1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/pcDesc.hpp"
  38 #include "code/scopeDesc.hpp"
  39 #include "code/vtableStubs.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc_interface/collectedHeap.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "memory/allocation.inline.hpp"
  45 #include "memory/barrierSet.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "oops/objArrayKlass.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "runtime/atomic.inline.hpp"
  51 #include "runtime/biasedLocking.hpp"
  52 #include "runtime/compilationPolicy.hpp"
  53 #include "runtime/interfaceSupport.hpp"
  54 #include "runtime/javaCalls.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/threadCritical.hpp"
  57 #include "runtime/vframe.hpp"
  58 #include "runtime/vframeArray.hpp"
  59 #include "runtime/vm_version.hpp"
  60 #include "utilities/copy.hpp"
  61 #include "utilities/events.hpp"
  62 
  63 
  64 // Implementation of StubAssembler
  65 
  66 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  67   _name = name;
  68   _must_gc_arguments = false;
  69   _frame_size = no_frame_size;
  70   _num_rt_args = 0;
  71   _stub_id = stub_id;
  72 }
  73 
  74 
  75 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  76   _name = name;
  77   _must_gc_arguments = must_gc_arguments;
  78 }
  79 
  80 
  81 void StubAssembler::set_frame_size(int size) {
  82   if (_frame_size == no_frame_size) {
  83     _frame_size = size;
  84   }
  85   assert(_frame_size == size, "can't change the frame size");
  86 }
  87 
  88 
  89 void StubAssembler::set_num_rt_args(int args) {
  90   if (_num_rt_args == 0) {
  91     _num_rt_args = args;
  92   }
  93   assert(_num_rt_args == args, "can't change the number of args");
  94 }
  95 
  96 // Implementation of Runtime1
  97 
  98 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
  99 const char *Runtime1::_blob_names[] = {
 100   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 101 };
 102 
 103 #ifndef PRODUCT
 104 // statistics
 105 int Runtime1::_generic_arraycopy_cnt = 0;
 106 int Runtime1::_primitive_arraycopy_cnt = 0;
 107 int Runtime1::_oop_arraycopy_cnt = 0;
 108 int Runtime1::_generic_arraycopystub_cnt = 0;
 109 int Runtime1::_arraycopy_slowcase_cnt = 0;
 110 int Runtime1::_arraycopy_checkcast_cnt = 0;
 111 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 112 int Runtime1::_new_type_array_slowcase_cnt = 0;
 113 int Runtime1::_new_object_array_slowcase_cnt = 0;
 114 int Runtime1::_new_instance_slowcase_cnt = 0;
 115 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 116 int Runtime1::_monitorenter_slowcase_cnt = 0;
 117 int Runtime1::_monitorexit_slowcase_cnt = 0;
 118 int Runtime1::_patch_code_slowcase_cnt = 0;
 119 int Runtime1::_throw_range_check_exception_count = 0;
 120 int Runtime1::_throw_index_exception_count = 0;
 121 int Runtime1::_throw_div0_exception_count = 0;
 122 int Runtime1::_throw_null_pointer_exception_count = 0;
 123 int Runtime1::_throw_class_cast_exception_count = 0;
 124 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 125 int Runtime1::_throw_array_store_exception_count = 0;
 126 int Runtime1::_throw_count = 0;
 127 
 128 static int _byte_arraycopy_stub_cnt = 0;
 129 static int _short_arraycopy_stub_cnt = 0;
 130 static int _int_arraycopy_stub_cnt = 0;
 131 static int _long_arraycopy_stub_cnt = 0;
 132 static int _oop_arraycopy_stub_cnt = 0;
 133 
 134 address Runtime1::arraycopy_count_address(BasicType type) {
 135   switch (type) {
 136   case T_BOOLEAN:
 137   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 138   case T_CHAR:
 139   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 140   case T_FLOAT:
 141   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 142   case T_DOUBLE:
 143   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 144   case T_ARRAY:
 145   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 146   default:
 147     ShouldNotReachHere();
 148     return NULL;
 149   }
 150 }
 151 
 152 
 153 #endif
 154 
 155 // Simple helper to see if the caller of a runtime stub which
 156 // entered the VM has been deoptimized
 157 
 158 static bool caller_is_deopted() {
 159   JavaThread* thread = JavaThread::current();
 160   RegisterMap reg_map(thread, false);
 161   frame runtime_frame = thread->last_frame();
 162   frame caller_frame = runtime_frame.sender(&reg_map);
 163   assert(caller_frame.is_compiled_frame(), "must be compiled");
 164   return caller_frame.is_deoptimized_frame();
 165 }
 166 
 167 // Stress deoptimization
 168 static void deopt_caller() {
 169   if ( !caller_is_deopted()) {
 170     JavaThread* thread = JavaThread::current();
 171     RegisterMap reg_map(thread, false);
 172     frame runtime_frame = thread->last_frame();
 173     frame caller_frame = runtime_frame.sender(&reg_map);
 174     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 175     assert(caller_is_deopted(), "Must be deoptimized");
 176   }
 177 }
 178 
 179 
 180 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 181   assert(0 <= id && id < number_of_ids, "illegal stub id");
 182   ResourceMark rm;
 183   // create code buffer for code storage
 184   CodeBuffer code(buffer_blob);
 185 
 186   Compilation::setup_code_buffer(&code, 0);
 187 
 188   // create assembler for code generation
 189   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
 190   // generate code for runtime stub
 191   OopMapSet* oop_maps;
 192   oop_maps = generate_code_for(id, sasm);
 193   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 194          "if stub has an oop map it must have a valid frame size");
 195 
 196 #ifdef ASSERT
 197   // Make sure that stubs that need oopmaps have them
 198   switch (id) {
 199     // These stubs don't need to have an oopmap
 200     case dtrace_object_alloc_id:
 201     case g1_pre_barrier_slow_id:
 202     case g1_post_barrier_slow_id:
 203     case slow_subtype_check_id:
 204     case fpu2long_stub_id:
 205     case unwind_exception_id:
 206     case counter_overflow_id:
 207 #if defined(SPARC) || defined(PPC)
 208     case handle_exception_nofpu_id:  // Unused on sparc
 209 #endif
 210       break;
 211 
 212     // All other stubs should have oopmaps
 213     default:
 214       assert(oop_maps != NULL, "must have an oopmap");
 215   }
 216 #endif
 217 
 218   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 219   sasm->align(BytesPerWord);
 220   // make sure all code is in code buffer
