_in_usable_stack(address adr) const {
 944   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 945   size_t usable_stack_size = _stack_size - stack_guard_size;
 946 
 947   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 948 }
 949 
 950 
 951 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 952 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 953 // used for compilation in the future. If that change is made, the need for these methods
 954 // should be revisited, and they should be removed if possible.
 955 
 956 bool Thread::is_lock_owned(address adr) const {
 957   return on_local_stack(adr);
 958 }
 959 
 960 bool Thread::set_as_starting_thread() {
 961  // NOTE: this must be called inside the main thread.
 962   return os::create_main_thread((JavaThread*)this);
 963 }
 964 
 965 static void initialize_class(Symbol* class_name, TRAPS) {
 966   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 967   InstanceKlass::cast(klass)->initialize(CHECK);
 968 }
 969 
 970 
 971 // Creates the initial ThreadGroup
 972 static Handle create_initial_thread_group(TRAPS) {
 973   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 974   instanceKlassHandle klass (THREAD, k);
 975 
 976   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 977   {
 978     JavaValue result(T_VOID);
 979     JavaCalls::call_special(&result,
 980                             system_instance,
 981                             klass,
 982                             vmSymbols::object_initializer_name(),
 983                             vmSymbols::void_method_signature(),
 984                             CHECK_NH);
 985   }
 986   Universe::set_system_thread_group(system_instance());
 987 
 988   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 989   {
 990     JavaValue result(T_VOID);
 991     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 992     JavaCalls::call_special(&result,
 993                             main_instance,
 994                             klass,
 995                             vmSymbols::object_initializer_name(),
 996                             vmSymbols::threadgroup_string_void_signature(),
 997                             system_instance,
 998                             string,
 999                             CHECK_NH);
1000   }
1001   return main_instance;
1002 }
1003 
1004 // Creates the initial Thread
1005 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1006   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1007   instanceKlassHandle klass (THREAD, k);
1008   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1009 
1010   java_lang_Thread::set_thread(thread_oop(), thread);
1011   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1012   thread->set_threadObj(thread_oop());
1013 
1014   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1015 
1016   JavaValue result(T_VOID);
1017   JavaCalls::call_special(&result, thread_oop,
1018                                    klass,
1019                                    vmSymbols::object_initializer_name(),
1020                                    vmSymbols::threadgroup_string_void_signature(),
1021                                    thread_group,
1022                                    string,
1023                                    CHECK_NULL);
1024   return thread_oop();
1025 }
1026 
1027 static void call_initializeSystemClass(TRAPS) {
1028   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1029   instanceKlassHandle klass (THREAD, k);
1030 
1031   JavaValue result(T_VOID);
1032   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1033                                          vmSymbols::void_method_signature(), CHECK);
1034 }
1035 
1036 char java_runtime_name[128] = "";
1037 char java_runtime_version[128] = "";
1038 
1039 // extract the JRE name from sun.misc.Version.java_runtime_name
1040 static const char* get_java_runtime_name(TRAPS) {
1041   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1042                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1043   fieldDescriptor fd;
1044   bool found = k != NULL &&
1045                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1046                                                         vmSymbols::string_signature(), &fd);
1047   if (found) {
1048     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1049     if (name_oop == NULL)
1050       return NULL;
1051     const char* name = java_lang_String::as_utf8_string(name_oop,
1052                                                         java_runtime_name,
1053                                                         sizeof(java_runtime_name));
1054     return name;
1055   } else {
1056     return NULL;
1057   }
1058 }
1059 
1060 // extract the JRE version from sun.misc.Version.java_runtime_version
1061 static const char* get_java_runtime_version(TRAPS) {
1062   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1063                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1064   fieldDescriptor fd;
1065   bool found = k != NULL &&
1066                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1067                                                         vmSymbols::string_signature(), &fd);
1068   if (found) {
1069     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1070     if (name_oop == NULL)
1071       return NULL;
1072     const char* name = java_lang_String::as_utf8_string(name_oop,
1073                                                         java_runtime_version,
1074                                                         sizeof(java_runtime_version));
1075     return name;
1076   } else {
1077     return NULL;
1078   }
1079 }
1080 
1081 // General purpose hook into Java code, run once when the VM is initialized.
1082 // The Java library method itself may be changed independently from the VM.
1083 static void call_postVMInitHook(TRAPS) {
1084   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1085   instanceKlassHandle klass (THREAD, k);
1086   if (klass.not_null()) {
1087     JavaValue result(T_VOID);
1088     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1089                                            vmSymbols::void_method_signature(),
1090                                            CHECK);
1091   }
1092 }
1093 
1094 static void reset_vm_info_property(TRAPS) {
1095   // the vm info string
1096   ResourceMark rm(THREAD);
1097   const char *vm_info = VM_Version::vm_info_string();
1098 
1099   // java.lang.System class
1100   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1101   instanceKlassHandle klass (THREAD, k);
1102 
1103   // setProperty arguments
1104   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1105   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1106 
1107   // return value
1108   JavaValue r(T_OBJECT);
1109 
1110   // public static String setProperty(String key, String value);
1111   JavaCalls::call_static(&r,
1112                          klass,
1113                          vmSymbols::setProperty_name(),
1114                          vmSymbols::string_string_string_signature(),
1115                          key_str,
1116                          value_str,
1117                          CHECK);
1118 }
1119 
1120 
1121 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1122   assert(thread_group.not_null(), "thread group should be specified");
1123   assert(threadObj() == NULL, "should only create Java thread object once");
1124 
1125   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1126   instanceKlassHandle klass (THREAD, k);
1127   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1128 
1129   java_lang_Thread::set_thread(thread_oop(), this);
1130   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1131   set_threadObj(thread_oop());
1132 
1133   JavaValue result(T_VOID);
1134   if (thread_name != NULL) {
1135     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1136     // Thread gets assigned specified name and null target
1137     JavaCalls::call_special(&result,
1138                             thread_oop,
1139                             klass,
1140                             vmSymbols::object_initializer_name(),
1141                             vmSymbols::threadgroup_string_void_signature(),
1142                             thread_group, // Argument 1
1143                             name,         // Argument 2
1144                             THREAD);
1145   } else {
1146     // Thread gets assigned name "Thread-nnn" and null target
1147     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1148     JavaCalls::call_special(&result,
1149                             thread_oop,
1150                             klass,
1151                             vmSymbols::object_initializer_name(),
1152                             vmSymbols::threadgroup_runnable_void_signature(),
1153                             thread_group, // Argument 1
1154                             Handle(),     // Argument 2
1155                             THREAD);
1156   }
1157 
1158 
1159   if (daemon) {
1160       java_lang_Thread::set_daemon(thread_oop());
1161   }
1162 
1163   if (HAS_PENDING_EXCEPTION) {
1164     return;
1165   }
1166 
1167   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1168   Handle threadObj(this, this->threadObj());
1169 
1170   JavaCalls::call_special(&result,
1171                          thread_group,
1172                          group,
1173                          vmSymbols::add_method_name(),
1174                          vmSymbols::thread_void_signature(),
1175                          threadObj,          // Arg 1
1176                          THREAD);
1177 
1178 
1179 }
1180 
1181 // NamedThread --  non-JavaThread subclasses with multiple
1182 // uniquely named instances should derive from this.
1183 NamedThread::NamedThread() : Thread() {
1184   _name = NULL;
1185   _processed_thread = NULL;
1186 }
1187 
1188 NamedThread::~NamedThread() {
1189   if (_name != NULL) {
1190     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1191     _name = NULL;
1192   }
1193 }
1194 
1195 void NamedThread::set_name(const char* format, ...) {
1196   guarantee(_name == NULL, "Only get to set name once.");
1197   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1198   guarantee(_name != NULL, "alloc failure");
1199   va_list ap;
1200   va_start(ap, format);
1201   jio_vsnprintf(_name, max_name_len, format, ap);
1202   va_end(ap);
1203 }
1204 
1205 void NamedThread::print_on(outputStream* st) const {
1206   st->print("\"%s\" ", name());
1207   Thread::print_on(st);
1208   st->cr();
1209 }
1210 
1211 
1212 // ======= WatcherThread ========
1213 
1214 // The watcher thread exists to simulate timer interrupts.  It should
1215 // be replaced by an abstraction over whatever native support for
1216 // timer interrupts exists on the platform.
1217 
1218 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1219 bool WatcherThread::_startable = false;
1220 volatile bool  WatcherThread::_should_terminate = false;
1221 
1222 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1223   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1224   if (os::create_thread(this, os::watcher_thread)) {
1225     _watcher_thread = this;
1226 
1227     // Set the watcher thread to the highest OS priority which should not be
1228     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1229     // is created. The only normal thread using this priority is the reference
1230     // handler thread, which runs for very short intervals only.
1231     // If the VMThread's priority is not lower than the WatcherThread profiling
1232     // will be inaccurate.
1233     os::set_priority(this, MaxPriority);
1234     if (!DisableStartThread) {
1235       os::start_thread(this);
1236     }
1237   }
1238 }
1239 
1240 int WatcherThread::sleep() const {
1241   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1242 
1243   // remaining will be zero if there are no tasks,
1244   // causing the WatcherThread to sleep until a task is
1245   // enrolled
1246   int remaining = PeriodicTask::time_to_wait();
1247   int time_slept = 0;
1248 
1249   // we expect this to timeout - we only ever get unparked when
1250   // we should terminate or when a new task has been enrolled
1251   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1252 
1253   jlong time_before_loop = os::javaTimeNanos();
1254 
1255   for (;;) {
1256     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1257     jlong now = os::javaTimeNanos();
1258 
1259     if (remaining == 0) {
1260         // if we didn't have any tasks we could have waited for a long time
1261         // consider the time_slept zero and reset time_before_loop
1262         time_slept = 0;
1263         time_before_loop = now;
1264     } else {
1265         // need to recalculate since we might have new tasks in _tasks
1266         time_slept = (int) ((now - time_before_loop) / 1000000);
1267     }
1268 
1269     // Change to task list or spurious wakeup of some kind
1270     if (timedout || _should_terminate) {
1271         break;
1272     }
1273 
1274     remaining = PeriodicTask::time_to_wait();
1275     if (remaining == 0) {
1276         // Last task was just disenrolled so loop around and wait until
1277         // another task gets enrolled
1278         continue;
1279     }
1280 
1281     remaining -= time_slept;
1282     if (remaining <= 0)
1283       break;
1284   }
1285 
1286   return time_slept;
1287 }
1288 
1289 void WatcherThread::run() {
1290   assert(this == watcher_thread(), "just checking");
1291 
1292   this->record_stack_base_and_size();
1293   this->initialize_thread_local_storage();
1294   this->set_active_handles(JNIHandleBlock::allocate_block());
1295   while (!_should_terminate) {
1296     assert(watcher_thread() == Thread::current(), "thread consistency check");
1297     assert(watcher_thread() == this, "thread consistency check");
1298 
1299     // Calculate how long it'll be until the next PeriodicTask work
1300     // should be done, and sleep that amount of time.
1301     int time_waited = sleep();
1302 
1303     if (is_error_reported()) {
1304       // A fatal error has happened, the error handler(VMError::report_and_die)
1305       // should abort JVM after creating an error log file. However in some
1306       // rare cases, the error handler itself might deadlock. Here we try to
1307       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1308       //
1309       // This code is in WatcherThread because WatcherThread wakes up
1310       // periodically so the fatal error handler doesn't need to do anything;
1311       // also because the WatcherThread is less likely to crash than other
1312       // threads.
1313 
1314       for (;;) {
1315         if (!ShowMessageBoxOnError
1316          && (OnError == NULL || OnError[0] == '\0')
1317          && Arguments::abort_hook() == NULL) {
1318              os::sleep(this, 2 * 60 * 1000, false);
1319              fdStream err(defaultStream::output_fd());
1320              err.print_raw_cr("# [ timer expired, abort... ]");
1321              // skip atexit/vm_exit/vm_abort hooks
1322              os::die();
1323         }
1324 
1325         // Wake up 5 seconds later, the fatal handler may reset OnError or
1326         // ShowMessageBoxOnError when it is ready to abort.
1327         os::sleep(this, 5 * 1000, false);
1328       }
1329     }
1330 
1331     PeriodicTask::real_time_tick(time_waited);
1332   }
1333 
1334   // Signal that it is terminated
1335   {
1336     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1337     _watcher_thread = NULL;
1338     Terminator_lock->notify();
1339   }
1340 
1341   // Thread destructor usually does this..
1342   ThreadLocalStorage::set_thread(NULL);
1343 }
1344 
1345 void WatcherThread::start() {
1346   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1347 
1348   if (watcher_thread() == NULL && _startable) {
1349     _should_terminate = false;
1350     // Create the single instance of WatcherThread
1351     new WatcherThread();
1352   }
1353 }
1354 
1355 void WatcherThread::make_startable() {
1356   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1357   _startable = true;
1358 }
1359 
1360 void WatcherThread::stop() {
1361   {
1362     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1363     _should_terminate = true;
1364     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1365 
1366     WatcherThread* watcher = watcher_thread();
1367     if (watcher != NULL)
1368       watcher->unpark();
1369   }
1370 
1371   // it is ok to take late safepoints here, if needed
1372   MutexLocker mu(Terminator_lock);
1373 
1374   while (watcher_thread() != NULL) {
1375     // This wait should make safepoint checks, wait without a timeout,
1376     // and wait as a suspend-equivalent condition.
1377     //
1378     // Note: If the FlatProfiler is running, then this thread is waiting
1379     // for the WatcherThread to terminate and the WatcherThread, via the
1380     // FlatProfiler task, is waiting for the external suspend request on
1381     // this thread to complete. wait_for_ext_suspend_completion() will
1382     // eventually timeout, but that takes time. Making this wait a
1383     // suspend-equivalent condition solves that timeout problem.
