1 /*
   2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compilerOracle.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc_implementation/g1/heapRegion.hpp"
  39 #include "gc_interface/collectedHeap.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "memory/barrierSet.hpp"
  44 #include "memory/gcLocker.inline.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "opto/addnode.hpp"
  49 #include "opto/callnode.hpp"
  50 #include "opto/cfgnode.hpp"
  51 #include "opto/graphKit.hpp"
  52 #include "opto/machnode.hpp"
  53 #include "opto/matcher.hpp"
  54 #include "opto/memnode.hpp"
  55 #include "opto/mulnode.hpp"
  56 #include "opto/runtime.hpp"
  57 #include "opto/subnode.hpp"
  58 #include "runtime/atomic.inline.hpp"
  59 #include "runtime/fprofiler.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/interfaceSupport.hpp"
  62 #include "runtime/javaCalls.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/signature.hpp"
  65 #include "runtime/threadCritical.hpp"
  66 #include "runtime/vframe.hpp"
  67 #include "runtime/vframeArray.hpp"
  68 #include "runtime/vframe_hp.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/preserveException.hpp"
  71 #ifdef TARGET_ARCH_MODEL_x86_32
  72 # include "adfiles/ad_x86_32.hpp"
  73 #endif
  74 #ifdef TARGET_ARCH_MODEL_x86_64
  75 # include "adfiles/ad_x86_64.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_MODEL_sparc
  78 # include "adfiles/ad_sparc.hpp"
  79 #endif
  80 #ifdef TARGET_ARCH_MODEL_zero
  81 # include "adfiles/ad_zero.hpp"
  82 #endif
  83 #ifdef TARGET_ARCH_MODEL_arm
  84 # include "adfiles/ad_arm.hpp"
  85 #endif
  86 #ifdef TARGET_ARCH_MODEL_ppc_32
  87 # include "adfiles/ad_ppc_32.hpp"
  88 #endif
  89 #ifdef TARGET_ARCH_MODEL_ppc_64
  90 # include "adfiles/ad_ppc_64.hpp"
  91 #endif
  92 
  93 
  94 // For debugging purposes:
  95 //  To force FullGCALot inside a runtime function, add the following two lines
  96 //
  97 //  Universe::release_fullgc_alot_dummy();
  98 //  MarkSweep::invoke(0, "Debugging");
  99 //
 100 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
 101 
 102 
 103 
 104 
 105 // Compiled code entry points
 106 address OptoRuntime::_new_instance_Java                           = NULL;
 107 address OptoRuntime::_new_array_Java                              = NULL;
 108 address OptoRuntime::_new_array_nozero_Java                       = NULL;
 109 address OptoRuntime::_multianewarray2_Java                        = NULL;
 110 address OptoRuntime::_multianewarray3_Java                        = NULL;
 111 address OptoRuntime::_multianewarray4_Java                        = NULL;
 112 address OptoRuntime::_multianewarray5_Java                        = NULL;
 113 address OptoRuntime::_multianewarrayN_Java                        = NULL;
 114 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
 115 address OptoRuntime::_g1_wb_post_Java                             = NULL;
 116 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 117 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 118 address OptoRuntime::_rethrow_Java                                = NULL;
 119 
 120 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 121 address OptoRuntime::_register_finalizer_Java                     = NULL;
 122 
 123 # ifdef ENABLE_ZAP_DEAD_LOCALS
 124 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 125 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 126 # endif
 127 
 128 ExceptionBlob* OptoRuntime::_exception_blob;
 129 
 130 // This should be called in an assertion at the start of OptoRuntime routines
 131 // which are entered from compiled code (all of them)
 132 #ifdef ASSERT
 133 static bool check_compiled_frame(JavaThread* thread) {
 134   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 135   RegisterMap map(thread, false);
 136   frame caller = thread->last_frame().sender(&map);
 137   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 138   return true;
 139 }
 140 #endif // ASSERT
 141 
 142 
 143 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 144   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 145   if (var == NULL) { return false; }
 146 
 147 bool OptoRuntime::generate(ciEnv* env) {
 148 
 149   generate_exception_blob();
 150 
 151   // Note: tls: Means fetching the return oop out of the thread-local storage
 152   //
 153   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 154   // -------------------------------------------------------------------------------------------------------------------------------
 155   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 156   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 157   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 158   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 159   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 160   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 161   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 162   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 163   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 164   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 165   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 166   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 167 
 168   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 169   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 170 
 171 # ifdef ENABLE_ZAP_DEAD_LOCALS
 172   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 173   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 174 # endif
 175   return true;
 176 }
 177 
 178 #undef gen
 179 
 180 
 181 // Helper method to do generation of RunTimeStub's
 182 address OptoRuntime::generate_stub( ciEnv* env,
 183                                     TypeFunc_generator gen, address C_function,
 184                                     const char *name, int is_fancy_jump,
 185                                     bool pass_tls,
 186                                     bool save_argument_registers,
 187                                     bool return_pc ) {
 188   ResourceMark rm;
 189   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 190   return  C.stub_entry_point();
 191 }
 192 
 193 const char* OptoRuntime::stub_name(address entry) {
 194 #ifndef PRODUCT
 195   CodeBlob* cb = CodeCache::find_blob(entry);
 196   RuntimeStub* rs =(RuntimeStub *)cb;
 197   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 198   return rs->name();
 199 #else
 200   // Fast implementation for product mode (maybe it should be inlined too)
 201   return "runtime stub";
 202 #endif
 203 }
 204 
 205 
 206 //=============================================================================
 207 // Opto compiler runtime routines
 208 //=============================================================================
 209 
 210 
 211 //=============================allocation======================================
 212 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 213 // and try allocation again.
