1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "opto/ad.hpp"
  27 #include "opto/compile.hpp"
  28 #include "opto/regmask.hpp"
  29 
  30 #define RM_SIZE _RM_SIZE /* a constant private to the class RegMask */
  31 
  32 //-------------Non-zero bit search methods used by RegMask---------------------
  33 // Find lowest 1, or return 32 if empty
  34 int find_lowest_bit( uint32_t mask ) {
  35   int n = 0;
  36   if( (mask & 0xffff) == 0 ) {
  37     mask >>= 16;
  38     n += 16;
  39   }
  40   if( (mask & 0xff) == 0 ) {
  41     mask >>= 8;
  42     n += 8;
  43   }
  44   if( (mask & 0xf) == 0 ) {
  45     mask >>= 4;
  46     n += 4;
  47   }
  48   if( (mask & 0x3) == 0 ) {
  49     mask >>= 2;
  50     n += 2;
  51   }
  52   if( (mask & 0x1) == 0 ) {
  53     mask >>= 1;
  54      n += 1;
  55   }
  56   if( mask == 0 ) {
  57     n = 32;
  58   }
  59   return n;
  60 }
  61 
  62 // Find highest 1, or return 32 if empty
  63 int find_hihghest_bit( uint32_t mask ) {
  64   int n = 0;
  65   if( mask > 0xffff ) {
  66     mask >>= 16;
  67     n += 16;
  68   }
  69   if( mask > 0xff ) {
  70     mask >>= 8;
  71     n += 8;
  72   }
  73   if( mask > 0xf ) {
  74     mask >>= 4;
  75     n += 4;
  76   }
  77   if( mask > 0x3 ) {
  78     mask >>= 2;
  79     n += 2;
  80   }
  81   if( mask > 0x1 ) {
  82     mask >>= 1;
  83     n += 1;
  84   }
  85   if( mask == 0 ) {
  86     n = 32;
  87   }
  88   return n;
  89 }
  90 
  91 //------------------------------dump-------------------------------------------
  92 
  93 #ifndef PRODUCT
  94 void OptoReg::dump(int r, outputStream *st) {
  95   switch (r) {
  96   case Special: st->print("r---"); break;
  97   case Bad:     st->print("rBAD"); break;
  98   default:
  99     if (r < _last_Mach_Reg) st->print("%s", Matcher::regName[r]);
 100     else st->print("rS%d",r);
 101     break;
 102   }
 103 }
 104 #endif
 105 
 106 
 107 //=============================================================================
 108 const RegMask RegMask::Empty(
 109 # define BODY(I) 0,
 110   FORALL_BODY
 111 # undef BODY
 112   0
 113 );
 114 
 115 //=============================================================================
 116 bool RegMask::is_vector(uint ireg) {
 117   return (ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY);
 118 }
 119 
 120 int RegMask::num_registers(uint ireg) {
 121     switch(ireg) {
 122       case Op_VecY:
 123         return 8;
 124       case Op_VecX:
 125         return 4;
 126       case Op_VecD:
 127       case Op_RegD:
 128       case Op_RegL:
 129 #ifdef _LP64
 130       case Op_RegP:
 131 #endif
 132         return 2;
 133     }
 134     // Op_VecS and the rest ideal registers.
 135     return 1;
 136 }
 137 
 138 //------------------------------find_first_pair--------------------------------
 139 // Find the lowest-numbered register pair in the mask.  Return the
 140 // HIGHEST register number in the pair, or BAD if no pairs.
