1 /*
   2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // output_c.cpp - Class CPP file output routines for architecture definition
  26 
  27 #include "adlc.hpp"
  28 
  29 // Utilities to characterize effect statements
  30 static bool is_def(int usedef) {
  31   switch(usedef) {
  32   case Component::DEF:
  33   case Component::USE_DEF: return true; break;
  34   }
  35   return false;
  36 }
  37 
  38 // Define  an array containing the machine register names, strings.
  39 static void defineRegNames(FILE *fp, RegisterForm *registers) {
  40   if (registers) {
  41     fprintf(fp,"\n");
  42     fprintf(fp,"// An array of character pointers to machine register names.\n");
  43     fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
  44 
  45     // Output the register name for each register in the allocation classes
  46     RegDef *reg_def = NULL;
  47     RegDef *next = NULL;
  48     registers->reset_RegDefs();
  49     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  50       next = registers->iter_RegDefs();
  51       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  52       fprintf(fp,"  \"%s\"%s\n", reg_def->_regname, comma);
  53     }
  54 
  55     // Finish defining enumeration
  56     fprintf(fp,"};\n");
  57 
  58     fprintf(fp,"\n");
  59     fprintf(fp,"// An array of character pointers to machine register names.\n");
  60     fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
  61     reg_def = NULL;
  62     next = NULL;
  63     registers->reset_RegDefs();
  64     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  65       next = registers->iter_RegDefs();
  66       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  67       fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
  68     }
  69     // Finish defining array
  70     fprintf(fp,"\t};\n");
  71     fprintf(fp,"\n");
  72 
  73     fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
  74 
  75   }
  76 }
  77 
  78 // Define an array containing the machine register encoding values
  79 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
  80   if (registers) {
  81     fprintf(fp,"\n");
  82     fprintf(fp,"// An array of the machine register encode values\n");
  83     fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
  84 
  85     // Output the register encoding for each register in the allocation classes
  86     RegDef *reg_def = NULL;
  87     RegDef *next    = NULL;
  88     registers->reset_RegDefs();
  89     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  90       next = registers->iter_RegDefs();
  91       const char* register_encode = reg_def->register_encode();
  92       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  93       int encval;
  94       if (!ADLParser::is_int_token(register_encode, encval)) {
  95         fprintf(fp,"  %s%s  // %s\n", register_encode, comma, reg_def->_regname);
  96       } else {
  97         // Output known constants in hex char format (backward compatibility).
  98         assert(encval < 256, "Exceeded supported width for register encoding");
  99         fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n", encval, comma, reg_def->_regname);
 100       }
 101     }
 102     // Finish defining enumeration
 103     fprintf(fp,"};\n");
 104 
 105   } // Done defining array
 106 }
 107 
 108 // Output an enumeration of register class names
 109 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
 110   if (registers) {
 111     // Output an enumeration of register class names
 112     fprintf(fp,"\n");
 113     fprintf(fp,"// Enumeration of register class names\n");
 114     fprintf(fp, "enum machRegisterClass {\n");
 115     registers->_rclasses.reset();
 116     for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
 117       const char * class_name_to_upper = toUpper(class_name);
 118       fprintf(fp,"  %s,\n", class_name_to_upper);
 119       delete[] class_name_to_upper;
 120     }
 121     // Finish defining enumeration
 122     fprintf(fp, "  _last_Mach_Reg_Class\n");
 123     fprintf(fp, "};\n");
 124   }
 125 }
 126 
 127 // Declare an enumeration of user-defined register classes
 128 // and a list of register masks, one for each class.
 129 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
 130   const char  *rc_name;
 131 
 132   if (_register) {
 133     // Build enumeration of user-defined register classes.
 134     defineRegClassEnum(fp_hpp, _register);
 135 
 136     // Generate a list of register masks, one for each class.
 137     fprintf(fp_hpp,"\n");
 138     fprintf(fp_hpp,"// Register masks, one for each register class.\n");
 139     _register->_rclasses.reset();
 140     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
 141       const char *prefix = "";
 142       RegClass *reg_class = _register->getRegClass(rc_name);
 143       assert(reg_class, "Using an undefined register class");
 144 
 145       const char* rc_name_to_upper = toUpper(rc_name);
 146 
 147       if (reg_class->_user_defined == NULL) {
 148         fprintf(fp_hpp, "extern const RegMask _%s%s_mask;\n", prefix,  rc_name_to_upper);
 149         fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { return _%s%s_mask; }\n", prefix, rc_name_to_upper, prefix, rc_name_to_upper);
 150       } else {
 151         fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { %s }\n", prefix, rc_name_to_upper, reg_class->_user_defined);
 152       }
 153 
 154       if (reg_class->_stack_or_reg) {
 155         assert(reg_class->_user_defined == NULL, "no user defined reg class here");
 156         fprintf(fp_hpp, "extern const RegMask _%sSTACK_OR_%s_mask;\n", prefix, rc_name_to_upper);
 157         fprintf(fp_hpp, "inline const RegMask &%sSTACK_OR_%s_mask() { return _%sSTACK_OR_%s_mask; }\n", prefix, rc_name_to_upper, prefix, rc_name_to_upper);
 158       }
 159       delete[] rc_name_to_upper;
 160 
 161     }
 162   }
 163 }
 164 
 165 // Generate an enumeration of user-defined register classes
 166 // and a list of register masks, one for each class.
 167 void ArchDesc::build_register_masks(FILE *fp_cpp) {
 168   const char  *rc_name;
 169 
 170   if (_register) {
 171     // Generate a list of register masks, one for each class.
 172     fprintf(fp_cpp,"\n");
 173     fprintf(fp_cpp,"// Register masks, one for each register class.\n");
 174     _register->_rclasses.reset();
 175     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
 176       const char *prefix = "";
 177       RegClass *reg_class = _register->getRegClass(rc_name);
 178       assert(reg_class, "Using an undefined register class");
 179 
 180       if (reg_class->_user_defined != NULL) {
 181         continue;
 182       }
 183 
 184       int len = RegisterForm::RegMask_Size();
 185       const char* rc_name_to_upper = toUpper(rc_name);
 186       fprintf(fp_cpp, "const RegMask _%s%s_mask(", prefix, rc_name_to_upper);
 187 
 188       {
 189         int i;
 190         for(i = 0; i < len - 1; i++) {
 191           fprintf(fp_cpp," 0x%x,", reg_class->regs_in_word(i, false));
 192         }
 193         fprintf(fp_cpp," 0x%x );\n", reg_class->regs_in_word(i, false));
 194       }
 195 
 196       if (reg_class->_stack_or_reg) {
 197         int i;
 198         fprintf(fp_cpp, "const RegMask _%sSTACK_OR_%s_mask(", prefix, rc_name_to_upper);
 199         for(i = 0; i < len - 1; i++) {
 200           fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i, true));
 201         }
 202         fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i, true));
 203       }
 204       delete[] rc_name_to_upper;
 205     }
 206   }
 207 }
 208 
 209 // Compute an index for an array in the pipeline_reads_NNN arrays
 210 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
 211 {
 212   int templen = 1;
 213   int paramcount = 0;
 214   const char *paramname;
 215 
 216   if (pipeclass->_parameters.count() == 0)
 217     return -1;
 218 
 219   pipeclass->_parameters.reset();
 220   paramname = pipeclass->_parameters.iter();
 221   const PipeClassOperandForm *pipeopnd =
 222     (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 223   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 224     pipeclass->_parameters.reset();
 225 
 226   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 227     const PipeClassOperandForm *tmppipeopnd =
 228         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 229 
 230     if (tmppipeopnd)
 231       templen += 10 + (int)strlen(tmppipeopnd->_stage);
 232     else
 233       templen += 19;
 234 
 235     paramcount++;
 236   }
 237 
 238   // See if the count is zero
 239   if (paramcount == 0) {
 240     return -1;
 241   }
 242 
 243   char *operand_stages = new char [templen];
 244   operand_stages[0] = 0;
 245   int i = 0;
 246   templen = 0;
 247 
 248   pipeclass->_parameters.reset();
 249   paramname = pipeclass->_parameters.iter();
 250   pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 251   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 252     pipeclass->_parameters.reset();
 253 
 254   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 255     const PipeClassOperandForm *tmppipeopnd =
 256         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 257     templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
 258       tmppipeopnd ? tmppipeopnd->_stage : "undefined",
 259       (++i < paramcount ? ',' : ' ') );
 260   }
 261 
 262   // See if the same string is in the table
 263   int ndx = pipeline_reads.index(operand_stages);
 264 
 265   // No, add it to the table
 266   if (ndx < 0) {
 267     pipeline_reads.addName(operand_stages);
 268     ndx = pipeline_reads.index(operand_stages);
 269 
 270     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
 271       ndx+1, paramcount, operand_stages);
 272   }
 273   else
 274     delete [] operand_stages;
 275 
 276   return (ndx);
 277 }
 278 
 279 // Compute an index for an array in the pipeline_res_stages_NNN arrays
 280 static int pipeline_res_stages_initializer(
 281   FILE *fp_cpp,
 282   PipelineForm *pipeline,
 283   NameList &pipeline_res_stages,
 284   PipeClassForm *pipeclass)
 285 {
 286   const PipeClassResourceForm *piperesource;
 287   int * res_stages = new int [pipeline->_rescount];
 288   int i;
 289 
 290   for (i = 0; i < pipeline->_rescount; i++)
 291      res_stages[i] = 0;
 292 
 293   for (pipeclass->_resUsage.reset();
 294        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 295     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 296     for (i = 0; i < pipeline->_rescount; i++)
 297       if ((1 << i) & used_mask) {
 298         int stage = pipeline->_stages.index(piperesource->_stage);
 299         if (res_stages[i] < stage+1)
 300           res_stages[i] = stage+1;
 301       }
 302   }
 303 
 304   // Compute the length needed for the resource list
 305   int commentlen = 0;
 306   int max_stage = 0;
 307   for (i = 0; i < pipeline->_rescount; i++) {
 308     if (res_stages[i] == 0) {
 309       if (max_stage < 9)
 310         max_stage = 9;
 311     }
 312     else {
 313       int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
 314       if (max_stage < stagelen)
 315         max_stage = stagelen;
 316     }
 317 
 318     commentlen += (int)strlen(pipeline->_reslist.name(i));
 319   }
 320 
 321   int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
 322 
 323   // Allocate space for the resource list
 324   char * resource_stages = new char [templen];
 325 
 326   templen = 0;
 327   for (i = 0; i < pipeline->_rescount; i++) {
 328     const char * const resname =
 329       res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
 330 
 331     templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
 332       resname, max_stage - (int)strlen(resname) + 1,
 333       (i < pipeline->_rescount-1) ? "," : "",
 334       pipeline->_reslist.name(i));
 335   }
 336 
 337   // See if the same string is in the table
 338   int ndx = pipeline_res_stages.index(resource_stages);
 339 
 340   // No, add it to the table
 341   if (ndx < 0) {
 342     pipeline_res_stages.addName(resource_stages);
 343     ndx = pipeline_res_stages.index(resource_stages);
 344 
 345     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
 346       ndx+1, pipeline->_rescount, resource_stages);
 347   }
 348   else
 349     delete [] resource_stages;
 350 
 351   delete [] res_stages;
 352 
 353   return (ndx);
 354 }
 355 
 356 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
 357 static int pipeline_res_cycles_initializer(
 358   FILE *fp_cpp,
 359   PipelineForm *pipeline,
 360   NameList &pipeline_res_cycles,
 361   PipeClassForm *pipeclass)
 362 {
 363   const PipeClassResourceForm *piperesource;
 364   int * res_cycles = new int [pipeline->_rescount];
 365   int i;
 366 
 367   for (i = 0; i < pipeline->_rescount; i++)
 368      res_cycles[i] = 0;
 369 
 370   for (pipeclass->_resUsage.reset();
 371        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 372     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 373     for (i = 0; i < pipeline->_rescount; i++)
 374       if ((1 << i) & used_mask) {
 375         int cycles = piperesource->_cycles;
 376         if (res_cycles[i] < cycles)
 377           res_cycles[i] = cycles;
 378       }
 379   }
 380 
 381   // Pre-compute the string length
 382   int templen;
 383   int cyclelen = 0, commentlen = 0;
 384   int max_cycles = 0;
 385   char temp[32];
 386 
 387   for (i = 0; i < pipeline->_rescount; i++) {
 388     if (max_cycles < res_cycles[i])
 389       max_cycles = res_cycles[i];
 390     templen = sprintf(temp, "%d", res_cycles[i]);
 391     if (cyclelen < templen)
 392       cyclelen = templen;
 393     commentlen += (int)strlen(pipeline->_reslist.name(i));
 394   }
 395 
 396   templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
 397 
 398   // Allocate space for the resource list
 399   char * resource_cycles = new char [templen];
 400 
 401   templen = 0;
 402 
 403   for (i = 0; i < pipeline->_rescount; i++) {
 404     templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
 405       cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
 406   }
 407 
 408   // See if the same string is in the table
 409   int ndx = pipeline_res_cycles.index(resource_cycles);
 410 
 411   // No, add it to the table
 412   if (ndx < 0) {
 413     pipeline_res_cycles.addName(resource_cycles);
 414     ndx = pipeline_res_cycles.index(resource_cycles);
 415 
 416     fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
 417       ndx+1, pipeline->_rescount, resource_cycles);
 418   }
 419   else
 420     delete [] resource_cycles;
 421 
 422   delete [] res_cycles;
 423 
 424   return (ndx);
 425 }
 426 
 427 //typedef unsigned long long uint64_t;
 428 
 429 // Compute an index for an array in the pipeline_res_mask_NNN arrays
 430 static int pipeline_res_mask_initializer(
 431   FILE *fp_cpp,
 432   PipelineForm *pipeline,
 433   NameList &pipeline_res_mask,
 434   NameList &pipeline_res_args,
 435   PipeClassForm *pipeclass)
 436 {
 437   const PipeClassResourceForm *piperesource;
 438   const uint rescount      = pipeline->_rescount;
 439   const uint maxcycleused  = pipeline->_maxcycleused;
 440   const uint cyclemasksize = (maxcycleused + 31) >> 5;
 441 
 442   int i, j;
 443   int element_count = 0;
 444   uint *res_mask = new uint [cyclemasksize];
 445   uint resources_used             = 0;
 446   uint resources_used_exclusively = 0;
 447 
 448   for (pipeclass->_resUsage.reset();
 449        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
 450     element_count++;
 451   }
 452 
 453   // Pre-compute the string length
 454   int templen;
 455   int commentlen = 0;
 456   int max_cycles = 0;
 457 
 458   int cyclelen = ((maxcycleused + 3) >> 2);
 459   int masklen = (rescount + 3) >> 2;
 460 
 461   int cycledigit = 0;
 462   for (i = maxcycleused; i > 0; i /= 10)
 463     cycledigit++;
 464 
 465   int maskdigit = 0;
 466   for (i = rescount; i > 0; i /= 10)
 467     maskdigit++;
 468 
 469   static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
 470   static const char* pipeline_use_element    = "Pipeline_Use_Element";
 471 
 472   templen = 1 +
 473     (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
 474      (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
 475 
 476   // Allocate space for the resource list
 477   char * resource_mask = new char [templen];
 478   char * last_comma = NULL;
 479 
 480   templen = 0;
 481 
 482   for (pipeclass->_resUsage.reset();
 483        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
 484     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 485 
 486     if (!used_mask) {
 487       fprintf(stderr, "*** used_mask is 0 ***\n");
 488     }
 489 
 490     resources_used |= used_mask;
 491 
 492     uint lb, ub;
 493 
 494     for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
 495     for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
 496 
 497     if (lb == ub) {
 498       resources_used_exclusively |= used_mask;
 499     }
 500 
 501     int formatlen =