 214 
 215 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 216   // After any safepoint, just before going back to compiled code,
 217   // we inform the GC that we will be doing initializing writes to
 218   // this object in the future without emitting card-marks, so
 219   // GC may take any compensating steps.
 220   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 221 
 222   oop new_obj = thread->vm_result();
 223   if (new_obj == NULL)  return;
 224 
 225   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 226          "compiler must check this first");
 227   // GC may decide to give back a safer copy of new_obj.
 228   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 229   thread->set_vm_result(new_obj);
 230 }
 231 
 232 // object allocation
 233 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 234   JRT_BLOCK;
 235 #ifndef PRODUCT
 236   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 237 #endif
 238   assert(check_compiled_frame(thread), "incorrect caller");
 239 
 240   // These checks are cheap to make and support reflective allocation.
 241   int lh = klass->layout_helper();
 242   if (Klass::layout_helper_needs_slow_path(lh)
 243       || !InstanceKlass::cast(klass)->is_initialized()) {
 244     KlassHandle kh(THREAD, klass);
 245     kh->check_valid_for_instantiation(false, THREAD);
 246     if (!HAS_PENDING_EXCEPTION) {
 247       InstanceKlass::cast(kh())->initialize(THREAD);
 248     }
 249     if (!HAS_PENDING_EXCEPTION) {
 250       klass = kh();
 251     } else {
 252       klass = NULL;
 253     }
 254   }
 255 
 256   if (klass != NULL) {
 257     // Scavenge and allocate an instance.
 258     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 259     thread->set_vm_result(result);
 260 
 261     // Pass oops back through thread local storage.  Our apparent type to Java
 262     // is that we return an oop, but we can block on exit from this routine and
 263     // a GC can trash the oop in C's return register.  The generated stub will
 264     // fetch the oop from TLS after any possible GC.
 265   }
 266 
 267   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 268   JRT_BLOCK_END;
 269 
 270   if (GraphKit::use_ReduceInitialCardMarks()) {
 271     // inform GC that we won't do card marks for initializing writes.
 272     new_store_pre_barrier(thread);
 273   }
 274 JRT_END
 275 
 276 
 277 // array allocation
 278 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 279   JRT_BLOCK;
 280 #ifndef PRODUCT
 281   SharedRuntime::_new_array_ctr++;            // new array requires GC
 282 #endif
 283   assert(check_compiled_frame(thread), "incorrect caller");
 284 
 285   // Scavenge and allocate an instance.
 286   oop result;
 287 
 288   if (array_type->oop_is_typeArray()) {
 289     // The oopFactory likes to work with the element type.
 290     // (We could bypass the oopFactory, since it doesn't add much value.)
 291     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 292     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 293   } else {
 294     // Although the oopFactory likes to work with the elem_type,
 295     // the compiler prefers the array_type, since it must already have
 296     // that latter value in hand for the fast path.
 297     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 298     result = oopFactory::new_objArray(elem_type, len, THREAD);
 299   }
 300 
 301   // Pass oops back through thread local storage.  Our apparent type to Java
 302   // is that we return an oop, but we can block on exit from this routine and
 303   // a GC can trash the oop in C's return register.  The generated stub will
 304   // fetch the oop from TLS after any possible GC.
 305   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 306   thread->set_vm_result(result);
 307   JRT_BLOCK_END;
 308 
 309   if (GraphKit::use_ReduceInitialCardMarks()) {
 310     // inform GC that we won't do card marks for initializing writes.
 311     new_store_pre_barrier(thread);
 312   }
 313 JRT_END
 314 
 315 // array allocation without zeroing
 316 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 317   JRT_BLOCK;
 318 #ifndef PRODUCT
 319   SharedRuntime::_new_array_ctr++;            // new array requires GC
 320 #endif
 321   assert(check_compiled_frame(thread), "incorrect caller");
 322 
 323   // Scavenge and allocate an instance.
 324   oop result;
 325 
 326   assert(array_type->oop_is_typeArray(), "should be called only for type array");
 327   // The oopFactory likes to work with the element type.
 328   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 329   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 330 
 331   // Pass oops back through thread local storage.  Our apparent type to Java
 332   // is that we return an oop, but we can block on exit from this routine and
 333   // a GC can trash the oop in C's return register.  The generated stub will
 334   // fetch the oop from TLS after any possible GC.
 335   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 336   thread->set_vm_result(result);
 337   JRT_BLOCK_END;
 338 
 339   if (GraphKit::use_ReduceInitialCardMarks()) {
 340     // inform GC that we won't do card marks for initializing writes.
 341     new_store_pre_barrier(thread);
 342   }
 343 
 344   oop result = thread->vm_result();
 345   if ((len > 0) && (result != NULL) &&
 346       is_deoptimized_caller_frame(thread)) {
 347     // Zero array here if the caller is deoptimized.
 348     int size = ((typeArrayOop)result)->object_size();
 349     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 350     const size_t hs = arrayOopDesc::header_size(elem_type);
 351     // Align to next 8 bytes to avoid trashing arrays's length.
 352     const size_t aligned_hs = align_object_offset(hs);
 353     HeapWord* obj = (HeapWord*)result;
 354     if (aligned_hs > hs) {
 355       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 356     }
 357     // Optimized zeroing.
