1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright 2012, 2014 SAP AG. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "prims/methodHandles.hpp"
  34 #include "runtime/biasedLocking.hpp"
  35 #include "runtime/icache.hpp"
  36 #include "runtime/interfaceSupport.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/os.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "utilities/macros.hpp"
  42 #if INCLUDE_ALL_GCS
  43 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  44 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  45 #include "gc_implementation/g1/heapRegion.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 #ifdef PRODUCT
  49 #define BLOCK_COMMENT(str) // nothing
  50 #else
  51 #define BLOCK_COMMENT(str) block_comment(str)
  52 #endif
  53 
  54 #ifdef ASSERT
  55 // On RISC, there's no benefit to verifying instruction boundaries.
  56 bool AbstractAssembler::pd_check_instruction_mark() { return false; }
  57 #endif
  58 
  59 void MacroAssembler::ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop) {
  60   assert(Assembler::is_simm(si31, 31) && si31 >= 0, "si31 out of range");
  61   if (Assembler::is_simm(si31, 16)) {
  62     ld(d, si31, a);
  63     if (emit_filler_nop) nop();
  64   } else {
  65     const int hi = MacroAssembler::largeoffset_si16_si16_hi(si31);
  66     const int lo = MacroAssembler::largeoffset_si16_si16_lo(si31);
  67     addis(d, a, hi);
  68     ld(d, lo, d);
  69   }
  70 }
  71 
  72 void MacroAssembler::ld_largeoffset(Register d, int si31, Register a, int emit_filler_nop) {
  73   assert_different_registers(d, a);
  74   ld_largeoffset_unchecked(d, si31, a, emit_filler_nop);
  75 }
  76 
  77 void MacroAssembler::load_sized_value(Register dst, RegisterOrConstant offs, Register base,
  78                                       size_t size_in_bytes, bool is_signed) {
  79   switch (size_in_bytes) {
  80   case  8:              ld(dst, offs, base);                         break;
  81   case  4:  is_signed ? lwa(dst, offs, base) : lwz(dst, offs, base); break;
  82   case  2:  is_signed ? lha(dst, offs, base) : lhz(dst, offs, base); break;
  83   case  1:  lbz(dst, offs, base); if (is_signed) extsb(dst, dst);    break; // lba doesn't exist :(
  84   default:  ShouldNotReachHere();
  85   }
  86 }
  87 
  88 void MacroAssembler::store_sized_value(Register dst, RegisterOrConstant offs, Register base,
  89                                        size_t size_in_bytes) {
  90   switch (size_in_bytes) {
  91   case  8:  std(dst, offs, base); break;
  92   case  4:  stw(dst, offs, base); break;
  93   case  2:  sth(dst, offs, base); break;
  94   case  1:  stb(dst, offs, base); break;
  95   default:  ShouldNotReachHere();
  96   }
  97 }
  98 
  99 void MacroAssembler::align(int modulus, int max, int rem) {
 100   int padding = (rem + modulus - (offset() % modulus)) % modulus;
 101   if (padding > max) return;
 102   for (int c = (padding >> 2); c > 0; --c) { nop(); }
 103 }
 104 
 105 // Issue instructions that calculate given TOC from global TOC.
 106 void MacroAssembler::calculate_address_from_global_toc(Register dst, address addr, bool hi16, bool lo16,
 107                                                        bool add_relocation, bool emit_dummy_addr) {
 108   int offset = -1;
 109   if (emit_dummy_addr) {
 110     offset = -128; // dummy address
 111   } else if (addr != (address)(intptr_t)-1) {
 112     offset = MacroAssembler::offset_to_global_toc(addr);
 113   }
 114 
 115   if (hi16) {
 116     addis(dst, R29, MacroAssembler::largeoffset_si16_si16_hi(offset));
 117   }
 118   if (lo16) {
 119     if (add_relocation) {
 120       // Relocate at the addi to avoid confusion with a load from the method's TOC.
 121       relocate(internal_word_Relocation::spec(addr));
 122     }
 123     addi(dst, dst, MacroAssembler::largeoffset_si16_si16_lo(offset));
 124   }
 125 }
 126 
 127 int MacroAssembler::patch_calculate_address_from_global_toc_at(address a, address bound, address addr) {
 128   const int offset = MacroAssembler::offset_to_global_toc(addr);
 129 
 130   const address inst2_addr = a;
 131   const int inst2 = *(int *)inst2_addr;
 132 
 133   // The relocation points to the second instruction, the addi,
 134   // and the addi reads and writes the same register dst.
 135   const int dst = inv_rt_field(inst2);
 136   assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
 137 
 138   // Now, find the preceding addis which writes to dst.
 139   int inst1 = 0;
 140   address inst1_addr = inst2_addr - BytesPerInstWord;
 141   while (inst1_addr >= bound) {
 142     inst1 = *(int *) inst1_addr;
 143     if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
 144       // Stop, found the addis which writes dst.
 145       break;
 146     }
 147     inst1_addr -= BytesPerInstWord;
 148   }
 149 
 150   assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
 151   set_imm((int *)inst1_addr, MacroAssembler::largeoffset_si16_si16_hi(offset));
 152   set_imm((int *)inst2_addr, MacroAssembler::largeoffset_si16_si16_lo(offset));
 153   return (int)((intptr_t)addr - (intptr_t)inst1_addr);
 154 }
 155 
 156 address MacroAssembler::get_address_of_calculate_address_from_global_toc_at(address a, address bound) {
 157   const address inst2_addr = a;
 158   const int inst2 = *(int *)inst2_addr;
 159 
 160   // The relocation points to the second instruction, the addi,
 161   // and the addi reads and writes the same register dst.
 162   const int dst = inv_rt_field(inst2);
 163   assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
 164 
 165   // Now, find the preceding addis which writes to dst.
 166   int inst1 = 0;
 167   address inst1_addr = inst2_addr - BytesPerInstWord;
 168   while (inst1_addr >= bound) {
 169     inst1 = *(int *) inst1_addr;
 170     if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
 171       // stop, found the addis which writes dst
 172       break;
 173     }
 174     inst1_addr -= BytesPerInstWord;
 175   }
 176 
 177   assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
 178 
 179   int offset = (get_imm(inst1_addr, 0) << 16) + get_imm(inst2_addr, 0);
 180   // -1 is a special case
 181   if (offset == -1) {
 182     return (address)(intptr_t)-1;
 183   } else {
 184     return global_toc() + offset;
 185   }
 186 }
 187 
 188 #ifdef _LP64
 189 // Patch compressed oops or klass constants.
 190 // Assembler sequence is
 191 // 1) compressed oops:
 192 //    lis  rx = const.hi
 193 //    ori rx = rx | const.lo
 194 // 2) compressed klass:
 195 //    lis  rx = const.hi
 196 //    clrldi rx = rx & 0xFFFFffff // clearMS32b, optional
 197 //    ori rx = rx | const.lo
 198 // Clrldi will be passed by.
 199 int MacroAssembler::patch_set_narrow_oop(address a, address bound, narrowOop data) {
 200   assert(UseCompressedOops, "Should only patch compressed oops");
 201 
 202   const address inst2_addr = a;
 203   const int inst2 = *(int *)inst2_addr;
 204 
 205   // The relocation points to the second instruction, the ori,
 206   // and the ori reads and writes the same register dst.
 207   const int dst = inv_rta_field(inst2);
 208   assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
 209   // Now, find the preceding addis which writes to dst.
 210   int inst1 = 0;
 211   address inst1_addr = inst2_addr - BytesPerInstWord;
 212   bool inst1_found = false;
 213   while (inst1_addr >= bound) {
 214     inst1 = *(int *)inst1_addr;
 215     if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break; }
 216     inst1_addr -= BytesPerInstWord;
 217   }
 218   assert(inst1_found, "inst is not lis");
 219 
 220   int xc = (data >> 16) & 0xffff;
 221   int xd = (data >>  0) & 0xffff;
 222 
 223   set_imm((int *)inst1_addr, (short)(xc)); // see enc_load_con_narrow_hi/_lo
 224   set_imm((int *)inst2_addr,        (xd)); // unsigned int
 225   return (int)((intptr_t)inst2_addr - (intptr_t)inst1_addr);
 226 }
 227 
 228 // Get compressed oop or klass constant.
 229 narrowOop MacroAssembler::get_narrow_oop(address a, address bound) {
 230   assert(UseCompressedOops, "Should only patch compressed oops");
 231 
 232   const address inst2_addr = a;
 233   const int inst2 = *(int *)inst2_addr;
 234 
 235   // The relocation points to the second instruction, the ori,
 236   // and the ori reads and writes the same register dst.
 237   const int dst = inv_rta_field(inst2);
 238   assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
 239   // Now, find the preceding lis which writes to dst.
 240   int inst1 = 0;
 241   address inst1_addr = inst2_addr - BytesPerInstWord;
 242   bool inst1_found = false;
 243 
 244   while (inst1_addr >= bound) {
 245     inst1 = *(int *) inst1_addr;
 246     if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break;}
 247     inst1_addr -= BytesPerInstWord;
 248   }
 249   assert(inst1_found, "inst is not lis");
 250 
 251   uint xl = ((unsigned int) (get_imm(inst2_addr, 0) & 0xffff));
 252   uint xh = (((get_imm(inst1_addr, 0)) & 0xffff) << 16);
 253 
 254   return (int) (xl | xh);
 255 }
 256 #endif // _LP64
 257 
 258 void MacroAssembler::load_const_from_method_toc(Register dst, AddressLiteral& a, Register toc) {
 259   int toc_offset = 0;
 260   // Use RelocationHolder::none for the constant pool entry, otherwise
 261   // we will end up with a failing NativeCall::verify(x) where x is
 262   // the address of the constant pool entry.
 263   // FIXME: We should insert relocation information for oops at the constant
 264   // pool entries instead of inserting it at the loads; patching of a constant
 265   // pool entry should be less expensive.
 266   address oop_address = address_constant((address)a.value(), RelocationHolder::none);
 267   // Relocate at the pc of the load.
 268   relocate(a.rspec());
 269   toc_offset = (int)(oop_address - code()->consts()->start());
 270   ld_largeoffset_unchecked(dst, toc_offset, toc, true);
 271 }
 272 
 273 bool MacroAssembler::is_load_const_from_method_toc_at(address a) {
 274   const address inst1_addr = a;
 275   const int inst1 = *(int *)inst1_addr;
 276 
 277    // The relocation points to the ld or the addis.
 278    return (is_ld(inst1)) ||
 279           (is_addis(inst1) && inv_ra_field(inst1) != 0);
 280 }
 281 
 282 int MacroAssembler::get_offset_of_load_const_from_method_toc_at(address a) {
 283   assert(is_load_const_from_method_toc_at(a), "must be load_const_from_method_toc");
 284 
 285   const address inst1_addr = a;
 286   const int inst1 = *(int *)inst1_addr;
 287 
 288   if (is_ld(inst1)) {
 289     return inv_d1_field(inst1);
 290   } else if (is_addis(inst1)) {
 291     const int dst = inv_rt_field(inst1);
 292 
 293     // Now, find the succeeding ld which reads and writes to dst.
 294     address inst2_addr = inst1_addr + BytesPerInstWord;
 295     int inst2 = 0;
 296     while (true) {
 297       inst2 = *(int *) inst2_addr;
 298       if (is_ld(inst2) && inv_ra_field(inst2) == dst && inv_rt_field(inst2) == dst) {
 299         // Stop, found the ld which reads and writes dst.
 300         break;
 301       }
 302       inst2_addr += BytesPerInstWord;
 303     }
 304     return (inv_d1_field(inst1) << 16) + inv_d1_field(inst2);
 305   }
 306   ShouldNotReachHere();
 307   return 0;
 308 }
 309 
 310 // Get the constant from a `load_const' sequence.
 311 long MacroAssembler::get_const(address a) {
 312   assert(is_load_const_at(a), "not a load of a constant");
 313   const int *p = (const int*) a;
 314   unsigned long x = (((unsigned long) (get_imm(a,0) & 0xffff)) << 48);
 315   if (is_ori(*(p+1))) {
 316     x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 32);
 317     x |= (((unsigned long) (get_imm(a,3) & 0xffff)) << 16);
 318     x |= (((unsigned long) (get_imm(a,4) & 0xffff)));
 319   } else if (is_lis(*(p+1))) {
 320     x |= (((unsigned long) (get_imm(a,2) & 0xffff)) << 32);
 321     x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 16);
 322     x |= (((unsigned long) (get_imm(a,3) & 0xffff)));
 323   } else {
 324     ShouldNotReachHere();
 325     return (long) 0;
 326   }
 327   return (long) x;
 328 }
 329 
 330 // Patch the 64 bit constant of a `load_const' sequence. This is a low
 331 // level procedure. It neither flushes the instruction cache nor is it
 332 // mt safe.
 333 void MacroAssembler::patch_const(address a, long x) {
 334   assert(is_load_const_at(a), "not a load of a constant");
 335   int *p = (int*) a;
 336   if (is_ori(*(p+1))) {
 337     set_imm(0 + p, (x >> 48) & 0xffff);
 338     set_imm(1 + p, (x >> 32) & 0xffff);
 339     set_imm(3 + p, (x >> 16) & 0xffff);
 340     set_imm(4 + p, x & 0xffff);
 341   } else if (is_lis(*(p+1))) {
 342     set_imm(0 + p, (x >> 48) & 0xffff);
 343     set_imm(2 + p, (x >> 32) & 0xffff);
 344     set_imm(1 + p, (x >> 16) & 0xffff);
 345     set_imm(3 + p, x & 0xffff);
 346   } else {
 347     ShouldNotReachHere();
 348   }
 349 }
 350 
 351 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
 352   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
 353   int index = oop_recorder()->allocate_metadata_index(obj);
 354   RelocationHolder rspec = metadata_Relocation::spec(index);
 355   return AddressLiteral((address)obj, rspec);
 356 }
 357 
 358 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
 359   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
 360   int index = oop_recorder()->find_index(obj);
 361   RelocationHolder rspec = metadata_Relocation::spec(index);
 362   return AddressLiteral((address)obj, rspec);
 363 }
 364 
 365 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
 366   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
 367   int oop_index = oop_recorder()->allocate_oop_index(obj);
 368   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
 369 }
 370 
 371 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
 372   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
 373   int oop_index = oop_recorder()->find_index(obj);
 374   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
 375 }
 376 
 377 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
 378                                                       Register tmp, int offset) {
 379   intptr_t value = *delayed_value_addr;
 380   if (value != 0) {
 381     return RegisterOrConstant(value + offset);
 382   }
 383 
 384   // Load indirectly to solve generation ordering problem.
 385   // static address, no relocation
 386   int simm16_offset = load_const_optimized(tmp, delayed_value_addr, noreg, true);
 387   ld(tmp, simm16_offset, tmp); // must be aligned ((xa & 3) == 0)
 388 
 389   if (offset != 0) {
 390     addi(tmp, tmp, offset);
 391   }
 392 
 393   return RegisterOrConstant(tmp);
 394 }
 395 
 396 #ifndef PRODUCT
 397 void MacroAssembler::pd_print_patched_instruction(address branch) {
 398   Unimplemented(); // TODO: PPC port
 399 }
 400 #endif // ndef PRODUCT
 401 
 402 // Conditional far branch for destinations encodable in 24+2 bits.
 403 void MacroAssembler::bc_far(int boint, int biint, Label& dest, int optimize) {
 404 
 405   // If requested by flag optimize, relocate the bc_far as a
 406   // runtime_call and prepare for optimizing it when the code gets
 407   // relocated.
 408   if (optimize == bc_far_optimize_on_relocate) {
 409     relocate(relocInfo::runtime_call_type);
 410   }
 411 
 412   // variant 2:
 413   //
 414   //    b!cxx SKIP
 415   //    bxx   DEST
 416   //  SKIP:
 417   //
 418 
 419   const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
 420                                                 opposite_bcond(inv_boint_bcond(boint)));
 421 
 422   // We emit two branches.
 423   // First, a conditional branch which jumps around the far branch.
 424   const address not_taken_pc = pc() + 2 * BytesPerInstWord;
 425   const address bc_pc        = pc();
 426   bc(opposite_boint, biint, not_taken_pc);
 427 
 428   const int bc_instr = *(int*)bc_pc;
 429   assert(not_taken_pc == (address)inv_bd_field(bc_instr, (intptr_t)bc_pc), "postcondition");
 430   assert(opposite_boint == inv_bo_field(bc_instr), "postcondition");
 431   assert(boint == add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(bc_instr))),
 432                                      opposite_bcond(inv_boint_bcond(inv_bo_field(bc_instr)))),
 433          "postcondition");
 434   assert(biint == inv_bi_field(bc_instr), "postcondition");
 435 
 436   // Second, an unconditional far branch which jumps to dest.
