1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeBlob.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/dependencies.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "gc_implementation/shared/markSweep.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/gcLocker.hpp"
  37 #include "memory/iterator.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/method.hpp"
  40 #include "oops/objArrayOop.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/icache.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/compilationPolicy.hpp"
  48 #include "services/memoryService.hpp"
  49 #include "trace/tracing.hpp"
  50 #include "utilities/xmlstream.hpp"
  51 #ifdef COMPILER1
  52 #include "c1/c1_Compilation.hpp"
  53 #include "c1/c1_Compiler.hpp"
  54 #endif
  55 #ifdef COMPILER2
  56 #include "opto/c2compiler.hpp"
  57 #include "opto/compile.hpp"
  58 #endif
  59 
  60 // Helper class for printing in CodeCache
  61 class CodeBlob_sizes {
  62  private:
  63   int count;
  64   int total_size;
  65   int header_size;
  66   int code_size;
  67   int stub_size;
  68   int relocation_size;
  69   int scopes_oop_size;
  70   int scopes_metadata_size;
  71   int scopes_data_size;
  72   int scopes_pcs_size;
  73 
  74  public:
  75   CodeBlob_sizes() {
  76     count            = 0;
  77     total_size       = 0;
  78     header_size      = 0;
  79     code_size        = 0;
  80     stub_size        = 0;
  81     relocation_size  = 0;
  82     scopes_oop_size  = 0;
  83     scopes_metadata_size  = 0;
  84     scopes_data_size = 0;
  85     scopes_pcs_size  = 0;
  86   }
  87 
  88   int total()                                    { return total_size; }
  89   bool is_empty()                                { return count == 0; }
  90 
  91   void print(const char* title) {
  92     tty->print_cr(" #%d %s = %dK (hdr %d%%,  loc %d%%, code %d%%, stub %d%%, [oops %d%%, metadata %d%%, data %d%%, pcs %d%%])",
  93                   count,
  94                   title,
  95                   (int)(total() / K),
  96                   header_size             * 100 / total_size,
  97                   relocation_size         * 100 / total_size,
  98                   code_size               * 100 / total_size,
  99                   stub_size               * 100 / total_size,
 100                   scopes_oop_size         * 100 / total_size,
 101                   scopes_metadata_size    * 100 / total_size,
 102                   scopes_data_size        * 100 / total_size,
 103                   scopes_pcs_size         * 100 / total_size);
 104   }
 105 
 106   void add(CodeBlob* cb) {
 107     count++;
 108     total_size       += cb->size();
 109     header_size      += cb->header_size();
 110     relocation_size  += cb->relocation_size();
 111     if (cb->is_nmethod()) {
 112       nmethod* nm = cb->as_nmethod_or_null();
 113       code_size        += nm->insts_size();
 114       stub_size        += nm->stub_size();
 115 
 116       scopes_oop_size  += nm->oops_size();
 117       scopes_metadata_size  += nm->metadata_size();
 118       scopes_data_size += nm->scopes_data_size();
 119       scopes_pcs_size  += nm->scopes_pcs_size();
 120     } else {
 121       code_size        += cb->code_size();
 122     }
 123   }
 124 };
 125 
 126 // Iterate over all CodeHeaps
 127 #define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
 128 // Iterate over all CodeBlobs (cb) on the given CodeHeap
 129 #define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != NULL; cb = next_blob(heap, cb))
 130 
 131 address CodeCache::_low_bound = 0;
 132 address CodeCache::_high_bound = 0;
 133 int CodeCache::_number_of_blobs = 0;
 134 int CodeCache::_number_of_adapters = 0;
 135 int CodeCache::_number_of_nmethods = 0;
 136 int CodeCache::_number_of_nmethods_with_dependencies = 0;
 137 bool CodeCache::_needs_cache_clean = false;
 138 nmethod* CodeCache::_scavenge_root_nmethods = NULL;
 139 int CodeCache::_codemem_full_count = 0;
 140 
 141 // Initialize array of CodeHeaps
 142 GrowableArray<CodeHeap*>* CodeCache::_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 143 
 144 void CodeCache::initialize_heaps() {
 145   // Determine size of compiler buffers
 146   size_t code_buffers_size = 0;
 147 #ifdef COMPILER1
 148   // C1 temporary code buffers (see Compiler::init_buffer_blob())
 149   const int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 150   code_buffers_size += c1_count * Compiler::code_buffer_size();
 151 #endif
 152 #ifdef COMPILER2
 153   // C2 scratch buffers (see Compile::init_scratch_buffer_blob())
 154   const int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 155   // Initial size of constant table (this may be increased if a compiled method needs more space)
 156   code_buffers_size += c2_count * C2Compiler::initial_code_buffer_size();
 157 #endif
 158 
 159   // Calculate default CodeHeap sizes if not set by user
 160   if (!FLAG_IS_CMDLINE(NonMethodCodeHeapSize) && !FLAG_IS_CMDLINE(ProfiledCodeHeapSize)
 161       && !FLAG_IS_CMDLINE(NonProfiledCodeHeapSize)) {
 162     // Increase default NonMethodCodeHeapSize to account for compiler buffers
 163     FLAG_SET_ERGO(uintx, NonMethodCodeHeapSize, NonMethodCodeHeapSize + code_buffers_size);
 164 
 165     // Check if we have enough space for the non-method code heap
 166     if (ReservedCodeCacheSize > NonMethodCodeHeapSize) {
 167       // Use the default value for NonMethodCodeHeapSize and one half of the
 168       // remaining size for non-profiled methods and one half for profiled methods
 169       size_t remaining_size = ReservedCodeCacheSize - NonMethodCodeHeapSize;
 170       size_t profiled_size = remaining_size / 2;
 171       size_t non_profiled_size = remaining_size - profiled_size;
 172       FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, profiled_size);
 173       FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, non_profiled_size);
 174     } else {
 175       // Use all space for the non-method heap and set other heaps to minimal size
 176       FLAG_SET_ERGO(uintx, NonMethodCodeHeapSize, ReservedCodeCacheSize - os::vm_page_size() * 2);
 177       FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, os::vm_page_size());
 178       FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, os::vm_page_size());
 179     }
 180   }
 181 
 182   // We do not need the profiled CodeHeap, use all space for the non-profiled CodeHeap
 183   if(!heap_available(CodeBlobType::MethodProfiled)) {
 184     FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, NonProfiledCodeHeapSize + ProfiledCodeHeapSize);
 185     FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, 0);
 186   }