1384     //
1385     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1386                           Mutex::_as_suspend_equivalent_flag);
1387   }
1388 }
1389 
1390 void WatcherThread::unpark() {
1391   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1392   PeriodicTask_lock->notify();
1393 }
1394 
1395 void WatcherThread::print_on(outputStream* st) const {
1396   st->print("\"%s\" ", name());
1397   Thread::print_on(st);
1398   st->cr();
1399 }
1400 
1401 // ======= JavaThread ========
1402 
1403 // A JavaThread is a normal Java thread
1404 
1405 void JavaThread::initialize() {
1406   // Initialize fields
1407 
1408   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1409   set_claimed_par_id(UINT_MAX);
1410 
1411   set_saved_exception_pc(NULL);
1412   set_threadObj(NULL);
1413   _anchor.clear();
1414   set_entry_point(NULL);
1415   set_jni_functions(jni_functions());
1416   set_callee_target(NULL);
1417   set_vm_result(NULL);
1418   set_vm_result_2(NULL);
1419   set_vframe_array_head(NULL);
1420   set_vframe_array_last(NULL);
1421   set_deferred_locals(NULL);
1422   set_deopt_mark(NULL);
1423   set_deopt_nmethod(NULL);
1424   clear_must_deopt_id();
1425   set_monitor_chunks(NULL);
1426   set_next(NULL);
1427   set_thread_state(_thread_new);
1428 #if INCLUDE_NMT
1429   set_recorder(NULL);
1430 #endif
1431   _terminated = _not_terminated;
1432   _privileged_stack_top = NULL;
1433   _array_for_gc = NULL;
1434   _suspend_equivalent = false;
1435   _in_deopt_handler = 0;
1436   _doing_unsafe_access = false;
1437   _stack_guard_state = stack_guard_unused;
1438   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1439   _exception_pc  = 0;
1440   _exception_handler_pc = 0;
1441   _is_method_handle_return = 0;
1442   _jvmti_thread_state= NULL;
1443   _should_post_on_exceptions_flag = JNI_FALSE;
1444   _jvmti_get_loaded_classes_closure = NULL;
1445   _interp_only_mode    = 0;
1446   _special_runtime_exit_condition = _no_async_condition;
1447   _pending_async_exception = NULL;
1448   _thread_stat = NULL;
1449   _thread_stat = new ThreadStatistics();
1450   _blocked_on_compilation = false;
1451   _jni_active_critical = 0;
1452   _pending_jni_exception_check_fn = NULL;
1453   _do_not_unlock_if_synchronized = false;
1454   _cached_monitor_info = NULL;
1455   _parker = Parker::Allocate(this);
1456 
1457 #ifndef PRODUCT
1458   _jmp_ring_index = 0;
1459   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1460     record_jump(NULL, NULL, NULL, 0);
1461   }
1462 #endif /* PRODUCT */
1463 
1464   set_thread_profiler(NULL);
1465   if (FlatProfiler::is_active()) {
1466     // This is where we would decide to either give each thread it's own profiler
1467     // or use one global one from FlatProfiler,
1468     // or up to some count of the number of profiled threads, etc.
1469     ThreadProfiler* pp = new ThreadProfiler();
1470     pp->engage();
1471     set_thread_profiler(pp);
1472   }
1473 
1474   // Setup safepoint state info for this thread
1475   ThreadSafepointState::create(this);
1476 
1477   debug_only(_java_call_counter = 0);
1478 
1479   // JVMTI PopFrame support
1480   _popframe_condition = popframe_inactive;
1481   _popframe_preserved_args = NULL;
1482   _popframe_preserved_args_size = 0;
1483 
1484   pd_initialize();
1485 }
1486 
1487 #if INCLUDE_ALL_GCS
1488 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1489 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1490 #endif // INCLUDE_ALL_GCS
1491 
1492 JavaThread::JavaThread(bool is_attaching_via_jni) :
1493   Thread()
1494 #if INCLUDE_ALL_GCS
1495   , _satb_mark_queue(&_satb_mark_queue_set),
1496   _dirty_card_queue(&_dirty_card_queue_set)
1497 #endif // INCLUDE_ALL_GCS
1498 {
1499   initialize();
1500   if (is_attaching_via_jni) {
1501     _jni_attach_state = _attaching_via_jni;
1502   } else {
1503     _jni_attach_state = _not_attaching_via_jni;
1504   }
1505   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1506   _safepoint_visible = false;
1507 }
1508 
1509 bool JavaThread::reguard_stack(address cur_sp) {
1510   if (_stack_guard_state != stack_guard_yellow_disabled) {
1511     return true; // Stack already guarded or guard pages not needed.
1512   }
1513 
1514   if (register_stack_overflow()) {
1515     // For those architectures which have separate register and
1516     // memory stacks, we must check the register stack to see if
1517     // it has overflowed.
1518     return false;
1519   }
1520 
1521   // Java code never executes within the yellow zone: the latter is only
1522   // there to provoke an exception during stack banging.  If java code
1523   // is executing there, either StackShadowPages should be larger, or
1524   // some exception code in c1, c2 or the interpreter isn't unwinding
1525   // when it should.
1526   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1527 
1528   enable_stack_yellow_zone();
1529   return true;
1530 }
1531 
1532 bool JavaThread::reguard_stack(void) {
1533   return reguard_stack(os::current_stack_pointer());
1534 }
1535 
1536 
1537 void JavaThread::block_if_vm_exited() {
1538   if (_terminated == _vm_exited) {
1539     // _vm_exited is set at safepoint, and Threads_lock is never released
1540     // we will block here forever
1541     Threads_lock->lock_without_safepoint_check();
1542     ShouldNotReachHere();
1543   }
1544 }
1545 
1546 
1547 // Remove this ifdef when C1 is ported to the compiler interface.
1548 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1549 
1550 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1551   Thread()
1552 #if INCLUDE_ALL_GCS
1553   , _satb_mark_queue(&_satb_mark_queue_set),
1554   _dirty_card_queue(&_dirty_card_queue_set)
1555 #endif // INCLUDE_ALL_GCS
1556 {
1557   if (TraceThreadEvents) {
1558     tty->print_cr("creating thread %p", this);
1559   }
1560   initialize();
1561   _jni_attach_state = _not_attaching_via_jni;
1562   set_entry_point(entry_point);
1563   // Create the native thread itself.
1564   // %note runtime_23
1565   os::ThreadType thr_type = os::java_thread;
1566   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1567                                                      os::java_thread;
1568   os::create_thread(this, thr_type, stack_sz);
1569   _safepoint_visible = false;
1570   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1571   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1572   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1573   // the exception consists of creating the exception object & initializing it, initialization
1574   // will leave the VM via a JavaCall and then all locks must be unlocked).
1575   //
1576   // The thread is still suspended when we reach here. Thread must be explicit started
1577   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1578   // by calling Threads:add. The reason why this is not done here, is because the thread
1579   // object must be fully initialized (take a look at JVM_Start)
1580 }
1581 
1582 JavaThread::~JavaThread() {
1583   if (TraceThreadEvents) {
1584       tty->print_cr("terminate thread %p", this);
1585   }
1586 
1587   // By now, this thread should already be invisible to safepoint,
1588   // and its per-thread recorder also collected.
1589   assert(!is_safepoint_visible(), "wrong state");
1590 #if INCLUDE_NMT
1591   assert(get_recorder() == NULL, "Already collected");
1592 #endif // INCLUDE_NMT
1593 
1594   // JSR166 -- return the parker to the free list
1595   Parker::Release(_parker);
1596   _parker = NULL;
1597 
1598   // Free any remaining  previous UnrollBlock
1599   vframeArray* old_array = vframe_array_last();
1600 
1601   if (old_array != NULL) {
1602     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1603     old_array->set_unroll_block(NULL);
1604     delete old_info;
1605     delete old_array;
1606   }
1607 
1608   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1609   if (deferred != NULL) {
1610     // This can only happen if thread is destroyed before deoptimization occurs.
1611     assert(deferred->length() != 0, "empty array!");
1612     do {
1613       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1614       deferred->remove_at(0);
1615       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1616       delete dlv;
1617     } while (deferred->length() != 0);
1618     delete deferred;
1619   }
1620 
1621   // All Java related clean up happens in exit
1622   ThreadSafepointState::destroy(this);
1623   if (_thread_profiler != NULL) delete _thread_profiler;
1624   if (_thread_stat != NULL) delete _thread_stat;
1625 }
1626 
1627 
1628 // The first routine called by a new Java thread
1629 void JavaThread::run() {
1630   // initialize thread-local alloc buffer related fields
1631   this->initialize_tlab();
1632 
1633   // used to test validity of stack trace backs
1634   this->record_base_of_stack_pointer();
1635 
1636   // Record real stack base and size.
1637   this->record_stack_base_and_size();
1638 
1639   // Initialize thread local storage; set before calling MutexLocker
1640   this->initialize_thread_local_storage();
1641 
1642   this->create_stack_guard_pages();
1643 
1644   this->cache_global_variables();
1645 
1646   // Thread is now sufficient initialized to be handled by the safepoint code as being
1647   // in the VM. Change thread state from _thread_new to _thread_in_vm
1648   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1649 
1650   assert(JavaThread::current() == this, "sanity check");
1651   assert(!Thread::current()->owns_locks(), "sanity check");
1652 
1653   DTRACE_THREAD_PROBE(start, this);
1654 
1655   // This operation might block. We call that after all safepoint checks for a new thread has
1656   // been completed.
1657   this->set_active_handles(JNIHandleBlock::allocate_block());
1658 
1659   if (JvmtiExport::should_post_thread_life()) {
1660     JvmtiExport::post_thread_start(this);
1661   }
1662 
1663   EventThreadStart event;
1664   if (event.should_commit()) {
1665      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1666      event.commit();
1667   }
1668 
1669   // We call another function to do the rest so we are sure that the stack addresses used
1670   // from there will be lower than the stack base just computed
1671   thread_main_inner();
1672 
1673   // Note, thread is no longer valid at this point!
1674 }
1675 
1676 
1677 void JavaThread::thread_main_inner() {
1678   assert(JavaThread::current() == this, "sanity check");
1679   assert(this->threadObj() != NULL, "just checking");
1680 
1681   // Execute thread entry point unless this thread has a pending exception
1682   // or has been stopped before starting.
1683   // Note: Due to JVM_StopThread we can have pending exceptions already!
1684   if (!this->has_pending_exception() &&
1685       !java_lang_Thread::is_stillborn(this->threadObj())) {
1686     {
1687       ResourceMark rm(this);
1688       this->set_native_thread_name(this->get_thread_name());
1689     }
1690     HandleMark hm(this);
1691     this->entry_point()(this, this);
1692   }
1693 
1694   DTRACE_THREAD_PROBE(stop, this);
1695 
1696   this->exit(false);
1697   delete this;
1698 }
1699 
1700 
1701 static void ensure_join(JavaThread* thread) {
1702   // We do not need to grap the Threads_lock, since we are operating on ourself.
1703   Handle threadObj(thread, thread->threadObj());
1704   assert(threadObj.not_null(), "java thread object must exist");
1705   ObjectLocker lock(threadObj, thread);
1706   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1707   thread->clear_pending_exception();
1708   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1709   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1710   // Clear the native thread instance - this makes isAlive return false and allows the join()
1711   // to complete once we've done the notify_all below
1712   java_lang_Thread::set_thread(threadObj(), NULL);
1713   lock.notify_all(thread);
1714   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1715   thread->clear_pending_exception();
1716 }
1717 
1718 
1719 // For any new cleanup additions, please check to see if they need to be applied to
1720 // cleanup_failed_attach_current_thread as well.
1721 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1722   assert(this == JavaThread::current(), "thread consistency check");
1723 
1724   HandleMark hm(this);
1725   Handle uncaught_exception(this, this->pending_exception());
1726   this->clear_pending_exception();
1727   Handle threadObj(this, this->threadObj());
1728   assert(threadObj.not_null(), "Java thread object should be created");
1729 
1730   if (get_thread_profiler() != NULL) {
1731     get_thread_profiler()->disengage();
1732     ResourceMark rm;
1733     get_thread_profiler()->print(get_thread_name());
1734   }
1735 
1736 
1737   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1738   {
1739     EXCEPTION_MARK;
1740 
1741     CLEAR_PENDING_EXCEPTION;
1742   }
1743   if (!destroy_vm) {
1744     if (uncaught_exception.not_null()) {
1745       EXCEPTION_MARK;
1746       // Call method Thread.dispatchUncaughtException().
1747       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1748       JavaValue result(T_VOID);
1749       JavaCalls::call_virtual(&result,
1750                               threadObj, thread_klass,
1751                               vmSymbols::dispatchUncaughtException_name(),
1752                               vmSymbols::throwable_void_signature(),
1753                               uncaught_exception,
1754                               THREAD);
1755       if (HAS_PENDING_EXCEPTION) {
1756         ResourceMark rm(this);
1757         jio_fprintf(defaultStream::error_stream(),
1758               "\nException: %s thrown from the UncaughtExceptionHandler"
1759               " in thread \"%s\"\n",
1760               pending_exception()->klass()->external_name(),
1761               get_thread_name());
1762         CLEAR_PENDING_EXCEPTION;
1763       }
1764     }
1765 
1766     // Called before the java thread exit since we want to read info
1767     // from java_lang_Thread object
1768     EventThreadEnd event;
1769     if (event.should_commit()) {
1770         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1771         event.commit();
1772     }
1773 
1774     // Call after last event on thread
1775     EVENT_THREAD_EXIT(this);
1776 
1777     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1778     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1779     // is deprecated anyhow.
1780     if (!is_Compiler_thread()) {
1781       int count = 3;
1782       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1783         EXCEPTION_MARK;
1784         JavaValue result(T_VOID);
1785         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1786         JavaCalls::call_virtual(&result,
1787                               threadObj, thread_klass,
1788                               vmSymbols::exit_method_name(),
1789                               vmSymbols::void_method_signature(),
1790                               THREAD);
1791         CLEAR_PENDING_EXCEPTION;
1792       }
1793     }
1794     // notify JVMTI
1795     if (JvmtiExport::should_post_thread_life()) {
1796       JvmtiExport::post_thread_end(this);
1797     }
1798 
1799     // We have notified the agents that we are exiting, before we go on,
1800     // we must check for a pending external suspend request and honor it
1801     // in order to not surprise the thread that made the suspend request.
1802     while (true) {
1803       {
1804         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1805         if (!is_external_suspend()) {
1806           set_terminated(_thread_exiting);
1807           ThreadService::current_thread_exiting(this);
1808           break;
1809         }
1810         // Implied else:
1811         // Things get a little tricky here. We have a pending external
1812         // suspend request, but we are holding the SR_lock so we
1813         // can't just self-suspend. So we temporarily drop the lock
1814         // and then self-suspend.
1815       }
1816 
1817       ThreadBlockInVM tbivm(this);
1818       java_suspend_self();
1819 
1820       // We're done with this suspend request, but we have to loop around
1821       // and check again. Eventually we will get SR_lock without a pending
1822       // external suspend request and will be able to mark ourselves as
1823       // exiting.
1824     }
1825     // no more external suspends are allowed at this point
1826   } else {
1827     // before_exit() has already posted JVMTI THREAD_END events
1828   }
1829 
1830   // Notify waiters on thread object. This has to be done after exit() is called
1831   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1832   // group should have the destroyed bit set before waiters are notified).
1833   ensure_join(this);
1834   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1835 
1836   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1837   // held by this thread must be released.  A detach operation must only
1838   // get here if there are no Java frames on the stack.  Therefore, any
1839   // owned monitors at this point MUST be JNI-acquired monitors which are
1840   // pre-inflated and in the monitor cache.