 437   // Note: target(dest) remembers the current pc (see CodeSection::target)
 438   //       and returns the current pc if the label is not bound yet; when
 439   //       the label gets bound, the unconditional far branch will be patched.
 440   const address target_pc = target(dest);
 441   const address b_pc  = pc();
 442   b(target_pc);
 443 
 444   assert(not_taken_pc == pc(),                     "postcondition");
 445   assert(dest.is_bound() || target_pc == b_pc, "postcondition");
 446 }
 447 
 448 bool MacroAssembler::is_bc_far_at(address instruction_addr) {
 449   return is_bc_far_variant1_at(instruction_addr) ||
 450          is_bc_far_variant2_at(instruction_addr) ||
 451          is_bc_far_variant3_at(instruction_addr);
 452 }
 453 
 454 address MacroAssembler::get_dest_of_bc_far_at(address instruction_addr) {
 455   if (is_bc_far_variant1_at(instruction_addr)) {
 456     const address instruction_1_addr = instruction_addr;
 457     const int instruction_1 = *(int*)instruction_1_addr;
 458     return (address)inv_bd_field(instruction_1, (intptr_t)instruction_1_addr);
 459   } else if (is_bc_far_variant2_at(instruction_addr)) {
 460     const address instruction_2_addr = instruction_addr + 4;
 461     return bxx_destination(instruction_2_addr);
 462   } else if (is_bc_far_variant3_at(instruction_addr)) {
 463     return instruction_addr + 8;
 464   }
 465   // variant 4 ???
 466   ShouldNotReachHere();
 467   return NULL;
 468 }
 469 void MacroAssembler::set_dest_of_bc_far_at(address instruction_addr, address dest) {
 470 
 471   if (is_bc_far_variant3_at(instruction_addr)) {
 472     // variant 3, far cond branch to the next instruction, already patched to nops:
 473     //
 474     //    nop
 475     //    endgroup
 476     //  SKIP/DEST:
 477     //
 478     return;
 479   }
 480 
 481   // first, extract boint and biint from the current branch
 482   int boint = 0;
 483   int biint = 0;
 484 
 485   ResourceMark rm;
 486   const int code_size = 2 * BytesPerInstWord;
 487   CodeBuffer buf(instruction_addr, code_size);
 488   MacroAssembler masm(&buf);
 489   if (is_bc_far_variant2_at(instruction_addr) && dest == instruction_addr + 8) {
 490     // Far branch to next instruction: Optimize it by patching nops (produce variant 3).
 491     masm.nop();
 492     masm.endgroup();
 493   } else {
 494     if (is_bc_far_variant1_at(instruction_addr)) {
 495       // variant 1, the 1st instruction contains the destination address:
 496       //
 497       //    bcxx  DEST
 498       //    endgroup
 499       //
 500       const int instruction_1 = *(int*)(instruction_addr);
 501       boint = inv_bo_field(instruction_1);
 502       biint = inv_bi_field(instruction_1);
 503     } else if (is_bc_far_variant2_at(instruction_addr)) {
 504       // variant 2, the 2nd instruction contains the destination address:
 505       //
 506       //    b!cxx SKIP
 507       //    bxx   DEST
 508       //  SKIP:
 509       //
 510       const int instruction_1 = *(int*)(instruction_addr);
 511       boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(instruction_1))),
 512           opposite_bcond(inv_boint_bcond(inv_bo_field(instruction_1))));
 513       biint = inv_bi_field(instruction_1);
 514     } else {
 515       // variant 4???
 516       ShouldNotReachHere();
 517     }
 518 
 519     // second, set the new branch destination and optimize the code
 520     if (dest != instruction_addr + 4 && // the bc_far is still unbound!
 521         masm.is_within_range_of_bcxx(dest, instruction_addr)) {
 522       // variant 1:
 523       //
 524       //    bcxx  DEST
 525       //    endgroup
 526       //
 527       masm.bc(boint, biint, dest);
 528       masm.endgroup();
 529     } else {
 530       // variant 2:
 531       //
 532       //    b!cxx SKIP
 533       //    bxx   DEST
 534       //  SKIP:
 535       //
 536       const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
 537                                                     opposite_bcond(inv_boint_bcond(boint)));
 538       const address not_taken_pc = masm.pc() + 2 * BytesPerInstWord;
 539       masm.bc(opposite_boint, biint, not_taken_pc);
 540       masm.b(dest);
 541     }
 542   }
 543   ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
 544 }
 545 
 546 // Emit a NOT mt-safe patchable 64 bit absolute call/jump.
 547 void MacroAssembler::bxx64_patchable(address dest, relocInfo::relocType rt, bool link) {
 548   // get current pc
 549   uint64_t start_pc = (uint64_t) pc();
 550 
 551   const address pc_of_bl = (address) (start_pc + (6*BytesPerInstWord)); // bl is last
 552   const address pc_of_b  = (address) (start_pc + (0*BytesPerInstWord)); // b is first
 553 
 554   // relocate here
 555   if (rt != relocInfo::none) {
 556     relocate(rt);
 557   }
 558 
 559   if ( ReoptimizeCallSequences &&
 560        (( link && is_within_range_of_b(dest, pc_of_bl)) ||
 561         (!link && is_within_range_of_b(dest, pc_of_b)))) {
 562     // variant 2:
 563     // Emit an optimized, pc-relative call/jump.
 564 
 565     if (link) {
 566       // some padding
 567       nop();
 568       nop();
 569       nop();
 570       nop();
 571       nop();
 572       nop();
 573 
 574       // do the call
 575       assert(pc() == pc_of_bl, "just checking");
 576       bl(dest, relocInfo::none);
 577     } else {
 578       // do the jump
 579       assert(pc() == pc_of_b, "just checking");
 580       b(dest, relocInfo::none);
 581 
 582       // some padding
 583       nop();
 584       nop();
 585       nop();
 586       nop();
 587       nop();
 588       nop();
 589     }
 590 
 591     // Assert that we can identify the emitted call/jump.
 592     assert(is_bxx64_patchable_variant2_at((address)start_pc, link),
 593            "can't identify emitted call");
 594   } else {
 595     // variant 1:
 596 #if defined(ABI_ELFv2)
 597     nop();
 598     calculate_address_from_global_toc(R12, dest, true, true, false);
 599     mtctr(R12);
 600     nop();
 601     nop();
 602 #else
 603     mr(R0, R11);  // spill R11 -> R0.
 604 
 605     // Load the destination address into CTR,
 606     // calculate destination relative to global toc.
 607     calculate_address_from_global_toc(R11, dest, true, true, false);
 608 
 609     mtctr(R11);
 610     mr(R11, R0);  // spill R11 <- R0.
 611     nop();
 612 #endif
 613 
 614     // do the call/jump
 615     if (link) {
 616       bctrl();
 617     } else{
 618       bctr();
 619     }
 620     // Assert that we can identify the emitted call/jump.
 621     assert(is_bxx64_patchable_variant1b_at((address)start_pc, link),
 622            "can't identify emitted call");
 623   }
 624 
 625   // Assert that we can identify the emitted call/jump.
 626   assert(is_bxx64_patchable_at((address)start_pc, link),
 627          "can't identify emitted call");
 628   assert(get_dest_of_bxx64_patchable_at((address)start_pc, link) == dest,
 629          "wrong encoding of dest address");
 630 }
 631 
 632 // Identify a bxx64_patchable instruction.
 633 bool MacroAssembler::is_bxx64_patchable_at(address instruction_addr, bool link) {
 634   return is_bxx64_patchable_variant1b_at(instruction_addr, link)
 635     //|| is_bxx64_patchable_variant1_at(instruction_addr, link)
 636       || is_bxx64_patchable_variant2_at(instruction_addr, link);
 637 }
 638 
 639 // Does the call64_patchable instruction use a pc-relative encoding of
 640 // the call destination?
 641 bool MacroAssembler::is_bxx64_patchable_pcrelative_at(address instruction_addr, bool link) {
 642   // variant 2 is pc-relative
 643   return is_bxx64_patchable_variant2_at(instruction_addr, link);
 644 }
 645 
 646 // Identify variant 1.
 647 bool MacroAssembler::is_bxx64_patchable_variant1_at(address instruction_addr, bool link) {
 648   unsigned int* instr = (unsigned int*) instruction_addr;
 649   return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
 650       && is_mtctr(instr[5]) // mtctr
 651     && is_load_const_at(instruction_addr);
 652 }
 653 
 654 // Identify variant 1b: load destination relative to global toc.
 655 bool MacroAssembler::is_bxx64_patchable_variant1b_at(address instruction_addr, bool link) {
 656   unsigned int* instr = (unsigned int*) instruction_addr;
 657   return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
 658     && is_mtctr(instr[3]) // mtctr
 659     && is_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord, instruction_addr);
 660 }
 661 
 662 // Identify variant 2.
 663 bool MacroAssembler::is_bxx64_patchable_variant2_at(address instruction_addr, bool link) {
 664   unsigned int* instr = (unsigned int*) instruction_addr;
 665   if (link) {
 666     return is_bl (instr[6])  // bl dest is last
 667       && is_nop(instr[0])  // nop
 668       && is_nop(instr[1])  // nop
 669       && is_nop(instr[2])  // nop
 670       && is_nop(instr[3])  // nop
 671       && is_nop(instr[4])  // nop
 672       && is_nop(instr[5]); // nop
 673   } else {
 674     return is_b  (instr[0])  // b  dest is first
 675       && is_nop(instr[1])  // nop
 676       && is_nop(instr[2])  // nop
 677       && is_nop(instr[3])  // nop
 678       && is_nop(instr[4])  // nop
 679       && is_nop(instr[5])  // nop
 680       && is_nop(instr[6]); // nop
 681   }
 682 }
 683 
 684 // Set dest address of a bxx64_patchable instruction.
 685 void MacroAssembler::set_dest_of_bxx64_patchable_at(address instruction_addr, address dest, bool link) {
 686   ResourceMark rm;
 687   int code_size = MacroAssembler::bxx64_patchable_size;
 688   CodeBuffer buf(instruction_addr, code_size);
 689   MacroAssembler masm(&buf);
 690   masm.bxx64_patchable(dest, relocInfo::none, link);
 691   ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
 692 }
 693 
 694 // Get dest address of a bxx64_patchable instruction.
 695 address MacroAssembler::get_dest_of_bxx64_patchable_at(address instruction_addr, bool link) {
 696   if (is_bxx64_patchable_variant1_at(instruction_addr, link)) {
 697     return (address) (unsigned long) get_const(instruction_addr);
 698   } else if (is_bxx64_patchable_variant2_at(instruction_addr, link)) {
 699     unsigned int* instr = (unsigned int*) instruction_addr;
 700     if (link) {
 701       const int instr_idx = 6; // bl is last
 702       int branchoffset = branch_destination(instr[instr_idx], 0);
 703       return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
 704     } else {
 705       const int instr_idx = 0; // b is first
 706       int branchoffset = branch_destination(instr[instr_idx], 0);
 707       return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
 708     }
 709   // Load dest relative to global toc.
 710   } else if (is_bxx64_patchable_variant1b_at(instruction_addr, link)) {
 711     return get_address_of_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord,
 712                                                                instruction_addr);
 713   } else {
 714     ShouldNotReachHere();
 715     return NULL;
 716   }
 717 }
 718 
 719 // Uses ordering which corresponds to ABI:
 720 //    _savegpr0_14:  std  r14,-144(r1)
 721 //    _savegpr0_15:  std  r15,-136(r1)
 722 //    _savegpr0_16:  std  r16,-128(r1)
 723 void MacroAssembler::save_nonvolatile_gprs(Register dst, int offset) {
 724   std(R14, offset, dst);   offset += 8;
 725   std(R15, offset, dst);   offset += 8;
 726   std(R16, offset, dst);   offset += 8;
 727   std(R17, offset, dst);   offset += 8;
 728   std(R18, offset, dst);   offset += 8;
 729   std(R19, offset, dst);   offset += 8;
 730   std(R20, offset, dst);   offset += 8;
 731   std(R21, offset, dst);   offset += 8;
 732   std(R22, offset, dst);   offset += 8;
 733   std(R23, offset, dst);   offset += 8;
 734   std(R24, offset, dst);   offset += 8;
 735   std(R25, offset, dst);   offset += 8;
 736   std(R26, offset, dst);   offset += 8;
 737   std(R27, offset, dst);   offset += 8;
 738   std(R28, offset, dst);   offset += 8;
 739   std(R29, offset, dst);   offset += 8;
 740   std(R30, offset, dst);   offset += 8;
 741   std(R31, offset, dst);   offset += 8;
 742 
 743   stfd(F14, offset, dst);   offset += 8;
 744   stfd(F15, offset, dst);   offset += 8;
 745   stfd(F16, offset, dst);   offset += 8;
 746   stfd(F17, offset, dst);   offset += 8;
 747   stfd(F18, offset, dst);   offset += 8;
 748   stfd(F19, offset, dst);   offset += 8;
 749   stfd(F20, offset, dst);   offset += 8;
 750   stfd(F21, offset, dst);   offset += 8;
 751   stfd(F22, offset, dst);   offset += 8;
 752   stfd(F23, offset, dst);   offset += 8;
 753   stfd(F24, offset, dst);   offset += 8;
 754   stfd(F25, offset, dst);   offset += 8;
 755   stfd(F26, offset, dst);   offset += 8;
 756   stfd(F27, offset, dst);   offset += 8;
 757   stfd(F28, offset, dst);   offset += 8;
 758   stfd(F29, offset, dst);   offset += 8;
 759   stfd(F30, offset, dst);   offset += 8;
 760   stfd(F31, offset, dst);
 761 }
 762 
 763 // Uses ordering which corresponds to ABI:
 764 //    _restgpr0_14:  ld   r14,-144(r1)
 765 //    _restgpr0_15:  ld   r15,-136(r1)
 766 //    _restgpr0_16:  ld   r16,-128(r1)
 767 void MacroAssembler::restore_nonvolatile_gprs(Register src, int offset) {
 768   ld(R14, offset, src);   offset += 8;
 769   ld(R15, offset, src);   offset += 8;
 770   ld(R16, offset, src);   offset += 8;
 771   ld(R17, offset, src);   offset += 8;
 772   ld(R18, offset, src);   offset += 8;
 773   ld(R19, offset, src);   offset += 8;
 774   ld(R20, offset, src);   offset += 8;
 775   ld(R21, offset, src);   offset += 8;
 776   ld(R22, offset, src);   offset += 8;
 777   ld(R23, offset, src);   offset += 8;
 778   ld(R24, offset, src);   offset += 8;
 779   ld(R25, offset, src);   offset += 8;
 780   ld(R26, offset, src);   offset += 8;
 781   ld(R27, offset, src);   offset += 8;
 782   ld(R28, offset, src);   offset += 8;
 783   ld(R29, offset, src);   offset += 8;
 784   ld(R30, offset, src);   offset += 8;
 785   ld(R31, offset, src);   offset += 8;
 786 
 787   // FP registers
 788   lfd(F14, offset, src);   offset += 8;
 789   lfd(F15, offset, src);   offset += 8;
 790   lfd(F16, offset, src);   offset += 8;
 791   lfd(F17, offset, src);   offset += 8;
 792   lfd(F18, offset, src);   offset += 8;
 793   lfd(F19, offset, src);   offset += 8;
 794   lfd(F20, offset, src);   offset += 8;
 795   lfd(F21, offset, src);   offset += 8;
 796   lfd(F22, offset, src);   offset += 8;
 797   lfd(F23, offset, src);   offset += 8;
 798   lfd(F24, offset, src);   offset += 8;
 799   lfd(F25, offset, src);   offset += 8;
 800   lfd(F26, offset, src);   offset += 8;
 801   lfd(F27, offset, src);   offset += 8;
 802   lfd(F28, offset, src);   offset += 8;
 803   lfd(F29, offset, src);   offset += 8;
 804   lfd(F30, offset, src);   offset += 8;
 805   lfd(F31, offset, src);
 806 }
 807 
 808 // For verify_oops.
 809 void MacroAssembler::save_volatile_gprs(Register dst, int offset) {
 810   std(R3,  offset, dst);   offset += 8;
 811   std(R4,  offset, dst);   offset += 8;
 812   std(R5,  offset, dst);   offset += 8;
 813   std(R6,  offset, dst);   offset += 8;
 814   std(R7,  offset, dst);   offset += 8;
 815   std(R8,  offset, dst);   offset += 8;
 816   std(R9,  offset, dst);   offset += 8;
 817   std(R10, offset, dst);   offset += 8;
 818   std(R11, offset, dst);   offset += 8;
 819   std(R12, offset, dst);
 820 }
 821 
 822 // For verify_oops.