 221   sasm->flush();
 222   // create blob - distinguish a few special cases
 223   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
 224                                                  &code,
 225                                                  CodeOffsets::frame_never_safe,
 226                                                  sasm->frame_size(),
 227                                                  oop_maps,
 228                                                  sasm->must_gc_arguments());
 229   // install blob
 230   assert(blob != NULL, "blob must exist");
 231   _blobs[id] = blob;
 232 }
 233 
 234 
 235 void Runtime1::initialize(BufferBlob* blob) {
 236   // platform-dependent initialization
 237   initialize_pd();
 238   // generate stubs
 239   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 240   // printing
 241 #ifndef PRODUCT
 242   if (PrintSimpleStubs) {
 243     ResourceMark rm;
 244     for (int id = 0; id < number_of_ids; id++) {
 245       _blobs[id]->print();
 246       if (_blobs[id]->oop_maps() != NULL) {
 247         _blobs[id]->oop_maps()->print();
 248       }
 249     }
 250   }
 251 #endif
 252 }
 253 
 254 
 255 CodeBlob* Runtime1::blob_for(StubID id) {
 256   assert(0 <= id && id < number_of_ids, "illegal stub id");
 257   return _blobs[id];
 258 }
 259 
 260 
 261 const char* Runtime1::name_for(StubID id) {
 262   assert(0 <= id && id < number_of_ids, "illegal stub id");
 263   return _blob_names[id];
 264 }
 265 
 266 const char* Runtime1::name_for_address(address entry) {
 267   for (int id = 0; id < number_of_ids; id++) {
 268     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 269   }
 270 
 271 #define FUNCTION_CASE(a, f) \
 272   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 273 
 274   FUNCTION_CASE(entry, os::javaTimeMillis);
 275   FUNCTION_CASE(entry, os::javaTimeNanos);
 276   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 277   FUNCTION_CASE(entry, SharedRuntime::d2f);
 278   FUNCTION_CASE(entry, SharedRuntime::d2i);
 279   FUNCTION_CASE(entry, SharedRuntime::d2l);
 280   FUNCTION_CASE(entry, SharedRuntime::dcos);
 281   FUNCTION_CASE(entry, SharedRuntime::dexp);
 282   FUNCTION_CASE(entry, SharedRuntime::dlog);
 283   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 284   FUNCTION_CASE(entry, SharedRuntime::dpow);
 285   FUNCTION_CASE(entry, SharedRuntime::drem);
 286   FUNCTION_CASE(entry, SharedRuntime::dsin);
 287   FUNCTION_CASE(entry, SharedRuntime::dtan);
 288   FUNCTION_CASE(entry, SharedRuntime::f2i);
 289   FUNCTION_CASE(entry, SharedRuntime::f2l);
 290   FUNCTION_CASE(entry, SharedRuntime::frem);
 291   FUNCTION_CASE(entry, SharedRuntime::l2d);
 292   FUNCTION_CASE(entry, SharedRuntime::l2f);
 293   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 294   FUNCTION_CASE(entry, SharedRuntime::lmul);
 295   FUNCTION_CASE(entry, SharedRuntime::lrem);
 296   FUNCTION_CASE(entry, SharedRuntime::lrem);
 297   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 298   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 299   FUNCTION_CASE(entry, is_instance_of);
 300   FUNCTION_CASE(entry, trace_block_entry);
 301 #ifdef TRACE_HAVE_INTRINSICS
 302   FUNCTION_CASE(entry, TRACE_TIME_METHOD);
 303 #endif
 304   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 305 
 306 #undef FUNCTION_CASE
 307 
 308   // Soft float adds more runtime names.
 309   return pd_name_for_address(entry);
 310 }
 311 
 312 
 313 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 314   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 315 
 316   assert(klass->is_klass(), "not a class");
 317   instanceKlassHandle h(thread, klass);
 318   h->check_valid_for_instantiation(true, CHECK);
 319   // make sure klass is initialized
 320   h->initialize(CHECK);
 321   // allocate instance and return via TLS
 322   oop obj = h->allocate_instance(CHECK);
 323   thread->set_vm_result(obj);
 324 JRT_END
 325 
 326 
 327 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 328   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 329   // Note: no handle for klass needed since they are not used
 330   //       anymore after new_typeArray() and no GC can happen before.
 331   //       (This may have to change if this code changes!)
 332   assert(klass->is_klass(), "not a class");
 333   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 334   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 335   thread->set_vm_result(obj);
 336   // This is pretty rare but this runtime patch is stressful to deoptimization
 337   // if we deoptimize here so force a deopt to stress the path.
 338   if (DeoptimizeALot) {
 339     deopt_caller();
 340   }
 341 
 342 JRT_END
 343 
 344 
 345 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 346   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 347 
 348   // Note: no handle for klass needed since they are not used
 349   //       anymore after new_objArray() and no GC can happen before.
 350   //       (This may have to change if this code changes!)
 351   assert(array_klass->is_klass(), "not a class");
 352   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 353   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 354   thread->set_vm_result(obj);
 355   // This is pretty rare but this runtime patch is stressful to deoptimization
 356   // if we deoptimize here so force a deopt to stress the path.
 357   if (DeoptimizeALot) {
 358     deopt_caller();
 359   }
 360 JRT_END
 361 
 362 
 363 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 364   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 365 
 366   assert(klass->is_klass(), "not a class");
 367   assert(rank >= 1, "rank must be nonzero");
 368   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 369   thread->set_vm_result(obj);
 370 JRT_END
 371 
 372 
 373 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 374   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 375 JRT_END
 376 
 377 
 378 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 379   ResourceMark rm(thread);
 380   const char* klass_name = obj->klass()->external_name();
 381   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 382 JRT_END
 383 
 384 
 385 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 386 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 387 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 388 // a constant.
