1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/metaspaceShared.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/instanceKlass.hpp"
  41 #include "oops/objArrayOop.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/symbol.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "prims/privilegedStack.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/atomic.inline.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/deoptimization.hpp"
  52 #include "runtime/fprofiler.hpp"
  53 #include "runtime/frame.inline.hpp"
  54 #include "runtime/init.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/javaCalls.hpp"
  58 #include "runtime/jniPeriodicChecker.hpp"
  59 #include "runtime/memprofiler.hpp"
  60 #include "runtime/mutexLocker.hpp"
  61 #include "runtime/objectMonitor.hpp"
  62 #include "runtime/orderAccess.inline.hpp"
  63 #include "runtime/osThread.hpp"
  64 #include "runtime/safepoint.hpp"
  65 #include "runtime/sharedRuntime.hpp"
  66 #include "runtime/statSampler.hpp"
  67 #include "runtime/stubRoutines.hpp"
  68 #include "runtime/task.hpp"
  69 #include "runtime/thread.inline.hpp"
  70 #include "runtime/threadCritical.hpp"
  71 #include "runtime/threadLocalStorage.hpp"
  72 #include "runtime/vframe.hpp"
  73 #include "runtime/vframeArray.hpp"
  74 #include "runtime/vframe_hp.hpp"
  75 #include "runtime/vmThread.hpp"
  76 #include "runtime/vm_operations.hpp"
  77 #include "services/attachListener.hpp"
  78 #include "services/management.hpp"
  79 #include "services/memTracker.hpp"
  80 #include "services/threadService.hpp"
  81 #include "trace/tracing.hpp"
  82 #include "trace/traceMacros.hpp"
  83 #include "utilities/defaultStream.hpp"
  84 #include "utilities/dtrace.hpp"
  85 #include "utilities/events.hpp"
  86 #include "utilities/preserveException.hpp"
  87 #include "utilities/macros.hpp"
  88 #if INCLUDE_ALL_GCS
  89 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  90 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  91 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
  92 #endif // INCLUDE_ALL_GCS
  93 #ifdef COMPILER1
  94 #include "c1/c1_Compiler.hpp"
  95 #endif
  96 #ifdef COMPILER2
  97 #include "opto/c2compiler.hpp"
  98 #include "opto/idealGraphPrinter.hpp"
  99 #endif
 100 #if INCLUDE_RTM_OPT
 101 #include "runtime/rtmLocking.hpp"
 102 #endif
 103 
 104 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 105 
 106 #ifdef DTRACE_ENABLED
 107 
 108 // Only bother with this argument setup if dtrace is available
 109 
 110 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 111 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 112 
 113 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 114   {                                                                        \
 115     ResourceMark rm(this);                                                 \
 116     int len = 0;                                                           \
 117     const char* name = (javathread)->get_thread_name();                    \
 118     len = strlen(name);                                                    \
 119     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 120       (char *) name, len,                                                           \
 121       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 122       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 123       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 124   }
 125 
 126 #else //  ndef DTRACE_ENABLED
 127 
 128 #define DTRACE_THREAD_PROBE(probe, javathread)
 129 
 130 #endif // ndef DTRACE_ENABLED
 131 
 132 
 133 // Class hierarchy
 134 // - Thread
 135 //   - VMThread
 136 //   - WatcherThread
 137 //   - ConcurrentMarkSweepThread
 138 //   - JavaThread
 139 //     - CompilerThread
 140 
 141 // ======= Thread ========
 142 // Support for forcing alignment of thread objects for biased locking
 143 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 144   if (UseBiasedLocking) {
 145     const int alignment = markOopDesc::biased_lock_alignment;
 146     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 147     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 148                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 149                                               AllocFailStrategy::RETURN_NULL);
 150     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 151     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 152            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 153            "JavaThread alignment code overflowed allocated storage");
 154     if (TraceBiasedLocking) {
 155       if (aligned_addr != real_malloc_addr)
 156         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 157                       real_malloc_addr, aligned_addr);
 158     }
 159     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 160     return aligned_addr;
 161   } else {
 162     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 163                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 164   }
 165 }
 166 
 167 void Thread::operator delete(void* p) {
 168   if (UseBiasedLocking) {
 169     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 170     FreeHeap(real_malloc_addr, mtThread);
 171   } else {
 172     FreeHeap(p, mtThread);
 173   }
 174 }
 175 
 176 
 177 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 178 // JavaThread
 179 
 180 
 181 Thread::Thread() {
 182   // stack and get_thread
 183   set_stack_base(NULL);
 184   set_stack_size(0);
 185   set_self_raw_id(0);
 186   set_lgrp_id(-1);
 187 
 188   // allocated data structures
 189   set_osthread(NULL);
 190   set_resource_area(new (mtThread)ResourceArea());
 191   DEBUG_ONLY(_current_resource_mark = NULL;)
 192   set_handle_area(new (mtThread) HandleArea(NULL));
 193   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 194   set_active_handles(NULL);
 195   set_free_handle_block(NULL);
 196   set_last_handle_mark(NULL);
 197 
 198   // This initial value ==> never claimed.
 199   _oops_do_parity = 0;
 200 
 201   // the handle mark links itself to last_handle_mark
 202   new HandleMark(this);
 203 
 204   // plain initialization
 205   debug_only(_owned_locks = NULL;)
 206   debug_only(_allow_allocation_count = 0;)
 207   NOT_PRODUCT(_allow_safepoint_count = 0;)
 208   NOT_PRODUCT(_skip_gcalot = false;)
 209   _jvmti_env_iteration_count = 0;
 210   set_allocated_bytes(0);
 211   _vm_operation_started_count = 0;
 212   _vm_operation_completed_count = 0;
 213   _current_pending_monitor = NULL;
 214   _current_pending_monitor_is_from_java = true;
 215   _current_waiting_monitor = NULL;
 216   _num_nested_signal = 0;
 217   omFreeList = NULL;
 218   omFreeCount = 0;
 219   omFreeProvision = 32;
 220   omInUseList = NULL;
 221   omInUseCount = 0;
 222 
 223 #ifdef ASSERT
 224   _visited_for_critical_count = false;
 225 #endif
 226 
 227   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 228   _suspend_flags = 0;
 229 
 230   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 231   _hashStateX = os::random();
 232   _hashStateY = 842502087;
 233   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 234   _hashStateW = 273326509;
 235 
 236   _OnTrap   = 0;
 237   _schedctl = NULL;
 238   _Stalled  = 0;
 239   _TypeTag  = 0x2BAD;
 240 
 241   // Many of the following fields are effectively final - immutable
 242   // Note that nascent threads can't use the Native Monitor-Mutex
 243   // construct until the _MutexEvent is initialized ...
 244   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 245   // we might instead use a stack of ParkEvents that we could provision on-demand.
 246   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 247   // and ::Release()
 248   _ParkEvent   = ParkEvent::Allocate(this);
 249   _SleepEvent  = ParkEvent::Allocate(this);
 250   _MutexEvent  = ParkEvent::Allocate(this);
 251   _MuxEvent    = ParkEvent::Allocate(this);
 252 
 253 #ifdef CHECK_UNHANDLED_OOPS
 254   if (CheckUnhandledOops) {
 255     _unhandled_oops = new UnhandledOops(this);
 256   }
 257 #endif // CHECK_UNHANDLED_OOPS
 258 #ifdef ASSERT
 259   if (UseBiasedLocking) {
 260     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 261     assert(this == _real_malloc_address ||
 262            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 263            "bug in forced alignment of thread objects");
 264   }
 265 #endif /* ASSERT */
 266 }
 267 
 268 void Thread::initialize_thread_local_storage() {
 269   // Note: Make sure this method only calls
 270   // non-blocking operations. Otherwise, it might not work
 271   // with the thread-startup/safepoint interaction.
 272 
 273   // During Java thread startup, safepoint code should allow this
 274   // method to complete because it may need to allocate memory to
 275   // store information for the new thread.
 276 
 277   // initialize structure dependent on thread local storage
 278   ThreadLocalStorage::set_thread(this);
 279 }
 280 
 281 void Thread::record_stack_base_and_size() {
 282   set_stack_base(os::current_stack_base());
 283   set_stack_size(os::current_stack_size());
 284   if (is_Java_thread()) {
 285     ((JavaThread*) this)->set_stack_overflow_limit();
 286   }
 287   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 288   // in initialize_thread(). Without the adjustment, stack size is
 289   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 290   // So far, only Solaris has real implementation of initialize_thread().
 291   //
 292   // set up any platform-specific state.
 293   os::initialize_thread(this);
 294 
 295 #if INCLUDE_NMT
 296   // record thread's native stack, stack grows downward
 297   address stack_low_addr = stack_base() - stack_size();
 298   MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
 299       CURRENT_PC);
 300 #endif // INCLUDE_NMT
 301 }
 302 
 303 
 304 Thread::~Thread() {
 305   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 306   ObjectSynchronizer::omFlush(this);
 307 
 308   EVENT_THREAD_DESTRUCT(this);
 309 
 310   // stack_base can be NULL if the thread is never started or exited before
 311   // record_stack_base_and_size called. Although, we would like to ensure
 312   // that all started threads do call record_stack_base_and_size(), there is
 313   // not proper way to enforce that.
 314 #if INCLUDE_NMT
 315   if (_stack_base != NULL) {
 316     address low_stack_addr = stack_base() - stack_size();
 317     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
 318 #ifdef ASSERT
 319     set_stack_base(NULL);
 320 #endif
 321   }
 322 #endif // INCLUDE_NMT
 323 
 324   // deallocate data structures
 325   delete resource_area();
 326   // since the handle marks are using the handle area, we have to deallocated the root
 327   // handle mark before deallocating the thread's handle area,
 328   assert(last_handle_mark() != NULL, "check we have an element");
 329   delete last_handle_mark();
 330   assert(last_handle_mark() == NULL, "check we have reached the end");
 331 
 332   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 333   // We NULL out the fields for good hygiene.
 334   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 335   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 336   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 337   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 338 
 339   delete handle_area();
 340   delete metadata_handles();
 341 
 342   // osthread() can be NULL, if creation of thread failed.
 343   if (osthread() != NULL) os::free_thread(osthread());
 344 
 345   delete _SR_lock;
 346 
 347   // clear thread local storage if the Thread is deleting itself
 348   if (this == Thread::current()) {
 349     ThreadLocalStorage::set_thread(NULL);
 350   } else {
 351     // In the case where we're not the current thread, invalidate all the
 352     // caches in case some code tries to get the current thread or the
 353     // thread that was destroyed, and gets stale information.
 354     ThreadLocalStorage::invalidate_all();
 355   }
 356   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 357 }
 358 
 359 // NOTE: dummy function for assertion purpose.
 360 void Thread::run() {
 361   ShouldNotReachHere();
 362 }
 363 
 364 #ifdef ASSERT
 365 // Private method to check for dangling thread pointer
 366 void check_for_dangling_thread_pointer(Thread *thread) {
 367  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 368          "possibility of dangling Thread pointer");
 369 }
 370 #endif
 371 
 372 
 373 #ifndef PRODUCT
 374 // Tracing method for basic thread operations
 375 void Thread::trace(const char* msg, const Thread* const thread) {
 376   if (!TraceThreadEvents) return;
 377   ResourceMark rm;
 378   ThreadCritical tc;
 379   const char *name = "non-Java thread";
 380   int prio = -1;
 381   if (thread->is_Java_thread()
 382       && !thread->is_Compiler_thread()) {
 383     // The Threads_lock must be held to get information about
 384     // this thread but may not be in some situations when
 385     // tracing  thread events.
 386     bool release_Threads_lock = false;
 387     if (!Threads_lock->owned_by_self()) {
 388       Threads_lock->lock();
 389       release_Threads_lock = true;
 390     }
 391     JavaThread* jt = (JavaThread *)thread;
 392     name = (char *)jt->get_thread_name();
 393     oop thread_oop = jt->threadObj();
 394     if (thread_oop != NULL) {
 395       prio = java_lang_Thread::priority(thread_oop);
 396     }
 397     if (release_Threads_lock) {
 398       Threads_lock->unlock();
 399     }
 400   }
 401   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 402 }
 403 #endif
 404 
 405 
 406 ThreadPriority Thread::get_priority(const Thread* const thread) {
 407   trace("get priority", thread);
 408   ThreadPriority priority;
 409   // Can return an error!
 410   (void)os::get_priority(thread, priority);
 411   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 412   return priority;
 413 }
 414 
 415 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 416   trace("set priority", thread);
 417   debug_only(check_for_dangling_thread_pointer(thread);)
 418   // Can return an error!
 419   (void)os::set_priority(thread, priority);
 420 }
 421 
 422 
 423 void Thread::start(Thread* thread) {
 424   trace("start", thread);
 425   // Start is different from resume in that its safety is guaranteed by context or
 426   // being called from a Java method synchronized on the Thread object.
 427   if (!DisableStartThread) {
 428     if (thread->is_Java_thread()) {
 429       // Initialize the thread state to RUNNABLE before starting this thread.
 430       // Can not set it after the thread started because we do not know the
 431       // exact thread state at that time. It could be in MONITOR_WAIT or
 432       // in SLEEPING or some other state.
 433       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 434                                           java_lang_Thread::RUNNABLE);
 435     }
 436     os::start_thread(thread);
 437   }
 438 }
 439 
 440 // Enqueue a VM_Operation to do the job for us - sometime later
 441 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 442   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 443   VMThread::execute(vm_stop);
 444 }
 445 
 446 
 447 //
 448 // Check if an external suspend request has completed (or has been
 449 // cancelled). Returns true if the thread is externally suspended and
 450 // false otherwise.
 451 //
 452 // The bits parameter returns information about the code path through
 453 // the routine. Useful for debugging:
 454 //
 455 // set in is_ext_suspend_completed():
 456 // 0x00000001 - routine was entered
 457 // 0x00000010 - routine return false at end
 458 // 0x00000100 - thread exited (return false)
 459 // 0x00000200 - suspend request cancelled (return false)
 460 // 0x00000400 - thread suspended (return true)
 461 // 0x00001000 - thread is in a suspend equivalent state (return true)
 462 // 0x00002000 - thread is native and walkable (return true)
 463 // 0x00004000 - thread is native_trans and walkable (needed retry)
 464 //
 465 // set in wait_for_ext_suspend_completion():
 466 // 0x00010000 - routine was entered
 467 // 0x00020000 - suspend request cancelled before loop (return false)
 468 // 0x00040000 - thread suspended before loop (return true)
 469 // 0x00080000 - suspend request cancelled in loop (return false)
 470 // 0x00100000 - thread suspended in loop (return true)
 471 // 0x00200000 - suspend not completed during retry loop (return false)
 472 //
 473 
 474 // Helper class for tracing suspend wait debug bits.
 475 //
 476 // 0x00000100 indicates that the target thread exited before it could
 477 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 478 // 0x00080000 each indicate a cancelled suspend request so they don't
 479 // count as wait failures either.
 480 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 481 
 482 class TraceSuspendDebugBits : public StackObj {
 483  private:
 484   JavaThread * jt;
 485   bool         is_wait;
 486   bool         called_by_wait;  // meaningful when !is_wait
 487   uint32_t *   bits;
 488 
 489  public:
 490   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 491                         uint32_t *_bits) {
 492     jt             = _jt;
 493     is_wait        = _is_wait;
 494     called_by_wait = _called_by_wait;
 495     bits           = _bits;
 496   }
 497 
 498   ~TraceSuspendDebugBits() {
 499     if (!is_wait) {
 500 #if 1
 501       // By default, don't trace bits for is_ext_suspend_completed() calls.
 502       // That trace is very chatty.
 503       return;
 504 #else
 505       if (!called_by_wait) {
 506         // If tracing for is_ext_suspend_completed() is enabled, then only
 507         // trace calls to it from wait_for_ext_suspend_completion()
 508         return;
 509       }
 510 #endif
 511     }
 512 
 513     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 514       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 515         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 516         ResourceMark rm;
 517 
 518         tty->print_cr(
 519             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 520             jt->get_thread_name(), *bits);
 521 
 522         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 523       }
 524     }
 525   }
 526 };
 527 #undef DEBUG_FALSE_BITS
 528 
 529 
 530 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 531   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 532 
 533   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 534   bool do_trans_retry;           // flag to force the retry
 535 
 536   *bits |= 0x00000001;
 537 
 538   do {
 539     do_trans_retry = false;
 540 
 541     if (is_exiting()) {
 542       // Thread is in the process of exiting. This is always checked
 543       // first to reduce the risk of dereferencing a freed JavaThread.
 544       *bits |= 0x00000100;
 545       return false;
 546     }
 547 
 548     if (!is_external_suspend()) {
 549       // Suspend request is cancelled. This is always checked before
 550       // is_ext_suspended() to reduce the risk of a rogue resume
 551       // confusing the thread that made the suspend request.
 552       *bits |= 0x00000200;
 553       return false;
 554     }
 555 
 556     if (is_ext_suspended()) {
 557       // thread is suspended
 558       *bits |= 0x00000400;
 559       return true;
 560     }
 561 
 562     // Now that we no longer do hard suspends of threads running
 563     // native code, the target thread can be changing thread state
 564     // while we are in this routine:
 565     //
 566     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 567     //
 568     // We save a copy of the thread state as observed at this moment
 569     // and make our decision about suspend completeness based on the
 570     // copy. This closes the race where the thread state is seen as
 571     // _thread_in_native_trans in the if-thread_blocked check, but is
 572     // seen as _thread_blocked in if-thread_in_native_trans check.
 573     JavaThreadState save_state = thread_state();
 574 
 575     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 576       // If the thread's state is _thread_blocked and this blocking
 577       // condition is known to be equivalent to a suspend, then we can
 578       // consider the thread to be externally suspended. This means that
 579       // the code that sets _thread_blocked has been modified to do
 580       // self-suspension if the blocking condition releases. We also
 581       // used to check for CONDVAR_WAIT here, but that is now covered by
 582       // the _thread_blocked with self-suspension check.
 583       //
 584       // Return true since we wouldn't be here unless there was still an
 585       // external suspend request.
 586       *bits |= 0x00001000;
 587       return true;
 588     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 589       // Threads running native code will self-suspend on native==>VM/Java
 590       // transitions. If its stack is walkable (should always be the case
 591       // unless this function is called before the actual java_suspend()
 592       // call), then the wait is done.