 187   // We do not need the non-profiled CodeHeap, use all space for the non-method CodeHeap
 188   if(!heap_available(CodeBlobType::MethodNonProfiled)) {
 189     FLAG_SET_ERGO(uintx, NonMethodCodeHeapSize, NonMethodCodeHeapSize + NonProfiledCodeHeapSize);
 190     FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, 0);
 191   }
 192 
 193   // Make sure we have enough space for VM internal code
 194   uint min_code_cache_size = (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3)) + CodeCacheMinimumFreeSpace;
 195   if (NonMethodCodeHeapSize < (min_code_cache_size + code_buffers_size)) {
 196     vm_exit_during_initialization("Not enough space in non-method code heap to run VM.");
 197   }
 198   guarantee(NonProfiledCodeHeapSize + ProfiledCodeHeapSize + NonMethodCodeHeapSize <= ReservedCodeCacheSize, "Size check");
 199 
 200   // Align reserved sizes of CodeHeaps
 201   size_t non_method_size    = ReservedCodeSpace::allocation_align_size_up(NonMethodCodeHeapSize);
 202   size_t profiled_size      = ReservedCodeSpace::allocation_align_size_up(ProfiledCodeHeapSize);
 203   size_t non_profiled_size  = ReservedCodeSpace::allocation_align_size_up(NonProfiledCodeHeapSize);
 204 
 205   // Compute initial sizes of CodeHeaps
 206   size_t init_non_method_size   = MIN2(InitialCodeCacheSize, non_method_size);
 207   size_t init_profiled_size     = MIN2(InitialCodeCacheSize, profiled_size);
 208   size_t init_non_profiled_size = MIN2(InitialCodeCacheSize, non_profiled_size);
 209 
 210   // Reserve one continuous chunk of memory for CodeHeaps and split it into
 211   // parts for the individual heaps. The memory layout looks like this:
 212   // ---------- high -----------
 213   //    Non-profiled nmethods
 214   //      Profiled nmethods
 215   //         Non-methods
 216   // ---------- low ------------
 217   ReservedCodeSpace rs = reserve_heap_memory(non_profiled_size + profiled_size + non_method_size);
 218   ReservedSpace non_method_space    = rs.first_part(non_method_size);
 219   ReservedSpace rest                = rs.last_part(non_method_size);
 220   ReservedSpace profiled_space      = rest.first_part(profiled_size);
 221   ReservedSpace non_profiled_space  = rest.last_part(profiled_size);
 222 
 223   // Non-methods (stubs, adapters, ...)
 224   add_heap(non_method_space, "non-methods", init_non_method_size, CodeBlobType::NonMethod);
 225   // Tier 2 and tier 3 (profiled) methods
 226   add_heap(profiled_space, "profiled nmethods", init_profiled_size, CodeBlobType::MethodProfiled);
 227   // Tier 1 and tier 4 (non-profiled) methods and native methods
 228   add_heap(non_profiled_space, "non-profiled nmethods", init_non_profiled_size, CodeBlobType::MethodNonProfiled);
 229 }
 230 
 231 ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size) {
 232   // Determine alignment
 233   const size_t page_size = os::can_execute_large_page_memory() ?
 234           os::page_size_for_region(InitialCodeCacheSize, size, 8) :
 235           os::vm_page_size();
 236   const size_t granularity = os::vm_allocation_granularity();
 237   const size_t r_align = MAX2(page_size, granularity);
 238   const size_t r_size = align_size_up(size, r_align);
 239   const size_t rs_align = page_size == (size_t) os::vm_page_size() ? 0 :
 240     MAX2(page_size, granularity);
 241 
 242   ReservedCodeSpace rs(r_size, rs_align, rs_align > 0);
 243 
 244   // Initialize bounds
 245   _low_bound = (address)rs.base();
 246   _high_bound = _low_bound + rs.size();
 247 
 248   return rs;
 249 }
 250 
 251 bool CodeCache::heap_available(int code_blob_type) {
 252   if (!SegmentedCodeCache) {
 253     // No segmentation: use a single code heap
 254     return (code_blob_type == CodeBlobType::All);
 255   } else if ((Arguments::mode() == Arguments::_int) ||
 256              (TieredStopAtLevel == CompLevel_none)) {
 257     // Interpreter only: we don't need any method code heaps
 258     return (code_blob_type == CodeBlobType::NonMethod);
 259   } else if (TieredCompilation && (TieredStopAtLevel > CompLevel_simple)) {
 260     // Tiered compilation: use all code heaps
 261     return (code_blob_type < CodeBlobType::All);
 262   } else {
 263     // No TieredCompilation: we only need the non-method and non-profiled code heap
 264     return (code_blob_type == CodeBlobType::NonMethod) ||
 265            (code_blob_type == CodeBlobType::MethodNonProfiled);
 266   }
 267 }
 268 
 269 void CodeCache::add_heap(ReservedSpace rs, const char* name, size_t size_initial, int code_blob_type) {
 270   // Check if heap is needed
 271   if (!heap_available(code_blob_type)) {
 272     return;
 273   }
 274 
 275   // Create CodeHeap
 276   CodeHeap* heap = new CodeHeap(name, code_blob_type);
 277   _heaps->append(heap);
 278 
 279   // Reserve Space
 280   size_initial = round_to(size_initial, os::vm_page_size());
 281 
 282   if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
 283     vm_exit_during_initialization("Could not reserve enough space for code cache");
 284   }
 285 
 286   // Register the CodeHeap
 287   MemoryService::add_code_heap_memory_pool(heap, name);
 288 }
 289 
 290 CodeHeap* CodeCache::get_code_heap(CodeBlob* cb) {
 291   assert(cb != NULL, "CodeBlob is null");
 292   FOR_ALL_HEAPS(heap) {
 293     if ((*heap)->contains(cb)) {
 294       return *heap;
 295     }
 296   }
 297   ShouldNotReachHere();
 298   return NULL;
 299 }
 300 
 301 CodeHeap* CodeCache::get_code_heap(int code_blob_type) {
 302   FOR_ALL_HEAPS(heap) {
 303     if ((*heap)->accepts(code_blob_type)) {
 304       return *heap;
 305     }
 306   }
 307   return NULL;
 308 }
 309 
 310 CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
 311   assert_locked_or_safepoint(CodeCache_lock);
 312   assert(heap != NULL, "heap is null");
 313   return (CodeBlob*)heap->first();
 314 }
 315 
 316 CodeBlob* CodeCache::first_blob(int code_blob_type) {
 317   if (heap_available(code_blob_type)) {
 318     return first_blob(get_code_heap(code_blob_type));
 319   } else {
 320     return NULL;
 321   }
 322 }
 323 
 324 CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
 325   assert_locked_or_safepoint(CodeCache_lock);
 326   assert(heap != NULL, "heap is null");
 327   return (CodeBlob*)heap->next(cb);
 328 }
 329 
 330 CodeBlob* CodeCache::next_blob(CodeBlob* cb) {
 331   return next_blob(get_code_heap(cb), cb);
 332 }
 333 
 334 CodeBlob* CodeCache::allocate(int size, int code_blob_type, bool is_critical) {
 335   // Do not seize the CodeCache lock here--if the caller has not
 336   // already done so, we are going to lose bigtime, since the code
 337   // cache will contain a garbage CodeBlob until the caller can
 338   // run the constructor for the CodeBlob subclass he is busy
 339   // instantiating.