 823 void MacroAssembler::restore_volatile_gprs(Register src, int offset) {
 824   ld(R3,  offset, src);   offset += 8;
 825   ld(R4,  offset, src);   offset += 8;
 826   ld(R5,  offset, src);   offset += 8;
 827   ld(R6,  offset, src);   offset += 8;
 828   ld(R7,  offset, src);   offset += 8;
 829   ld(R8,  offset, src);   offset += 8;
 830   ld(R9,  offset, src);   offset += 8;
 831   ld(R10, offset, src);   offset += 8;
 832   ld(R11, offset, src);   offset += 8;
 833   ld(R12, offset, src);
 834 }
 835 
 836 void MacroAssembler::save_LR_CR(Register tmp) {
 837   mfcr(tmp);
 838   std(tmp, _abi(cr), R1_SP);
 839   mflr(tmp);
 840   std(tmp, _abi(lr), R1_SP);
 841   // Tmp must contain lr on exit! (see return_addr and prolog in ppc64.ad)
 842 }
 843 
 844 void MacroAssembler::restore_LR_CR(Register tmp) {
 845   assert(tmp != R1_SP, "must be distinct");
 846   ld(tmp, _abi(lr), R1_SP);
 847   mtlr(tmp);
 848   ld(tmp, _abi(cr), R1_SP);
 849   mtcr(tmp);
 850 }
 851 
 852 address MacroAssembler::get_PC_trash_LR(Register result) {
 853   Label L;
 854   bl(L);
 855   bind(L);
 856   address lr_pc = pc();
 857   mflr(result);
 858   return lr_pc;
 859 }
 860 
 861 void MacroAssembler::resize_frame(Register offset, Register tmp) {
 862 #ifdef ASSERT
 863   assert_different_registers(offset, tmp, R1_SP);
 864   andi_(tmp, offset, frame::alignment_in_bytes-1);
 865   asm_assert_eq("resize_frame: unaligned", 0x204);
 866 #endif
 867 
 868   // tmp <- *(SP)
 869   ld(tmp, _abi(callers_sp), R1_SP);
 870   // addr <- SP + offset;
 871   // *(addr) <- tmp;
 872   // SP <- addr
 873   stdux(tmp, R1_SP, offset);
 874 }
 875 
 876 void MacroAssembler::resize_frame(int offset, Register tmp) {
 877   assert(is_simm(offset, 16), "too big an offset");
 878   assert_different_registers(tmp, R1_SP);
 879   assert((offset & (frame::alignment_in_bytes-1))==0, "resize_frame: unaligned");
 880   // tmp <- *(SP)
 881   ld(tmp, _abi(callers_sp), R1_SP);
 882   // addr <- SP + offset;
 883   // *(addr) <- tmp;
 884   // SP <- addr
 885   stdu(tmp, offset, R1_SP);
 886 }
 887 
 888 void MacroAssembler::resize_frame_absolute(Register addr, Register tmp1, Register tmp2) {
 889   // (addr == tmp1) || (addr == tmp2) is allowed here!
 890   assert(tmp1 != tmp2, "must be distinct");
 891 
 892   // compute offset w.r.t. current stack pointer
 893   // tmp_1 <- addr - SP (!)
 894   subf(tmp1, R1_SP, addr);
 895 
 896   // atomically update SP keeping back link.
 897   resize_frame(tmp1/* offset */, tmp2/* tmp */);
 898 }
 899 
 900 void MacroAssembler::push_frame(Register bytes, Register tmp) {
 901 #ifdef ASSERT
 902   assert(bytes != R0, "r0 not allowed here");
 903   andi_(R0, bytes, frame::alignment_in_bytes-1);
 904   asm_assert_eq("push_frame(Reg, Reg): unaligned", 0x203);
 905 #endif
 906   neg(tmp, bytes);
 907   stdux(R1_SP, R1_SP, tmp);
 908 }
 909 
 910 // Push a frame of size `bytes'.
 911 void MacroAssembler::push_frame(unsigned int bytes, Register tmp) {
 912   long offset = align_addr(bytes, frame::alignment_in_bytes);
 913   if (is_simm(-offset, 16)) {
 914     stdu(R1_SP, -offset, R1_SP);
 915   } else {
 916     load_const(tmp, -offset);
 917     stdux(R1_SP, R1_SP, tmp);
 918   }
 919 }
 920 
 921 // Push a frame of size `bytes' plus abi_reg_args on top.
 922 void MacroAssembler::push_frame_reg_args(unsigned int bytes, Register tmp) {
 923   push_frame(bytes + frame::abi_reg_args_size, tmp);
 924 }
 925 
 926 // Setup up a new C frame with a spill area for non-volatile GPRs and
 927 // additional space for local variables.
 928 void MacroAssembler::push_frame_reg_args_nonvolatiles(unsigned int bytes,
 929                                                       Register tmp) {
 930   push_frame(bytes + frame::abi_reg_args_size + frame::spill_nonvolatiles_size, tmp);
 931 }
 932 
 933 // Pop current C frame.
 934 void MacroAssembler::pop_frame() {
 935   ld(R1_SP, _abi(callers_sp), R1_SP);
 936 }
 937 
 938 #if defined(ABI_ELFv2)
 939 address MacroAssembler::branch_to(Register r_function_entry, bool and_link) {
 940   // TODO(asmundak): make sure the caller uses R12 as function descriptor
 941   // most of the times.
 942   if (R12 != r_function_entry) {
 943     mr(R12, r_function_entry);
 944   }
 945   mtctr(R12);
 946   // Do a call or a branch.
 947   if (and_link) {
 948     bctrl();
 949   } else {
 950     bctr();
 951   }
 952   _last_calls_return_pc = pc();
 953 
 954   return _last_calls_return_pc;
 955 }
 956 
 957 // Call a C function via a function descriptor and use full C
 958 // calling conventions. Updates and returns _last_calls_return_pc.
 959 address MacroAssembler::call_c(Register r_function_entry) {
 960   return branch_to(r_function_entry, /*and_link=*/true);
 961 }
 962 
 963 // For tail calls: only branch, don't link, so callee returns to caller of this function.
 964 address MacroAssembler::call_c_and_return_to_caller(Register r_function_entry) {
 965   return branch_to(r_function_entry, /*and_link=*/false);
 966 }
 967 
 968 address MacroAssembler::call_c(address function_entry, relocInfo::relocType rt) {
 969   load_const(R12, function_entry, R0);
 970   return branch_to(R12,  /*and_link=*/true);
 971 }
 972 
 973 #else
 974 // Generic version of a call to C function via a function descriptor
 975 // with variable support for C calling conventions (TOC, ENV, etc.).
 976 // Updates and returns _last_calls_return_pc.
 977 address MacroAssembler::branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
 978                                   bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee) {
 979   // we emit standard ptrgl glue code here
 980   assert((function_descriptor != R0), "function_descriptor cannot be R0");
 981 
 982   // retrieve necessary entries from the function descriptor
 983   ld(R0, in_bytes(FunctionDescriptor::entry_offset()), function_descriptor);
 984   mtctr(R0);
 985 
 986   if (load_toc_of_callee) {
 987     ld(R2_TOC, in_bytes(FunctionDescriptor::toc_offset()), function_descriptor);
 988   }
 989   if (load_env_of_callee) {
 990     ld(R11, in_bytes(FunctionDescriptor::env_offset()), function_descriptor);
 991   } else if (load_toc_of_callee) {
 992     li(R11, 0);
 993   }
 994 
 995   // do a call or a branch
 996   if (and_link) {
 997     bctrl();
 998   } else {
 999     bctr();
1000   }
1001   _last_calls_return_pc = pc();
1002 
1003   return _last_calls_return_pc;
1004 }
1005 
1006 // Call a C function via a function descriptor and use full C calling
1007 // conventions.
1008 // We don't use the TOC in generated code, so there is no need to save
1009 // and restore its value.
1010 address MacroAssembler::call_c(Register fd) {
1011   return branch_to(fd, /*and_link=*/true,
1012                        /*save toc=*/false,
1013                        /*restore toc=*/false,
1014                        /*load toc=*/true,
1015                        /*load env=*/true);
1016 }
1017 
1018 address MacroAssembler::call_c_and_return_to_caller(Register fd) {
1019   return branch_to(fd, /*and_link=*/false,
1020                        /*save toc=*/false,
1021                        /*restore toc=*/false,
1022                        /*load toc=*/true,
1023                        /*load env=*/true);
1024 }
1025 
1026 address MacroAssembler::call_c(const FunctionDescriptor* fd, relocInfo::relocType rt) {
1027   if (rt != relocInfo::none) {
1028     // this call needs to be relocatable
1029     if (!ReoptimizeCallSequences
1030         || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
1031         || fd == NULL   // support code-size estimation
1032         || !fd->is_friend_function()
1033         || fd->entry() == NULL) {
1034       // it's not a friend function as defined by class FunctionDescriptor,
1035       // so do a full call-c here.
1036       load_const(R11, (address)fd, R0);
1037 
1038       bool has_env = (fd != NULL && fd->env() != NULL);
1039       return branch_to(R11, /*and_link=*/true,
1040                             /*save toc=*/false,
1041                             /*restore toc=*/false,
1042                             /*load toc=*/true,
1043                             /*load env=*/has_env);
1044     } else {
1045       // It's a friend function. Load the entry point and don't care about
1046       // toc and env. Use an optimizable call instruction, but ensure the
1047       // same code-size as in the case of a non-friend function.
1048       nop();
1049       nop();
1050       nop();
1051       bl64_patchable(fd->entry(), rt);
1052       _last_calls_return_pc = pc();
1053       return _last_calls_return_pc;
1054     }
1055   } else {
1056     // This call does not need to be relocatable, do more aggressive
1057     // optimizations.
1058     if (!ReoptimizeCallSequences
1059       || !fd->is_friend_function()) {
1060       // It's not a friend function as defined by class FunctionDescriptor,
1061       // so do a full call-c here.
1062       load_const(R11, (address)fd, R0);
1063       return branch_to(R11, /*and_link=*/true,
1064                             /*save toc=*/false,
1065                             /*restore toc=*/false,
1066                             /*load toc=*/true,
1067                             /*load env=*/true);
1068     } else {
1069       // it's a friend function, load the entry point and don't care about
1070       // toc and env.
1071       address dest = fd->entry();
1072       if (is_within_range_of_b(dest, pc())) {
1073         bl(dest);
1074       } else {
1075         bl64_patchable(dest, rt);
1076       }
1077       _last_calls_return_pc = pc();
1078       return _last_calls_return_pc;
1079     }
1080   }
1081 }
1082 
1083 // Call a C function.  All constants needed reside in TOC.
1084 //
1085 // Read the address to call from the TOC.
1086 // Read env from TOC, if fd specifies an env.
1087 // Read new TOC from TOC.
1088 address MacroAssembler::call_c_using_toc(const FunctionDescriptor* fd,
1089                                          relocInfo::relocType rt, Register toc) {
1090   if (!ReoptimizeCallSequences
1091     || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
1092     || !fd->is_friend_function()) {
1093     // It's not a friend function as defined by class FunctionDescriptor,
1094     // so do a full call-c here.
1095     assert(fd->entry() != NULL, "function must be linked");
1096 
1097     AddressLiteral fd_entry(fd->entry());
1098     load_const_from_method_toc(R11, fd_entry, toc);
1099     mtctr(R11);
1100     if (fd->env() == NULL) {
1101       li(R11, 0);
1102       nop();
1103     } else {
1104       AddressLiteral fd_env(fd->env());
1105       load_const_from_method_toc(R11, fd_env, toc);
1106     }
1107     AddressLiteral fd_toc(fd->toc());
1108     load_toc_from_toc(R2_TOC, fd_toc, toc);
1109     // R2_TOC is killed.
1110     bctrl();
1111     _last_calls_return_pc = pc();
1112   } else {
1113     // It's a friend function, load the entry point and don't care about
1114     // toc and env. Use an optimizable call instruction, but ensure the
1115     // same code-size as in the case of a non-friend function.
1116     nop();
1117     bl64_patchable(fd->entry(), rt);
1118     _last_calls_return_pc = pc();
1119   }
1120   return _last_calls_return_pc;
1121 }
1122 #endif // ABI_ELFv2
1123 
1124 void MacroAssembler::call_VM_base(Register oop_result,
1125                                   Register last_java_sp,
1126                                   address  entry_point,
1127                                   bool     check_exceptions) {
1128   BLOCK_COMMENT("call_VM {");
1129   // Determine last_java_sp register.
1130   if (!last_java_sp->is_valid()) {
1131     last_java_sp = R1_SP;
1132   }
1133   set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, R11_scratch1);
1134 
1135   // ARG1 must hold thread address.
1136   mr(R3_ARG1, R16_thread);
1137 #if defined(ABI_ELFv2)
1138   address return_pc = call_c(entry_point, relocInfo::none);
1139 #else
1140   address return_pc = call_c((FunctionDescriptor*)entry_point, relocInfo::none);
1141 #endif
1142 
1143   reset_last_Java_frame();
1144 
1145   // Check for pending exceptions.
1146   if (check_exceptions) {
1147     // We don't check for exceptions here.
1148     ShouldNotReachHere();
1149   }
1150 
1151   // Get oop result if there is one and reset the value in the thread.
1152   if (oop_result->is_valid()) {
1153     get_vm_result(oop_result);
1154   }
1155 
1156   _last_calls_return_pc = return_pc;
1157   BLOCK_COMMENT("} call_VM");
1158 }
1159 
1160 void MacroAssembler::call_VM_leaf_base(address entry_point) {
1161   BLOCK_COMMENT("call_VM_leaf {");
1162 #if defined(ABI_ELFv2)
1163   call_c(entry_point, relocInfo::none);
1164 #else
1165   call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::none);
1166 #endif
1167   BLOCK_COMMENT("} call_VM_leaf");
1168 }
1169 
1170 void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
1171   call_VM_base(oop_result, noreg, entry_point, check_exceptions);
1172 }
1173 
1174 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1,
1175                              bool check_exceptions) {
1176   // R3_ARG1 is reserved for the thread.
1177   mr_if_needed(R4_ARG2, arg_1);
1178   call_VM(oop_result, entry_point, check_exceptions);
1179 }
1180 
1181 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
1182                              bool check_exceptions) {
1183   // R3_ARG1 is reserved for the thread
1184   mr_if_needed(R4_ARG2, arg_1);
1185   assert(arg_2 != R4_ARG2, "smashed argument");
1186   mr_if_needed(R5_ARG3, arg_2);
1187   call_VM(oop_result, entry_point, check_exceptions);
1188 }
1189 
1190 void MacroAssembler::call_VM_leaf(address entry_point) {
1191   call_VM_leaf_base(entry_point);
1192 }
1193 
1194 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
1195   mr_if_needed(R3_ARG1, arg_1);
1196   call_VM_leaf(entry_point);
1197 }
1198 
1199 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
1200   mr_if_needed(R3_ARG1, arg_1);
1201   assert(arg_2 != R3_ARG1, "smashed argument");
1202   mr_if_needed(R4_ARG2, arg_2);
1203   call_VM_leaf(entry_point);
1204 }
1205 
1206 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
1207   mr_if_needed(R3_ARG1, arg_1);
1208   assert(arg_2 != R3_ARG1, "smashed argument");
1209   mr_if_needed(R4_ARG2, arg_2);
1210   assert(arg_3 != R3_ARG1 && arg_3 != R4_ARG2, "smashed argument");
1211   mr_if_needed(R5_ARG3, arg_3);
1212   call_VM_leaf(entry_point);
1213 }
1214 
1215 // Check whether instruction is a read access to the polling page
1216 // which was emitted by load_from_polling_page(..).
1217 bool MacroAssembler::is_load_from_polling_page(int instruction, void* ucontext,
1218                                                address* polling_address_ptr) {
1219   if (!is_ld(instruction))
1220     return false; // It's not a ld. Fail.
1221 
1222   int rt = inv_rt_field(instruction);
1223   int ra = inv_ra_field(instruction);
1224   int ds = inv_ds_field(instruction);
1225   if (!(ds == 0 && ra != 0 && rt == 0)) {
1226     return false; // It's not a ld(r0, X, ra). Fail.
1227   }
1228 
1229   if (!ucontext) {
1230     // Set polling address.
1231     if (polling_address_ptr != NULL) {
1232       *polling_address_ptr = NULL;
1233     }
1234     return true; // No ucontext given. Can't check value of ra. Assume true.
1235   }
1236 
1237 #ifdef LINUX
1238   // Ucontext given. Check that register ra contains the address of
1239   // the safepoing polling page.
1240   ucontext_t* uc = (ucontext_t*) ucontext;
1241   // Set polling address.
1242   address addr = (address)uc->uc_mcontext.regs->gpr[ra] + (ssize_t)ds;
1243   if (polling_address_ptr != NULL) {
1244     *polling_address_ptr = addr;
1245   }
1246   return os::is_poll_address(addr);
1247 #else
1248   // Not on Linux, ucontext must be NULL.