 502       sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
 503         pipeline_use_element,
 504         masklen, used_mask,
 505         cycledigit, lb, cycledigit, ub,
 506         ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
 507         pipeline_use_cycle_mask);
 508 
 509     templen += formatlen;
 510 
 511     memset(res_mask, 0, cyclemasksize * sizeof(uint));
 512 
 513     int cycles = piperesource->_cycles;
 514     uint stage          = pipeline->_stages.index(piperesource->_stage);
 515     if ((uint)NameList::Not_in_list == stage) {
 516       fprintf(stderr,
 517               "pipeline_res_mask_initializer: "
 518               "semantic error: "
 519               "pipeline stage undeclared: %s\n",
 520               piperesource->_stage);
 521       exit(1);
 522     }
 523     uint upper_limit    = stage + cycles - 1;
 524     uint lower_limit    = stage - 1;
 525     uint upper_idx      = upper_limit >> 5;
 526     uint lower_idx      = lower_limit >> 5;
 527     uint upper_position = upper_limit & 0x1f;
 528     uint lower_position = lower_limit & 0x1f;
 529 
 530     uint mask = (((uint)1) << upper_position) - 1;
 531 
 532     while (upper_idx > lower_idx) {
 533       res_mask[upper_idx--] |= mask;
 534       mask = (uint)-1;
 535     }
 536 
 537     mask -= (((uint)1) << lower_position) - 1;
 538     res_mask[upper_idx] |= mask;
 539 
 540     for (j = cyclemasksize-1; j >= 0; j--) {
 541       formatlen =
 542         sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
 543       templen += formatlen;
 544     }
 545 
 546     resource_mask[templen++] = ')';
 547     resource_mask[templen++] = ')';
 548     last_comma = &resource_mask[templen];
 549     resource_mask[templen++] = ',';
 550     resource_mask[templen++] = '\n';
 551   }
 552 
 553   resource_mask[templen] = 0;
 554   if (last_comma) {
 555     last_comma[0] = ' ';
 556   }
 557 
 558   // See if the same string is in the table
 559   int ndx = pipeline_res_mask.index(resource_mask);
 560 
 561   // No, add it to the table
 562   if (ndx < 0) {
 563     pipeline_res_mask.addName(resource_mask);
 564     ndx = pipeline_res_mask.index(resource_mask);
 565 
 566     if (strlen(resource_mask) > 0)
 567       fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
 568         ndx+1, element_count, resource_mask);
 569 
 570     char* args = new char [9 + 2*masklen + maskdigit];
 571 
 572     sprintf(args, "0x%0*x, 0x%0*x, %*d",
 573       masklen, resources_used,
 574       masklen, resources_used_exclusively,
 575       maskdigit, element_count);
 576 
 577     pipeline_res_args.addName(args);
 578   }
 579   else {
 580     delete [] resource_mask;
 581   }
 582 
 583   delete [] res_mask;
 584 //delete [] res_masks;
 585 
 586   return (ndx);
 587 }
 588 
 589 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
 590   const char *classname;
 591   const char *resourcename;
 592   int resourcenamelen = 0;
 593   NameList pipeline_reads;
 594   NameList pipeline_res_stages;
 595   NameList pipeline_res_cycles;
 596   NameList pipeline_res_masks;
 597   NameList pipeline_res_args;
 598   const int default_latency = 1;
 599   const int non_operand_latency = 0;
 600   const int node_latency = 0;
 601 
 602   if (!_pipeline) {
 603     fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
 604     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
 605     fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
 606     fprintf(fp_cpp, "}\n");
 607     return;
 608   }
 609 
 610   fprintf(fp_cpp, "\n");
 611   fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
 612   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 613   fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
 614   fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
 615   fprintf(fp_cpp, "    \"undefined\"");
 616 
 617   for (int s = 0; s < _pipeline->_stagecnt; s++)
 618     fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
 619 
 620   fprintf(fp_cpp, "\n  };\n\n");
 621   fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
 622     _pipeline->_stagecnt);
 623   fprintf(fp_cpp, "}\n");
 624   fprintf(fp_cpp, "#endif\n\n");
 625 
 626   fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
 627   fprintf(fp_cpp, "  // See if the functional units overlap\n");
 628 #if 0
 629   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 630   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 631   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
 632   fprintf(fp_cpp, "  }\n");
 633   fprintf(fp_cpp, "#endif\n\n");
 634 #endif
 635   fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
 636   fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
 637 #if 0
 638   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 639   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 640   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
 641   fprintf(fp_cpp, "  }\n");
 642   fprintf(fp_cpp, "#endif\n\n");
 643 #endif
 644   fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
 645   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
 646   fprintf(fp_cpp, "    if (predUse->multiple())\n");
 647   fprintf(fp_cpp, "      continue;\n\n");
 648   fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
 649   fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
 650   fprintf(fp_cpp, "      if (currUse->multiple())\n");
 651   fprintf(fp_cpp, "        continue;\n\n");
 652   fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
 653   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
 654   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
 655   fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
 656   fprintf(fp_cpp, "          y <<= 1;\n");
 657   fprintf(fp_cpp, "      }\n");
 658   fprintf(fp_cpp, "    }\n");
 659   fprintf(fp_cpp, "  }\n\n");
 660   fprintf(fp_cpp, "  // There is the potential for overlap\n");
 661   fprintf(fp_cpp, "  return (start);\n");
 662   fprintf(fp_cpp, "}\n\n");
 663   fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
 664   fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
 665   fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
 666   fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
 667   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 668   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 669   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 670   fprintf(fp_cpp, "      uint min_delay = %d;\n",
 671     _pipeline->_maxcycleused+1);
 672   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 673   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 674   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 675   fprintf(fp_cpp, "        uint curr_delay = delay;\n");
 676   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 677   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 678   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 679   fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
 680   fprintf(fp_cpp, "            y <<= 1;\n");
 681   fprintf(fp_cpp, "        }\n");
 682   fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
 683   fprintf(fp_cpp, "      }\n");
 684   fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
 685   fprintf(fp_cpp, "    }\n");
 686   fprintf(fp_cpp, "    else {\n");
 687   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 688   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 689   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 690   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 691   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 692   fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
 693   fprintf(fp_cpp, "            y <<= 1;\n");
 694   fprintf(fp_cpp, "        }\n");
 695   fprintf(fp_cpp, "      }\n");
 696   fprintf(fp_cpp, "    }\n");
 697   fprintf(fp_cpp, "  }\n\n");
 698   fprintf(fp_cpp, "  return (delay);\n");
 699   fprintf(fp_cpp, "}\n\n");
 700   fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
 701   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 702   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 703   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 704   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 705   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 706   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 707   fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
 708   fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
 709   fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
 710   fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
 711   fprintf(fp_cpp, "          break;\n");
 712   fprintf(fp_cpp, "        }\n");
 713   fprintf(fp_cpp, "      }\n");
 714   fprintf(fp_cpp, "    }\n");
 715   fprintf(fp_cpp, "    else {\n");
 716   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 717   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 718   fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
 719   fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
 720   fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
 721   fprintf(fp_cpp, "      }\n");
 722   fprintf(fp_cpp, "    }\n");
 723   fprintf(fp_cpp, "  }\n");
 724   fprintf(fp_cpp, "}\n\n");
 725 
 726   fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
 727   fprintf(fp_cpp, "  int const default_latency = 1;\n");
 728   fprintf(fp_cpp, "\n");
 729 #if 0
 730   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 731   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 732   fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
 733   fprintf(fp_cpp, "  }\n");
 734   fprintf(fp_cpp, "#endif\n\n");
 735 #endif
 736   fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\");\n");
 737   fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\");\n\n");
 738   fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
 739   fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
 740   fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
 741   fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
 742   fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
 743 #if 0
 744   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 745   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 746   fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
 747   fprintf(fp_cpp, "  }\n");
 748   fprintf(fp_cpp, "#endif\n\n");
 749 #endif
 750   fprintf(fp_cpp, "\n");
 751   fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
 752   fprintf(fp_cpp, "    return (default_latency);\n");
 753   fprintf(fp_cpp, "\n");
 754   fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
 755   fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
 756 #if 0
 757   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 758   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 759   fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
 760   fprintf(fp_cpp, "  }\n");
 761   fprintf(fp_cpp, "#endif\n\n");
 762 #endif
 763   fprintf(fp_cpp, "  return (delta);\n");
 764   fprintf(fp_cpp, "}\n\n");
 765 
 766   if (!_pipeline)
 767     /* Do Nothing */;
 768 
 769   else if (_pipeline->_maxcycleused <=
 770 #ifdef SPARC
 771     64
 772 #else
 773     32
 774 #endif
 775       ) {
 776     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 777     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
 778     fprintf(fp_cpp, "}\n\n");
 779     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 780     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
 781     fprintf(fp_cpp, "}\n\n");
 782   }
 783   else {
 784     uint l;
 785     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 786     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 787     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 788     for (l = 1; l <= masklen; l++)
 789       fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
 790     fprintf(fp_cpp, ");\n");
 791     fprintf(fp_cpp, "}\n\n");
 792     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 793     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 794     for (l = 1; l <= masklen; l++)
 795       fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
 796     fprintf(fp_cpp, ");\n");
 797     fprintf(fp_cpp, "}\n\n");
 798     fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
 799     for (l = 1; l <= masklen; l++)
 800       fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
 801     fprintf(fp_cpp, "\n}\n\n");
 802   }
 803 
 804   /* Get the length of all the resource names */
 805   for (_pipeline->_reslist.reset(), resourcenamelen = 0;
 806        (resourcename = _pipeline->_reslist.iter()) != NULL;
 807        resourcenamelen += (int)strlen(resourcename));
 808 
 809   // Create the pipeline class description
 810 
 811   fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 812   fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 813 
 814   fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
 815   for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
 816     fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
 817     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 818     for (int i2 = masklen-1; i2 >= 0; i2--)
 819       fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
 820     fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
 821   }
 822   fprintf(fp_cpp, "};\n\n");
 823 
 824   fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
 825     _pipeline->_rescount);
 826 
 827   for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
 828     fprintf(fp_cpp, "\n");
 829     fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
 830     PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
 831     int maxWriteStage = -1;
 832     int maxMoreInstrs = 0;
 833     int paramcount = 0;
 834     int i = 0;
 835     const char *paramname;
 836     int resource_count = (_pipeline->_rescount + 3) >> 2;
 837 
 838     // Scan the operands, looking for last output stage and number of inputs
 839     for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
 840       const PipeClassOperandForm *pipeopnd =
 841           (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 842       if (pipeopnd) {
 843         if (pipeopnd->_iswrite) {
 844            int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
 845            int moreinsts = pipeopnd->_more_instrs;
 846           if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
 847             maxWriteStage = stagenum;
 848             maxMoreInstrs = moreinsts;
 849           }
 850         }
 851       }
 852 
 853       if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
 854         paramcount++;
 855     }
 856 
 857     // Create the list of stages for the operands that are read
 858     // Note that we will build a NameList to reduce the number of copies
 859 
 860     int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
 861 
 862     int pipeline_res_stages_index = pipeline_res_stages_initializer(
 863       fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
 864 
 865     int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
 866       fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
 867 
 868     int pipeline_res_mask_index = pipeline_res_mask_initializer(
 869       fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
 870 
 871 #if 0
 872     // Process the Resources
 873     const PipeClassResourceForm *piperesource;
 874 
 875     unsigned resources_used = 0;
 876     unsigned exclusive_resources_used = 0;
 877     unsigned resource_groups = 0;
 878     for (pipeclass->_resUsage.reset();
 879          (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 880       int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 881       if (used_mask)
 882         resource_groups++;
 883       resources_used |= used_mask;
 884       if ((used_mask & (used_mask-1)) == 0)
 885         exclusive_resources_used |= used_mask;
 886     }
 887 
 888     if (resource_groups > 0) {
 889       fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
 890         pipeclass->_num, resource_groups);
 891       for (pipeclass->_resUsage.reset(), i = 1;
 892            (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
 893            i++ ) {
 894         int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 895         if (used_mask) {
 896           fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
 897         }
 898       }
 899       fprintf(fp_cpp, "};\n\n");
 900     }
 901 #endif
 902 
 903     // Create the pipeline class description
 904     fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
 905       pipeclass->_num);
 906     if (maxWriteStage < 0)
 907       fprintf(fp_cpp, "(uint)stage_undefined");
 908     else if (maxMoreInstrs == 0)
 909       fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
 910     else
 911       fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
 912     fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
 913       paramcount,
 914       pipeclass->hasFixedLatency() ? "true" : "false",
 915       pipeclass->fixedLatency(),
