1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "gc_interface/collectedHeap.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/gcLocker.inline.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "oops/symbol.hpp"
  40 #include "runtime/atomic.inline.hpp"
  41 #include "runtime/compilationPolicy.hpp"
  42 #include "runtime/deoptimization.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/interfaceSupport.hpp"
  45 #include "runtime/mutexLocker.hpp"
  46 #include "runtime/orderAccess.inline.hpp"
  47 #include "runtime/osThread.hpp"
  48 #include "runtime/safepoint.hpp"
  49 #include "runtime/signature.hpp"
  50 #include "runtime/stubCodeGenerator.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/sweeper.hpp"
  53 #include "runtime/synchronizer.hpp"
  54 #include "runtime/thread.inline.hpp"
  55 #include "services/memTracker.hpp"
  56 #include "services/runtimeService.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/macros.hpp"
  59 #ifdef TARGET_ARCH_x86
  60 # include "nativeInst_x86.hpp"
  61 # include "vmreg_x86.inline.hpp"
  62 #endif
  63 #ifdef TARGET_ARCH_sparc
  64 # include "nativeInst_sparc.hpp"
  65 # include "vmreg_sparc.inline.hpp"
  66 #endif
  67 #ifdef TARGET_ARCH_zero
  68 # include "nativeInst_zero.hpp"
  69 # include "vmreg_zero.inline.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_arm
  72 # include "nativeInst_arm.hpp"
  73 # include "vmreg_arm.inline.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_ppc
  76 # include "nativeInst_ppc.hpp"
  77 # include "vmreg_ppc.inline.hpp"
  78 #endif
  79 #if INCLUDE_ALL_GCS
  80 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  81 #include "gc_implementation/shared/suspendibleThreadSet.hpp"
  82 #endif // INCLUDE_ALL_GCS
  83 #ifdef COMPILER1
  84 #include "c1/c1_globals.hpp"
  85 #endif
  86 
  87 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  88 
  89 // --------------------------------------------------------------------------------------------------
  90 // Implementation of Safepoint begin/end
  91 
  92 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
  93 volatile int  SafepointSynchronize::_waiting_to_block = 0;
  94 volatile int SafepointSynchronize::_safepoint_counter = 0;
  95 int SafepointSynchronize::_current_jni_active_count = 0;
  96 long  SafepointSynchronize::_end_of_last_safepoint = 0;
  97 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
  98 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
  99 static bool timeout_error_printed = false;
 100 
 101 // Roll all threads forward to a safepoint and suspend them all
 102 void SafepointSynchronize::begin() {
 103 
 104   Thread* myThread = Thread::current();
 105   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
 106 
 107   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 108     _safepoint_begin_time = os::javaTimeNanos();
 109     _ts_of_current_safepoint = tty->time_stamp().seconds();
 110   }
 111 
 112 #if INCLUDE_ALL_GCS
 113   if (UseConcMarkSweepGC) {
 114     // In the future we should investigate whether CMS can use the
 115     // more-general mechanism below.  DLD (01/05).
 116     ConcurrentMarkSweepThread::synchronize(false);
 117   } else if (UseG1GC) {
 118     SuspendibleThreadSet::synchronize();
 119   }
 120 #endif // INCLUDE_ALL_GCS
 121 
 122   // By getting the Threads_lock, we assure that no threads are about to start or
 123   // exit. It is released again in SafepointSynchronize::end().
 124   Threads_lock->lock();
 125 
 126   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
 127 
 128   int nof_threads = Threads::number_of_threads();
 129 
 130   if (TraceSafepoint) {
 131     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
 132   }
 133 
 134   RuntimeService::record_safepoint_begin();
 135 
 136   MutexLocker mu(Safepoint_lock);
 137 
 138   // Reset the count of active JNI critical threads
 139   _current_jni_active_count = 0;
 140 
 141   // Set number of threads to wait for, before we initiate the callbacks
 142   _waiting_to_block = nof_threads;
 143   TryingToBlock     = 0 ;
 144   int still_running = nof_threads;
 145 
 146   // Save the starting time, so that it can be compared to see if this has taken
 147   // too long to complete.
 148   jlong safepoint_limit_time;
 149   timeout_error_printed = false;
 150 
 151   // PrintSafepointStatisticsTimeout can be specified separately. When
 152   // specified, PrintSafepointStatistics will be set to true in
 153   // deferred_initialize_stat method. The initialization has to be done
 154   // early enough to avoid any races. See bug 6880029 for details.
 155   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 156     deferred_initialize_stat();
 157   }
 158 
 159   // Begin the process of bringing the system to a safepoint.
 160   // Java threads can be in several different states and are
 161   // stopped by different mechanisms:
 162   //
 163   //  1. Running interpreted
 164   //     The interpreter dispatch table is changed to force it to
 165   //     check for a safepoint condition between bytecodes.
 166   //  2. Running in native code
 167   //     When returning from the native code, a Java thread must check
 168   //     the safepoint _state to see if we must block.  If the
 169   //     VM thread sees a Java thread in native, it does
 170   //     not wait for this thread to block.  The order of the memory
 171   //     writes and reads of both the safepoint state and the Java
 172   //     threads state is critical.  In order to guarantee that the
 173   //     memory writes are serialized with respect to each other,
 174   //     the VM thread issues a memory barrier instruction
 175   //     (on MP systems).  In order to avoid the overhead of issuing
 176   //     a memory barrier for each Java thread making native calls, each Java
 177   //     thread performs a write to a single memory page after changing
 178   //     the thread state.  The VM thread performs a sequence of
 179   //     mprotect OS calls which forces all previous writes from all
 180   //     Java threads to be serialized.  This is done in the
 181   //     os::serialize_thread_states() call.  This has proven to be
 182   //     much more efficient than executing a membar instruction
 183   //     on every call to native code.