1249   ShouldNotReachHere();
1250   return false;
1251 #endif
1252 }
1253 
1254 bool MacroAssembler::is_memory_serialization(int instruction, JavaThread* thread, void* ucontext) {
1255 #ifdef LINUX
1256   ucontext_t* uc = (ucontext_t*) ucontext;
1257 
1258   if (is_stwx(instruction) || is_stwux(instruction)) {
1259     int ra = inv_ra_field(instruction);
1260     int rb = inv_rb_field(instruction);
1261 
1262     // look up content of ra and rb in ucontext
1263     address ra_val=(address)uc->uc_mcontext.regs->gpr[ra];
1264     long rb_val=(long)uc->uc_mcontext.regs->gpr[rb];
1265     return os::is_memory_serialize_page(thread, ra_val+rb_val);
1266   } else if (is_stw(instruction) || is_stwu(instruction)) {
1267     int ra = inv_ra_field(instruction);
1268     int d1 = inv_d1_field(instruction);
1269 
1270     // look up content of ra in ucontext
1271     address ra_val=(address)uc->uc_mcontext.regs->gpr[ra];
1272     return os::is_memory_serialize_page(thread, ra_val+d1);
1273   } else {
1274     return false;
1275   }
1276 #else
1277   // workaround not needed on !LINUX :-)
1278   ShouldNotCallThis();
1279   return false;
1280 #endif
1281 }
1282 
1283 void MacroAssembler::bang_stack_with_offset(int offset) {
1284   // When increasing the stack, the old stack pointer will be written
1285   // to the new top of stack according to the PPC64 abi.
1286   // Therefore, stack banging is not necessary when increasing
1287   // the stack by <= os::vm_page_size() bytes.
1288   // When increasing the stack by a larger amount, this method is
1289   // called repeatedly to bang the intermediate pages.
1290 
1291   // Stack grows down, caller passes positive offset.
1292   assert(offset > 0, "must bang with positive offset");
1293 
1294   long stdoffset = -offset;
1295 
1296   if (is_simm(stdoffset, 16)) {
1297     // Signed 16 bit offset, a simple std is ok.
1298     if (UseLoadInstructionsForStackBangingPPC64) {
1299       ld(R0, (int)(signed short)stdoffset, R1_SP);
1300     } else {
1301       std(R0,(int)(signed short)stdoffset, R1_SP);
1302     }
1303   } else if (is_simm(stdoffset, 31)) {
1304     const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
1305     const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
1306 
1307     Register tmp = R11;
1308     addis(tmp, R1_SP, hi);
1309     if (UseLoadInstructionsForStackBangingPPC64) {
1310       ld(R0,  lo, tmp);
1311     } else {
1312       std(R0, lo, tmp);
1313     }
1314   } else {
1315     ShouldNotReachHere();
1316   }
1317 }
1318 
1319 // If instruction is a stack bang of the form
1320 //    std    R0,    x(Ry),       (see bang_stack_with_offset())
1321 //    stdu   R1_SP, x(R1_SP),    (see push_frame(), resize_frame())
1322 // or stdux  R1_SP, Rx, R1_SP    (see push_frame(), resize_frame())
1323 // return the banged address. Otherwise, return 0.
1324 address MacroAssembler::get_stack_bang_address(int instruction, void *ucontext) {
1325 #ifdef LINUX
1326   ucontext_t* uc = (ucontext_t*) ucontext;
1327   int rs = inv_rs_field(instruction);
1328   int ra = inv_ra_field(instruction);
1329   if (   (is_ld(instruction)   && rs == 0 &&  UseLoadInstructionsForStackBangingPPC64)
1330       || (is_std(instruction)  && rs == 0 && !UseLoadInstructionsForStackBangingPPC64)
1331       || (is_stdu(instruction) && rs == 1)) {
1332     int ds = inv_ds_field(instruction);
1333     // return banged address
1334     return ds+(address)uc->uc_mcontext.regs->gpr[ra];
1335   } else if (is_stdux(instruction) && rs == 1) {
1336     int rb = inv_rb_field(instruction);
1337     address sp = (address)uc->uc_mcontext.regs->gpr[1];
1338     long rb_val = (long)uc->uc_mcontext.regs->gpr[rb];
1339     return ra != 1 || rb_val >= 0 ? NULL         // not a stack bang
1340                                   : sp + rb_val; // banged address
1341   }
1342   return NULL; // not a stack bang
1343 #else
1344   // workaround not needed on !LINUX :-)
1345   ShouldNotCallThis();
1346   return NULL;
1347 #endif
1348 }
1349 
1350 // CmpxchgX sets condition register to cmpX(current, compare).
1351 void MacroAssembler::cmpxchgw(ConditionRegister flag, Register dest_current_value,
1352                               Register compare_value, Register exchange_value,
1353                               Register addr_base, int semantics, bool cmpxchgx_hint,
1354                               Register int_flag_success, bool contention_hint) {
1355   Label retry;
1356   Label failed;
1357   Label done;
1358 
1359   // Save one branch if result is returned via register and
1360   // result register is different from the other ones.
1361   bool use_result_reg    = (int_flag_success != noreg);
1362   bool preset_result_reg = (int_flag_success != dest_current_value && int_flag_success != compare_value &&
1363                             int_flag_success != exchange_value && int_flag_success != addr_base);
1364 
1365   // release/fence semantics
1366   if (semantics & MemBarRel) {
1367     release();
1368   }
1369 
1370   if (use_result_reg && preset_result_reg) {
1371     li(int_flag_success, 0); // preset (assume cas failed)
1372   }
1373 
1374   // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
1375   if (contention_hint) { // Don't try to reserve if cmp fails.
1376     lwz(dest_current_value, 0, addr_base);
1377     cmpw(flag, dest_current_value, compare_value);
1378     bne(flag, failed);
1379   }
1380 
1381   // atomic emulation loop
1382   bind(retry);
1383 
1384   lwarx(dest_current_value, addr_base, cmpxchgx_hint);
1385   cmpw(flag, dest_current_value, compare_value);
1386   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1387     bne_predict_not_taken(flag, failed);
1388   } else {
1389     bne(                  flag, failed);
1390   }
1391   // branch to done  => (flag == ne), (dest_current_value != compare_value)
1392   // fall through    => (flag == eq), (dest_current_value == compare_value)
1393 
1394   stwcx_(exchange_value, addr_base);
1395   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1396     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1397   } else {
1398     bne(                  CCR0, retry); // StXcx_ sets CCR0.
1399   }
1400   // fall through    => (flag == eq), (dest_current_value == compare_value), (swapped)
1401 
1402   // Result in register (must do this at the end because int_flag_success can be the
1403   // same register as one above).
1404   if (use_result_reg) {
1405     li(int_flag_success, 1);
1406   }
1407 
1408   if (semantics & MemBarFenceAfter) {
1409     fence();
1410   } else if (semantics & MemBarAcq) {
1411     isync();
1412   }
1413 
1414   if (use_result_reg && !preset_result_reg) {
1415     b(done);
1416   }
1417 
1418   bind(failed);
1419   if (use_result_reg && !preset_result_reg) {
1420     li(int_flag_success, 0);
1421   }
1422 
1423   bind(done);
1424   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
1425   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
1426 }
1427 
1428 // Preforms atomic compare exchange:
1429 //   if (compare_value == *addr_base)
1430 //     *addr_base = exchange_value
1431 //     int_flag_success = 1;
1432 //   else
1433 //     int_flag_success = 0;
1434 //
1435 // ConditionRegister flag       = cmp(compare_value, *addr_base)
1436 // Register dest_current_value  = *addr_base
1437 // Register compare_value       Used to compare with value in memory
1438 // Register exchange_value      Written to memory if compare_value == *addr_base
1439 // Register addr_base           The memory location to compareXChange
1440 // Register int_flag_success    Set to 1 if exchange_value was written to *addr_base
1441 //
1442 // To avoid the costly compare exchange the value is tested beforehand.
1443 // Several special cases exist to avoid that unnecessary information is generated.
1444 //
1445 void MacroAssembler::cmpxchgd(ConditionRegister flag,
1446                               Register dest_current_value, Register compare_value, Register exchange_value,
1447                               Register addr_base, int semantics, bool cmpxchgx_hint,
1448                               Register int_flag_success, Label* failed_ext, bool contention_hint) {
1449   Label retry;
1450   Label failed_int;
1451   Label& failed = (failed_ext != NULL) ? *failed_ext : failed_int;
1452   Label done;
1453 
1454   // Save one branch if result is returned via register and result register is different from the other ones.
1455   bool use_result_reg    = (int_flag_success!=noreg);
1456   bool preset_result_reg = (int_flag_success!=dest_current_value && int_flag_success!=compare_value &&
1457                             int_flag_success!=exchange_value && int_flag_success!=addr_base);
1458   assert(int_flag_success == noreg || failed_ext == NULL, "cannot have both");
1459 
1460   // release/fence semantics
1461   if (semantics & MemBarRel) {
1462     release();
1463   }
1464 
1465   if (use_result_reg && preset_result_reg) {
1466     li(int_flag_success, 0); // preset (assume cas failed)
1467   }
1468 
1469   // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
1470   if (contention_hint) { // Don't try to reserve if cmp fails.
1471     ld(dest_current_value, 0, addr_base);
1472     cmpd(flag, dest_current_value, compare_value);
1473     bne(flag, failed);
1474   }
1475 
1476   // atomic emulation loop
1477   bind(retry);
1478 
1479   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1480   cmpd(flag, dest_current_value, compare_value);
1481   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1482     bne_predict_not_taken(flag, failed);
1483   } else {
1484     bne(                  flag, failed);
1485   }
1486 
1487   stdcx_(exchange_value, addr_base);
1488   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1489     bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0
1490   } else {
1491     bne(                  CCR0, retry); // stXcx_ sets CCR0
1492   }
1493 
1494   // result in register (must do this at the end because int_flag_success can be the same register as one above)
1495   if (use_result_reg) {
1496     li(int_flag_success, 1);
1497   }
1498 
1499   // POWER6 doesn't need isync in CAS.
1500   // Always emit isync to be on the safe side.
1501   if (semantics & MemBarFenceAfter) {
1502     fence();
1503   } else if (semantics & MemBarAcq) {
1504     isync();
1505   }
1506 
1507   if (use_result_reg && !preset_result_reg) {
1508     b(done);
1509   }
1510 
1511   bind(failed_int);
1512   if (use_result_reg && !preset_result_reg) {
1513     li(int_flag_success, 0);
1514   }
1515 
1516   bind(done);
1517   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
1518   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
1519 }
1520 
1521 // Look up the method for a megamorphic invokeinterface call.
1522 // The target method is determined by <intf_klass, itable_index>.
1523 // The receiver klass is in recv_klass.
1524 // On success, the result will be in method_result, and execution falls through.
1525 // On failure, execution transfers to the given label.
1526 void MacroAssembler::lookup_interface_method(Register recv_klass,
1527                                              Register intf_klass,
1528                                              RegisterOrConstant itable_index,
1529                                              Register method_result,
1530                                              Register scan_temp,
1531                                              Register sethi_temp,
1532                                              Label& L_no_such_interface) {
1533   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
1534   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
1535          "caller must use same register for non-constant itable index as for method");
1536 
1537   // Compute start of first itableOffsetEntry (which is at the end of the vtable).
1538   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
1539   int itentry_off = itableMethodEntry::method_offset_in_bytes();
1540   int logMEsize   = exact_log2(itableMethodEntry::size() * wordSize);
1541   int scan_step   = itableOffsetEntry::size() * wordSize;
1542   int log_vte_size= exact_log2(vtableEntry::size() * wordSize);
1543 
1544   lwz(scan_temp, InstanceKlass::vtable_length_offset() * wordSize, recv_klass);
1545   // %%% We should store the aligned, prescaled offset in the klassoop.
1546   // Then the next several instructions would fold away.
1547 
1548   sldi(scan_temp, scan_temp, log_vte_size);
1549   addi(scan_temp, scan_temp, vtable_base);
1550   add(scan_temp, recv_klass, scan_temp);
1551 
1552   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
1553   if (itable_index.is_register()) {
1554     Register itable_offset = itable_index.as_register();
1555     sldi(itable_offset, itable_offset, logMEsize);
1556     if (itentry_off) addi(itable_offset, itable_offset, itentry_off);
1557     add(recv_klass, itable_offset, recv_klass);
1558   } else {
1559     long itable_offset = (long)itable_index.as_constant();
1560     load_const_optimized(sethi_temp, (itable_offset<<logMEsize)+itentry_off); // static address, no relocation
1561     add(recv_klass, sethi_temp, recv_klass);
1562   }
1563 
1564   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
1565   //   if (scan->interface() == intf) {
1566   //     result = (klass + scan->offset() + itable_index);
1567   //   }
1568   // }
1569   Label search, found_method;
1570 
1571   for (int peel = 1; peel >= 0; peel--) {
1572     // %%%% Could load both offset and interface in one ldx, if they were
1573     // in the opposite order. This would save a load.
1574     ld(method_result, itableOffsetEntry::interface_offset_in_bytes(), scan_temp);
1575 
1576     // Check that this entry is non-null. A null entry means that
1577     // the receiver class doesn't implement the interface, and wasn't the
1578     // same as when the caller was compiled.
1579     cmpd(CCR0, method_result, intf_klass);
1580 
1581     if (peel) {
1582       beq(CCR0, found_method);
1583     } else {
1584       bne(CCR0, search);
1585       // (invert the test to fall through to found_method...)
1586     }
1587 
1588     if (!peel) break;
1589 
1590     bind(search);
1591 
1592     cmpdi(CCR0, method_result, 0);
1593     beq(CCR0, L_no_such_interface);
1594     addi(scan_temp, scan_temp, scan_step);
1595   }
1596 
1597   bind(found_method);
1598 
1599   // Got a hit.
1600   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
1601   lwz(scan_temp, ito_offset, scan_temp);
1602   ldx(method_result, scan_temp, recv_klass);
1603 }
1604 
1605 // virtual method calling
1606 void MacroAssembler::lookup_virtual_method(Register recv_klass,
1607                                            RegisterOrConstant vtable_index,
1608                                            Register method_result) {
1609 
1610   assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
1611 
1612   const int base = InstanceKlass::vtable_start_offset() * wordSize;
1613   assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
1614 
1615   if (vtable_index.is_register()) {
1616     sldi(vtable_index.as_register(), vtable_index.as_register(), LogBytesPerWord);
1617     add(recv_klass, vtable_index.as_register(), recv_klass);
1618   } else {
1619     addi(recv_klass, recv_klass, vtable_index.as_constant() << LogBytesPerWord);
1620   }
1621   ld(R19_method, base + vtableEntry::method_offset_in_bytes(), recv_klass);
1622 }
1623 
1624 /////////////////////////////////////////// subtype checking ////////////////////////////////////////////
1625 
1626 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
1627                                                    Register super_klass,
1628                                                    Register temp1_reg,
1629                                                    Register temp2_reg,
1630                                                    Label& L_success,
1631                                                    Label& L_failure) {
1632 
1633   const Register check_cache_offset = temp1_reg;
1634   const Register cached_super       = temp2_reg;
1635 
1636   assert_different_registers(sub_klass, super_klass, check_cache_offset, cached_super);
1637 
1638   int sco_offset = in_bytes(Klass::super_check_offset_offset());
1639   int sc_offset  = in_bytes(Klass::secondary_super_cache_offset());
1640 
1641   // If the pointers are equal, we are done (e.g., String[] elements).
1642   // This self-check enables sharing of secondary supertype arrays among
1643   // non-primary types such as array-of-interface. Otherwise, each such
1644   // type would need its own customized SSA.
1645   // We move this check to the front of the fast path because many
1646   // type checks are in fact trivially successful in this manner,
1647   // so we get a nicely predicted branch right at the start of the check.
1648   cmpd(CCR0, sub_klass, super_klass);
1649   beq(CCR0, L_success);
1650 
1651   // Check the supertype display:
1652   lwz(check_cache_offset, sco_offset, super_klass);
1653   // The loaded value is the offset from KlassOopDesc.
1654 
1655   ldx(cached_super, check_cache_offset, sub_klass);
1656   cmpd(CCR0, cached_super, super_klass);
1657   beq(CCR0, L_success);
1658 
1659   // This check has worked decisively for primary supers.
1660   // Secondary supers are sought in the super_cache ('super_cache_addr').
1661   // (Secondary supers are interfaces and very deeply nested subtypes.)
1662   // This works in the same check above because of a tricky aliasing
1663   // between the super_cache and the primary super display elements.
1664   // (The 'super_check_addr' can address either, as the case requires.)
1665   // Note that the cache is updated below if it does not help us find
1666   // what we need immediately.
1667   // So if it was a primary super, we can just fail immediately.
1668   // Otherwise, it's the slow path for us (no success at this point).