1841   //
1842   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1843   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1844     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1845     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1846     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1847   }
1848 
1849   // These things needs to be done while we are still a Java Thread. Make sure that thread
1850   // is in a consistent state, in case GC happens
1851   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1852 
1853   if (active_handles() != NULL) {
1854     JNIHandleBlock* block = active_handles();
1855     set_active_handles(NULL);
1856     JNIHandleBlock::release_block(block);
1857   }
1858 
1859   if (free_handle_block() != NULL) {
1860     JNIHandleBlock* block = free_handle_block();
1861     set_free_handle_block(NULL);
1862     JNIHandleBlock::release_block(block);
1863   }
1864 
1865   // These have to be removed while this is still a valid thread.
1866   remove_stack_guard_pages();
1867 
1868   if (UseTLAB) {
1869     tlab().make_parsable(true);  // retire TLAB
1870   }
1871 
1872   if (JvmtiEnv::environments_might_exist()) {
1873     JvmtiExport::cleanup_thread(this);
1874   }
1875 
1876   // We must flush any deferred card marks before removing a thread from
1877   // the list of active threads.
1878   Universe::heap()->flush_deferred_store_barrier(this);
1879   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1880 
1881 #if INCLUDE_ALL_GCS
1882   // We must flush the G1-related buffers before removing a thread
1883   // from the list of active threads. We must do this after any deferred
1884   // card marks have been flushed (above) so that any entries that are
1885   // added to the thread's dirty card queue as a result are not lost.
1886   if (UseG1GC) {
1887     flush_barrier_queues();
1888   }
1889 #endif // INCLUDE_ALL_GCS
1890 
1891   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1892   Threads::remove(this);
1893 }
1894 
1895 #if INCLUDE_ALL_GCS
1896 // Flush G1-related queues.
1897 void JavaThread::flush_barrier_queues() {
1898   satb_mark_queue().flush();
1899   dirty_card_queue().flush();
1900 }
1901 
1902 void JavaThread::initialize_queues() {
1903   assert(!SafepointSynchronize::is_at_safepoint(),
1904          "we should not be at a safepoint");
1905 
1906   ObjPtrQueue& satb_queue = satb_mark_queue();
1907   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1908   // The SATB queue should have been constructed with its active
1909   // field set to false.
1910   assert(!satb_queue.is_active(), "SATB queue should not be active");
1911   assert(satb_queue.is_empty(), "SATB queue should be empty");
1912   // If we are creating the thread during a marking cycle, we should
1913   // set the active field of the SATB queue to true.
1914   if (satb_queue_set.is_active()) {
1915     satb_queue.set_active(true);
1916   }
1917 
1918   DirtyCardQueue& dirty_queue = dirty_card_queue();
1919   // The dirty card queue should have been constructed with its
1920   // active field set to true.
1921   assert(dirty_queue.is_active(), "dirty card queue should be active");
1922 }
1923 #endif // INCLUDE_ALL_GCS
1924 
1925 void JavaThread::cleanup_failed_attach_current_thread() {
1926   if (get_thread_profiler() != NULL) {
1927     get_thread_profiler()->disengage();
1928     ResourceMark rm;
1929     get_thread_profiler()->print(get_thread_name());
1930   }
1931 
1932   if (active_handles() != NULL) {
1933     JNIHandleBlock* block = active_handles();
1934     set_active_handles(NULL);
1935     JNIHandleBlock::release_block(block);
1936   }
1937 
1938   if (free_handle_block() != NULL) {
1939     JNIHandleBlock* block = free_handle_block();
1940     set_free_handle_block(NULL);
1941     JNIHandleBlock::release_block(block);
1942   }
1943 
1944   // These have to be removed while this is still a valid thread.
1945   remove_stack_guard_pages();
1946 
1947   if (UseTLAB) {
1948     tlab().make_parsable(true);  // retire TLAB, if any
1949   }
1950 
1951 #if INCLUDE_ALL_GCS
1952   if (UseG1GC) {
1953     flush_barrier_queues();
1954   }
1955 #endif // INCLUDE_ALL_GCS
1956 
1957   Threads::remove(this);
1958   delete this;
1959 }
1960 
1961 
1962 
1963 
1964 JavaThread* JavaThread::active() {
1965   Thread* thread = ThreadLocalStorage::thread();
1966   assert(thread != NULL, "just checking");
1967   if (thread->is_Java_thread()) {
1968     return (JavaThread*) thread;
1969   } else {
1970     assert(thread->is_VM_thread(), "this must be a vm thread");
1971     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1972     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1973     assert(ret->is_Java_thread(), "must be a Java thread");
1974     return ret;
1975   }
1976 }
1977 
1978 bool JavaThread::is_lock_owned(address adr) const {
1979   if (Thread::is_lock_owned(adr)) return true;
1980 
1981   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1982     if (chunk->contains(adr)) return true;
1983   }
1984 
1985   return false;
1986 }
1987 
1988 
1989 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1990   chunk->set_next(monitor_chunks());
1991   set_monitor_chunks(chunk);
1992 }
1993 
1994 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1995   guarantee(monitor_chunks() != NULL, "must be non empty");
1996   if (monitor_chunks() == chunk) {
1997     set_monitor_chunks(chunk->next());
1998   } else {
1999     MonitorChunk* prev = monitor_chunks();
2000     while (prev->next() != chunk) prev = prev->next();
2001     prev->set_next(chunk->next());
2002   }
2003 }
2004 
2005 // JVM support.
2006 
2007 // Note: this function shouldn't block if it's called in
2008 // _thread_in_native_trans state (such as from
2009 // check_special_condition_for_native_trans()).
2010 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2011 
2012   if (has_last_Java_frame() && has_async_condition()) {
2013     // If we are at a polling page safepoint (not a poll return)
2014     // then we must defer async exception because live registers
2015     // will be clobbered by the exception path. Poll return is
2016     // ok because the call we a returning from already collides
2017     // with exception handling registers and so there is no issue.
2018     // (The exception handling path kills call result registers but
2019     //  this is ok since the exception kills the result anyway).
2020 
2021     if (is_at_poll_safepoint()) {
2022       // if the code we are returning to has deoptimized we must defer
2023       // the exception otherwise live registers get clobbered on the
2024       // exception path before deoptimization is able to retrieve them.
2025       //
2026       RegisterMap map(this, false);
2027       frame caller_fr = last_frame().sender(&map);
2028       assert(caller_fr.is_compiled_frame(), "what?");
2029       if (caller_fr.is_deoptimized_frame()) {
2030         if (TraceExceptions) {
2031           ResourceMark rm;
2032           tty->print_cr("deferred async exception at compiled safepoint");
2033         }
2034         return;
2035       }
2036     }
2037   }
2038 
2039   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2040   if (condition == _no_async_condition) {
2041     // Conditions have changed since has_special_runtime_exit_condition()
2042     // was called:
2043     // - if we were here only because of an external suspend request,
2044     //   then that was taken care of above (or cancelled) so we are done
2045     // - if we were here because of another async request, then it has
2046     //   been cleared between the has_special_runtime_exit_condition()
2047     //   and now so again we are done
2048     return;
2049   }
2050 
2051   // Check for pending async. exception
2052   if (_pending_async_exception != NULL) {
2053     // Only overwrite an already pending exception, if it is not a threadDeath.
2054     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2055 
2056       // We cannot call Exceptions::_throw(...) here because we cannot block
2057       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2058 
2059       if (TraceExceptions) {
2060         ResourceMark rm;
2061         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2062         if (has_last_Java_frame()) {
2063           frame f = last_frame();
2064           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2065         }
2066         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2067       }
2068       _pending_async_exception = NULL;
2069       clear_has_async_exception();
2070     }
2071   }
2072 
2073   if (check_unsafe_error &&
2074       condition == _async_unsafe_access_error && !has_pending_exception()) {
2075     condition = _no_async_condition;  // done
2076     switch (thread_state()) {
2077     case _thread_in_vm:
2078       {
2079         JavaThread* THREAD = this;
2080         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2081       }
2082     case _thread_in_native:
2083       {
2084         ThreadInVMfromNative tiv(this);
2085         JavaThread* THREAD = this;
2086         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2087       }
2088     case _thread_in_Java:
2089       {
2090         ThreadInVMfromJava tiv(this);
2091         JavaThread* THREAD = this;
2092         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2093       }
2094     default:
2095       ShouldNotReachHere();
2096     }
2097   }
2098 
2099   assert(condition == _no_async_condition || has_pending_exception() ||
2100          (!check_unsafe_error && condition == _async_unsafe_access_error),
2101          "must have handled the async condition, if no exception");
2102 }
2103 
2104 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2105   //
2106   // Check for pending external suspend. Internal suspend requests do
2107   // not use handle_special_runtime_exit_condition().
2108   // If JNIEnv proxies are allowed, don't self-suspend if the target
2109   // thread is not the current thread. In older versions of jdbx, jdbx
2110   // threads could call into the VM with another thread's JNIEnv so we
2111   // can be here operating on behalf of a suspended thread (4432884).
2112   bool do_self_suspend = is_external_suspend_with_lock();
2113   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2114     //
2115     // Because thread is external suspended the safepoint code will count
2116     // thread as at a safepoint. This can be odd because we can be here
2117     // as _thread_in_Java which would normally transition to _thread_blocked
2118     // at a safepoint. We would like to mark the thread as _thread_blocked
2119     // before calling java_suspend_self like all other callers of it but
2120     // we must then observe proper safepoint protocol. (We can't leave
2121     // _thread_blocked with a safepoint in progress). However we can be
2122     // here as _thread_in_native_trans so we can't use a normal transition
2123     // constructor/destructor pair because they assert on that type of
2124     // transition. We could do something like:
2125     //
2126     // JavaThreadState state = thread_state();
2127     // set_thread_state(_thread_in_vm);
2128     // {
2129     //   ThreadBlockInVM tbivm(this);
2130     //   java_suspend_self()
2131     // }
2132     // set_thread_state(_thread_in_vm_trans);
2133     // if (safepoint) block;
2134     // set_thread_state(state);
2135     //
2136     // but that is pretty messy. Instead we just go with the way the
2137     // code has worked before and note that this is the only path to
2138     // java_suspend_self that doesn't put the thread in _thread_blocked
2139     // mode.
2140 
2141     frame_anchor()->make_walkable(this);
2142     java_suspend_self();
2143 
2144     // We might be here for reasons in addition to the self-suspend request
2145     // so check for other async requests.
2146   }
2147 
2148   if (check_asyncs) {
2149     check_and_handle_async_exceptions();
2150   }
2151 }
2152 
2153 void JavaThread::send_thread_stop(oop java_throwable)  {
2154   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2155   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2156   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2157 
2158   // Do not throw asynchronous exceptions against the compiler thread
2159   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2160   if (is_Compiler_thread()) return;
2161 
2162   {
2163     // Actually throw the Throwable against the target Thread - however
2164     // only if there is no thread death exception installed already.
2165     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2166       // If the topmost frame is a runtime stub, then we are calling into
2167       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2168       // must deoptimize the caller before continuing, as the compiled  exception handler table
2169       // may not be valid
2170       if (has_last_Java_frame()) {
2171         frame f = last_frame();
2172         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2173           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2174           RegisterMap reg_map(this, UseBiasedLocking);
2175           frame compiled_frame = f.sender(&reg_map);
2176           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2177             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2178           }
2179         }
2180       }
2181 
2182       // Set async. pending exception in thread.
2183       set_pending_async_exception(java_throwable);
2184 
2185       if (TraceExceptions) {
2186        ResourceMark rm;
2187        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2188       }
2189       // for AbortVMOnException flag
2190       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2191     }
2192   }
2193 
2194 
2195   // Interrupt thread so it will wake up from a potential wait()
2196   Thread::interrupt(this);
2197 }
2198 
2199 // External suspension mechanism.
2200 //
2201 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2202 // to any VM_locks and it is at a transition
2203 // Self-suspension will happen on the transition out of the vm.
2204 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2205 //
2206 // Guarantees on return:
2207 //   + Target thread will not execute any new bytecode (that's why we need to
2208 //     force a safepoint)
2209 //   + Target thread will not enter any new monitors
2210 //
2211 void JavaThread::java_suspend() {
2212   { MutexLocker mu(Threads_lock);
2213     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2214        return;
2215     }
2216   }
2217 
2218   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2219     if (!is_external_suspend()) {
2220       // a racing resume has cancelled us; bail out now
2221       return;
2222     }
2223 
2224     // suspend is done
2225     uint32_t debug_bits = 0;
2226     // Warning: is_ext_suspend_completed() may temporarily drop the
2227     // SR_lock to allow the thread to reach a stable thread state if
2228     // it is currently in a transient thread state.
2229     if (is_ext_suspend_completed(false /* !called_by_wait */,
2230                                  SuspendRetryDelay, &debug_bits) ) {
2231       return;
2232     }
2233   }
2234 
2235   VM_ForceSafepoint vm_suspend;
2236   VMThread::execute(&vm_suspend);
2237 }
2238 
2239 // Part II of external suspension.
2240 // A JavaThread self suspends when it detects a pending external suspend
2241 // request. This is usually on transitions. It is also done in places
2242 // where continuing to the next transition would surprise the caller,
2243 // e.g., monitor entry.
2244 //
2245 // Returns the number of times that the thread self-suspended.
2246 //
2247 // Note: DO NOT call java_suspend_self() when you just want to block current
2248 //       thread. java_suspend_self() is the second stage of cooperative
2249 //       suspension for external suspend requests and should only be used
2250 //       to complete an external suspend request.
2251 //
2252 int JavaThread::java_suspend_self() {
2253   int ret = 0;
2254 
2255   // we are in the process of exiting so don't suspend
2256   if (is_exiting()) {
2257      clear_external_suspend();
2258      return ret;
2259   }
2260 
2261   assert(_anchor.walkable() ||
2262     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2263     "must have walkable stack");
2264 
2265   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2266 
2267   assert(!this->is_ext_suspended(),
2268     "a thread trying to self-suspend should not already be suspended");
2269 
2270   if (this->is_suspend_equivalent()) {
2271     // If we are self-suspending as a result of the lifting of a
2272     // suspend equivalent condition, then the suspend_equivalent
2273     // flag is not cleared until we set the ext_suspended flag so
2274     // that wait_for_ext_suspend_completion() returns consistent
2275     // results.
2276     this->clear_suspend_equivalent();
2277   }
2278 
2279   // A racing resume may have cancelled us before we grabbed SR_lock
2280   // above. Or another external suspend request could be waiting for us
2281   // by the time we return from SR_lock()->wait(). The thread
2282   // that requested the suspension may already be trying to walk our
2283   // stack and if we return now, we can change the stack out from under
2284   // it. This would be a "bad thing (TM)" and cause the stack walker
2285   // to crash. We stay self-suspended until there are no more pending
2286   // external suspend requests.