 184   //  3. Running compiled Code
 185   //     Compiled code reads a global (Safepoint Polling) page that
 186   //     is set to fault if we are trying to get to a safepoint.
 187   //  4. Blocked
 188   //     A thread which is blocked will not be allowed to return from the
 189   //     block condition until the safepoint operation is complete.
 190   //  5. In VM or Transitioning between states
 191   //     If a Java thread is currently running in the VM or transitioning
 192   //     between states, the safepointing code will wait for the thread to
 193   //     block itself when it attempts transitions to a new state.
 194   //
 195   _state            = _synchronizing;
 196   OrderAccess::fence();
 197 
 198   // Flush all thread states to memory
 199   if (!UseMembar) {
 200     os::serialize_thread_states();
 201   }
 202 
 203   // Make interpreter safepoint aware
 204   Interpreter::notice_safepoints();
 205 
 206   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
 207     // Make polling safepoint aware
 208     guarantee (PageArmed == 0, "invariant") ;
 209     PageArmed = 1 ;
 210     os::make_polling_page_unreadable();
 211   }
 212 
 213   // Consider using active_processor_count() ... but that call is expensive.
 214   int ncpus = os::processor_count() ;
 215 
 216 #ifdef ASSERT
 217   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 218     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 219     // Clear the visited flag to ensure that the critical counts are collected properly.
 220     cur->set_visited_for_critical_count(false);
 221   }
 222 #endif // ASSERT
 223 
 224   if (SafepointTimeout)
 225     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 226 
 227   // Iterate through all threads until it have been determined how to stop them all at a safepoint
 228   unsigned int iterations = 0;
 229   int steps = 0 ;
 230   while(still_running > 0) {
 231     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 232       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 233       ThreadSafepointState *cur_state = cur->safepoint_state();
 234       if (cur_state->is_running()) {
 235         cur_state->examine_state_of_thread();
 236         if (!cur_state->is_running()) {
 237            still_running--;
 238            // consider adjusting steps downward:
 239            //   steps = 0
 240            //   steps -= NNN
 241            //   steps >>= 1
 242            //   steps = MIN(steps, 2000-100)
 243            //   if (iterations != 0) steps -= NNN
 244         }
 245         if (TraceSafepoint && Verbose) cur_state->print();
 246       }
 247     }
 248 
 249     if (PrintSafepointStatistics && iterations == 0) {
 250       begin_statistics(nof_threads, still_running);
 251     }
 252 
 253     if (still_running > 0) {
 254       // Check for if it takes to long
 255       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 256         print_safepoint_timeout(_spinning_timeout);
 257       }
 258 
 259       // Spin to avoid context switching.
 260       // There's a tension between allowing the mutators to run (and rendezvous)
 261       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 262       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 263       // spinning by the VM thread on a saturated system can increase rendezvous latency.
 264       // Blocking or yielding incur their own penalties in the form of context switching
 265       // and the resultant loss of $ residency.
 266       //
 267       // Further complicating matters is that yield() does not work as naively expected
 268       // on many platforms -- yield() does not guarantee that any other ready threads
 269       // will run.   As such we revert to naked_short_sleep() after some number of iterations.
 270       // nakes_short_sleep() is implemented as a short unconditional sleep.
 271       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 272       // can actually increase the time it takes the VM thread to detect that a system-wide
 273       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 274       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 275       // In that case the mutators will be stalled waiting for the safepoint to complete and the
 276       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 277       // will eventually wake up and detect that all mutators are safe, at which point
 278       // we'll again make progress.
 279       //
 280       // Beware too that that the VMThread typically runs at elevated priority.
 281       // Its default priority is higher than the default mutator priority.
 282       // Obviously, this complicates spinning.
 283       //
 284       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 285       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 286       //
 287       // See the comments in synchronizer.cpp for additional remarks on spinning.
 288       //
 289       // In the future we might:
 290       // 1. Modify the safepoint scheme to avoid potentially unbounded spinning.
 291       //    This is tricky as the path used by a thread exiting the JVM (say on
 292       //    on JNI call-out) simply stores into its state field.  The burden
 293       //    is placed on the VM thread, which must poll (spin).
 294       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 295       //    we might aggressively scan the stacks of threads that are already safe.
 296       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 297       //    If all the mutators are ONPROC there's no reason to sleep or yield.
 298       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 299       // 5. Check system saturation.  If the system is not fully saturated then
 300       //    simply spin and avoid sleep/yield.
 301       // 6. As still-running mutators rendezvous they could unpark the sleeping
 302       //    VMthread.  This works well for still-running mutators that become
 303       //    safe.  The VMthread must still poll for mutators that call-out.
 304       // 7. Drive the policy on time-since-begin instead of iterations.
 305       // 8. Consider making the spin duration a function of the # of CPUs:
 306       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 307       //    Alternately, instead of counting iterations of the outer loop
 308       //    we could count the # of threads visited in the inner loop, above.