 358     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 359   }
 360 
 361 JRT_END
 362 
 363 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 364 
 365 // multianewarray for 2 dimensions
 366 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 367 #ifndef PRODUCT
 368   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 369 #endif
 370   assert(check_compiled_frame(thread), "incorrect caller");
 371   assert(elem_type->is_klass(), "not a class");
 372   jint dims[2];
 373   dims[0] = len1;
 374   dims[1] = len2;
 375   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 376   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 377   thread->set_vm_result(obj);
 378 JRT_END
 379 
 380 // multianewarray for 3 dimensions
 381 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 382 #ifndef PRODUCT
 383   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 384 #endif
 385   assert(check_compiled_frame(thread), "incorrect caller");
 386   assert(elem_type->is_klass(), "not a class");
 387   jint dims[3];
 388   dims[0] = len1;
 389   dims[1] = len2;
 390   dims[2] = len3;
 391   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 392   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 393   thread->set_vm_result(obj);
 394 JRT_END
 395 
 396 // multianewarray for 4 dimensions
 397 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 398 #ifndef PRODUCT
 399   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 400 #endif
 401   assert(check_compiled_frame(thread), "incorrect caller");
 402   assert(elem_type->is_klass(), "not a class");
 403   jint dims[4];
 404   dims[0] = len1;
 405   dims[1] = len2;
 406   dims[2] = len3;
 407   dims[3] = len4;
 408   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 409   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 410   thread->set_vm_result(obj);
 411 JRT_END
 412 
 413 // multianewarray for 5 dimensions
 414 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 415 #ifndef PRODUCT
 416   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 417 #endif
 418   assert(check_compiled_frame(thread), "incorrect caller");
 419   assert(elem_type->is_klass(), "not a class");
 420   jint dims[5];
 421   dims[0] = len1;
 422   dims[1] = len2;
 423   dims[2] = len3;
 424   dims[3] = len4;
 425   dims[4] = len5;
 426   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 427   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 428   thread->set_vm_result(obj);
 429 JRT_END
 430 
 431 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 432   assert(check_compiled_frame(thread), "incorrect caller");
 433   assert(elem_type->is_klass(), "not a class");
 434   assert(oop(dims)->is_typeArray(), "not an array");
 435 
 436   ResourceMark rm;
 437   jint len = dims->length();
 438   assert(len > 0, "Dimensions array should contain data");
 439   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 440   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 441   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 442 
 443   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 444   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 445   thread->set_vm_result(obj);
 446 JRT_END
 447 
 448 
 449 const TypeFunc *OptoRuntime::new_instance_Type() {
 450   // create input type (domain)
 451   const Type **fields = TypeTuple::fields(1);
 452   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 453   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 454 
 455   // create result type (range)
 456   fields = TypeTuple::fields(1);
 457   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 458 
 459   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 460 
 461   return TypeFunc::make(domain, range);
 462 }
 463 
 464 
 465 const TypeFunc *OptoRuntime::athrow_Type() {
 466   // create input type (domain)
 467   const Type **fields = TypeTuple::fields(1);
 468   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 469   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 470 
 471   // create result type (range)
 472   fields = TypeTuple::fields(0);
 473 
 474   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 475 
 476   return TypeFunc::make(domain, range);
 477 }
 478 
 479 
 480 const TypeFunc *OptoRuntime::new_array_Type() {
 481   // create input type (domain)
 482   const Type **fields = TypeTuple::fields(2);
 483   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 484   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 485   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 486 
 487   // create result type (range)
 488   fields = TypeTuple::fields(1);
 489   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 490 
 491   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 492 
 493   return TypeFunc::make(domain, range);
 494 }
 495 
 496 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 497   // create input type (domain)
 498   const int nargs = ndim + 1;
 499   const Type **fields = TypeTuple::fields(nargs);
 500   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 501   for( int i = 1; i < nargs; i++ )
 502     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 503   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 504 
 505   // create result type (range)
 506   fields = TypeTuple::fields(1);
 507   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 508   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 509 
 510   return TypeFunc::make(domain, range);
 511 }
 512 
 513 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 514   return multianewarray_Type(2);
 515 }
 516 
 517 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 518   return multianewarray_Type(3);
 519 }
 520 
 521 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 522   return multianewarray_Type(4);
 523 }
 524 
 525 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 526   return multianewarray_Type(5);
 527 }
 528 
 529 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 530   // create input type (domain)
 531   const Type **fields = TypeTuple::fields(2);
 532   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 533   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 534   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 535 
 536   // create result type (range)
 537   fields = TypeTuple::fields(1);
 538   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 539   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 540 
 541   return TypeFunc::make(domain, range);
 542 }
 543 
 544 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 545   const Type **fields = TypeTuple::fields(2);
 546   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 547   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 548   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 549 
 550   // create result type (range)
 551   fields = TypeTuple::fields(0);
 552   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 553 
 554   return TypeFunc::make(domain, range);
 555 }
 556 
 557 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 558 
 559   const Type **fields = TypeTuple::fields(2);
 560   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 561   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 562   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 563 
 564   // create result type (range)
 565   fields = TypeTuple::fields(0);
 566   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 567 
 568   return TypeFunc::make(domain, range);
 569 }
 570 
 571 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 572   // create input type (domain)
 573   const Type **fields = TypeTuple::fields(1);
 574   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 575   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 576 
 577   // create result type (range)
 578   fields = TypeTuple::fields(0);
 579   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 580 
 581   return TypeFunc::make(domain, range);
 582 }
 583 
 584 # ifdef ENABLE_ZAP_DEAD_LOCALS
 585 // Type used for stub generation for zap_dead_locals.