 593       *bits |= 0x00002000;
 594       return true;
 595     } else if (!called_by_wait && !did_trans_retry &&
 596                save_state == _thread_in_native_trans &&
 597                frame_anchor()->walkable()) {
 598       // The thread is transitioning from thread_in_native to another
 599       // thread state. check_safepoint_and_suspend_for_native_trans()
 600       // will force the thread to self-suspend. If it hasn't gotten
 601       // there yet we may have caught the thread in-between the native
 602       // code check above and the self-suspend. Lucky us. If we were
 603       // called by wait_for_ext_suspend_completion(), then it
 604       // will be doing the retries so we don't have to.
 605       //
 606       // Since we use the saved thread state in the if-statement above,
 607       // there is a chance that the thread has already transitioned to
 608       // _thread_blocked by the time we get here. In that case, we will
 609       // make a single unnecessary pass through the logic below. This
 610       // doesn't hurt anything since we still do the trans retry.
 611 
 612       *bits |= 0x00004000;
 613 
 614       // Once the thread leaves thread_in_native_trans for another
 615       // thread state, we break out of this retry loop. We shouldn't
 616       // need this flag to prevent us from getting back here, but
 617       // sometimes paranoia is good.
 618       did_trans_retry = true;
 619 
 620       // We wait for the thread to transition to a more usable state.
 621       for (int i = 1; i <= SuspendRetryCount; i++) {
 622         // We used to do an "os::yield_all(i)" call here with the intention
 623         // that yielding would increase on each retry. However, the parameter
 624         // is ignored on Linux which means the yield didn't scale up. Waiting
 625         // on the SR_lock below provides a much more predictable scale up for
 626         // the delay. It also provides a simple/direct point to check for any
 627         // safepoint requests from the VMThread
 628 
 629         // temporarily drops SR_lock while doing wait with safepoint check
 630         // (if we're a JavaThread - the WatcherThread can also call this)
 631         // and increase delay with each retry
 632         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 633 
 634         // check the actual thread state instead of what we saved above
 635         if (thread_state() != _thread_in_native_trans) {
 636           // the thread has transitioned to another thread state so
 637           // try all the checks (except this one) one more time.
 638           do_trans_retry = true;
 639           break;
 640         }
 641       } // end retry loop
 642 
 643 
 644     }
 645   } while (do_trans_retry);
 646 
 647   *bits |= 0x00000010;
 648   return false;
 649 }
 650 
 651 //
 652 // Wait for an external suspend request to complete (or be cancelled).
 653 // Returns true if the thread is externally suspended and false otherwise.
 654 //
 655 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 656        uint32_t *bits) {
 657   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 658                              false /* !called_by_wait */, bits);
 659 
 660   // local flag copies to minimize SR_lock hold time
 661   bool is_suspended;
 662   bool pending;
 663   uint32_t reset_bits;
 664 
 665   // set a marker so is_ext_suspend_completed() knows we are the caller
 666   *bits |= 0x00010000;
 667 
 668   // We use reset_bits to reinitialize the bits value at the top of
 669   // each retry loop. This allows the caller to make use of any
 670   // unused bits for their own marking purposes.
 671   reset_bits = *bits;
 672 
 673   {
 674     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 675     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 676                                             delay, bits);
 677     pending = is_external_suspend();
 678   }
 679   // must release SR_lock to allow suspension to complete
 680 
 681   if (!pending) {
 682     // A cancelled suspend request is the only false return from
 683     // is_ext_suspend_completed() that keeps us from entering the
 684     // retry loop.
 685     *bits |= 0x00020000;
 686     return false;
 687   }
 688 
 689   if (is_suspended) {
 690     *bits |= 0x00040000;
 691     return true;
 692   }
 693 
 694   for (int i = 1; i <= retries; i++) {
 695     *bits = reset_bits;  // reinit to only track last retry
 696 
 697     // We used to do an "os::yield_all(i)" call here with the intention
 698     // that yielding would increase on each retry. However, the parameter
 699     // is ignored on Linux which means the yield didn't scale up. Waiting
 700     // on the SR_lock below provides a much more predictable scale up for
 701     // the delay. It also provides a simple/direct point to check for any
 702     // safepoint requests from the VMThread
 703 
 704     {
 705       MutexLocker ml(SR_lock());
 706       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 707       // can also call this)  and increase delay with each retry
 708       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 709 
 710       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 711                                               delay, bits);
 712 
 713       // It is possible for the external suspend request to be cancelled
 714       // (by a resume) before the actual suspend operation is completed.
 715       // Refresh our local copy to see if we still need to wait.
 716       pending = is_external_suspend();
 717     }
 718 
 719     if (!pending) {
 720       // A cancelled suspend request is the only false return from
 721       // is_ext_suspend_completed() that keeps us from staying in the
 722       // retry loop.
 723       *bits |= 0x00080000;
 724       return false;
 725     }
 726 
 727     if (is_suspended) {
 728       *bits |= 0x00100000;
 729       return true;
 730     }
 731   } // end retry loop
 732 
 733   // thread did not suspend after all our retries
 734   *bits |= 0x00200000;
 735   return false;
 736 }
 737 
 738 #ifndef PRODUCT
 739 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 740 
 741   // This should not need to be atomic as the only way for simultaneous
 742   // updates is via interrupts. Even then this should be rare or non-existent
 743   // and we don't care that much anyway.
 744 
 745   int index = _jmp_ring_index;
 746   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 747   _jmp_ring[index]._target = (intptr_t) target;
 748   _jmp_ring[index]._instruction = (intptr_t) instr;
 749   _jmp_ring[index]._file = file;
 750   _jmp_ring[index]._line = line;
 751 }
 752 #endif /* PRODUCT */
 753 
 754 // Called by flat profiler
 755 // Callers have already called wait_for_ext_suspend_completion
 756 // The assertion for that is currently too complex to put here:
 757 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 758   bool gotframe = false;
 759   // self suspension saves needed state.
 760   if (has_last_Java_frame() && _anchor.walkable()) {
 761      *_fr = pd_last_frame();
 762      gotframe = true;
 763   }
 764   return gotframe;
 765 }
 766 
 767 void Thread::interrupt(Thread* thread) {
 768   trace("interrupt", thread);
 769   debug_only(check_for_dangling_thread_pointer(thread);)
 770   os::interrupt(thread);
 771 }
 772 
 773 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 774   trace("is_interrupted", thread);
 775   debug_only(check_for_dangling_thread_pointer(thread);)
 776   // Note:  If clear_interrupted==false, this simply fetches and
 777   // returns the value of the field osthread()->interrupted().
 778   return os::is_interrupted(thread, clear_interrupted);
 779 }
 780 
 781 
 782 // GC Support
 783 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 784   jint thread_parity = _oops_do_parity;
 785   if (thread_parity != strong_roots_parity) {
 786     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 787     if (res == thread_parity) {
 788       return true;
 789     } else {
 790       guarantee(res == strong_roots_parity, "Or else what?");
 791       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 792          "Should only fail when parallel.");
 793       return false;
 794     }
 795   }
 796   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 797          "Should only fail when parallel.");
 798   return false;
 799 }
 800 
 801 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 802   active_handles()->oops_do(f);
 803   // Do oop for ThreadShadow
 804   f->do_oop((oop*)&_pending_exception);
 805   handle_area()->oops_do(f);
 806 }
 807 
 808 void Thread::nmethods_do(CodeBlobClosure* cf) {
 809   // no nmethods in a generic thread...
 810 }
 811 
 812 void Thread::metadata_do(void f(Metadata*)) {
 813   if (metadata_handles() != NULL) {
 814     for (int i = 0; i< metadata_handles()->length(); i++) {
 815       f(metadata_handles()->at(i));
 816     }
 817   }
 818 }
 819 
 820 void Thread::print_on(outputStream* st) const {
 821   // get_priority assumes osthread initialized
 822   if (osthread() != NULL) {
 823     int os_prio;
 824     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 825       st->print("os_prio=%d ", os_prio);
 826     }
 827     st->print("tid=" INTPTR_FORMAT " ", this);
 828     osthread()->print_on(st);
 829   }
 830   debug_only(if (WizardMode) print_owned_locks_on(st);)
 831 }
 832 
 833 // Thread::print_on_error() is called by fatal error handler. Don't use
 834 // any lock or allocate memory.
 835 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 836   if (is_VM_thread())                  st->print("VMThread");
 837   else if (is_Compiler_thread())            st->print("CompilerThread");
 838   else if (is_Java_thread())                st->print("JavaThread");
 839   else if (is_GC_task_thread())             st->print("GCTaskThread");
 840   else if (is_Watcher_thread())             st->print("WatcherThread");
 841   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 842   else st->print("Thread");
 843 
 844   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 845             _stack_base - _stack_size, _stack_base);
 846 
 847   if (osthread()) {
 848     st->print(" [id=%d]", osthread()->thread_id());
 849   }
 850 }
 851 
 852 #ifdef ASSERT
 853 void Thread::print_owned_locks_on(outputStream* st) const {
 854   Monitor *cur = _owned_locks;
 855   if (cur == NULL) {
 856     st->print(" (no locks) ");
 857   } else {
 858     st->print_cr(" Locks owned:");
 859     while (cur) {
 860       cur->print_on(st);
 861       cur = cur->next();
 862     }
 863   }
 864 }
 865 
 866 static int ref_use_count  = 0;
 867 
 868 bool Thread::owns_locks_but_compiled_lock() const {
 869   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 870     if (cur != Compile_lock) return true;
 871   }
 872   return false;
 873 }
 874 
 875 
 876 #endif
 877 
 878 #ifndef PRODUCT
 879 
 880 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 881 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 882 // no threads which allow_vm_block's are held
 883 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 884     // Check if current thread is allowed to block at a safepoint
 885     if (!(_allow_safepoint_count == 0))
 886       fatal("Possible safepoint reached by thread that does not allow it");
 887     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 888       fatal("LEAF method calling lock?");
 889     }
 890 
 891 #ifdef ASSERT
 892     if (potential_vm_operation && is_Java_thread()
 893         && !Universe::is_bootstrapping()) {
 894       // Make sure we do not hold any locks that the VM thread also uses.
 895       // This could potentially lead to deadlocks
 896       for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 897         // Threads_lock is special, since the safepoint synchronization will not start before this is
 898         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 899         // since it is used to transfer control between JavaThreads and the VMThread
 900         // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 901         if ((cur->allow_vm_block() &&
 902               cur != Threads_lock &&
 903               cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 904               cur != VMOperationRequest_lock &&
 905               cur != VMOperationQueue_lock) ||
 906               cur->rank() == Mutex::special) {
 907           fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 908         }
 909       }
 910     }
 911 
 912     if (GCALotAtAllSafepoints) {
 913       // We could enter a safepoint here and thus have a gc
 914       InterfaceSupport::check_gc_alot();
 915     }
 916 #endif
 917 }
 918 #endif
 919 
 920 bool Thread::is_in_stack(address adr) const {
 921   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 922   address end = os::current_stack_pointer();
 923   // Allow non Java threads to call this without stack_base
 924   if (_stack_base == NULL) return true;
 925   if (stack_base() >= adr && adr >= end) return true;
 926 
 927   return false;
 928 }
 929 
 930 
 931 bool Thread::is_in_usable_stack(address adr) const {
 932   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 933   size_t usable_stack_size = _stack_size - stack_guard_size;
 934 
 935   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 936 }
 937 
 938 
 939 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 940 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 941 // used for compilation in the future. If that change is made, the need for these methods
 942 // should be revisited, and they should be removed if possible.
 943 
 944 bool Thread::is_lock_owned(address adr) const {
 945   return on_local_stack(adr);
 946 }
 947 
 948 bool Thread::set_as_starting_thread() {
 949  // NOTE: this must be called inside the main thread.
 950   return os::create_main_thread((JavaThread*)this);
 951 }
 952 
 953 static void initialize_class(Symbol* class_name, TRAPS) {
 954   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 955   InstanceKlass::cast(klass)->initialize(CHECK);
 956 }
 957 
 958 
 959 // Creates the initial ThreadGroup
 960 static Handle create_initial_thread_group(TRAPS) {
 961   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 962   instanceKlassHandle klass (THREAD, k);
 963 
 964   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 965   {
 966     JavaValue result(T_VOID);
 967     JavaCalls::call_special(&result,
 968                             system_instance,
 969                             klass,
 970                             vmSymbols::object_initializer_name(),
 971                             vmSymbols::void_method_signature(),
 972                             CHECK_NH);
 973   }
 974   Universe::set_system_thread_group(system_instance());
 975 
 976   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 977   {
 978     JavaValue result(T_VOID);
 979     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 980     JavaCalls::call_special(&result,
 981                             main_instance,
 982                             klass,
 983                             vmSymbols::object_initializer_name(),
 984                             vmSymbols::threadgroup_string_void_signature(),
 985                             system_instance,
 986                             string,
 987                             CHECK_NH);
 988   }
 989   return main_instance;
 990 }
 991 
 992 // Creates the initial Thread
 993 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
 994   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 995   instanceKlassHandle klass (THREAD, k);
 996   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 997 
 998   java_lang_Thread::set_thread(thread_oop(), thread);
 999   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1000   thread->set_threadObj(thread_oop());
1001 
1002   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1003 
1004   JavaValue result(T_VOID);
1005   JavaCalls::call_special(&result, thread_oop,
1006                                    klass,
1007                                    vmSymbols::object_initializer_name(),
1008                                    vmSymbols::threadgroup_string_void_signature(),
1009                                    thread_group,
1010                                    string,
1011                                    CHECK_NULL);
1012   return thread_oop();
1013 }
1014 
1015 static void call_initializeSystemClass(TRAPS) {
1016   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1017   instanceKlassHandle klass (THREAD, k);
1018 
1019   JavaValue result(T_VOID);
1020   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1021                                          vmSymbols::void_method_signature(), CHECK);
1022 }
1023 
1024 char java_runtime_name[128] = "";
1025 char java_runtime_version[128] = "";
1026 
1027 // extract the JRE name from sun.misc.Version.java_runtime_name
1028 static const char* get_java_runtime_name(TRAPS) {
1029   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1030                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1031   fieldDescriptor fd;
1032   bool found = k != NULL &&
1033                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1034                                                         vmSymbols::string_signature(), &fd);
1035   if (found) {
1036     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1037     if (name_oop == NULL)
1038       return NULL;
1039     const char* name = java_lang_String::as_utf8_string(name_oop,
1040                                                         java_runtime_name,
1041                                                         sizeof(java_runtime_name));
1042     return name;
1043   } else {
1044     return NULL;
1045   }
1046 }
1047 
1048 // extract the JRE version from sun.misc.Version.java_runtime_version
1049 static const char* get_java_runtime_version(TRAPS) {
1050   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1051                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1052   fieldDescriptor fd;
1053   bool found = k != NULL &&
1054                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1055                                                         vmSymbols::string_signature(), &fd);
1056   if (found) {
1057     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1058     if (name_oop == NULL)
1059       return NULL;
1060     const char* name = java_lang_String::as_utf8_string(name_oop,
1061                                                         java_runtime_version,
1062                                                         sizeof(java_runtime_version));
1063     return name;
1064   } else {
1065     return NULL;
1066   }
1067 }
1068 
1069 // General purpose hook into Java code, run once when the VM is initialized.
1070 // The Java library method itself may be changed independently from the VM.
1071 static void call_postVMInitHook(TRAPS) {
1072   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1073   instanceKlassHandle klass (THREAD, k);
1074   if (klass.not_null()) {
1075     JavaValue result(T_VOID);
1076     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1077                                            vmSymbols::void_method_signature(),
1078                                            CHECK);
1079   }
1080 }
1081 
1082 static void reset_vm_info_property(TRAPS) {
1083   // the vm info string
1084   ResourceMark rm(THREAD);
1085   const char *vm_info = VM_Version::vm_info_string();
1086 
1087   // java.lang.System class
1088   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1089   instanceKlassHandle klass (THREAD, k);
1090 
1091   // setProperty arguments
1092   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1093   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1094 
1095   // return value
1096   JavaValue r(T_OBJECT);
1097 
1098   // public static String setProperty(String key, String value);
1099   JavaCalls::call_static(&r,
1100                          klass,
1101                          vmSymbols::setProperty_name(),
1102                          vmSymbols::string_string_string_signature(),
1103                          key_str,
1104                          value_str,
1105                          CHECK);
1106 }
1107 
1108 
1109 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1110   assert(thread_group.not_null(), "thread group should be specified");
1111   assert(threadObj() == NULL, "should only create Java thread object once");
1112 
1113   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1114   instanceKlassHandle klass (THREAD, k);
1115   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1116 
1117   java_lang_Thread::set_thread(thread_oop(), this);
1118   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1119   set_threadObj(thread_oop());
1120 
1121   JavaValue result(T_VOID);
1122   if (thread_name != NULL) {
1123     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1124     // Thread gets assigned specified name and null target
1125     JavaCalls::call_special(&result,
1126                             thread_oop,
1127                             klass,
1128                             vmSymbols::object_initializer_name(),
1129                             vmSymbols::threadgroup_string_void_signature(),
1130                             thread_group, // Argument 1
1131                             name,         // Argument 2
1132                             THREAD);
1133   } else {
1134     // Thread gets assigned name "Thread-nnn" and null target
1135     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1136     JavaCalls::call_special(&result,
1137                             thread_oop,
1138                             klass,
1139                             vmSymbols::object_initializer_name(),
1140                             vmSymbols::threadgroup_runnable_void_signature(),
1141                             thread_group, // Argument 1
1142                             Handle(),     // Argument 2
1143                             THREAD);
1144   }
1145 
1146 
1147   if (daemon) {
1148       java_lang_Thread::set_daemon(thread_oop());
1149   }
1150 
1151   if (HAS_PENDING_EXCEPTION) {
1152     return;
1153   }
1154 
1155   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1156   Handle threadObj(this, this->threadObj());
1157 
1158   JavaCalls::call_special(&result,
1159                          thread_group,
1160                          group,
1161                          vmSymbols::add_method_name(),
1162                          vmSymbols::thread_void_signature(),
1163                          threadObj,          // Arg 1
1164                          THREAD);
1165 
1166 
1167 }
1168 
1169 // NamedThread --  non-JavaThread subclasses with multiple
1170 // uniquely named instances should derive from this.