1669 
1670   cmpwi(CCR0, check_cache_offset, sc_offset);
1671   bne(CCR0, L_failure);
1672   // bind(slow_path); // fallthru
1673 }
1674 
1675 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1676                                                    Register super_klass,
1677                                                    Register temp1_reg,
1678                                                    Register temp2_reg,
1679                                                    Label* L_success,
1680                                                    Register result_reg) {
1681   const Register array_ptr = temp1_reg; // current value from cache array
1682   const Register temp      = temp2_reg;
1683 
1684   assert_different_registers(sub_klass, super_klass, array_ptr, temp);
1685 
1686   int source_offset = in_bytes(Klass::secondary_supers_offset());
1687   int target_offset = in_bytes(Klass::secondary_super_cache_offset());
1688 
1689   int length_offset = Array<Klass*>::length_offset_in_bytes();
1690   int base_offset   = Array<Klass*>::base_offset_in_bytes();
1691 
1692   Label hit, loop, failure, fallthru;
1693 
1694   ld(array_ptr, source_offset, sub_klass);
1695 
1696   //assert(4 == arrayOopDesc::length_length_in_bytes(), "precondition violated.");
1697   lwz(temp, length_offset, array_ptr);
1698   cmpwi(CCR0, temp, 0);
1699   beq(CCR0, result_reg!=noreg ? failure : fallthru); // length 0
1700 
1701   mtctr(temp); // load ctr
1702 
1703   bind(loop);
1704   // Oops in table are NO MORE compressed.
1705   ld(temp, base_offset, array_ptr);
1706   cmpd(CCR0, temp, super_klass);
1707   beq(CCR0, hit);
1708   addi(array_ptr, array_ptr, BytesPerWord);
1709   bdnz(loop);
1710 
1711   bind(failure);
1712   if (result_reg!=noreg) li(result_reg, 1); // load non-zero result (indicates a miss)
1713   b(fallthru);
1714 
1715   bind(hit);
1716   std(super_klass, target_offset, sub_klass); // save result to cache
1717   if (result_reg != noreg) li(result_reg, 0); // load zero result (indicates a hit)
1718   if (L_success != NULL) b(*L_success);
1719 
1720   bind(fallthru);
1721 }
1722 
1723 // Try fast path, then go to slow one if not successful
1724 void MacroAssembler::check_klass_subtype(Register sub_klass,
1725                          Register super_klass,
1726                          Register temp1_reg,
1727                          Register temp2_reg,
1728                          Label& L_success) {
1729   Label L_failure;
1730   check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg, temp2_reg, L_success, L_failure);
1731   check_klass_subtype_slow_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success);
1732   bind(L_failure); // Fallthru if not successful.
1733 }
1734 
1735 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
1736                                               Register temp_reg,
1737                                               Label& wrong_method_type) {
1738   assert_different_registers(mtype_reg, mh_reg, temp_reg);
1739   // Compare method type against that of the receiver.
1740   load_heap_oop_not_null(temp_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg), mh_reg);
1741   cmpd(CCR0, temp_reg, mtype_reg);
1742   bne(CCR0, wrong_method_type);
1743 }
1744 
1745 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
1746                                                    Register temp_reg,
1747                                                    int extra_slot_offset) {
1748   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
1749   int stackElementSize = Interpreter::stackElementSize;
1750   int offset = extra_slot_offset * stackElementSize;
1751   if (arg_slot.is_constant()) {
1752     offset += arg_slot.as_constant() * stackElementSize;
1753     return offset;
1754   } else {
1755     assert(temp_reg != noreg, "must specify");
1756     sldi(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize));
1757     if (offset != 0)
1758       addi(temp_reg, temp_reg, offset);
1759     return temp_reg;
1760   }
1761 }
1762 
1763 void MacroAssembler::biased_locking_enter(ConditionRegister cr_reg, Register obj_reg,
1764                                           Register mark_reg, Register temp_reg,
1765                                           Register temp2_reg, Label& done, Label* slow_case) {
1766   assert(UseBiasedLocking, "why call this otherwise?");
1767 
1768 #ifdef ASSERT
1769   assert_different_registers(obj_reg, mark_reg, temp_reg, temp2_reg);
1770 #endif
1771 
1772   Label cas_label;
1773 
1774   // Branch to done if fast path fails and no slow_case provided.
1775   Label *slow_case_int = (slow_case != NULL) ? slow_case : &done;
1776 
1777   // Biased locking
1778   // See whether the lock is currently biased toward our thread and
1779   // whether the epoch is still valid
1780   // Note that the runtime guarantees sufficient alignment of JavaThread
1781   // pointers to allow age to be placed into low bits
1782   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits,
1783          "biased locking makes assumptions about bit layout");
1784 
1785   if (PrintBiasedLockingStatistics) {
1786     load_const(temp_reg, (address) BiasedLocking::total_entry_count_addr(), temp2_reg);
1787     lwz(temp2_reg, 0, temp_reg);
1788     addi(temp2_reg, temp2_reg, 1);
1789     stw(temp2_reg, 0, temp_reg);
1790   }
1791 
1792   andi(temp_reg, mark_reg, markOopDesc::biased_lock_mask_in_place);
1793   cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern);
1794   bne(cr_reg, cas_label);
1795 
1796   load_klass(temp_reg, obj_reg);
1797 
1798   load_const_optimized(temp2_reg, ~((int) markOopDesc::age_mask_in_place));
1799   ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
1800   orr(temp_reg, R16_thread, temp_reg);
1801   xorr(temp_reg, mark_reg, temp_reg);
1802   andr(temp_reg, temp_reg, temp2_reg);
1803   cmpdi(cr_reg, temp_reg, 0);
1804   if (PrintBiasedLockingStatistics) {
1805     Label l;
1806     bne(cr_reg, l);
1807     load_const(mark_reg, (address) BiasedLocking::biased_lock_entry_count_addr());
1808     lwz(temp2_reg, 0, mark_reg);
1809     addi(temp2_reg, temp2_reg, 1);
1810     stw(temp2_reg, 0, mark_reg);
1811     // restore mark_reg
1812     ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
1813     bind(l);
1814   }
1815   beq(cr_reg, done);
1816 
1817   Label try_revoke_bias;
1818   Label try_rebias;
1819 
1820   // At this point we know that the header has the bias pattern and
1821   // that we are not the bias owner in the current epoch. We need to
1822   // figure out more details about the state of the header in order to
1823   // know what operations can be legally performed on the object's
1824   // header.
1825 
1826   // If the low three bits in the xor result aren't clear, that means
1827   // the prototype header is no longer biased and we have to revoke
1828   // the bias on this object.
1829   andi(temp2_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
1830   cmpwi(cr_reg, temp2_reg, 0);
1831   bne(cr_reg, try_revoke_bias);
1832 
1833   // Biasing is still enabled for this data type. See whether the
1834   // epoch of the current bias is still valid, meaning that the epoch
1835   // bits of the mark word are equal to the epoch bits of the
1836   // prototype header. (Note that the prototype header's epoch bits
1837   // only change at a safepoint.) If not, attempt to rebias the object
1838   // toward the current thread. Note that we must be absolutely sure
1839   // that the current epoch is invalid in order to do this because
1840   // otherwise the manipulations it performs on the mark word are
1841   // illegal.
1842 
1843   int shift_amount = 64 - markOopDesc::epoch_shift;
1844   // rotate epoch bits to right (little) end and set other bits to 0
1845   // [ big part | epoch | little part ] -> [ 0..0 | epoch ]
1846   rldicl_(temp2_reg, temp_reg, shift_amount, 64 - markOopDesc::epoch_bits);
1847   // branch if epoch bits are != 0, i.e. they differ, because the epoch has been incremented
1848   bne(CCR0, try_rebias);
1849 
1850   // The epoch of the current bias is still valid but we know nothing
1851   // about the owner; it might be set or it might be clear. Try to
1852   // acquire the bias of the object using an atomic operation. If this
1853   // fails we will go in to the runtime to revoke the object's bias.
1854   // Note that we first construct the presumed unbiased header so we
1855   // don't accidentally blow away another thread's valid bias.
1856   andi(mark_reg, mark_reg, (markOopDesc::biased_lock_mask_in_place |
1857                                 markOopDesc::age_mask_in_place |
1858                                 markOopDesc::epoch_mask_in_place));
1859   orr(temp_reg, R16_thread, mark_reg);
1860 
1861   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
1862 
1863   // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
1864   fence(); // TODO: replace by MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq ?
1865   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
1866            /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
1867            /*where=*/obj_reg,
1868            MacroAssembler::MemBarAcq,
1869            MacroAssembler::cmpxchgx_hint_acquire_lock(),
1870            noreg, slow_case_int); // bail out if failed
1871 
1872   // If the biasing toward our thread failed, this means that
1873   // another thread succeeded in biasing it toward itself and we
1874   // need to revoke that bias. The revocation will occur in the
1875   // interpreter runtime in the slow case.
1876   if (PrintBiasedLockingStatistics) {
1877     load_const(temp_reg, (address) BiasedLocking::anonymously_biased_lock_entry_count_addr(), temp2_reg);
1878     lwz(temp2_reg, 0, temp_reg);
1879     addi(temp2_reg, temp2_reg, 1);
1880     stw(temp2_reg, 0, temp_reg);
1881   }
1882   b(done);
1883 
1884   bind(try_rebias);
1885   // At this point we know the epoch has expired, meaning that the
1886   // current "bias owner", if any, is actually invalid. Under these
1887   // circumstances _only_, we are allowed to use the current header's
1888   // value as the comparison value when doing the cas to acquire the
1889   // bias in the current epoch. In other words, we allow transfer of
1890   // the bias from one thread to another directly in this situation.
1891   andi(temp_reg, mark_reg, markOopDesc::age_mask_in_place);
1892   orr(temp_reg, R16_thread, temp_reg);
1893   load_klass(temp2_reg, obj_reg);
1894   ld(temp2_reg, in_bytes(Klass::prototype_header_offset()), temp2_reg);
1895   orr(temp_reg, temp_reg, temp2_reg);
1896 
1897   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
1898 
1899   // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
1900   fence(); // TODO: replace by MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq ?
1901   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
1902                  /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
1903                  /*where=*/obj_reg,
1904                  MacroAssembler::MemBarAcq,
1905                  MacroAssembler::cmpxchgx_hint_acquire_lock(),
1906                  noreg, slow_case_int); // bail out if failed
1907 
1908   // If the biasing toward our thread failed, this means that
1909   // another thread succeeded in biasing it toward itself and we
1910   // need to revoke that bias. The revocation will occur in the
1911   // interpreter runtime in the slow case.
1912   if (PrintBiasedLockingStatistics) {
1913     load_const(temp_reg, (address) BiasedLocking::rebiased_lock_entry_count_addr(), temp2_reg);
1914     lwz(temp2_reg, 0, temp_reg);
1915     addi(temp2_reg, temp2_reg, 1);
1916     stw(temp2_reg, 0, temp_reg);
1917   }
1918   b(done);
1919 
1920   bind(try_revoke_bias);
1921   // The prototype mark in the klass doesn't have the bias bit set any
1922   // more, indicating that objects of this data type are not supposed
1923   // to be biased any more. We are going to try to reset the mark of
1924   // this object to the prototype value and fall through to the
1925   // CAS-based locking scheme. Note that if our CAS fails, it means
1926   // that another thread raced us for the privilege of revoking the
1927   // bias of this particular object, so it's okay to continue in the
1928   // normal locking code.
1929   load_klass(temp_reg, obj_reg);
1930   ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
1931   andi(temp2_reg, mark_reg, markOopDesc::age_mask_in_place);
1932   orr(temp_reg, temp_reg, temp2_reg);
1933 
1934   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
1935 
1936   // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
1937   fence(); // TODO: replace by MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq ?
1938   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
1939                  /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
1940                  /*where=*/obj_reg,
1941                  MacroAssembler::MemBarAcq,
1942                  MacroAssembler::cmpxchgx_hint_acquire_lock());
1943 
1944   // reload markOop in mark_reg before continuing with lightweight locking
1945   ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
1946 
1947   // Fall through to the normal CAS-based lock, because no matter what
1948   // the result of the above CAS, some thread must have succeeded in
1949   // removing the bias bit from the object's header.
1950   if (PrintBiasedLockingStatistics) {
1951     Label l;
1952     bne(cr_reg, l);
1953     load_const(temp_reg, (address) BiasedLocking::revoked_lock_entry_count_addr(), temp2_reg);
1954     lwz(temp2_reg, 0, temp_reg);
1955     addi(temp2_reg, temp2_reg, 1);
1956     stw(temp2_reg, 0, temp_reg);
1957     bind(l);
1958   }
1959 
1960   bind(cas_label);
1961 }
1962 
1963 void MacroAssembler::biased_locking_exit (ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done) {
1964   // Check for biased locking unlock case, which is a no-op
1965   // Note: we do not have to check the thread ID for two reasons.
1966   // First, the interpreter checks for IllegalMonitorStateException at
1967   // a higher level. Second, if the bias was revoked while we held the
1968   // lock, the object could not be rebiased toward another thread, so
1969   // the bias bit would be clear.
1970 
1971   ld(temp_reg, 0, mark_addr);
1972   andi(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
1973 
1974   cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern);
1975   beq(cr_reg, done);
1976 }
1977 
1978 // "The box" is the space on the stack where we copy the object mark.
1979 void MacroAssembler::compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box,
1980                                                Register temp, Register displaced_header, Register current_header) {
1981   assert_different_registers(oop, box, temp, displaced_header, current_header);
1982   assert(flag != CCR0, "bad condition register");
1983   Label cont;
1984   Label object_has_monitor;
1985   Label cas_failed;
1986 
1987   // Load markOop from object into displaced_header.
1988   ld(displaced_header, oopDesc::mark_offset_in_bytes(), oop);
1989 
1990 
1991   // Always do locking in runtime.
1992   if (EmitSync & 0x01) {
1993     cmpdi(flag, oop, 0); // Oop can't be 0 here => always false.
1994     return;
1995   }
1996 
1997   if (UseBiasedLocking) {
1998     biased_locking_enter(flag, oop, displaced_header, temp, current_header, cont);
1999   }
2000 
2001   // Handle existing monitor.
2002   if ((EmitSync & 0x02) == 0) {
2003     // The object has an existing monitor iff (mark & monitor_value) != 0.
2004     andi_(temp, displaced_header, markOopDesc::monitor_value);
2005     bne(CCR0, object_has_monitor);
2006   }
2007 
2008   // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
2009   ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
2010 
2011   // Load Compare Value application register.
2012 
2013   // Initialize the box. (Must happen before we update the object mark!)
2014   std(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
2015 
2016   // Must fence, otherwise, preceding store(s) may float below cmpxchg.
2017   // Compare object markOop with mark and if equal exchange scratch1 with object markOop.
2018   // CmpxchgX sets cr_reg to cmpX(current, displaced).
2019   membar(Assembler::StoreStore);
2020   cmpxchgd(/*flag=*/flag,
2021            /*current_value=*/current_header,
2022            /*compare_value=*/displaced_header,
2023            /*exchange_value=*/box,
2024            /*where=*/oop,
2025            MacroAssembler::MemBarAcq,
2026            MacroAssembler::cmpxchgx_hint_acquire_lock(),
2027            noreg,
2028            &cas_failed);
2029   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2030 
2031   // If the compare-and-exchange succeeded, then we found an unlocked
2032   // object and we have now locked it.
2033   b(cont);
2034 
2035   bind(cas_failed);
2036   // We did not see an unlocked object so try the fast recursive case.
2037 
2038   // Check if the owner is self by comparing the value in the markOop of object
2039   // (current_header) with the stack pointer.
2040   sub(current_header, current_header, R1_SP);
2041   load_const_optimized(temp, (address) (~(os::vm_page_size()-1) |
2042                                         markOopDesc::lock_mask_in_place));
2043 
2044   and_(R0/*==0?*/, current_header, temp);
2045   // If condition is true we are cont and hence we can store 0 as the
2046   // displaced header in the box, which indicates that it is a recursive lock.
2047   mcrf(flag,CCR0);
2048   std(R0/*==0, perhaps*/, BasicLock::displaced_header_offset_in_bytes(), box);
2049 
2050   // Handle existing monitor.
2051   if ((EmitSync & 0x02) == 0) {
2052     b(cont);
2053 
2054     bind(object_has_monitor);
2055     // The object's monitor m is unlocked iff m->owner == NULL,
2056     // otherwise m->owner may contain a thread or a stack address.
2057     //
2058     // Try to CAS m->owner from NULL to current thread.
2059     addi(temp, displaced_header, ObjectMonitor::owner_offset_in_bytes()-markOopDesc::monitor_value);
2060     li(displaced_header, 0);
2061     // CmpxchgX sets flag to cmpX(current, displaced).