 586 // No inputs or outputs
 587 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 588   // create input type (domain)
 589   const Type **fields = TypeTuple::fields(0);
 590   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 591 
 592   // create result type (range)
 593   fields = TypeTuple::fields(0);
 594   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 595 
 596   return TypeFunc::make(domain,range);
 597 }
 598 # endif
 599 
 600 
 601 //-----------------------------------------------------------------------------
 602 // Monitor Handling
 603 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 604   // create input type (domain)
 605   const Type **fields = TypeTuple::fields(2);
 606   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 607   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 608   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 609 
 610   // create result type (range)
 611   fields = TypeTuple::fields(0);
 612 
 613   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 614 
 615   return TypeFunc::make(domain,range);
 616 }
 617 
 618 
 619 //-----------------------------------------------------------------------------
 620 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 621   // create input type (domain)
 622   const Type **fields = TypeTuple::fields(2);
 623   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 624   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 625   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 626 
 627   // create result type (range)
 628   fields = TypeTuple::fields(0);
 629 
 630   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 631 
 632   return TypeFunc::make(domain,range);
 633 }
 634 
 635 const TypeFunc* OptoRuntime::flush_windows_Type() {
 636   // create input type (domain)
 637   const Type** fields = TypeTuple::fields(1);
 638   fields[TypeFunc::Parms+0] = NULL; // void
 639   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 640 
 641   // create result type
 642   fields = TypeTuple::fields(1);
 643   fields[TypeFunc::Parms+0] = NULL; // void
 644   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 645 
 646   return TypeFunc::make(domain, range);
 647 }
 648 
 649 const TypeFunc* OptoRuntime::l2f_Type() {
 650   // create input type (domain)
 651   const Type **fields = TypeTuple::fields(2);
 652   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 653   fields[TypeFunc::Parms+1] = Type::HALF;
 654   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 655 
 656   // create result type (range)
 657   fields = TypeTuple::fields(1);
 658   fields[TypeFunc::Parms+0] = Type::FLOAT;
 659   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 660 
 661   return TypeFunc::make(domain, range);
 662 }
 663 
 664 const TypeFunc* OptoRuntime::modf_Type() {
 665   const Type **fields = TypeTuple::fields(2);
 666   fields[TypeFunc::Parms+0] = Type::FLOAT;
 667   fields[TypeFunc::Parms+1] = Type::FLOAT;
 668   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 669 
 670   // create result type (range)
 671   fields = TypeTuple::fields(1);
 672   fields[TypeFunc::Parms+0] = Type::FLOAT;
 673 
 674   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 675 
 676   return TypeFunc::make(domain, range);
 677 }
 678 
 679 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 680   // create input type (domain)
 681   const Type **fields = TypeTuple::fields(2);
 682   // Symbol* name of class to be loaded
 683   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 684   fields[TypeFunc::Parms+1] = Type::HALF;
 685   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 686 
 687   // create result type (range)
 688   fields = TypeTuple::fields(2);
 689   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 690   fields[TypeFunc::Parms+1] = Type::HALF;
 691   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 692 
 693   return TypeFunc::make(domain, range);
 694 }
 695 
 696 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 697   const Type **fields = TypeTuple::fields(4);
 698   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 699   fields[TypeFunc::Parms+1] = Type::HALF;
 700   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 701   fields[TypeFunc::Parms+3] = Type::HALF;
 702   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 703 
 704   // create result type (range)
 705   fields = TypeTuple::fields(2);
 706   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 707   fields[TypeFunc::Parms+1] = Type::HALF;
 708   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 709 
 710   return TypeFunc::make(domain, range);
 711 }
 712 
 713 //-------------- currentTimeMillis, currentTimeNanos, etc
 714 
 715 const TypeFunc* OptoRuntime::void_long_Type() {
 716   // create input type (domain)
 717   const Type **fields = TypeTuple::fields(0);
 718   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 719 
 720   // create result type (range)
 721   fields = TypeTuple::fields(2);
 722   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 723   fields[TypeFunc::Parms+1] = Type::HALF;
 724   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 725 
 726   return TypeFunc::make(domain, range);
 727 }
 728 
 729 // arraycopy stub variations:
 730 enum ArrayCopyType {
 731   ac_fast,                      // void(ptr, ptr, size_t)
 732   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 733   ac_slow,                      // void(ptr, int, ptr, int, int)
 734   ac_generic                    //  int(ptr, int, ptr, int, int)
 735 };
 736 
 737 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 738   // create input type (domain)
 739   int num_args      = (act == ac_fast ? 3 : 5);
 740   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 741   int argcnt = num_args;
 742   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 743   const Type** fields = TypeTuple::fields(argcnt);
 744   int argp = TypeFunc::Parms;
 745   fields[argp++] = TypePtr::NOTNULL;    // src
 746   if (num_size_args == 0) {
 747     fields[argp++] = TypeInt::INT;      // src_pos
 748   }
 749   fields[argp++] = TypePtr::NOTNULL;    // dest
 750   if (num_size_args == 0) {
 751     fields[argp++] = TypeInt::INT;      // dest_pos
 752     fields[argp++] = TypeInt::INT;      // length
 753   }
 754   while (num_size_args-- > 0) {
 755     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 756     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 757   }
 758   if (act == ac_checkcast) {
 759     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 760   }
 761   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 762   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 763 
 764   // create result type if needed
 765   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 766   fields = TypeTuple::fields(1);
 767   if (retcnt == 0)
 768     fields[TypeFunc::Parms+0] = NULL; // void
 769   else
 770     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 771   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 772   return TypeFunc::make(domain, range);
 773 }
 774 
 775 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 776   // This signature is simple:  Two base pointers and a size_t.