2287   while (is_external_suspend()) {
2288     ret++;
2289     this->set_ext_suspended();
2290 
2291     // _ext_suspended flag is cleared by java_resume()
2292     while (is_ext_suspended()) {
2293       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2294     }
2295   }
2296 
2297   return ret;
2298 }
2299 
2300 #ifdef ASSERT
2301 // verify the JavaThread has not yet been published in the Threads::list, and
2302 // hence doesn't need protection from concurrent access at this stage
2303 void JavaThread::verify_not_published() {
2304   if (!Threads_lock->owned_by_self()) {
2305    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2306    assert(!Threads::includes(this),
2307            "java thread shouldn't have been published yet!");
2308   }
2309   else {
2310    assert(!Threads::includes(this),
2311            "java thread shouldn't have been published yet!");
2312   }
2313 }
2314 #endif
2315 
2316 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2317 // progress or when _suspend_flags is non-zero.
2318 // Current thread needs to self-suspend if there is a suspend request and/or
2319 // block if a safepoint is in progress.
2320 // Async exception ISN'T checked.
2321 // Note only the ThreadInVMfromNative transition can call this function
2322 // directly and when thread state is _thread_in_native_trans
2323 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2324   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2325 
2326   JavaThread *curJT = JavaThread::current();
2327   bool do_self_suspend = thread->is_external_suspend();
2328 
2329   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2330 
2331   // If JNIEnv proxies are allowed, don't self-suspend if the target
2332   // thread is not the current thread. In older versions of jdbx, jdbx
2333   // threads could call into the VM with another thread's JNIEnv so we
2334   // can be here operating on behalf of a suspended thread (4432884).
2335   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2336     JavaThreadState state = thread->thread_state();
2337 
2338     // We mark this thread_blocked state as a suspend-equivalent so
2339     // that a caller to is_ext_suspend_completed() won't be confused.
2340     // The suspend-equivalent state is cleared by java_suspend_self().
2341     thread->set_suspend_equivalent();
2342 
2343     // If the safepoint code sees the _thread_in_native_trans state, it will
2344     // wait until the thread changes to other thread state. There is no
2345     // guarantee on how soon we can obtain the SR_lock and complete the
2346     // self-suspend request. It would be a bad idea to let safepoint wait for
2347     // too long. Temporarily change the state to _thread_blocked to
2348     // let the VM thread know that this thread is ready for GC. The problem
2349     // of changing thread state is that safepoint could happen just after
2350     // java_suspend_self() returns after being resumed, and VM thread will
2351     // see the _thread_blocked state. We must check for safepoint
2352     // after restoring the state and make sure we won't leave while a safepoint
2353     // is in progress.
2354     thread->set_thread_state(_thread_blocked);
2355     thread->java_suspend_self();
2356     thread->set_thread_state(state);
2357     // Make sure new state is seen by VM thread
2358     if (os::is_MP()) {
2359       if (UseMembar) {
2360         // Force a fence between the write above and read below
2361         OrderAccess::fence();
2362       } else {
2363         // Must use this rather than serialization page in particular on Windows
2364         InterfaceSupport::serialize_memory(thread);
2365       }
2366     }
2367   }
2368 
2369   if (SafepointSynchronize::do_call_back()) {
2370     // If we are safepointing, then block the caller which may not be
2371     // the same as the target thread (see above).
2372     SafepointSynchronize::block(curJT);
2373   }
2374 
2375   if (thread->is_deopt_suspend()) {
2376     thread->clear_deopt_suspend();
2377     RegisterMap map(thread, false);
2378     frame f = thread->last_frame();
2379     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2380       f = f.sender(&map);
2381     }
2382     if (f.id() == thread->must_deopt_id()) {
2383       thread->clear_must_deopt_id();
2384       f.deoptimize(thread);
2385     } else {
2386       fatal("missed deoptimization!");
2387     }
2388   }
2389 }
2390 
2391 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2392 // progress or when _suspend_flags is non-zero.
2393 // Current thread needs to self-suspend if there is a suspend request and/or
2394 // block if a safepoint is in progress.
2395 // Also check for pending async exception (not including unsafe access error).
2396 // Note only the native==>VM/Java barriers can call this function and when
2397 // thread state is _thread_in_native_trans.
2398 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2399   check_safepoint_and_suspend_for_native_trans(thread);
2400 
2401   if (thread->has_async_exception()) {
2402     // We are in _thread_in_native_trans state, don't handle unsafe
2403     // access error since that may block.
2404     thread->check_and_handle_async_exceptions(false);
2405   }
2406 }
2407 
2408 // This is a variant of the normal
2409 // check_special_condition_for_native_trans with slightly different
2410 // semantics for use by critical native wrappers.  It does all the
2411 // normal checks but also performs the transition back into
2412 // thread_in_Java state.  This is required so that critical natives
2413 // can potentially block and perform a GC if they are the last thread
2414 // exiting the GC_locker.
2415 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2416   check_special_condition_for_native_trans(thread);
2417 
2418   // Finish the transition
2419   thread->set_thread_state(_thread_in_Java);
2420 
2421   if (thread->do_critical_native_unlock()) {
2422     ThreadInVMfromJavaNoAsyncException tiv(thread);
2423     GC_locker::unlock_critical(thread);
2424     thread->clear_critical_native_unlock();
2425   }
2426 }
2427 
2428 // We need to guarantee the Threads_lock here, since resumes are not
2429 // allowed during safepoint synchronization
2430 // Can only resume from an external suspension
2431 void JavaThread::java_resume() {
2432   assert_locked_or_safepoint(Threads_lock);
2433 
2434   // Sanity check: thread is gone, has started exiting or the thread
2435   // was not externally suspended.
2436   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2437     return;
2438   }
2439 
2440   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2441 
2442   clear_external_suspend();
2443 
2444   if (is_ext_suspended()) {
2445     clear_ext_suspended();
2446     SR_lock()->notify_all();
2447   }
2448 }
2449 
2450 void JavaThread::create_stack_guard_pages() {
2451   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2452   address low_addr = stack_base() - stack_size();
2453   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2454 
2455   int allocate = os::allocate_stack_guard_pages();
2456   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2457 
2458   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2459     warning("Attempt to allocate stack guard pages failed.");
2460     return;
2461   }
2462 
2463   if (os::guard_memory((char *) low_addr, len)) {
2464     _stack_guard_state = stack_guard_enabled;
2465   } else {
2466     warning("Attempt to protect stack guard pages failed.");
2467     if (os::uncommit_memory((char *) low_addr, len)) {
2468       warning("Attempt to deallocate stack guard pages failed.");
2469     }
2470   }
2471 }
2472 
2473 void JavaThread::remove_stack_guard_pages() {
2474   assert(Thread::current() == this, "from different thread");
2475   if (_stack_guard_state == stack_guard_unused) return;
2476   address low_addr = stack_base() - stack_size();
2477   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2478 
2479   if (os::allocate_stack_guard_pages()) {
2480     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2481       _stack_guard_state = stack_guard_unused;
2482     } else {
2483       warning("Attempt to deallocate stack guard pages failed.");
2484     }
2485   } else {
2486     if (_stack_guard_state == stack_guard_unused) return;
2487     if (os::unguard_memory((char *) low_addr, len)) {
2488       _stack_guard_state = stack_guard_unused;
2489     } else {
2490         warning("Attempt to unprotect stack guard pages failed.");
2491     }
2492   }
2493 }
2494 
2495 void JavaThread::enable_stack_yellow_zone() {
2496   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2497   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2498 
2499   // The base notation is from the stacks point of view, growing downward.
2500   // We need to adjust it to work correctly with guard_memory()
2501   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2502 
2503   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2504   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2505 
2506   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2507     _stack_guard_state = stack_guard_enabled;
2508   } else {
2509     warning("Attempt to guard stack yellow zone failed.");
2510   }
2511   enable_register_stack_guard();
2512 }
2513 
2514 void JavaThread::disable_stack_yellow_zone() {
2515   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2516   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2517 
2518   // Simply return if called for a thread that does not use guard pages.
2519   if (_stack_guard_state == stack_guard_unused) return;
2520 
2521   // The base notation is from the stacks point of view, growing downward.
2522   // We need to adjust it to work correctly with guard_memory()
2523   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2524 
2525   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2526     _stack_guard_state = stack_guard_yellow_disabled;
2527   } else {
2528     warning("Attempt to unguard stack yellow zone failed.");
2529   }
2530   disable_register_stack_guard();
2531 }
2532 
2533 void JavaThread::enable_stack_red_zone() {
2534   // The base notation is from the stacks point of view, growing downward.
2535   // We need to adjust it to work correctly with guard_memory()
2536   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2537   address base = stack_red_zone_base() - stack_red_zone_size();
2538 
2539   guarantee(base < stack_base(), "Error calculating stack red zone");
2540   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2541 
2542   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2543     warning("Attempt to guard stack red zone failed.");
2544   }
2545 }
2546 
2547 void JavaThread::disable_stack_red_zone() {
2548   // The base notation is from the stacks point of view, growing downward.
2549   // We need to adjust it to work correctly with guard_memory()
2550   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2551   address base = stack_red_zone_base() - stack_red_zone_size();
2552   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2553     warning("Attempt to unguard stack red zone failed.");
2554   }
2555 }
2556 
2557 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2558   // ignore is there is no stack
2559   if (!has_last_Java_frame()) return;
2560   // traverse the stack frames. Starts from top frame.
2561   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2562     frame* fr = fst.current();
2563     f(fr, fst.register_map());
2564   }
2565 }
2566 
2567 
2568 #ifndef PRODUCT
2569 // Deoptimization
2570 // Function for testing deoptimization
2571 void JavaThread::deoptimize() {
2572   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2573   StackFrameStream fst(this, UseBiasedLocking);
2574   bool deopt = false;           // Dump stack only if a deopt actually happens.
2575   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2576   // Iterate over all frames in the thread and deoptimize
2577   for (; !fst.is_done(); fst.next()) {
2578     if (fst.current()->can_be_deoptimized()) {
2579 
2580       if (only_at) {
2581         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2582         // consists of comma or carriage return separated numbers so
2583         // search for the current bci in that string.
2584         address pc = fst.current()->pc();
2585         nmethod* nm =  (nmethod*) fst.current()->cb();
2586         ScopeDesc* sd = nm->scope_desc_at( pc);
2587         char buffer[8];
2588         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2589         size_t len = strlen(buffer);
2590         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2591         while (found != NULL) {
2592           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2593               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2594             // Check that the bci found is bracketed by terminators.
2595             break;
2596           }
2597           found = strstr(found + 1, buffer);
2598         }
2599         if (!found) {
2600           continue;
2601         }
2602       }
2603 
2604       if (DebugDeoptimization && !deopt) {
2605         deopt = true; // One-time only print before deopt
2606         tty->print_cr("[BEFORE Deoptimization]");
2607         trace_frames();
2608         trace_stack();
2609       }
2610       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2611     }
2612   }
2613 
2614   if (DebugDeoptimization && deopt) {
2615     tty->print_cr("[AFTER Deoptimization]");
2616     trace_frames();
2617   }
2618 }
2619 
2620 
2621 // Make zombies
2622 void JavaThread::make_zombies() {
2623   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2624     if (fst.current()->can_be_deoptimized()) {
2625       // it is a Java nmethod
2626       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2627       nm->make_not_entrant();
2628     }
2629   }
2630 }
2631 #endif // PRODUCT
2632 
2633 
2634 void JavaThread::deoptimized_wrt_marked_nmethods() {
2635   if (!has_last_Java_frame()) return;
2636   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2637   StackFrameStream fst(this, UseBiasedLocking);
2638   for (; !fst.is_done(); fst.next()) {
2639     if (fst.current()->should_be_deoptimized()) {
2640       if (LogCompilation && xtty != NULL) {
2641         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2642         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2643                    this->name(), nm != NULL ? nm->compile_id() : -1);
2644       }
2645 
2646       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2647     }
2648   }
2649 }
2650 
2651 
2652 // GC support
2653 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2654 
2655 void JavaThread::gc_epilogue() {
2656   frames_do(frame_gc_epilogue);
2657 }
2658 
2659 
2660 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2661 
2662 void JavaThread::gc_prologue() {
2663   frames_do(frame_gc_prologue);
2664 }
2665 
2666 // If the caller is a NamedThread, then remember, in the current scope,
2667 // the given JavaThread in its _processed_thread field.
2668 class RememberProcessedThread: public StackObj {
2669   NamedThread* _cur_thr;
2670 public:
2671   RememberProcessedThread(JavaThread* jthr) {
2672     Thread* thread = Thread::current();
2673     if (thread->is_Named_thread()) {
2674       _cur_thr = (NamedThread *)thread;
2675       _cur_thr->set_processed_thread(jthr);
2676     } else {
2677       _cur_thr = NULL;
2678     }
2679   }
2680 
2681   ~RememberProcessedThread() {
2682     if (_cur_thr) {
2683       _cur_thr->set_processed_thread(NULL);
2684     }
2685   }
2686 };
2687 
2688 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2689   // Verify that the deferred card marks have been flushed.
2690   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2691 
2692   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2693   // since there may be more than one thread using each ThreadProfiler.
2694 
2695   // Traverse the GCHandles
2696   Thread::oops_do(f, cld_f, cf);
2697 
2698   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2699           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2700 
2701   if (has_last_Java_frame()) {
2702     // Record JavaThread to GC thread
2703     RememberProcessedThread rpt(this);
2704 
2705     // Traverse the privileged stack
2706     if (_privileged_stack_top != NULL) {
2707       _privileged_stack_top->oops_do(f);
2708     }
2709 
2710     // traverse the registered growable array
2711     if (_array_for_gc != NULL) {
2712       for (int index = 0; index < _array_for_gc->length(); index++) {
2713         f->do_oop(_array_for_gc->adr_at(index));
2714       }
2715     }
2716 
2717     // Traverse the monitor chunks
2718     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2719       chunk->oops_do(f);
2720     }
2721 
2722     // Traverse the execution stack
2723     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2724       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2725     }
2726   }
2727 
2728   // callee_target is never live across a gc point so NULL it here should
2729   // it still contain a methdOop.
2730 
2731   set_callee_target(NULL);
2732 
2733   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2734   // If we have deferred set_locals there might be oops waiting to be
2735   // written
2736   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2737   if (list != NULL) {
2738     for (int i = 0; i < list->length(); i++) {
2739       list->at(i)->oops_do(f);
2740     }
2741   }
2742 
2743   // Traverse instance variables at the end since the GC may be moving things
2744   // around using this function
2745   f->do_oop((oop*) &_threadObj);
2746   f->do_oop((oop*) &_vm_result);
2747   f->do_oop((oop*) &_exception_oop);
2748   f->do_oop((oop*) &_pending_async_exception);
2749 
2750   if (jvmti_thread_state() != NULL) {
2751     jvmti_thread_state()->oops_do(f);
2752   }
2753 }
2754 
2755 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2756   Thread::nmethods_do(cf);  // (super method is a no-op)
2757 
2758   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2759           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2760 
2761   if (has_last_Java_frame()) {
2762     // Traverse the execution stack
2763     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2764       fst.current()->nmethods_do(cf);
2765     }
2766   }
2767 }
2768 
2769 void JavaThread::metadata_do(void f(Metadata*)) {
2770   Thread::metadata_do(f);
2771   if (has_last_Java_frame()) {
2772     // Traverse the execution stack to call f() on the methods in the stack
2773     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2774       fst.current()->metadata_do(f);
2775     }
2776   } else if (is_Compiler_thread()) {
2777     // need to walk ciMetadata in current compile tasks to keep alive.