 916       pipeclass->InstructionCount(),
 917       pipeclass->hasBranchDelay() ? "true" : "false",
 918       pipeclass->hasMultipleBundles() ? "true" : "false",
 919       pipeclass->forceSerialization() ? "true" : "false",
 920       pipeclass->mayHaveNoCode() ? "true" : "false" );
 921     if (paramcount > 0) {
 922       fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
 923         pipeline_reads_index+1);
 924     }
 925     else
 926       fprintf(fp_cpp, " NULL,");
 927     fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
 928       pipeline_res_stages_index+1);
 929     fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
 930       pipeline_res_cycles_index+1);
 931     fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
 932       pipeline_res_args.name(pipeline_res_mask_index));
 933     if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
 934       fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
 935         pipeline_res_mask_index+1);
 936     else
 937       fprintf(fp_cpp, "NULL");
 938     fprintf(fp_cpp, "));\n");
 939   }
 940 
 941   // Generate the Node::latency method if _pipeline defined
 942   fprintf(fp_cpp, "\n");
 943   fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
 944   fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
 945   if (_pipeline) {
 946 #if 0
 947     fprintf(fp_cpp, "#ifndef PRODUCT\n");
 948     fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
 949     fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
 950     fprintf(fp_cpp, " }\n");
 951     fprintf(fp_cpp, "#endif\n");
 952 #endif
 953     fprintf(fp_cpp, "  uint j;\n");
 954     fprintf(fp_cpp, "  // verify in legal range for inputs\n");
 955     fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
 956     fprintf(fp_cpp, "  // verify input is not null\n");
 957     fprintf(fp_cpp, "  Node *pred = in(i);\n");
 958     fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
 959       non_operand_latency);
 960     fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
 961     fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
 962     fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
 963     fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
 964     fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
 965     fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
 966     fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
 967     fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
 968       node_latency);
 969     fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
 970     fprintf(fp_cpp, "  j = m->oper_input_base();\n");
 971     fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
 972       non_operand_latency);
 973     fprintf(fp_cpp, "  // determine which operand this is in\n");
 974     fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
 975     fprintf(fp_cpp, "  int delta = %d;\n\n",
 976       non_operand_latency);
 977     fprintf(fp_cpp, "  uint k;\n");
 978     fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
 979     fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
 980     fprintf(fp_cpp, "    if (i < j)\n");
 981     fprintf(fp_cpp, "      break;\n");
 982     fprintf(fp_cpp, "  }\n");
 983     fprintf(fp_cpp, "  if (k < n)\n");
 984     fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
 985     fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
 986   }
 987   else {
 988     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
 989     fprintf(fp_cpp, "  return %d;\n",
 990       non_operand_latency);
 991   }
 992   fprintf(fp_cpp, "}\n\n");
 993 
 994   // Output the list of nop nodes
 995   fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
 996   const char *nop;
 997   int nopcnt = 0;
 998   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
 999 
1000   fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d]) {\n", nopcnt);
1001   int i = 0;
1002   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
1003     fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new %sNode();\n", i, nop);
1004   }
1005   fprintf(fp_cpp, "};\n\n");
1006   fprintf(fp_cpp, "#ifndef PRODUCT\n");
1007   fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
1008   fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
1009   fprintf(fp_cpp, "    \"\",\n");
1010   fprintf(fp_cpp, "    \"use nop delay\",\n");
1011   fprintf(fp_cpp, "    \"use unconditional delay\",\n");
1012   fprintf(fp_cpp, "    \"use conditional delay\",\n");
1013   fprintf(fp_cpp, "    \"used in conditional delay\",\n");
1014   fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
1015   fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
1016   fprintf(fp_cpp, "  };\n\n");
1017 
1018   fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
1019   for (i = 0; i < _pipeline->_rescount; i++)
1020     fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
1021   fprintf(fp_cpp, "};\n\n");
1022 
1023   // See if the same string is in the table
1024   fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
1025   fprintf(fp_cpp, "  if (_flags) {\n");
1026   fprintf(fp_cpp, "    st->print(\"%%s\", bundle_flags[_flags]);\n");
1027   fprintf(fp_cpp, "    needs_comma = true;\n");
1028   fprintf(fp_cpp, "  };\n");
1029   fprintf(fp_cpp, "  if (instr_count()) {\n");
1030   fprintf(fp_cpp, "    st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
1031   fprintf(fp_cpp, "    needs_comma = true;\n");
1032   fprintf(fp_cpp, "  };\n");
1033   fprintf(fp_cpp, "  uint r = resources_used();\n");
1034   fprintf(fp_cpp, "  if (r) {\n");
1035   fprintf(fp_cpp, "    st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
1036   fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
1037   fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
1038   fprintf(fp_cpp, "        st->print(\" %%s\", resource_names[i]);\n");
1039   fprintf(fp_cpp, "    needs_comma = true;\n");
1040   fprintf(fp_cpp, "  };\n");
1041   fprintf(fp_cpp, "  st->print(\"\\n\");\n");
1042   fprintf(fp_cpp, "}\n");
1043   fprintf(fp_cpp, "#endif\n");
1044 }
1045 
1046 // ---------------------------------------------------------------------------
1047 //------------------------------Utilities to build Instruction Classes--------
1048 // ---------------------------------------------------------------------------
1049 
1050 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
1051   fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
1052           node, regMask);
1053 }
1054 
1055 static void print_block_index(FILE *fp, int inst_position) {
1056   assert( inst_position >= 0, "Instruction number less than zero");
1057   fprintf(fp, "block_index");
1058   if( inst_position != 0 ) {
1059     fprintf(fp, " - %d", inst_position);
1060   }
1061 }
1062 
1063 // Scan the peepmatch and output a test for each instruction
1064 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1065   int         parent        = -1;
1066   int         inst_position = 0;
1067   const char* inst_name     = NULL;
1068   int         input         = 0;
1069   fprintf(fp, "  // Check instruction sub-tree\n");
1070   pmatch->reset();
1071   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1072        inst_name != NULL;
1073        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1074     // If this is not a placeholder
1075     if( ! pmatch->is_placeholder() ) {
1076       // Define temporaries 'inst#', based on parent and parent's input index
1077       if( parent != -1 ) {                // root was initialized
1078         fprintf(fp, "  // Identify previous instruction if inside this block\n");
1079         fprintf(fp, "  if( ");
1080         print_block_index(fp, inst_position);
1081         fprintf(fp, " > 0 ) {\n    Node *n = block->get_node(");
1082         print_block_index(fp, inst_position);
1083         fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
1084         fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
1085       }
1086 
1087       // When not the root
1088       // Test we have the correct instruction by comparing the rule.
1089       if( parent != -1 ) {
1090         fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
1091                 inst_position, inst_position, inst_name);
1092       }
1093     } else {
1094       // Check that user did not try to constrain a placeholder
1095       assert( ! pconstraint->constrains_instruction(inst_position),
1096               "fatal(): Can not constrain a placeholder instruction");
1097     }
1098   }
1099 }
1100 
1101 // Build mapping for register indices, num_edges to input
1102 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
1103   int         parent        = -1;
1104   int         inst_position = 0;
1105   const char* inst_name     = NULL;
1106   int         input         = 0;
1107   fprintf(fp, "      // Build map to register info\n");
1108   pmatch->reset();
1109   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1110        inst_name != NULL;
1111        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1112     // If this is not a placeholder
1113     if( ! pmatch->is_placeholder() ) {
1114       // Define temporaries 'inst#', based on self's inst_position
1115       InstructForm *inst = globals[inst_name]->is_instruction();
1116       if( inst != NULL ) {
1117         char inst_prefix[]  = "instXXXX_";
1118         sprintf(inst_prefix, "inst%d_",   inst_position);
1119         char receiver[]     = "instXXXX->";
1120         sprintf(receiver,    "inst%d->", inst_position);
1121         inst->index_temps( fp, globals, inst_prefix, receiver );
1122       }
1123     }
1124   }
1125 }
1126 
1127 // Generate tests for the constraints
1128 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1129   fprintf(fp, "\n");
1130   fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
1131 
1132   // Build mapping from num_edges to local variables
1133   build_instruction_index_mapping( fp, globals, pmatch );
1134 
1135   // Build constraint tests
1136   if( pconstraint != NULL ) {
1137     fprintf(fp, "      matches = matches &&");
1138     bool   first_constraint = true;
1139     while( pconstraint != NULL ) {
1140       // indentation and connecting '&&'
1141       const char *indentation = "      ";
1142       fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
1143 
1144       // Only have '==' relation implemented
1145       if( strcmp(pconstraint->_relation,"==") != 0 ) {
1146         assert( false, "Unimplemented()" );
1147       }
1148 
1149       // LEFT
1150       int left_index       = pconstraint->_left_inst;
1151       const char *left_op  = pconstraint->_left_op;
1152       // Access info on the instructions whose operands are compared
1153       InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
1154       assert( inst_left, "Parser should guaranty this is an instruction");
1155       int left_op_base  = inst_left->oper_input_base(globals);
1156       // Access info on the operands being compared
1157       int left_op_index  = inst_left->operand_position(left_op, Component::USE);
1158       if( left_op_index == -1 ) {
1159         left_op_index = inst_left->operand_position(left_op, Component::DEF);
1160         if( left_op_index == -1 ) {
1161           left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
1162         }
1163       }
1164       assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
1165       ComponentList components_left = inst_left->_components;
1166       const char *left_comp_type = components_left.at(left_op_index)->_type;
1167       OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
1168       Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
1169 
1170 
1171       // RIGHT
1172       int right_op_index = -1;
1173       int right_index      = pconstraint->_right_inst;
1174       const char *right_op = pconstraint->_right_op;
1175       if( right_index != -1 ) { // Match operand
1176         // Access info on the instructions whose operands are compared
1177         InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
1178         assert( inst_right, "Parser should guaranty this is an instruction");
1179         int right_op_base = inst_right->oper_input_base(globals);
1180         // Access info on the operands being compared
1181         right_op_index = inst_right->operand_position(right_op, Component::USE);
1182         if( right_op_index == -1 ) {
1183           right_op_index = inst_right->operand_position(right_op, Component::DEF);
1184           if( right_op_index == -1 ) {
1185             right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
1186           }
1187         }
1188         assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1189         ComponentList components_right = inst_right->_components;
1190         const char *right_comp_type = components_right.at(right_op_index)->_type;
1191         OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1192         Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1193         assert( right_interface_type == left_interface_type, "Both must be same interface");
1194 
1195       } else {                  // Else match register
1196         // assert( false, "should be a register" );
1197       }
1198 
1199       //
1200       // Check for equivalence
1201       //
1202       // fprintf(fp, "phase->eqv( ");
1203       // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
1204       //         left_index,  left_op_base,  left_op_index,  left_op,
1205       //         right_index, right_op_base, right_op_index, right_op );
1206       // fprintf(fp, ")");
1207       //
1208       switch( left_interface_type ) {
1209       case Form::register_interface: {
1210         // Check that they are allocated to the same register
1211         // Need parameter for index position if not result operand
1212         char left_reg_index[] = ",instXXXX_idxXXXX";
1213         if( left_op_index != 0 ) {
1214           assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
1215           // Must have index into operands
1216           sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
1217         } else {
1218           strcpy(left_reg_index, "");
1219         }
1220         fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
1221                 left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
1222         fprintf(fp, " == ");
1223 
1224         if( right_index != -1 ) {
1225           char right_reg_index[18] = ",instXXXX_idxXXXX";
1226           if( right_op_index != 0 ) {
1227             assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
1228             // Must have index into operands
1229             sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
1230           } else {
1231             strcpy(right_reg_index, "");
1232           }
1233           fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
1234                   right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
1235         } else {
1236           fprintf(fp, "%s_enc", right_op );
1237         }
1238         fprintf(fp,")");
1239         break;
1240       }
1241       case Form::constant_interface: {
1242         // Compare the '->constant()' values
1243         fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
1244                 left_index,  left_op_index,  left_index, left_op );
1245         fprintf(fp, " == ");
1246         fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
1247                 right_index, right_op, right_index, right_op_index );
1248         break;
1249       }
1250       case Form::memory_interface: {
1251         // Compare 'base', 'index', 'scale', and 'disp'
1252         // base
1253         fprintf(fp, "( \n");
1254         fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
1255           left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1256         fprintf(fp, " == ");
1257         fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
1258                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1259         // index
1260         fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
1261                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1262         fprintf(fp, " == ");
1263         fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
1264                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1265         // scale
1266         fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
1267                 left_index,  left_op_index,  left_index, left_op );
1268         fprintf(fp, " == ");
1269         fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
1270                 right_index, right_op, right_index, right_op_index );
1271         // disp
1272         fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
1273                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1274         fprintf(fp, " == ");
1275         fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
1276                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1277         fprintf(fp, ") \n");
1278         break;
1279       }