 389 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 390   nmethod* osr_nm = NULL;
 391   methodHandle method(THREAD, m);
 392 
 393   RegisterMap map(THREAD, false);
 394   frame fr =  THREAD->last_frame().sender(&map);
 395   nmethod* nm = (nmethod*) fr.cb();
 396   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 397   methodHandle enclosing_method(THREAD, nm->method());
 398 
 399   CompLevel level = (CompLevel)nm->comp_level();
 400   int bci = InvocationEntryBci;
 401   if (branch_bci != InvocationEntryBci) {
 402     // Compute desination bci
 403     address pc = method()->code_base() + branch_bci;
 404     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 405     int offset = 0;
 406     switch (branch) {
 407       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 408       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 409       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 410       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 411       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 412       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 413       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 414         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 415         break;
 416       case Bytecodes::_goto_w:
 417         offset = Bytes::get_Java_u4(pc + 1);
 418         break;
 419       default: ;
 420     }
 421     bci = branch_bci + offset;
 422   }
 423   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 424   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 425   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 426   return osr_nm;
 427 }
 428 
 429 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 430   nmethod* osr_nm;
 431   JRT_BLOCK
 432     osr_nm = counter_overflow_helper(thread, bci, method);
 433     if (osr_nm != NULL) {
 434       RegisterMap map(thread, false);
 435       frame fr =  thread->last_frame().sender(&map);
 436       Deoptimization::deoptimize_frame(thread, fr.id());
 437     }
 438   JRT_BLOCK_END
 439   return NULL;
 440 JRT_END
 441 
 442 extern void vm_exit(int code);
 443 
 444 // Enter this method from compiled code handler below. This is where we transition
 445 // to VM mode. This is done as a helper routine so that the method called directly
 446 // from compiled code does not have to transition to VM. This allows the entry
 447 // method to see if the nmethod that we have just looked up a handler for has
 448 // been deoptimized while we were in the vm. This simplifies the assembly code
 449 // cpu directories.
 450 //
 451 // We are entering here from exception stub (via the entry method below)
 452 // If there is a compiled exception handler in this method, we will continue there;
 453 // otherwise we will unwind the stack and continue at the caller of top frame method
 454 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 455 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 456 // check to see if the handler we are going to return is now in a nmethod that has
 457 // been deoptimized. If that is the case we return the deopt blob
 458 // unpack_with_exception entry instead. This makes life for the exception blob easier
 459 // because making that same check and diverting is painful from assembly language.
 460 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 461   // Reset method handle flag.
 462   thread->set_is_method_handle_return(false);
 463 
 464   Handle exception(thread, ex);
 465   nm = CodeCache::find_nmethod(pc);
 466   assert(nm != NULL, "this is not an nmethod");
 467   // Adjust the pc as needed/
 468   if (nm->is_deopt_pc(pc)) {
 469     RegisterMap map(thread, false);
 470     frame exception_frame = thread->last_frame().sender(&map);
 471     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 472     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 473     pc = exception_frame.pc();
 474   }
 475 #ifdef ASSERT
 476   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 477   assert(exception->is_oop(), "just checking");
 478   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 479   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 480     if (ExitVMOnVerifyError) vm_exit(-1);
 481     ShouldNotReachHere();
 482   }
 483 #endif
 484 
 485   // Check the stack guard pages and reenable them if necessary and there is
 486   // enough space on the stack to do so.  Use fast exceptions only if the guard
 487   // pages are enabled.
 488   bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 489   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 490 
 491   if (JvmtiExport::can_post_on_exceptions()) {
 492     // To ensure correct notification of exception catches and throws
 493     // we have to deoptimize here.  If we attempted to notify the
 494     // catches and throws during this exception lookup it's possible
 495     // we could deoptimize on the way out of the VM and end back in
 496     // the interpreter at the throw site.  This would result in double
 497     // notifications since the interpreter would also notify about
 498     // these same catches and throws as it unwound the frame.
 499 
 500     RegisterMap reg_map(thread);
 501     frame stub_frame = thread->last_frame();
 502     frame caller_frame = stub_frame.sender(&reg_map);
 503 
 504     // We don't really want to deoptimize the nmethod itself since we
 505     // can actually continue in the exception handler ourselves but I
 506     // don't see an easy way to have the desired effect.
 507     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 508     assert(caller_is_deopted(), "Must be deoptimized");
 509 
 510     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 511   }
 512 
 513   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 514   if (guard_pages_enabled) {
 515     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 516     if (fast_continuation != NULL) {
 517       // Set flag if return address is a method handle call site.
 518       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 519       return fast_continuation;
 520     }
 521   }
 522 
 523   // If the stack guard pages are enabled, check whether there is a handler in
 524   // the current method.  Otherwise (guard pages disabled), force an unwind and
 525   // skip the exception cache update (i.e., just leave continuation==NULL).
 526   address continuation = NULL;
 527   if (guard_pages_enabled) {
 528 
 529     // New exception handling mechanism can support inlined methods
 530     // with exception handlers since the mappings are from PC to PC
 531 
 532     // debugging support
 533     // tracing
 534     if (TraceExceptions) {
 535       ttyLocker ttyl;
 536       ResourceMark rm;
 537       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ") thrown in compiled method <%s> at PC " INTPTR_FORMAT " for thread " INTPTR_FORMAT "",
 538                     exception->print_value_string(), p2i((address)exception()), nm->method()->print_value_string(), p2i(pc), p2i(thread));
 539     }
 540     // for AbortVMOnException flag
 541     NOT_PRODUCT(Exceptions::debug_check_abort(exception));
 542 
 543     // Clear out the exception oop and pc since looking up an
 544     // exception handler can cause class loading, which might throw an
 545     // exception and those fields are expected to be clear during
 546     // normal bytecode execution.
 547     thread->clear_exception_oop_and_pc();
 548 
 549     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
 550     // If an exception was thrown during exception dispatch, the exception oop may have changed
 551     thread->set_exception_oop(exception());
 552     thread->set_exception_pc(pc);
 553 
 554     // the exception cache is used only by non-implicit exceptions
 555     if (continuation != NULL) {
 556       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 557     }
 558   }
 559 
 560   thread->set_vm_result(exception());
 561   // Set flag if return address is a method handle call site.