2778     CompilerThread* ct = (CompilerThread*)this;
2779     if (ct->env() != NULL) {
2780       ct->env()->metadata_do(f);
2781     }
2782   }
2783 }
2784 
2785 // Printing
2786 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2787   switch (_thread_state) {
2788   case _thread_uninitialized:     return "_thread_uninitialized";
2789   case _thread_new:               return "_thread_new";
2790   case _thread_new_trans:         return "_thread_new_trans";
2791   case _thread_in_native:         return "_thread_in_native";
2792   case _thread_in_native_trans:   return "_thread_in_native_trans";
2793   case _thread_in_vm:             return "_thread_in_vm";
2794   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2795   case _thread_in_Java:           return "_thread_in_Java";
2796   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2797   case _thread_blocked:           return "_thread_blocked";
2798   case _thread_blocked_trans:     return "_thread_blocked_trans";
2799   default:                        return "unknown thread state";
2800   }
2801 }
2802 
2803 #ifndef PRODUCT
2804 void JavaThread::print_thread_state_on(outputStream *st) const {
2805   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2806 };
2807 void JavaThread::print_thread_state() const {
2808   print_thread_state_on(tty);
2809 };
2810 #endif // PRODUCT
2811 
2812 // Called by Threads::print() for VM_PrintThreads operation
2813 void JavaThread::print_on(outputStream *st) const {
2814   st->print("\"%s\" ", get_thread_name());
2815   oop thread_oop = threadObj();
2816   if (thread_oop != NULL) {
2817     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2818     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2819     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2820   }
2821   Thread::print_on(st);
2822   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2823   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2824   if (thread_oop != NULL) {
2825     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2826   }
2827 #ifndef PRODUCT
2828   print_thread_state_on(st);
2829   _safepoint_state->print_on(st);
2830 #endif // PRODUCT
2831 }
2832 
2833 // Called by fatal error handler. The difference between this and
2834 // JavaThread::print() is that we can't grab lock or allocate memory.
2835 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2836   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2837   oop thread_obj = threadObj();
2838   if (thread_obj != NULL) {
2839      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2840   }
2841   st->print(" [");
2842   st->print("%s", _get_thread_state_name(_thread_state));
2843   if (osthread()) {
2844     st->print(", id=%d", osthread()->thread_id());
2845   }
2846   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2847             _stack_base - _stack_size, _stack_base);
2848   st->print("]");
2849   return;
2850 }
2851 
2852 // Verification
2853 
2854 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2855 
2856 void JavaThread::verify() {
2857   // Verify oops in the thread.
2858   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2859 
2860   // Verify the stack frames.
2861   frames_do(frame_verify);
2862 }
2863 
2864 // CR 6300358 (sub-CR 2137150)
2865 // Most callers of this method assume that it can't return NULL but a
2866 // thread may not have a name whilst it is in the process of attaching to
2867 // the VM - see CR 6412693, and there are places where a JavaThread can be
2868 // seen prior to having it's threadObj set (eg JNI attaching threads and
2869 // if vm exit occurs during initialization). These cases can all be accounted
2870 // for such that this method never returns NULL.
2871 const char* JavaThread::get_thread_name() const {
2872 #ifdef ASSERT
2873   // early safepoints can hit while current thread does not yet have TLS
2874   if (!SafepointSynchronize::is_at_safepoint()) {
2875     Thread *cur = Thread::current();
2876     if (!(cur->is_Java_thread() && cur == this)) {
2877       // Current JavaThreads are allowed to get their own name without
2878       // the Threads_lock.
2879       assert_locked_or_safepoint(Threads_lock);
2880     }
2881   }
2882 #endif // ASSERT
2883     return get_thread_name_string();
2884 }
2885 
2886 // Returns a non-NULL representation of this thread's name, or a suitable
2887 // descriptive string if there is no set name
2888 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2889   const char* name_str;
2890   oop thread_obj = threadObj();
2891   if (thread_obj != NULL) {
2892     typeArrayOop name = java_lang_Thread::name(thread_obj);
2893     if (name != NULL) {
2894       if (buf == NULL) {
2895         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2896       }
2897       else {
2898         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2899       }
2900     }
2901     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2902       name_str = "<no-name - thread is attaching>";
2903     }
2904     else {
2905       name_str = Thread::name();
2906     }
2907   }
2908   else {
2909     name_str = Thread::name();
2910   }
2911   assert(name_str != NULL, "unexpected NULL thread name");
2912   return name_str;
2913 }
2914 
2915 
2916 const char* JavaThread::get_threadgroup_name() const {
2917   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2918   oop thread_obj = threadObj();
2919   if (thread_obj != NULL) {
2920     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2921     if (thread_group != NULL) {
2922       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2923       // ThreadGroup.name can be null
2924       if (name != NULL) {
2925         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2926         return str;
2927       }
2928     }
2929   }
2930   return NULL;
2931 }
2932 
2933 const char* JavaThread::get_parent_name() const {
2934   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2935   oop thread_obj = threadObj();
2936   if (thread_obj != NULL) {
2937     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2938     if (thread_group != NULL) {
2939       oop parent = java_lang_ThreadGroup::parent(thread_group);
2940       if (parent != NULL) {
2941         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2942         // ThreadGroup.name can be null
2943         if (name != NULL) {
2944           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2945           return str;
2946         }
2947       }
2948     }
2949   }
2950   return NULL;
2951 }
2952 
2953 ThreadPriority JavaThread::java_priority() const {
2954   oop thr_oop = threadObj();
2955   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2956   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2957   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2958   return priority;
2959 }
2960 
2961 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2962 
2963   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2964   // Link Java Thread object <-> C++ Thread
2965 
2966   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2967   // and put it into a new Handle.  The Handle "thread_oop" can then
2968   // be used to pass the C++ thread object to other methods.
2969 
2970   // Set the Java level thread object (jthread) field of the
2971   // new thread (a JavaThread *) to C++ thread object using the
2972   // "thread_oop" handle.
2973 
2974   // Set the thread field (a JavaThread *) of the
2975   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2976 
2977   Handle thread_oop(Thread::current(),
2978                     JNIHandles::resolve_non_null(jni_thread));
2979   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2980     "must be initialized");
2981   set_threadObj(thread_oop());
2982   java_lang_Thread::set_thread(thread_oop(), this);
2983 
2984   if (prio == NoPriority) {
2985     prio = java_lang_Thread::priority(thread_oop());
2986     assert(prio != NoPriority, "A valid priority should be present");
2987   }
2988 
2989   // Push the Java priority down to the native thread; needs Threads_lock
2990   Thread::set_priority(this, prio);
2991 
2992   // Add the new thread to the Threads list and set it in motion.
2993   // We must have threads lock in order to call Threads::add.
2994   // It is crucial that we do not block before the thread is
2995   // added to the Threads list for if a GC happens, then the java_thread oop
2996   // will not be visited by GC.
2997   Threads::add(this);
2998 }
2999 
3000 oop JavaThread::current_park_blocker() {
3001   // Support for JSR-166 locks
3002   oop thread_oop = threadObj();
3003   if (thread_oop != NULL &&
3004       JDK_Version::current().supports_thread_park_blocker()) {
3005     return java_lang_Thread::park_blocker(thread_oop);
3006   }
3007   return NULL;
3008 }
3009 
3010 
3011 void JavaThread::print_stack_on(outputStream* st) {
3012   if (!has_last_Java_frame()) return;
3013   ResourceMark rm;
3014   HandleMark   hm;
3015 
3016   RegisterMap reg_map(this);
3017   vframe* start_vf = last_java_vframe(&reg_map);
3018   int count = 0;
3019   for (vframe* f = start_vf; f; f = f->sender()) {
3020     if (f->is_java_frame()) {
3021       javaVFrame* jvf = javaVFrame::cast(f);
3022       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3023 
3024       // Print out lock information
3025       if (JavaMonitorsInStackTrace) {
3026         jvf->print_lock_info_on(st, count);
3027       }
3028     } else {
3029       // Ignore non-Java frames
3030     }
3031 
3032     // Bail-out case for too deep stacks
3033     count++;
3034     if (MaxJavaStackTraceDepth == count) return;
3035   }
3036 }
3037 
3038 
3039 // JVMTI PopFrame support
3040 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3041   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3042   if (in_bytes(size_in_bytes) != 0) {
3043     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3044     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3045     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3046   }
3047 }
3048 
3049 void* JavaThread::popframe_preserved_args() {
3050   return _popframe_preserved_args;
3051 }
3052 
3053 ByteSize JavaThread::popframe_preserved_args_size() {
3054   return in_ByteSize(_popframe_preserved_args_size);
3055 }
3056 
3057 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3058   int sz = in_bytes(popframe_preserved_args_size());
3059   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3060   return in_WordSize(sz / wordSize);
3061 }
3062 
3063 void JavaThread::popframe_free_preserved_args() {
3064   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3065   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3066   _popframe_preserved_args = NULL;
3067   _popframe_preserved_args_size = 0;
3068 }
3069 
3070 #ifndef PRODUCT
3071 
3072 void JavaThread::trace_frames() {
3073   tty->print_cr("[Describe stack]");
3074   int frame_no = 1;
3075   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3076     tty->print("  %d. ", frame_no++);
3077     fst.current()->print_value_on(tty, this);
3078     tty->cr();
3079   }
3080 }
3081 
3082 class PrintAndVerifyOopClosure: public OopClosure {
3083  protected:
3084   template <class T> inline void do_oop_work(T* p) {
3085     oop obj = oopDesc::load_decode_heap_oop(p);
3086     if (obj == NULL) return;
3087     tty->print(INTPTR_FORMAT ": ", p);
3088     if (obj->is_oop_or_null()) {
3089       if (obj->is_objArray()) {
3090         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3091       } else {
3092         obj->print();
3093       }
3094     } else {
3095       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3096     }
3097     tty->cr();
3098   }
3099  public:
3100   virtual void do_oop(oop* p) { do_oop_work(p); }
3101   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3102 };
3103 
3104 
3105 static void oops_print(frame* f, const RegisterMap *map) {
3106   PrintAndVerifyOopClosure print;
3107   f->print_value();
3108   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3109 }
3110 
3111 // Print our all the locations that contain oops and whether they are
3112 // valid or not.  This useful when trying to find the oldest frame
3113 // where an oop has gone bad since the frame walk is from youngest to
3114 // oldest.
3115 void JavaThread::trace_oops() {
3116   tty->print_cr("[Trace oops]");
3117   frames_do(oops_print);
3118 }
3119 
3120 
3121 #ifdef ASSERT
3122 // Print or validate the layout of stack frames
3123 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3124   ResourceMark rm;
3125   PRESERVE_EXCEPTION_MARK;
3126   FrameValues values;
3127   int frame_no = 0;
3128   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3129     fst.current()->describe(values, ++frame_no);
3130     if (depth == frame_no) break;
3131   }
3132   if (validate_only) {
3133     values.validate();
3134   } else {
3135     tty->print_cr("[Describe stack layout]");
3136     values.print(this);
3137   }
3138 }
3139 #endif
3140 
3141 void JavaThread::trace_stack_from(vframe* start_vf) {
3142   ResourceMark rm;
3143   int vframe_no = 1;
3144   for (vframe* f = start_vf; f; f = f->sender()) {
3145     if (f->is_java_frame()) {
3146       javaVFrame::cast(f)->print_activation(vframe_no++);
3147     } else {
3148       f->print();
3149     }
3150     if (vframe_no > StackPrintLimit) {
3151       tty->print_cr("...<more frames>...");
3152       return;
3153     }
3154   }
3155 }
3156 
3157 
3158 void JavaThread::trace_stack() {
3159   if (!has_last_Java_frame()) return;
3160   ResourceMark rm;
3161   HandleMark   hm;
3162   RegisterMap reg_map(this);
3163   trace_stack_from(last_java_vframe(&reg_map));
3164 }
3165 
3166 
3167 #endif // PRODUCT
3168 
3169 
3170 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3171   assert(reg_map != NULL, "a map must be given");
3172   frame f = last_frame();
3173   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3174     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3175   }
3176   return NULL;
3177 }
3178 
3179 
3180 Klass* JavaThread::security_get_caller_class(int depth) {
3181   vframeStream vfst(this);
3182   vfst.security_get_caller_frame(depth);
3183   if (!vfst.at_end()) {
3184     return vfst.method()->method_holder();
3185   }
3186   return NULL;
3187 }
3188 
3189 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3190   assert(thread->is_Compiler_thread(), "must be compiler thread");
3191   CompileBroker::compiler_thread_loop();
3192 }
3193 
3194 // Create a CompilerThread
3195 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3196 : JavaThread(&compiler_thread_entry) {
3197   _env   = NULL;
3198   _log   = NULL;
3199   _task  = NULL;
3200   _queue = queue;
3201   _counters = counters;
3202   _buffer_blob = NULL;
3203   _scanned_nmethod = NULL;
3204   _compiler = NULL;
3205 
3206 #ifndef PRODUCT
3207   _ideal_graph_printer = NULL;
3208 #endif
3209 }
3210 
3211 void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3212   JavaThread::oops_do(f, cld_f, cf);
3213   if (_scanned_nmethod != NULL && cf != NULL) {
3214     // Safepoints can occur when the sweeper is scanning an nmethod so
3215     // process it here to make sure it isn't unloaded in the middle of
3216     // a scan.
3217     cf->do_code_blob(_scanned_nmethod);
3218   }
3219 }
3220 
3221 
3222 // ======= Threads ========
3223 
3224 // The Threads class links together all active threads, and provides
3225 // operations over all threads.  It is protected by its own Mutex
3226 // lock, which is also used in other contexts to protect thread
3227 // operations from having the thread being operated on from exiting
3228 // and going away unexpectedly (e.g., safepoint synchronization)
3229 
3230 JavaThread* Threads::_thread_list = NULL;
3231 int         Threads::_number_of_threads = 0;
3232 int         Threads::_number_of_non_daemon_threads = 0;
3233 int         Threads::_return_code = 0;
3234 size_t      JavaThread::_stack_size_at_create = 0;
3235 #ifdef ASSERT
3236 bool        Threads::_vm_complete = false;
3237 #endif
3238 
3239 // All JavaThreads
3240 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3241 
3242 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3243 void Threads::threads_do(ThreadClosure* tc) {
3244   assert_locked_or_safepoint(Threads_lock);
3245   // ALL_JAVA_THREADS iterates through all JavaThreads
3246   ALL_JAVA_THREADS(p) {
3247     tc->do_thread(p);
3248   }
3249   // Someday we could have a table or list of all non-JavaThreads.