1280       case Form::conditional_interface: {
1281         // Compare the condition code being tested
1282         assert( false, "Unimplemented()" );
1283         break;
1284       }
1285       default: {
1286         assert( false, "ShouldNotReachHere()" );
1287         break;
1288       }
1289       }
1290 
1291       // Advance to next constraint
1292       pconstraint = pconstraint->next();
1293       first_constraint = false;
1294     }
1295 
1296     fprintf(fp, ";\n");
1297   }
1298 }
1299 
1300 // // EXPERIMENTAL -- TEMPORARY code
1301 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
1302 //   int op_index = instr->operand_position(op_name, Component::USE);
1303 //   if( op_index == -1 ) {
1304 //     op_index = instr->operand_position(op_name, Component::DEF);
1305 //     if( op_index == -1 ) {
1306 //       op_index = instr->operand_position(op_name, Component::USE_DEF);
1307 //     }
1308 //   }
1309 //   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
1310 //
1311 //   ComponentList components_right = instr->_components;
1312 //   char *right_comp_type = components_right.at(op_index)->_type;
1313 //   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1314 //   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
1315 //
1316 //   return;
1317 // }
1318 
1319 // Construct the new sub-tree
1320 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
1321   fprintf(fp, "      // IF instructions and constraints matched\n");
1322   fprintf(fp, "      if( matches ) {\n");
1323   fprintf(fp, "        // generate the new sub-tree\n");
1324   fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
1325   if( preplace != NULL ) {
1326     // Get the root of the new sub-tree
1327     const char *root_inst = NULL;
1328     preplace->next_instruction(root_inst);
1329     InstructForm *root_form = globals[root_inst]->is_instruction();
1330     assert( root_form != NULL, "Replacement instruction was not previously defined");
1331     fprintf(fp, "        %sNode *root = new %sNode();\n", root_inst, root_inst);
1332 
1333     int         inst_num;
1334     const char *op_name;
1335     int         opnds_index = 0;            // define result operand
1336     // Then install the use-operands for the new sub-tree
1337     // preplace->reset();             // reset breaks iteration
1338     for( preplace->next_operand( inst_num, op_name );
1339          op_name != NULL;
1340          preplace->next_operand( inst_num, op_name ) ) {
1341       InstructForm *inst_form;
1342       inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
1343       assert( inst_form, "Parser should guaranty this is an instruction");
1344       int inst_op_num = inst_form->operand_position(op_name, Component::USE);
1345       if( inst_op_num == NameList::Not_in_list )
1346         inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
1347       assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
1348       // find the name of the OperandForm from the local name
1349       const Form *form   = inst_form->_localNames[op_name];
1350       OperandForm  *op_form = form->is_operand();
1351       if( opnds_index == 0 ) {
1352         // Initial setup of new instruction
1353         fprintf(fp, "        // ----- Initial setup -----\n");
1354         //
1355         // Add control edge for this node
1356         fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
1357         // Add unmatched edges from root of match tree
1358         int op_base = root_form->oper_input_base(globals);
1359         for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
1360           fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
1361                                           inst_num, unmatched_edge);
1362         }
1363         // If new instruction captures bottom type
1364         if( root_form->captures_bottom_type(globals) ) {
1365           // Get bottom type from instruction whose result we are replacing
1366           fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
1367         }
1368         // Define result register and result operand
1369         fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
1370         fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
1371         fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
1372         fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(); // result\n", inst_num);
1373         fprintf(fp, "        // ----- Done with initial setup -----\n");
1374       } else {
1375         if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
1376           // Do not have ideal edges for constants after matching
1377           fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
1378                   inst_op_num, inst_num, inst_op_num,
1379                   inst_op_num, inst_num, inst_op_num+1, inst_op_num );
1380           fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
1381                   inst_num, inst_op_num );
1382         } else {
1383           fprintf(fp, "        // no ideal edge for constants after matching\n");
1384         }
1385         fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone();\n",
1386                 opnds_index, inst_num, inst_op_num );
1387       }
1388       ++opnds_index;
1389     }
1390   }else {
1391     // Replacing subtree with empty-tree
1392     assert( false, "ShouldNotReachHere();");
1393   }
1394 
1395   // Return the new sub-tree
1396   fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
1397   fprintf(fp, "        return root;  // return new root;\n");
1398   fprintf(fp, "      }\n");
1399 }
1400 
1401 
1402 // Define the Peephole method for an instruction node
1403 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
1404   // Generate Peephole function header
1405   fprintf(fp, "MachNode *%sNode::peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted) {\n", node->_ident);
1406   fprintf(fp, "  bool  matches = true;\n");
1407 
1408   // Identify the maximum instruction position,
1409   // generate temporaries that hold current instruction
1410   //
1411   //   MachNode  *inst0 = NULL;
1412   //   ...
1413   //   MachNode  *instMAX = NULL;
1414   //
1415   int max_position = 0;
1416   Peephole *peep;
1417   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1418     PeepMatch *pmatch = peep->match();
1419     assert( pmatch != NULL, "fatal(), missing peepmatch rule");
1420     if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
1421   }
1422   for( int i = 0; i <= max_position; ++i ) {
1423     if( i == 0 ) {
1424       fprintf(fp, "  MachNode *inst0 = this;\n");
1425     } else {
1426       fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
1427     }
1428   }
1429 
1430   // For each peephole rule in architecture description
1431   //   Construct a test for the desired instruction sub-tree
1432   //   then check the constraints
1433   //   If these match, Generate the new subtree
1434   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1435     int         peephole_number = peep->peephole_number();
1436     PeepMatch      *pmatch      = peep->match();
1437     PeepConstraint *pconstraint = peep->constraints();
1438     PeepReplace    *preplace    = peep->replacement();
1439 
1440     // Root of this peephole is the current MachNode
1441     assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
1442             "root of PeepMatch does not match instruction");
1443 
1444     // Make each peephole rule individually selectable
1445     fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
1446     fprintf(fp, "    matches = true;\n");
1447     // Scan the peepmatch and output a test for each instruction
1448     check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
1449 
1450     // Check constraints and build replacement inside scope
1451     fprintf(fp, "    // If instruction subtree matches\n");
1452     fprintf(fp, "    if( matches ) {\n");
1453 
1454     // Generate tests for the constraints
1455     check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
1456 
1457     // Construct the new sub-tree
1458     generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
1459 
1460     // End of scope for this peephole's constraints
1461     fprintf(fp, "    }\n");
1462     // Closing brace '}' to make each peephole rule individually selectable
1463     fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
1464     fprintf(fp, "\n");
1465   }
1466 
1467   fprintf(fp, "  return NULL;  // No peephole rules matched\n");
1468   fprintf(fp, "}\n");
1469   fprintf(fp, "\n");
1470 }
1471 
1472 // Define the Expand method for an instruction node
1473 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
1474   unsigned      cnt  = 0;          // Count nodes we have expand into
1475   unsigned      i;
1476 
1477   // Generate Expand function header
1478   fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
1479   fprintf(fp, "  Compile* C = Compile::current();\n");
1480   // Generate expand code
1481   if( node->expands() ) {
1482     const char   *opid;
1483     int           new_pos, exp_pos;
1484     const char   *new_id   = NULL;
1485     const Form   *frm      = NULL;
1486     InstructForm *new_inst = NULL;
1487     OperandForm  *new_oper = NULL;
1488     unsigned      numo     = node->num_opnds() +
1489                                 node->_exprule->_newopers.count();
1490 
1491     // If necessary, generate any operands created in expand rule
1492     if (node->_exprule->_newopers.count()) {
1493       for(node->_exprule->_newopers.reset();
1494           (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
1495         frm = node->_localNames[new_id];
1496         assert(frm, "Invalid entry in new operands list of expand rule");
1497         new_oper = frm->is_operand();
1498         char *tmp = (char *)node->_exprule->_newopconst[new_id];
1499         if (tmp == NULL) {
1500           fprintf(fp,"  MachOper *op%d = new %sOper();\n",
1501                   cnt, new_oper->_ident);
1502         }
1503         else {
1504           fprintf(fp,"  MachOper *op%d = new %sOper(%s);\n",
1505                   cnt, new_oper->_ident, tmp);
1506         }
1507       }
1508     }
1509     cnt = 0;
1510     // Generate the temps to use for DAG building
1511     for(i = 0; i < numo; i++) {
1512       if (i < node->num_opnds()) {
1513         fprintf(fp,"  MachNode *tmp%d = this;\n", i);
1514       }
1515       else {
1516         fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
1517       }
1518     }
1519     // Build mapping from num_edges to local variables
1520     fprintf(fp,"  unsigned num0 = 0;\n");
1521     for( i = 1; i < node->num_opnds(); i++ ) {
1522       fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1523     }
1524 
1525     // Build a mapping from operand index to input edges
1526     fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1527 
1528     // The order in which the memory input is added to a node is very
1529     // strange.  Store nodes get a memory input before Expand is
1530     // called and other nodes get it afterwards or before depending on
1531     // match order so oper_input_base is wrong during expansion.  This
1532     // code adjusts it so that expansion will work correctly.
1533     int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
1534     if (has_memory_edge) {
1535       fprintf(fp,"  if (mem == (Node*)1) {\n");
1536       fprintf(fp,"    idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
1537       fprintf(fp,"  }\n");
1538     }
1539 
1540     for( i = 0; i < node->num_opnds(); i++ ) {
1541       fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1542               i+1,i,i);
1543     }
1544 
1545     // Declare variable to hold root of expansion
1546     fprintf(fp,"  MachNode *result = NULL;\n");
1547 
1548     // Iterate over the instructions 'node' expands into
1549     ExpandRule  *expand       = node->_exprule;
1550     NameAndList *expand_instr = NULL;
1551     for(expand->reset_instructions();
1552         (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
1553       new_id = expand_instr->name();
1554 
1555       InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
1556 
1557       if (!expand_instruction) {
1558         globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n",
1559                              node->_ident, new_id);
1560         continue;
1561       }
1562 
1563       if (expand_instruction->has_temps()) {
1564         globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s",
1565                              node->_ident, new_id);
1566       }
1567 
1568       // Build the node for the instruction
1569       fprintf(fp,"\n  %sNode *n%d = new %sNode();\n", new_id, cnt, new_id);
1570       // Add control edge for this node
1571       fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
1572       // Build the operand for the value this node defines.
1573       Form *form = (Form*)_globalNames[new_id];
1574       assert( form, "'new_id' must be a defined form name");
1575       // Grab the InstructForm for the new instruction
1576       new_inst = form->is_instruction();
1577       assert( new_inst, "'new_id' must be an instruction name");
1578       if( node->is_ideal_if() && new_inst->is_ideal_if() ) {
1579         fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n",cnt);
1580         fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt);
1581       }
1582 
1583       if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
1584         fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
1585         fprintf(fp, "  ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n",cnt);
1586         fprintf(fp, "  ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n",cnt);
1587       }
1588 
1589       // Fill in the bottom_type where requested
1590       if (node->captures_bottom_type(_globalNames) &&
1591           new_inst->captures_bottom_type(_globalNames)) {
1592         fprintf(fp, "  ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
1593       }
1594 
1595       const char *resultOper = new_inst->reduce_result();
1596       fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator(%s));\n",
1597               cnt, machOperEnum(resultOper));
1598 
1599       // get the formal operand NameList
1600       NameList *formal_lst = &new_inst->_parameters;
1601       formal_lst->reset();
1602 
1603       // Handle any memory operand
1604       int memory_operand = new_inst->memory_operand(_globalNames);
1605       if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1606         int node_mem_op = node->memory_operand(_globalNames);
1607         assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
1608                 "expand rule member needs memory but top-level inst doesn't have any" );
1609         if (has_memory_edge) {
1610           // Copy memory edge
1611           fprintf(fp,"  if (mem != (Node*)1) {\n");
1612           fprintf(fp,"    n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
1613           fprintf(fp,"  }\n");
1614         }
1615       }
1616 
1617       // Iterate over the new instruction's operands
1618       int prev_pos = -1;
1619       for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1620         // Use 'parameter' at current position in list of new instruction's formals
1621         // instead of 'opid' when looking up info internal to new_inst
1622         const char *parameter = formal_lst->iter();
1623         if (!parameter) {
1624           globalAD->syntax_err(node->_linenum, "Operand %s of expand instruction %s has"
1625                                " no equivalent in new instruction %s.",
1626                                opid, node->_ident, new_inst->_ident);
1627           assert(0, "Wrong expand");
1628         }
1629 
1630         // Check for an operand which is created in the expand rule
1631         if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
1632           new_pos = new_inst->operand_position(parameter,Component::USE);
1633           exp_pos += node->num_opnds();
1634           // If there is no use of the created operand, just skip it
1635           if (new_pos != NameList::Not_in_list) {
1636             //Copy the operand from the original made above
1637             fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone()); // %s\n",
1638                     cnt, new_pos, exp_pos-node->num_opnds(), opid);
1639             // Check for who defines this operand & add edge if needed
1640             fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
1641             fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
1642           }
1643         }
1644         else {
1645           // Use operand name to get an index into instruction component list
1646           // ins = (InstructForm *) _globalNames[new_id];
1647           exp_pos = node->operand_position_format(opid);
1648           assert(exp_pos != -1, "Bad expand rule");
1649           if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
1650             // For the add_req calls below to work correctly they need
1651             // to added in the same order that a match would add them.