 777   return make_arraycopy_Type(ac_fast);
 778 }
 779 
 780 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 781   // An extension of fast_arraycopy_Type which adds type checking.
 782   return make_arraycopy_Type(ac_checkcast);
 783 }
 784 
 785 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 786   // This signature is exactly the same as System.arraycopy.
 787   // There are no intptr_t (int/long) arguments.
 788   return make_arraycopy_Type(ac_slow);
 789 }
 790 
 791 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 792   // This signature is like System.arraycopy, except that it returns status.
 793   return make_arraycopy_Type(ac_generic);
 794 }
 795 
 796 
 797 const TypeFunc* OptoRuntime::array_fill_Type() {
 798   const Type** fields;
 799   int argp = TypeFunc::Parms;
 800   if (CCallingConventionRequiresIntsAsLongs) {
 801   // create input type (domain): pointer, int, size_t
 802     fields = TypeTuple::fields(3 LP64_ONLY( + 2));
 803     fields[argp++] = TypePtr::NOTNULL;
 804     fields[argp++] = TypeLong::LONG;
 805     fields[argp++] = Type::HALF;
 806   } else {
 807     // create input type (domain): pointer, int, size_t
 808     fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 809     fields[argp++] = TypePtr::NOTNULL;
 810     fields[argp++] = TypeInt::INT;
 811   }
 812   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 813   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 814   const TypeTuple *domain = TypeTuple::make(argp, fields);
 815 
 816   // create result type
 817   fields = TypeTuple::fields(1);
 818   fields[TypeFunc::Parms+0] = NULL; // void
 819   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 820 
 821   return TypeFunc::make(domain, range);
 822 }
 823 
 824 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 825 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 826   // create input type (domain)
 827   int num_args      = 3;
 828   if (Matcher::pass_original_key_for_aes()) {
 829     num_args = 4;
 830   }
 831   int argcnt = num_args;
 832   const Type** fields = TypeTuple::fields(argcnt);
 833   int argp = TypeFunc::Parms;
 834   fields[argp++] = TypePtr::NOTNULL;    // src
 835   fields[argp++] = TypePtr::NOTNULL;    // dest
 836   fields[argp++] = TypePtr::NOTNULL;    // k array
 837   if (Matcher::pass_original_key_for_aes()) {
 838     fields[argp++] = TypePtr::NOTNULL;    // original k array
 839   }
 840   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 841   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 842 
 843   // no result type needed
 844   fields = TypeTuple::fields(1);
 845   fields[TypeFunc::Parms+0] = NULL; // void
 846   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 847   return TypeFunc::make(domain, range);
 848 }
 849 
 850 /**
 851  * int updateBytesCRC32(int crc, byte* b, int len)
 852  */
 853 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 854   // create input type (domain)
 855   int num_args      = 3;
 856   int argcnt = num_args;
 857   const Type** fields = TypeTuple::fields(argcnt);
 858   int argp = TypeFunc::Parms;
 859   fields[argp++] = TypeInt::INT;        // crc
 860   fields[argp++] = TypePtr::NOTNULL;    // src
 861   fields[argp++] = TypeInt::INT;        // len
 862   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 863   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 864 
 865   // result type needed
 866   fields = TypeTuple::fields(1);
 867   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 868   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 869   return TypeFunc::make(domain, range);
 870 }
 871 
 872 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 873 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 874   // create input type (domain)
 875   int num_args      = 5;
 876   if (Matcher::pass_original_key_for_aes()) {
 877     num_args = 6;
 878   }
 879   int argcnt = num_args;
 880   const Type** fields = TypeTuple::fields(argcnt);
 881   int argp = TypeFunc::Parms;
 882   fields[argp++] = TypePtr::NOTNULL;    // src
 883   fields[argp++] = TypePtr::NOTNULL;    // dest
 884   fields[argp++] = TypePtr::NOTNULL;    // k array
 885   fields[argp++] = TypePtr::NOTNULL;    // r array
 886   fields[argp++] = TypeInt::INT;        // src len
 887   if (Matcher::pass_original_key_for_aes()) {
 888     fields[argp++] = TypePtr::NOTNULL;    // original k array
 889   }
 890   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 891   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 892 
 893   // returning cipher len (int)
 894   fields = TypeTuple::fields(1);
 895   fields[TypeFunc::Parms+0] = TypeInt::INT;
 896   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 897   return TypeFunc::make(domain, range);
 898 }
 899 
 900 /*
 901  * void implCompress(byte[] buf, int ofs)
 902  */
 903 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 904   // create input type (domain)
 905   int num_args = 2;
 906   int argcnt = num_args;
 907   const Type** fields = TypeTuple::fields(argcnt);
 908   int argp = TypeFunc::Parms;
 909   fields[argp++] = TypePtr::NOTNULL; // buf
 910   fields[argp++] = TypePtr::NOTNULL; // state
 911   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 912   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 913 
 914   // no result type needed
 915   fields = TypeTuple::fields(1);
 916   fields[TypeFunc::Parms+0] = NULL; // void
 917   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 918   return TypeFunc::make(domain, range);
 919 }
 920 
 921 /*
 922  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 923  */
 924 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 925   // create input type (domain)
 926   int num_args = 4;
 927   int argcnt = num_args;
 928   const Type** fields = TypeTuple::fields(argcnt);
 929   int argp = TypeFunc::Parms;
 930   fields[argp++] = TypePtr::NOTNULL; // buf
 931   fields[argp++] = TypePtr::NOTNULL; // state
 932   fields[argp++] = TypeInt::INT;     // ofs
 933   fields[argp++] = TypeInt::INT;     // limit
 934   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 935   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 936 
 937   // returning ofs (int)
 938   fields = TypeTuple::fields(1);
 939   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
 940   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 941   return TypeFunc::make(domain, range);
 942 }
 943 
 944 //------------- Interpreter state access for on stack replacement
 945 const TypeFunc* OptoRuntime::osr_end_Type() {
 946   // create input type (domain)