 340   assert_locked_or_safepoint(CodeCache_lock);
 341   assert(size > 0, "allocation request must be reasonable");
 342   if (size <= 0) {
 343     return NULL;
 344   }
 345   CodeBlob* cb = NULL;
 346 
 347   // Get CodeHeap for the given CodeBlobType
 348   CodeHeap* heap = get_code_heap(SegmentedCodeCache ? code_blob_type : CodeBlobType::All);
 349   assert (heap != NULL, "heap is null");
 350 
 351   while (true) {
 352     cb = (CodeBlob*)heap->allocate(size, is_critical);
 353     if (cb != NULL) break;
 354     if (!heap->expand_by(CodeCacheExpansionSize)) {
 355       // Expansion failed
 356       if (SegmentedCodeCache && (code_blob_type == CodeBlobType::NonMethod)) {
 357         // Fallback solution: Store non-method code in the non-profiled code heap
 358         return allocate(size, CodeBlobType::MethodNonProfiled, is_critical);
 359       }
 360       return NULL;
 361     }
 362     if (PrintCodeCacheExtension) {
 363       ResourceMark rm;
 364       if (SegmentedCodeCache) {
 365         tty->print("Code heap '%s'", heap->name());
 366       } else {
 367         tty->print("Code cache");
 368       }
 369       tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)",
 370                     (intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
 371                     (address)heap->high() - (address)heap->low_boundary());
 372     }
 373   }
 374   print_trace("allocation", cb, size);
 375   _number_of_blobs++;
 376   return cb;
 377 }
 378 
 379 void CodeCache::free(CodeBlob* cb) {
 380   assert_locked_or_safepoint(CodeCache_lock);
 381 
 382   print_trace("free", cb);
 383   if (cb->is_nmethod()) {
 384     _number_of_nmethods--;
 385     if (((nmethod *)cb)->has_dependencies()) {
 386       _number_of_nmethods_with_dependencies--;
 387     }
 388   }
 389   if (cb->is_adapter_blob()) {
 390     _number_of_adapters--;
 391   }
 392   _number_of_blobs--;
 393 
 394   // Get heap for given CodeBlob and deallocate
 395   get_code_heap(cb)->deallocate(cb);
 396 
 397   assert(_number_of_blobs >= 0, "sanity check");
 398 }
 399 
 400 void CodeCache::commit(CodeBlob* cb) {
 401   // this is called by nmethod::nmethod, which must already own CodeCache_lock
 402   assert_locked_or_safepoint(CodeCache_lock);
 403   if (cb->is_nmethod()) {
 404     _number_of_nmethods++;
 405     if (((nmethod *)cb)->has_dependencies()) {
 406       _number_of_nmethods_with_dependencies++;
 407     }
 408   }
 409   if (cb->is_adapter_blob()) {
 410     _number_of_adapters++;
 411   }
 412 
 413   // flush the hardware I-cache
 414   ICache::invalidate_range(cb->content_begin(), cb->content_size());
 415 }
 416 
 417 bool CodeCache::contains(void *p) {
 418   // It should be ok to call contains without holding a lock
 419   FOR_ALL_HEAPS(heap) {
 420     if ((*heap)->contains(p)) {
 421       return true;
 422     }
 423   }
 424   return false;
 425 }
 426 
 427 // This method is safe to call without holding the CodeCache_lock, as long as a dead CodeBlob is not
 428 // looked up (i.e., one that has been marked for deletion). It only depends on the _segmap to contain
 429 // valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
 430 CodeBlob* CodeCache::find_blob(void* start) {
 431   CodeBlob* result = find_blob_unsafe(start);
 432   // We could potentially look up non_entrant methods
 433   guarantee(result == NULL || !result->is_zombie() || result->is_locked_by_vm() || is_error_reported(), "unsafe access to zombie method");
 434   return result;
 435 }
 436 
 437 // Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know
 438 // what you are doing)
 439 CodeBlob* CodeCache::find_blob_unsafe(void* start) {
 440   // NMT can walk the stack before code cache is created
 441   if (_heaps == NULL || _heaps->is_empty()) return NULL;
 442 
 443   FOR_ALL_HEAPS(heap) {
 444     CodeBlob* result = (CodeBlob*) (*heap)->find_start(start);
 445     if (result != NULL && result->blob_contains((address)start)) {
 446       return result;
 447     }
 448   }
 449   return NULL;
 450 }
 451 
 452 nmethod* CodeCache::find_nmethod(void* start) {
 453   CodeBlob* cb = find_blob(start);
 454   assert(cb->is_nmethod(), "did not find an nmethod");
 455   return (nmethod*)cb;
 456 }
 457 
 458 void CodeCache::blobs_do(void f(CodeBlob* nm)) {
 459   assert_locked_or_safepoint(CodeCache_lock);
 460   FOR_ALL_HEAPS(heap) {
 461     FOR_ALL_BLOBS(cb, *heap) {
 462       f(cb);
 463     }
 464   }
 465 }
 466 
 467 void CodeCache::nmethods_do(void f(nmethod* nm)) {
 468   assert_locked_or_safepoint(CodeCache_lock);
 469   NMethodIterator iter;
 470   while(iter.next()) {
 471     f(iter.method());
 472   }
 473 }
 474 
 475 void CodeCache::alive_nmethods_do(void f(nmethod* nm)) {
 476   assert_locked_or_safepoint(CodeCache_lock);
 477   NMethodIterator iter;
 478   while(iter.next_alive()) {
 479     f(iter.method());
 480   }
 481 }
 482 
 483 int CodeCache::alignment_unit() {
 484   return (int)_heaps->first()->alignment_unit();
 485 }
 486 
 487 int CodeCache::alignment_offset() {
 488   return (int)_heaps->first()->alignment_offset();
 489 }
 490 
 491 // Mark nmethods for unloading if they contain otherwise unreachable oops.