 309       // 9. On windows consider using the return value from SwitchThreadTo()
 310       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 311 
 312       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
 313          guarantee (PageArmed == 0, "invariant") ;
 314          PageArmed = 1 ;
 315          os::make_polling_page_unreadable();
 316       }
 317 
 318       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 319       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 320       ++steps ;
 321       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 322         SpinPause() ;     // MP-Polite spin
 323       } else
 324       if (steps < DeferThrSuspendLoopCount) {
 325         os::NakedYield() ;
 326       } else {
 327         os::naked_short_sleep(1);
 328       }
 329 
 330       iterations ++ ;
 331     }
 332     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 333   }
 334   assert(still_running == 0, "sanity check");
 335 
 336   if (PrintSafepointStatistics) {
 337     update_statistics_on_spin_end();
 338   }
 339 
 340   // wait until all threads are stopped
 341   while (_waiting_to_block > 0) {
 342     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
 343     if (!SafepointTimeout || timeout_error_printed) {
 344       Safepoint_lock->wait(true);  // true, means with no safepoint checks
 345     } else {
 346       // Compute remaining time
 347       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 348 
 349       // If there is no remaining time, then there is an error
 350       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 351         print_safepoint_timeout(_blocking_timeout);
 352       }
 353     }
 354   }
 355   assert(_waiting_to_block == 0, "sanity check");
 356 
 357 #ifndef PRODUCT
 358   if (SafepointTimeout) {
 359     jlong current_time = os::javaTimeNanos();
 360     if (safepoint_limit_time < current_time) {
 361       tty->print_cr("# SafepointSynchronize: Finished after "
 362                     INT64_FORMAT_W(6) " ms",
 363                     ((current_time - safepoint_limit_time) / MICROUNITS +
 364                      SafepointTimeoutDelay));
 365     }
 366   }
 367 #endif
 368 
 369   assert((_safepoint_counter & 0x1) == 0, "must be even");
 370   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 371   _safepoint_counter ++;
 372 
 373   // Record state
 374   _state = _synchronized;
 375 
 376   OrderAccess::fence();
 377 
 378 #ifdef ASSERT
 379   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 380     // make sure all the threads were visited
 381     assert(cur->was_visited_for_critical_count(), "missed a thread");
 382   }
 383 #endif // ASSERT
 384 
 385   // Update the count of active JNI critical regions
 386   GC_locker::set_jni_lock_count(_current_jni_active_count);
 387 
 388   if (TraceSafepoint) {
 389     VM_Operation *op = VMThread::vm_operation();
 390     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
 391   }
 392 
 393   RuntimeService::record_safepoint_synchronized();
 394   if (PrintSafepointStatistics) {
 395     update_statistics_on_sync_end(os::javaTimeNanos());
 396   }
 397 
 398   // Call stuff that needs to be run when a safepoint is just about to be completed
 399   do_cleanup_tasks();
 400 
 401   if (PrintSafepointStatistics) {
 402     // Record how much time spend on the above cleanup tasks
 403     update_statistics_on_cleanup_end(os::javaTimeNanos());
 404   }
 405 }
 406 
 407 // Wake up all threads, so they are ready to resume execution after the safepoint
 408 // operation has been carried out
 409 void SafepointSynchronize::end() {
 410 
 411   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 412   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 413   _safepoint_counter ++;
 414   // memory fence isn't required here since an odd _safepoint_counter
 415   // value can do no harm and a fence is issued below anyway.
 416 
 417   DEBUG_ONLY(Thread* myThread = Thread::current();)
 418   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 419 
 420   if (PrintSafepointStatistics) {
 421     end_statistics(os::javaTimeNanos());
 422   }
 423 
 424 #ifdef ASSERT
 425   // A pending_exception cannot be installed during a safepoint.  The threads
 426   // may install an async exception after they come back from a safepoint into
 427   // pending_exception after they unblock.  But that should happen later.
 428   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 429     assert (!(cur->has_pending_exception() &&
 430               cur->safepoint_state()->is_at_poll_safepoint()),
 431             "safepoint installed a pending exception");
 432   }
 433 #endif // ASSERT
 434 
 435   if (PageArmed) {
 436     // Make polling safepoint aware
 437     os::make_polling_page_readable();
 438     PageArmed = 0 ;
 439   }
 440 
 441   // Remove safepoint check from interpreter
 442   Interpreter::ignore_safepoints();
 443 
 444   {
 445     MutexLocker mu(Safepoint_lock);
 446 
 447     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 448 
 449     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 450     // when they get restarted.
 451     _state = _not_synchronized;
 452     OrderAccess::fence();
 453 
 454     if (TraceSafepoint) {
 455        tty->print_cr("Leaving safepoint region");
 456     }
 457 
 458     // Start suspended threads
 459     for(JavaThread *current = Threads::first(); current; current = current->next()) {
 460       // A problem occurring on Solaris is when attempting to restart threads
 461       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 462       // to the next one (since it has been running the longest).  We then have
 463       // to wait for a cpu to become available before we can continue restarting
 464       // threads.
 465       // FIXME: This causes the performance of the VM to degrade when active and with
 466       // large numbers of threads.  Apparently this is due to the synchronous nature
 467       // of suspending threads.
 468       //
 469       // TODO-FIXME: the comments above are vestigial and no longer apply.
 470       // Furthermore, using solaris' schedctl in this particular context confers no benefit
 471       if (VMThreadHintNoPreempt) {
 472         os::hint_no_preempt();
 473       }
 474       ThreadSafepointState* cur_state = current->safepoint_state();
 475       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 476       cur_state->restart();
 477       assert(cur_state->is_running(), "safepoint state has not been reset");
 478     }
 479 
 480     RuntimeService::record_safepoint_end();
 481 
 482     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 483     // blocked in signal_thread_blocked
 484     Threads_lock->unlock();
 485 
 486   }
 487 #if INCLUDE_ALL_GCS
 488   // If there are any concurrent GC threads resume them.