1652             // This means that they would need to be in the order of
1653             // the components list instead of the formal parameters.
1654             // This is a sort of hidden invariant that previously
1655             // wasn't checked and could lead to incorrectly
1656             // constructed nodes.
1657             syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
1658                        node->_ident, new_inst->_ident);
1659           }
1660           prev_pos = exp_pos;
1661 
1662           new_pos = new_inst->operand_position(parameter,Component::USE);
1663           if (new_pos != -1) {
1664             // Copy the operand from the ExpandNode to the new node
1665             fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone()); // %s\n",
1666                     cnt, new_pos, exp_pos, opid);
1667             // For each operand add appropriate input edges by looking at tmp's
1668             fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
1669             // Grab corresponding edges from ExpandNode and insert them here
1670             fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
1671             fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
1672             fprintf(fp,"    }\n");
1673             fprintf(fp,"  }\n");
1674             // This value is generated by one of the new instructions
1675             fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
1676           }
1677         }
1678 
1679         // Update the DAG tmp's for values defined by this instruction
1680         int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
1681         Effect *eform = (Effect *)new_inst->_effects[parameter];
1682         // If this operand is a definition in either an effects rule
1683         // or a match rule
1684         if((eform) && (is_def(eform->_use_def))) {
1685           // Update the temp associated with this operand
1686           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1687         }
1688         else if( new_def_pos != -1 ) {
1689           // Instruction defines a value but user did not declare it
1690           // in the 'effect' clause
1691           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1692         }
1693       } // done iterating over a new instruction's operands
1694 
1695       // Invoke Expand() for the newly created instruction.
1696       fprintf(fp,"  result = n%d->Expand( state, proj_list, mem );\n", cnt);
1697       assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
1698     } // done iterating over new instructions
1699     fprintf(fp,"\n");
1700   } // done generating expand rule
1701 
1702   // Generate projections for instruction's additional DEFs and KILLs
1703   if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
1704     // Get string representing the MachNode that projections point at
1705     const char *machNode = "this";
1706     // Generate the projections
1707     fprintf(fp,"  // Add projection edges for additional defs or kills\n");
1708 
1709     // Examine each component to see if it is a DEF or KILL
1710     node->_components.reset();
1711     // Skip the first component, if already handled as (SET dst (...))
1712     Component *comp = NULL;
1713     // For kills, the choice of projection numbers is arbitrary
1714     int proj_no = 1;
1715     bool declared_def  = false;
1716     bool declared_kill = false;
1717 
1718     while ((comp = node->_components.iter()) != NULL) {
1719       // Lookup register class associated with operand type
1720       Form *form = (Form*)_globalNames[comp->_type];
1721       assert(form, "component type must be a defined form");
1722       OperandForm *op = form->is_operand();
1723 
1724       if (comp->is(Component::TEMP) ||
1725           comp->is(Component::TEMP_DEF)) {
1726         fprintf(fp, "  // TEMP %s\n", comp->_name);
1727         if (!declared_def) {
1728           // Define the variable "def" to hold new MachProjNodes
1729           fprintf(fp, "  MachTempNode *def;\n");
1730           declared_def = true;
1731         }
1732         if (op && op->_interface && op->_interface->is_RegInterface()) {
1733           fprintf(fp,"  def = new MachTempNode(state->MachOperGenerator(%s));\n",
1734                   machOperEnum(op->_ident));
1735           fprintf(fp,"  add_req(def);\n");
1736           // The operand for TEMP is already constructed during
1737           // this mach node construction, see buildMachNode().
1738           //
1739           // int idx  = node->operand_position_format(comp->_name);
1740           // fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator(%s));\n",
1741           //         idx, machOperEnum(op->_ident));
1742         } else {
1743           assert(false, "can't have temps which aren't registers");
1744         }
1745       } else if (comp->isa(Component::KILL)) {
1746         fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
1747 
1748         if (!declared_kill) {
1749           // Define the variable "kill" to hold new MachProjNodes
1750           fprintf(fp, "  MachProjNode *kill;\n");
1751           declared_kill = true;
1752         }
1753 
1754         assert(op, "Support additional KILLS for base operands");
1755         const char *regmask    = reg_mask(*op);
1756         const char *ideal_type = op->ideal_type(_globalNames, _register);
1757 
1758         if (!op->is_bound_register()) {
1759           syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
1760                      node->_ident, comp->_type, comp->_name);
1761         }
1762 
1763         fprintf(fp,"  kill = ");
1764         fprintf(fp,"new MachProjNode( %s, %d, (%s), Op_%s );\n",
1765                 machNode, proj_no++, regmask, ideal_type);
1766         fprintf(fp,"  proj_list.push(kill);\n");
1767       }
1768     }
1769   }
1770 
1771   if( !node->expands() && node->_matrule != NULL ) {
1772     // Remove duplicated operands and inputs which use the same name.
1773     // Seach through match operands for the same name usage.
1774     uint cur_num_opnds = node->num_opnds();
1775     if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) {
1776       Component *comp = NULL;
1777       // Build mapping from num_edges to local variables
1778       fprintf(fp,"  unsigned num0 = 0;\n");
1779       for( i = 1; i < cur_num_opnds; i++ ) {
1780         fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();",i,i);
1781         fprintf(fp, " \t// %s\n", node->opnd_ident(i));
1782       }
1783       // Build a mapping from operand index to input edges
1784       fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1785       for( i = 0; i < cur_num_opnds; i++ ) {
1786         fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1787                 i+1,i,i);
1788       }
1789 
1790       uint new_num_opnds = 1;
1791       node->_components.reset();
1792       // Skip first unique operands.
1793       for( i = 1; i < cur_num_opnds; i++ ) {
1794         comp = node->_components.iter();
1795         if (i != node->unique_opnds_idx(i)) {
1796           break;
1797         }
1798         new_num_opnds++;
1799       }
1800       // Replace not unique operands with next unique operands.
1801       for( ; i < cur_num_opnds; i++ ) {
1802         comp = node->_components.iter();
1803         uint j = node->unique_opnds_idx(i);
1804         // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
1805         if( j != node->unique_opnds_idx(j) ) {
1806           fprintf(fp,"  set_opnd_array(%d, opnd_array(%d)->clone()); // %s\n",
1807                   new_num_opnds, i, comp->_name);
1808           // delete not unique edges here
1809           fprintf(fp,"  for(unsigned i = 0; i < num%d; i++) {\n", i);
1810           fprintf(fp,"    set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
1811           fprintf(fp,"  }\n");
1812           fprintf(fp,"  num%d = num%d;\n", new_num_opnds, i);
1813           fprintf(fp,"  idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
1814           new_num_opnds++;
1815         }
1816       }
1817       // delete the rest of edges
1818       fprintf(fp,"  for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
1819       fprintf(fp,"    del_req(i);\n");
1820       fprintf(fp,"  }\n");
1821       fprintf(fp,"  _num_opnds = %d;\n", new_num_opnds);
1822       assert(new_num_opnds == node->num_unique_opnds(), "what?");
1823     }
1824   }
1825 
1826   // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
1827   // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
1828   // There are nodes that don't use $constantablebase, but still require that it
1829   // is an input to the node. Example: divF_reg_immN, Repl32B_imm on x86_64.
1830   if (node->is_mach_constant() || node->needs_constant_base()) {
1831     if (node->is_ideal_call() != Form::invalid_type &&
1832         node->is_ideal_call() != Form::JAVA_LEAF) {
1833       fprintf(fp, "  // MachConstantBaseNode added in matcher.\n");
1834       _needs_clone_jvms = true;
1835     } else {
1836       fprintf(fp, "  add_req(C->mach_constant_base_node());\n");
1837     }
1838   }
1839 
1840   fprintf(fp, "\n");
1841   if (node->expands()) {
1842     fprintf(fp, "  return result;\n");
1843   } else {
1844     fprintf(fp, "  return this;\n");
1845   }
1846   fprintf(fp, "}\n");
1847   fprintf(fp, "\n");
1848 }
1849 
1850 
1851 //------------------------------Emit Routines----------------------------------
1852 // Special classes and routines for defining node emit routines which output
1853 // target specific instruction object encodings.
1854 // Define the ___Node::emit() routine
1855 //
1856 // (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1857 // (2)   // ...  encoding defined by user
1858 // (3)
1859 // (4) }
1860 //
1861 
1862 class DefineEmitState {
1863 private:
1864   enum reloc_format { RELOC_NONE        = -1,
1865                       RELOC_IMMEDIATE   =  0,
1866                       RELOC_DISP        =  1,
1867                       RELOC_CALL_DISP   =  2 };
1868   enum literal_status{ LITERAL_NOT_SEEN  = 0,
1869                        LITERAL_SEEN      = 1,
1870                        LITERAL_ACCESSED  = 2,
1871                        LITERAL_OUTPUT    = 3 };
1872   // Temporaries that describe current operand
1873   bool          _cleared;
1874   OpClassForm  *_opclass;
1875   OperandForm  *_operand;
1876   int           _operand_idx;
1877   const char   *_local_name;
1878   const char   *_operand_name;
1879   bool          _doing_disp;
1880   bool          _doing_constant;
1881   Form::DataType _constant_type;
1882   DefineEmitState::literal_status _constant_status;
1883   DefineEmitState::literal_status _reg_status;
1884   bool          _doing_emit8;
1885   bool          _doing_emit_d32;
1886   bool          _doing_emit_d16;
1887   bool          _doing_emit_hi;
1888   bool          _doing_emit_lo;
1889   bool          _may_reloc;
1890   reloc_format  _reloc_form;
1891   const char *  _reloc_type;
1892   bool          _processing_noninput;
1893 
1894   NameList      _strings_to_emit;
1895 
1896   // Stable state, set by constructor
1897   ArchDesc     &_AD;
1898   FILE         *_fp;
1899   EncClass     &_encoding;
1900   InsEncode    &_ins_encode;
1901   InstructForm &_inst;
1902 
1903 public:
1904   DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
1905                   InsEncode &ins_encode, InstructForm &inst)
1906     : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
1907       clear();
1908   }
1909 
1910   void clear() {
1911     _cleared       = true;
1912     _opclass       = NULL;
1913     _operand       = NULL;
1914     _operand_idx   = 0;
1915     _local_name    = "";
1916     _operand_name  = "";
1917     _doing_disp    = false;
1918     _doing_constant= false;
1919     _constant_type = Form::none;
1920     _constant_status = LITERAL_NOT_SEEN;
1921     _reg_status      = LITERAL_NOT_SEEN;
1922     _doing_emit8   = false;
1923     _doing_emit_d32= false;
1924     _doing_emit_d16= false;
1925     _doing_emit_hi = false;
1926     _doing_emit_lo = false;
1927     _may_reloc     = false;
1928     _reloc_form    = RELOC_NONE;
1929     _reloc_type    = AdlcVMDeps::none_reloc_type();
1930     _strings_to_emit.clear();
1931   }
1932 
1933   // Track necessary state when identifying a replacement variable
1934   // @arg rep_var: The formal parameter of the encoding.
1935   void update_state(const char *rep_var) {
1936     // A replacement variable or one of its subfields
1937     // Obtain replacement variable from list
1938     if ( (*rep_var) != '$' ) {
1939       // A replacement variable, '$' prefix
1940       // check_rep_var( rep_var );
1941       if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
1942         // No state needed.
1943         assert( _opclass == NULL,
1944                 "'primary', 'secondary' and 'tertiary' don't follow operand.");
1945       }
1946       else if ((strcmp(rep_var, "constanttablebase") == 0) ||
1947                (strcmp(rep_var, "constantoffset")    == 0) ||
1948                (strcmp(rep_var, "constantaddress")   == 0)) {
1949         if (!(_inst.is_mach_constant() || _inst.needs_constant_base())) {
1950           _AD.syntax_err(_encoding._linenum,
1951                          "Replacement variable %s not allowed in instruct %s (only in MachConstantNode or MachCall).\n",
1952                          rep_var, _encoding._name);
1953         }
1954       }
1955       else {
1956         // Lookup its position in (formal) parameter list of encoding
1957         int   param_no  = _encoding.rep_var_index(rep_var);
1958         if ( param_no == -1 ) {
1959           _AD.syntax_err( _encoding._linenum,
1960                           "Replacement variable %s not found in enc_class %s.\n",
1961                           rep_var, _encoding._name);
1962         }
1963 
1964         // Lookup the corresponding ins_encode parameter
1965         // This is the argument (actual parameter) to the encoding.