 492 void CodeCache::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) {
 493   assert_locked_or_safepoint(CodeCache_lock);
 494   NMethodIterator iter;
 495   while(iter.next_alive()) {
 496     iter.method()->do_unloading(is_alive, unloading_occurred);
 497   }
 498 }
 499 
 500 void CodeCache::blobs_do(CodeBlobClosure* f) {
 501   assert_locked_or_safepoint(CodeCache_lock);
 502   FOR_ALL_HEAPS(heap) {
 503     FOR_ALL_BLOBS(cb, *heap) {
 504       if (cb->is_alive()) {
 505         f->do_code_blob(cb);
 506 
 507 #ifdef ASSERT
 508         if (cb->is_nmethod())
 509         ((nmethod*)cb)->verify_scavenge_root_oops();
 510 #endif //ASSERT
 511       }
 512     }
 513   }
 514 }
 515 
 516 // Walk the list of methods which might contain non-perm oops.
 517 void CodeCache::scavenge_root_nmethods_do(CodeBlobClosure* f) {
 518   assert_locked_or_safepoint(CodeCache_lock);
 519 
 520   if (UseG1GC) {
 521     return;
 522   }
 523 
 524   debug_only(mark_scavenge_root_nmethods());
 525 
 526   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 527     debug_only(cur->clear_scavenge_root_marked());
 528     assert(cur->scavenge_root_not_marked(), "");
 529     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 530 
 531     bool is_live = (!cur->is_zombie() && !cur->is_unloaded());
 532 #ifndef PRODUCT
 533     if (TraceScavenge) {
 534       cur->print_on(tty, is_live ? "scavenge root" : "dead scavenge root"); tty->cr();
 535     }
 536 #endif //PRODUCT
 537     if (is_live) {
 538       // Perform cur->oops_do(f), maybe just once per nmethod.
 539       f->do_code_blob(cur);
 540     }
 541   }
 542 
 543   // Check for stray marks.
 544   debug_only(verify_perm_nmethods(NULL));
 545 }
 546 
 547 void CodeCache::add_scavenge_root_nmethod(nmethod* nm) {
 548   assert_locked_or_safepoint(CodeCache_lock);
 549 
 550   if (UseG1GC) {
 551     return;
 552   }
 553 
 554   nm->set_on_scavenge_root_list();
 555   nm->set_scavenge_root_link(_scavenge_root_nmethods);
 556   set_scavenge_root_nmethods(nm);
 557   print_trace("add_scavenge_root", nm);
 558 }
 559 
 560 void CodeCache::drop_scavenge_root_nmethod(nmethod* nm) {
 561   assert_locked_or_safepoint(CodeCache_lock);
 562 
 563   if (UseG1GC) {
 564     return;
 565   }
 566 
 567   print_trace("drop_scavenge_root", nm);
 568   nmethod* last = NULL;
 569   nmethod* cur = scavenge_root_nmethods();
 570   while (cur != NULL) {
 571     nmethod* next = cur->scavenge_root_link();
 572     if (cur == nm) {
 573       if (last != NULL)
 574             last->set_scavenge_root_link(next);
 575       else  set_scavenge_root_nmethods(next);
 576       nm->set_scavenge_root_link(NULL);
 577       nm->clear_on_scavenge_root_list();
 578       return;
 579     }
 580     last = cur;
 581     cur = next;
 582   }
 583   assert(false, "should have been on list");
 584 }
 585 
 586 void CodeCache::prune_scavenge_root_nmethods() {
 587   assert_locked_or_safepoint(CodeCache_lock);
 588 
 589   if (UseG1GC) {
 590     return;
 591   }
 592 
 593   debug_only(mark_scavenge_root_nmethods());
 594 
 595   nmethod* last = NULL;
 596   nmethod* cur = scavenge_root_nmethods();
 597   while (cur != NULL) {
 598     nmethod* next = cur->scavenge_root_link();
 599     debug_only(cur->clear_scavenge_root_marked());
 600     assert(cur->scavenge_root_not_marked(), "");
 601     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 602 
 603     if (!cur->is_zombie() && !cur->is_unloaded()
 604         && cur->detect_scavenge_root_oops()) {
 605       // Keep it.  Advance 'last' to prevent deletion.
 606       last = cur;
 607     } else {
 608       // Prune it from the list, so we don't have to look at it any more.
 609       print_trace("prune_scavenge_root", cur);
 610       cur->set_scavenge_root_link(NULL);
 611       cur->clear_on_scavenge_root_list();
 612       if (last != NULL)
 613             last->set_scavenge_root_link(next);
 614       else  set_scavenge_root_nmethods(next);
 615     }
 616     cur = next;
 617   }
 618 
 619   // Check for stray marks.
 620   debug_only(verify_perm_nmethods(NULL));
 621 }
 622 
 623 #ifndef PRODUCT
 624 void CodeCache::asserted_non_scavengable_nmethods_do(CodeBlobClosure* f) {
 625   if (UseG1GC) {
 626     return;
 627   }
 628 
 629   // While we are here, verify the integrity of the list.
 630   mark_scavenge_root_nmethods();
 631   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 632     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 633     cur->clear_scavenge_root_marked();
 634   }
 635   verify_perm_nmethods(f);
 636 }
 637 
 638 // Temporarily mark nmethods that are claimed to be on the non-perm list.