 562   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 563 
 564   if (TraceExceptions) {
 565     ttyLocker ttyl;
 566     ResourceMark rm;
 567     tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
 568                   p2i(thread), p2i(continuation), p2i(pc));
 569   }
 570 
 571   return continuation;
 572 JRT_END
 573 
 574 // Enter this method from compiled code only if there is a Java exception handler
 575 // in the method handling the exception.
 576 // We are entering here from exception stub. We don't do a normal VM transition here.
 577 // We do it in a helper. This is so we can check to see if the nmethod we have just
 578 // searched for an exception handler has been deoptimized in the meantime.
 579 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 580   oop exception = thread->exception_oop();
 581   address pc = thread->exception_pc();
 582   // Still in Java mode
 583   DEBUG_ONLY(ResetNoHandleMark rnhm);
 584   nmethod* nm = NULL;
 585   address continuation = NULL;
 586   {
 587     // Enter VM mode by calling the helper
 588     ResetNoHandleMark rnhm;
 589     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 590   }
 591   // Back in JAVA, use no oops DON'T safepoint
 592 
 593   // Now check to see if the nmethod we were called from is now deoptimized.
 594   // If so we must return to the deopt blob and deoptimize the nmethod
 595   if (nm != NULL && caller_is_deopted()) {
 596     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 597   }
 598 
 599   assert(continuation != NULL, "no handler found");
 600   return continuation;
 601 }
 602 
 603 
 604 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
 605   NOT_PRODUCT(_throw_range_check_exception_count++;)
 606   char message[jintAsStringSize];
 607   sprintf(message, "%d", index);
 608   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 609 JRT_END
 610 
 611 
 612 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 613   NOT_PRODUCT(_throw_index_exception_count++;)
 614   char message[16];
 615   sprintf(message, "%d", index);
 616   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 617 JRT_END
 618 
 619 
 620 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 621   NOT_PRODUCT(_throw_div0_exception_count++;)
 622   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 623 JRT_END
 624 
 625 
 626 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 627   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 628   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 629 JRT_END
 630 
 631 
 632 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 633   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 634   ResourceMark rm(thread);
 635   char* message = SharedRuntime::generate_class_cast_message(
 636     thread, object->klass()->external_name());
 637   SharedRuntime::throw_and_post_jvmti_exception(
 638     thread, vmSymbols::java_lang_ClassCastException(), message);
 639 JRT_END
 640 
 641 
 642 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 643   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 644   ResourceMark rm(thread);
 645   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 646 JRT_END
 647 
 648 
 649 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 650   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 651   if (PrintBiasedLockingStatistics) {
 652     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 653   }
 654   Handle h_obj(thread, obj);
 655   assert(h_obj()->is_oop(), "must be NULL or an object");
 656   if (UseBiasedLocking) {
 657     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 658     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 659   } else {
 660     if (UseFastLocking) {
 661       // When using fast locking, the compiled code has already tried the fast case
 662       assert(obj == lock->obj(), "must match");
 663       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 664     } else {
 665       lock->set_obj(obj);
 666       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 667     }
 668   }
 669 JRT_END
 670 
 671 
 672 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 673   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 674   assert(thread == JavaThread::current(), "threads must correspond");
 675   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 676   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 677   EXCEPTION_MARK;
 678 
 679   oop obj = lock->obj();
 680   assert(obj->is_oop(), "must be NULL or an object");
 681   if (UseFastLocking) {
 682     // When using fast locking, the compiled code has already tried the fast case
 683     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 684   } else {
 685     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 686   }
 687 JRT_END
 688 
 689 // Cf. OptoRuntime::deoptimize_caller_frame
 690 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
 691   // Called from within the owner thread, so no need for safepoint
 692   RegisterMap reg_map(thread, false);
 693   frame stub_frame = thread->last_frame();
 694   assert(stub_frame.is_runtime_frame(), "Sanity check");
 695   frame caller_frame = stub_frame.sender(&reg_map);
 696   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 697   assert(nm != NULL, "Sanity check");
 698   methodHandle method(thread, nm->method());
 699   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 700   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 701   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 702 
 703   if (action == Deoptimization::Action_make_not_entrant) {
 704     if (nm->make_not_entrant()) {
 705       if (reason == Deoptimization::Reason_tenured) {
 706         MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
 707         if (trap_mdo != NULL) {
 708           trap_mdo->inc_tenure_traps();
 709         }
 710       }
 711     }
 712   }
 713 
 714   // Deoptimize the caller frame.
 715   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 716   // Return to the now deoptimized frame.
 717 JRT_END
 718 
 719 
 720 static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
 721   Bytecode_field field_access(caller, bci);
 722   // This can be static or non-static field access
 723   Bytecodes::Code code       = field_access.code();
 724 
 725   // We must load class, initialize class and resolvethe field
 726   fieldDescriptor result; // initialize class if needed
 727   constantPoolHandle constants(THREAD, caller->constants());
 728   LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK_NULL);
 729   return result.field_holder();
 730 }
 731 
 732 
 733 //
 734 // This routine patches sites where a class wasn't loaded or
 735 // initialized at the time the code was generated.  It handles
 736 // references to classes, fields and forcing of initialization.  Most
 737 // of the cases are straightforward and involving simply forcing
 738 // resolution of a class, rewriting the instruction stream with the
 739 // needed constant and replacing the call in this function with the
 740 // patched code.  The case for static field is more complicated since
 741 // the thread which is in the process of initializing a class can
 742 // access it's static fields but other threads can't so the code
 743 // either has to deoptimize when this case is detected or execute a
 744 // check that the current thread is the initializing thread.  The
 745 // current
 746 //
 747 // Patches basically look like this:
 748 //
 749 //
 750 // patch_site: jmp patch stub     ;; will be patched
 751 // continue:   ...
 752 //             ...
 753 //             ...
 754 //             ...
 755 //
 756 // They have a stub which looks like this:
 757 //
 758 //             ;; patch body
 759 //             movl <const>, reg           (for class constants)
 760 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 761 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 762 //             <being_init offset> <bytes to copy> <bytes to skip>
 763 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 764 //             jmp patch_site
 765 //
 766 //
 767 // A normal patch is done by rewriting the patch body, usually a move,
 768 // and then copying it into place over top of the jmp instruction
 769 // being careful to flush caches and doing it in an MP-safe way.  The
 770 // constants following the patch body are used to find various pieces
 771 // of the patch relative to the call site for Runtime1::patch_code.