 489   if (UseConcMarkSweepGC) {
 490     ConcurrentMarkSweepThread::desynchronize(false);
 491   } else if (UseG1GC) {
 492     SuspendibleThreadSet::desynchronize();
 493   }
 494 #endif // INCLUDE_ALL_GCS
 495   // record this time so VMThread can keep track how much time has elapsed
 496   // since last safepoint.
 497   _end_of_last_safepoint = os::javaTimeMillis();
 498 }
 499 
 500 bool SafepointSynchronize::is_cleanup_needed() {
 501   // Need a safepoint if some inline cache buffers is non-empty
 502   if (!InlineCacheBuffer::is_empty()) return true;
 503   return false;
 504 }
 505 
 506 
 507 
 508 // Various cleaning tasks that should be done periodically at safepoints
 509 void SafepointSynchronize::do_cleanup_tasks() {
 510   {
 511     TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
 512     ObjectSynchronizer::deflate_idle_monitors();
 513   }
 514 
 515   {
 516     TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
 517     InlineCacheBuffer::update_inline_caches();
 518   }
 519   {
 520     TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
 521     CompilationPolicy::policy()->do_safepoint_work();
 522   }
 523 
 524   {
 525     TraceTime t4("mark nmethods", TraceSafepointCleanupTime);
 526     NMethodSweeper::mark_active_nmethods();
 527   }
 528 
 529   if (SymbolTable::needs_rehashing()) {
 530     TraceTime t5("rehashing symbol table", TraceSafepointCleanupTime);
 531     SymbolTable::rehash_table();
 532   }
 533 
 534   if (StringTable::needs_rehashing()) {
 535     TraceTime t6("rehashing string table", TraceSafepointCleanupTime);
 536     StringTable::rehash_table();
 537   }
 538 
 539   // rotate log files?
 540   if (UseGCLogFileRotation) {
 541     gclog_or_tty->rotate_log(false);
 542   }
 543 
 544   {
 545     // CMS delays purging the CLDG until the beginning of the next safepoint and to
 546     // make sure concurrent sweep is done
 547     TraceTime t7("purging class loader data graph", TraceSafepointCleanupTime);
 548     ClassLoaderDataGraph::purge_if_needed();
 549   }
 550 
 551   if (MemTracker::is_on()) {
 552     MemTracker::sync();
 553   }
 554 }
 555 
 556 
 557 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 558   switch(state) {
 559   case _thread_in_native:
 560     // native threads are safe if they have no java stack or have walkable stack
 561     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 562 
 563    // blocked threads should have already have walkable stack
 564   case _thread_blocked:
 565     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 566     return true;
 567 
 568   default:
 569     return false;
 570   }
 571 }
 572 
 573 
 574 // See if the thread is running inside a lazy critical native and
 575 // update the thread critical count if so.  Also set a suspend flag to
 576 // cause the native wrapper to return into the JVM to do the unlock
 577 // once the native finishes.
 578 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
 579   if (state == _thread_in_native &&
 580       thread->has_last_Java_frame() &&
 581       thread->frame_anchor()->walkable()) {
 582     // This thread might be in a critical native nmethod so look at
 583     // the top of the stack and increment the critical count if it
 584     // is.
 585     frame wrapper_frame = thread->last_frame();
 586     CodeBlob* stub_cb = wrapper_frame.cb();
 587     if (stub_cb != NULL &&
 588         stub_cb->is_nmethod() &&
 589         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
 590       // A thread could potentially be in a critical native across
 591       // more than one safepoint, so only update the critical state on
 592       // the first one.  When it returns it will perform the unlock.
 593       if (!thread->do_critical_native_unlock()) {
 594 #ifdef ASSERT
 595         if (!thread->in_critical()) {
 596           GC_locker::increment_debug_jni_lock_count();
 597         }
 598 #endif
 599         thread->enter_critical();
 600         // Make sure the native wrapper calls back on return to
 601         // perform the needed critical unlock.
 602         thread->set_critical_native_unlock();
 603       }
 604     }
 605   }
 606 }
 607 
 608 
 609 
 610 // -------------------------------------------------------------------------------------------------------
 611 // Implementation of Safepoint callback point
 612 
 613 void SafepointSynchronize::block(JavaThread *thread) {
 614   assert(thread != NULL, "thread must be set");
 615   assert(thread->is_Java_thread(), "not a Java thread");
 616 
 617   // Threads shouldn't block if they are in the middle of printing, but...
 618   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 619 
 620   // Only bail from the block() call if the thread is gone from the
 621   // thread list; starting to exit should still block.
 622   if (thread->is_terminated()) {
 623      // block current thread if we come here from native code when VM is gone
 624      thread->block_if_vm_exited();
 625 
 626      // otherwise do nothing
 627      return;
 628   }
 629 
 630   JavaThreadState state = thread->thread_state();
 631   thread->frame_anchor()->make_walkable(thread);
 632 
 633   // Check that we have a valid thread_state at this point
 634   switch(state) {
 635     case _thread_in_vm_trans:
 636     case _thread_in_Java:        // From compiled code
 637 
 638       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 639       // we pretend we are still in the VM.