 639 void CodeCache::mark_scavenge_root_nmethods() {
 640   NMethodIterator iter;
 641   while(iter.next_alive()) {
 642     nmethod* nm = iter.method();
 643     assert(nm->scavenge_root_not_marked(), "clean state");
 644     if (nm->on_scavenge_root_list())
 645       nm->set_scavenge_root_marked();
 646   }
 647 }
 648 
 649 // If the closure is given, run it on the unlisted nmethods.
 650 // Also make sure that the effects of mark_scavenge_root_nmethods is gone.
 651 void CodeCache::verify_perm_nmethods(CodeBlobClosure* f_or_null) {
 652   NMethodIterator iter;
 653   while(iter.next_alive()) {
 654     nmethod* nm = iter.method();
 655     bool call_f = (f_or_null != NULL);
 656     assert(nm->scavenge_root_not_marked(), "must be already processed");
 657     if (nm->on_scavenge_root_list())
 658       call_f = false;  // don't show this one to the client
 659     nm->verify_scavenge_root_oops();
 660     if (call_f)  f_or_null->do_code_blob(nm);
 661   }
 662 }
 663 #endif //PRODUCT
 664 
 665 void CodeCache::verify_clean_inline_caches() {
 666 #ifdef ASSERT
 667   NMethodIterator iter;
 668   while(iter.next_alive()) {
 669     nmethod* nm = iter.method();
 670     assert(!nm->is_unloaded(), "Tautology");
 671     nm->verify_clean_inline_caches();
 672     nm->verify();
 673   }
 674 #endif
 675 }
 676 
 677 void CodeCache::verify_icholder_relocations() {
 678 #ifdef ASSERT
 679   // make sure that we aren't leaking icholders
 680   int count = 0;
 681   FOR_ALL_HEAPS(heap) {
 682     FOR_ALL_BLOBS(cb, *heap) {
 683       if (cb->is_nmethod()) {
 684         nmethod* nm = (nmethod*)cb;
 685         count += nm->verify_icholder_relocations();
 686       }
 687     }
 688   }
 689 
 690   assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
 691          CompiledICHolder::live_count(), "must agree");
 692 #endif
 693 }
 694 
 695 void CodeCache::gc_prologue() {
 696 }
 697 
 698 void CodeCache::gc_epilogue() {
 699   assert_locked_or_safepoint(CodeCache_lock);
 700   NMethodIterator iter;
 701   while(iter.next_alive()) {
 702     nmethod* nm = iter.method();
 703     assert(!nm->is_unloaded(), "Tautology");
 704     if (needs_cache_clean()) {
 705       nm->cleanup_inline_caches();
 706     }
 707     DEBUG_ONLY(nm->verify());
 708     DEBUG_ONLY(nm->verify_oop_relocations());
 709   }
 710   set_needs_cache_clean(false);
 711   prune_scavenge_root_nmethods();
 712 
 713   verify_icholder_relocations();
 714 }
 715 
 716 void CodeCache::verify_oops() {
 717   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 718   VerifyOopClosure voc;
 719   NMethodIterator iter;
 720   while(iter.next_alive()) {
 721     nmethod* nm = iter.method();
 722     nm->oops_do(&voc);
 723     nm->verify_oop_relocations();
 724   }
 725 }
 726 
 727 size_t CodeCache::capacity() {
 728   size_t cap = 0;
 729   FOR_ALL_HEAPS(heap) {
 730     cap += (*heap)->capacity();
 731   }
 732   return cap;
 733 }
 734 
 735 size_t CodeCache::unallocated_capacity() {
 736   size_t unallocated_cap = 0;
 737   FOR_ALL_HEAPS(heap) {
 738     unallocated_cap += (*heap)->unallocated_capacity();
 739   }
 740   return unallocated_cap;
 741 }
 742 
 743 size_t CodeCache::max_capacity() {
 744   size_t max_cap = 0;
 745   FOR_ALL_HEAPS(heap) {
 746     max_cap += (*heap)->max_capacity();
 747   }
 748   return max_cap;
 749 }
 750 
 751 /**
 752  * Returns true if a CodeHeap is full and sets code_blob_type accordingly.
 753  */
 754 bool CodeCache::is_full(int* code_blob_type) {
 755   FOR_ALL_HEAPS(heap) {
 756     if ((*heap)->unallocated_capacity() < CodeCacheMinimumFreeSpace) {
 757       *code_blob_type = (*heap)->code_blob_type();
 758       return true;
 759     }
 760   }
 761   return false;
 762 }
 763 
 764 /**
 765  * Returns the reverse free ratio. E.g., if 25% (1/4) of the code heap
 766  * is free, reverse_free_ratio() returns 4.
 767  */
 768 double CodeCache::reverse_free_ratio(int code_blob_type) {
 769   CodeHeap* heap = get_code_heap(code_blob_type);
 770   if (heap == NULL) {
 771     return 0;
 772   }
 773   double unallocated_capacity = (double)(heap->unallocated_capacity() - CodeCacheMinimumFreeSpace);
 774   double max_capacity = (double)heap->max_capacity();
 775   return max_capacity / unallocated_capacity;
 776 }
 777 
 778 size_t CodeCache::bytes_allocated_in_freelists() {
 779   size_t allocated_bytes = 0;
 780   FOR_ALL_HEAPS(heap) {
 781     allocated_bytes += (*heap)->allocated_in_freelist();
 782   }
 783   return allocated_bytes;
 784 }
 785 
 786 int CodeCache::allocated_segments() {
 787   int number_of_segments = 0;
 788   FOR_ALL_HEAPS(heap) {
 789     number_of_segments += (*heap)->allocated_segments();
 790   }
 791   return number_of_segments;
 792 }
 793 
 794 size_t CodeCache::freelists_length() {
 795   size_t length = 0;
 796   FOR_ALL_HEAPS(heap) {
 797     length += (*heap)->freelist_length();
 798   }
 799   return length;
 800 }
 801 
 802 void icache_init();
 803 
 804 void CodeCache::initialize() {
 805   assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
 806 #ifdef COMPILER2
 807   assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment,  "CodeCacheSegmentSize must be large enough to align inner loops");
 808 #endif
 809   assert(CodeCacheSegmentSize >= sizeof(jdouble),    "CodeCacheSegmentSize must be large enough to align constants");
 810   // This was originally just a check of the alignment, causing failure, instead, round
 811   // the code cache to the page size.  In particular, Solaris is moving to a larger
 812   // default page size.