1171 NamedThread::NamedThread() : Thread() {
1172   _name = NULL;
1173   _processed_thread = NULL;
1174 }
1175 
1176 NamedThread::~NamedThread() {
1177   if (_name != NULL) {
1178     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1179     _name = NULL;
1180   }
1181 }
1182 
1183 void NamedThread::set_name(const char* format, ...) {
1184   guarantee(_name == NULL, "Only get to set name once.");
1185   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1186   guarantee(_name != NULL, "alloc failure");
1187   va_list ap;
1188   va_start(ap, format);
1189   jio_vsnprintf(_name, max_name_len, format, ap);
1190   va_end(ap);
1191 }
1192 
1193 void NamedThread::print_on(outputStream* st) const {
1194   st->print("\"%s\" ", name());
1195   Thread::print_on(st);
1196   st->cr();
1197 }
1198 
1199 
1200 // ======= WatcherThread ========
1201 
1202 // The watcher thread exists to simulate timer interrupts.  It should
1203 // be replaced by an abstraction over whatever native support for
1204 // timer interrupts exists on the platform.
1205 
1206 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1207 bool WatcherThread::_startable = false;
1208 volatile bool  WatcherThread::_should_terminate = false;
1209 
1210 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1211   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1212   if (os::create_thread(this, os::watcher_thread)) {
1213     _watcher_thread = this;
1214 
1215     // Set the watcher thread to the highest OS priority which should not be
1216     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1217     // is created. The only normal thread using this priority is the reference
1218     // handler thread, which runs for very short intervals only.
1219     // If the VMThread's priority is not lower than the WatcherThread profiling
1220     // will be inaccurate.
1221     os::set_priority(this, MaxPriority);
1222     if (!DisableStartThread) {
1223       os::start_thread(this);
1224     }
1225   }
1226 }
1227 
1228 int WatcherThread::sleep() const {
1229   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1230 
1231   // remaining will be zero if there are no tasks,
1232   // causing the WatcherThread to sleep until a task is
1233   // enrolled
1234   int remaining = PeriodicTask::time_to_wait();
1235   int time_slept = 0;
1236 
1237   // we expect this to timeout - we only ever get unparked when
1238   // we should terminate or when a new task has been enrolled
1239   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1240 
1241   jlong time_before_loop = os::javaTimeNanos();
1242 
1243   for (;;) {
1244     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1245     jlong now = os::javaTimeNanos();
1246 
1247     if (remaining == 0) {
1248         // if we didn't have any tasks we could have waited for a long time
1249         // consider the time_slept zero and reset time_before_loop
1250         time_slept = 0;
1251         time_before_loop = now;
1252     } else {
1253         // need to recalculate since we might have new tasks in _tasks
1254         time_slept = (int) ((now - time_before_loop) / 1000000);
1255     }
1256 
1257     // Change to task list or spurious wakeup of some kind
1258     if (timedout || _should_terminate) {
1259         break;
1260     }
1261 
1262     remaining = PeriodicTask::time_to_wait();
1263     if (remaining == 0) {
1264         // Last task was just disenrolled so loop around and wait until
1265         // another task gets enrolled
1266         continue;
1267     }
1268 
1269     remaining -= time_slept;
1270     if (remaining <= 0)
1271       break;
1272   }
1273 
1274   return time_slept;
1275 }
1276 
1277 void WatcherThread::run() {
1278   assert(this == watcher_thread(), "just checking");
1279 
1280   this->record_stack_base_and_size();
1281   this->initialize_thread_local_storage();
1282   this->set_active_handles(JNIHandleBlock::allocate_block());
1283   while (!_should_terminate) {
1284     assert(watcher_thread() == Thread::current(), "thread consistency check");
1285     assert(watcher_thread() == this, "thread consistency check");
1286 
1287     // Calculate how long it'll be until the next PeriodicTask work
1288     // should be done, and sleep that amount of time.
1289     int time_waited = sleep();
1290 
1291     if (is_error_reported()) {
1292       // A fatal error has happened, the error handler(VMError::report_and_die)
1293       // should abort JVM after creating an error log file. However in some
1294       // rare cases, the error handler itself might deadlock. Here we try to
1295       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1296       //
1297       // This code is in WatcherThread because WatcherThread wakes up
1298       // periodically so the fatal error handler doesn't need to do anything;
1299       // also because the WatcherThread is less likely to crash than other
1300       // threads.
1301 
1302       for (;;) {
1303         if (!ShowMessageBoxOnError
1304          && (OnError == NULL || OnError[0] == '\0')
1305          && Arguments::abort_hook() == NULL) {
1306              os::sleep(this, 2 * 60 * 1000, false);
1307              fdStream err(defaultStream::output_fd());
1308              err.print_raw_cr("# [ timer expired, abort... ]");
1309              // skip atexit/vm_exit/vm_abort hooks
1310              os::die();
1311         }
1312 
1313         // Wake up 5 seconds later, the fatal handler may reset OnError or
1314         // ShowMessageBoxOnError when it is ready to abort.
1315         os::sleep(this, 5 * 1000, false);
1316       }
1317     }
1318 
1319     PeriodicTask::real_time_tick(time_waited);
1320   }
1321 
1322   // Signal that it is terminated
1323   {
1324     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1325     _watcher_thread = NULL;
1326     Terminator_lock->notify();
1327   }
1328 
1329   // Thread destructor usually does this..
1330   ThreadLocalStorage::set_thread(NULL);
1331 }
1332 
1333 void WatcherThread::start() {
1334   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1335 
1336   if (watcher_thread() == NULL && _startable) {
1337     _should_terminate = false;
1338     // Create the single instance of WatcherThread
1339     new WatcherThread();
1340   }
1341 }
1342 
1343 void WatcherThread::make_startable() {
1344   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1345   _startable = true;
1346 }
1347 
1348 void WatcherThread::stop() {
1349   {
1350     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1351     _should_terminate = true;
1352     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1353 
1354     WatcherThread* watcher = watcher_thread();
1355     if (watcher != NULL)
1356       watcher->unpark();
1357   }
1358 
1359   // it is ok to take late safepoints here, if needed
1360   MutexLocker mu(Terminator_lock);
1361 
1362   while (watcher_thread() != NULL) {
1363     // This wait should make safepoint checks, wait without a timeout,
1364     // and wait as a suspend-equivalent condition.
1365     //
1366     // Note: If the FlatProfiler is running, then this thread is waiting
1367     // for the WatcherThread to terminate and the WatcherThread, via the
1368     // FlatProfiler task, is waiting for the external suspend request on
1369     // this thread to complete. wait_for_ext_suspend_completion() will
1370     // eventually timeout, but that takes time. Making this wait a
1371     // suspend-equivalent condition solves that timeout problem.
1372     //
1373     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1374                           Mutex::_as_suspend_equivalent_flag);
1375   }
1376 }
1377 
1378 void WatcherThread::unpark() {
1379   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1380   PeriodicTask_lock->notify();
1381 }
1382 
1383 void WatcherThread::print_on(outputStream* st) const {
1384   st->print("\"%s\" ", name());
1385   Thread::print_on(st);
1386   st->cr();
1387 }
1388 
1389 // ======= JavaThread ========
1390 
1391 // A JavaThread is a normal Java thread
1392 
1393 void JavaThread::initialize() {
1394   // Initialize fields
1395 
1396   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1397   set_claimed_par_id(UINT_MAX);
1398 
1399   set_saved_exception_pc(NULL);
1400   set_threadObj(NULL);
1401   _anchor.clear();
1402   set_entry_point(NULL);
1403   set_jni_functions(jni_functions());
1404   set_callee_target(NULL);
1405   set_vm_result(NULL);
1406   set_vm_result_2(NULL);
1407   set_vframe_array_head(NULL);
1408   set_vframe_array_last(NULL);
1409   set_deferred_locals(NULL);
1410   set_deopt_mark(NULL);
1411   set_deopt_nmethod(NULL);
1412   clear_must_deopt_id();
1413   set_monitor_chunks(NULL);
1414   set_next(NULL);
1415   set_thread_state(_thread_new);
1416 #if INCLUDE_NMT
1417   set_recorder(NULL);
1418 #endif
1419   _terminated = _not_terminated;
1420   _privileged_stack_top = NULL;
1421   _array_for_gc = NULL;
1422   _suspend_equivalent = false;
1423   _in_deopt_handler = 0;
1424   _doing_unsafe_access = false;
1425   _stack_guard_state = stack_guard_unused;
1426   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1427   _exception_pc  = 0;
1428   _exception_handler_pc = 0;
1429   _is_method_handle_return = 0;
1430   _jvmti_thread_state= NULL;
1431   _should_post_on_exceptions_flag = JNI_FALSE;
1432   _jvmti_get_loaded_classes_closure = NULL;
1433   _interp_only_mode    = 0;
1434   _special_runtime_exit_condition = _no_async_condition;
1435   _pending_async_exception = NULL;
1436   _thread_stat = NULL;
1437   _thread_stat = new ThreadStatistics();
1438   _blocked_on_compilation = false;
1439   _jni_active_critical = 0;
1440   _pending_jni_exception_check_fn = NULL;
1441   _do_not_unlock_if_synchronized = false;
1442   _cached_monitor_info = NULL;
1443   _parker = Parker::Allocate(this);
1444 
1445 #ifndef PRODUCT
1446   _jmp_ring_index = 0;
1447   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1448     record_jump(NULL, NULL, NULL, 0);
1449   }
1450 #endif /* PRODUCT */
1451 
1452   set_thread_profiler(NULL);
1453   if (FlatProfiler::is_active()) {
1454     // This is where we would decide to either give each thread it's own profiler
1455     // or use one global one from FlatProfiler,
1456     // or up to some count of the number of profiled threads, etc.
1457     ThreadProfiler* pp = new ThreadProfiler();
1458     pp->engage();
1459     set_thread_profiler(pp);
1460   }
1461 
1462   // Setup safepoint state info for this thread
1463   ThreadSafepointState::create(this);
1464 
1465   debug_only(_java_call_counter = 0);
1466 
1467   // JVMTI PopFrame support
1468   _popframe_condition = popframe_inactive;
1469   _popframe_preserved_args = NULL;
1470   _popframe_preserved_args_size = 0;
1471 
1472   pd_initialize();
1473 }
1474 
1475 #if INCLUDE_ALL_GCS
1476 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1477 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1478 #endif // INCLUDE_ALL_GCS
1479 
1480 JavaThread::JavaThread(bool is_attaching_via_jni) :
1481   Thread()
1482 #if INCLUDE_ALL_GCS
1483   , _satb_mark_queue(&_satb_mark_queue_set),
1484   _dirty_card_queue(&_dirty_card_queue_set)
1485 #endif // INCLUDE_ALL_GCS
1486 {
1487   initialize();
1488   if (is_attaching_via_jni) {
1489     _jni_attach_state = _attaching_via_jni;
1490   } else {
1491     _jni_attach_state = _not_attaching_via_jni;
1492   }
1493   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1494   _safepoint_visible = false;
1495 }
1496 
1497 bool JavaThread::reguard_stack(address cur_sp) {
1498   if (_stack_guard_state != stack_guard_yellow_disabled) {
1499     return true; // Stack already guarded or guard pages not needed.
1500   }
1501 
1502   if (register_stack_overflow()) {
1503     // For those architectures which have separate register and
1504     // memory stacks, we must check the register stack to see if
1505     // it has overflowed.
1506     return false;
1507   }
1508 
1509   // Java code never executes within the yellow zone: the latter is only
1510   // there to provoke an exception during stack banging.  If java code
1511   // is executing there, either StackShadowPages should be larger, or
1512   // some exception code in c1, c2 or the interpreter isn't unwinding
1513   // when it should.
1514   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1515 
1516   enable_stack_yellow_zone();
1517   return true;
1518 }
1519 
1520 bool JavaThread::reguard_stack(void) {
1521   return reguard_stack(os::current_stack_pointer());
1522 }
1523 
1524 
1525 void JavaThread::block_if_vm_exited() {
1526   if (_terminated == _vm_exited) {
1527     // _vm_exited is set at safepoint, and Threads_lock is never released
1528     // we will block here forever
1529     Threads_lock->lock_without_safepoint_check();
1530     ShouldNotReachHere();
1531   }
1532 }
1533 
1534 
1535 // Remove this ifdef when C1 is ported to the compiler interface.
1536 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1537 
1538 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1539   Thread()
1540 #if INCLUDE_ALL_GCS
1541   , _satb_mark_queue(&_satb_mark_queue_set),
1542   _dirty_card_queue(&_dirty_card_queue_set)
1543 #endif // INCLUDE_ALL_GCS
1544 {
1545   if (TraceThreadEvents) {
1546     tty->print_cr("creating thread %p", this);
1547   }
1548   initialize();
1549   _jni_attach_state = _not_attaching_via_jni;
1550   set_entry_point(entry_point);
1551   // Create the native thread itself.
1552   // %note runtime_23
1553   os::ThreadType thr_type = os::java_thread;
1554   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1555                                                      os::java_thread;
1556   os::create_thread(this, thr_type, stack_sz);
1557   _safepoint_visible = false;
1558   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1559   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1560   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1561   // the exception consists of creating the exception object & initializing it, initialization
1562   // will leave the VM via a JavaCall and then all locks must be unlocked).
1563   //
1564   // The thread is still suspended when we reach here. Thread must be explicit started
1565   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1566   // by calling Threads:add. The reason why this is not done here, is because the thread
1567   // object must be fully initialized (take a look at JVM_Start)
1568 }
1569 
1570 JavaThread::~JavaThread() {
1571   if (TraceThreadEvents) {
1572       tty->print_cr("terminate thread %p", this);
1573   }
1574 
1575   // By now, this thread should already be invisible to safepoint,
1576   // and its per-thread recorder also collected.
1577   assert(!is_safepoint_visible(), "wrong state");
1578 #if INCLUDE_NMT
1579   assert(get_recorder() == NULL, "Already collected");
1580 #endif // INCLUDE_NMT
1581 
1582   // JSR166 -- return the parker to the free list
1583   Parker::Release(_parker);
1584   _parker = NULL;
1585 
1586   // Free any remaining  previous UnrollBlock
1587   vframeArray* old_array = vframe_array_last();
1588 
1589   if (old_array != NULL) {
1590     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1591     old_array->set_unroll_block(NULL);
1592     delete old_info;
1593     delete old_array;
1594   }
1595 
1596   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1597   if (deferred != NULL) {
1598     // This can only happen if thread is destroyed before deoptimization occurs.
1599     assert(deferred->length() != 0, "empty array!");
1600     do {
1601       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1602       deferred->remove_at(0);
1603       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1604       delete dlv;
1605     } while (deferred->length() != 0);
1606     delete deferred;
1607   }
1608 
1609   // All Java related clean up happens in exit
1610   ThreadSafepointState::destroy(this);
1611   if (_thread_profiler != NULL) delete _thread_profiler;
1612   if (_thread_stat != NULL) delete _thread_stat;
1613 }
1614 
1615 
1616 // The first routine called by a new Java thread
1617 void JavaThread::run() {
1618   // initialize thread-local alloc buffer related fields
1619   this->initialize_tlab();
1620 
1621   // used to test validity of stack trace backs
1622   this->record_base_of_stack_pointer();
1623 
1624   // Record real stack base and size.
1625   this->record_stack_base_and_size();
1626 
1627   // Initialize thread local storage; set before calling MutexLocker
1628   this->initialize_thread_local_storage();
1629 
1630   this->create_stack_guard_pages();
1631 
1632   this->cache_global_variables();
1633 
1634   // Thread is now sufficient initialized to be handled by the safepoint code as being
1635   // in the VM. Change thread state from _thread_new to _thread_in_vm
1636   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1637 
1638   assert(JavaThread::current() == this, "sanity check");
1639   assert(!Thread::current()->owns_locks(), "sanity check");
1640 
1641   DTRACE_THREAD_PROBE(start, this);
1642 
1643   // This operation might block. We call that after all safepoint checks for a new thread has
1644   // been completed.
1645   this->set_active_handles(JNIHandleBlock::allocate_block());
1646 
1647   if (JvmtiExport::should_post_thread_life()) {
1648     JvmtiExport::post_thread_start(this);
1649   }
1650 
1651   EventThreadStart event;
1652   if (event.should_commit()) {
1653      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1654      event.commit();
1655   }
1656 
1657   // We call another function to do the rest so we are sure that the stack addresses used
1658   // from there will be lower than the stack base just computed
1659   thread_main_inner();
1660 
1661   // Note, thread is no longer valid at this point!
1662 }
1663 
1664 
1665 void JavaThread::thread_main_inner() {
1666   assert(JavaThread::current() == this, "sanity check");
1667   assert(this->threadObj() != NULL, "just checking");
1668 
1669   // Execute thread entry point unless this thread has a pending exception
1670   // or has been stopped before starting.
1671   // Note: Due to JVM_StopThread we can have pending exceptions already!
1672   if (!this->has_pending_exception() &&
1673       !java_lang_Thread::is_stillborn(this->threadObj())) {
1674     {
1675       ResourceMark rm(this);
1676       this->set_native_thread_name(this->get_thread_name());
1677     }
1678     HandleMark hm(this);
1679     this->entry_point()(this, this);
1680   }
1681 
1682   DTRACE_THREAD_PROBE(stop, this);
1683 
1684   this->exit(false);
1685   delete this;
1686 }
1687 
1688 
1689 static void ensure_join(JavaThread* thread) {
1690   // We do not need to grap the Threads_lock, since we are operating on ourself.
1691   Handle threadObj(thread, thread->threadObj());
1692   assert(threadObj.not_null(), "java thread object must exist");
1693   ObjectLocker lock(threadObj, thread);
1694   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1695   thread->clear_pending_exception();
1696   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1697   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1698   // Clear the native thread instance - this makes isAlive return false and allows the join()
1699   // to complete once we've done the notify_all below
1700   java_lang_Thread::set_thread(threadObj(), NULL);
1701   lock.notify_all(thread);
1702   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1703   thread->clear_pending_exception();
1704 }
1705 
1706 
1707 // For any new cleanup additions, please check to see if they need to be applied to
1708 // cleanup_failed_attach_current_thread as well.
1709 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1710   assert(this == JavaThread::current(), "thread consistency check");
1711 
1712   HandleMark hm(this);
1713   Handle uncaught_exception(this, this->pending_exception());
1714   this->clear_pending_exception();
1715   Handle threadObj(this, this->threadObj());
1716   assert(threadObj.not_null(), "Java thread object should be created");
1717 
1718   if (get_thread_profiler() != NULL) {
1719     get_thread_profiler()->disengage();
1720     ResourceMark rm;
1721     get_thread_profiler()->print(get_thread_name());
1722   }
1723 
1724 
1725   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1726   {
1727     EXCEPTION_MARK;
1728 
1729     CLEAR_PENDING_EXCEPTION;
1730   }
1731   if (!destroy_vm) {
1732     if (uncaught_exception.not_null()) {
1733       EXCEPTION_MARK;
1734       // Call method Thread.dispatchUncaughtException().