 640       thread->set_thread_state(_thread_in_vm);
 641 
 642       if (is_synchronizing()) {
 643          Atomic::inc (&TryingToBlock) ;
 644       }
 645 
 646       // We will always be holding the Safepoint_lock when we are examine the state
 647       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 648       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 649       Safepoint_lock->lock_without_safepoint_check();
 650       if (is_synchronizing()) {
 651         // Decrement the number of threads to wait for and signal vm thread
 652         assert(_waiting_to_block > 0, "sanity check");
 653         _waiting_to_block--;
 654         thread->safepoint_state()->set_has_called_back(true);
 655 
 656         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
 657         if (thread->in_critical()) {
 658           // Notice that this thread is in a critical section
 659           increment_jni_active_count();
 660         }
 661 
 662         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 663         if (_waiting_to_block == 0) {
 664           Safepoint_lock->notify_all();
 665         }
 666       }
 667 
 668       // We transition the thread to state _thread_blocked here, but
 669       // we can't do our usual check for external suspension and then
 670       // self-suspend after the lock_without_safepoint_check() call
 671       // below because we are often called during transitions while
 672       // we hold different locks. That would leave us suspended while
 673       // holding a resource which results in deadlocks.
 674       thread->set_thread_state(_thread_blocked);
 675       Safepoint_lock->unlock();
 676 
 677       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 678       // the entire safepoint, the threads will all line up here during the safepoint.
 679       Threads_lock->lock_without_safepoint_check();
 680       // restore original state. This is important if the thread comes from compiled code, so it
 681       // will continue to execute with the _thread_in_Java state.
 682       thread->set_thread_state(state);
 683       Threads_lock->unlock();
 684       break;
 685 
 686     case _thread_in_native_trans:
 687     case _thread_blocked_trans:
 688     case _thread_new_trans:
 689       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 690         thread->print_thread_state();
 691         fatal("Deadlock in safepoint code.  "
 692               "Should have called back to the VM before blocking.");
 693       }
 694 
 695       // We transition the thread to state _thread_blocked here, but
 696       // we can't do our usual check for external suspension and then
 697       // self-suspend after the lock_without_safepoint_check() call
 698       // below because we are often called during transitions while
 699       // we hold different locks. That would leave us suspended while
 700       // holding a resource which results in deadlocks.
 701       thread->set_thread_state(_thread_blocked);
 702 
 703       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 704       // the safepoint code might still be waiting for it to block. We need to change the state here,
 705       // so it can see that it is at a safepoint.
 706 
 707       // Block until the safepoint operation is completed.
 708       Threads_lock->lock_without_safepoint_check();
 709 
 710       // Restore state
 711       thread->set_thread_state(state);
 712 
 713       Threads_lock->unlock();
 714       break;
 715 
 716     default:
 717      fatal(err_msg("Illegal threadstate encountered: %d", state));
 718   }
 719 
 720   // Check for pending. async. exceptions or suspends - except if the
 721   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 722   // is called last since it grabs a lock and we only want to do that when
 723   // we must.
 724   //
 725   // Note: we never deliver an async exception at a polling point as the
 726   // compiler may not have an exception handler for it. The polling
 727   // code will notice the async and deoptimize and the exception will
 728   // be delivered. (Polling at a return point is ok though). Sure is
 729   // a lot of bother for a deprecated feature...
 730   //
 731   // We don't deliver an async exception if the thread state is
 732   // _thread_in_native_trans so JNI functions won't be called with
 733   // a surprising pending exception. If the thread state is going back to java,
 734   // async exception is checked in check_special_condition_for_native_trans().
 735 
 736   if (state != _thread_blocked_trans &&
 737       state != _thread_in_vm_trans &&
 738       thread->has_special_runtime_exit_condition()) {
 739     thread->handle_special_runtime_exit_condition(
 740       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 741   }
 742 }
 743 
 744 // ------------------------------------------------------------------------------------------------------
 745 // Exception handlers
 746 
 747 
 748 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 749   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 750   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 751   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 752 
 753   if (ShowSafepointMsgs) {
 754     tty->print("handle_polling_page_exception: ");
 755   }
 756 
 757   if (PrintSafepointStatistics) {
 758     inc_page_trap_count();
 759   }
 760 
 761   ThreadSafepointState* state = thread->safepoint_state();
 762 
 763   state->handle_polling_page_exception();
 764 }
 765 
 766 
 767 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 768   if (!timeout_error_printed) {
 769     timeout_error_printed = true;
 770     // Print out the thread info which didn't reach the safepoint for debugging
 771     // purposes (useful when there are lots of threads in the debugger).
 772     tty->cr();
 773     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 774     if (reason ==  _spinning_timeout) {
 775       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 776     } else if (reason == _blocking_timeout) {
 777       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 778     }
 779 
 780     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 781     ThreadSafepointState *cur_state;
 782     ResourceMark rm;
 783     for(JavaThread *cur_thread = Threads::first(); cur_thread;
 784         cur_thread = cur_thread->next()) {
 785       cur_state = cur_thread->safepoint_state();
 786 
 787       if (cur_thread->thread_state() != _thread_blocked &&
 788           ((reason == _spinning_timeout && cur_state->is_running()) ||
 789            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 790         tty->print("# ");
 791         cur_thread->print();
 792         tty->cr();
 793       }
 794     }
 795     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 796   }
 797 
 798   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 799   // ShowMessageBoxOnError.
 800   if (DieOnSafepointTimeout) {
 801     char msg[1024];
 802     VM_Operation *op = VMThread::vm_operation();
 803     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 804             SafepointTimeoutDelay,
 805             op != NULL ? op->name() : "no vm operation");
 806     fatal(msg);
 807   }
 808 }
 809 
 810 
 811 // -------------------------------------------------------------------------------------------------------
 812 // Implementation of ThreadSafepointState
 813 
 814 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 815   _thread = thread;
 816   _type   = _running;
 817   _has_called_back = false;
 818   _at_poll_safepoint = false;
 819 }
 820 
 821 void ThreadSafepointState::create(JavaThread *thread) {
 822   ThreadSafepointState *state = new ThreadSafepointState(thread);
 823   thread->set_safepoint_state(state);
 824 }
 825 
 826 void ThreadSafepointState::destroy(JavaThread *thread) {
 827   if (thread->safepoint_state()) {
 828     delete(thread->safepoint_state());
 829     thread->set_safepoint_state(NULL);
 830   }
 831 }
 832 
 833 void ThreadSafepointState::examine_state_of_thread() {
 834   assert(is_running(), "better be running or just have hit safepoint poll");
 835 
 836   JavaThreadState state = _thread->thread_state();
 837 
 838   // Save the state at the start of safepoint processing.