1966         const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
1967         if (inst_rep_var == NULL) {
1968           _AD.syntax_err( _ins_encode._linenum,
1969                           "Parameter %s not passed to enc_class %s from instruct %s.\n",
1970                           rep_var, _encoding._name, _inst._ident);
1971         }
1972 
1973         // Check if instruction's actual parameter is a local name in the instruction
1974         const Form  *local     = _inst._localNames[inst_rep_var];
1975         OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
1976         // Note: assert removed to allow constant and symbolic parameters
1977         // assert( opc, "replacement variable was not found in local names");
1978         // Lookup the index position iff the replacement variable is a localName
1979         int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
1980 
1981         if ( idx != -1 ) {
1982           // This is a local in the instruction
1983           // Update local state info.
1984           _opclass        = opc;
1985           _operand_idx    = idx;
1986           _local_name     = rep_var;
1987           _operand_name   = inst_rep_var;
1988 
1989           // !!!!!
1990           // Do not support consecutive operands.
1991           assert( _operand == NULL, "Unimplemented()");
1992           _operand = opc->is_operand();
1993         }
1994         else if( ADLParser::is_literal_constant(inst_rep_var) ) {
1995           // Instruction provided a constant expression
1996           // Check later that encoding specifies $$$constant to resolve as constant
1997           _constant_status   = LITERAL_SEEN;
1998         }
1999         else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2000           // Instruction provided an opcode: "primary", "secondary", "tertiary"
2001           // Check later that encoding specifies $$$constant to resolve as constant
2002           _constant_status   = LITERAL_SEEN;
2003         }
2004         else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2005           // Instruction provided a literal register name for this parameter
2006           // Check that encoding specifies $$$reg to resolve.as register.
2007           _reg_status        = LITERAL_SEEN;
2008         }
2009         else {
2010           // Check for unimplemented functionality before hard failure
2011           assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
2012           assert( false, "ShouldNotReachHere()");
2013         }
2014       } // done checking which operand this is.
2015     } else {
2016       //
2017       // A subfield variable, '$$' prefix
2018       // Check for fields that may require relocation information.
2019       // Then check that literal register parameters are accessed with 'reg' or 'constant'
2020       //
2021       if ( strcmp(rep_var,"$disp") == 0 ) {
2022         _doing_disp = true;
2023         assert( _opclass, "Must use operand or operand class before '$disp'");
2024         if( _operand == NULL ) {
2025           // Only have an operand class, generate run-time check for relocation
2026           _may_reloc    = true;
2027           _reloc_form   = RELOC_DISP;
2028           _reloc_type   = AdlcVMDeps::oop_reloc_type();
2029         } else {
2030           // Do precise check on operand: is it a ConP or not
2031           //
2032           // Check interface for value of displacement
2033           assert( ( _operand->_interface != NULL ),
2034                   "$disp can only follow memory interface operand");
2035           MemInterface *mem_interface= _operand->_interface->is_MemInterface();
2036           assert( mem_interface != NULL,
2037                   "$disp can only follow memory interface operand");
2038           const char *disp = mem_interface->_disp;
2039 
2040           if( disp != NULL && (*disp == '$') ) {
2041             // MemInterface::disp contains a replacement variable,
2042             // Check if this matches a ConP
2043             //
2044             // Lookup replacement variable, in operand's component list
2045             const char *rep_var_name = disp + 1; // Skip '$'
2046             const Component *comp = _operand->_components.search(rep_var_name);
2047             assert( comp != NULL,"Replacement variable not found in components");
2048             const char      *type = comp->_type;
2049             // Lookup operand form for replacement variable's type
2050             const Form *form = _AD.globalNames()[type];
2051             assert( form != NULL, "Replacement variable's type not found");
2052             OperandForm *op = form->is_operand();
2053             assert( op, "Attempting to emit a non-register or non-constant");
2054             // Check if this is a constant
2055             if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
2056               // Check which constant this name maps to: _c0, _c1, ..., _cn
2057               // const int idx = _operand.constant_position(_AD.globalNames(), comp);
2058               // assert( idx != -1, "Constant component not found in operand");
2059               Form::DataType dtype = op->is_base_constant(_AD.globalNames());
2060               if ( dtype == Form::idealP ) {
2061                 _may_reloc    = true;
2062                 // No longer true that idealP is always an oop
2063                 _reloc_form   = RELOC_DISP;
2064                 _reloc_type   = AdlcVMDeps::oop_reloc_type();
2065               }
2066             }
2067 
2068             else if( _operand->is_user_name_for_sReg() != Form::none ) {
2069               // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
2070               assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
2071               _may_reloc   = false;
2072             } else {
2073               assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
2074             }
2075           }
2076         } // finished with precise check of operand for relocation.
2077       } // finished with subfield variable
2078       else if ( strcmp(rep_var,"$constant") == 0 ) {
2079         _doing_constant = true;
2080         if ( _constant_status == LITERAL_NOT_SEEN ) {
2081           // Check operand for type of constant
2082           assert( _operand, "Must use operand before '$$constant'");
2083           Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
2084           _constant_type = dtype;
2085           if ( dtype == Form::idealP ) {
2086             _may_reloc    = true;
2087             // No longer true that idealP is always an oop
2088             // // _must_reloc   = true;
2089             _reloc_form   = RELOC_IMMEDIATE;
2090             _reloc_type   = AdlcVMDeps::oop_reloc_type();
2091           } else {
2092             // No relocation information needed
2093           }
2094         } else {
2095           // User-provided literals may not require relocation information !!!!!
2096           assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
2097         }
2098       }
2099       else if ( strcmp(rep_var,"$label") == 0 ) {
2100         // Calls containing labels require relocation
2101         if ( _inst.is_ideal_call() )  {
2102           _may_reloc    = true;
2103           // !!!!! !!!!!
2104           _reloc_type   = AdlcVMDeps::none_reloc_type();
2105         }
2106       }
2107 
2108       // literal register parameter must be accessed as a 'reg' field.
2109       if ( _reg_status != LITERAL_NOT_SEEN ) {
2110         assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
2111         if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
2112           _reg_status  = LITERAL_ACCESSED;
2113         } else {
2114           _AD.syntax_err(_encoding._linenum,
2115                          "Invalid access to literal register parameter '%s' in %s.\n",
2116                          rep_var, _encoding._name);
2117           assert( false, "invalid access to literal register parameter");
2118         }
2119       }
2120       // literal constant parameters must be accessed as a 'constant' field
2121       if (_constant_status != LITERAL_NOT_SEEN) {
2122         assert(_constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
2123         if (strcmp(rep_var,"$constant") == 0) {
2124           _constant_status = LITERAL_ACCESSED;
2125         } else {
2126           _AD.syntax_err(_encoding._linenum,
2127                          "Invalid access to literal constant parameter '%s' in %s.\n",
2128                          rep_var, _encoding._name);
2129         }
2130       }
2131     } // end replacement and/or subfield
2132 
2133   }
2134 
2135   void add_rep_var(const char *rep_var) {
2136     // Handle subfield and replacement variables.
2137     if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
2138       // Check for emit prefix, '$$emit32'
2139       assert( _cleared, "Can not nest $$$emit32");
2140       if ( strcmp(rep_var,"$$emit32") == 0 ) {
2141         _doing_emit_d32 = true;
2142       }
2143       else if ( strcmp(rep_var,"$$emit16") == 0 ) {
2144         _doing_emit_d16 = true;
2145       }
2146       else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
2147         _doing_emit_hi  = true;
2148       }
2149       else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
2150         _doing_emit_lo  = true;
2151       }
2152       else if ( strcmp(rep_var,"$$emit8") == 0 ) {
2153         _doing_emit8    = true;
2154       }
2155       else {
2156         _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
2157         assert( false, "fatal();");
2158       }
2159     }
2160     else {
2161       // Update state for replacement variables
2162       update_state( rep_var );
2163       _strings_to_emit.addName(rep_var);
2164     }
2165     _cleared  = false;
2166   }
2167 
2168   void emit_replacement() {
2169     // A replacement variable or one of its subfields
2170     // Obtain replacement variable from list
2171     // const char *ec_rep_var = encoding->_rep_vars.iter();
2172     const char *rep_var;
2173     _strings_to_emit.reset();
2174     while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
2175 
2176       if ( (*rep_var) == '$' ) {
2177         // A subfield variable, '$$' prefix
2178         emit_field( rep_var );
2179       } else {
2180         if (_strings_to_emit.peek() != NULL &&
2181             strcmp(_strings_to_emit.peek(), "$Address") == 0) {
2182           fprintf(_fp, "Address::make_raw(");
2183 
2184           emit_rep_var( rep_var );
2185           fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
2186 
2187           _reg_status = LITERAL_ACCESSED;
2188           emit_rep_var( rep_var );
2189           fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
2190 
2191           _reg_status = LITERAL_ACCESSED;
2192           emit_rep_var( rep_var );
2193           fprintf(_fp,"->scale(), ");
2194 
2195           _reg_status = LITERAL_ACCESSED;
2196           emit_rep_var( rep_var );
2197           Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2198           if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2199             fprintf(_fp,"->disp(ra_,this,0), ");
2200           } else {
2201             fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
2202           }
2203 
2204           _reg_status = LITERAL_ACCESSED;
2205           emit_rep_var( rep_var );
2206           fprintf(_fp,"->disp_reloc())");
2207 
2208           // skip trailing $Address
2209           _strings_to_emit.iter();
2210         } else {
2211           // A replacement variable, '$' prefix
2212           const char* next = _strings_to_emit.peek();
2213           const char* next2 = _strings_to_emit.peek(2);
2214           if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
2215               (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
2216             // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
2217             // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
2218             fprintf(_fp, "as_Register(");
2219             // emit the operand reference
2220             emit_rep_var( rep_var );
2221             rep_var = _strings_to_emit.iter();
2222             assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
2223             // handle base or index
2224             emit_field(rep_var);
2225             rep_var = _strings_to_emit.iter();
2226             assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
2227             // close up the parens
2228             fprintf(_fp, ")");
2229           } else {
2230             emit_rep_var( rep_var );
2231           }
2232         }
2233       } // end replacement and/or subfield
2234     }
2235   }
2236 
2237   void emit_reloc_type(const char* type) {
2238     fprintf(_fp, "%s", type)
2239       ;
2240   }
2241 
2242 
2243   void emit() {
2244     //
2245     //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
2246     //
2247     // Emit the function name when generating an emit function
2248     if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
2249       const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
2250       // In general, relocatable isn't known at compiler compile time.
2251       // Check results of prior scan
2252       if ( ! _may_reloc ) {
2253         // Definitely don't need relocation information
2254         fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
2255         emit_replacement(); fprintf(_fp, ")");
2256       }
2257       else {
2258         // Emit RUNTIME CHECK to see if value needs relocation info
2259         // If emitting a relocatable address, use 'emit_d32_reloc'
2260         const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
2261         assert( (_doing_disp || _doing_constant)
2262                 && !(_doing_disp && _doing_constant),
2263                 "Must be emitting either a displacement or a constant");
2264         fprintf(_fp,"\n");
2265         fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
2266                 _operand_idx, disp_constant);
2267         fprintf(_fp,"  ");
2268         fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
2269         emit_replacement();             fprintf(_fp,", ");
2270         fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
2271                 _operand_idx, disp_constant);
2272         fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
2273         fprintf(_fp,"\n");
2274         fprintf(_fp,"} else {\n");
2275         fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
2276         emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
2277       }
2278     }
2279     else if ( _doing_emit_d16 ) {
2280       // Relocation of 16-bit values is not supported
2281       fprintf(_fp,"emit_d16(cbuf, ");
2282       emit_replacement(); fprintf(_fp, ")");
2283       // No relocation done for 16-bit values
2284     }
2285     else if ( _doing_emit8 ) {
2286       // Relocation of 8-bit values is not supported
2287       fprintf(_fp,"emit_d8(cbuf, ");
2288       emit_replacement(); fprintf(_fp, ")");
2289       // No relocation done for 8-bit values
2290     }
2291     else {
2292       // Not an emit# command, just output the replacement string.
2293       emit_replacement();
2294     }
2295 
2296     // Get ready for next state collection.