1735       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1736       JavaValue result(T_VOID);
1737       JavaCalls::call_virtual(&result,
1738                               threadObj, thread_klass,
1739                               vmSymbols::dispatchUncaughtException_name(),
1740                               vmSymbols::throwable_void_signature(),
1741                               uncaught_exception,
1742                               THREAD);
1743       if (HAS_PENDING_EXCEPTION) {
1744         ResourceMark rm(this);
1745         jio_fprintf(defaultStream::error_stream(),
1746               "\nException: %s thrown from the UncaughtExceptionHandler"
1747               " in thread \"%s\"\n",
1748               pending_exception()->klass()->external_name(),
1749               get_thread_name());
1750         CLEAR_PENDING_EXCEPTION;
1751       }
1752     }
1753 
1754     // Called before the java thread exit since we want to read info
1755     // from java_lang_Thread object
1756     EventThreadEnd event;
1757     if (event.should_commit()) {
1758         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1759         event.commit();
1760     }
1761 
1762     // Call after last event on thread
1763     EVENT_THREAD_EXIT(this);
1764 
1765     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1766     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1767     // is deprecated anyhow.
1768     if (!is_Compiler_thread()) {
1769       int count = 3;
1770       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1771         EXCEPTION_MARK;
1772         JavaValue result(T_VOID);
1773         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1774         JavaCalls::call_virtual(&result,
1775                               threadObj, thread_klass,
1776                               vmSymbols::exit_method_name(),
1777                               vmSymbols::void_method_signature(),
1778                               THREAD);
1779         CLEAR_PENDING_EXCEPTION;
1780       }
1781     }
1782     // notify JVMTI
1783     if (JvmtiExport::should_post_thread_life()) {
1784       JvmtiExport::post_thread_end(this);
1785     }
1786 
1787     // We have notified the agents that we are exiting, before we go on,
1788     // we must check for a pending external suspend request and honor it
1789     // in order to not surprise the thread that made the suspend request.
1790     while (true) {
1791       {
1792         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1793         if (!is_external_suspend()) {
1794           set_terminated(_thread_exiting);
1795           ThreadService::current_thread_exiting(this);
1796           break;
1797         }
1798         // Implied else:
1799         // Things get a little tricky here. We have a pending external
1800         // suspend request, but we are holding the SR_lock so we
1801         // can't just self-suspend. So we temporarily drop the lock
1802         // and then self-suspend.
1803       }
1804 
1805       ThreadBlockInVM tbivm(this);
1806       java_suspend_self();
1807 
1808       // We're done with this suspend request, but we have to loop around
1809       // and check again. Eventually we will get SR_lock without a pending
1810       // external suspend request and will be able to mark ourselves as
1811       // exiting.
1812     }
1813     // no more external suspends are allowed at this point
1814   } else {
1815     // before_exit() has already posted JVMTI THREAD_END events
1816   }
1817 
1818   // Notify waiters on thread object. This has to be done after exit() is called
1819   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1820   // group should have the destroyed bit set before waiters are notified).
1821   ensure_join(this);
1822   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1823 
1824   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1825   // held by this thread must be released.  A detach operation must only
1826   // get here if there are no Java frames on the stack.  Therefore, any
1827   // owned monitors at this point MUST be JNI-acquired monitors which are
1828   // pre-inflated and in the monitor cache.
1829   //
1830   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1831   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1832     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1833     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1834     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1835   }
1836 
1837   // These things needs to be done while we are still a Java Thread. Make sure that thread
1838   // is in a consistent state, in case GC happens
1839   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1840 
1841   if (active_handles() != NULL) {
1842     JNIHandleBlock* block = active_handles();
1843     set_active_handles(NULL);
1844     JNIHandleBlock::release_block(block);
1845   }
1846 
1847   if (free_handle_block() != NULL) {
1848     JNIHandleBlock* block = free_handle_block();
1849     set_free_handle_block(NULL);
1850     JNIHandleBlock::release_block(block);
1851   }
1852 
1853   // These have to be removed while this is still a valid thread.
1854   remove_stack_guard_pages();
1855 
1856   if (UseTLAB) {
1857     tlab().make_parsable(true);  // retire TLAB
1858   }
1859 
1860   if (JvmtiEnv::environments_might_exist()) {
1861     JvmtiExport::cleanup_thread(this);
1862   }
1863 
1864   // We must flush any deferred card marks before removing a thread from
1865   // the list of active threads.
1866   Universe::heap()->flush_deferred_store_barrier(this);
1867   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1868 
1869 #if INCLUDE_ALL_GCS
1870   // We must flush the G1-related buffers before removing a thread
1871   // from the list of active threads. We must do this after any deferred
1872   // card marks have been flushed (above) so that any entries that are
1873   // added to the thread's dirty card queue as a result are not lost.
1874   if (UseG1GC) {
1875     flush_barrier_queues();
1876   }
1877 #endif // INCLUDE_ALL_GCS
1878 
1879   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1880   Threads::remove(this);
1881 }
1882 
1883 #if INCLUDE_ALL_GCS
1884 // Flush G1-related queues.
1885 void JavaThread::flush_barrier_queues() {
1886   satb_mark_queue().flush();
1887   dirty_card_queue().flush();
1888 }
1889 
1890 void JavaThread::initialize_queues() {
1891   assert(!SafepointSynchronize::is_at_safepoint(),
1892          "we should not be at a safepoint");
1893 
1894   ObjPtrQueue& satb_queue = satb_mark_queue();
1895   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1896   // The SATB queue should have been constructed with its active
1897   // field set to false.
1898   assert(!satb_queue.is_active(), "SATB queue should not be active");
1899   assert(satb_queue.is_empty(), "SATB queue should be empty");
1900   // If we are creating the thread during a marking cycle, we should
1901   // set the active field of the SATB queue to true.
1902   if (satb_queue_set.is_active()) {
1903     satb_queue.set_active(true);
1904   }
1905 
1906   DirtyCardQueue& dirty_queue = dirty_card_queue();
1907   // The dirty card queue should have been constructed with its
1908   // active field set to true.
1909   assert(dirty_queue.is_active(), "dirty card queue should be active");
1910 }
1911 #endif // INCLUDE_ALL_GCS
1912 
1913 void JavaThread::cleanup_failed_attach_current_thread() {
1914   if (get_thread_profiler() != NULL) {
1915     get_thread_profiler()->disengage();
1916     ResourceMark rm;
1917     get_thread_profiler()->print(get_thread_name());
1918   }
1919 
1920   if (active_handles() != NULL) {
1921     JNIHandleBlock* block = active_handles();
1922     set_active_handles(NULL);
1923     JNIHandleBlock::release_block(block);
1924   }
1925 
1926   if (free_handle_block() != NULL) {
1927     JNIHandleBlock* block = free_handle_block();
1928     set_free_handle_block(NULL);
1929     JNIHandleBlock::release_block(block);
1930   }
1931 
1932   // These have to be removed while this is still a valid thread.
1933   remove_stack_guard_pages();
1934 
1935   if (UseTLAB) {
1936     tlab().make_parsable(true);  // retire TLAB, if any
1937   }
1938 
1939 #if INCLUDE_ALL_GCS
1940   if (UseG1GC) {
1941     flush_barrier_queues();
1942   }
1943 #endif // INCLUDE_ALL_GCS
1944 
1945   Threads::remove(this);
1946   delete this;
1947 }
1948 
1949 
1950 
1951 
1952 JavaThread* JavaThread::active() {
1953   Thread* thread = ThreadLocalStorage::thread();
1954   assert(thread != NULL, "just checking");
1955   if (thread->is_Java_thread()) {
1956     return (JavaThread*) thread;
1957   } else {
1958     assert(thread->is_VM_thread(), "this must be a vm thread");
1959     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1960     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1961     assert(ret->is_Java_thread(), "must be a Java thread");
1962     return ret;
1963   }
1964 }
1965 
1966 bool JavaThread::is_lock_owned(address adr) const {
1967   if (Thread::is_lock_owned(adr)) return true;
1968 
1969   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1970     if (chunk->contains(adr)) return true;
1971   }
1972 
1973   return false;
1974 }
1975 
1976 
1977 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1978   chunk->set_next(monitor_chunks());
1979   set_monitor_chunks(chunk);
1980 }
1981 
1982 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1983   guarantee(monitor_chunks() != NULL, "must be non empty");
1984   if (monitor_chunks() == chunk) {
1985     set_monitor_chunks(chunk->next());
1986   } else {
1987     MonitorChunk* prev = monitor_chunks();
1988     while (prev->next() != chunk) prev = prev->next();
1989     prev->set_next(chunk->next());
1990   }
1991 }
1992 
1993 // JVM support.
1994 
1995 // Note: this function shouldn't block if it's called in
1996 // _thread_in_native_trans state (such as from
1997 // check_special_condition_for_native_trans()).
1998 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1999 
2000   if (has_last_Java_frame() && has_async_condition()) {
2001     // If we are at a polling page safepoint (not a poll return)
2002     // then we must defer async exception because live registers
2003     // will be clobbered by the exception path. Poll return is
2004     // ok because the call we a returning from already collides
2005     // with exception handling registers and so there is no issue.
2006     // (The exception handling path kills call result registers but
2007     //  this is ok since the exception kills the result anyway).
2008 
2009     if (is_at_poll_safepoint()) {
2010       // if the code we are returning to has deoptimized we must defer
2011       // the exception otherwise live registers get clobbered on the
2012       // exception path before deoptimization is able to retrieve them.
2013       //
2014       RegisterMap map(this, false);
2015       frame caller_fr = last_frame().sender(&map);
2016       assert(caller_fr.is_compiled_frame(), "what?");
2017       if (caller_fr.is_deoptimized_frame()) {
2018         if (TraceExceptions) {
2019           ResourceMark rm;
2020           tty->print_cr("deferred async exception at compiled safepoint");
2021         }
2022         return;
2023       }
2024     }
2025   }
2026 
2027   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2028   if (condition == _no_async_condition) {
2029     // Conditions have changed since has_special_runtime_exit_condition()
2030     // was called:
2031     // - if we were here only because of an external suspend request,
2032     //   then that was taken care of above (or cancelled) so we are done
2033     // - if we were here because of another async request, then it has
2034     //   been cleared between the has_special_runtime_exit_condition()
2035     //   and now so again we are done
2036     return;
2037   }
2038 
2039   // Check for pending async. exception
2040   if (_pending_async_exception != NULL) {
2041     // Only overwrite an already pending exception, if it is not a threadDeath.
2042     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2043 
2044       // We cannot call Exceptions::_throw(...) here because we cannot block
2045       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2046 
2047       if (TraceExceptions) {
2048         ResourceMark rm;
2049         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2050         if (has_last_Java_frame()) {
2051           frame f = last_frame();
2052           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2053         }
2054         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2055       }
2056       _pending_async_exception = NULL;
2057       clear_has_async_exception();
2058     }
2059   }
2060 
2061   if (check_unsafe_error &&
2062       condition == _async_unsafe_access_error && !has_pending_exception()) {
2063     condition = _no_async_condition;  // done
2064     switch (thread_state()) {
2065     case _thread_in_vm:
2066       {
2067         JavaThread* THREAD = this;
2068         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2069       }
2070     case _thread_in_native:
2071       {
2072         ThreadInVMfromNative tiv(this);
2073         JavaThread* THREAD = this;
2074         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2075       }
2076     case _thread_in_Java:
2077       {
2078         ThreadInVMfromJava tiv(this);
2079         JavaThread* THREAD = this;
2080         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2081       }
2082     default:
2083       ShouldNotReachHere();
2084     }
2085   }
2086 
2087   assert(condition == _no_async_condition || has_pending_exception() ||
2088          (!check_unsafe_error && condition == _async_unsafe_access_error),
2089          "must have handled the async condition, if no exception");
2090 }
2091 
2092 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2093   //
2094   // Check for pending external suspend. Internal suspend requests do
2095   // not use handle_special_runtime_exit_condition().
2096   // If JNIEnv proxies are allowed, don't self-suspend if the target
2097   // thread is not the current thread. In older versions of jdbx, jdbx
2098   // threads could call into the VM with another thread's JNIEnv so we
2099   // can be here operating on behalf of a suspended thread (4432884).
2100   bool do_self_suspend = is_external_suspend_with_lock();
2101   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2102     //
2103     // Because thread is external suspended the safepoint code will count
2104     // thread as at a safepoint. This can be odd because we can be here
2105     // as _thread_in_Java which would normally transition to _thread_blocked
2106     // at a safepoint. We would like to mark the thread as _thread_blocked
2107     // before calling java_suspend_self like all other callers of it but
2108     // we must then observe proper safepoint protocol. (We can't leave
2109     // _thread_blocked with a safepoint in progress). However we can be
2110     // here as _thread_in_native_trans so we can't use a normal transition
2111     // constructor/destructor pair because they assert on that type of
2112     // transition. We could do something like:
2113     //
2114     // JavaThreadState state = thread_state();
2115     // set_thread_state(_thread_in_vm);
2116     // {
2117     //   ThreadBlockInVM tbivm(this);
2118     //   java_suspend_self()
2119     // }
2120     // set_thread_state(_thread_in_vm_trans);
2121     // if (safepoint) block;
2122     // set_thread_state(state);
2123     //
2124     // but that is pretty messy. Instead we just go with the way the
2125     // code has worked before and note that this is the only path to
2126     // java_suspend_self that doesn't put the thread in _thread_blocked
2127     // mode.
2128 
2129     frame_anchor()->make_walkable(this);
2130     java_suspend_self();
2131 
2132     // We might be here for reasons in addition to the self-suspend request
2133     // so check for other async requests.
2134   }
2135 
2136   if (check_asyncs) {
2137     check_and_handle_async_exceptions();
2138   }
2139 }
2140 
2141 void JavaThread::send_thread_stop(oop java_throwable)  {
2142   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2143   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2144   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2145 
2146   // Do not throw asynchronous exceptions against the compiler thread
2147   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2148   if (is_Compiler_thread()) return;
2149 
2150   {
2151     // Actually throw the Throwable against the target Thread - however
2152     // only if there is no thread death exception installed already.
2153     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2154       // If the topmost frame is a runtime stub, then we are calling into
2155       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2156       // must deoptimize the caller before continuing, as the compiled  exception handler table
2157       // may not be valid
2158       if (has_last_Java_frame()) {
2159         frame f = last_frame();
2160         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2161           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2162           RegisterMap reg_map(this, UseBiasedLocking);
2163           frame compiled_frame = f.sender(&reg_map);
2164           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2165             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2166           }
2167         }
2168       }
2169 
2170       // Set async. pending exception in thread.
2171       set_pending_async_exception(java_throwable);
2172 
2173       if (TraceExceptions) {
2174        ResourceMark rm;
2175        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2176       }
2177       // for AbortVMOnException flag
2178       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2179     }
2180   }
2181 
2182 
2183   // Interrupt thread so it will wake up from a potential wait()
2184   Thread::interrupt(this);
2185 }
2186 
2187 // External suspension mechanism.
2188 //
2189 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2190 // to any VM_locks and it is at a transition
2191 // Self-suspension will happen on the transition out of the vm.
2192 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2193 //
2194 // Guarantees on return:
2195 //   + Target thread will not execute any new bytecode (that's why we need to
2196 //     force a safepoint)
2197 //   + Target thread will not enter any new monitors
2198 //
2199 void JavaThread::java_suspend() {
2200   { MutexLocker mu(Threads_lock);
2201     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2202        return;
2203     }
2204   }
2205 
2206   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2207     if (!is_external_suspend()) {
2208       // a racing resume has cancelled us; bail out now
2209       return;
2210     }
2211 
2212     // suspend is done
2213     uint32_t debug_bits = 0;
2214     // Warning: is_ext_suspend_completed() may temporarily drop the
2215     // SR_lock to allow the thread to reach a stable thread state if
2216     // it is currently in a transient thread state.
2217     if (is_ext_suspend_completed(false /* !called_by_wait */,
2218                                  SuspendRetryDelay, &debug_bits) ) {
2219       return;
2220     }
2221   }
2222 
2223   VM_ForceSafepoint vm_suspend;
2224   VMThread::execute(&vm_suspend);
2225 }
2226 
2227 // Part II of external suspension.
2228 // A JavaThread self suspends when it detects a pending external suspend
2229 // request. This is usually on transitions. It is also done in places
2230 // where continuing to the next transition would surprise the caller,
2231 // e.g., monitor entry.
2232 //
2233 // Returns the number of times that the thread self-suspended.
2234 //
2235 // Note: DO NOT call java_suspend_self() when you just want to block current
2236 //       thread. java_suspend_self() is the second stage of cooperative
2237 //       suspension for external suspend requests and should only be used
2238 //       to complete an external suspend request.
2239 //
2240 int JavaThread::java_suspend_self() {
2241   int ret = 0;
2242 
2243   // we are in the process of exiting so don't suspend
2244   if (is_exiting()) {
2245      clear_external_suspend();
2246      return ret;
2247   }
2248 
2249   assert(_anchor.walkable() ||
2250     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2251     "must have walkable stack");
2252 
2253   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2254 
2255   assert(!this->is_ext_suspended(),
2256     "a thread trying to self-suspend should not already be suspended");
2257 
2258   if (this->is_suspend_equivalent()) {
2259     // If we are self-suspending as a result of the lifting of a
2260     // suspend equivalent condition, then the suspend_equivalent
2261     // flag is not cleared until we set the ext_suspended flag so
2262     // that wait_for_ext_suspend_completion() returns consistent
2263     // results.
2264     this->clear_suspend_equivalent();
2265   }
2266 
2267   // A racing resume may have cancelled us before we grabbed SR_lock
2268   // above. Or another external suspend request could be waiting for us
2269   // by the time we return from SR_lock()->wait(). The thread
2270   // that requested the suspension may already be trying to walk our
2271   // stack and if we return now, we can change the stack out from under
2272   // it. This would be a "bad thing (TM)" and cause the stack walker
2273   // to crash. We stay self-suspended until there are no more pending
2274   // external suspend requests.