2062     cmpxchgd(/*flag=*/flag,
2063              /*current_value=*/current_header,
2064              /*compare_value=*/displaced_header,
2065              /*exchange_value=*/R16_thread,
2066              /*where=*/temp,
2067              MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2068              MacroAssembler::cmpxchgx_hint_acquire_lock());
2069 
2070     // Store a non-null value into the box.
2071     std(box, BasicLock::displaced_header_offset_in_bytes(), box);
2072 
2073 #   ifdef ASSERT
2074     bne(flag, cont);
2075     // We have acquired the monitor, check some invariants.
2076     addi(/*monitor=*/temp, temp, -ObjectMonitor::owner_offset_in_bytes());
2077     // Invariant 1: _recursions should be 0.
2078     //assert(ObjectMonitor::recursions_size_in_bytes() == 8, "unexpected size");
2079     asm_assert_mem8_is_zero(ObjectMonitor::recursions_offset_in_bytes(), temp,
2080                             "monitor->_recursions should be 0", -1);
2081     // Invariant 2: OwnerIsThread shouldn't be 0.
2082     //assert(ObjectMonitor::OwnerIsThread_size_in_bytes() == 4, "unexpected size");
2083     //asm_assert_mem4_isnot_zero(ObjectMonitor::OwnerIsThread_offset_in_bytes(), temp,
2084     //                           "monitor->OwnerIsThread shouldn't be 0", -1);
2085 #   endif
2086   }
2087 
2088   bind(cont);
2089   // flag == EQ indicates success
2090   // flag == NE indicates failure
2091 }
2092 
2093 void MacroAssembler::compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box,
2094                                                  Register temp, Register displaced_header, Register current_header) {
2095   assert_different_registers(oop, box, temp, displaced_header, current_header);
2096   assert(flag != CCR0, "bad condition register");
2097   Label cont;
2098   Label object_has_monitor;
2099 
2100   // Always do locking in runtime.
2101   if (EmitSync & 0x01) {
2102     cmpdi(flag, oop, 0); // Oop can't be 0 here => always false.
2103     return;
2104   }
2105 
2106   if (UseBiasedLocking) {
2107     biased_locking_exit(flag, oop, current_header, cont);
2108   }
2109 
2110   // Find the lock address and load the displaced header from the stack.
2111   ld(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
2112 
2113   // If the displaced header is 0, we have a recursive unlock.
2114   cmpdi(flag, displaced_header, 0);
2115   beq(flag, cont);
2116 
2117   // Handle existing monitor.
2118   if ((EmitSync & 0x02) == 0) {
2119     // The object has an existing monitor iff (mark & monitor_value) != 0.
2120     ld(current_header, oopDesc::mark_offset_in_bytes(), oop);
2121     andi(temp, current_header, markOopDesc::monitor_value);
2122     cmpdi(flag, temp, 0);
2123     bne(flag, object_has_monitor);
2124   }
2125 
2126 
2127   // Check if it is still a light weight lock, this is is true if we see
2128   // the stack address of the basicLock in the markOop of the object.
2129   // Cmpxchg sets flag to cmpd(current_header, box).
2130   cmpxchgd(/*flag=*/flag,
2131            /*current_value=*/current_header,
2132            /*compare_value=*/box,
2133            /*exchange_value=*/displaced_header,
2134            /*where=*/oop,
2135            MacroAssembler::MemBarRel,
2136            MacroAssembler::cmpxchgx_hint_release_lock(),
2137            noreg,
2138            &cont);
2139 
2140   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2141 
2142   // Handle existing monitor.
2143   if ((EmitSync & 0x02) == 0) {
2144     b(cont);
2145 
2146     bind(object_has_monitor);
2147     addi(current_header, current_header, -markOopDesc::monitor_value); // monitor
2148     ld(temp,             ObjectMonitor::owner_offset_in_bytes(), current_header);
2149     ld(displaced_header, ObjectMonitor::recursions_offset_in_bytes(), current_header);
2150     xorr(temp, R16_thread, temp);      // Will be 0 if we are the owner.
2151     orr(temp, temp, displaced_header); // Will be 0 if there are 0 recursions.
2152     cmpdi(flag, temp, 0);
2153     bne(flag, cont);
2154 
2155     ld(temp,             ObjectMonitor::EntryList_offset_in_bytes(), current_header);
2156     ld(displaced_header, ObjectMonitor::cxq_offset_in_bytes(), current_header);
2157     orr(temp, temp, displaced_header); // Will be 0 if both are 0.
2158     cmpdi(flag, temp, 0);
2159     bne(flag, cont);
2160     release();
2161     std(temp, ObjectMonitor::owner_offset_in_bytes(), current_header);
2162   }
2163 
2164   bind(cont);
2165   // flag == EQ indicates success
2166   // flag == NE indicates failure
2167 }
2168 
2169 // Write serialization page so VM thread can do a pseudo remote membar.
2170 // We use the current thread pointer to calculate a thread specific
2171 // offset to write to within the page. This minimizes bus traffic
2172 // due to cache line collision.
2173 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
2174   srdi(tmp2, thread, os::get_serialize_page_shift_count());
2175 
2176   int mask = os::vm_page_size() - sizeof(int);
2177   if (Assembler::is_simm(mask, 16)) {
2178     andi(tmp2, tmp2, mask);
2179   } else {
2180     lis(tmp1, (int)((signed short) (mask >> 16)));
2181     ori(tmp1, tmp1, mask & 0x0000ffff);
2182     andr(tmp2, tmp2, tmp1);
2183   }
2184 
2185   load_const(tmp1, (long) os::get_memory_serialize_page());
2186   release();
2187   stwx(R0, tmp1, tmp2);
2188 }
2189 
2190 
2191 // GC barrier helper macros
2192 
2193 // Write the card table byte if needed.
2194 void MacroAssembler::card_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp) {
2195   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
2196   assert(bs->kind() == BarrierSet::CardTableModRef ||
2197          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
2198 #ifdef ASSERT
2199   cmpdi(CCR0, Rnew_val, 0);
2200   asm_assert_ne("null oop not allowed", 0x321);
2201 #endif
2202   card_table_write(bs->byte_map_base, Rtmp, Rstore_addr);
2203 }
2204 
2205 // Write the card table byte.
2206 void MacroAssembler::card_table_write(jbyte* byte_map_base, Register Rtmp, Register Robj) {
2207   assert_different_registers(Robj, Rtmp, R0);
2208   load_const_optimized(Rtmp, (address)byte_map_base, R0);
2209   srdi(Robj, Robj, CardTableModRefBS::card_shift);
2210   li(R0, 0); // dirty
2211   if (UseConcMarkSweepGC) membar(Assembler::StoreStore);
2212   stbx(R0, Rtmp, Robj);
2213 }
2214 
2215 #if INCLUDE_ALL_GCS
2216 // General G1 pre-barrier generator.
2217 // Goal: record the previous value if it is not null.
2218 void MacroAssembler::g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val,
2219                                           Register Rtmp1, Register Rtmp2, bool needs_frame) {
2220   Label runtime, filtered;
2221 
2222   // Is marking active?
2223   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
2224     lwz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active()), R16_thread);
2225   } else {
2226     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
2227     lbz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active()), R16_thread);
2228   }
2229   cmpdi(CCR0, Rtmp1, 0);
2230   beq(CCR0, filtered);
2231 
2232   // Do we need to load the previous value?
2233   if (Robj != noreg) {
2234     // Load the previous value...
2235     if (UseCompressedOops) {
2236       lwz(Rpre_val, offset, Robj);
2237     } else {
2238       ld(Rpre_val, offset, Robj);
2239     }
2240     // Previous value has been loaded into Rpre_val.
2241   }
2242   assert(Rpre_val != noreg, "must have a real register");
2243 
2244   // Is the previous value null?
2245   cmpdi(CCR0, Rpre_val, 0);
2246   beq(CCR0, filtered);
2247 
2248   if (Robj != noreg && UseCompressedOops) {
2249     decode_heap_oop_not_null(Rpre_val);
2250   }
2251 
2252   // OK, it's not filtered, so we'll need to call enqueue. In the normal
2253   // case, pre_val will be a scratch G-reg, but there are some cases in
2254   // which it's an O-reg. In the first case, do a normal call. In the
2255   // latter, do a save here and call the frameless version.
2256 
2257   // Can we store original value in the thread's buffer?
2258   // Is index == 0?
2259   // (The index field is typed as size_t.)
2260   const Register Rbuffer = Rtmp1, Rindex = Rtmp2;
2261 
2262   ld(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_index()), R16_thread);
2263   cmpdi(CCR0, Rindex, 0);
2264   beq(CCR0, runtime); // If index == 0, goto runtime.
2265   ld(Rbuffer, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_buf()), R16_thread);
2266 
2267   addi(Rindex, Rindex, -wordSize); // Decrement index.
2268   std(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_index()), R16_thread);
2269 
2270   // Record the previous value.
2271   stdx(Rpre_val, Rbuffer, Rindex);
2272   b(filtered);
2273 
2274   bind(runtime);
2275 
2276   // VM call need frame to access(write) O register.
2277   if (needs_frame) {
2278     save_LR_CR(Rtmp1);
2279     push_frame_reg_args(0, Rtmp2);
2280   }
2281 
2282   if (Rpre_val->is_volatile() && Robj == noreg) mr(R31, Rpre_val); // Save pre_val across C call if it was preloaded.
2283   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), Rpre_val, R16_thread);
2284   if (Rpre_val->is_volatile() && Robj == noreg) mr(Rpre_val, R31); // restore
2285 
2286   if (needs_frame) {
2287     pop_frame();
2288     restore_LR_CR(Rtmp1);
2289   }
2290 
2291   bind(filtered);
2292 }
2293 
2294 // General G1 post-barrier generator
2295 // Store cross-region card.
2296 void MacroAssembler::g1_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp1, Register Rtmp2, Register Rtmp3, Label *filtered_ext) {
2297   Label runtime, filtered_int;
2298   Label& filtered = (filtered_ext != NULL) ? *filtered_ext : filtered_int;
2299   assert_different_registers(Rstore_addr, Rnew_val, Rtmp1, Rtmp2);
2300 
2301   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
2302   assert(bs->kind() == BarrierSet::G1SATBCT ||
2303          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
2304 
2305   // Does store cross heap regions?
2306   if (G1RSBarrierRegionFilter) {
2307     xorr(Rtmp1, Rstore_addr, Rnew_val);
2308     srdi_(Rtmp1, Rtmp1, HeapRegion::LogOfHRGrainBytes);
2309     beq(CCR0, filtered);
2310   }
2311 
2312   // Crosses regions, storing NULL?
2313 #ifdef ASSERT
2314   cmpdi(CCR0, Rnew_val, 0);
2315   asm_assert_ne("null oop not allowed (G1)", 0x322); // Checked by caller on PPC64, so following branch is obsolete:
2316   //beq(CCR0, filtered);
2317 #endif
2318 
2319   // Storing region crossing non-NULL, is card already dirty?
2320   assert(sizeof(*bs->byte_map_base) == sizeof(jbyte), "adjust this code");
2321   const Register Rcard_addr = Rtmp1;
2322   Register Rbase = Rtmp2;
2323   load_const_optimized(Rbase, (address)bs->byte_map_base, /*temp*/ Rtmp3);
2324 
2325   srdi(Rcard_addr, Rstore_addr, CardTableModRefBS::card_shift);
2326 
2327   // Get the address of the card.
2328   lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr);
2329   cmpwi(CCR0, Rtmp3, (int)G1SATBCardTableModRefBS::g1_young_card_val());
2330   beq(CCR0, filtered);
2331 
2332   membar(Assembler::StoreLoad);
2333   lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr);  // Reload after membar.
2334   cmpwi(CCR0, Rtmp3 /* card value */, CardTableModRefBS::dirty_card_val());
2335   beq(CCR0, filtered);
2336 
2337   // Storing a region crossing, non-NULL oop, card is clean.
2338   // Dirty card and log.
2339   li(Rtmp3, CardTableModRefBS::dirty_card_val());
2340   //release(); // G1: oops are allowed to get visible after dirty marking.
2341   stbx(Rtmp3, Rbase, Rcard_addr);
2342 
2343   add(Rcard_addr, Rbase, Rcard_addr); // This is the address which needs to get enqueued.
2344   Rbase = noreg; // end of lifetime
2345 
2346   const Register Rqueue_index = Rtmp2,
2347                  Rqueue_buf   = Rtmp3;
2348   ld(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_index()), R16_thread);
2349   cmpdi(CCR0, Rqueue_index, 0);
2350   beq(CCR0, runtime); // index == 0 then jump to runtime
2351   ld(Rqueue_buf, in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_buf()), R16_thread);
2352 
2353   addi(Rqueue_index, Rqueue_index, -wordSize); // decrement index
2354   std(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_index()), R16_thread);
2355 
2356   stdx(Rcard_addr, Rqueue_buf, Rqueue_index); // store card
2357   b(filtered);
2358 
2359   bind(runtime);
2360 
2361   // Save the live input values.
2362   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), Rcard_addr, R16_thread);
2363 
2364   bind(filtered_int);
2365 }
2366 #endif // INCLUDE_ALL_GCS
2367 
2368 // Values for last_Java_pc, and last_Java_sp must comply to the rules
2369 // in frame_ppc64.hpp.
2370 void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc) {
2371   // Always set last_Java_pc and flags first because once last_Java_sp
2372   // is visible has_last_Java_frame is true and users will look at the
2373   // rest of the fields. (Note: flags should always be zero before we
2374   // get here so doesn't need to be set.)
2375 
2376   // Verify that last_Java_pc was zeroed on return to Java
2377   asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()), R16_thread,
2378                           "last_Java_pc not zeroed before leaving Java", 0x200);
2379 
2380   // When returning from calling out from Java mode the frame anchor's
2381   // last_Java_pc will always be set to NULL. It is set here so that
2382   // if we are doing a call to native (not VM) that we capture the
2383   // known pc and don't have to rely on the native call having a
2384   // standard frame linkage where we can find the pc.
2385   if (last_Java_pc != noreg)
2386     std(last_Java_pc, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
2387 
2388   // Set last_Java_sp last.
2389   std(last_Java_sp, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
2390 }
2391 
2392 void MacroAssembler::reset_last_Java_frame(void) {
2393   asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()),
2394                              R16_thread, "SP was not set, still zero", 0x202);
2395 
2396   BLOCK_COMMENT("reset_last_Java_frame {");
2397   li(R0, 0);
2398 
2399   // _last_Java_sp = 0
2400   std(R0, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
2401 
2402   // _last_Java_pc = 0
2403   std(R0, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
2404   BLOCK_COMMENT("} reset_last_Java_frame");
2405 }
2406 
2407 void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1) {
2408   assert_different_registers(sp, tmp1);
2409 
2410   // sp points to a TOP_IJAVA_FRAME, retrieve frame's PC via
2411   // TOP_IJAVA_FRAME_ABI.
2412   // FIXME: assert that we really have a TOP_IJAVA_FRAME here!
2413 #ifdef CC_INTERP
2414   ld(tmp1/*pc*/, _top_ijava_frame_abi(frame_manager_lr), sp);
2415 #else
2416   address entry = pc();
2417   load_const_optimized(tmp1, entry);
2418 #endif
2419 
2420   set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1);
2421 }
2422 
2423 void MacroAssembler::get_vm_result(Register oop_result) {
2424   // Read:
2425   //   R16_thread
2426   //   R16_thread->in_bytes(JavaThread::vm_result_offset())
2427   //
2428   // Updated:
2429   //   oop_result
2430   //   R16_thread->in_bytes(JavaThread::vm_result_offset())
2431 
2432   ld(oop_result, in_bytes(JavaThread::vm_result_offset()), R16_thread);
2433   li(R0, 0);
2434   std(R0, in_bytes(JavaThread::vm_result_offset()), R16_thread);
2435 
2436   verify_oop(oop_result);
2437 }
2438 
2439 void MacroAssembler::get_vm_result_2(Register metadata_result) {
2440   // Read:
2441   //   R16_thread
2442   //   R16_thread->in_bytes(JavaThread::vm_result_2_offset())
2443   //
2444   // Updated:
2445   //   metadata_result
2446   //   R16_thread->in_bytes(JavaThread::vm_result_2_offset())
2447 
2448   ld(metadata_result, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
2449   li(R0, 0);
2450   std(R0, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
2451 }
2452 
2453 
2454 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
2455   Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided.
2456   if (Universe::narrow_klass_base() != 0) {
2457     // Use dst as temp if it is free.
2458     load_const(R0, Universe::narrow_klass_base(), (dst != current && dst != R0) ? dst : noreg);
2459     sub(dst, current, R0);
2460     current = dst;
2461   }
2462   if (Universe::narrow_klass_shift() != 0) {
2463     srdi(dst, current, Universe::narrow_klass_shift());
2464     current = dst;
2465   }
2466   mr_if_needed(dst, current); // Move may be required.