 141 OptoReg::Name RegMask::find_first_pair() const {
 142   verify_pairs();
 143   for( int i = 0; i < RM_SIZE; i++ ) {
 144     if( _A[i] ) {               // Found some bits
 145       int bit = _A[i] & -_A[i]; // Extract low bit
 146       // Convert to bit number, return hi bit in pair
 147       return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+1);
 148     }
 149   }
 150   return OptoReg::Bad;
 151 }
 152 
 153 //------------------------------ClearToPairs-----------------------------------
 154 // Clear out partial bits; leave only bit pairs
 155 void RegMask::clear_to_pairs() {
 156   for( int i = 0; i < RM_SIZE; i++ ) {
 157     int bits = _A[i];
 158     bits &= ((bits & 0x55555555)<<1); // 1 hi-bit set for each pair
 159     bits |= (bits>>1);          // Smear 1 hi-bit into a pair
 160     _A[i] = bits;
 161   }
 162   verify_pairs();
 163 }
 164 
 165 //------------------------------SmearToPairs-----------------------------------
 166 // Smear out partial bits; leave only bit pairs
 167 void RegMask::smear_to_pairs() {
 168   for( int i = 0; i < RM_SIZE; i++ ) {
 169     int bits = _A[i];
 170     bits |= ((bits & 0x55555555)<<1); // Smear lo bit hi per pair
 171     bits |= ((bits & 0xAAAAAAAA)>>1); // Smear hi bit lo per pair
 172     _A[i] = bits;
 173   }
 174   verify_pairs();
 175 }
 176 
 177 //------------------------------is_aligned_pairs-------------------------------
 178 bool RegMask::is_aligned_pairs() const {
 179   // Assert that the register mask contains only bit pairs.
 180   for( int i = 0; i < RM_SIZE; i++ ) {
 181     int bits = _A[i];
 182     while( bits ) {             // Check bits for pairing
 183       int bit = bits & -bits;   // Extract low bit
 184       // Low bit is not odd means its mis-aligned.
 185       if( (bit & 0x55555555) == 0 ) return false;
 186       bits -= bit;              // Remove bit from mask
 187       // Check for aligned adjacent bit
 188       if( (bits & (bit<<1)) == 0 ) return false;
 189       bits -= (bit<<1);         // Remove other halve of pair
 190     }
 191   }
 192   return true;
 193 }
 194 
 195 //------------------------------is_bound1--------------------------------------
 196 // Return TRUE if the mask contains a single bit
 197 int RegMask::is_bound1() const {
 198   if( is_AllStack() ) return false;
 199   int bit = -1;                 // Set to hold the one bit allowed
 200   for( int i = 0; i < RM_SIZE; i++ ) {
 201     if( _A[i] ) {               // Found some bits
 202       if( bit != -1 ) return false; // Already had bits, so fail
 203       bit = _A[i] & -_A[i];     // Extract 1 bit from mask
 204       if( bit != _A[i] ) return false; // Found many bits, so fail
 205     }
 206   }
 207   // True for both the empty mask and for a single bit
 208   return true;
 209 }
 210 
 211 //------------------------------is_bound2--------------------------------------
 212 // Return TRUE if the mask contains an adjacent pair of bits and no other bits.
 213 int RegMask::is_bound_pair() const {
 214   if( is_AllStack() ) return false;
 215 
 216   int bit = -1;                 // Set to hold the one bit allowed
 217   for( int i = 0; i < RM_SIZE; i++ ) {
 218     if( _A[i] ) {               // Found some bits
 219       if( bit != -1 ) return false; // Already had bits, so fail
 220       bit = _A[i] & -(_A[i]);   // Extract 1 bit from mask
 221       if( (bit << 1) != 0 ) {   // Bit pair stays in same word?
 222         if( (bit | (bit<<1)) != _A[i] )
 223           return false;         // Require adjacent bit pair and no more bits
 224       } else {                  // Else its a split-pair case
 225         if( bit != _A[i] ) return false; // Found many bits, so fail
 226         i++;                    // Skip iteration forward
 227         if( i >= RM_SIZE || _A[i] != 1 )
 228           return false; // Require 1 lo bit in next word
 229       }
 230     }
 231   }
 232   // True for both the empty mask and for a bit pair
 233   return true;
 234 }
 235 
 236 static int low_bits[3] = { 0x55555555, 0x11111111, 0x01010101 };
 237 //------------------------------find_first_set---------------------------------
 238 // Find the lowest-numbered register set in the mask.  Return the
 239 // HIGHEST register number in the set, or BAD if no sets.
 240 // Works also for size 1.