2275   while (is_external_suspend()) {
2276     ret++;
2277     this->set_ext_suspended();
2278 
2279     // _ext_suspended flag is cleared by java_resume()
2280     while (is_ext_suspended()) {
2281       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2282     }
2283   }
2284 
2285   return ret;
2286 }
2287 
2288 #ifdef ASSERT
2289 // verify the JavaThread has not yet been published in the Threads::list, and
2290 // hence doesn't need protection from concurrent access at this stage
2291 void JavaThread::verify_not_published() {
2292   if (!Threads_lock->owned_by_self()) {
2293    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2294    assert(!Threads::includes(this),
2295            "java thread shouldn't have been published yet!");
2296   }
2297   else {
2298    assert(!Threads::includes(this),
2299            "java thread shouldn't have been published yet!");
2300   }
2301 }
2302 #endif
2303 
2304 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2305 // progress or when _suspend_flags is non-zero.
2306 // Current thread needs to self-suspend if there is a suspend request and/or
2307 // block if a safepoint is in progress.
2308 // Async exception ISN'T checked.
2309 // Note only the ThreadInVMfromNative transition can call this function
2310 // directly and when thread state is _thread_in_native_trans
2311 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2312   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2313 
2314   JavaThread *curJT = JavaThread::current();
2315   bool do_self_suspend = thread->is_external_suspend();
2316 
2317   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2318 
2319   // If JNIEnv proxies are allowed, don't self-suspend if the target
2320   // thread is not the current thread. In older versions of jdbx, jdbx
2321   // threads could call into the VM with another thread's JNIEnv so we
2322   // can be here operating on behalf of a suspended thread (4432884).
2323   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2324     JavaThreadState state = thread->thread_state();
2325 
2326     // We mark this thread_blocked state as a suspend-equivalent so
2327     // that a caller to is_ext_suspend_completed() won't be confused.
2328     // The suspend-equivalent state is cleared by java_suspend_self().
2329     thread->set_suspend_equivalent();
2330 
2331     // If the safepoint code sees the _thread_in_native_trans state, it will
2332     // wait until the thread changes to other thread state. There is no
2333     // guarantee on how soon we can obtain the SR_lock and complete the
2334     // self-suspend request. It would be a bad idea to let safepoint wait for
2335     // too long. Temporarily change the state to _thread_blocked to
2336     // let the VM thread know that this thread is ready for GC. The problem
2337     // of changing thread state is that safepoint could happen just after
2338     // java_suspend_self() returns after being resumed, and VM thread will
2339     // see the _thread_blocked state. We must check for safepoint
2340     // after restoring the state and make sure we won't leave while a safepoint
2341     // is in progress.
2342     thread->set_thread_state(_thread_blocked);
2343     thread->java_suspend_self();
2344     thread->set_thread_state(state);
2345     // Make sure new state is seen by VM thread
2346     if (os::is_MP()) {
2347       if (UseMembar) {
2348         // Force a fence between the write above and read below
2349         OrderAccess::fence();
2350       } else {
2351         // Must use this rather than serialization page in particular on Windows
2352         InterfaceSupport::serialize_memory(thread);
2353       }
2354     }
2355   }
2356 
2357   if (SafepointSynchronize::do_call_back()) {
2358     // If we are safepointing, then block the caller which may not be
2359     // the same as the target thread (see above).
2360     SafepointSynchronize::block(curJT);
2361   }
2362 
2363   if (thread->is_deopt_suspend()) {
2364     thread->clear_deopt_suspend();
2365     RegisterMap map(thread, false);
2366     frame f = thread->last_frame();
2367     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2368       f = f.sender(&map);
2369     }
2370     if (f.id() == thread->must_deopt_id()) {
2371       thread->clear_must_deopt_id();
2372       f.deoptimize(thread);
2373     } else {
2374       fatal("missed deoptimization!");
2375     }
2376   }
2377 }
2378 
2379 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2380 // progress or when _suspend_flags is non-zero.
2381 // Current thread needs to self-suspend if there is a suspend request and/or
2382 // block if a safepoint is in progress.
2383 // Also check for pending async exception (not including unsafe access error).
2384 // Note only the native==>VM/Java barriers can call this function and when
2385 // thread state is _thread_in_native_trans.
2386 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2387   check_safepoint_and_suspend_for_native_trans(thread);
2388 
2389   if (thread->has_async_exception()) {
2390     // We are in _thread_in_native_trans state, don't handle unsafe
2391     // access error since that may block.
2392     thread->check_and_handle_async_exceptions(false);
2393   }
2394 }
2395 
2396 // This is a variant of the normal
2397 // check_special_condition_for_native_trans with slightly different
2398 // semantics for use by critical native wrappers.  It does all the
2399 // normal checks but also performs the transition back into
2400 // thread_in_Java state.  This is required so that critical natives
2401 // can potentially block and perform a GC if they are the last thread
2402 // exiting the GC_locker.
2403 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2404   check_special_condition_for_native_trans(thread);
2405 
2406   // Finish the transition
2407   thread->set_thread_state(_thread_in_Java);
2408 
2409   if (thread->do_critical_native_unlock()) {
2410     ThreadInVMfromJavaNoAsyncException tiv(thread);
2411     GC_locker::unlock_critical(thread);
2412     thread->clear_critical_native_unlock();
2413   }
2414 }
2415 
2416 // We need to guarantee the Threads_lock here, since resumes are not
2417 // allowed during safepoint synchronization
2418 // Can only resume from an external suspension
2419 void JavaThread::java_resume() {
2420   assert_locked_or_safepoint(Threads_lock);
2421 
2422   // Sanity check: thread is gone, has started exiting or the thread
2423   // was not externally suspended.
2424   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2425     return;
2426   }
2427 
2428   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2429 
2430   clear_external_suspend();
2431 
2432   if (is_ext_suspended()) {
2433     clear_ext_suspended();
2434     SR_lock()->notify_all();
2435   }
2436 }
2437 
2438 void JavaThread::create_stack_guard_pages() {
2439   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2440   address low_addr = stack_base() - stack_size();
2441   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2442 
2443   int allocate = os::allocate_stack_guard_pages();
2444   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2445 
2446   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2447     warning("Attempt to allocate stack guard pages failed.");
2448     return;
2449   }
2450 
2451   if (os::guard_memory((char *) low_addr, len)) {
2452     _stack_guard_state = stack_guard_enabled;
2453   } else {
2454     warning("Attempt to protect stack guard pages failed.");
2455     if (os::uncommit_memory((char *) low_addr, len)) {
2456       warning("Attempt to deallocate stack guard pages failed.");
2457     }
2458   }
2459 }
2460 
2461 void JavaThread::remove_stack_guard_pages() {
2462   assert(Thread::current() == this, "from different thread");
2463   if (_stack_guard_state == stack_guard_unused) return;
2464   address low_addr = stack_base() - stack_size();
2465   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2466 
2467   if (os::allocate_stack_guard_pages()) {
2468     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2469       _stack_guard_state = stack_guard_unused;
2470     } else {
2471       warning("Attempt to deallocate stack guard pages failed.");
2472     }
2473   } else {
2474     if (_stack_guard_state == stack_guard_unused) return;
2475     if (os::unguard_memory((char *) low_addr, len)) {
2476       _stack_guard_state = stack_guard_unused;
2477     } else {
2478         warning("Attempt to unprotect stack guard pages failed.");
2479     }
2480   }
2481 }
2482 
2483 void JavaThread::enable_stack_yellow_zone() {
2484   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2485   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2486 
2487   // The base notation is from the stacks point of view, growing downward.
2488   // We need to adjust it to work correctly with guard_memory()
2489   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2490 
2491   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2492   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2493 
2494   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2495     _stack_guard_state = stack_guard_enabled;
2496   } else {
2497     warning("Attempt to guard stack yellow zone failed.");
2498   }
2499   enable_register_stack_guard();
2500 }
2501 
2502 void JavaThread::disable_stack_yellow_zone() {
2503   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2504   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2505 
2506   // Simply return if called for a thread that does not use guard pages.
2507   if (_stack_guard_state == stack_guard_unused) return;
2508 
2509   // The base notation is from the stacks point of view, growing downward.
2510   // We need to adjust it to work correctly with guard_memory()
2511   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2512 
2513   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2514     _stack_guard_state = stack_guard_yellow_disabled;
2515   } else {
2516     warning("Attempt to unguard stack yellow zone failed.");
2517   }
2518   disable_register_stack_guard();
2519 }
2520 
2521 void JavaThread::enable_stack_red_zone() {
2522   // The base notation is from the stacks point of view, growing downward.
2523   // We need to adjust it to work correctly with guard_memory()
2524   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2525   address base = stack_red_zone_base() - stack_red_zone_size();
2526 
2527   guarantee(base < stack_base(), "Error calculating stack red zone");
2528   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2529 
2530   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2531     warning("Attempt to guard stack red zone failed.");
2532   }
2533 }
2534 
2535 void JavaThread::disable_stack_red_zone() {
2536   // The base notation is from the stacks point of view, growing downward.
2537   // We need to adjust it to work correctly with guard_memory()
2538   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2539   address base = stack_red_zone_base() - stack_red_zone_size();
2540   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2541     warning("Attempt to unguard stack red zone failed.");
2542   }
2543 }
2544 
2545 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2546   // ignore is there is no stack
2547   if (!has_last_Java_frame()) return;
2548   // traverse the stack frames. Starts from top frame.
2549   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2550     frame* fr = fst.current();
2551     f(fr, fst.register_map());
2552   }
2553 }
2554 
2555 
2556 #ifndef PRODUCT
2557 // Deoptimization
2558 // Function for testing deoptimization
2559 void JavaThread::deoptimize() {
2560   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2561   StackFrameStream fst(this, UseBiasedLocking);
2562   bool deopt = false;           // Dump stack only if a deopt actually happens.
2563   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2564   // Iterate over all frames in the thread and deoptimize
2565   for (; !fst.is_done(); fst.next()) {
2566     if (fst.current()->can_be_deoptimized()) {
2567 
2568       if (only_at) {
2569         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2570         // consists of comma or carriage return separated numbers so
2571         // search for the current bci in that string.
2572         address pc = fst.current()->pc();
2573         nmethod* nm =  (nmethod*) fst.current()->cb();
2574         ScopeDesc* sd = nm->scope_desc_at( pc);
2575         char buffer[8];
2576         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2577         size_t len = strlen(buffer);
2578         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2579         while (found != NULL) {
2580           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2581               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2582             // Check that the bci found is bracketed by terminators.
2583             break;
2584           }
2585           found = strstr(found + 1, buffer);
2586         }
2587         if (!found) {
2588           continue;
2589         }
2590       }
2591 
2592       if (DebugDeoptimization && !deopt) {
2593         deopt = true; // One-time only print before deopt
2594         tty->print_cr("[BEFORE Deoptimization]");
2595         trace_frames();
2596         trace_stack();
2597       }
2598       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2599     }
2600   }
2601 
2602   if (DebugDeoptimization && deopt) {
2603     tty->print_cr("[AFTER Deoptimization]");
2604     trace_frames();
2605   }
2606 }
2607 
2608 
2609 // Make zombies
2610 void JavaThread::make_zombies() {
2611   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2612     if (fst.current()->can_be_deoptimized()) {
2613       // it is a Java nmethod
2614       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2615       nm->make_not_entrant();
2616     }
2617   }
2618 }
2619 #endif // PRODUCT
2620 
2621 
2622 void JavaThread::deoptimized_wrt_marked_nmethods() {
2623   if (!has_last_Java_frame()) return;
2624   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2625   StackFrameStream fst(this, UseBiasedLocking);
2626   for (; !fst.is_done(); fst.next()) {
2627     if (fst.current()->should_be_deoptimized()) {
2628       if (LogCompilation && xtty != NULL) {
2629         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2630         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2631                    this->name(), nm != NULL ? nm->compile_id() : -1);
2632       }
2633 
2634       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2635     }
2636   }
2637 }
2638 
2639 
2640 // GC support
2641 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2642 
2643 void JavaThread::gc_epilogue() {
2644   frames_do(frame_gc_epilogue);
2645 }
2646 
2647 
2648 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2649 
2650 void JavaThread::gc_prologue() {
2651   frames_do(frame_gc_prologue);
2652 }
2653 
2654 // If the caller is a NamedThread, then remember, in the current scope,
2655 // the given JavaThread in its _processed_thread field.
2656 class RememberProcessedThread: public StackObj {
2657   NamedThread* _cur_thr;
2658 public:
2659   RememberProcessedThread(JavaThread* jthr) {
2660     Thread* thread = Thread::current();
2661     if (thread->is_Named_thread()) {
2662       _cur_thr = (NamedThread *)thread;
2663       _cur_thr->set_processed_thread(jthr);
2664     } else {
2665       _cur_thr = NULL;
2666     }
2667   }
2668 
2669   ~RememberProcessedThread() {
2670     if (_cur_thr) {
2671       _cur_thr->set_processed_thread(NULL);
2672     }
2673   }
2674 };
2675 
2676 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2677   // Verify that the deferred card marks have been flushed.
2678   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2679 
2680   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2681   // since there may be more than one thread using each ThreadProfiler.
2682 
2683   // Traverse the GCHandles
2684   Thread::oops_do(f, cld_f, cf);
2685 
2686   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2687           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2688 
2689   if (has_last_Java_frame()) {
2690     // Record JavaThread to GC thread
2691     RememberProcessedThread rpt(this);
2692 
2693     // Traverse the privileged stack
2694     if (_privileged_stack_top != NULL) {
2695       _privileged_stack_top->oops_do(f);
2696     }
2697 
2698     // traverse the registered growable array
2699     if (_array_for_gc != NULL) {
2700       for (int index = 0; index < _array_for_gc->length(); index++) {
2701         f->do_oop(_array_for_gc->adr_at(index));
2702       }
2703     }
2704 
2705     // Traverse the monitor chunks
2706     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2707       chunk->oops_do(f);
2708     }
2709 
2710     // Traverse the execution stack
2711     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2712       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2713     }
2714   }
2715 
2716   // callee_target is never live across a gc point so NULL it here should
2717   // it still contain a methdOop.
2718 
2719   set_callee_target(NULL);
2720 
2721   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2722   // If we have deferred set_locals there might be oops waiting to be
2723   // written
2724   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2725   if (list != NULL) {
2726     for (int i = 0; i < list->length(); i++) {
2727       list->at(i)->oops_do(f);
2728     }
2729   }
2730 
2731   // Traverse instance variables at the end since the GC may be moving things
2732   // around using this function
2733   f->do_oop((oop*) &_threadObj);
2734   f->do_oop((oop*) &_vm_result);
2735   f->do_oop((oop*) &_exception_oop);
2736   f->do_oop((oop*) &_pending_async_exception);
2737 
2738   if (jvmti_thread_state() != NULL) {
2739     jvmti_thread_state()->oops_do(f);
2740   }
2741 }
2742 
2743 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2744   Thread::nmethods_do(cf);  // (super method is a no-op)
2745 
2746   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2747           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2748 
2749   if (has_last_Java_frame()) {
2750     // Traverse the execution stack
2751     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2752       fst.current()->nmethods_do(cf);
2753     }
2754   }
2755 }
2756 
2757 void JavaThread::metadata_do(void f(Metadata*)) {
2758   Thread::metadata_do(f);
2759   if (has_last_Java_frame()) {
2760     // Traverse the execution stack to call f() on the methods in the stack
2761     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2762       fst.current()->metadata_do(f);
2763     }
2764   } else if (is_Compiler_thread()) {
2765     // need to walk ciMetadata in current compile tasks to keep alive.
2766     CompilerThread* ct = (CompilerThread*)this;
2767     if (ct->env() != NULL) {
2768       ct->env()->metadata_do(f);
2769     }
2770   }
2771 }
2772 
2773 // Printing
2774 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2775   switch (_thread_state) {
2776   case _thread_uninitialized:     return "_thread_uninitialized";
2777   case _thread_new:               return "_thread_new";
2778   case _thread_new_trans:         return "_thread_new_trans";
2779   case _thread_in_native:         return "_thread_in_native";
2780   case _thread_in_native_trans:   return "_thread_in_native_trans";
2781   case _thread_in_vm:             return "_thread_in_vm";
2782   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2783   case _thread_in_Java:           return "_thread_in_Java";
2784   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2785   case _thread_blocked:           return "_thread_blocked";
2786   case _thread_blocked_trans:     return "_thread_blocked_trans";
2787   default:                        return "unknown thread state";
2788   }
2789 }
2790 
2791 #ifndef PRODUCT
2792 void JavaThread::print_thread_state_on(outputStream *st) const {
2793   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2794 };
2795 void JavaThread::print_thread_state() const {
2796   print_thread_state_on(tty);
2797 };
2798 #endif // PRODUCT
2799 
2800 // Called by Threads::print() for VM_PrintThreads operation
2801 void JavaThread::print_on(outputStream *st) const {
2802   st->print("\"%s\" ", get_thread_name());
2803   oop thread_oop = threadObj();
2804   if (thread_oop != NULL) {
2805     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2806     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2807     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2808   }
2809   Thread::print_on(st);
2810   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2811   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2812   if (thread_oop != NULL) {
2813     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2814   }
2815 #ifndef PRODUCT
2816   print_thread_state_on(st);
2817   _safepoint_state->print_on(st);
2818 #endif // PRODUCT
2819 }
2820 
2821 // Called by fatal error handler. The difference between this and
2822 // JavaThread::print() is that we can't grab lock or allocate memory.
2823 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2824   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2825   oop thread_obj = threadObj();
2826   if (thread_obj != NULL) {
2827      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2828   }
2829   st->print(" [");
2830   st->print("%s", _get_thread_state_name(_thread_state));
2831   if (osthread()) {
2832     st->print(", id=%d", osthread()->thread_id());
2833   }
2834   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2835             _stack_base - _stack_size, _stack_base);
2836   st->print("]");
2837   return;
2838 }
2839 
2840 // Verification
2841 
2842 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2843 
2844 void JavaThread::verify() {
2845   // Verify oops in the thread.
2846   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2847 
2848   // Verify the stack frames.
2849   frames_do(frame_verify);
2850 }
2851 
2852 // CR 6300358 (sub-CR 2137150)
2853 // Most callers of this method assume that it can't return NULL but a
2854 // thread may not have a name whilst it is in the process of attaching to
2855 // the VM - see CR 6412693, and there are places where a JavaThread can be
2856 // seen prior to having it's threadObj set (eg JNI attaching threads and
2857 // if vm exit occurs during initialization). These cases can all be accounted
2858 // for such that this method never returns NULL.