2467 }
2468 
2469 void MacroAssembler::store_klass(Register dst_oop, Register klass, Register ck) {
2470   if (UseCompressedClassPointers) {
2471     encode_klass_not_null(ck, klass);
2472     stw(ck, oopDesc::klass_offset_in_bytes(), dst_oop);
2473   } else {
2474     std(klass, oopDesc::klass_offset_in_bytes(), dst_oop);
2475   }
2476 }
2477 
2478 void MacroAssembler::store_klass_gap(Register dst_oop, Register val) {
2479   if (UseCompressedClassPointers) {
2480     if (val == noreg) {
2481       val = R0;
2482       li(val, 0);
2483     }
2484     stw(val, oopDesc::klass_gap_offset_in_bytes(), dst_oop); // klass gap if compressed
2485   }
2486 }
2487 
2488 int MacroAssembler::instr_size_for_decode_klass_not_null() {
2489   if (!UseCompressedClassPointers) return 0;
2490   int num_instrs = 1;  // shift or move
2491   if (Universe::narrow_klass_base() != 0) num_instrs = 7;  // shift + load const + add
2492   return num_instrs * BytesPerInstWord;
2493 }
2494 
2495 void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
2496   if (src == noreg) src = dst;
2497   Register shifted_src = src;
2498   if (Universe::narrow_klass_shift() != 0 ||
2499       Universe::narrow_klass_base() == 0 && src != dst) {  // Move required.
2500     shifted_src = dst;
2501     sldi(shifted_src, src, Universe::narrow_klass_shift());
2502   }
2503   if (Universe::narrow_klass_base() != 0) {
2504     load_const(R0, Universe::narrow_klass_base());
2505     add(dst, shifted_src, R0);
2506   }
2507 }
2508 
2509 void MacroAssembler::load_klass(Register dst, Register src) {
2510   if (UseCompressedClassPointers) {
2511     lwz(dst, oopDesc::klass_offset_in_bytes(), src);
2512     // Attention: no null check here!
2513     decode_klass_not_null(dst, dst);
2514   } else {
2515     ld(dst, oopDesc::klass_offset_in_bytes(), src);
2516   }
2517 }
2518 
2519 void MacroAssembler::load_klass_with_trap_null_check(Register dst, Register src) {
2520   if (!os::zero_page_read_protected()) {
2521     if (TrapBasedNullChecks) {
2522       trap_null_check(src);
2523     }
2524   }
2525   load_klass(dst, src);
2526 }
2527 
2528 void MacroAssembler::reinit_heapbase(Register d, Register tmp) {
2529   if (Universe::heap() != NULL) {
2530     if (Universe::narrow_oop_base() == NULL) {
2531       Assembler::xorr(R30, R30, R30);
2532     } else {
2533       load_const(R30, Universe::narrow_ptrs_base(), tmp);
2534     }
2535   } else {
2536     load_const(R30, Universe::narrow_ptrs_base_addr(), tmp);
2537     ld(R30, 0, R30);
2538   }
2539 }
2540 
2541 // Clear Array
2542 // Kills both input registers. tmp == R0 is allowed.
2543 void MacroAssembler::clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp) {
2544   // Procedure for large arrays (uses data cache block zero instruction).
2545     Label startloop, fast, fastloop, small_rest, restloop, done;
2546     const int cl_size         = VM_Version::get_cache_line_size(),
2547               cl_dwords       = cl_size>>3,
2548               cl_dw_addr_bits = exact_log2(cl_dwords),
2549               dcbz_min        = 1;                     // Min count of dcbz executions, needs to be >0.
2550 
2551 //2:
2552     cmpdi(CCR1, cnt_dwords, ((dcbz_min+1)<<cl_dw_addr_bits)-1); // Big enough? (ensure >=dcbz_min lines included).
2553     blt(CCR1, small_rest);                                      // Too small.
2554     rldicl_(tmp, base_ptr, 64-3, 64-cl_dw_addr_bits);           // Extract dword offset within first cache line.
2555     beq(CCR0, fast);                                            // Already 128byte aligned.
2556 
2557     subfic(tmp, tmp, cl_dwords);
2558     mtctr(tmp);                        // Set ctr to hit 128byte boundary (0<ctr<cl_dwords).
2559     subf(cnt_dwords, tmp, cnt_dwords); // rest.
2560     li(tmp, 0);
2561 //10:
2562   bind(startloop);                     // Clear at the beginning to reach 128byte boundary.
2563     std(tmp, 0, base_ptr);             // Clear 8byte aligned block.
2564     addi(base_ptr, base_ptr, 8);
2565     bdnz(startloop);
2566 //13:
2567   bind(fast);                                  // Clear 128byte blocks.
2568     srdi(tmp, cnt_dwords, cl_dw_addr_bits);    // Loop count for 128byte loop (>0).
2569     andi(cnt_dwords, cnt_dwords, cl_dwords-1); // Rest in dwords.
2570     mtctr(tmp);                                // Load counter.
2571 //16:
2572   bind(fastloop);
2573     dcbz(base_ptr);                    // Clear 128byte aligned block.
2574     addi(base_ptr, base_ptr, cl_size);
2575     bdnz(fastloop);
2576     if (InsertEndGroupPPC64) { endgroup(); } else { nop(); }
2577 //20:
2578   bind(small_rest);
2579     cmpdi(CCR0, cnt_dwords, 0);        // size 0?
2580     beq(CCR0, done);                   // rest == 0
2581     li(tmp, 0);
2582     mtctr(cnt_dwords);                 // Load counter.
2583 //24:
2584   bind(restloop);                      // Clear rest.
2585     std(tmp, 0, base_ptr);             // Clear 8byte aligned block.
2586     addi(base_ptr, base_ptr, 8);
2587     bdnz(restloop);
2588 //27:
2589   bind(done);
2590 }
2591 
2592 /////////////////////////////////////////// String intrinsics ////////////////////////////////////////////
2593 
2594 // Search for a single jchar in an jchar[].
2595 //
2596 // Assumes that result differs from all other registers.
2597 //
2598 // Haystack, needle are the addresses of jchar-arrays.
2599 // NeedleChar is needle[0] if it is known at compile time.
2600 // Haycnt is the length of the haystack. We assume haycnt >=1.
2601 //
2602 // Preserves haystack, haycnt, kills all other registers.
2603 //
2604 // If needle == R0, we search for the constant needleChar.
2605 void MacroAssembler::string_indexof_1(Register result, Register haystack, Register haycnt,
2606                                       Register needle, jchar needleChar,
2607                                       Register tmp1, Register tmp2) {
2608 
2609   assert_different_registers(result, haystack, haycnt, needle, tmp1, tmp2);
2610 
2611   Label L_InnerLoop, L_FinalCheck, L_Found1, L_Found2, L_Found3, L_NotFound, L_End;
2612   Register needle0 = needle, // Contains needle[0].
2613            addr = tmp1,
2614            ch1 = tmp2,
2615            ch2 = R0;
2616 
2617 //2 (variable) or 3 (const):
2618    if (needle != R0) lhz(needle0, 0, needle); // Preload needle character, needle has len==1.
2619    dcbtct(haystack, 0x00);                        // Indicate R/O access to haystack.
2620 
2621    srwi_(tmp2, haycnt, 1);   // Shift right by exact_log2(UNROLL_FACTOR).
2622    mr(addr, haystack);
2623    beq(CCR0, L_FinalCheck);
2624    mtctr(tmp2);              // Move to count register.
2625 //8:
2626   bind(L_InnerLoop);             // Main work horse (2x unrolled search loop).
2627    lhz(ch1, 0, addr);        // Load characters from haystack.
2628    lhz(ch2, 2, addr);
2629    (needle != R0) ? cmpw(CCR0, ch1, needle0) : cmplwi(CCR0, ch1, needleChar);
2630    (needle != R0) ? cmpw(CCR1, ch2, needle0) : cmplwi(CCR1, ch2, needleChar);
2631    beq(CCR0, L_Found1);   // Did we find the needle?
2632    beq(CCR1, L_Found2);
2633    addi(addr, addr, 4);
2634    bdnz(L_InnerLoop);
2635 //16:
2636   bind(L_FinalCheck);
2637    andi_(R0, haycnt, 1);
2638    beq(CCR0, L_NotFound);
2639    lhz(ch1, 0, addr);        // One position left at which we have to compare.
2640    (needle != R0) ? cmpw(CCR1, ch1, needle0) : cmplwi(CCR1, ch1, needleChar);
2641    beq(CCR1, L_Found3);
2642 //21:
2643   bind(L_NotFound);
2644    li(result, -1);           // Not found.
2645    b(L_End);
2646 
2647   bind(L_Found2);
2648    addi(addr, addr, 2);
2649 //24:
2650   bind(L_Found1);
2651   bind(L_Found3);                  // Return index ...
2652    subf(addr, haystack, addr); // relative to haystack,
2653    srdi(result, addr, 1);      // in characters.
2654   bind(L_End);
2655 }
2656 
2657 
2658 // Implementation of IndexOf for jchar arrays.
2659 //
2660 // The length of haystack and needle are not constant, i.e. passed in a register.
2661 //
2662 // Preserves registers haystack, needle.
2663 // Kills registers haycnt, needlecnt.
2664 // Assumes that result differs from all other registers.
2665 // Haystack, needle are the addresses of jchar-arrays.
2666 // Haycnt, needlecnt are the lengths of them, respectively.
2667 //
2668 // Needlecntval must be zero or 15-bit unsigned immediate and > 1.
2669 void MacroAssembler::string_indexof(Register result, Register haystack, Register haycnt,
2670                                     Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval,
2671                                     Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
2672 
2673   // Ensure 0<needlecnt<=haycnt in ideal graph as prerequisite!
2674   Label L_TooShort, L_Found, L_NotFound, L_End;
2675   Register last_addr = haycnt, // Kill haycnt at the beginning.
2676            addr      = tmp1,
2677            n_start   = tmp2,
2678            ch1       = tmp3,
2679            ch2       = R0;
2680 
2681   // **************************************************************************************************
2682   // Prepare for main loop: optimized for needle count >=2, bail out otherwise.
2683   // **************************************************************************************************
2684 
2685 //1 (variable) or 3 (const):
2686    dcbtct(needle, 0x00);    // Indicate R/O access to str1.
2687    dcbtct(haystack, 0x00);  // Indicate R/O access to str2.
2688 
2689   // Compute last haystack addr to use if no match gets found.
2690   if (needlecntval == 0) { // variable needlecnt
2691 //3:
2692    subf(ch1, needlecnt, haycnt);      // Last character index to compare is haycnt-needlecnt.
2693    addi(addr, haystack, -2);          // Accesses use pre-increment.
2694    cmpwi(CCR6, needlecnt, 2);
2695    blt(CCR6, L_TooShort);          // Variable needlecnt: handle short needle separately.
2696    slwi(ch1, ch1, 1);                 // Scale to number of bytes.
2697    lwz(n_start, 0, needle);           // Load first 2 characters of needle.
2698    add(last_addr, haystack, ch1);     // Point to last address to compare (haystack+2*(haycnt-needlecnt)).
2699    addi(needlecnt, needlecnt, -2);    // Rest of needle.
2700   } else { // constant needlecnt
2701   guarantee(needlecntval != 1, "IndexOf with single-character needle must be handled separately");
2702   assert((needlecntval & 0x7fff) == needlecntval, "wrong immediate");
2703 //5:
2704    addi(ch1, haycnt, -needlecntval);  // Last character index to compare is haycnt-needlecnt.
2705    lwz(n_start, 0, needle);           // Load first 2 characters of needle.
2706    addi(addr, haystack, -2);          // Accesses use pre-increment.
2707    slwi(ch1, ch1, 1);                 // Scale to number of bytes.
2708    add(last_addr, haystack, ch1);     // Point to last address to compare (haystack+2*(haycnt-needlecnt)).
2709    li(needlecnt, needlecntval-2);     // Rest of needle.
2710   }
2711 
2712   // Main Loop (now we have at least 3 characters).
2713 //11:
2714   Label L_OuterLoop, L_InnerLoop, L_FinalCheck, L_Comp1, L_Comp2, L_Comp3;
2715   bind(L_OuterLoop); // Search for 1st 2 characters.
2716   Register addr_diff = tmp4;
2717    subf(addr_diff, addr, last_addr); // Difference between already checked address and last address to check.
2718    addi(addr, addr, 2);              // This is the new address we want to use for comparing.
2719    srdi_(ch2, addr_diff, 2);
2720    beq(CCR0, L_FinalCheck);       // 2 characters left?
2721    mtctr(ch2);                       // addr_diff/4
2722 //16:
2723   bind(L_InnerLoop);                // Main work horse (2x unrolled search loop)
2724    lwz(ch1, 0, addr);           // Load 2 characters of haystack (ignore alignment).
2725    lwz(ch2, 2, addr);
2726    cmpw(CCR0, ch1, n_start); // Compare 2 characters (1 would be sufficient but try to reduce branches to CompLoop).
2727    cmpw(CCR1, ch2, n_start);
2728    beq(CCR0, L_Comp1);       // Did we find the needle start?
2729    beq(CCR1, L_Comp2);
2730    addi(addr, addr, 4);
2731    bdnz(L_InnerLoop);
2732 //24:
2733   bind(L_FinalCheck);
2734    rldicl_(addr_diff, addr_diff, 64-1, 63); // Remaining characters not covered by InnerLoop: (addr_diff>>1)&1.
2735    beq(CCR0, L_NotFound);
2736    lwz(ch1, 0, addr);                       // One position left at which we have to compare.
2737    cmpw(CCR1, ch1, n_start);
2738    beq(CCR1, L_Comp3);
2739 //29:
2740   bind(L_NotFound);
2741    li(result, -1); // not found
2742    b(L_End);
2743 
2744 
2745    // **************************************************************************************************
2746    // Special Case: unfortunately, the variable needle case can be called with needlecnt<2
2747    // **************************************************************************************************
2748 //31:
2749  if ((needlecntval>>1) !=1 ) { // Const needlecnt is 2 or 3? Reduce code size.
2750   int nopcnt = 5;
2751   if (needlecntval !=0 ) ++nopcnt; // Balance alignment (other case: see below).
2752   if (needlecntval == 0) {         // We have to handle these cases separately.
2753   Label L_OneCharLoop;
2754   bind(L_TooShort);
2755    mtctr(haycnt);
2756    lhz(n_start, 0, needle);    // First character of needle
2757   bind(L_OneCharLoop);
2758    lhzu(ch1, 2, addr);
2759    cmpw(CCR1, ch1, n_start);
2760    beq(CCR1, L_Found);      // Did we find the one character needle?
2761    bdnz(L_OneCharLoop);
2762    li(result, -1);             // Not found.
2763    b(L_End);
2764   } // 8 instructions, so no impact on alignment.
2765   for (int x = 0; x < nopcnt; ++x) nop();
2766  }
2767 
2768   // **************************************************************************************************
2769   // Regular Case Part II: compare rest of needle (first 2 characters have been compared already)
2770   // **************************************************************************************************
2771 
2772   // Compare the rest
2773 //36 if needlecntval==0, else 37:
2774   bind(L_Comp2);
2775    addi(addr, addr, 2); // First comparison has failed, 2nd one hit.
2776   bind(L_Comp1);            // Addr points to possible needle start.
2777   bind(L_Comp3);            // Could have created a copy and use a different return address but saving code size here.
2778   if (needlecntval != 2) {  // Const needlecnt==2?
2779    if (needlecntval != 3) {
2780     if (needlecntval == 0) beq(CCR6, L_Found); // Variable needlecnt==2?
2781     Register ind_reg = tmp4;
2782     li(ind_reg, 2*2);   // First 2 characters are already compared, use index 2.
2783     mtctr(needlecnt);   // Decremented by 2, still > 0.
2784 //40:
2785    Label L_CompLoop;
2786    bind(L_CompLoop);
2787     lhzx(ch2, needle, ind_reg);
2788     lhzx(ch1, addr, ind_reg);
2789     cmpw(CCR1, ch1, ch2);
2790     bne(CCR1, L_OuterLoop);
2791     addi(ind_reg, ind_reg, 2);
2792     bdnz(L_CompLoop);
2793    } else { // No loop required if there's only one needle character left.
2794     lhz(ch2, 2*2, needle);
2795     lhz(ch1, 2*2, addr);
2796     cmpw(CCR1, ch1, ch2);
2797     bne(CCR1, L_OuterLoop);
2798    }
2799   }
2800   // Return index ...
2801 //46:
2802   bind(L_Found);
2803    subf(addr, haystack, addr); // relative to haystack, ...
2804    srdi(result, addr, 1);      // in characters.
2805 //48:
2806   bind(L_End);
2807 }
2808 
2809 // Implementation of Compare for jchar arrays.
2810 //
2811 // Kills the registers str1, str2, cnt1, cnt2.