 947   const Type **fields = TypeTuple::fields(1);
 948   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
 949   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 950 
 951   // create result type
 952   fields = TypeTuple::fields(1);
 953   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
 954   fields[TypeFunc::Parms+0] = NULL; // void
 955   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 956   return TypeFunc::make(domain, range);
 957 }
 958 
 959 //-------------- methodData update helpers
 960 
 961 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
 962   // create input type (domain)
 963   const Type **fields = TypeTuple::fields(2);
 964   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
 965   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
 966   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 967 
 968   // create result type
 969   fields = TypeTuple::fields(1);
 970   fields[TypeFunc::Parms+0] = NULL; // void
 971   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 972   return TypeFunc::make(domain,range);
 973 }
 974 
 975 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
 976   if (receiver == NULL) return;
 977   Klass* receiver_klass = receiver->klass();
 978 
 979   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
 980   int empty_row = -1;           // free row, if any is encountered
 981 
 982   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
 983   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
 984     // if (vc->receiver(row) == receiver_klass)
 985     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
 986     intptr_t row_recv = *(mdp + receiver_off);
 987     if (row_recv == (intptr_t) receiver_klass) {
 988       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
 989       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
 990       *(mdp + count_off) += DataLayout::counter_increment;
 991       return;
 992     } else if (row_recv == 0) {
 993       // else if (vc->receiver(row) == NULL)
 994       empty_row = (int) row;
 995     }
 996   }
 997 
 998   if (empty_row != -1) {
 999     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1000     // vc->set_receiver(empty_row, receiver_klass);
1001     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1002     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1003     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1004     *(mdp + count_off) = DataLayout::counter_increment;
1005   } else {
1006     // Receiver did not match any saved receiver and there is no empty row for it.
1007     // Increment total counter to indicate polymorphic case.
1008     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1009     *count_p += DataLayout::counter_increment;
1010   }
1011 JRT_END
1012 
1013 //-------------------------------------------------------------------------------------
1014 // register policy
1015 
1016 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1017   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1018   switch (register_save_policy[reg]) {
1019     case 'C': return false; //SOC
1020     case 'E': return true ; //SOE
1021     case 'N': return false; //NS
1022     case 'A': return false; //AS
1023   }
1024   ShouldNotReachHere();
1025   return false;
1026 }
1027 
1028 //-----------------------------------------------------------------------
1029 // Exceptions
1030 //
1031 
1032 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
1033 
1034 // The method is an entry that is always called by a C++ method not
1035 // directly from compiled code. Compiled code will call the C++ method following.
1036 // We can't allow async exception to be installed during  exception processing.
1037 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1038 
1039   // Do not confuse exception_oop with pending_exception. The exception_oop
1040   // is only used to pass arguments into the method. Not for general
1041   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1042   // the runtime stubs checks this on exit.
1043   assert(thread->exception_oop() != NULL, "exception oop is found");
1044   address handler_address = NULL;
1045 
1046   Handle exception(thread, thread->exception_oop());
1047   address pc = thread->exception_pc();
1048 
1049   // Clear out the exception oop and pc since looking up an
1050   // exception handler can cause class loading, which might throw an
1051   // exception and those fields are expected to be clear during
1052   // normal bytecode execution.
1053   thread->clear_exception_oop_and_pc();
1054 
1055   if (TraceExceptions) {
1056     trace_exception(exception(), pc, "");
1057   }
1058 
1059   // for AbortVMOnException flag
1060   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
1061 
1062 #ifdef ASSERT
1063   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1064     // should throw an exception here
1065     ShouldNotReachHere();
1066   }
1067 #endif
1068 
1069   // new exception handling: this method is entered only from adapters
1070   // exceptions from compiled java methods are handled in compiled code
1071   // using rethrow node
1072 
1073   nm = CodeCache::find_nmethod(pc);
1074   assert(nm != NULL, "No NMethod found");
1075   if (nm->is_native_method()) {
1076     fatal("Native method should not have path to exception handling");
1077   } else {
1078     // we are switching to old paradigm: search for exception handler in caller_frame
1079     // instead in exception handler of caller_frame.sender()
1080 
1081     if (JvmtiExport::can_post_on_exceptions()) {
1082       // "Full-speed catching" is not necessary here,
1083       // since we're notifying the VM on every catch.
1084       // Force deoptimization and the rest of the lookup
1085       // will be fine.
1086       deoptimize_caller_frame(thread);
1087     }
1088 
1089     // Check the stack guard pages.  If enabled, look for handler in this frame;
1090     // otherwise, forcibly unwind the frame.
1091     //
1092     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1093     bool force_unwind = !thread->reguard_stack();
1094     bool deopting = false;
1095     if (nm->is_deopt_pc(pc)) {
1096       deopting = true;
1097       RegisterMap map(thread, false);
1098       frame deoptee = thread->last_frame().sender(&map);
1099       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1100       // Adjust the pc back to the original throwing pc
1101       pc = deoptee.pc();
1102     }
1103 
1104     // If we are forcing an unwind because of stack overflow then deopt is
1105     // irrelevant since we are throwing the frame away anyway.