 839   _orig_thread_state = state;
 840 
 841   // Check for a thread that is suspended. Note that thread resume tries
 842   // to grab the Threads_lock which we own here, so a thread cannot be
 843   // resumed during safepoint synchronization.
 844 
 845   // We check to see if this thread is suspended without locking to
 846   // avoid deadlocking with a third thread that is waiting for this
 847   // thread to be suspended. The third thread can notice the safepoint
 848   // that we're trying to start at the beginning of its SR_lock->wait()
 849   // call. If that happens, then the third thread will block on the
 850   // safepoint while still holding the underlying SR_lock. We won't be
 851   // able to get the SR_lock and we'll deadlock.
 852   //
 853   // We don't need to grab the SR_lock here for two reasons:
 854   // 1) The suspend flags are both volatile and are set with an
 855   //    Atomic::cmpxchg() call so we should see the suspended
 856   //    state right away.
 857   // 2) We're being called from the safepoint polling loop; if
 858   //    we don't see the suspended state on this iteration, then
 859   //    we'll come around again.
 860   //
 861   bool is_suspended = _thread->is_ext_suspended();
 862   if (is_suspended) {
 863     roll_forward(_at_safepoint);
 864     return;
 865   }
 866 
 867   // Some JavaThread states have an initial safepoint state of
 868   // running, but are actually at a safepoint. We will happily
 869   // agree and update the safepoint state here.
 870   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
 871     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
 872     roll_forward(_at_safepoint);
 873     return;
 874   }
 875 
 876   if (state == _thread_in_vm) {
 877     roll_forward(_call_back);
 878     return;
 879   }
 880 
 881   // All other thread states will continue to run until they
 882   // transition and self-block in state _blocked
 883   // Safepoint polling in compiled code causes the Java threads to do the same.
 884   // Note: new threads may require a malloc so they must be allowed to finish
 885 
 886   assert(is_running(), "examine_state_of_thread on non-running thread");
 887   return;
 888 }
 889 
 890 // Returns true is thread could not be rolled forward at present position.
 891 void ThreadSafepointState::roll_forward(suspend_type type) {
 892   _type = type;
 893 
 894   switch(_type) {
 895     case _at_safepoint:
 896       SafepointSynchronize::signal_thread_at_safepoint();
 897       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
 898       if (_thread->in_critical()) {
 899         // Notice that this thread is in a critical section
 900         SafepointSynchronize::increment_jni_active_count();
 901       }
 902       break;
 903 
 904     case _call_back:
 905       set_has_called_back(false);
 906       break;
 907 
 908     case _running:
 909     default:
 910       ShouldNotReachHere();
 911   }
 912 }
 913 
 914 void ThreadSafepointState::restart() {
 915   switch(type()) {
 916     case _at_safepoint:
 917     case _call_back:
 918       break;
 919 
 920     case _running:
 921     default:
 922        tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
 923                       _thread, _type);
 924        _thread->print();
 925       ShouldNotReachHere();
 926   }
 927   _type = _running;
 928   set_has_called_back(false);
 929 }
 930 
 931 
 932 void ThreadSafepointState::print_on(outputStream *st) const {
 933   const char *s;
 934 
 935   switch(_type) {
 936     case _running                : s = "_running";              break;
 937     case _at_safepoint           : s = "_at_safepoint";         break;
 938     case _call_back              : s = "_call_back";            break;
 939     default:
 940       ShouldNotReachHere();
 941   }
 942 
 943   st->print_cr("Thread: " INTPTR_FORMAT
 944               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
 945                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
 946                _at_poll_safepoint);
 947 
 948   _thread->print_thread_state_on(st);
 949 }
 950 
 951 
 952 // ---------------------------------------------------------------------------------------------------------------------
 953 
 954 // Block the thread at the safepoint poll or poll return.
 955 void ThreadSafepointState::handle_polling_page_exception() {
 956 
 957   // Check state.  block() will set thread state to thread_in_vm which will
 958   // cause the safepoint state _type to become _call_back.
 959   assert(type() == ThreadSafepointState::_running,
 960          "polling page exception on thread not running state");
 961 
 962   // Step 1: Find the nmethod from the return address
 963   if (ShowSafepointMsgs && Verbose) {
 964     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
 965   }
 966   address real_return_addr = thread()->saved_exception_pc();
 967 
 968   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
 969   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
 970   nmethod* nm = (nmethod*)cb;
 971 
 972   // Find frame of caller
 973   frame stub_fr = thread()->last_frame();
 974   CodeBlob* stub_cb = stub_fr.cb();
 975   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
 976   RegisterMap map(thread(), true);
 977   frame caller_fr = stub_fr.sender(&map);
 978 
 979   // Should only be poll_return or poll
 980   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
 981 
 982   // This is a poll immediately before a return. The exception handling code
 983   // has already had the effect of causing the return to occur, so the execution
 984   // will continue immediately after the call. In addition, the oopmap at the
 985   // return point does not mark the return value as an oop (if it is), so
 986   // it needs a handle here to be updated.