3250   // For now, just manually iterate through them.
3251   tc->do_thread(VMThread::vm_thread());
3252   Universe::heap()->gc_threads_do(tc);
3253   WatcherThread *wt = WatcherThread::watcher_thread();
3254   // Strictly speaking, the following NULL check isn't sufficient to make sure
3255   // the data for WatcherThread is still valid upon being examined. However,
3256   // considering that WatchThread terminates when the VM is on the way to
3257   // exit at safepoint, the chance of the above is extremely small. The right
3258   // way to prevent termination of WatcherThread would be to acquire
3259   // Terminator_lock, but we can't do that without violating the lock rank
3260   // checking in some cases.
3261   if (wt != NULL)
3262     tc->do_thread(wt);
3263 
3264   // If CompilerThreads ever become non-JavaThreads, add them here
3265 }
3266 
3267 
3268 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3269   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3270 
3271   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3272     create_vm_init_libraries();
3273   }
3274 
3275   initialize_class(vmSymbols::java_lang_String(), CHECK);
3276 
3277   // Initialize java_lang.System (needed before creating the thread)
3278   initialize_class(vmSymbols::java_lang_System(), CHECK);
3279   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3280   Handle thread_group = create_initial_thread_group(CHECK);
3281   Universe::set_main_thread_group(thread_group());
3282   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3283   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3284   main_thread->set_threadObj(thread_object);
3285   // Set thread status to running since main thread has
3286   // been started and running.
3287   java_lang_Thread::set_thread_status(thread_object,
3288                                       java_lang_Thread::RUNNABLE);
3289 
3290   // The VM creates & returns objects of this class. Make sure it's initialized.
3291   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3292 
3293   // The VM preresolves methods to these classes. Make sure that they get initialized
3294   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3295   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3296   call_initializeSystemClass(CHECK);
3297 
3298   // get the Java runtime name after java.lang.System is initialized
3299   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3300   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3301 
3302   // an instance of OutOfMemory exception has been allocated earlier
3303   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3304   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3305   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3306   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3307   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3308   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3309   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3310   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3311 }
3312 
3313 void Threads::initialize_jsr292_core_classes(TRAPS) {
3314   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3315   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3316   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3317 }
3318 
3319 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3320 
3321   extern void JDK_Version_init();
3322 
3323   // Check version
3324   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3325 
3326   // Initialize the output stream module
3327   ostream_init();
3328 
3329   // Process java launcher properties.
3330   Arguments::process_sun_java_launcher_properties(args);
3331 
3332   // Initialize the os module before using TLS
3333   os::init();
3334 
3335   // Initialize system properties.
3336   Arguments::init_system_properties();
3337 
3338   // So that JDK version can be used as a discriminator when parsing arguments
3339   JDK_Version_init();
3340 
3341   // Update/Initialize System properties after JDK version number is known
3342   Arguments::init_version_specific_system_properties();
3343 
3344   // Parse arguments
3345   jint parse_result = Arguments::parse(args);
3346   if (parse_result != JNI_OK) return parse_result;
3347 
3348   os::init_before_ergo();
3349 
3350   jint ergo_result = Arguments::apply_ergo();
3351   if (ergo_result != JNI_OK) return ergo_result;
3352 
3353   if (PauseAtStartup) {
3354     os::pause();
3355   }
3356 
3357   HOTSPOT_VM_INIT_BEGIN();
3358 
3359   // Record VM creation timing statistics
3360   TraceVmCreationTime create_vm_timer;
3361   create_vm_timer.start();
3362 
3363   // Timing (must come after argument parsing)
3364   TraceTime timer("Create VM", TraceStartupTime);
3365 
3366   // Initialize the os module after parsing the args
3367   jint os_init_2_result = os::init_2();
3368   if (os_init_2_result != JNI_OK) return os_init_2_result;
3369 
3370   jint adjust_after_os_result = Arguments::adjust_after_os();
3371   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3372 
3373   // initialize TLS
3374   ThreadLocalStorage::init();
3375 
3376   // Bootstrap native memory tracking, so it can start recording memory
3377   // activities before worker thread is started. This is the first phase
3378   // of bootstrapping, VM is currently running in single-thread mode.
3379   MemTracker::bootstrap_single_thread();
3380 
3381   // Initialize output stream logging
3382   ostream_init_log();
3383 
3384   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3385   // Must be before create_vm_init_agents()
3386   if (Arguments::init_libraries_at_startup()) {
3387     convert_vm_init_libraries_to_agents();
3388   }
3389 
3390   // Launch -agentlib/-agentpath and converted -Xrun agents
3391   if (Arguments::init_agents_at_startup()) {
3392     create_vm_init_agents();
3393   }
3394 
3395   // Initialize Threads state
3396   _thread_list = NULL;
3397   _number_of_threads = 0;
3398   _number_of_non_daemon_threads = 0;
3399 
3400   // Initialize global data structures and create system classes in heap
3401   vm_init_globals();
3402 
3403   // Attach the main thread to this os thread
3404   JavaThread* main_thread = new JavaThread();
3405   main_thread->set_thread_state(_thread_in_vm);
3406   // must do this before set_active_handles and initialize_thread_local_storage
3407   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3408   // change the stack size recorded here to one based on the java thread
3409   // stacksize. This adjusted size is what is used to figure the placement
3410   // of the guard pages.
3411   main_thread->record_stack_base_and_size();
3412   main_thread->initialize_thread_local_storage();
3413 
3414   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3415 
3416   if (!main_thread->set_as_starting_thread()) {
3417     vm_shutdown_during_initialization(
3418       "Failed necessary internal allocation. Out of swap space");
3419     delete main_thread;
3420     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3421     return JNI_ENOMEM;
3422   }
3423 
3424   // Enable guard page *after* os::create_main_thread(), otherwise it would
3425   // crash Linux VM, see notes in os_linux.cpp.
3426   main_thread->create_stack_guard_pages();
3427 
3428   // Initialize Java-Level synchronization subsystem
3429   ObjectMonitor::Initialize();
3430 
3431   // Second phase of bootstrapping, VM is about entering multi-thread mode
3432   MemTracker::bootstrap_multi_thread();
3433 
3434   // Initialize global modules
3435   jint status = init_globals();
3436   if (status != JNI_OK) {
3437     delete main_thread;
3438     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3439     return status;
3440   }
3441 
3442   // Should be done after the heap is fully created
3443   main_thread->cache_global_variables();
3444 
3445   HandleMark hm;
3446 
3447   { MutexLocker mu(Threads_lock);
3448     Threads::add(main_thread);
3449   }
3450 
3451   // Any JVMTI raw monitors entered in onload will transition into
3452   // real raw monitor. VM is setup enough here for raw monitor enter.
3453   JvmtiExport::transition_pending_onload_raw_monitors();
3454 
3455   // Fully start NMT
3456   MemTracker::start();
3457 
3458   // Create the VMThread
3459   { TraceTime timer("Start VMThread", TraceStartupTime);
3460     VMThread::create();
3461     Thread* vmthread = VMThread::vm_thread();
3462 
3463     if (!os::create_thread(vmthread, os::vm_thread))
3464       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3465 
3466     // Wait for the VM thread to become ready, and VMThread::run to initialize
3467     // Monitors can have spurious returns, must always check another state flag
3468     {
3469       MutexLocker ml(Notify_lock);
3470       os::start_thread(vmthread);
3471       while (vmthread->active_handles() == NULL) {
3472         Notify_lock->wait();
3473       }
3474     }
3475   }
3476 
3477   assert(Universe::is_fully_initialized(), "not initialized");
3478   if (VerifyDuringStartup) {
3479     // Make sure we're starting with a clean slate.
3480     VM_Verify verify_op;
3481     VMThread::execute(&verify_op);
3482   }
3483 
3484   Thread* THREAD = Thread::current();
3485 
3486   // At this point, the Universe is initialized, but we have not executed
3487   // any byte code.  Now is a good time (the only time) to dump out the
3488   // internal state of the JVM for sharing.
3489   if (DumpSharedSpaces) {
3490     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3491     ShouldNotReachHere();
3492   }
3493 
3494   // Always call even when there are not JVMTI environments yet, since environments
3495   // may be attached late and JVMTI must track phases of VM execution
3496   JvmtiExport::enter_start_phase();
3497 
3498   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3499   JvmtiExport::post_vm_start();
3500 
3501   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3502 
3503   // We need this for ClassDataSharing - the initial vm.info property is set
3504   // with the default value of CDS "sharing" which may be reset through
3505   // command line options.
3506   reset_vm_info_property(CHECK_JNI_ERR);
3507 
3508   quicken_jni_functions();
3509 
3510   // Must be run after init_ft which initializes ft_enabled
3511   if (TRACE_INITIALIZE() != JNI_OK) {
3512     vm_exit_during_initialization("Failed to initialize tracing backend");
3513   }
3514 
3515   // Set flag that basic initialization has completed. Used by exceptions and various
3516   // debug stuff, that does not work until all basic classes have been initialized.
3517   set_init_completed();
3518 
3519   Metaspace::post_initialize();
3520 
3521   HOTSPOT_VM_INIT_END();
3522 
3523   // record VM initialization completion time
3524 #if INCLUDE_MANAGEMENT
3525   Management::record_vm_init_completed();
3526 #endif // INCLUDE_MANAGEMENT
3527 
3528   // Compute system loader. Note that this has to occur after set_init_completed, since
3529   // valid exceptions may be thrown in the process.
3530   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3531   // set_init_completed has just been called, causing exceptions not to be shortcut
3532   // anymore. We call vm_exit_during_initialization directly instead.
3533   SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3534 
3535 #if INCLUDE_ALL_GCS
3536   // Support for ConcurrentMarkSweep. This should be cleaned up
3537   // and better encapsulated. The ugly nested if test would go away
3538   // once things are properly refactored. XXX YSR
3539   if (UseConcMarkSweepGC || UseG1GC) {
3540     if (UseConcMarkSweepGC) {
3541       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3542     } else {
3543       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3544     }
3545   }
3546 #endif // INCLUDE_ALL_GCS
3547 
3548   // Always call even when there are not JVMTI environments yet, since environments
3549   // may be attached late and JVMTI must track phases of VM execution
3550   JvmtiExport::enter_live_phase();
3551 
3552   // Signal Dispatcher needs to be started before VMInit event is posted
3553   os::signal_init();
3554 
3555   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3556   if (!DisableAttachMechanism) {
3557     AttachListener::vm_start();
3558     if (StartAttachListener || AttachListener::init_at_startup()) {
3559       AttachListener::init();
3560     }
3561   }
3562 
3563   // Launch -Xrun agents
3564   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3565   // back-end can launch with -Xdebug -Xrunjdwp.
3566   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3567     create_vm_init_libraries();
3568   }
3569 
3570   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3571   JvmtiExport::post_vm_initialized();
3572 
3573   if (TRACE_START() != JNI_OK) {
3574     vm_exit_during_initialization("Failed to start tracing backend.");
3575   }
3576 
3577   if (CleanChunkPoolAsync) {
3578     Chunk::start_chunk_pool_cleaner_task();
3579   }
3580 
3581   // initialize compiler(s)
3582 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3583   CompileBroker::compilation_init();
3584 #endif
3585 
3586   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3587   // It is done after compilers are initialized, because otherwise compilations of
3588   // signature polymorphic MH intrinsics can be missed
3589   // (see SystemDictionary::find_method_handle_intrinsic).
3590   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3591 
3592 #if INCLUDE_MANAGEMENT
3593   Management::initialize(THREAD);
3594 
3595   if (HAS_PENDING_EXCEPTION) {
3596     // management agent fails to start possibly due to
3597     // configuration problem and is responsible for printing
3598     // stack trace if appropriate. Simply exit VM.
3599     vm_exit(1);
3600   }
3601 #endif // INCLUDE_MANAGEMENT
3602 
3603   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3604   if (MemProfiling)                   MemProfiler::engage();
3605   StatSampler::engage();
3606   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3607 
3608   BiasedLocking::init();
3609 
3610 #if INCLUDE_RTM_OPT
3611   RTMLockingCounters::init();
3612 #endif
3613 
3614   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3615     call_postVMInitHook(THREAD);
3616     // The Java side of PostVMInitHook.run must deal with all
3617     // exceptions and provide means of diagnosis.
3618     if (HAS_PENDING_EXCEPTION) {
3619       CLEAR_PENDING_EXCEPTION;
3620     }
3621   }
3622 
3623   {
3624       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3625       // Make sure the watcher thread can be started by WatcherThread::start()
3626       // or by dynamic enrollment.
3627       WatcherThread::make_startable();
3628       // Start up the WatcherThread if there are any periodic tasks
3629       // NOTE:  All PeriodicTasks should be registered by now. If they
3630       //   aren't, late joiners might appear to start slowly (we might
3631       //   take a while to process their first tick).
3632       if (PeriodicTask::num_tasks() > 0) {
3633           WatcherThread::start();
3634       }
3635   }
3636 
3637   // Give os specific code one last chance to start
3638   os::init_3();
3639 
3640   create_vm_timer.end();
3641 #ifdef ASSERT
3642   _vm_complete = true;
3643 #endif
3644   return JNI_OK;
3645 }
3646 
3647 // type for the Agent_OnLoad and JVM_OnLoad entry points
3648 extern "C" {
3649   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3650 }
3651 // Find a command line agent library and return its entry point for
3652 //         -agentlib:  -agentpath:   -Xrun
3653 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3654 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3655   OnLoadEntry_t on_load_entry = NULL;
3656   void *library = NULL;
3657 
3658   if (!agent->valid()) {
3659     char buffer[JVM_MAXPATHLEN];
3660     char ebuf[1024];
3661     const char *name = agent->name();
3662     const char *msg = "Could not find agent library ";
3663 
3664     // First check to see if agent is statically linked into executable
3665     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3666       library = agent->os_lib();
3667     } else if (agent->is_absolute_path()) {
3668       library = os::dll_load(name, ebuf, sizeof ebuf);
3669       if (library == NULL) {
3670         const char *sub_msg = " in absolute path, with error: ";
3671         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3672         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3673         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3674         // If we can't find the agent, exit.
3675         vm_exit_during_initialization(buf, NULL);
3676         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3677       }
3678     } else {
3679       // Try to load the agent from the standard dll directory
3680       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3681                              name)) {
3682         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3683       }
3684       if (library == NULL) { // Try the local directory
3685         char ns[1] = {0};
3686         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3687           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3688         }
3689         if (library == NULL) {
3690           const char *sub_msg = " on the library path, with error: ";
3691           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3692           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3693           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3694           // If we can't find the agent, exit.