2859 const char* JavaThread::get_thread_name() const {
2860 #ifdef ASSERT
2861   // early safepoints can hit while current thread does not yet have TLS
2862   if (!SafepointSynchronize::is_at_safepoint()) {
2863     Thread *cur = Thread::current();
2864     if (!(cur->is_Java_thread() && cur == this)) {
2865       // Current JavaThreads are allowed to get their own name without
2866       // the Threads_lock.
2867       assert_locked_or_safepoint(Threads_lock);
2868     }
2869   }
2870 #endif // ASSERT
2871     return get_thread_name_string();
2872 }
2873 
2874 // Returns a non-NULL representation of this thread's name, or a suitable
2875 // descriptive string if there is no set name
2876 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2877   const char* name_str;
2878   oop thread_obj = threadObj();
2879   if (thread_obj != NULL) {
2880     typeArrayOop name = java_lang_Thread::name(thread_obj);
2881     if (name != NULL) {
2882       if (buf == NULL) {
2883         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2884       }
2885       else {
2886         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2887       }
2888     }
2889     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2890       name_str = "<no-name - thread is attaching>";
2891     }
2892     else {
2893       name_str = Thread::name();
2894     }
2895   }
2896   else {
2897     name_str = Thread::name();
2898   }
2899   assert(name_str != NULL, "unexpected NULL thread name");
2900   return name_str;
2901 }
2902 
2903 
2904 const char* JavaThread::get_threadgroup_name() const {
2905   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2906   oop thread_obj = threadObj();
2907   if (thread_obj != NULL) {
2908     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2909     if (thread_group != NULL) {
2910       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2911       // ThreadGroup.name can be null
2912       if (name != NULL) {
2913         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2914         return str;
2915       }
2916     }
2917   }
2918   return NULL;
2919 }
2920 
2921 const char* JavaThread::get_parent_name() const {
2922   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2923   oop thread_obj = threadObj();
2924   if (thread_obj != NULL) {
2925     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2926     if (thread_group != NULL) {
2927       oop parent = java_lang_ThreadGroup::parent(thread_group);
2928       if (parent != NULL) {
2929         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2930         // ThreadGroup.name can be null
2931         if (name != NULL) {
2932           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2933           return str;
2934         }
2935       }
2936     }
2937   }
2938   return NULL;
2939 }
2940 
2941 ThreadPriority JavaThread::java_priority() const {
2942   oop thr_oop = threadObj();
2943   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2944   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2945   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2946   return priority;
2947 }
2948 
2949 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2950 
2951   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2952   // Link Java Thread object <-> C++ Thread
2953 
2954   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2955   // and put it into a new Handle.  The Handle "thread_oop" can then
2956   // be used to pass the C++ thread object to other methods.
2957 
2958   // Set the Java level thread object (jthread) field of the
2959   // new thread (a JavaThread *) to C++ thread object using the
2960   // "thread_oop" handle.
2961 
2962   // Set the thread field (a JavaThread *) of the
2963   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2964 
2965   Handle thread_oop(Thread::current(),
2966                     JNIHandles::resolve_non_null(jni_thread));
2967   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2968     "must be initialized");
2969   set_threadObj(thread_oop());
2970   java_lang_Thread::set_thread(thread_oop(), this);
2971 
2972   if (prio == NoPriority) {
2973     prio = java_lang_Thread::priority(thread_oop());
2974     assert(prio != NoPriority, "A valid priority should be present");
2975   }
2976 
2977   // Push the Java priority down to the native thread; needs Threads_lock
2978   Thread::set_priority(this, prio);
2979 
2980   // Add the new thread to the Threads list and set it in motion.
2981   // We must have threads lock in order to call Threads::add.
2982   // It is crucial that we do not block before the thread is
2983   // added to the Threads list for if a GC happens, then the java_thread oop
2984   // will not be visited by GC.
2985   Threads::add(this);
2986 }
2987 
2988 oop JavaThread::current_park_blocker() {
2989   // Support for JSR-166 locks
2990   oop thread_oop = threadObj();
2991   if (thread_oop != NULL &&
2992       JDK_Version::current().supports_thread_park_blocker()) {
2993     return java_lang_Thread::park_blocker(thread_oop);
2994   }
2995   return NULL;
2996 }
2997 
2998 
2999 void JavaThread::print_stack_on(outputStream* st) {
3000   if (!has_last_Java_frame()) return;
3001   ResourceMark rm;
3002   HandleMark   hm;
3003 
3004   RegisterMap reg_map(this);
3005   vframe* start_vf = last_java_vframe(&reg_map);
3006   int count = 0;
3007   for (vframe* f = start_vf; f; f = f->sender()) {
3008     if (f->is_java_frame()) {
3009       javaVFrame* jvf = javaVFrame::cast(f);
3010       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3011 
3012       // Print out lock information
3013       if (JavaMonitorsInStackTrace) {
3014         jvf->print_lock_info_on(st, count);
3015       }
3016     } else {
3017       // Ignore non-Java frames
3018     }
3019 
3020     // Bail-out case for too deep stacks
3021     count++;
3022     if (MaxJavaStackTraceDepth == count) return;
3023   }
3024 }
3025 
3026 
3027 // JVMTI PopFrame support
3028 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3029   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3030   if (in_bytes(size_in_bytes) != 0) {
3031     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3032     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3033     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3034   }
3035 }
3036 
3037 void* JavaThread::popframe_preserved_args() {
3038   return _popframe_preserved_args;
3039 }
3040 
3041 ByteSize JavaThread::popframe_preserved_args_size() {
3042   return in_ByteSize(_popframe_preserved_args_size);
3043 }
3044 
3045 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3046   int sz = in_bytes(popframe_preserved_args_size());
3047   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3048   return in_WordSize(sz / wordSize);
3049 }
3050 
3051 void JavaThread::popframe_free_preserved_args() {
3052   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3053   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3054   _popframe_preserved_args = NULL;
3055   _popframe_preserved_args_size = 0;
3056 }
3057 
3058 #ifndef PRODUCT
3059 
3060 void JavaThread::trace_frames() {
3061   tty->print_cr("[Describe stack]");
3062   int frame_no = 1;
3063   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3064     tty->print("  %d. ", frame_no++);
3065     fst.current()->print_value_on(tty, this);
3066     tty->cr();
3067   }
3068 }
3069 
3070 class PrintAndVerifyOopClosure: public OopClosure {
3071  protected:
3072   template <class T> inline void do_oop_work(T* p) {
3073     oop obj = oopDesc::load_decode_heap_oop(p);
3074     if (obj == NULL) return;
3075     tty->print(INTPTR_FORMAT ": ", p);
3076     if (obj->is_oop_or_null()) {
3077       if (obj->is_objArray()) {
3078         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3079       } else {
3080         obj->print();
3081       }
3082     } else {
3083       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3084     }
3085     tty->cr();
3086   }
3087  public:
3088   virtual void do_oop(oop* p) { do_oop_work(p); }
3089   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3090 };
3091 
3092 
3093 static void oops_print(frame* f, const RegisterMap *map) {
3094   PrintAndVerifyOopClosure print;
3095   f->print_value();
3096   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3097 }
3098 
3099 // Print our all the locations that contain oops and whether they are
3100 // valid or not.  This useful when trying to find the oldest frame
3101 // where an oop has gone bad since the frame walk is from youngest to
3102 // oldest.
3103 void JavaThread::trace_oops() {
3104   tty->print_cr("[Trace oops]");
3105   frames_do(oops_print);
3106 }
3107 
3108 
3109 #ifdef ASSERT
3110 // Print or validate the layout of stack frames
3111 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3112   ResourceMark rm;
3113   PRESERVE_EXCEPTION_MARK;
3114   FrameValues values;
3115   int frame_no = 0;
3116   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3117     fst.current()->describe(values, ++frame_no);
3118     if (depth == frame_no) break;
3119   }
3120   if (validate_only) {
3121     values.validate();
3122   } else {
3123     tty->print_cr("[Describe stack layout]");
3124     values.print(this);
3125   }
3126 }
3127 #endif
3128 
3129 void JavaThread::trace_stack_from(vframe* start_vf) {
3130   ResourceMark rm;
3131   int vframe_no = 1;
3132   for (vframe* f = start_vf; f; f = f->sender()) {
3133     if (f->is_java_frame()) {
3134       javaVFrame::cast(f)->print_activation(vframe_no++);
3135     } else {
3136       f->print();
3137     }
3138     if (vframe_no > StackPrintLimit) {
3139       tty->print_cr("...<more frames>...");
3140       return;
3141     }
3142   }
3143 }
3144 
3145 
3146 void JavaThread::trace_stack() {
3147   if (!has_last_Java_frame()) return;
3148   ResourceMark rm;
3149   HandleMark   hm;
3150   RegisterMap reg_map(this);
3151   trace_stack_from(last_java_vframe(&reg_map));
3152 }
3153 
3154 
3155 #endif // PRODUCT
3156 
3157 
3158 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3159   assert(reg_map != NULL, "a map must be given");
3160   frame f = last_frame();
3161   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3162     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3163   }
3164   return NULL;
3165 }
3166 
3167 
3168 Klass* JavaThread::security_get_caller_class(int depth) {
3169   vframeStream vfst(this);
3170   vfst.security_get_caller_frame(depth);
3171   if (!vfst.at_end()) {
3172     return vfst.method()->method_holder();
3173   }
3174   return NULL;
3175 }
3176 
3177 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3178   assert(thread->is_Compiler_thread(), "must be compiler thread");
3179   CompileBroker::compiler_thread_loop();
3180 }
3181 
3182 // Create a CompilerThread
3183 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3184 : JavaThread(&compiler_thread_entry) {
3185   _env   = NULL;
3186   _log   = NULL;
3187   _task  = NULL;
3188   _queue = queue;
3189   _counters = counters;
3190   _buffer_blob = NULL;
3191   _scanned_nmethod = NULL;
3192   _compiler = NULL;
3193 
3194 #ifndef PRODUCT
3195   _ideal_graph_printer = NULL;
3196 #endif
3197 }
3198 
3199 void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3200   JavaThread::oops_do(f, cld_f, cf);
3201   if (_scanned_nmethod != NULL && cf != NULL) {
3202     // Safepoints can occur when the sweeper is scanning an nmethod so
3203     // process it here to make sure it isn't unloaded in the middle of
3204     // a scan.
3205     cf->do_code_blob(_scanned_nmethod);
3206   }
3207 }
3208 
3209 
3210 // ======= Threads ========
3211 
3212 // The Threads class links together all active threads, and provides
3213 // operations over all threads.  It is protected by its own Mutex
3214 // lock, which is also used in other contexts to protect thread
3215 // operations from having the thread being operated on from exiting
3216 // and going away unexpectedly (e.g., safepoint synchronization)
3217 
3218 JavaThread* Threads::_thread_list = NULL;
3219 int         Threads::_number_of_threads = 0;
3220 int         Threads::_number_of_non_daemon_threads = 0;
3221 int         Threads::_return_code = 0;
3222 size_t      JavaThread::_stack_size_at_create = 0;
3223 #ifdef ASSERT
3224 bool        Threads::_vm_complete = false;
3225 #endif
3226 
3227 // All JavaThreads
3228 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3229 
3230 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3231 void Threads::threads_do(ThreadClosure* tc) {
3232   assert_locked_or_safepoint(Threads_lock);
3233   // ALL_JAVA_THREADS iterates through all JavaThreads
3234   ALL_JAVA_THREADS(p) {
3235     tc->do_thread(p);
3236   }
3237   // Someday we could have a table or list of all non-JavaThreads.
3238   // For now, just manually iterate through them.
3239   tc->do_thread(VMThread::vm_thread());
3240   Universe::heap()->gc_threads_do(tc);
3241   WatcherThread *wt = WatcherThread::watcher_thread();
3242   // Strictly speaking, the following NULL check isn't sufficient to make sure
3243   // the data for WatcherThread is still valid upon being examined. However,
3244   // considering that WatchThread terminates when the VM is on the way to
3245   // exit at safepoint, the chance of the above is extremely small. The right
3246   // way to prevent termination of WatcherThread would be to acquire
3247   // Terminator_lock, but we can't do that without violating the lock rank
3248   // checking in some cases.
3249   if (wt != NULL)
3250     tc->do_thread(wt);
3251 
3252   // If CompilerThreads ever become non-JavaThreads, add them here
3253 }
3254 
3255 
3256 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3257   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3258 
3259   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3260     create_vm_init_libraries();
3261   }
3262 
3263   initialize_class(vmSymbols::java_lang_String(), CHECK);
3264 
3265   // Initialize java_lang.System (needed before creating the thread)
3266   initialize_class(vmSymbols::java_lang_System(), CHECK);
3267   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3268   Handle thread_group = create_initial_thread_group(CHECK);
3269   Universe::set_main_thread_group(thread_group());
3270   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3271   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3272   main_thread->set_threadObj(thread_object);
3273   // Set thread status to running since main thread has
3274   // been started and running.
3275   java_lang_Thread::set_thread_status(thread_object,
3276                                       java_lang_Thread::RUNNABLE);
3277 
3278   // The VM creates & returns objects of this class. Make sure it's initialized.
3279   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3280 
3281   // The VM preresolves methods to these classes. Make sure that they get initialized
3282   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3283   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3284   call_initializeSystemClass(CHECK);
3285 
3286   // get the Java runtime name after java.lang.System is initialized
3287   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3288   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3289 
3290   // an instance of OutOfMemory exception has been allocated earlier
3291   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3292   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3293   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3294   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3295   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3296   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3297   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3298   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3299 }
3300 
3301 void Threads::initialize_jsr292_core_classes(TRAPS) {
3302   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3303   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3304   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3305 }
3306 
3307 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3308 
3309   extern void JDK_Version_init();
3310 
3311   // Check version
3312   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3313 
3314   // Initialize the output stream module
3315   ostream_init();
3316 
3317   // Process java launcher properties.
3318   Arguments::process_sun_java_launcher_properties(args);
3319 
3320   // Initialize the os module before using TLS
3321   os::init();
3322 
3323   // Initialize system properties.
3324   Arguments::init_system_properties();
3325 
3326   // So that JDK version can be used as a discriminator when parsing arguments
3327   JDK_Version_init();
3328 
3329   // Update/Initialize System properties after JDK version number is known
3330   Arguments::init_version_specific_system_properties();
3331 
3332   // Parse arguments
3333   jint parse_result = Arguments::parse(args);
3334   if (parse_result != JNI_OK) return parse_result;
3335 
3336   os::init_before_ergo();
3337 
3338   jint ergo_result = Arguments::apply_ergo();
3339   if (ergo_result != JNI_OK) return ergo_result;
3340 
3341   if (PauseAtStartup) {
3342     os::pause();
3343   }
3344 
3345   HOTSPOT_VM_INIT_BEGIN();
3346 
3347   // Record VM creation timing statistics
3348   TraceVmCreationTime create_vm_timer;
3349   create_vm_timer.start();
3350 
3351   // Timing (must come after argument parsing)
3352   TraceTime timer("Create VM", TraceStartupTime);
3353 
3354   // Initialize the os module after parsing the args
3355   jint os_init_2_result = os::init_2();
3356   if (os_init_2_result != JNI_OK) return os_init_2_result;
3357 
3358   jint adjust_after_os_result = Arguments::adjust_after_os();
3359   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3360 
3361   // initialize TLS
3362   ThreadLocalStorage::init();
3363 
3364   // Bootstrap native memory tracking, so it can start recording memory
3365   // activities before worker thread is started. This is the first phase
3366   // of bootstrapping, VM is currently running in single-thread mode.
3367   MemTracker::bootstrap_single_thread();
3368 
3369   // Initialize output stream logging
3370   ostream_init_log();
3371 
3372   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3373   // Must be before create_vm_init_agents()
3374   if (Arguments::init_libraries_at_startup()) {
3375     convert_vm_init_libraries_to_agents();
3376   }
3377 
3378   // Launch -agentlib/-agentpath and converted -Xrun agents
3379   if (Arguments::init_agents_at_startup()) {
3380     create_vm_init_agents();
3381   }
3382 
3383   // Initialize Threads state
3384   _thread_list = NULL;
3385   _number_of_threads = 0;
3386   _number_of_non_daemon_threads = 0;
3387 
3388   // Initialize global data structures and create system classes in heap
3389   vm_init_globals();
3390 
3391   // Attach the main thread to this os thread
3392   JavaThread* main_thread = new JavaThread();
3393   main_thread->set_thread_state(_thread_in_vm);
3394   // must do this before set_active_handles and initialize_thread_local_storage
3395   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3396   // change the stack size recorded here to one based on the java thread
3397   // stacksize. This adjusted size is what is used to figure the placement
3398   // of the guard pages.
3399   main_thread->record_stack_base_and_size();
3400   main_thread->initialize_thread_local_storage();
3401 
3402   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3403 
3404   if (!main_thread->set_as_starting_thread()) {
3405     vm_shutdown_during_initialization(
3406       "Failed necessary internal allocation. Out of swap space");
3407     delete main_thread;
3408     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3409     return JNI_ENOMEM;
3410   }
3411 
3412   // Enable guard page *after* os::create_main_thread(), otherwise it would
3413   // crash Linux VM, see notes in os_linux.cpp.
3414   main_thread->create_stack_guard_pages();
3415 
3416   // Initialize Java-Level synchronization subsystem
3417   ObjectMonitor::Initialize();
3418 
3419   // Second phase of bootstrapping, VM is about entering multi-thread mode
3420   MemTracker::bootstrap_multi_thread();
3421 
3422   // Initialize global modules
3423   jint status = init_globals();
3424   if (status != JNI_OK) {
3425     delete main_thread;
3426     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3427     return status;
3428   }
3429 
3430   // Should be done after the heap is fully created
3431   main_thread->cache_global_variables();
3432 
3433   HandleMark hm;
3434 
3435   { MutexLocker mu(Threads_lock);
3436     Threads::add(main_thread);
3437   }
3438 
3439   // Any JVMTI raw monitors entered in onload will transition into
3440   // real raw monitor. VM is setup enough here for raw monitor enter.
3441   JvmtiExport::transition_pending_onload_raw_monitors();
3442 
3443   // Fully start NMT
3444   MemTracker::start();
3445 
3446   // Create the VMThread
3447   { TraceTime timer("Start VMThread", TraceStartupTime);
3448     VMThread::create();
3449     Thread* vmthread = VMThread::vm_thread();
3450 
3451     if (!os::create_thread(vmthread, os::vm_thread))
3452       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3453 
3454     // Wait for the VM thread to become ready, and VMThread::run to initialize
3455     // Monitors can have spurious returns, must always check another state flag
3456     {
3457       MutexLocker ml(Notify_lock);
3458       os::start_thread(vmthread);
3459       while (vmthread->active_handles() == NULL) {
3460         Notify_lock->wait();
3461       }
3462     }
3463   }
3464 
3465   assert(Universe::is_fully_initialized(), "not initialized");
3466   if (VerifyDuringStartup) {
3467     // Make sure we're starting with a clean slate.