 987   if( nm->is_at_poll_return(real_return_addr) ) {
 988     // See if return type is an oop.
 989     bool return_oop = nm->method()->is_returning_oop();
 990     Handle return_value;
 991     if (return_oop) {
 992       // The oop result has been saved on the stack together with all
 993       // the other registers. In order to preserve it over GCs we need
 994       // to keep it in a handle.
 995       oop result = caller_fr.saved_oop_result(&map);
 996       assert(result == NULL || result->is_oop(), "must be oop");
 997       return_value = Handle(thread(), result);
 998       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 999     }
1000 
1001     // Block the thread
1002     SafepointSynchronize::block(thread());
1003 
1004     // restore oop result, if any
1005     if (return_oop) {
1006       caller_fr.set_saved_oop_result(&map, return_value());
1007     }
1008   }
1009 
1010   // This is a safepoint poll. Verify the return address and block.
1011   else {
1012     set_at_poll_safepoint(true);
1013 
1014     // verify the blob built the "return address" correctly
1015     assert(real_return_addr == caller_fr.pc(), "must match");
1016 
1017     // Block the thread
1018     SafepointSynchronize::block(thread());
1019     set_at_poll_safepoint(false);
1020 
1021     // If we have a pending async exception deoptimize the frame
1022     // as otherwise we may never deliver it.
1023     if (thread()->has_async_condition()) {
1024       ThreadInVMfromJavaNoAsyncException __tiv(thread());
1025       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1026     }
1027 
1028     // If an exception has been installed we must check for a pending deoptimization
1029     // Deoptimize frame if exception has been thrown.
1030 
1031     if (thread()->has_pending_exception() ) {
1032       RegisterMap map(thread(), true);
1033       frame caller_fr = stub_fr.sender(&map);
1034       if (caller_fr.is_deoptimized_frame()) {
1035         // The exception patch will destroy registers that are still
1036         // live and will be needed during deoptimization. Defer the
1037         // Async exception should have deferred the exception until the
1038         // next safepoint which will be detected when we get into
1039         // the interpreter so if we have an exception now things
1040         // are messed up.
1041 
1042         fatal("Exception installed and deoptimization is pending");
1043       }
1044     }
1045   }
1046 }
1047 
1048 
1049 //
1050 //                     Statistics & Instrumentations
1051 //
1052 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1053 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1054 int    SafepointSynchronize::_cur_stat_index = 0;
1055 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1056 julong SafepointSynchronize::_coalesced_vmop_count = 0;
1057 jlong  SafepointSynchronize::_max_sync_time = 0;
1058 jlong  SafepointSynchronize::_max_vmop_time = 0;
1059 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1060 
1061 static jlong  cleanup_end_time = 0;
1062 static bool   need_to_track_page_armed_status = false;
1063 static bool   init_done = false;
1064 
1065 // Helper method to print the header.
1066 static void print_header() {
1067   tty->print("         vmop                    "
1068              "[threads: total initially_running wait_to_block]    ");
1069   tty->print("[time: spin block sync cleanup vmop] ");
1070 
1071   // no page armed status printed out if it is always armed.
1072   if (need_to_track_page_armed_status) {
1073     tty->print("page_armed ");
1074   }
1075 
1076   tty->print_cr("page_trap_count");
1077 }
1078 
1079 void SafepointSynchronize::deferred_initialize_stat() {
1080   if (init_done) return;
1081 
1082   if (PrintSafepointStatisticsCount <= 0) {
1083     fatal("Wrong PrintSafepointStatisticsCount");
1084   }
1085 
1086   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1087   // be printed right away, in which case, _safepoint_stats will regress to
1088   // a single element array. Otherwise, it is a circular ring buffer with default
1089   // size of PrintSafepointStatisticsCount.
1090   int stats_array_size;
1091   if (PrintSafepointStatisticsTimeout > 0) {
1092     stats_array_size = 1;
1093     PrintSafepointStatistics = true;
1094   } else {
1095     stats_array_size = PrintSafepointStatisticsCount;
1096   }
1097   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1098                                                  * sizeof(SafepointStats), mtInternal);
1099   guarantee(_safepoint_stats != NULL,
1100             "not enough memory for safepoint instrumentation data");
1101 
1102   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
1103     need_to_track_page_armed_status = true;
1104   }
1105   init_done = true;
1106 }
1107 
1108 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1109   assert(init_done, "safepoint statistics array hasn't been initialized");
1110   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1111 
1112   spstat->_time_stamp = _ts_of_current_safepoint;
1113 
1114   VM_Operation *op = VMThread::vm_operation();
1115   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1116   if (op != NULL) {
1117     _safepoint_reasons[spstat->_vmop_type]++;
1118   }
1119 
1120   spstat->_nof_total_threads = nof_threads;
1121   spstat->_nof_initial_running_threads = nof_running;
1122   spstat->_nof_threads_hit_page_trap = 0;
1123 
1124   // Records the start time of spinning. The real time spent on spinning
1125   // will be adjusted when spin is done. Same trick is applied for time
1126   // spent on waiting for threads to block.
1127   if (nof_running != 0) {
1128     spstat->_time_to_spin = os::javaTimeNanos();
1129   }  else {
1130     spstat->_time_to_spin = 0;
1131   }
1132 }
1133 
1134 void SafepointSynchronize::update_statistics_on_spin_end() {
1135   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1136 
1137   jlong cur_time = os::javaTimeNanos();
1138 
1139   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1140   if (spstat->_nof_initial_running_threads != 0) {
1141     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1142   }
1143 
1144   if (need_to_track_page_armed_status) {
1145     spstat->_page_armed = (PageArmed == 1);
1146   }
1147 
1148   // Records the start time of waiting for to block. Updated when block is done.