3695           vm_exit_during_initialization(buf, NULL);
3696           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3697         }
3698       }
3699     }
3700     agent->set_os_lib(library);
3701     agent->set_valid();
3702   }
3703 
3704   // Find the OnLoad function.
3705   on_load_entry =
3706     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3707                                                           false,
3708                                                           on_load_symbols,
3709                                                           num_symbol_entries));
3710   return on_load_entry;
3711 }
3712 
3713 // Find the JVM_OnLoad entry point
3714 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3715   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3716   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3717 }
3718 
3719 // Find the Agent_OnLoad entry point
3720 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3721   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3722   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3723 }
3724 
3725 // For backwards compatibility with -Xrun
3726 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3727 // treated like -agentpath:
3728 // Must be called before agent libraries are created
3729 void Threads::convert_vm_init_libraries_to_agents() {
3730   AgentLibrary* agent;
3731   AgentLibrary* next;
3732 
3733   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3734     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3735     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3736 
3737     // If there is an JVM_OnLoad function it will get called later,
3738     // otherwise see if there is an Agent_OnLoad
3739     if (on_load_entry == NULL) {
3740       on_load_entry = lookup_agent_on_load(agent);
3741       if (on_load_entry != NULL) {
3742         // switch it to the agent list -- so that Agent_OnLoad will be called,
3743         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3744         Arguments::convert_library_to_agent(agent);
3745       } else {
3746         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3747       }
3748     }
3749   }
3750 }
3751 
3752 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3753 // Invokes Agent_OnLoad
3754 // Called very early -- before JavaThreads exist
3755 void Threads::create_vm_init_agents() {
3756   extern struct JavaVM_ main_vm;
3757   AgentLibrary* agent;
3758 
3759   JvmtiExport::enter_onload_phase();
3760 
3761   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3762     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3763 
3764     if (on_load_entry != NULL) {
3765       // Invoke the Agent_OnLoad function
3766       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3767       if (err != JNI_OK) {
3768         vm_exit_during_initialization("agent library failed to init", agent->name());
3769       }
3770     } else {
3771       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3772     }
3773   }
3774   JvmtiExport::enter_primordial_phase();
3775 }
3776 
3777 extern "C" {
3778   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3779 }
3780 
3781 void Threads::shutdown_vm_agents() {
3782   // Send any Agent_OnUnload notifications
3783   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3784   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3785   extern struct JavaVM_ main_vm;
3786   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3787 
3788     // Find the Agent_OnUnload function.
3789     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3790       os::find_agent_function(agent,
3791       false,
3792       on_unload_symbols,
3793       num_symbol_entries));
3794 
3795     // Invoke the Agent_OnUnload function
3796     if (unload_entry != NULL) {
3797       JavaThread* thread = JavaThread::current();
3798       ThreadToNativeFromVM ttn(thread);
3799       HandleMark hm(thread);
3800       (*unload_entry)(&main_vm);
3801     }
3802   }
3803 }
3804 
3805 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3806 // Invokes JVM_OnLoad
3807 void Threads::create_vm_init_libraries() {
3808   extern struct JavaVM_ main_vm;
3809   AgentLibrary* agent;
3810 
3811   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3812     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3813 
3814     if (on_load_entry != NULL) {
3815       // Invoke the JVM_OnLoad function
3816       JavaThread* thread = JavaThread::current();
3817       ThreadToNativeFromVM ttn(thread);
3818       HandleMark hm(thread);
3819       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3820       if (err != JNI_OK) {
3821         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3822       }
3823     } else {
3824       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3825     }
3826   }
3827 }
3828 
3829 // Last thread running calls java.lang.Shutdown.shutdown()
3830 void JavaThread::invoke_shutdown_hooks() {
3831   HandleMark hm(this);
3832 
3833   // We could get here with a pending exception, if so clear it now.
3834   if (this->has_pending_exception()) {
3835     this->clear_pending_exception();
3836   }
3837 
3838   EXCEPTION_MARK;
3839   Klass* k =
3840     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3841                                       THREAD);
3842   if (k != NULL) {
3843     // SystemDictionary::resolve_or_null will return null if there was
3844     // an exception.  If we cannot load the Shutdown class, just don't
3845     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3846     // and finalizers (if runFinalizersOnExit is set) won't be run.
3847     // Note that if a shutdown hook was registered or runFinalizersOnExit
3848     // was called, the Shutdown class would have already been loaded
3849     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3850     instanceKlassHandle shutdown_klass (THREAD, k);
3851     JavaValue result(T_VOID);
3852     JavaCalls::call_static(&result,
3853                            shutdown_klass,
3854                            vmSymbols::shutdown_method_name(),
3855                            vmSymbols::void_method_signature(),
3856                            THREAD);
3857   }
3858   CLEAR_PENDING_EXCEPTION;
3859 }
3860 
3861 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3862 // the program falls off the end of main(). Another VM exit path is through
3863 // vm_exit() when the program calls System.exit() to return a value or when
3864 // there is a serious error in VM. The two shutdown paths are not exactly
3865 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3866 // and VM_Exit op at VM level.
3867 //
3868 // Shutdown sequence:
3869 //   + Shutdown native memory tracking if it is on
3870 //   + Wait until we are the last non-daemon thread to execute
3871 //     <-- every thing is still working at this moment -->
3872 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3873 //        shutdown hooks, run finalizers if finalization-on-exit
3874 //   + Call before_exit(), prepare for VM exit
3875 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3876 //        currently the only user of this mechanism is File.deleteOnExit())
3877 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3878 //        post thread end and vm death events to JVMTI,
3879 //        stop signal thread
3880 //   + Call JavaThread::exit(), it will:
3881 //      > release JNI handle blocks, remove stack guard pages
3882 //      > remove this thread from Threads list
3883 //     <-- no more Java code from this thread after this point -->
3884 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3885 //     the compiler threads at safepoint
3886 //     <-- do not use anything that could get blocked by Safepoint -->
3887 //   + Disable tracing at JNI/JVM barriers
3888 //   + Set _vm_exited flag for threads that are still running native code
3889 //   + Delete this thread
3890 //   + Call exit_globals()
3891 //      > deletes tty
3892 //      > deletes PerfMemory resources
3893 //   + Return to caller
3894 
3895 bool Threads::destroy_vm() {
3896   JavaThread* thread = JavaThread::current();
3897 
3898 #ifdef ASSERT
3899   _vm_complete = false;
3900 #endif
3901   // Wait until we are the last non-daemon thread to execute
3902   { MutexLocker nu(Threads_lock);
3903     while (Threads::number_of_non_daemon_threads() > 1)
3904       // This wait should make safepoint checks, wait without a timeout,
3905       // and wait as a suspend-equivalent condition.
3906       //
3907       // Note: If the FlatProfiler is running and this thread is waiting
3908       // for another non-daemon thread to finish, then the FlatProfiler
3909       // is waiting for the external suspend request on this thread to
3910       // complete. wait_for_ext_suspend_completion() will eventually
3911       // timeout, but that takes time. Making this wait a suspend-
3912       // equivalent condition solves that timeout problem.
3913       //
3914       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3915                          Mutex::_as_suspend_equivalent_flag);
3916   }
3917 
3918   // Hang forever on exit if we are reporting an error.
3919   if (ShowMessageBoxOnError && is_error_reported()) {
3920     os::infinite_sleep();
3921   }
3922   os::wait_for_keypress_at_exit();
3923 
3924   // run Java level shutdown hooks
3925   thread->invoke_shutdown_hooks();
3926 
3927   before_exit(thread);
3928 
3929   thread->exit(true);
3930 
3931   // Stop VM thread.
3932   {
3933     // 4945125 The vm thread comes to a safepoint during exit.
3934     // GC vm_operations can get caught at the safepoint, and the
3935     // heap is unparseable if they are caught. Grab the Heap_lock
3936     // to prevent this. The GC vm_operations will not be able to
3937     // queue until after the vm thread is dead. After this point,
3938     // we'll never emerge out of the safepoint before the VM exits.
3939 
3940     MutexLocker ml(Heap_lock);
3941 
3942     VMThread::wait_for_vm_thread_exit();
3943     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3944     VMThread::destroy();
3945   }
3946 
3947   // clean up ideal graph printers
3948 #if defined(COMPILER2) && !defined(PRODUCT)
3949   IdealGraphPrinter::clean_up();
3950 #endif
3951 
3952   // Now, all Java threads are gone except daemon threads. Daemon threads
3953   // running Java code or in VM are stopped by the Safepoint. However,
3954   // daemon threads executing native code are still running.  But they
3955   // will be stopped at native=>Java/VM barriers. Note that we can't
3956   // simply kill or suspend them, as it is inherently deadlock-prone.
3957 
3958 #ifndef PRODUCT
3959   // disable function tracing at JNI/JVM barriers
3960   TraceJNICalls = false;
3961   TraceJVMCalls = false;
3962   TraceRuntimeCalls = false;
3963 #endif
3964 
3965   VM_Exit::set_vm_exited();
3966 
3967   notify_vm_shutdown();
3968 
3969   delete thread;
3970 
3971   // exit_globals() will delete tty
3972   exit_globals();
3973 
3974   return true;
3975 }
3976 
3977 
3978 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3979   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3980   return is_supported_jni_version(version);
3981 }
3982 
3983 
3984 jboolean Threads::is_supported_jni_version(jint version) {
3985   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3986   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3987   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3988   if (version == JNI_VERSION_1_8) return JNI_TRUE;
3989   return JNI_FALSE;
3990 }
3991 
3992 
3993 void Threads::add(JavaThread* p, bool force_daemon) {
3994   // The threads lock must be owned at this point
3995   assert_locked_or_safepoint(Threads_lock);
3996 
3997   // See the comment for this method in thread.hpp for its purpose and
3998   // why it is called here.
3999   p->initialize_queues();
4000   p->set_next(_thread_list);
4001   _thread_list = p;
4002   _number_of_threads++;
4003   oop threadObj = p->threadObj();
4004   bool daemon = true;
4005   // Bootstrapping problem: threadObj can be null for initial
4006   // JavaThread (or for threads attached via JNI)
4007   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4008     _number_of_non_daemon_threads++;
4009     daemon = false;
4010   }
4011 
4012   p->set_safepoint_visible(true);
4013 
4014   ThreadService::add_thread(p, daemon);
4015 
4016   // Possible GC point.
4017   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4018 }
4019 
4020 void Threads::remove(JavaThread* p) {
4021   // Extra scope needed for Thread_lock, so we can check
4022   // that we do not remove thread without safepoint code notice
4023   { MutexLocker ml(Threads_lock);
4024 
4025     assert(includes(p), "p must be present");
4026 
4027     JavaThread* current = _thread_list;
4028     JavaThread* prev    = NULL;
4029 
4030     while (current != p) {
4031       prev    = current;
4032       current = current->next();
4033     }
4034 
4035     if (prev) {
4036       prev->set_next(current->next());
4037     } else {
4038       _thread_list = p->next();
4039     }
4040     _number_of_threads--;
4041     oop threadObj = p->threadObj();
4042     bool daemon = true;
4043     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4044       _number_of_non_daemon_threads--;
4045       daemon = false;
4046 
4047       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4048       // on destroy_vm will wake up.
4049       if (number_of_non_daemon_threads() == 1)
4050         Threads_lock->notify_all();
4051     }
4052     ThreadService::remove_thread(p, daemon);
4053 
4054     // Make sure that safepoint code disregard this thread. This is needed since
4055     // the thread might mess around with locks after this point. This can cause it
4056     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4057     // of this thread since it is removed from the queue.
4058     p->set_terminated_value();
4059 
4060     // Now, this thread is not visible to safepoint
4061     p->set_safepoint_visible(false);
4062     // once the thread becomes safepoint invisible, we can not use its per-thread
4063     // recorder. And Threads::do_threads() no longer walks this thread, so we have
4064     // to release its per-thread recorder here.
4065     MemTracker::thread_exiting(p);
4066   } // unlock Threads_lock
4067 
4068   // Since Events::log uses a lock, we grab it outside the Threads_lock
4069   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4070 }
4071 
4072 // Threads_lock must be held when this is called (or must be called during a safepoint)
4073 bool Threads::includes(JavaThread* p) {
4074   assert(Threads_lock->is_locked(), "sanity check");
4075   ALL_JAVA_THREADS(q) {
4076     if (q == p) {
4077       return true;
4078     }
4079   }
4080   return false;
4081 }
4082 
4083 // Operations on the Threads list for GC.  These are not explicitly locked,
4084 // but the garbage collector must provide a safe context for them to run.
4085 // In particular, these things should never be called when the Threads_lock
4086 // is held by some other thread. (Note: the Safepoint abstraction also
4087 // uses the Threads_lock to guarantee this property. It also makes sure that
4088 // all threads gets blocked when exiting or starting).
4089 
4090 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4091   ALL_JAVA_THREADS(p) {
4092     p->oops_do(f, cld_f, cf);
4093   }
4094   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4095 }
4096 
4097 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4098   // Introduce a mechanism allowing parallel threads to claim threads as
4099   // root groups.  Overhead should be small enough to use all the time,
4100   // even in sequential code.
4101   SharedHeap* sh = SharedHeap::heap();
4102   // Cannot yet substitute active_workers for n_par_threads
4103   // because of G1CollectedHeap::verify() use of
4104   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4105   // turn off parallelism in process_strong_roots while active_workers
4106   // is being used for parallelism elsewhere.
4107   bool is_par = sh->n_par_threads() > 0;
4108   assert(!is_par ||
4109          (SharedHeap::heap()->n_par_threads() ==
4110           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4111   int cp = SharedHeap::heap()->strong_roots_parity();
4112   ALL_JAVA_THREADS(p) {
4113     if (p->claim_oops_do(is_par, cp)) {
4114       p->oops_do(f, cld_f, cf);
4115     }
4116   }
4117   VMThread* vmt = VMThread::vm_thread();
4118   if (vmt->claim_oops_do(is_par, cp)) {
4119     vmt->oops_do(f, cld_f, cf);
4120   }
4121 }
4122 
4123 #if INCLUDE_ALL_GCS
4124 // Used by ParallelScavenge
4125 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4126   ALL_JAVA_THREADS(p) {
4127     q->enqueue(new ThreadRootsTask(p));
4128   }
4129   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4130 }
4131 
4132 // Used by Parallel Old
4133 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4134   ALL_JAVA_THREADS(p) {
4135     q->enqueue(new ThreadRootsMarkingTask(p));
4136   }
4137   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4138 }
4139 #endif // INCLUDE_ALL_GCS
4140 
4141 void Threads::nmethods_do(CodeBlobClosure* cf) {
4142   ALL_JAVA_THREADS(p) {
4143     p->nmethods_do(cf);
4144   }
4145   VMThread::vm_thread()->nmethods_do(cf);
4146 }
4147 
4148 void Threads::metadata_do(void f(Metadata*)) {
4149   ALL_JAVA_THREADS(p) {
4150     p->metadata_do(f);
4151   }
4152 }
4153 
4154 void Threads::gc_epilogue() {
4155   ALL_JAVA_THREADS(p) {
4156     p->gc_epilogue();
4157   }
4158 }
4159 
4160 void Threads::gc_prologue() {
4161   ALL_JAVA_THREADS(p) {
4162     p->gc_prologue();
4163   }
4164 }
4165 
4166 void Threads::deoptimized_wrt_marked_nmethods() {
4167   ALL_JAVA_THREADS(p) {
4168     p->deoptimized_wrt_marked_nmethods();
4169   }
4170 }
4171 
4172 
4173 // Get count Java threads that are waiting to enter the specified monitor.