 772 // The case for getstatic and putstatic is more complicated because
 773 // getstatic and putstatic have special semantics when executing while
 774 // the class is being initialized.  getstatic/putstatic on a class
 775 // which is being_initialized may be executed by the initializing
 776 // thread but other threads have to block when they execute it.  This
 777 // is accomplished in compiled code by executing a test of the current
 778 // thread against the initializing thread of the class.  It's emitted
 779 // as boilerplate in their stub which allows the patched code to be
 780 // executed before it's copied back into the main body of the nmethod.
 781 //
 782 // being_init: get_thread(<tmp reg>
 783 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 784 //             jne patch_stub
 785 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 786 //             movl reg, [reg1 + <const>]  (for field offsets)
 787 //             jmp continue
 788 //             <being_init offset> <bytes to copy> <bytes to skip>
 789 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 790 //             jmp patch_site
 791 //
 792 // If the class is being initialized the patch body is rewritten and
 793 // the patch site is rewritten to jump to being_init, instead of
 794 // patch_stub.  Whenever this code is executed it checks the current
 795 // thread against the intializing thread so other threads will enter
 796 // the runtime and end up blocked waiting the class to finish
 797 // initializing inside the calls to resolve_field below.  The
 798 // initializing class will continue on it's way.  Once the class is
 799 // fully_initialized, the intializing_thread of the class becomes
 800 // NULL, so the next thread to execute this code will fail the test,
 801 // call into patch_code and complete the patching process by copying
 802 // the patch body back into the main part of the nmethod and resume
 803 // executing.
 804 //
 805 //
 806 
 807 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 808   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 809 
 810   ResourceMark rm(thread);
 811   RegisterMap reg_map(thread, false);
 812   frame runtime_frame = thread->last_frame();
 813   frame caller_frame = runtime_frame.sender(&reg_map);
 814 
 815   // last java frame on stack
 816   vframeStream vfst(thread, true);
 817   assert(!vfst.at_end(), "Java frame must exist");
 818 
 819   methodHandle caller_method(THREAD, vfst.method());
 820   // Note that caller_method->code() may not be same as caller_code because of OSR's
 821   // Note also that in the presence of inlining it is not guaranteed
 822   // that caller_method() == caller_code->method()
 823 
 824   int bci = vfst.bci();
 825   Bytecodes::Code code = caller_method()->java_code_at(bci);
 826 
 827   // this is used by assertions in the access_field_patching_id
 828   BasicType patch_field_type = T_ILLEGAL;
 829   bool deoptimize_for_volatile = false;
 830   bool deoptimize_for_atomic = false;
 831   int patch_field_offset = -1;
 832   KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code
 833   KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code
 834   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 835   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 836   bool load_klass_or_mirror_patch_id =
 837     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 838 
 839   if (stub_id == Runtime1::access_field_patching_id) {
 840 
 841     Bytecode_field field_access(caller_method, bci);
 842     fieldDescriptor result; // initialize class if needed
 843     Bytecodes::Code code = field_access.code();
 844     constantPoolHandle constants(THREAD, caller_method->constants());
 845     LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK);
 846     patch_field_offset = result.offset();
 847 
 848     // If we're patching a field which is volatile then at compile it
 849     // must not have been know to be volatile, so the generated code
 850     // isn't correct for a volatile reference.  The nmethod has to be
 851     // deoptimized so that the code can be regenerated correctly.
 852     // This check is only needed for access_field_patching since this
 853     // is the path for patching field offsets.  load_klass is only
 854     // used for patching references to oops which don't need special
 855     // handling in the volatile case.
 856 
 857     deoptimize_for_volatile = result.access_flags().is_volatile();
 858 
 859     // If we are patching a field which should be atomic, then
 860     // the generated code is not correct either, force deoptimizing.
 861     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 862     // break access atomicity only for them.
 863 
 864     // Strictly speaking, the deoptimizaation on 64-bit platforms
 865     // is unnecessary, and T_LONG stores on 32-bit platforms need
 866     // to be handled by special patching code when AlwaysAtomicAccesses
 867     // becomes product feature. At this point, we are still going
 868     // for the deoptimization for consistency against volatile
 869     // accesses.
 870 
 871     patch_field_type = result.field_type();
 872     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
 873 
 874   } else if (load_klass_or_mirror_patch_id) {
 875     Klass* k = NULL;
 876     switch (code) {
 877       case Bytecodes::_putstatic:
 878       case Bytecodes::_getstatic:
 879         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
 880           init_klass = KlassHandle(THREAD, klass);
 881           mirror = Handle(THREAD, klass->java_mirror());
 882         }
 883         break;
 884       case Bytecodes::_new:
 885         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
 886           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
 887         }
 888         break;
 889       case Bytecodes::_multianewarray:
 890         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
 891           k = caller_method->constants()->klass_at(mna.index(), CHECK);
 892         }
 893         break;
 894       case Bytecodes::_instanceof:
 895         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
 896           k = caller_method->constants()->klass_at(io.index(), CHECK);
 897         }
 898         break;
 899       case Bytecodes::_checkcast:
 900         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
 901           k = caller_method->constants()->klass_at(cc.index(), CHECK);
 902         }
 903         break;
 904       case Bytecodes::_anewarray:
 905         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
 906           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
 907           k = ek->array_klass(CHECK);
 908         }
 909         break;
 910       case Bytecodes::_ldc:
 911       case Bytecodes::_ldc_w:
 912         {
 913           Bytecode_loadconstant cc(caller_method, bci);
 914           oop m = cc.resolve_constant(CHECK);
 915           mirror = Handle(THREAD, m);
 916         }
 917         break;
 918       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
 919     }
 920     // convert to handle
 921     load_klass = KlassHandle(THREAD, k);
 922   } else if (stub_id == load_appendix_patching_id) {
 923     Bytecode_invoke bytecode(caller_method, bci);
 924     Bytecodes::Code bc = bytecode.invoke_code();
 925 
 926     CallInfo info;
 927     constantPoolHandle pool(thread, caller_method->constants());
 928     int index = bytecode.index();
 929     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
 930     appendix = info.resolved_appendix();
 931     switch (bc) {
 932       case Bytecodes::_invokehandle: {
 933         int cache_index = ConstantPool::decode_cpcache_index(index, true);
 934         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
 935         pool->cache()->entry_at(cache_index)->set_method_handle(pool, info);
 936         break;
 937       }
 938       case Bytecodes::_invokedynamic: {
 939         pool->invokedynamic_cp_cache_entry_at(index)->set_dynamic_call(pool, info);
 940         break;
 941       }
 942       default: fatal("unexpected bytecode for load_appendix_patching_id");
 943     }
 944   } else {
 945     ShouldNotReachHere();
 946   }
 947 
 948   if (deoptimize_for_volatile || deoptimize_for_atomic) {
 949     // At compile time we assumed the field wasn't volatile/atomic but after
 950     // loading it turns out it was volatile/atomic so we have to throw the
 951     // compiled code out and let it be regenerated.