2297     clear();
2298   }
2299 
2300 private:
2301 
2302   // recognizes names which represent MacroAssembler register types
2303   // and return the conversion function to build them from OptoReg
2304   const char* reg_conversion(const char* rep_var) {
2305     if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
2306     if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
2307 #if defined(IA32) || defined(AMD64)
2308     if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
2309 #endif
2310     if (strcmp(rep_var,"$CondRegister") == 0)  return "as_ConditionRegister";
2311     return NULL;
2312   }
2313 
2314   void emit_field(const char *rep_var) {
2315     const char* reg_convert = reg_conversion(rep_var);
2316 
2317     // A subfield variable, '$$subfield'
2318     if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
2319       // $reg form or the $Register MacroAssembler type conversions
2320       assert( _operand_idx != -1,
2321               "Must use this subfield after operand");
2322       if( _reg_status == LITERAL_NOT_SEEN ) {
2323         if (_processing_noninput) {
2324           const Form  *local     = _inst._localNames[_operand_name];
2325           OperandForm *oper      = local->is_operand();
2326           const RegDef* first = oper->get_RegClass()->find_first_elem();
2327           if (reg_convert != NULL) {
2328             fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
2329           } else {
2330             fprintf(_fp, "%s_enc", first->_regname);
2331           }
2332         } else {
2333           fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
2334           // Add parameter for index position, if not result operand
2335           if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
2336           fprintf(_fp,")");
2337           fprintf(_fp, "/* %s */", _operand_name);
2338         }
2339       } else {
2340         assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
2341         // Register literal has already been sent to output file, nothing more needed
2342       }
2343     }
2344     else if ( strcmp(rep_var,"$base") == 0 ) {
2345       assert( _operand_idx != -1,
2346               "Must use this subfield after operand");
2347       assert( ! _may_reloc, "UnImplemented()");
2348       fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
2349     }
2350     else if ( strcmp(rep_var,"$index") == 0 ) {
2351       assert( _operand_idx != -1,
2352               "Must use this subfield after operand");
2353       assert( ! _may_reloc, "UnImplemented()");
2354       fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
2355     }
2356     else if ( strcmp(rep_var,"$scale") == 0 ) {
2357       assert( ! _may_reloc, "UnImplemented()");
2358       fprintf(_fp,"->scale()");
2359     }
2360     else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
2361       assert( ! _may_reloc, "UnImplemented()");
2362       fprintf(_fp,"->ccode()");
2363     }
2364     else if ( strcmp(rep_var,"$constant") == 0 ) {
2365       if( _constant_status == LITERAL_NOT_SEEN ) {
2366         if ( _constant_type == Form::idealD ) {
2367           fprintf(_fp,"->constantD()");
2368         } else if ( _constant_type == Form::idealF ) {
2369           fprintf(_fp,"->constantF()");
2370         } else if ( _constant_type == Form::idealL ) {
2371           fprintf(_fp,"->constantL()");
2372         } else {
2373           fprintf(_fp,"->constant()");
2374         }
2375       } else {
2376         assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
2377         // Constant literal has already been sent to output file, nothing more needed
2378       }
2379     }
2380     else if ( strcmp(rep_var,"$disp") == 0 ) {
2381       Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2382       if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2383         fprintf(_fp,"->disp(ra_,this,0)");
2384       } else {
2385         fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
2386       }
2387     }
2388     else if ( strcmp(rep_var,"$label") == 0 ) {
2389       fprintf(_fp,"->label()");
2390     }
2391     else if ( strcmp(rep_var,"$method") == 0 ) {
2392       fprintf(_fp,"->method()");
2393     }
2394     else {
2395       printf("emit_field: %s\n",rep_var);
2396       globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
2397                            rep_var, _inst._ident);
2398       assert( false, "UnImplemented()");
2399     }
2400   }
2401 
2402 
2403   void emit_rep_var(const char *rep_var) {
2404     _processing_noninput = false;
2405     // A replacement variable, originally '$'
2406     if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
2407       if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
2408         // Missing opcode
2409         _AD.syntax_err( _inst._linenum,
2410                         "Missing $%s opcode definition in %s, used by encoding %s\n",
2411                         rep_var, _inst._ident, _encoding._name);
2412       }
2413     }
2414     else if (strcmp(rep_var, "constanttablebase") == 0) {
2415       fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
2416     }
2417     else if (strcmp(rep_var, "constantoffset") == 0) {
2418       fprintf(_fp, "constant_offset()");
2419     }
2420     else if (strcmp(rep_var, "constantaddress") == 0) {
2421       fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
2422     }
2423     else {
2424       // Lookup its position in parameter list
2425       int   param_no  = _encoding.rep_var_index(rep_var);
2426       if ( param_no == -1 ) {
2427         _AD.syntax_err( _encoding._linenum,
2428                         "Replacement variable %s not found in enc_class %s.\n",
2429                         rep_var, _encoding._name);
2430       }
2431       // Lookup the corresponding ins_encode parameter
2432       const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
2433 
2434       // Check if instruction's actual parameter is a local name in the instruction
2435       const Form  *local     = _inst._localNames[inst_rep_var];
2436       OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
2437       // Note: assert removed to allow constant and symbolic parameters
2438       // assert( opc, "replacement variable was not found in local names");
2439       // Lookup the index position iff the replacement variable is a localName
2440       int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
2441       if( idx != -1 ) {
2442         if (_inst.is_noninput_operand(idx)) {
2443           // This operand isn't a normal input so printing it is done
2444           // specially.
2445           _processing_noninput = true;
2446         } else {
2447           // Output the emit code for this operand
2448           fprintf(_fp,"opnd_array(%d)",idx);
2449         }
2450         assert( _operand == opc->is_operand(),
2451                 "Previous emit $operand does not match current");
2452       }
2453       else if( ADLParser::is_literal_constant(inst_rep_var) ) {
2454         // else check if it is a constant expression
2455         // Removed following assert to allow primitive C types as arguments to encodings
2456         // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2457         fprintf(_fp,"(%s)", inst_rep_var);
2458         _constant_status = LITERAL_OUTPUT;
2459       }
2460       else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2461         // else check if "primary", "secondary", "tertiary"
2462         assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2463         if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
2464           // Missing opcode
2465           _AD.syntax_err( _inst._linenum,
2466                           "Missing $%s opcode definition in %s\n",
2467                           rep_var, _inst._ident);
2468 
2469         }
2470         _constant_status = LITERAL_OUTPUT;
2471       }
2472       else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2473         // Instruction provided a literal register name for this parameter
2474         // Check that encoding specifies $$$reg to resolve.as register.
2475         assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
2476         fprintf(_fp,"(%s_enc)", inst_rep_var);
2477         _reg_status = LITERAL_OUTPUT;
2478       }
2479       else {
2480         // Check for unimplemented functionality before hard failure
2481         assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
2482         assert( false, "ShouldNotReachHere()");
2483       }
2484       // all done
2485     }
2486   }
2487 
2488 };  // end class DefineEmitState
2489 
2490 
2491 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
2492 
2493   //(1)
2494   // Output instruction's emit prototype
2495   fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
2496           inst._ident);
2497 
2498   fprintf(fp, "  assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
2499 
2500   //(2)
2501   // Print the size
2502   fprintf(fp, "  return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
2503 
2504   // (3) and (4)
2505   fprintf(fp,"}\n\n");
2506 }
2507 
2508 // Emit postalloc expand function.
2509 void ArchDesc::define_postalloc_expand(FILE *fp, InstructForm &inst) {
2510   InsEncode *ins_encode = inst._insencode;
2511 
2512   // Output instruction's postalloc_expand prototype.
2513   fprintf(fp, "void  %sNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {\n",
2514           inst._ident);
2515 
2516   assert((_encode != NULL) && (ins_encode != NULL), "You must define an encode section.");
2517 
2518   // Output each operand's offset into the array of registers.
2519   inst.index_temps(fp, _globalNames);
2520 
2521   // Output variables "unsigned idx_<par_name>", Node *n_<par_name> and "MachOpnd *op_<par_name>"
2522   // for each parameter <par_name> specified in the encoding.
2523   ins_encode->reset();
2524   const char *ec_name = ins_encode->encode_class_iter();
2525   assert(ec_name != NULL, "Postalloc expand must specify an encoding.");
2526 
2527   EncClass *encoding = _encode->encClass(ec_name);
2528   if (encoding == NULL) {
2529     fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2530     abort();
2531   }
2532   if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
2533     globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2534                          inst._ident, ins_encode->current_encoding_num_args(),
2535                          ec_name, encoding->num_args());
2536   }
2537 
2538   fprintf(fp, "  // Access to ins and operands for postalloc expand.\n");
2539   const int buflen = 2000;
2540   char idxbuf[buflen]; char *ib = idxbuf; idxbuf[0] = '\0';
2541   char nbuf  [buflen]; char *nb = nbuf;   nbuf[0]   = '\0';
2542   char opbuf [buflen]; char *ob = opbuf;  opbuf[0]  = '\0';
2543 
2544   encoding->_parameter_type.reset();
2545   encoding->_parameter_name.reset();
2546   const char *type = encoding->_parameter_type.iter();
2547   const char *name = encoding->_parameter_name.iter();
2548   int param_no = 0;
2549   for (; (type != NULL) && (name != NULL);
2550        (type = encoding->_parameter_type.iter()), (name = encoding->_parameter_name.iter())) {
2551     const char* arg_name = ins_encode->rep_var_name(inst, param_no);
2552     int idx = inst.operand_position_format(arg_name);
2553     if (strcmp(arg_name, "constanttablebase") == 0) {
2554       ib += sprintf(ib, "  unsigned idx_%-5s = mach_constant_base_node_input(); \t// %s, \t%s\n",
2555                     name, type, arg_name);
2556       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
2557       // There is no operand for the constanttablebase.
2558     } else if (inst.is_noninput_operand(idx)) {
2559       globalAD->syntax_err(inst._linenum,
2560                            "In %s: you can not pass the non-input %s to a postalloc expand encoding.\n",
2561                            inst._ident, arg_name);
2562     } else {
2563       ib += sprintf(ib, "  unsigned idx_%-5s = idx%d; \t// %s, \t%s\n",
2564                     name, idx, type, arg_name);
2565       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
2566       ob += sprintf(ob, "  %sOper *op_%s = (%sOper *)opnd_array(%d);\n", type, name, type, idx);
2567     }
2568     param_no++;
2569   }
2570   assert(ib < &idxbuf[buflen-1] && nb < &nbuf[buflen-1] && ob < &opbuf[buflen-1], "buffer overflow");
2571 
2572   fprintf(fp, "%s", idxbuf);
2573   fprintf(fp, "  Node    *n_region  = lookup(0);\n");
2574   fprintf(fp, "%s%s", nbuf, opbuf);
2575   fprintf(fp, "  Compile *C = ra_->C;\n");
2576 
2577   // Output this instruction's encodings.
2578   fprintf(fp, "  {");
2579   const char *ec_code    = NULL;
2580   const char *ec_rep_var = NULL;
2581   assert(encoding == _encode->encClass(ec_name), "");
2582 
2583   DefineEmitState pending(fp, *this, *encoding, *ins_encode, inst);
2584   encoding->_code.reset();
2585   encoding->_rep_vars.reset();
2586   // Process list of user-defined strings,
2587   // and occurrences of replacement variables.
2588   // Replacement Vars are pushed into a list and then output.
2589   while ((ec_code = encoding->_code.iter()) != NULL) {
2590     if (! encoding->_code.is_signal(ec_code)) {
2591       // Emit pending code.
2592       pending.emit();
2593       pending.clear();
2594       // Emit this code section.
2595       fprintf(fp, "%s", ec_code);
2596     } else {
2597       // A replacement variable or one of its subfields.
2598       // Obtain replacement variable from list.
2599       ec_rep_var = encoding->_rep_vars.iter();
2600       pending.add_rep_var(ec_rep_var);
2601     }
2602   }
2603   // Emit pending code.
2604   pending.emit();
2605   pending.clear();
2606   fprintf(fp, "  }\n");
2607 
2608   fprintf(fp, "}\n\n");
2609 
2610   ec_name = ins_encode->encode_class_iter();
2611   assert(ec_name == NULL, "Postalloc expand may only have one encoding.");
2612 }
2613 
2614 // defineEmit -----------------------------------------------------------------
2615 void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
2616   InsEncode* encode = inst._insencode;
2617 
2618   // (1)
2619   // Output instruction's emit prototype
2620   fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
2621 
2622   // If user did not define an encode section,
2623   // provide stub that does not generate any machine code.
2624   if( (_encode == NULL) || (encode == NULL) ) {
2625     fprintf(fp, "  // User did not define an encode section.\n");
2626     fprintf(fp, "}\n");
2627     return;
2628   }
2629 
2630   // Save current instruction's starting address (helps with relocation).
2631   fprintf(fp, "  cbuf.set_insts_mark();\n");
2632 
2633   // For MachConstantNodes which are ideal jump nodes, fill the jump table.
2634   if (inst.is_mach_constant() && inst.is_ideal_jump()) {
2635     fprintf(fp, "  ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
2636   }
2637 
2638   // Output each operand's offset into the array of registers.
2639   inst.index_temps(fp, _globalNames);
2640 
2641   // Output this instruction's encodings
2642   const char *ec_name;
2643   bool        user_defined = false;
2644   encode->reset();
2645   while ((ec_name = encode->encode_class_iter()) != NULL) {
2646     fprintf(fp, "  {\n");
2647     // Output user-defined encoding
2648     user_defined           = true;
2649 
2650     const char *ec_code    = NULL;
2651     const char *ec_rep_var = NULL;
2652     EncClass   *encoding   = _encode->encClass(ec_name);
2653     if (encoding == NULL) {
2654       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2655       abort();
2656     }
2657 
2658     if (encode->current_encoding_num_args() != encoding->num_args()) {
2659       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2660                            inst._ident, encode->current_encoding_num_args(),
2661                            ec_name, encoding->num_args());
2662     }
2663 
2664     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2665     encoding->_code.reset();
2666     encoding->_rep_vars.reset();
2667     // Process list of user-defined strings,
2668     // and occurrences of replacement variables.
2669     // Replacement Vars are pushed into a list and then output
2670     while ((ec_code = encoding->_code.iter()) != NULL) {
2671       if (!encoding->_code.is_signal(ec_code)) {
2672         // Emit pending code
2673         pending.emit();
2674         pending.clear();
2675         // Emit this code section
2676         fprintf(fp, "%s", ec_code);
2677       } else {
2678         // A replacement variable or one of its subfields
2679         // Obtain replacement variable from list
2680         ec_rep_var  = encoding->_rep_vars.iter();
2681         pending.add_rep_var(ec_rep_var);
2682       }
2683     }
2684     // Emit pending code
2685     pending.emit();
2686     pending.clear();
2687     fprintf(fp, "  }\n");
2688   } // end while instruction's encodings
2689 
2690   // Check if user stated which encoding to user
2691   if ( user_defined == false ) {
2692     fprintf(fp, "  // User did not define which encode class to use.\n");
2693   }
2694 
2695   // (3) and (4)
2696   fprintf(fp, "}\n\n");
2697 }
2698 
2699 // defineEvalConstant ---------------------------------------------------------
2700 void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
2701   InsEncode* encode = inst._constant;
2702 
2703   // (1)
2704   // Output instruction's emit prototype
2705   fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
2706 
2707   // For ideal jump nodes, add a jump-table entry.