 241 OptoReg::Name RegMask::find_first_set(const int size) const {
 242   verify_sets(size);
 243   for (int i = 0; i < RM_SIZE; i++) {
 244     if (_A[i]) {                // Found some bits
 245       int bit = _A[i] & -_A[i]; // Extract low bit
 246       // Convert to bit number, return hi bit in pair
 247       return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+(size-1));
 248     }
 249   }
 250   return OptoReg::Bad;
 251 }
 252 
 253 //------------------------------clear_to_sets----------------------------------
 254 // Clear out partial bits; leave only aligned adjacent bit pairs
 255 void RegMask::clear_to_sets(const int size) {
 256   if (size == 1) return;
 257   assert(2 <= size && size <= 8, "update low bits table");
 258   assert(is_power_of_2(size), "sanity");
 259   int low_bits_mask = low_bits[size>>2];
 260   for (int i = 0; i < RM_SIZE; i++) {
 261     int bits = _A[i];
 262     int sets = (bits & low_bits_mask);
 263     for (int j = 1; j < size; j++) {
 264       sets = (bits & (sets<<1)); // filter bits which produce whole sets
 265     }
 266     sets |= (sets>>1);           // Smear 1 hi-bit into a set
 267     if (size > 2) {
 268       sets |= (sets>>2);         // Smear 2 hi-bits into a set
 269       if (size > 4) {
 270         sets |= (sets>>4);       // Smear 4 hi-bits into a set
 271       }
 272     }
 273     _A[i] = sets;
 274   }
 275   verify_sets(size);
 276 }
 277 
 278 //------------------------------smear_to_sets----------------------------------
 279 // Smear out partial bits to aligned adjacent bit sets
 280 void RegMask::smear_to_sets(const int size) {
 281   if (size == 1) return;
 282   assert(2 <= size && size <= 8, "update low bits table");
 283   assert(is_power_of_2(size), "sanity");
 284   int low_bits_mask = low_bits[size>>2];
 285   for (int i = 0; i < RM_SIZE; i++) {
 286     int bits = _A[i];
 287     int sets = 0;
 288     for (int j = 0; j < size; j++) {
 289       sets |= (bits & low_bits_mask);  // collect partial bits
 290       bits  = bits>>1;
 291     }
 292     sets |= (sets<<1);           // Smear 1 lo-bit  into a set
 293     if (size > 2) {
 294       sets |= (sets<<2);         // Smear 2 lo-bits into a set
 295       if (size > 4) {
 296         sets |= (sets<<4);       // Smear 4 lo-bits into a set
 297       }
 298     }
 299     _A[i] = sets;
 300   }
 301   verify_sets(size);
 302 }
 303 
 304 //------------------------------is_aligned_set--------------------------------
 305 bool RegMask::is_aligned_sets(const int size) const {
 306   if (size == 1) return true;
 307   assert(2 <= size && size <= 8, "update low bits table");
 308   assert(is_power_of_2(size), "sanity");
 309   int low_bits_mask = low_bits[size>>2];
 310   // Assert that the register mask contains only bit sets.
 311   for (int i = 0; i < RM_SIZE; i++) {
 312     int bits = _A[i];
 313     while (bits) {              // Check bits for pairing
 314       int bit = bits & -bits;   // Extract low bit
 315       // Low bit is not odd means its mis-aligned.
 316       if ((bit & low_bits_mask) == 0) return false;
 317       // Do extra work since (bit << size) may overflow.
 318       int hi_bit = bit << (size-1); // high bit
 319       int set = hi_bit + ((hi_bit-1) & ~(bit-1));
 320       // Check for aligned adjacent bits in this set
 321       if ((bits & set) != set) return false;
 322       bits -= set;  // Remove this set
 323     }
 324   }
 325   return true;
 326 }
 327 
 328 //------------------------------is_bound_set-----------------------------------
 329 // Return TRUE if the mask contains one adjacent set of bits and no other bits.
 330 // Works also for size 1.
 331 int RegMask::is_bound_set(const int size) const {
 332   if( is_AllStack() ) return false;
 333   assert(1 <= size && size <= 8, "update low bits table");
 334   int bit = -1;                 // Set to hold the one bit allowed
 335   for (int i = 0; i < RM_SIZE; i++) {
 336     if (_A[i] ) {               // Found some bits
 337       if (bit != -1)
 338        return false;            // Already had bits, so fail
 339       bit = _A[i] & -_A[i];     // Extract low bit from mask
 340       int hi_bit = bit << (size-1); // high bit
 341       if (hi_bit != 0) {        // Bit set stays in same word?