 813   CodeCacheExpansionSize = round_to(CodeCacheExpansionSize, os::vm_page_size());
 814 
 815   if (SegmentedCodeCache) {
 816     // Use multiple code heaps
 817     initialize_heaps();
 818   } else {
 819     // Use a single code heap
 820     ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
 821     add_heap(rs, "Code heap", InitialCodeCacheSize, CodeBlobType::All);
 822   }
 823 
 824   // Initialize ICache flush mechanism
 825   // This service is needed for os::register_code_area
 826   icache_init();
 827 
 828   // Give OS a chance to register generated code area.
 829   // This is used on Windows 64 bit platforms to register
 830   // Structured Exception Handlers for our generated code.
 831   os::register_code_area((char*)low_bound(), (char*)high_bound());
 832 }
 833 
 834 void codeCache_init() {
 835   CodeCache::initialize();
 836 }
 837 
 838 //------------------------------------------------------------------------------------------------
 839 
 840 int CodeCache::number_of_nmethods_with_dependencies() {
 841   return _number_of_nmethods_with_dependencies;
 842 }
 843 
 844 void CodeCache::clear_inline_caches() {
 845   assert_locked_or_safepoint(CodeCache_lock);
 846   NMethodIterator iter;
 847   while(iter.next_alive()) {
 848     iter.method()->clear_inline_caches();
 849   }
 850 }
 851 
 852 // Keeps track of time spent for checking dependencies
 853 NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
 854 
 855 int CodeCache::mark_for_deoptimization(DepChange& changes) {
 856   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 857   int number_of_marked_CodeBlobs = 0;
 858 
 859   // search the hierarchy looking for nmethods which are affected by the loading of this class
 860 
 861   // then search the interfaces this class implements looking for nmethods
 862   // which might be dependent of the fact that an interface only had one
 863   // implementor.
 864   // nmethod::check_all_dependencies works only correctly, if no safepoint
 865   // can happen
 866   No_Safepoint_Verifier nsv;
 867   for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
 868     Klass* d = str.klass();
 869     number_of_marked_CodeBlobs += InstanceKlass::cast(d)->mark_dependent_nmethods(changes);
 870   }
 871 
 872 #ifndef PRODUCT
 873   if (VerifyDependencies) {
 874     // Object pointers are used as unique identifiers for dependency arguments. This
 875     // is only possible if no safepoint, i.e., GC occurs during the verification code.
 876     dependentCheckTime.start();
 877     nmethod::check_all_dependencies(changes);
 878     dependentCheckTime.stop();
 879   }
 880 #endif
 881 
 882   return number_of_marked_CodeBlobs;
 883 }
 884 
 885 
 886 #ifdef HOTSWAP
 887 int CodeCache::mark_for_evol_deoptimization(instanceKlassHandle dependee) {
 888   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 889   int number_of_marked_CodeBlobs = 0;
 890 
 891   // Deoptimize all methods of the evolving class itself
 892   Array<Method*>* old_methods = dependee->methods();
 893   for (int i = 0; i < old_methods->length(); i++) {
 894     ResourceMark rm;
 895     Method* old_method = old_methods->at(i);
 896     nmethod *nm = old_method->code();
 897     if (nm != NULL) {
 898       nm->mark_for_deoptimization();
 899       number_of_marked_CodeBlobs++;
 900     }
 901   }
 902 
 903   NMethodIterator iter;
 904   while(iter.next_alive()) {
 905     nmethod* nm = iter.method();
 906     if (nm->is_marked_for_deoptimization()) {
 907       // ...Already marked in the previous pass; don't count it again.
 908     } else if (nm->is_evol_dependent_on(dependee())) {
 909       ResourceMark rm;
 910       nm->mark_for_deoptimization();
 911       number_of_marked_CodeBlobs++;
 912     } else  {
 913       // flush caches in case they refer to a redefined Method*
 914       nm->clear_inline_caches();
 915     }
 916   }
 917 
 918   return number_of_marked_CodeBlobs;
 919 }
 920 #endif // HOTSWAP
 921 
 922 
 923 // Deoptimize all methods
 924 void CodeCache::mark_all_nmethods_for_deoptimization() {
 925   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 926   NMethodIterator iter;
 927   while(iter.next_alive()) {
 928     nmethod* nm = iter.method();
 929     if (!nm->method()->is_method_handle_intrinsic()) {
 930       nm->mark_for_deoptimization();
 931     }
 932   }
 933 }
 934 
 935 int CodeCache::mark_for_deoptimization(Method* dependee) {
 936   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 937   int number_of_marked_CodeBlobs = 0;
 938 
 939   NMethodIterator iter;
 940   while(iter.next_alive()) {
 941     nmethod* nm = iter.method();
 942     if (nm->is_dependent_on_method(dependee)) {
 943       ResourceMark rm;
 944       nm->mark_for_deoptimization();
 945       number_of_marked_CodeBlobs++;
 946     }
 947   }
 948 
 949   return number_of_marked_CodeBlobs;
 950 }
 951 
 952 void CodeCache::make_marked_nmethods_zombies() {
 953   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
 954   NMethodIterator iter;
 955   while(iter.next_alive()) {
 956     nmethod* nm = iter.method();
 957     if (nm->is_marked_for_deoptimization()) {
 958 
 959       // If the nmethod has already been made non-entrant and it can be converted
 960       // then zombie it now. Otherwise make it non-entrant and it will eventually
 961       // be zombied when it is no longer seen on the stack. Note that the nmethod
 962       // might be "entrant" and not on the stack and so could be zombied immediately
 963       // but we can't tell because we don't track it on stack until it becomes
 964       // non-entrant.
 965 
 966       if (nm->is_not_entrant() && nm->can_not_entrant_be_converted()) {
 967         nm->make_zombie();
 968       } else {
 969         nm->make_not_entrant();
 970       }
 971     }
 972   }
 973 }
 974 
 975 void CodeCache::make_marked_nmethods_not_entrant() {
 976   assert_locked_or_safepoint(CodeCache_lock);
 977   NMethodIterator iter;
 978   while(iter.next_alive()) {
 979     nmethod* nm = iter.method();
 980     if (nm->is_marked_for_deoptimization()) {
 981       nm->make_not_entrant();
 982     }
 983   }
 984 }
 985 
 986 void CodeCache::verify() {
 987   assert_locked_or_safepoint(CodeCache_lock);
 988   FOR_ALL_HEAPS(heap) {
 989     (*heap)->verify();
 990     FOR_ALL_BLOBS(cb, *heap) {
 991       if (cb->is_alive()) {
 992         cb->verify();
 993       }
 994     }
 995   }
 996 }
 997 
 998 // A CodeHeap is full. Print out warning and report event.