4174 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4175   address monitor, bool doLock) {
4176   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4177     "must grab Threads_lock or be at safepoint");
4178   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4179 
4180   int i = 0;
4181   {
4182     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4183     ALL_JAVA_THREADS(p) {
4184       if (p->is_Compiler_thread()) continue;
4185 
4186       address pending = (address)p->current_pending_monitor();
4187       if (pending == monitor) {             // found a match
4188         if (i < count) result->append(p);   // save the first count matches
4189         i++;
4190       }
4191     }
4192   }
4193   return result;
4194 }
4195 
4196 
4197 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4198   assert(doLock ||
4199          Threads_lock->owned_by_self() ||
4200          SafepointSynchronize::is_at_safepoint(),
4201          "must grab Threads_lock or be at safepoint");
4202 
4203   // NULL owner means not locked so we can skip the search
4204   if (owner == NULL) return NULL;
4205 
4206   {
4207     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4208     ALL_JAVA_THREADS(p) {
4209       // first, see if owner is the address of a Java thread
4210       if (owner == (address)p) return p;
4211     }
4212   }
4213   // Cannot assert on lack of success here since this function may be
4214   // used by code that is trying to report useful problem information
4215   // like deadlock detection.
4216   if (UseHeavyMonitors) return NULL;
4217 
4218   //
4219   // If we didn't find a matching Java thread and we didn't force use of
4220   // heavyweight monitors, then the owner is the stack address of the
4221   // Lock Word in the owning Java thread's stack.
4222   //
4223   JavaThread* the_owner = NULL;
4224   {
4225     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4226     ALL_JAVA_THREADS(q) {
4227       if (q->is_lock_owned(owner)) {
4228         the_owner = q;
4229         break;
4230       }
4231     }
4232   }
4233   // cannot assert on lack of success here; see above comment
4234   return the_owner;
4235 }
4236 
4237 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4238 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4239   char buf[32];
4240   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4241 
4242   st->print_cr("Full thread dump %s (%s %s):",
4243                 Abstract_VM_Version::vm_name(),
4244                 Abstract_VM_Version::vm_release(),
4245                 Abstract_VM_Version::vm_info_string()
4246                );
4247   st->cr();
4248 
4249 #if INCLUDE_ALL_GCS
4250   // Dump concurrent locks
4251   ConcurrentLocksDump concurrent_locks;
4252   if (print_concurrent_locks) {
4253     concurrent_locks.dump_at_safepoint();
4254   }
4255 #endif // INCLUDE_ALL_GCS
4256 
4257   ALL_JAVA_THREADS(p) {
4258     ResourceMark rm;
4259     p->print_on(st);
4260     if (print_stacks) {
4261       if (internal_format) {
4262         p->trace_stack();
4263       } else {
4264         p->print_stack_on(st);
4265       }
4266     }
4267     st->cr();
4268 #if INCLUDE_ALL_GCS
4269     if (print_concurrent_locks) {
4270       concurrent_locks.print_locks_on(p, st);
4271     }
4272 #endif // INCLUDE_ALL_GCS
4273   }
4274 
4275   VMThread::vm_thread()->print_on(st);
4276   st->cr();
4277   Universe::heap()->print_gc_threads_on(st);
4278   WatcherThread* wt = WatcherThread::watcher_thread();
4279   if (wt != NULL) {
4280     wt->print_on(st);
4281     st->cr();
4282   }
4283   CompileBroker::print_compiler_threads_on(st);
4284   st->flush();
4285 }
4286 
4287 // Threads::print_on_error() is called by fatal error handler. It's possible
4288 // that VM is not at safepoint and/or current thread is inside signal handler.
4289 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4290 // memory (even in resource area), it might deadlock the error handler.
4291 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4292   bool found_current = false;
4293   st->print_cr("Java Threads: ( => current thread )");
4294   ALL_JAVA_THREADS(thread) {
4295     bool is_current = (current == thread);
4296     found_current = found_current || is_current;
4297 
4298     st->print("%s", is_current ? "=>" : "  ");
4299 
4300     st->print(PTR_FORMAT, thread);
4301     st->print(" ");
4302     thread->print_on_error(st, buf, buflen);
4303     st->cr();
4304   }
4305   st->cr();
4306 
4307   st->print_cr("Other Threads:");
4308   if (VMThread::vm_thread()) {
4309     bool is_current = (current == VMThread::vm_thread());
4310     found_current = found_current || is_current;
4311     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4312 
4313     st->print(PTR_FORMAT, VMThread::vm_thread());
4314     st->print(" ");
4315     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4316     st->cr();
4317   }
4318   WatcherThread* wt = WatcherThread::watcher_thread();
4319   if (wt != NULL) {
4320     bool is_current = (current == wt);
4321     found_current = found_current || is_current;
4322     st->print("%s", is_current ? "=>" : "  ");
4323 
4324     st->print(PTR_FORMAT, wt);
4325     st->print(" ");
4326     wt->print_on_error(st, buf, buflen);
4327     st->cr();
4328   }
4329   if (!found_current) {
4330     st->cr();
4331     st->print("=>" PTR_FORMAT " (exited) ", current);
4332     current->print_on_error(st, buf, buflen);
4333     st->cr();
4334   }
4335 }
4336 
4337 // Internal SpinLock and Mutex
4338 // Based on ParkEvent
4339 
4340 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4341 //
4342 // We employ SpinLocks _only for low-contention, fixed-length
4343 // short-duration critical sections where we're concerned
4344 // about native mutex_t or HotSpot Mutex:: latency.
4345 // The mux construct provides a spin-then-block mutual exclusion
4346 // mechanism.
4347 //
4348 // Testing has shown that contention on the ListLock guarding gFreeList
4349 // is common.  If we implement ListLock as a simple SpinLock it's common
4350 // for the JVM to devolve to yielding with little progress.  This is true
4351 // despite the fact that the critical sections protected by ListLock are
4352 // extremely short.
4353 //
4354 // TODO-FIXME: ListLock should be of type SpinLock.
4355 // We should make this a 1st-class type, integrated into the lock
4356 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4357 // should have sufficient padding to avoid false-sharing and excessive
4358 // cache-coherency traffic.
4359 
4360 
4361 typedef volatile int SpinLockT;
4362 
4363 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4364   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4365      return;   // normal fast-path return
4366   }
4367 
4368   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4369   TEVENT(SpinAcquire - ctx);
4370   int ctr = 0;
4371   int Yields = 0;
4372   for (;;) {
4373      while (*adr != 0) {
4374         ++ctr;
4375         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4376            if (Yields > 5) {
4377              os::naked_short_sleep(1);
4378            } else {
4379              os::NakedYield();
4380              ++Yields;
4381            }
4382         } else {
4383            SpinPause();
4384         }
4385      }
4386      if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4387   }
4388 }
4389 
4390 void Thread::SpinRelease (volatile int * adr) {
4391   assert(*adr != 0, "invariant");
4392   OrderAccess::fence();      // guarantee at least release consistency.
4393   // Roach-motel semantics.
4394   // It's safe if subsequent LDs and STs float "up" into the critical section,
4395   // but prior LDs and STs within the critical section can't be allowed
4396   // to reorder or float past the ST that releases the lock.
4397   *adr = 0;
4398 }
4399 
4400 // muxAcquire and muxRelease:
4401 //
4402 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4403 //    The LSB of the word is set IFF the lock is held.
4404 //    The remainder of the word points to the head of a singly-linked list
4405 //    of threads blocked on the lock.
4406 //
4407 // *  The current implementation of muxAcquire-muxRelease uses its own
4408 //    dedicated Thread._MuxEvent instance.  If we're interested in
4409 //    minimizing the peak number of extant ParkEvent instances then
4410 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4411 //    as certain invariants were satisfied.  Specifically, care would need
4412 //    to be taken with regards to consuming unpark() "permits".
4413 //    A safe rule of thumb is that a thread would never call muxAcquire()
4414 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4415 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4416 //    consume an unpark() permit intended for monitorenter, for instance.
4417 //    One way around this would be to widen the restricted-range semaphore
4418 //    implemented in park().  Another alternative would be to provide
4419 //    multiple instances of the PlatformEvent() for each thread.  One
4420 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4421 //
4422 // *  Usage:
4423 //    -- Only as leaf locks
4424 //    -- for short-term locking only as muxAcquire does not perform
4425 //       thread state transitions.
4426 //
4427 // Alternatives:
4428 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4429 //    but with parking or spin-then-park instead of pure spinning.
4430 // *  Use Taura-Oyama-Yonenzawa locks.
4431 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4432 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4433 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4434 //    acquiring threads use timers (ParkTimed) to detect and recover from
4435 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4436 //    boundaries by using placement-new.
4437 // *  Augment MCS with advisory back-link fields maintained with CAS().
4438 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4439 //    The validity of the backlinks must be ratified before we trust the value.
4440 //    If the backlinks are invalid the exiting thread must back-track through the
4441 //    the forward links, which are always trustworthy.
4442 // *  Add a successor indication.  The LockWord is currently encoded as
4443 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4444 //    to provide the usual futile-wakeup optimization.
4445 //    See RTStt for details.
4446 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4447 //
4448 
4449 
4450 typedef volatile intptr_t MutexT;      // Mux Lock-word
4451 enum MuxBits { LOCKBIT = 1 };
4452 
4453 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4454   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4455   if (w == 0) return;
4456   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4457      return;
4458   }
4459 
4460   TEVENT(muxAcquire - Contention);
4461   ParkEvent * const Self = Thread::current()->_MuxEvent;
4462   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4463   for (;;) {
4464      int its = (os::is_MP() ? 100 : 0) + 1;
4465 
4466      // Optional spin phase: spin-then-park strategy
4467      while (--its >= 0) {
4468        w = *Lock;
4469        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4470           return;
4471        }
4472      }
4473 
4474      Self->reset();
4475      Self->OnList = intptr_t(Lock);
4476      // The following fence() isn't _strictly necessary as the subsequent
4477      // CAS() both serializes execution and ratifies the fetched *Lock value.
4478      OrderAccess::fence();
4479      for (;;) {
4480         w = *Lock;
4481         if ((w & LOCKBIT) == 0) {
4482             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4483                 Self->OnList = 0;   // hygiene - allows stronger asserts
4484                 return;
4485             }
4486             continue;      // Interference -- *Lock changed -- Just retry
4487         }
4488         assert(w & LOCKBIT, "invariant");
4489         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4490         if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4491      }
4492 
4493      while (Self->OnList != 0) {
4494         Self->park();
4495      }
4496   }
4497 }
4498 
4499 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4500   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4501   if (w == 0) return;
4502   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4503     return;
4504   }
4505 
4506   TEVENT(muxAcquire - Contention);
4507   ParkEvent * ReleaseAfter = NULL;
4508   if (ev == NULL) {
4509     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4510   }
4511   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4512   for (;;) {
4513     guarantee(ev->OnList == 0, "invariant");
4514     int its = (os::is_MP() ? 100 : 0) + 1;
4515 
4516     // Optional spin phase: spin-then-park strategy
4517     while (--its >= 0) {
4518       w = *Lock;
4519       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4520         if (ReleaseAfter != NULL) {
4521           ParkEvent::Release(ReleaseAfter);
4522         }
4523         return;
4524       }
4525     }
4526 
4527     ev->reset();
4528     ev->OnList = intptr_t(Lock);
4529     // The following fence() isn't _strictly necessary as the subsequent
4530     // CAS() both serializes execution and ratifies the fetched *Lock value.
4531     OrderAccess::fence();
4532     for (;;) {
4533       w = *Lock;
4534       if ((w & LOCKBIT) == 0) {
4535         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4536           ev->OnList = 0;
4537           // We call ::Release while holding the outer lock, thus
4538           // artificially lengthening the critical section.
4539           // Consider deferring the ::Release() until the subsequent unlock(),
4540           // after we've dropped the outer lock.
4541           if (ReleaseAfter != NULL) {
4542             ParkEvent::Release(ReleaseAfter);
4543           }
4544           return;
4545         }
4546         continue;      // Interference -- *Lock changed -- Just retry
4547       }
4548       assert(w & LOCKBIT, "invariant");
4549       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4550       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4551     }
4552 
4553     while (ev->OnList != 0) {
4554       ev->park();
4555     }
4556   }
4557 }
4558 
4559 // Release() must extract a successor from the list and then wake that thread.
4560 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4561 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4562 // Release() would :
4563 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4564 // (B) Extract a successor from the private list "in-hand"
4565 // (C) attempt to CAS() the residual back into *Lock over null.
4566 //     If there were any newly arrived threads and the CAS() would fail.
4567 //     In that case Release() would detach the RATs, re-merge the list in-hand
4568 //     with the RATs and repeat as needed.  Alternately, Release() might
4569 //     detach and extract a successor, but then pass the residual list to the wakee.
4570 //     The wakee would be responsible for reattaching and remerging before it
4571 //     competed for the lock.
4572 //
4573 // Both "pop" and DMR are immune from ABA corruption -- there can be
4574 // multiple concurrent pushers, but only one popper or detacher.
4575 // This implementation pops from the head of the list.  This is unfair,
4576 // but tends to provide excellent throughput as hot threads remain hot.
4577 // (We wake recently run threads first).
4578 
4579 void Thread::muxRelease (volatile intptr_t * Lock)  {
4580   for (;;) {
4581     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4582     assert(w & LOCKBIT, "invariant");
4583     if (w == LOCKBIT) return;
4584     ParkEvent * List = (ParkEvent *)(w & ~LOCKBIT);
4585     assert(List != NULL, "invariant");
4586     assert(List->OnList == intptr_t(Lock), "invariant");
4587     ParkEvent * nxt = List->ListNext;
4588 
4589     // The following CAS() releases the lock and pops the head element.
4590     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4591       continue;
4592     }
4593     List->OnList = 0;
4594     OrderAccess::fence();
4595     List->unpark();
4596     return;
4597   }
4598 }
4599 
4600 
4601 void Threads::verify() {
4602   ALL_JAVA_THREADS(p) {
4603     p->verify();
4604   }
4605   VMThread* thread = VMThread::vm_thread();
4606   if (thread != NULL) thread->verify();
4607 }