1149   if (_waiting_to_block != 0) {
1150     spstat->_time_to_wait_to_block = cur_time;
1151   } else {
1152     spstat->_time_to_wait_to_block = 0;
1153   }
1154 }
1155 
1156 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1157   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1158 
1159   if (spstat->_nof_threads_wait_to_block != 0) {
1160     spstat->_time_to_wait_to_block = end_time -
1161       spstat->_time_to_wait_to_block;
1162   }
1163 
1164   // Records the end time of sync which will be used to calculate the total
1165   // vm operation time. Again, the real time spending in syncing will be deducted
1166   // from the start of the sync time later when end_statistics is called.
1167   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1168   if (spstat->_time_to_sync > _max_sync_time) {
1169     _max_sync_time = spstat->_time_to_sync;
1170   }
1171 
1172   spstat->_time_to_do_cleanups = end_time;
1173 }
1174 
1175 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1176   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1177 
1178   // Record how long spent in cleanup tasks.
1179   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1180 
1181   cleanup_end_time = end_time;
1182 }
1183 
1184 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1185   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1186 
1187   // Update the vm operation time.
1188   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1189   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1190     _max_vmop_time = spstat->_time_to_exec_vmop;
1191   }
1192   // Only the sync time longer than the specified
1193   // PrintSafepointStatisticsTimeout will be printed out right away.
1194   // By default, it is -1 meaning all samples will be put into the list.
1195   if ( PrintSafepointStatisticsTimeout > 0) {
1196     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1197       print_statistics();
1198     }
1199   } else {
1200     // The safepoint statistics will be printed out when the _safepoin_stats
1201     // array fills up.
1202     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1203       print_statistics();
1204       _cur_stat_index = 0;
1205     } else {
1206       _cur_stat_index++;
1207     }
1208   }
1209 }
1210 
1211 void SafepointSynchronize::print_statistics() {
1212   SafepointStats* sstats = _safepoint_stats;
1213 
1214   for (int index = 0; index <= _cur_stat_index; index++) {
1215     if (index % 30 == 0) {
1216       print_header();
1217     }
1218     sstats = &_safepoint_stats[index];
1219     tty->print("%.3f: ", sstats->_time_stamp);
1220     tty->print("%-26s       ["
1221                INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
1222                "    ]    ",
1223                sstats->_vmop_type == -1 ? "no vm operation" :
1224                VM_Operation::name(sstats->_vmop_type),
1225                sstats->_nof_total_threads,
1226                sstats->_nof_initial_running_threads,
1227                sstats->_nof_threads_wait_to_block);
1228     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1229     tty->print("  ["
1230                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1231                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1232                INT64_FORMAT_W(6)"    ]  ",
1233                sstats->_time_to_spin / MICROUNITS,
1234                sstats->_time_to_wait_to_block / MICROUNITS,
1235                sstats->_time_to_sync / MICROUNITS,
1236                sstats->_time_to_do_cleanups / MICROUNITS,
1237                sstats->_time_to_exec_vmop / MICROUNITS);
1238 
1239     if (need_to_track_page_armed_status) {
1240       tty->print(INT32_FORMAT"         ", sstats->_page_armed);
1241     }
1242     tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
1243   }
1244 }
1245 
1246 // This method will be called when VM exits. It will first call
1247 // print_statistics to print out the rest of the sampling.  Then
1248 // it tries to summarize the sampling.
1249 void SafepointSynchronize::print_stat_on_exit() {
1250   if (_safepoint_stats == NULL) return;
1251 
1252   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1253 
1254   // During VM exit, end_statistics may not get called and in that
1255   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1256   // don't print it out.
1257   // Approximate the vm op time.
1258   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1259     os::javaTimeNanos() - cleanup_end_time;
1260 
1261   if ( PrintSafepointStatisticsTimeout < 0 ||
1262        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1263     print_statistics();
1264   }
1265   tty->cr();
1266 
1267   // Print out polling page sampling status.
1268   if (!need_to_track_page_armed_status) {
1269     if (UseCompilerSafepoints) {
1270       tty->print_cr("Polling page always armed");
1271     }
1272   } else {
1273     tty->print_cr("Defer polling page loop count = %d\n",
1274                  DeferPollingPageLoopCount);
1275   }
1276 
1277   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1278     if (_safepoint_reasons[index] != 0) {
1279       tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
1280                     _safepoint_reasons[index]);
1281     }
1282   }
1283 
1284   tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
1285                 _coalesced_vmop_count);
1286   tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
1287                 _max_sync_time / MICROUNITS);
1288   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1289                 INT64_FORMAT_W(5)" ms",
1290                 _max_vmop_time / MICROUNITS);
1291 }
1292 
1293 // ------------------------------------------------------------------------------------------------
1294 // Non-product code
1295 
1296 #ifndef PRODUCT
1297 
1298 void SafepointSynchronize::print_state() {
1299   if (_state == _not_synchronized) {
1300     tty->print_cr("not synchronized");
1301   } else if (_state == _synchronizing || _state == _synchronized) {
1302     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1303                   "synchronized");
1304 
1305     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1306        cur->safepoint_state()->print();
1307     }
1308   }
1309 }
1310 
1311 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1312   if (ShowSafepointMsgs) {
1313     va_list ap;
1314     va_start(ap, format);
1315     tty->vprint_cr(format, ap);
1316     va_end(ap);
1317   }
1318 }
1319 
1320 #endif // !PRODUCT