 999 void CodeCache::report_codemem_full(int code_blob_type, bool print) {
1000   // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
1001   CodeHeap* heap = get_code_heap(SegmentedCodeCache ? code_blob_type : CodeBlobType::All);
1002 
1003   if (!heap->was_full() || print) {
1004     // Not yet reported for this heap, report
1005     heap->report_full();
1006     if (SegmentedCodeCache) {
1007       warning("CodeHeap for %s is full. Compiler has been disabled.", CodeCache::get_code_heap_name(code_blob_type));
1008       warning("Try increasing the code heap size using -XX:%s=",
1009           (code_blob_type == CodeBlobType::MethodNonProfiled) ? "NonProfiledCodeHeapSize" : "ProfiledCodeHeapSize");
1010     } else {
1011       warning("CodeCache is full. Compiler has been disabled.");
1012       warning("Try increasing the code cache size using -XX:ReservedCodeCacheSize=");
1013     }
1014     ResourceMark rm;
1015     stringStream s;
1016     // Dump code cache  into a buffer before locking the tty,
1017     {
1018       MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1019       print_summary(&s);
1020     }
1021     ttyLocker ttyl;
1022     tty->print("%s", s.as_string());
1023   }
1024 
1025   _codemem_full_count++;
1026   EventCodeCacheFull event;
1027   if (event.should_commit()) {
1028     event.set_codeBlobType((u1)code_blob_type);
1029     event.set_startAddress((u8)heap->low_boundary());
1030     event.set_commitedTopAddress((u8)heap->high());
1031     event.set_reservedTopAddress((u8)heap->high_boundary());
1032     event.set_entryCount(nof_blobs());
1033     event.set_methodCount(nof_nmethods());
1034     event.set_adaptorCount(nof_adapters());
1035     event.set_unallocatedCapacity(heap->unallocated_capacity()/K);
1036     event.set_fullCount(_codemem_full_count);
1037     event.commit();
1038   }
1039 }
1040 
1041 void CodeCache::print_memory_overhead() {
1042   size_t wasted_bytes = 0;
1043   FOR_ALL_HEAPS(heap) {
1044       CodeHeap* curr_heap = *heap;
1045       for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != NULL; cb = (CodeBlob*)curr_heap->next(cb)) {
1046         HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
1047         wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
1048       }
1049   }
1050   // Print bytes that are allocated in the freelist
1051   ttyLocker ttl;
1052   tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT,       freelists_length());
1053   tty->print_cr("Allocated in freelist:          " SSIZE_FORMAT "kB",  bytes_allocated_in_freelists()/K);
1054   tty->print_cr("Unused bytes in CodeBlobs:      " SSIZE_FORMAT "kB",  (wasted_bytes/K));
1055   tty->print_cr("Segment map size:               " SSIZE_FORMAT "kB",  allocated_segments()/K); // 1 byte per segment
1056 }
1057 
1058 //------------------------------------------------------------------------------------------------
1059 // Non-product version
1060 
1061 #ifndef PRODUCT
1062 
1063 void CodeCache::print_trace(const char* event, CodeBlob* cb, int size) {
1064   if (PrintCodeCache2) {  // Need to add a new flag
1065     ResourceMark rm;
1066     if (size == 0)  size = cb->size();
1067     tty->print_cr("CodeCache %s:  addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
1068   }
1069 }
1070 
1071 void CodeCache::print_internals() {
1072   int nmethodCount = 0;
1073   int runtimeStubCount = 0;
1074   int adapterCount = 0;
1075   int deoptimizationStubCount = 0;
1076   int uncommonTrapStubCount = 0;
1077   int bufferBlobCount = 0;
1078   int total = 0;
1079   int nmethodAlive = 0;
1080   int nmethodNotEntrant = 0;
1081   int nmethodZombie = 0;
1082   int nmethodUnloaded = 0;
1083   int nmethodJava = 0;
1084   int nmethodNative = 0;
1085   int max_nm_size = 0;
1086   ResourceMark rm;
1087 
1088   int i = 0;
1089   FOR_ALL_HEAPS(heap) {
1090     if (SegmentedCodeCache && Verbose) {
1091       tty->print_cr("-- Code heap '%s' --", (*heap)->name());
1092     }
1093     FOR_ALL_BLOBS(cb, *heap) {
1094       total++;
1095       if (cb->is_nmethod()) {
1096         nmethod* nm = (nmethod*)cb;
1097 
1098         if (Verbose && nm->method() != NULL) {
1099           ResourceMark rm;
1100           char *method_name = nm->method()->name_and_sig_as_C_string();
1101           tty->print("%s", method_name);
1102           if(nm->is_alive()) { tty->print_cr(" alive"); }
1103           if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); }
1104           if(nm->is_zombie()) { tty->print_cr(" zombie"); }
1105         }
1106 
1107         nmethodCount++;
1108 
1109         if(nm->is_alive()) { nmethodAlive++; }
1110         if(nm->is_not_entrant()) { nmethodNotEntrant++; }
1111         if(nm->is_zombie()) { nmethodZombie++; }
1112         if(nm->is_unloaded()) { nmethodUnloaded++; }
1113         if(nm->method() != NULL && nm->is_native_method()) { nmethodNative++; }
1114 
1115         if(nm->method() != NULL && nm->is_java_method()) {
1116           nmethodJava++;
1117           max_nm_size = MAX2(max_nm_size, nm->size());
1118         }
1119       } else if (cb->is_runtime_stub()) {
1120         runtimeStubCount++;
1121       } else if (cb->is_deoptimization_stub()) {
1122         deoptimizationStubCount++;
1123       } else if (cb->is_uncommon_trap_stub()) {
1124         uncommonTrapStubCount++;
1125       } else if (cb->is_adapter_blob()) {
1126         adapterCount++;
1127       } else if (cb->is_buffer_blob()) {
1128         bufferBlobCount++;
1129       }
1130     }
1131   }
1132 
1133   int bucketSize = 512;
1134   int bucketLimit = max_nm_size / bucketSize + 1;
1135   int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
1136   memset(buckets, 0, sizeof(int) * bucketLimit);