 952     if (TracePatching) {
 953       if (deoptimize_for_volatile) {
 954         tty->print_cr("Deoptimizing for patching volatile field reference");
 955       }
 956       if (deoptimize_for_atomic) {
 957         tty->print_cr("Deoptimizing for patching atomic field reference");
 958       }
 959     }
 960 
 961     // It's possible the nmethod was invalidated in the last
 962     // safepoint, but if it's still alive then make it not_entrant.
 963     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
 964     if (nm != NULL) {
 965       nm->make_not_entrant();
 966     }
 967 
 968     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 969 
 970     // Return to the now deoptimized frame.
 971   }
 972 
 973   // Now copy code back
 974 
 975   {
 976     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
 977     //
 978     // Deoptimization may have happened while we waited for the lock.
 979     // In that case we don't bother to do any patching we just return
 980     // and let the deopt happen
 981     if (!caller_is_deopted()) {
 982       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
 983       address instr_pc = jump->jump_destination();
 984       NativeInstruction* ni = nativeInstruction_at(instr_pc);
 985       if (ni->is_jump() ) {
 986         // the jump has not been patched yet
 987         // The jump destination is slow case and therefore not part of the stubs
 988         // (stubs are only for StaticCalls)
 989 
 990         // format of buffer
 991         //    ....
 992         //    instr byte 0     <-- copy_buff
 993         //    instr byte 1
 994         //    ..
 995         //    instr byte n-1
 996         //      n
 997         //    ....             <-- call destination
 998 
 999         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1000         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1001         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1002         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1003         address copy_buff = stub_location - *byte_skip - *byte_count;
1004         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1005         if (TracePatching) {
1006           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1007                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1008           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1009           assert(caller_code != NULL, "nmethod not found");
1010 
1011           // NOTE we use pc() not original_pc() because we already know they are
1012           // identical otherwise we'd have never entered this block of code
1013 
1014           OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1015           assert(map != NULL, "null check");
1016           map->print();
1017           tty->cr();
1018 
1019           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1020         }
1021         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1022         bool do_patch = true;
1023         if (stub_id == Runtime1::access_field_patching_id) {
1024           // The offset may not be correct if the class was not loaded at code generation time.
1025           // Set it now.
1026           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1027           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1028           assert(patch_field_offset >= 0, "illegal offset");
1029           n_move->add_offset_in_bytes(patch_field_offset);
1030         } else if (load_klass_or_mirror_patch_id) {
1031           // If a getstatic or putstatic is referencing a klass which
1032           // isn't fully initialized, the patch body isn't copied into
1033           // place until initialization is complete.  In this case the
1034           // patch site is setup so that any threads besides the
1035           // initializing thread are forced to come into the VM and
1036           // block.
1037           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1038                      InstanceKlass::cast(init_klass())->is_initialized();
1039           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1040           if (jump->jump_destination() == being_initialized_entry) {
1041             assert(do_patch == true, "initialization must be complete at this point");
1042           } else {
1043             // patch the instruction <move reg, klass>
1044             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1045 
1046             assert(n_copy->data() == 0 ||
1047                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1048                    "illegal init value");
1049             if (stub_id == Runtime1::load_klass_patching_id) {
1050               assert(load_klass() != NULL, "klass not set");
1051               n_copy->set_data((intx) (load_klass()));
1052             } else {
1053               assert(mirror() != NULL, "klass not set");
1054               n_copy->set_data(cast_from_oop<intx>(mirror()));
1055             }
1056 
1057             if (TracePatching) {
1058               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1059             }
1060           }
1061         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1062           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1063           assert(n_copy->data() == 0 ||
1064                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1065                  "illegal init value");
1066           n_copy->set_data(cast_from_oop<intx>(appendix()));
1067 
1068           if (TracePatching) {
1069             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1070           }
1071         } else {
1072           ShouldNotReachHere();
1073         }
1074 
1075 #if defined(SPARC) || defined(PPC)
1076         if (load_klass_or_mirror_patch_id ||
1077             stub_id == Runtime1::load_appendix_patching_id) {
1078           // Update the location in the nmethod with the proper
1079           // metadata.  When the code was generated, a NULL was stuffed
1080           // in the metadata table and that table needs to be update to
1081           // have the right value.  On intel the value is kept
1082           // directly in the instruction instead of in the metadata
1083           // table, so set_data above effectively updated the value.