 342         int set = hi_bit + ((hi_bit-1) & ~(bit-1));
 343         if (set != _A[i])
 344           return false;         // Require adjacent bit set and no more bits
 345       } else {                  // Else its a split-set case
 346         if (((-1) & ~(bit-1)) != _A[i])
 347           return false;         // Found many bits, so fail
 348         i++;                    // Skip iteration forward and check high part
 349         // The lower 24 bits should be 0 since it is split case and size <= 8.
 350         int set = bit>>24;
 351         set = set & -set; // Remove sign extension.
 352         set = (((set << size) - 1) >> 8);
 353         if (i >= RM_SIZE || _A[i] != set)
 354           return false; // Require expected low bits in next word
 355       }
 356     }
 357   }
 358   // True for both the empty mask and for a bit set
 359   return true;
 360 }
 361 
 362 //------------------------------is_UP------------------------------------------
 363 // UP means register only, Register plus stack, or stack only is DOWN
 364 bool RegMask::is_UP() const {
 365   // Quick common case check for DOWN (any stack slot is legal)
 366   if( is_AllStack() )
 367     return false;
 368   // Slower check for any stack bits set (also DOWN)
 369   if( overlap(Matcher::STACK_ONLY_mask) )
 370     return false;
 371   // Not DOWN, so must be UP
 372   return true;
 373 }
 374 
 375 //------------------------------Size-------------------------------------------
 376 // Compute size of register mask in bits
 377 uint RegMask::Size() const {
 378   extern uint8_t bitsInByte[256];
 379   uint sum = 0;
 380   for( int i = 0; i < RM_SIZE; i++ )
 381     sum +=
 382       bitsInByte[(_A[i]>>24) & 0xff] +
 383       bitsInByte[(_A[i]>>16) & 0xff] +
 384       bitsInByte[(_A[i]>> 8) & 0xff] +
 385       bitsInByte[ _A[i]      & 0xff];
 386   return sum;
 387 }
 388 
 389 #ifndef PRODUCT
 390 //------------------------------print------------------------------------------
 391 void RegMask::dump(outputStream *st) const {
 392   st->print("[");
 393   RegMask rm = *this;           // Structure copy into local temp
 394 
 395   OptoReg::Name start = rm.find_first_elem(); // Get a register
 396   if (OptoReg::is_valid(start)) { // Check for empty mask
 397     rm.Remove(start);           // Yank from mask
 398     OptoReg::dump(start, st);   // Print register
 399     OptoReg::Name last = start;
 400 
 401     // Now I have printed an initial register.
 402     // Print adjacent registers as "rX-rZ" instead of "rX,rY,rZ".
 403     // Begin looping over the remaining registers.
 404     while (1) {                 //
 405       OptoReg::Name reg = rm.find_first_elem(); // Get a register
 406       if (!OptoReg::is_valid(reg))
 407         break;                  // Empty mask, end loop
 408       rm.Remove(reg);           // Yank from mask
 409 
 410       if (last+1 == reg) {      // See if they are adjacent
 411         // Adjacent registers just collect into long runs, no printing.
 412         last = reg;
 413       } else {                  // Ending some kind of run
 414         if (start == last) {    // 1-register run; no special printing
 415         } else if (start+1 == last) {
 416           st->print(",");       // 2-register run; print as "rX,rY"
 417           OptoReg::dump(last, st);
 418         } else {                // Multi-register run; print as "rX-rZ"
 419           st->print("-");
 420           OptoReg::dump(last, st);
 421         }
 422         st->print(",");         // Seperate start of new run
 423         start = last = reg;     // Start a new register run
 424         OptoReg::dump(start, st); // Print register
 425       } // End of if ending a register run or not
 426     } // End of while regmask not empty
 427 
 428     if (start == last) {        // 1-register run; no special printing
 429     } else if (start+1 == last) {
 430       st->print(",");           // 2-register run; print as "rX,rY"
 431       OptoReg::dump(last, st);
 432     } else {                    // Multi-register run; print as "rX-rZ"
 433       st->print("-");
 434       OptoReg::dump(last, st);
 435     }
 436     if (rm.is_AllStack()) st->print("...");
 437   }
 438   st->print("]");
 439 }
 440 #endif