1137 
1138   NMethodIterator iter;
1139   while(iter.next()) {
1140     nmethod* nm = iter.method();
1141     if(nm->method() != NULL && nm->is_java_method()) {
1142       buckets[nm->size() / bucketSize]++;
1143     }
1144   }
1145 
1146   tty->print_cr("Code Cache Entries (total of %d)",total);
1147   tty->print_cr("-------------------------------------------------");
1148   tty->print_cr("nmethods: %d",nmethodCount);
1149   tty->print_cr("\talive: %d",nmethodAlive);
1150   tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
1151   tty->print_cr("\tzombie: %d",nmethodZombie);
1152   tty->print_cr("\tunloaded: %d",nmethodUnloaded);
1153   tty->print_cr("\tjava: %d",nmethodJava);
1154   tty->print_cr("\tnative: %d",nmethodNative);
1155   tty->print_cr("runtime_stubs: %d",runtimeStubCount);
1156   tty->print_cr("adapters: %d",adapterCount);
1157   tty->print_cr("buffer blobs: %d",bufferBlobCount);
1158   tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
1159   tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
1160   tty->print_cr("\nnmethod size distribution (non-zombie java)");
1161   tty->print_cr("-------------------------------------------------");
1162 
1163   for(int i=0; i<bucketLimit; i++) {
1164     if(buckets[i] != 0) {
1165       tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
1166       tty->fill_to(40);
1167       tty->print_cr("%d",buckets[i]);
1168     }
1169   }
1170 
1171   FREE_C_HEAP_ARRAY(int, buckets, mtCode);
1172   print_memory_overhead();
1173 }
1174 
1175 #endif // !PRODUCT
1176 
1177 void CodeCache::print() {
1178   print_summary(tty);
1179 
1180 #ifndef PRODUCT
1181   if (!Verbose) return;
1182 
1183   CodeBlob_sizes live;
1184   CodeBlob_sizes dead;
1185 
1186   FOR_ALL_HEAPS(heap) {
1187     FOR_ALL_BLOBS(cb, *heap) {
1188       if (!cb->is_alive()) {
1189         dead.add(cb);
1190       } else {
1191         live.add(cb);
1192       }
1193     }
1194   }
1195 
1196   tty->print_cr("CodeCache:");
1197   tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
1198 
1199   if (!live.is_empty()) {
1200     live.print("live");
1201   }
1202   if (!dead.is_empty()) {
1203     dead.print("dead");
1204   }
1205 
1206   if (WizardMode) {
1207      // print the oop_map usage
1208     int code_size = 0;
1209     int number_of_blobs = 0;
1210     int number_of_oop_maps = 0;
1211     int map_size = 0;
1212     FOR_ALL_HEAPS(heap) {
1213       FOR_ALL_BLOBS(cb, *heap) {
1214         if (cb->is_alive()) {
1215           number_of_blobs++;
1216           code_size += cb->code_size();
1217           OopMapSet* set = cb->oop_maps();
1218           if (set != NULL) {
1219             number_of_oop_maps += set->size();
1220             map_size           += set->heap_size();
1221           }
1222         }
1223       }
1224     }
1225     tty->print_cr("OopMaps");
1226     tty->print_cr("  #blobs    = %d", number_of_blobs);
1227     tty->print_cr("  code size = %d", code_size);
1228     tty->print_cr("  #oop_maps = %d", number_of_oop_maps);
1229     tty->print_cr("  map size  = %d", map_size);
1230   }
1231 
1232 #endif // !PRODUCT
1233 }
1234 
1235 void CodeCache::print_summary(outputStream* st, bool detailed) {
1236   FOR_ALL_HEAPS(heap_iterator) {
1237     CodeHeap* heap = (*heap_iterator);
1238     size_t total = (heap->high_boundary() - heap->low_boundary());
1239     if (SegmentedCodeCache) {
1240       st->print("CodeHeap '%s':", heap->name());
1241     } else {
1242       st->print("CodeCache:");
1243     }
1244     st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT
1245                  "Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb",
1246                  total/K, (total - heap->unallocated_capacity())/K,
1247                  heap->max_allocated_capacity()/K, heap->unallocated_capacity()/K);
1248 
1249     if (detailed) {
1250       st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
1251                    p2i(heap->low_boundary()),
1252                    p2i(heap->high()),
1253                    p2i(heap->high_boundary()));
1254     }
1255   }
1256 
1257   if (detailed) {
1258     st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT
1259                        " adapters=" UINT32_FORMAT,
1260                        nof_blobs(), nof_nmethods(), nof_adapters());
1261     st->print_cr(" compilation: %s", CompileBroker::should_compile_new_jobs() ?
1262                  "enabled" : Arguments::mode() == Arguments::_int ?
1263                  "disabled (interpreter mode)" :
1264                  "disabled (not enough contiguous free space left)");
1265   }
1266 }
1267 
1268 void CodeCache::print_codelist(outputStream* st) {
1269   assert_locked_or_safepoint(CodeCache_lock);
1270 
1271   NMethodIterator iter;
1272   while(iter.next_alive()) {
1273     nmethod* nm = iter.method();
1274     ResourceMark rm;
1275     char *method_name = nm->method()->name_and_sig_as_C_string();
1276     st->print_cr("%d %d %s ["INTPTR_FORMAT", "INTPTR_FORMAT" - "INTPTR_FORMAT"]",
1277                  nm->compile_id(), nm->comp_level(), method_name, (intptr_t)nm->header_begin(),
1278                  (intptr_t)nm->code_begin(), (intptr_t)nm->code_end());
1279   }
1280 }
1281 
1282 void CodeCache::print_layout(outputStream* st) {
1283   assert_locked_or_safepoint(CodeCache_lock);
1284   ResourceMark rm;
1285 
1286   print_summary(st, true);
1287 }
1288 
1289 void CodeCache::log_state(outputStream* st) {
1290   st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
1291             " adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
1292             nof_blobs(), nof_nmethods(), nof_adapters(),
1293             unallocated_capacity());
1294 }