1106 
1107     if (deopting && !force_unwind) {
1108       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1109     } else {
1110 
1111       handler_address =
1112         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1113 
1114       if (handler_address == NULL) {
1115         Handle original_exception(thread, exception());
1116         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1117         assert (handler_address != NULL, "must have compiled handler");
1118         // Update the exception cache only when the unwind was not forced
1119         // and there didn't happen another exception during the computation of the
1120         // compiled exception handler.
1121         if (!force_unwind && original_exception() == exception()) {
1122           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1123         }
1124       } else {
1125         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1126       }
1127     }
1128 
1129     thread->set_exception_pc(pc);
1130     thread->set_exception_handler_pc(handler_address);
1131 
1132     // Check if the exception PC is a MethodHandle call site.
1133     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1134   }
1135 
1136   // Restore correct return pc.  Was saved above.
1137   thread->set_exception_oop(exception());
1138   return handler_address;
1139 
1140 JRT_END
1141 
1142 // We are entering here from exception_blob
1143 // If there is a compiled exception handler in this method, we will continue there;
1144 // otherwise we will unwind the stack and continue at the caller of top frame method
1145 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1146 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1147 // we looked up the handler for has been deoptimized in the meantime. If it has been
1148 // we must not use the handler and instead return the deopt blob.
1149 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1150 //
1151 // We are in Java not VM and in debug mode we have a NoHandleMark
1152 //
1153 #ifndef PRODUCT
1154   SharedRuntime::_find_handler_ctr++;          // find exception handler
1155 #endif
1156   debug_only(NoHandleMark __hm;)
1157   nmethod* nm = NULL;
1158   address handler_address = NULL;
1159   {
1160     // Enter the VM
1161 
1162     ResetNoHandleMark rnhm;
1163     handler_address = handle_exception_C_helper(thread, nm);
1164   }
1165 
1166   // Back in java: Use no oops, DON'T safepoint
1167 
1168   // Now check to see if the handler we are returning is in a now
1169   // deoptimized frame
1170 
1171   if (nm != NULL) {
1172     RegisterMap map(thread, false);
1173     frame caller = thread->last_frame().sender(&map);
1174 #ifdef ASSERT
1175     assert(caller.is_compiled_frame(), "must be");
1176 #endif // ASSERT
1177     if (caller.is_deoptimized_frame()) {
1178       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1179     }
1180   }
1181   return handler_address;
1182 }
1183 
1184 //------------------------------rethrow----------------------------------------
1185 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1186 // is either throwing or rethrowing an exception.  The callee-save registers
1187 // have been restored, synchronized objects have been unlocked and the callee
1188 // stack frame has been removed.  The return address was passed in.
1189 // Exception oop is passed as the 1st argument.  This routine is then called
1190 // from the stub.  On exit, we know where to jump in the caller's code.
1191 // After this C code exits, the stub will pop his frame and end in a jump
1192 // (instead of a return).  We enter the caller's default handler.
1193 //
1194 // This must be JRT_LEAF:
1195 //     - caller will not change its state as we cannot block on exit,
1196 //       therefore raw_exception_handler_for_return_address is all it takes
1197 //       to handle deoptimized blobs
1198 //
1199 // However, there needs to be a safepoint check in the middle!  So compiled
1200 // safepoints are completely watertight.
1201 //
1202 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1203 //
1204 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1205 //
1206 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1207 #ifndef PRODUCT
1208   SharedRuntime::_rethrow_ctr++;               // count rethrows
1209 #endif
1210   assert (exception != NULL, "should have thrown a NULLPointerException");
1211 #ifdef ASSERT
1212   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1213     // should throw an exception here
1214     ShouldNotReachHere();
1215   }
1216 #endif
1217 
1218   thread->set_vm_result(exception);
1219   // Frame not compiled (handles deoptimization blob)
1220   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1221 }
1222 
1223 
1224 const TypeFunc *OptoRuntime::rethrow_Type() {
1225   // create input type (domain)
1226   const Type **fields = TypeTuple::fields(1);
1227   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1228   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1229 
1230   // create result type (range)
1231   fields = TypeTuple::fields(1);
1232   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1233   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1234 
1235   return TypeFunc::make(domain, range);
1236 }
1237 
1238 
1239 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1240   // Deoptimize the caller before continuing, as the compiled
1241   // exception handler table may not be valid.
1242   if (!StressCompiledExceptionHandlers && doit) {
1243     deoptimize_caller_frame(thread);
1244   }
1245 }
1246 
1247 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1248   // Called from within the owner thread, so no need for safepoint
1249   RegisterMap reg_map(thread);
1250   frame stub_frame = thread->last_frame();
1251   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1252   frame caller_frame = stub_frame.sender(&reg_map);
1253 
1254   // Deoptimize the caller frame.
1255   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1256 }
1257 
1258 
1259 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1260   // Called from within the owner thread, so no need for safepoint
1261   RegisterMap reg_map(thread);
1262   frame stub_frame = thread->last_frame();
1263   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1264   frame caller_frame = stub_frame.sender(&reg_map);
1265   return caller_frame.is_deoptimized_frame();
1266 }
1267 
1268 
1269 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1270   // create input type (domain)
1271   const Type **fields = TypeTuple::fields(1);
1272   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1273   // // The JavaThread* is passed to each routine as the last argument
1274   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1275   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1276 
1277   // create result type (range)
1278   fields = TypeTuple::fields(0);
1279 
1280   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1281 
1282   return TypeFunc::make(domain,range);
1283 }
1284 
1285 
1286 //-----------------------------------------------------------------------------
1287 // Dtrace support.  entry and exit probes have the same signature
1288 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1289   // create input type (domain)
1290   const Type **fields = TypeTuple::fields(2);
1291   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1292   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1293   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1294 
1295   // create result type (range)
1296   fields = TypeTuple::fields(0);
1297 
1298   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1299 
1300   return TypeFunc::make(domain,range);
1301 }
1302 
1303 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1304   // create input type (domain)
1305   const Type **fields = TypeTuple::fields(2);
1306   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1307   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1308 
1309   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1310 
1311   // create result type (range)
1312   fields = TypeTuple::fields(0);
1313 
1314   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1315 
1316   return TypeFunc::make(domain,range);
1317 }
1318 
1319 
1320 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1321   assert(obj->is_oop(), "must be a valid oop");
1322   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1323   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1324 JRT_END
1325 
1326 //-----------------------------------------------------------------------------
1327 
1328 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1329 
1330 //
1331 // dump the collected NamedCounters.