1084           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1085           assert(nm != NULL, "invalid nmethod_pc");
1086           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1087           bool found = false;
1088           while (mds.next() && !found) {
1089             if (mds.type() == relocInfo::oop_type) {
1090               assert(stub_id == Runtime1::load_mirror_patching_id ||
1091                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1092               oop_Relocation* r = mds.oop_reloc();
1093               oop* oop_adr = r->oop_addr();
1094               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1095               r->fix_oop_relocation();
1096               found = true;
1097             } else if (mds.type() == relocInfo::metadata_type) {
1098               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1099               metadata_Relocation* r = mds.metadata_reloc();
1100               Metadata** metadata_adr = r->metadata_addr();
1101               *metadata_adr = load_klass();
1102               r->fix_metadata_relocation();
1103               found = true;
1104             }
1105           }
1106           assert(found, "the metadata must exist!");
1107         }
1108 #endif
1109         if (do_patch) {
1110           // replace instructions
1111           // first replace the tail, then the call
1112 #ifdef ARM
1113           if((load_klass_or_mirror_patch_id ||
1114               stub_id == Runtime1::load_appendix_patching_id) &&
1115              !VM_Version::supports_movw()) {
1116             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1117             address addr = NULL;
1118             assert(nm != NULL, "invalid nmethod_pc");
1119             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1120             while (mds.next()) {
1121               if (mds.type() == relocInfo::oop_type) {
1122                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1123                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1124                 oop_Relocation* r = mds.oop_reloc();
1125                 addr = (address)r->oop_addr();
1126                 break;
1127               } else if (mds.type() == relocInfo::metadata_type) {
1128                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1129                 metadata_Relocation* r = mds.metadata_reloc();
1130                 addr = (address)r->metadata_addr();
1131                 break;
1132               }
1133             }
1134             assert(addr != NULL, "metadata relocation must exist");
1135             copy_buff -= *byte_count;
1136             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1137             n_copy2->set_pc_relative_offset(addr, instr_pc);
1138           }
1139 #endif
1140 
1141           for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
1142             address ptr = copy_buff + i;
1143             int a_byte = (*ptr) & 0xFF;
1144             address dst = instr_pc + i;
1145             *(unsigned char*)dst = (unsigned char) a_byte;
1146           }
1147           ICache::invalidate_range(instr_pc, *byte_count);
1148           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1149 
1150           if (load_klass_or_mirror_patch_id ||
1151               stub_id == Runtime1::load_appendix_patching_id) {
1152             relocInfo::relocType rtype =
1153               (stub_id == Runtime1::load_klass_patching_id) ?
1154                                    relocInfo::metadata_type :
1155                                    relocInfo::oop_type;
1156             // update relocInfo to metadata
1157             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1158             assert(nm != NULL, "invalid nmethod_pc");
1159 
1160             // The old patch site is now a move instruction so update
1161             // the reloc info so that it will get updated during
1162             // future GCs.
1163             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1164             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1165                                                      relocInfo::none, rtype);
1166 #ifdef SPARC
1167             // Sparc takes two relocations for an metadata so update the second one.
1168             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1169             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1170             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1171                                                      relocInfo::none, rtype);
1172 #endif
1173 #ifdef PPC
1174           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1175             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1176             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1177                                                      relocInfo::none, rtype);
1178           }
1179 #endif
1180           }
1181 
1182         } else {
1183           ICache::invalidate_range(copy_buff, *byte_count);
1184           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1185         }
1186       }
1187     }
1188   }
1189 
1190   // If we are patching in a non-perm oop, make sure the nmethod
1191   // is on the right list.
1192   if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) ||
1193                               (appendix.not_null() && appendix->is_scavengable()))) {
1194     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1195     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1196     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1197     if (!nm->on_scavenge_root_list()) {
1198       CodeCache::add_scavenge_root_nmethod(nm);
1199     }
1200 
1201     // Since we've patched some oops in the nmethod,
1202     // (re)register it with the heap.
1203     Universe::heap()->register_nmethod(nm);
1204   }
1205 JRT_END
1206 
1207 //
1208 // Entry point for compiled code. We want to patch a nmethod.
1209 // We don't do a normal VM transition here because we want to
1210 // know after the patching is complete and any safepoint(s) are taken
1211 // if the calling nmethod was deoptimized. We do this by calling a
1212 // helper method which does the normal VM transition and when it
1213 // completes we can check for deoptimization. This simplifies the
1214 // assembly code in the cpu directories.
1215 //
1216 int Runtime1::move_klass_patching(JavaThread* thread) {
1217 //
1218 // NOTE: we are still in Java
1219 //
1220   Thread* THREAD = thread;
1221   debug_only(NoHandleMark nhm;)
1222   {
1223     // Enter VM mode
1224 
1225     ResetNoHandleMark rnhm;
1226     patch_code(thread, load_klass_patching_id);
1227   }
1228   // Back in JAVA, use no oops DON'T safepoint
1229 
1230   // Return true if calling code is deoptimized
1231 
1232   return caller_is_deopted();
1233 }
1234 
1235 int Runtime1::move_mirror_patching(JavaThread* thread) {
1236 //
1237 // NOTE: we are still in Java
1238 //
1239   Thread* THREAD = thread;
1240   debug_only(NoHandleMark nhm;)
1241   {
1242     // Enter VM mode
1243 
1244     ResetNoHandleMark rnhm;
1245     patch_code(thread, load_mirror_patching_id);
1246   }
1247   // Back in JAVA, use no oops DON'T safepoint
1248 
1249   // Return true if calling code is deoptimized
1250 
1251   return caller_is_deopted();
1252 }
1253 
1254 int Runtime1::move_appendix_patching(JavaThread* thread) {
1255 //
1256 // NOTE: we are still in Java
1257 //
1258   Thread* THREAD = thread;
1259   debug_only(NoHandleMark nhm;)
1260   {
1261     // Enter VM mode
1262 
1263     ResetNoHandleMark rnhm;
1264     patch_code(thread, load_appendix_patching_id);
1265   }
1266   // Back in JAVA, use no oops DON'T safepoint
1267 
1268   // Return true if calling code is deoptimized
1269 
1270   return caller_is_deopted();
1271 }
1272 //
1273 // Entry point for compiled code. We want to patch a nmethod.
1274 // We don't do a normal VM transition here because we want to
1275 // know after the patching is complete and any safepoint(s) are taken
1276 // if the calling nmethod was deoptimized. We do this by calling a
1277 // helper method which does the normal VM transition and when it
1278 // completes we can check for deoptimization. This simplifies the
1279 // assembly code in the cpu directories.
1280 //
1281 
1282 int Runtime1::access_field_patching(JavaThread* thread) {
1283 //
1284 // NOTE: we are still in Java
1285 //
1286   Thread* THREAD = thread;
1287   debug_only(NoHandleMark nhm;)
1288   {
1289     // Enter VM mode
1290 
1291     ResetNoHandleMark rnhm;
1292     patch_code(thread, access_field_patching_id);
1293   }
1294   // Back in JAVA, use no oops DON'T safepoint
1295 
1296   // Return true if calling code is deoptimized
1297 
1298   return caller_is_deopted();
1299 JRT_END
1300 
1301 
1302 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1303   // for now we just print out the block id
1304   tty->print("%d ", block_id);
1305 JRT_END
1306 
1307 
1308 // Array copy return codes.