2812 // Kills cr0, ctr.
2813 // Assumes that result differes from the input registers.
2814 void MacroAssembler::string_compare(Register str1_reg, Register str2_reg, Register cnt1_reg, Register cnt2_reg,
2815                                     Register result_reg, Register tmp_reg) {
2816    assert_different_registers(result_reg, str1_reg, str2_reg, cnt1_reg, cnt2_reg, tmp_reg);
2817 
2818    Label Ldone, Lslow_case, Lslow_loop, Lfast_loop;
2819    Register cnt_diff = R0,
2820             limit_reg = cnt1_reg,
2821             chr1_reg = result_reg,
2822             chr2_reg = cnt2_reg,
2823             addr_diff = str2_reg;
2824 
2825    // Offset 0 should be 32 byte aligned.
2826 //-4:
2827     dcbtct(str1_reg, 0x00);  // Indicate R/O access to str1.
2828     dcbtct(str2_reg, 0x00);  // Indicate R/O access to str2.
2829 //-2:
2830    // Compute min(cnt1, cnt2) and check if 0 (bail out if we don't need to compare characters).
2831     subf(result_reg, cnt2_reg, cnt1_reg);  // difference between cnt1/2
2832     subf_(addr_diff, str1_reg, str2_reg);  // alias?
2833     beq(CCR0, Ldone);                   // return cnt difference if both ones are identical
2834     srawi(limit_reg, result_reg, 31);      // generate signmask (cnt1/2 must be non-negative so cnt_diff can't overflow)
2835     mr(cnt_diff, result_reg);
2836     andr(limit_reg, result_reg, limit_reg); // difference or zero (negative): cnt1<cnt2 ? cnt1-cnt2 : 0
2837     add_(limit_reg, cnt2_reg, limit_reg);  // min(cnt1, cnt2)==0?
2838     beq(CCR0, Ldone);                   // return cnt difference if one has 0 length
2839 
2840     lhz(chr1_reg, 0, str1_reg);            // optional: early out if first characters mismatch
2841     lhzx(chr2_reg, str1_reg, addr_diff);   // optional: early out if first characters mismatch
2842     addi(tmp_reg, limit_reg, -1);          // min(cnt1, cnt2)-1
2843     subf_(result_reg, chr2_reg, chr1_reg); // optional: early out if first characters mismatch
2844     bne(CCR0, Ldone);                   // optional: early out if first characters mismatch
2845 
2846    // Set loop counter by scaling down tmp_reg
2847     srawi_(chr2_reg, tmp_reg, exact_log2(4)); // (min(cnt1, cnt2)-1)/4
2848     ble(CCR0, Lslow_case);                 // need >4 characters for fast loop
2849     andi(limit_reg, tmp_reg, 4-1);            // remaining characters
2850 
2851    // Adapt str1_reg str2_reg for the first loop iteration
2852     mtctr(chr2_reg);                 // (min(cnt1, cnt2)-1)/4
2853     addi(limit_reg, limit_reg, 4+1); // compare last 5-8 characters in slow_case if mismatch found in fast_loop
2854 //16:
2855    // Compare the rest of the characters
2856    bind(Lfast_loop);
2857     ld(chr1_reg, 0, str1_reg);
2858     ldx(chr2_reg, str1_reg, addr_diff);
2859     cmpd(CCR0, chr2_reg, chr1_reg);
2860     bne(CCR0, Lslow_case); // return chr1_reg
2861     addi(str1_reg, str1_reg, 4*2);
2862     bdnz(Lfast_loop);
2863     addi(limit_reg, limit_reg, -4); // no mismatch found in fast_loop, only 1-4 characters missing
2864 //23:
2865    bind(Lslow_case);
2866     mtctr(limit_reg);
2867 //24:
2868    bind(Lslow_loop);
2869     lhz(chr1_reg, 0, str1_reg);
2870     lhzx(chr2_reg, str1_reg, addr_diff);
2871     subf_(result_reg, chr2_reg, chr1_reg);
2872     bne(CCR0, Ldone); // return chr1_reg
2873     addi(str1_reg, str1_reg, 1*2);
2874     bdnz(Lslow_loop);
2875 //30:
2876    // If strings are equal up to min length, return the length difference.
2877     mr(result_reg, cnt_diff);
2878     nop(); // alignment
2879 //32:
2880    // Otherwise, return the difference between the first mismatched chars.
2881    bind(Ldone);
2882 }
2883 
2884 
2885 // Compare char[] arrays.
2886 //
2887 // str1_reg   USE only
2888 // str2_reg   USE only
2889 // cnt_reg    USE_DEF, due to tmp reg shortage
2890 // result_reg DEF only, might compromise USE only registers
2891 void MacroAssembler::char_arrays_equals(Register str1_reg, Register str2_reg, Register cnt_reg, Register result_reg,
2892                                         Register tmp1_reg, Register tmp2_reg, Register tmp3_reg, Register tmp4_reg,
2893                                         Register tmp5_reg) {
2894 
2895   // Str1 may be the same register as str2 which can occur e.g. after scalar replacement.
2896   assert_different_registers(result_reg, str1_reg, cnt_reg, tmp1_reg, tmp2_reg, tmp3_reg, tmp4_reg, tmp5_reg);
2897   assert_different_registers(result_reg, str2_reg, cnt_reg, tmp1_reg, tmp2_reg, tmp3_reg, tmp4_reg, tmp5_reg);
2898 
2899   // Offset 0 should be 32 byte aligned.
2900   Label Linit_cbc, Lcbc, Lloop, Ldone_true, Ldone_false;
2901   Register index_reg = tmp5_reg;
2902   Register cbc_iter  = tmp4_reg;
2903 
2904 //-1:
2905   dcbtct(str1_reg, 0x00);  // Indicate R/O access to str1.
2906   dcbtct(str2_reg, 0x00);  // Indicate R/O access to str2.
2907 //1:
2908   andi(cbc_iter, cnt_reg, 4-1);            // Remaining iterations after 4 java characters per iteration loop.
2909   li(index_reg, 0); // init
2910   li(result_reg, 0); // assume false
2911   srwi_(tmp2_reg, cnt_reg, exact_log2(4)); // Div: 4 java characters per iteration (main loop).
2912 
2913   cmpwi(CCR1, cbc_iter, 0);             // CCR1 = (cbc_iter==0)
2914   beq(CCR0, Linit_cbc);                 // too short
2915     mtctr(tmp2_reg);
2916 //8:
2917     bind(Lloop);
2918       ldx(tmp1_reg, str1_reg, index_reg);
2919       ldx(tmp2_reg, str2_reg, index_reg);
2920       cmpd(CCR0, tmp1_reg, tmp2_reg);
2921       bne(CCR0, Ldone_false);  // Unequal char pair found -> done.
2922       addi(index_reg, index_reg, 4*sizeof(jchar));
2923       bdnz(Lloop);
2924 //14:
2925   bind(Linit_cbc);
2926   beq(CCR1, Ldone_true);
2927     mtctr(cbc_iter);
2928 //16:
2929     bind(Lcbc);
2930       lhzx(tmp1_reg, str1_reg, index_reg);
2931       lhzx(tmp2_reg, str2_reg, index_reg);
2932       cmpw(CCR0, tmp1_reg, tmp2_reg);
2933       bne(CCR0, Ldone_false);  // Unequal char pair found -> done.
2934       addi(index_reg, index_reg, 1*sizeof(jchar));
2935       bdnz(Lcbc);
2936     nop();
2937   bind(Ldone_true);
2938   li(result_reg, 1);
2939 //24:
2940   bind(Ldone_false);
2941 }
2942 
2943 
2944 void MacroAssembler::char_arrays_equalsImm(Register str1_reg, Register str2_reg, int cntval, Register result_reg,
2945                                            Register tmp1_reg, Register tmp2_reg) {
2946   // Str1 may be the same register as str2 which can occur e.g. after scalar replacement.
2947   assert_different_registers(result_reg, str1_reg, tmp1_reg, tmp2_reg);
2948   assert_different_registers(result_reg, str2_reg, tmp1_reg, tmp2_reg);
2949   assert(sizeof(jchar) == 2, "must be");
2950   assert(cntval >= 0 && ((cntval & 0x7fff) == cntval), "wrong immediate");
2951 
2952   Label Ldone_false;
2953 
2954   if (cntval < 16) { // short case
2955     if (cntval != 0) li(result_reg, 0); // assume false
2956 
2957     const int num_bytes = cntval*sizeof(jchar);
2958     int index = 0;
2959     for (int next_index; (next_index = index + 8) <= num_bytes; index = next_index) {
2960       ld(tmp1_reg, index, str1_reg);
2961       ld(tmp2_reg, index, str2_reg);
2962       cmpd(CCR0, tmp1_reg, tmp2_reg);
2963       bne(CCR0, Ldone_false);
2964     }
2965     if (cntval & 2) {
2966       lwz(tmp1_reg, index, str1_reg);
2967       lwz(tmp2_reg, index, str2_reg);
2968       cmpw(CCR0, tmp1_reg, tmp2_reg);
2969       bne(CCR0, Ldone_false);
2970       index += 4;
2971     }
2972     if (cntval & 1) {
2973       lhz(tmp1_reg, index, str1_reg);
2974       lhz(tmp2_reg, index, str2_reg);
2975       cmpw(CCR0, tmp1_reg, tmp2_reg);
2976       bne(CCR0, Ldone_false);
2977     }
2978     // fallthrough: true
2979   } else {
2980     Label Lloop;
2981     Register index_reg = tmp1_reg;
2982     const int loopcnt = cntval/4;
2983     assert(loopcnt > 0, "must be");
2984     // Offset 0 should be 32 byte aligned.
2985     //2:
2986     dcbtct(str1_reg, 0x00);  // Indicate R/O access to str1.
2987     dcbtct(str2_reg, 0x00);  // Indicate R/O access to str2.
2988     li(tmp2_reg, loopcnt);
2989     li(index_reg, 0); // init
2990     li(result_reg, 0); // assume false
2991     mtctr(tmp2_reg);
2992     //8:
2993     bind(Lloop);
2994     ldx(R0, str1_reg, index_reg);
2995     ldx(tmp2_reg, str2_reg, index_reg);
2996     cmpd(CCR0, R0, tmp2_reg);
2997     bne(CCR0, Ldone_false);  // Unequal char pair found -> done.
2998     addi(index_reg, index_reg, 4*sizeof(jchar));
2999     bdnz(Lloop);
3000     //14:
3001     if (cntval & 2) {
3002       lwzx(R0, str1_reg, index_reg);
3003       lwzx(tmp2_reg, str2_reg, index_reg);
3004       cmpw(CCR0, R0, tmp2_reg);
3005       bne(CCR0, Ldone_false);
3006       if (cntval & 1) addi(index_reg, index_reg, 2*sizeof(jchar));
3007     }
3008     if (cntval & 1) {
3009       lhzx(R0, str1_reg, index_reg);
3010       lhzx(tmp2_reg, str2_reg, index_reg);
3011       cmpw(CCR0, R0, tmp2_reg);
3012       bne(CCR0, Ldone_false);
3013     }
3014     // fallthru: true
3015   }
3016   li(result_reg, 1);
3017   bind(Ldone_false);
3018 }
3019 
3020 
3021 void MacroAssembler::asm_assert(bool check_equal, const char *msg, int id) {
3022 #ifdef ASSERT
3023   Label ok;
3024   if (check_equal) {
3025     beq(CCR0, ok);
3026   } else {
3027     bne(CCR0, ok);
3028   }
3029   stop(msg, id);
3030   bind(ok);
3031 #endif
3032 }
3033 
3034 void MacroAssembler::asm_assert_mems_zero(bool check_equal, int size, int mem_offset,
3035                                           Register mem_base, const char* msg, int id) {
3036 #ifdef ASSERT
3037   switch (size) {
3038     case 4:
3039       lwz(R0, mem_offset, mem_base);
3040       cmpwi(CCR0, R0, 0);
3041       break;
3042     case 8:
3043       ld(R0, mem_offset, mem_base);
3044       cmpdi(CCR0, R0, 0);
3045       break;
3046     default:
3047       ShouldNotReachHere();
3048   }
3049   asm_assert(check_equal, msg, id);
3050 #endif // ASSERT
3051 }
3052 
3053 void MacroAssembler::verify_thread() {
3054   if (VerifyThread) {
3055     unimplemented("'VerifyThread' currently not implemented on PPC");
3056   }
3057 }
3058 
3059 // READ: oop. KILL: R0. Volatile floats perhaps.
3060 void MacroAssembler::verify_oop(Register oop, const char* msg) {
3061   if (!VerifyOops) {
3062     return;
3063   }
3064   // Will be preserved.
3065   Register tmp = R11;
3066   assert(oop != tmp, "precondition");
3067   unsigned int nbytes_save = 10*8; // 10 volatile gprs
3068   address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address();
3069   // save tmp
3070   mr(R0, tmp);
3071   // kill tmp
3072   save_LR_CR(tmp);
3073   push_frame_reg_args(nbytes_save, tmp);
3074   // restore tmp
3075   mr(tmp, R0);
3076   save_volatile_gprs(R1_SP, 112); // except R0
3077   // load FunctionDescriptor** / entry_address *
3078   load_const(tmp, fd);
3079   // load FunctionDescriptor* / entry_address
3080   ld(tmp, 0, tmp);
3081   mr(R4_ARG2, oop);
3082   load_const(R3_ARG1, (address)msg);
3083   // call destination for its side effect
3084   call_c(tmp);
3085   restore_volatile_gprs(R1_SP, 112); // except R0
3086   pop_frame();
3087   // save tmp
3088   mr(R0, tmp);
3089   // kill tmp
3090   restore_LR_CR(tmp);
3091   // restore tmp
3092   mr(tmp, R0);
3093 }
3094 
3095 const char* stop_types[] = {
3096   "stop",
3097   "untested",
3098   "unimplemented",
3099   "shouldnotreachhere"
3100 };
3101 
3102 static void stop_on_request(int tp, const char* msg) {
3103   tty->print("PPC assembly code requires stop: (%s) %s\n", stop_types[tp%/*stop_end*/4], msg);
3104   guarantee(false, err_msg("PPC assembly code requires stop: %s", msg));
3105 }
3106 
3107 // Call a C-function that prints output.
3108 void MacroAssembler::stop(int type, const char* msg, int id) {
3109 #ifndef PRODUCT
3110   block_comment(err_msg("stop: %s %s {", stop_types[type%stop_end], msg));
3111 #else
3112   block_comment("stop {");
3113 #endif
3114 
3115   // setup arguments
3116   load_const_optimized(R3_ARG1, type);
3117   load_const_optimized(R4_ARG2, (void *)msg, /*tmp=*/R0);
3118   call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), R3_ARG1, R4_ARG2);
3119   illtrap();
3120   emit_int32(id);
3121   block_comment("} stop;");
3122 }
3123 
3124 #ifndef PRODUCT
3125 // Write pattern 0x0101010101010101 in memory region [low-before, high+after].
3126 // Val, addr are temp registers.
3127 // If low == addr, addr is killed.
3128 // High is preserved.
3129 void MacroAssembler::zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) {
3130   if (!ZapMemory) return;
3131 
3132   assert_different_registers(low, val);
3133 
3134   BLOCK_COMMENT("zap memory region {");
3135   load_const_optimized(val, 0x0101010101010101);
3136   int size = before + after;
3137   if (low == high && size < 5 && size > 0) {
3138     int offset = -before*BytesPerWord;
3139     for (int i = 0; i < size; ++i) {
3140       std(val, offset, low);
3141       offset += (1*BytesPerWord);
3142     }
3143   } else {
3144     addi(addr, low, -before*BytesPerWord);
3145     assert_different_registers(high, val);
3146     if (after) addi(high, high, after * BytesPerWord);
3147     Label loop;
3148     bind(loop);
3149     std(val, 0, addr);
3150     addi(addr, addr, 8);
3151     cmpd(CCR6, addr, high);
3152     ble(CCR6, loop);
3153     if (after) addi(high, high, -after * BytesPerWord);  // Correct back to old value.
3154   }
3155   BLOCK_COMMENT("} zap memory region");
3156 }
3157 
3158 #endif // !PRODUCT
3159 
3160 SkipIfEqualZero::SkipIfEqualZero(MacroAssembler* masm, Register temp, const bool* flag_addr) : _masm(masm), _label() {
3161   int simm16_offset = masm->load_const_optimized(temp, (address)flag_addr, R0, true);
3162   assert(sizeof(bool) == 1, "PowerPC ABI");
3163   masm->lbz(temp, simm16_offset, temp);
3164   masm->cmpwi(CCR0, temp, 0);
3165   masm->beq(CCR0, _label);
3166 }
3167 
3168 SkipIfEqualZero::~SkipIfEqualZero() {
3169   _masm->bind(_label);
3170 }