1332 //
1333 void OptoRuntime::print_named_counters() {
1334   int total_lock_count = 0;
1335   int eliminated_lock_count = 0;
1336 
1337   NamedCounter* c = _named_counters;
1338   while (c) {
1339     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1340       int count = c->count();
1341       if (count > 0) {
1342         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1343         if (Verbose) {
1344           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1345         }
1346         total_lock_count += count;
1347         if (eliminated) {
1348           eliminated_lock_count += count;
1349         }
1350       }
1351     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1352       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1353       if (blc->nonzero()) {
1354         tty->print_cr("%s", c->name());
1355         blc->print_on(tty);
1356       }
1357 #if INCLUDE_RTM_OPT
1358     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1359       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1360       if (rlc->nonzero()) {
1361         tty->print_cr("%s", c->name());
1362         rlc->print_on(tty);
1363       }
1364 #endif
1365     }
1366     c = c->next();
1367   }
1368   if (total_lock_count > 0) {
1369     tty->print_cr("dynamic locks: %d", total_lock_count);
1370     if (eliminated_lock_count) {
1371       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1372                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1373     }
1374   }
1375 }
1376 
1377 //
1378 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1379 //  name which consists of method@line for the inlining tree.
1380 //
1381 
1382 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1383   int max_depth = youngest_jvms->depth();
1384 
1385   // Visit scopes from youngest to oldest.
1386   bool first = true;
1387   stringStream st;
1388   for (int depth = max_depth; depth >= 1; depth--) {
1389     JVMState* jvms = youngest_jvms->of_depth(depth);
1390     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1391     if (!first) {
1392       st.print(" ");
1393     } else {
1394       first = false;
1395     }
1396     int bci = jvms->bci();
1397     if (bci < 0) bci = 0;
1398     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1399     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1400   }
1401   NamedCounter* c;
1402   if (tag == NamedCounter::BiasedLockingCounter) {
1403     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1404   } else if (tag == NamedCounter::RTMLockingCounter) {
1405     c = new RTMLockingNamedCounter(strdup(st.as_string()));
1406   } else {
1407     c = new NamedCounter(strdup(st.as_string()), tag);
1408   }
1409 
1410   // atomically add the new counter to the head of the list.  We only
1411   // add counters so this is safe.
1412   NamedCounter* head;
1413   do {
1414     c->set_next(NULL);
1415     head = _named_counters;
1416     c->set_next(head);
1417   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1418   return c;
1419 }
1420 
1421 //-----------------------------------------------------------------------------
1422 // Non-product code
1423 #ifndef PRODUCT
1424 
1425 int trace_exception_counter = 0;
1426 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1427   ttyLocker ttyl;
1428   trace_exception_counter++;
1429   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1430   exception_oop->print_value();
1431   tty->print(" in ");
1432   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1433   if (blob->is_nmethod()) {
1434     nmethod* nm = blob->as_nmethod_or_null();
1435     nm->method()->print_value();
1436   } else if (blob->is_runtime_stub()) {
1437     tty->print("<runtime-stub>");
1438   } else {
1439     tty->print("<unknown>");
1440   }
1441   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1442   tty->print_cr("]");
1443 }
1444 
1445 #endif  // PRODUCT
1446 
1447 
1448 # ifdef ENABLE_ZAP_DEAD_LOCALS
1449 // Called from call sites in compiled code with oop maps (actually safepoints)
1450 // Zaps dead locals in first java frame.
1451 // Is entry because may need to lock to generate oop maps
1452 // Currently, only used for compiler frames, but someday may be used
1453 // for interpreter frames, too.
1454 
1455 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1456 
1457 // avoid pointers to member funcs with these helpers
1458 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1459 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1460 
1461 
1462 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1463                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1464   assert(JavaThread::current() == thread, "is this needed?");
1465 
1466   if ( !ZapDeadCompiledLocals )  return;
1467 
1468   bool skip = false;
1469 
1470        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1471   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1472   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1473     warning("starting zapping after skipping");
1474 
1475        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1476   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1477   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1478     warning("about to zap last zap");
1479 
1480   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1481 
1482   if ( skip )  return;
1483 
1484   // find java frame and zap it
1485 
1486   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1487     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1488       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1489       return;
1490     }
1491   }
1492   warning("no frame found to zap in zap_dead_Java_locals_C");
1493 }
1494 
1495 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1496   zap_dead_java_or_native_locals(thread, is_java_frame);
1497 JRT_END
1498 
1499 // The following does not work because for one thing, the
1500 // thread state is wrong; it expects java, but it is native.
1501 // Also, the invariants in a native stub are different and
1502 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1503 // in there.
1504 // So for now, we do not zap in native stubs.
1505 
1506 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1507   zap_dead_java_or_native_locals(thread, is_native_frame);
1508 JRT_END
1509 
1510 # endif