1309 enum {
1310   ac_failed = -1, // arraycopy failed
1311   ac_ok = 0       // arraycopy succeeded
1312 };
1313 
1314 
1315 // Below length is the # elements copied.
1316 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1317                                           oopDesc* dst, T* dst_addr,
1318                                           int length) {
1319 
1320   // For performance reasons, we assume we are using a card marking write
1321   // barrier. The assert will fail if this is not the case.
1322   // Note that we use the non-virtual inlineable variant of write_ref_array.
1323   BarrierSet* bs = Universe::heap()->barrier_set();
1324   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1325   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1326   if (src == dst) {
1327     // same object, no check
1328     bs->write_ref_array_pre(dst_addr, length);
1329     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1330     bs->write_ref_array((HeapWord*)dst_addr, length);
1331     return ac_ok;
1332   } else {
1333     Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
1334     Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
1335     if (stype == bound || stype->is_subtype_of(bound)) {
1336       // Elements are guaranteed to be subtypes, so no check necessary
1337       bs->write_ref_array_pre(dst_addr, length);
1338       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1339       bs->write_ref_array((HeapWord*)dst_addr, length);
1340       return ac_ok;
1341     }
1342   }
1343   return ac_failed;
1344 }
1345 
1346 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
1347 // and we did not copy anything
1348 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1349 #ifndef PRODUCT
1350   _generic_arraycopy_cnt++;        // Slow-path oop array copy
1351 #endif
1352 
1353   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1354   if (!dst->is_array() || !src->is_array()) return ac_failed;
1355   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1356   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1357 
1358   if (length == 0) return ac_ok;
1359   if (src->is_typeArray()) {
1360     Klass* klass_oop = src->klass();
1361     if (klass_oop != dst->klass()) return ac_failed;
1362     TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
1363     const int l2es = klass->log2_element_size();
1364     const int ihs = klass->array_header_in_bytes() / wordSize;
1365     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1366     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1367     // Potential problem: memmove is not guaranteed to be word atomic
1368     // Revisit in Merlin
1369     memmove(dst_addr, src_addr, length << l2es);
1370     return ac_ok;
1371   } else if (src->is_objArray() && dst->is_objArray()) {
1372     if (UseCompressedOops) {
1373       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1374       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1375       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1376     } else {
1377       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1378       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1379       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1380     }
1381   }
1382   return ac_failed;
1383 JRT_END
1384 
1385 
1386 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1387 #ifndef PRODUCT
1388   _primitive_arraycopy_cnt++;
1389 #endif
1390 
1391   if (length == 0) return;
1392   // Not guaranteed to be word atomic, but that doesn't matter
1393   // for anything but an oop array, which is covered by oop_arraycopy.
1394   Copy::conjoint_jbytes(src, dst, length);
1395 JRT_END
1396 
1397 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1398 #ifndef PRODUCT
1399   _oop_arraycopy_cnt++;
1400 #endif
1401 
1402   if (num == 0) return;
1403   BarrierSet* bs = Universe::heap()->barrier_set();
1404   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1405   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1406   if (UseCompressedOops) {
1407     bs->write_ref_array_pre((narrowOop*)dst, num);
1408     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
1409   } else {
1410     bs->write_ref_array_pre((oop*)dst, num);
1411     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1412   }
1413   bs->write_ref_array(dst, num);
1414 JRT_END
1415 
1416 
1417 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1418   // had to return int instead of bool, otherwise there may be a mismatch
1419   // between the C calling convention and the Java one.
1420   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1421   // JVM takes the whole %eax as the return value, which may misinterpret
1422   // the return value as a boolean true.
1423 
1424   assert(mirror != NULL, "should null-check on mirror before calling");
1425   Klass* k = java_lang_Class::as_Klass(mirror);
1426   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1427 JRT_END
1428 
1429 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1430   ResourceMark rm;
1431 
1432   assert(!TieredCompilation, "incompatible with tiered compilation");
1433 
1434   RegisterMap reg_map(thread, false);
1435   frame runtime_frame = thread->last_frame();
1436   frame caller_frame = runtime_frame.sender(&reg_map);
1437 
1438   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1439   assert (nm != NULL, "no more nmethod?");
1440   nm->make_not_entrant();
1441 
1442   methodHandle m(nm->method());
1443   MethodData* mdo = m->method_data();
1444 
1445   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1446     // Build an MDO.  Ignore errors like OutOfMemory;
1447     // that simply means we won't have an MDO to update.
1448     Method::build_interpreter_method_data(m, THREAD);
1449     if (HAS_PENDING_EXCEPTION) {
1450       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1451       CLEAR_PENDING_EXCEPTION;
1452     }
1453     mdo = m->method_data();
1454   }
1455 
1456   if (mdo != NULL) {
1457     mdo->inc_trap_count(Deoptimization::Reason_none);
1458   }
1459 
1460   if (TracePredicateFailedTraps) {
1461     stringStream ss1, ss2;
1462     vframeStream vfst(thread);
1463     methodHandle inlinee = methodHandle(vfst.method());
1464     inlinee->print_short_name(&ss1);
1465     m->print_short_name(&ss2);
1466     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1467   }
1468 
1469 
1470   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1471 
1472 JRT_END
1473 
1474 #ifndef PRODUCT
1475 void Runtime1::print_statistics() {
1476   tty->print_cr("C1 Runtime statistics:");
1477   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1478   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1479   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1480   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1481   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1482   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1483   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1484   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1485   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1486   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1487   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1488   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1489   tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
1490   tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_stub_cnt);
1491   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1492   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1493   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1494 
1495   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1496   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1497   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1498   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1499   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1500   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1501   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1502 
1503   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1504   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1505   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1506   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1507   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1508   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1509   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1510   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1511 
1512   SharedRuntime::print_ic_miss_histogram();
1513   tty->cr();
1514 }
1515 #endif // PRODUCT