3468     VM_Verify verify_op;
3469     VMThread::execute(&verify_op);
3470   }
3471 
3472   Thread* THREAD = Thread::current();
3473 
3474   // At this point, the Universe is initialized, but we have not executed
3475   // any byte code.  Now is a good time (the only time) to dump out the
3476   // internal state of the JVM for sharing.
3477   if (DumpSharedSpaces) {
3478     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3479     ShouldNotReachHere();
3480   }
3481 
3482   // Always call even when there are not JVMTI environments yet, since environments
3483   // may be attached late and JVMTI must track phases of VM execution
3484   JvmtiExport::enter_start_phase();
3485 
3486   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3487   JvmtiExport::post_vm_start();
3488 
3489   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3490 
3491   // We need this for ClassDataSharing - the initial vm.info property is set
3492   // with the default value of CDS "sharing" which may be reset through
3493   // command line options.
3494   reset_vm_info_property(CHECK_JNI_ERR);
3495 
3496   quicken_jni_functions();
3497 
3498   // Must be run after init_ft which initializes ft_enabled
3499   if (TRACE_INITIALIZE() != JNI_OK) {
3500     vm_exit_during_initialization("Failed to initialize tracing backend");
3501   }
3502 
3503   // Set flag that basic initialization has completed. Used by exceptions and various
3504   // debug stuff, that does not work until all basic classes have been initialized.
3505   set_init_completed();
3506 
3507   Metaspace::post_initialize();
3508 
3509   HOTSPOT_VM_INIT_END();
3510 
3511   // record VM initialization completion time
3512 #if INCLUDE_MANAGEMENT
3513   Management::record_vm_init_completed();
3514 #endif // INCLUDE_MANAGEMENT
3515 
3516   // Compute system loader. Note that this has to occur after set_init_completed, since
3517   // valid exceptions may be thrown in the process.
3518   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3519   // set_init_completed has just been called, causing exceptions not to be shortcut
3520   // anymore. We call vm_exit_during_initialization directly instead.
3521   SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3522 
3523 #if INCLUDE_ALL_GCS
3524   // Support for ConcurrentMarkSweep. This should be cleaned up
3525   // and better encapsulated. The ugly nested if test would go away
3526   // once things are properly refactored. XXX YSR
3527   if (UseConcMarkSweepGC || UseG1GC) {
3528     if (UseConcMarkSweepGC) {
3529       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3530     } else {
3531       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3532     }
3533   }
3534 #endif // INCLUDE_ALL_GCS
3535 
3536   // Always call even when there are not JVMTI environments yet, since environments
3537   // may be attached late and JVMTI must track phases of VM execution
3538   JvmtiExport::enter_live_phase();
3539 
3540   // Signal Dispatcher needs to be started before VMInit event is posted
3541   os::signal_init();
3542 
3543   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3544   if (!DisableAttachMechanism) {
3545     AttachListener::vm_start();
3546     if (StartAttachListener || AttachListener::init_at_startup()) {
3547       AttachListener::init();
3548     }
3549   }
3550 
3551   // Launch -Xrun agents
3552   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3553   // back-end can launch with -Xdebug -Xrunjdwp.
3554   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3555     create_vm_init_libraries();
3556   }
3557 
3558   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3559   JvmtiExport::post_vm_initialized();
3560 
3561   if (TRACE_START() != JNI_OK) {
3562     vm_exit_during_initialization("Failed to start tracing backend.");
3563   }
3564 
3565   if (CleanChunkPoolAsync) {
3566     Chunk::start_chunk_pool_cleaner_task();
3567   }
3568 
3569   // initialize compiler(s)
3570 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3571   CompileBroker::compilation_init();
3572 #endif
3573 
3574   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3575   // It is done after compilers are initialized, because otherwise compilations of
3576   // signature polymorphic MH intrinsics can be missed
3577   // (see SystemDictionary::find_method_handle_intrinsic).
3578   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3579 
3580 #if INCLUDE_MANAGEMENT
3581   Management::initialize(THREAD);
3582 
3583   if (HAS_PENDING_EXCEPTION) {
3584     // management agent fails to start possibly due to
3585     // configuration problem and is responsible for printing
3586     // stack trace if appropriate. Simply exit VM.
3587     vm_exit(1);
3588   }
3589 #endif // INCLUDE_MANAGEMENT
3590 
3591   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3592   if (MemProfiling)                   MemProfiler::engage();
3593   StatSampler::engage();
3594   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3595 
3596   BiasedLocking::init();
3597 
3598 #if INCLUDE_RTM_OPT
3599   RTMLockingCounters::init();
3600 #endif
3601 
3602   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3603     call_postVMInitHook(THREAD);
3604     // The Java side of PostVMInitHook.run must deal with all
3605     // exceptions and provide means of diagnosis.
3606     if (HAS_PENDING_EXCEPTION) {
3607       CLEAR_PENDING_EXCEPTION;
3608     }
3609   }
3610 
3611   {
3612       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3613       // Make sure the watcher thread can be started by WatcherThread::start()
3614       // or by dynamic enrollment.
3615       WatcherThread::make_startable();
3616       // Start up the WatcherThread if there are any periodic tasks
3617       // NOTE:  All PeriodicTasks should be registered by now. If they
3618       //   aren't, late joiners might appear to start slowly (we might
3619       //   take a while to process their first tick).
3620       if (PeriodicTask::num_tasks() > 0) {
3621           WatcherThread::start();
3622       }
3623   }
3624 
3625   // Give os specific code one last chance to start
3626   os::init_3();
3627 
3628   create_vm_timer.end();
3629 #ifdef ASSERT
3630   _vm_complete = true;
3631 #endif
3632   return JNI_OK;
3633 }
3634 
3635 // type for the Agent_OnLoad and JVM_OnLoad entry points
3636 extern "C" {
3637   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3638 }
3639 // Find a command line agent library and return its entry point for
3640 //         -agentlib:  -agentpath:   -Xrun
3641 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3642 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3643   OnLoadEntry_t on_load_entry = NULL;
3644   void *library = NULL;
3645 
3646   if (!agent->valid()) {
3647     char buffer[JVM_MAXPATHLEN];
3648     char ebuf[1024];
3649     const char *name = agent->name();
3650     const char *msg = "Could not find agent library ";
3651 
3652     // First check to see if agent is statically linked into executable
3653     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3654       library = agent->os_lib();
3655     } else if (agent->is_absolute_path()) {
3656       library = os::dll_load(name, ebuf, sizeof ebuf);
3657       if (library == NULL) {
3658         const char *sub_msg = " in absolute path, with error: ";
3659         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3660         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3661         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3662         // If we can't find the agent, exit.
3663         vm_exit_during_initialization(buf, NULL);
3664         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3665       }
3666     } else {
3667       // Try to load the agent from the standard dll directory
3668       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3669                              name)) {
3670         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3671       }
3672       if (library == NULL) { // Try the local directory
3673         char ns[1] = {0};
3674         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3675           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3676         }
3677         if (library == NULL) {
3678           const char *sub_msg = " on the library path, with error: ";
3679           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3680           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3681           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3682           // If we can't find the agent, exit.
3683           vm_exit_during_initialization(buf, NULL);
3684           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3685         }
3686       }
3687     }
3688     agent->set_os_lib(library);
3689     agent->set_valid();
3690   }
3691 
3692   // Find the OnLoad function.
3693   on_load_entry =
3694     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3695                                                           false,
3696                                                           on_load_symbols,
3697                                                           num_symbol_entries));
3698   return on_load_entry;
3699 }
3700 
3701 // Find the JVM_OnLoad entry point
3702 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3703   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3704   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3705 }
3706 
3707 // Find the Agent_OnLoad entry point
3708 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3709   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3710   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3711 }
3712 
3713 // For backwards compatibility with -Xrun
3714 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3715 // treated like -agentpath:
3716 // Must be called before agent libraries are created
3717 void Threads::convert_vm_init_libraries_to_agents() {
3718   AgentLibrary* agent;
3719   AgentLibrary* next;
3720 
3721   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3722     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3723     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3724 
3725     // If there is an JVM_OnLoad function it will get called later,
3726     // otherwise see if there is an Agent_OnLoad
3727     if (on_load_entry == NULL) {
3728       on_load_entry = lookup_agent_on_load(agent);
3729       if (on_load_entry != NULL) {
3730         // switch it to the agent list -- so that Agent_OnLoad will be called,
3731         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3732         Arguments::convert_library_to_agent(agent);
3733       } else {
3734         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3735       }
3736     }
3737   }
3738 }
3739 
3740 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3741 // Invokes Agent_OnLoad
3742 // Called very early -- before JavaThreads exist
3743 void Threads::create_vm_init_agents() {
3744   extern struct JavaVM_ main_vm;
3745   AgentLibrary* agent;
3746 
3747   JvmtiExport::enter_onload_phase();
3748 
3749   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3750     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3751 
3752     if (on_load_entry != NULL) {
3753       // Invoke the Agent_OnLoad function
3754       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3755       if (err != JNI_OK) {
3756         vm_exit_during_initialization("agent library failed to init", agent->name());
3757       }
3758     } else {
3759       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3760     }
3761   }
3762   JvmtiExport::enter_primordial_phase();
3763 }
3764 
3765 extern "C" {
3766   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3767 }
3768 
3769 void Threads::shutdown_vm_agents() {
3770   // Send any Agent_OnUnload notifications
3771   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3772   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3773   extern struct JavaVM_ main_vm;
3774   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3775 
3776     // Find the Agent_OnUnload function.
3777     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3778       os::find_agent_function(agent,
3779       false,
3780       on_unload_symbols,
3781       num_symbol_entries));
3782 
3783     // Invoke the Agent_OnUnload function
3784     if (unload_entry != NULL) {
3785       JavaThread* thread = JavaThread::current();
3786       ThreadToNativeFromVM ttn(thread);
3787       HandleMark hm(thread);
3788       (*unload_entry)(&main_vm);
3789     }
3790   }
3791 }
3792 
3793 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3794 // Invokes JVM_OnLoad
3795 void Threads::create_vm_init_libraries() {
3796   extern struct JavaVM_ main_vm;
3797   AgentLibrary* agent;
3798 
3799   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3800     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3801 
3802     if (on_load_entry != NULL) {
3803       // Invoke the JVM_OnLoad function
3804       JavaThread* thread = JavaThread::current();
3805       ThreadToNativeFromVM ttn(thread);
3806       HandleMark hm(thread);
3807       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3808       if (err != JNI_OK) {
3809         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3810       }
3811     } else {
3812       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3813     }
3814   }
3815 }
3816 
3817 // Last thread running calls java.lang.Shutdown.shutdown()
3818 void JavaThread::invoke_shutdown_hooks() {
3819   HandleMark hm(this);
3820 
3821   // We could get here with a pending exception, if so clear it now.
3822   if (this->has_pending_exception()) {
3823     this->clear_pending_exception();
3824   }
3825 
3826   EXCEPTION_MARK;
3827   Klass* k =
3828     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3829                                       THREAD);
3830   if (k != NULL) {
3831     // SystemDictionary::resolve_or_null will return null if there was
3832     // an exception.  If we cannot load the Shutdown class, just don't
3833     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3834     // and finalizers (if runFinalizersOnExit is set) won't be run.
3835     // Note that if a shutdown hook was registered or runFinalizersOnExit
3836     // was called, the Shutdown class would have already been loaded
3837     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3838     instanceKlassHandle shutdown_klass (THREAD, k);
3839     JavaValue result(T_VOID);
3840     JavaCalls::call_static(&result,
3841                            shutdown_klass,
3842                            vmSymbols::shutdown_method_name(),
3843                            vmSymbols::void_method_signature(),
3844                            THREAD);
3845   }
3846   CLEAR_PENDING_EXCEPTION;
3847 }
3848 
3849 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3850 // the program falls off the end of main(). Another VM exit path is through
3851 // vm_exit() when the program calls System.exit() to return a value or when
3852 // there is a serious error in VM. The two shutdown paths are not exactly
3853 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3854 // and VM_Exit op at VM level.
3855 //
3856 // Shutdown sequence:
3857 //   + Shutdown native memory tracking if it is on
3858 //   + Wait until we are the last non-daemon thread to execute
3859 //     <-- every thing is still working at this moment -->
3860 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3861 //        shutdown hooks, run finalizers if finalization-on-exit
3862 //   + Call before_exit(), prepare for VM exit
3863 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3864 //        currently the only user of this mechanism is File.deleteOnExit())
3865 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3866 //        post thread end and vm death events to JVMTI,
3867 //        stop signal thread
3868 //   + Call JavaThread::exit(), it will:
3869 //      > release JNI handle blocks, remove stack guard pages
3870 //      > remove this thread from Threads list
3871 //     <-- no more Java code from this thread after this point -->
3872 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3873 //     the compiler threads at safepoint
3874 //     <-- do not use anything that could get blocked by Safepoint -->
3875 //   + Disable tracing at JNI/JVM barriers
3876 //   + Set _vm_exited flag for threads that are still running native code
3877 //   + Delete this thread
3878 //   + Call exit_globals()
3879 //      > deletes tty
3880 //      > deletes PerfMemory resources
3881 //   + Return to caller
3882 
3883 bool Threads::destroy_vm() {
3884   JavaThread* thread = JavaThread::current();
3885 
3886 #ifdef ASSERT
3887   _vm_complete = false;
3888 #endif
3889   // Wait until we are the last non-daemon thread to execute
3890   { MutexLocker nu(Threads_lock);
3891     while (Threads::number_of_non_daemon_threads() > 1)
3892       // This wait should make safepoint checks, wait without a timeout,
3893       // and wait as a suspend-equivalent condition.
3894       //
3895       // Note: If the FlatProfiler is running and this thread is waiting
3896       // for another non-daemon thread to finish, then the FlatProfiler
3897       // is waiting for the external suspend request on this thread to
3898       // complete. wait_for_ext_suspend_completion() will eventually
3899       // timeout, but that takes time. Making this wait a suspend-
3900       // equivalent condition solves that timeout problem.
3901       //
3902       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3903                          Mutex::_as_suspend_equivalent_flag);
3904   }
3905 
3906   // Hang forever on exit if we are reporting an error.
3907   if (ShowMessageBoxOnError && is_error_reported()) {
3908     os::infinite_sleep();
3909   }
3910   os::wait_for_keypress_at_exit();
3911 
3912   // run Java level shutdown hooks
3913   thread->invoke_shutdown_hooks();
3914 
3915   before_exit(thread);
3916 
3917   thread->exit(true);
3918 
3919   // Stop VM thread.
3920   {
3921     // 4945125 The vm thread comes to a safepoint during exit.
3922     // GC vm_operations can get caught at the safepoint, and the
3923     // heap is unparseable if they are caught. Grab the Heap_lock
3924     // to prevent this. The GC vm_operations will not be able to
3925     // queue until after the vm thread is dead. After this point,
3926     // we'll never emerge out of the safepoint before the VM exits.
3927 
3928     MutexLocker ml(Heap_lock);
3929 
3930     VMThread::wait_for_vm_thread_exit();
3931     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3932     VMThread::destroy();
3933   }
3934 
3935   // clean up ideal graph printers
3936 #if defined(COMPILER2) && !defined(PRODUCT)
3937   IdealGraphPrinter::clean_up();
3938 #endif
3939 
3940   // Now, all Java threads are gone except daemon threads. Daemon threads
3941   // running Java code or in VM are stopped by the Safepoint. However,
3942   // daemon threads executing native code are still running.  But they
3943   // will be stopped at native=>Java/VM barriers. Note that we can't
3944   // simply kill or suspend them, as it is inherently deadlock-prone.
3945 
3946 #ifndef PRODUCT
3947   // disable function tracing at JNI/JVM barriers
3948   TraceJNICalls = false;
3949   TraceJVMCalls = false;
3950   TraceRuntimeCalls = false;
3951 #endif
3952 
3953   VM_Exit::set_vm_exited();
3954 
3955   notify_vm_shutdown();
3956 
3957   delete thread;
3958 
3959   // exit_globals() will delete tty
3960   exit_globals();
3961 
3962   return true;
3963 }
3964 
3965 
3966 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3967   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3968   return is_supported_jni_version(version);
3969 }
3970 
3971 
3972 jboolean Threads::is_supported_jni_version(jint version) {
3973   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3974   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3975   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3976   if (version == JNI_VERSION_1_8) return JNI_TRUE;
3977   return JNI_FALSE;
3978 }
3979 
3980 
3981 void Threads::add(JavaThread* p, bool force_daemon) {
3982   // The threads lock must be owned at this point
3983   assert_locked_or_safepoint(Threads_lock);
3984 
3985   // See the comment for this method in thread.hpp for its purpose and
3986   // why it is called here.
3987   p->initialize_queues();
3988   p->set_next(_thread_list);
3989   _thread_list = p;
3990   _number_of_threads++;
3991   oop threadObj = p->threadObj();
3992   bool daemon = true;
3993   // Bootstrapping problem: threadObj can be null for initial
3994   // JavaThread (or for threads attached via JNI)
3995   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3996     _number_of_non_daemon_threads++;
3997     daemon = false;
3998   }
3999 
4000   p->set_safepoint_visible(true);
4001 
4002   ThreadService::add_thread(p, daemon);
4003 
4004   // Possible GC point.
4005   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4006 }
4007 
4008 void Threads::remove(JavaThread* p) {
4009   // Extra scope needed for Thread_lock, so we can check
4010   // that we do not remove thread without safepoint code notice
4011   { MutexLocker ml(Threads_lock);
4012 
4013     assert(includes(p), "p must be present");
4014 
4015     JavaThread* current = _thread_list;
4016     JavaThread* prev    = NULL;
4017 
4018     while (current != p) {
4019       prev    = current;
4020       current = current->next();
4021     }
4022 
4023     if (prev) {
4024       prev->set_next(current->next());
4025     } else {
4026       _thread_list = p->next();
4027     }
4028     _number_of_threads--;
4029     oop threadObj = p->threadObj();
4030     bool daemon = true;
4031     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4032       _number_of_non_daemon_threads--;
4033       daemon = false;
4034 
4035       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4036       // on destroy_vm will wake up.
4037       if (number_of_non_daemon_threads() == 1)
4038         Threads_lock->notify_all();
4039     }
4040     ThreadService::remove_thread(p, daemon);
4041 
4042     // Make sure that safepoint code disregard this thread. This is needed since
4043     // the thread might mess around with locks after this point. This can cause it
4044     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4045     // of this thread since it is removed from the queue.
4046     p->set_terminated_value();
4047 
4048     // Now, this thread is not visible to safepoint
4049     p->set_safepoint_visible(false);
4050     // once the thread becomes safepoint invisible, we can not use its per-thread
4051     // recorder. And Threads::do_threads() no longer walks this thread, so we have
4052     // to release its per-thread recorder here.
4053     MemTracker::thread_exiting(p);
4054   } // unlock Threads_lock
4055 
4056   // Since Events::log uses a lock, we grab it outside the Threads_lock
4057   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4058 }
4059 
4060 // Threads_lock must be held when this is called (or must be called during a safepoint)
4061 bool Threads::includes(JavaThread* p) {
4062   assert(Threads_lock->is_locked(), "sanity check");
4063   ALL_JAVA_THREADS(q) {
4064     if (q == p) {
4065       return true;
4066     }
4067   }
4068   return false;
4069 }
4070 
4071 // Operations on the Threads list for GC.  These are not explicitly locked,
4072 // but the garbage collector must provide a safe context for them to run.
4073 // In particular, these things should never be called when the Threads_lock
4074 // is held by some other thread. (Note: the Safepoint abstraction also
4075 // uses the Threads_lock to guarantee this property. It also makes sure that
4076 // all threads gets blocked when exiting or starting).
4077 
4078 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4079   ALL_JAVA_THREADS(p) {
4080     p->oops_do(f, cld_f, cf);
4081   }
4082   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4083 }
4084 
4085 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4086   // Introduce a mechanism allowing parallel threads to claim threads as
4087   // root groups.  Overhead should be small enough to use all the time,
4088   // even in sequential code.
4089   SharedHeap* sh = SharedHeap::heap();
4090   // Cannot yet substitute active_workers for n_par_threads
4091   // because of G1CollectedHeap::verify() use of
4092   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4093   // turn off parallelism in process_strong_roots while active_workers
4094   // is being used for parallelism elsewhere.
4095   bool is_par = sh->n_par_threads() > 0;
4096   assert(!is_par ||
4097          (SharedHeap::heap()->n_par_threads() ==
4098           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4099   int cp = SharedHeap::heap()->strong_roots_parity();
4100   ALL_JAVA_THREADS(p) {
4101     if (p->claim_oops_do(is_par, cp)) {
4102       p->oops_do(f, cld_f, cf);
4103     }
4104   }
4105   VMThread* vmt = VMThread::vm_thread();
4106   if (vmt->claim_oops_do(is_par, cp)) {
4107     vmt->oops_do(f, cld_f, cf);
4108   }
4109 }
4110 
4111 #if INCLUDE_ALL_GCS
4112 // Used by ParallelScavenge
4113 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4114   ALL_JAVA_THREADS(p) {
4115     q->enqueue(new ThreadRootsTask(p));
4116   }
4117   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4118 }
4119 
4120 // Used by Parallel Old
4121 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4122   ALL_JAVA_THREADS(p) {
4123     q->enqueue(new ThreadRootsMarkingTask(p));
4124   }
4125   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4126 }
4127 #endif // INCLUDE_ALL_GCS
4128 
4129 void Threads::nmethods_do(CodeBlobClosure* cf) {
4130   ALL_JAVA_THREADS(p) {
4131     p->nmethods_do(cf);
4132   }
4133   VMThread::vm_thread()->nmethods_do(cf);
4134 }
4135 
4136 void Threads::metadata_do(void f(Metadata*)) {
4137   ALL_JAVA_THREADS(p) {
4138     p->metadata_do(f);
4139   }
4140 }
4141 
4142 void Threads::gc_epilogue() {
4143   ALL_JAVA_THREADS(p) {
4144     p->gc_epilogue();
4145   }
4146 }
4147 
4148 void Threads::gc_prologue() {
4149   ALL_JAVA_THREADS(p) {
4150     p->gc_prologue();
4151   }
4152 }
4153 
4154 void Threads::deoptimized_wrt_marked_nmethods() {
4155   ALL_JAVA_THREADS(p) {
4156     p->deoptimized_wrt_marked_nmethods();
4157   }
4158 }
4159 
4160 
4161 // Get count Java threads that are waiting to enter the specified monitor.
4162 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4163   address monitor, bool doLock) {
4164   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4165     "must grab Threads_lock or be at safepoint");
4166   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4167 
4168   int i = 0;
4169   {
4170     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4171     ALL_JAVA_THREADS(p) {
4172       if (p->is_Compiler_thread()) continue;
4173 
4174       address pending = (address)p->current_pending_monitor();
4175       if (pending == monitor) {             // found a match
4176         if (i < count) result->append(p);   // save the first count matches
4177         i++;
4178       }
4179     }
4180   }
4181   return result;
4182 }
4183 
4184 
4185 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4186   assert(doLock ||
4187          Threads_lock->owned_by_self() ||
4188          SafepointSynchronize::is_at_safepoint(),
4189          "must grab Threads_lock or be at safepoint");
4190 
4191   // NULL owner means not locked so we can skip the search
4192   if (owner == NULL) return NULL;
4193 
4194   {
4195     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4196     ALL_JAVA_THREADS(p) {
4197       // first, see if owner is the address of a Java thread
4198       if (owner == (address)p) return p;
4199     }
4200   }
4201   // Cannot assert on lack of success here since this function may be
4202   // used by code that is trying to report useful problem information
4203   // like deadlock detection.
4204   if (UseHeavyMonitors) return NULL;
4205 
4206   //
4207   // If we didn't find a matching Java thread and we didn't force use of
4208   // heavyweight monitors, then the owner is the stack address of the
4209   // Lock Word in the owning Java thread's stack.
4210   //
4211   JavaThread* the_owner = NULL;
4212   {
4213     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4214     ALL_JAVA_THREADS(q) {
4215       if (q->is_lock_owned(owner)) {
4216         the_owner = q;
4217         break;
4218       }
4219     }
4220   }
4221   // cannot assert on lack of success here; see above comment
4222   return the_owner;
4223 }
4224 
4225 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4226 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4227   char buf[32];
4228   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4229 
4230   st->print_cr("Full thread dump %s (%s %s):",
4231                 Abstract_VM_Version::vm_name(),
4232                 Abstract_VM_Version::vm_release(),
4233                 Abstract_VM_Version::vm_info_string()
4234                );
4235   st->cr();
4236 
4237 #if INCLUDE_ALL_GCS
4238   // Dump concurrent locks
4239   ConcurrentLocksDump concurrent_locks;
4240   if (print_concurrent_locks) {
4241     concurrent_locks.dump_at_safepoint();
4242   }
4243 #endif // INCLUDE_ALL_GCS
4244 
4245   ALL_JAVA_THREADS(p) {
4246     ResourceMark rm;
4247     p->print_on(st);
4248     if (print_stacks) {
4249       if (internal_format) {
4250         p->trace_stack();
4251       } else {
4252         p->print_stack_on(st);
4253       }
4254     }
4255     st->cr();
4256 #if INCLUDE_ALL_GCS
4257     if (print_concurrent_locks) {
4258       concurrent_locks.print_locks_on(p, st);
4259     }
4260 #endif // INCLUDE_ALL_GCS
4261   }
4262 
4263   VMThread::vm_thread()->print_on(st);
4264   st->cr();
4265   Universe::heap()->print_gc_threads_on(st);
4266   WatcherThread* wt = WatcherThread::watcher_thread();
4267   if (wt != NULL) {
4268     wt->print_on(st);
4269     st->cr();
4270   }
4271   CompileBroker::print_compiler_threads_on(st);
4272   st->flush();
4273 }
4274 
4275 // Threads::print_on_error() is called by fatal error handler. It's possible
4276 // that VM is not at safepoint and/or current thread is inside signal handler.
4277 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4278 // memory (even in resource area), it might deadlock the error handler.
4279 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4280   bool found_current = false;
4281   st->print_cr("Java Threads: ( => current thread )");
4282   ALL_JAVA_THREADS(thread) {
4283     bool is_current = (current == thread);
4284     found_current = found_current || is_current;
4285 
4286     st->print("%s", is_current ? "=>" : "  ");
4287 
4288     st->print(PTR_FORMAT, thread);
4289     st->print(" ");
4290     thread->print_on_error(st, buf, buflen);
4291     st->cr();
4292   }
4293   st->cr();
4294 
4295   st->print_cr("Other Threads:");
4296   if (VMThread::vm_thread()) {
4297     bool is_current = (current == VMThread::vm_thread());
4298     found_current = found_current || is_current;
4299     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4300 
4301     st->print(PTR_FORMAT, VMThread::vm_thread());
4302     st->print(" ");
4303     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4304     st->cr();
4305   }
4306   WatcherThread* wt = WatcherThread::watcher_thread();
4307   if (wt != NULL) {
4308     bool is_current = (current == wt);
4309     found_current = found_current || is_current;
4310     st->print("%s", is_current ? "=>" : "  ");
4311 
4312     st->print(PTR_FORMAT, wt);
4313     st->print(" ");
4314     wt->print_on_error(st, buf, buflen);
4315     st->cr();
4316   }
4317   if (!found_current) {
4318     st->cr();
4319     st->print("=>" PTR_FORMAT " (exited) ", current);
4320     current->print_on_error(st, buf, buflen);
4321     st->cr();
4322   }
4323 }
4324 
4325 // Internal SpinLock and Mutex
4326 // Based on ParkEvent
4327 
4328 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4329 //
4330 // We employ SpinLocks _only for low-contention, fixed-length
4331 // short-duration critical sections where we're concerned
4332 // about native mutex_t or HotSpot Mutex:: latency.
4333 // The mux construct provides a spin-then-block mutual exclusion
4334 // mechanism.
4335 //
4336 // Testing has shown that contention on the ListLock guarding gFreeList
4337 // is common.  If we implement ListLock as a simple SpinLock it's common
4338 // for the JVM to devolve to yielding with little progress.  This is true
4339 // despite the fact that the critical sections protected by ListLock are
4340 // extremely short.
4341 //
4342 // TODO-FIXME: ListLock should be of type SpinLock.
4343 // We should make this a 1st-class type, integrated into the lock
4344 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4345 // should have sufficient padding to avoid false-sharing and excessive
4346 // cache-coherency traffic.
4347 
4348 
4349 typedef volatile int SpinLockT;
4350 
4351 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4352   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4353      return;   // normal fast-path return
4354   }
4355 
4356   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4357   TEVENT(SpinAcquire - ctx);
4358   int ctr = 0;
4359   int Yields = 0;
4360   for (;;) {
4361      while (*adr != 0) {
4362         ++ctr;
4363         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4364            if (Yields > 5) {
4365              os::naked_short_sleep(1);
4366            } else {
4367              os::NakedYield();
4368              ++Yields;
4369            }
4370         } else {
4371            SpinPause();
4372         }
4373      }
4374      if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4375   }
4376 }
4377 
4378 void Thread::SpinRelease (volatile int * adr) {
4379   assert(*adr != 0, "invariant");
4380   OrderAccess::fence();      // guarantee at least release consistency.
4381   // Roach-motel semantics.
4382   // It's safe if subsequent LDs and STs float "up" into the critical section,
4383   // but prior LDs and STs within the critical section can't be allowed
4384   // to reorder or float past the ST that releases the lock.
4385   *adr = 0;
4386 }
4387 
4388 // muxAcquire and muxRelease:
4389 //
4390 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4391 //    The LSB of the word is set IFF the lock is held.
4392 //    The remainder of the word points to the head of a singly-linked list
4393 //    of threads blocked on the lock.
4394 //
4395 // *  The current implementation of muxAcquire-muxRelease uses its own
4396 //    dedicated Thread._MuxEvent instance.  If we're interested in
4397 //    minimizing the peak number of extant ParkEvent instances then
4398 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4399 //    as certain invariants were satisfied.  Specifically, care would need
4400 //    to be taken with regards to consuming unpark() "permits".
4401 //    A safe rule of thumb is that a thread would never call muxAcquire()
4402 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4403 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4404 //    consume an unpark() permit intended for monitorenter, for instance.
4405 //    One way around this would be to widen the restricted-range semaphore
4406 //    implemented in park().  Another alternative would be to provide
4407 //    multiple instances of the PlatformEvent() for each thread.  One
4408 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4409 //
4410 // *  Usage:
4411 //    -- Only as leaf locks
4412 //    -- for short-term locking only as muxAcquire does not perform
4413 //       thread state transitions.
4414 //
4415 // Alternatives:
4416 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4417 //    but with parking or spin-then-park instead of pure spinning.
4418 // *  Use Taura-Oyama-Yonenzawa locks.
4419 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4420 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4421 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4422 //    acquiring threads use timers (ParkTimed) to detect and recover from
4423 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4424 //    boundaries by using placement-new.
4425 // *  Augment MCS with advisory back-link fields maintained with CAS().
4426 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4427 //    The validity of the backlinks must be ratified before we trust the value.
4428 //    If the backlinks are invalid the exiting thread must back-track through the
4429 //    the forward links, which are always trustworthy.
4430 // *  Add a successor indication.  The LockWord is currently encoded as
4431 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4432 //    to provide the usual futile-wakeup optimization.
4433 //    See RTStt for details.
4434 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4435 //
4436 
4437 
4438 typedef volatile intptr_t MutexT;      // Mux Lock-word
4439 enum MuxBits { LOCKBIT = 1 };
4440 
4441 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4442   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4443   if (w == 0) return;
4444   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4445      return;
4446   }
4447 
4448   TEVENT(muxAcquire - Contention);
4449   ParkEvent * const Self = Thread::current()->_MuxEvent;
4450   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4451   for (;;) {
4452      int its = (os::is_MP() ? 100 : 0) + 1;
4453 
4454      // Optional spin phase: spin-then-park strategy
4455      while (--its >= 0) {
4456        w = *Lock;
4457        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4458           return;
4459        }
4460      }
4461 
4462      Self->reset();
4463      Self->OnList = intptr_t(Lock);
4464      // The following fence() isn't _strictly necessary as the subsequent
4465      // CAS() both serializes execution and ratifies the fetched *Lock value.
4466      OrderAccess::fence();
4467      for (;;) {
4468         w = *Lock;
4469         if ((w & LOCKBIT) == 0) {
4470             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4471                 Self->OnList = 0;   // hygiene - allows stronger asserts
4472                 return;
4473             }
4474             continue;      // Interference -- *Lock changed -- Just retry
4475         }
4476         assert(w & LOCKBIT, "invariant");
4477         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4478         if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4479      }
4480 
4481      while (Self->OnList != 0) {
4482         Self->park();
4483      }
4484   }
4485 }
4486 
4487 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4488   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4489   if (w == 0) return;
4490   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4491     return;
4492   }
4493 
4494   TEVENT(muxAcquire - Contention);
4495   ParkEvent * ReleaseAfter = NULL;
4496   if (ev == NULL) {
4497     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4498   }
4499   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4500   for (;;) {
4501     guarantee(ev->OnList == 0, "invariant");
4502     int its = (os::is_MP() ? 100 : 0) + 1;
4503 
4504     // Optional spin phase: spin-then-park strategy
4505     while (--its >= 0) {
4506       w = *Lock;
4507       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4508         if (ReleaseAfter != NULL) {
4509           ParkEvent::Release(ReleaseAfter);
4510         }
4511         return;
4512       }
4513     }
4514 
4515     ev->reset();
4516     ev->OnList = intptr_t(Lock);
4517     // The following fence() isn't _strictly necessary as the subsequent
4518     // CAS() both serializes execution and ratifies the fetched *Lock value.
4519     OrderAccess::fence();
4520     for (;;) {
4521       w = *Lock;
4522       if ((w & LOCKBIT) == 0) {
4523         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4524           ev->OnList = 0;
4525           // We call ::Release while holding the outer lock, thus
4526           // artificially lengthening the critical section.
4527           // Consider deferring the ::Release() until the subsequent unlock(),
4528           // after we've dropped the outer lock.
4529           if (ReleaseAfter != NULL) {
4530             ParkEvent::Release(ReleaseAfter);
4531           }
4532           return;
4533         }
4534         continue;      // Interference -- *Lock changed -- Just retry
4535       }
4536       assert(w & LOCKBIT, "invariant");
4537       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4538       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4539     }
4540 
4541     while (ev->OnList != 0) {
4542       ev->park();
4543     }
4544   }
4545 }
4546 
4547 // Release() must extract a successor from the list and then wake that thread.
4548 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4549 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4550 // Release() would :
4551 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4552 // (B) Extract a successor from the private list "in-hand"
4553 // (C) attempt to CAS() the residual back into *Lock over null.
4554 //     If there were any newly arrived threads and the CAS() would fail.
4555 //     In that case Release() would detach the RATs, re-merge the list in-hand
4556 //     with the RATs and repeat as needed.  Alternately, Release() might
4557 //     detach and extract a successor, but then pass the residual list to the wakee.
4558 //     The wakee would be responsible for reattaching and remerging before it
4559 //     competed for the lock.
4560 //
4561 // Both "pop" and DMR are immune from ABA corruption -- there can be
4562 // multiple concurrent pushers, but only one popper or detacher.
4563 // This implementation pops from the head of the list.  This is unfair,
4564 // but tends to provide excellent throughput as hot threads remain hot.
4565 // (We wake recently run threads first).
4566 
4567 void Thread::muxRelease (volatile intptr_t * Lock)  {
4568   for (;;) {
4569     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4570     assert(w & LOCKBIT, "invariant");
4571     if (w == LOCKBIT) return;
4572     ParkEvent * List = (ParkEvent *)(w & ~LOCKBIT);
4573     assert(List != NULL, "invariant");
4574     assert(List->OnList == intptr_t(Lock), "invariant");
4575     ParkEvent * nxt = List->ListNext;
4576 
4577     // The following CAS() releases the lock and pops the head element.
4578     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4579       continue;
4580     }
4581     List->OnList = 0;
4582     OrderAccess::fence();
4583     List->unpark();
4584     return;
4585   }
4586 }
4587 
4588 
4589 void Threads::verify() {
4590   ALL_JAVA_THREADS(p) {
4591     p->verify();
4592   }
4593   VMThread* thread = VMThread::vm_thread();
4594   if (thread != NULL) thread->verify();
4595 }