2708   if (inst.is_ideal_jump()) {
2709     fprintf(fp, "  _constant = C->constant_table().add_jump_table(this);\n");
2710   }
2711 
2712   // If user did not define an encode section,
2713   // provide stub that does not generate any machine code.
2714   if ((_encode == NULL) || (encode == NULL)) {
2715     fprintf(fp, "  // User did not define an encode section.\n");
2716     fprintf(fp, "}\n");
2717     return;
2718   }
2719 
2720   // Output this instruction's encodings
2721   const char *ec_name;
2722   bool        user_defined = false;
2723   encode->reset();
2724   while ((ec_name = encode->encode_class_iter()) != NULL) {
2725     fprintf(fp, "  {\n");
2726     // Output user-defined encoding
2727     user_defined           = true;
2728 
2729     const char *ec_code    = NULL;
2730     const char *ec_rep_var = NULL;
2731     EncClass   *encoding   = _encode->encClass(ec_name);
2732     if (encoding == NULL) {
2733       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2734       abort();
2735     }
2736 
2737     if (encode->current_encoding_num_args() != encoding->num_args()) {
2738       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2739                            inst._ident, encode->current_encoding_num_args(),
2740                            ec_name, encoding->num_args());
2741     }
2742 
2743     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2744     encoding->_code.reset();
2745     encoding->_rep_vars.reset();
2746     // Process list of user-defined strings,
2747     // and occurrences of replacement variables.
2748     // Replacement Vars are pushed into a list and then output
2749     while ((ec_code = encoding->_code.iter()) != NULL) {
2750       if (!encoding->_code.is_signal(ec_code)) {
2751         // Emit pending code
2752         pending.emit();
2753         pending.clear();
2754         // Emit this code section
2755         fprintf(fp, "%s", ec_code);
2756       } else {
2757         // A replacement variable or one of its subfields
2758         // Obtain replacement variable from list
2759         ec_rep_var  = encoding->_rep_vars.iter();
2760         pending.add_rep_var(ec_rep_var);
2761       }
2762     }
2763     // Emit pending code
2764     pending.emit();
2765     pending.clear();
2766     fprintf(fp, "  }\n");
2767   } // end while instruction's encodings
2768 
2769   // Check if user stated which encoding to user
2770   if (user_defined == false) {
2771     fprintf(fp, "  // User did not define which encode class to use.\n");
2772   }
2773 
2774   // (3) and (4)
2775   fprintf(fp, "}\n");
2776 }
2777 
2778 // ---------------------------------------------------------------------------
2779 //--------Utilities to build MachOper and MachNode derived Classes------------
2780 // ---------------------------------------------------------------------------
2781 
2782 //------------------------------Utilities to build Operand Classes------------
2783 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
2784   uint num_edges = oper.num_edges(globals);
2785   if( num_edges != 0 ) {
2786     // Method header
2787     fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
2788             oper._ident);
2789 
2790     // Assert that the index is in range.
2791     fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
2792             num_edges);
2793 
2794     // Figure out if all RegMasks are the same.
2795     const char* first_reg_class = oper.in_reg_class(0, globals);
2796     bool all_same = true;
2797     assert(first_reg_class != NULL, "did not find register mask");
2798 
2799     for (uint index = 1; all_same && index < num_edges; index++) {
2800       const char* some_reg_class = oper.in_reg_class(index, globals);
2801       assert(some_reg_class != NULL, "did not find register mask");
2802       if (strcmp(first_reg_class, some_reg_class) != 0) {
2803         all_same = false;
2804       }
2805     }
2806 
2807     if (all_same) {
2808       // Return the sole RegMask.
2809       if (strcmp(first_reg_class, "stack_slots") == 0) {
2810         fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
2811       } else {
2812         const char* first_reg_class_to_upper = toUpper(first_reg_class);
2813         fprintf(fp,"  return &%s_mask();\n", first_reg_class_to_upper);
2814         delete[] first_reg_class_to_upper;
2815       }
2816     } else {
2817       // Build a switch statement to return the desired mask.
2818       fprintf(fp,"  switch (index) {\n");
2819 
2820       for (uint index = 0; index < num_edges; index++) {
2821         const char *reg_class = oper.in_reg_class(index, globals);
2822         assert(reg_class != NULL, "did not find register mask");
2823         if( !strcmp(reg_class, "stack_slots") ) {
2824           fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
2825         } else {
2826           const char* reg_class_to_upper = toUpper(reg_class);
2827           fprintf(fp, "  case %d: return &%s_mask();\n", index, reg_class_to_upper);
2828           delete[] reg_class_to_upper;
2829         }
2830       }
2831       fprintf(fp,"  }\n");
2832       fprintf(fp,"  ShouldNotReachHere();\n");
2833       fprintf(fp,"  return NULL;\n");
2834     }
2835 
2836     // Method close
2837     fprintf(fp, "}\n\n");
2838   }
2839 }
2840 
2841 // generate code to create a clone for a class derived from MachOper
2842 //
2843 // (0)  MachOper  *MachOperXOper::clone() const {
2844 // (1)    return new MachXOper( _ccode, _c0, _c1, ..., _cn);
2845 // (2)  }
2846 //
2847 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
2848   fprintf(fp,"MachOper *%sOper::clone() const {\n", oper._ident);
2849   // Check for constants that need to be copied over
2850   const int  num_consts    = oper.num_consts(globalNames);
2851   const bool is_ideal_bool = oper.is_ideal_bool();
2852   if( (num_consts > 0) ) {
2853     fprintf(fp,"  return new %sOper(", oper._ident);
2854     // generate parameters for constants
2855     int i = 0;
2856     fprintf(fp,"_c%d", i);
2857     for( i = 1; i < num_consts; ++i) {
2858       fprintf(fp,", _c%d", i);
2859     }
2860     // finish line (1)
2861     fprintf(fp,");\n");
2862   }
2863   else {
2864     assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
2865     fprintf(fp,"  return new %sOper();\n", oper._ident);
2866   }
2867   // finish method
2868   fprintf(fp,"}\n");
2869 }
2870 
2871 // Helper functions for bug 4796752, abstracted with minimal modification
2872 // from define_oper_interface()
2873 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
2874   OperandForm *op = NULL;
2875   // Check for replacement variable
2876   if( *encoding == '$' ) {
2877     // Replacement variable
2878     const char *rep_var = encoding + 1;
2879     // Lookup replacement variable, rep_var, in operand's component list
2880     const Component *comp = oper._components.search(rep_var);
2881     assert( comp != NULL, "Replacement variable not found in components");
2882     // Lookup operand form for replacement variable's type
2883     const char      *type = comp->_type;
2884     Form            *form = (Form*)globals[type];
2885     assert( form != NULL, "Replacement variable's type not found");
2886     op = form->is_operand();
2887     assert( op, "Attempting to emit a non-register or non-constant");
2888   }
2889 
2890   return op;
2891 }
2892 
2893 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
2894   int idx = -1;
2895   // Check for replacement variable
2896   if( *encoding == '$' ) {
2897     // Replacement variable
2898     const char *rep_var = encoding + 1;
2899     // Lookup replacement variable, rep_var, in operand's component list
2900     const Component *comp = oper._components.search(rep_var);
2901     assert( comp != NULL, "Replacement variable not found in components");
2902     // Lookup operand form for replacement variable's type
2903     const char      *type = comp->_type;
2904     Form            *form = (Form*)globals[type];
2905     assert( form != NULL, "Replacement variable's type not found");
2906     OperandForm *op = form->is_operand();
2907     assert( op, "Attempting to emit a non-register or non-constant");
2908     // Check that this is a constant and find constant's index:
2909     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2910       idx  = oper.constant_position(globals, comp);
2911     }
2912   }
2913 
2914   return idx;
2915 }
2916 
2917 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
2918   bool is_regI = false;
2919 
2920   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2921   if( op != NULL ) {
2922     // Check that this is a register
2923     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2924       // Register
2925       const char* ideal  = op->ideal_type(globals);
2926       is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
2927     }
2928   }
2929 
2930   return is_regI;
2931 }
2932 
2933 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
2934   bool is_conP = false;
2935 
2936   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2937   if( op != NULL ) {
2938     // Check that this is a constant pointer
2939     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2940       // Constant
2941       Form::DataType dtype = op->is_base_constant(globals);
2942       is_conP = (dtype == Form::idealP);
2943     }
2944   }
2945 
2946   return is_conP;
2947 }
2948 
2949 
2950 // Define a MachOper interface methods
2951 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
2952                                      const char *name, const char *encoding) {
2953   bool emit_position = false;
2954   int position = -1;
2955 
2956   fprintf(fp,"  virtual int            %s", name);
2957   // Generate access method for base, index, scale, disp, ...
2958   if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
2959     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2960     emit_position = true;
2961   } else if ( (strcmp(name,"disp") == 0) ) {
2962     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2963   } else {
2964     fprintf(fp, "() const {\n");
2965   }
2966 
2967   // Check for hexadecimal value OR replacement variable
2968   if( *encoding == '$' ) {
2969     // Replacement variable
2970     const char *rep_var = encoding + 1;
2971     fprintf(fp,"    // Replacement variable: %s\n", encoding+1);
2972     // Lookup replacement variable, rep_var, in operand's component list
2973     const Component *comp = oper._components.search(rep_var);
2974     assert( comp != NULL, "Replacement variable not found in components");
2975     // Lookup operand form for replacement variable's type
2976     const char      *type = comp->_type;
2977     Form            *form = (Form*)globals[type];
2978     assert( form != NULL, "Replacement variable's type not found");
2979     OperandForm *op = form->is_operand();
2980     assert( op, "Attempting to emit a non-register or non-constant");
2981     // Check that this is a register or a constant and generate code:
2982     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2983       // Register
2984       int idx_offset = oper.register_position( globals, rep_var);
2985       position = idx_offset;
2986       fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
2987       if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
2988       fprintf(fp,"));\n");
2989     } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
2990       // StackSlot for an sReg comes either from input node or from self, when idx==0
2991       fprintf(fp,"    if( idx != 0 ) {\n");
2992       fprintf(fp,"      // Access stack offset (register number) for input operand\n");
2993       fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
2994       fprintf(fp,"    }\n");
2995       fprintf(fp,"    // Access stack offset (register number) from myself\n");
2996       fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
2997     } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2998       // Constant
2999       // Check which constant this name maps to: _c0, _c1, ..., _cn
3000       const int idx = oper.constant_position(globals, comp);
3001       assert( idx != -1, "Constant component not found in operand");
3002       // Output code for this constant, type dependent.
3003       fprintf(fp,"    return (int)" );
3004       oper.access_constant(fp, globals, (uint)idx /* , const_type */);
3005       fprintf(fp,";\n");
3006     } else {
3007       assert( false, "Attempting to emit a non-register or non-constant");
3008     }
3009   }
3010   else if( *encoding == '0' && *(encoding+1) == 'x' ) {
3011     // Hex value
3012     fprintf(fp,"    return %s;\n", encoding);
3013   } else {
3014     globalAD->syntax_err(oper._linenum, "In operand %s: Do not support this encode constant: '%s' for %s.",
3015                          oper._ident, encoding, name);
3016     assert( false, "Do not support octal or decimal encode constants");
3017   }
3018   fprintf(fp,"  }\n");
3019 
3020   if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
3021     fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
3022     MemInterface *mem_interface = oper._interface->is_MemInterface();
3023     const char *base = mem_interface->_base;
3024     const char *disp = mem_interface->_disp;
3025     if( emit_position && (strcmp(name,"base") == 0)
3026         && base != NULL && is_regI(base, oper, globals)
3027         && disp != NULL && is_conP(disp, oper, globals) ) {
3028       // Found a memory access using a constant pointer for a displacement
3029       // and a base register containing an integer offset.
3030       // In this case the base and disp are reversed with respect to what
3031       // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
3032       // Provide a non-NULL return for disp_as_type() that will allow adr_type()
3033       // to correctly compute the access type for alias analysis.
3034       //
3035       // See BugId 4796752, operand indOffset32X in i486.ad
3036       int idx = rep_var_to_constant_index(disp, oper, globals);
3037       fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
3038     }
3039   }
3040 }
3041 
3042 //
3043 // Construct the method to copy _idx, inputs and operands to new node.
3044 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
3045   fprintf(fp_cpp, "\n");
3046   fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
3047   fprintf(fp_cpp, "void MachNode::fill_new_machnode(MachNode* node) const {\n");
3048   if( !used ) {
3049     fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
3050     fprintf(fp_cpp, "  ShouldNotCallThis();\n");
3051     fprintf(fp_cpp, "}\n");
3052   } else {
3053     // New node must use same node index for access through allocator's tables
3054     fprintf(fp_cpp, "  // New node must use same node index\n");
3055     fprintf(fp_cpp, "  node->set_idx( _idx );\n");
3056     // Copy machine-independent inputs
3057     fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
3058     fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
3059     fprintf(fp_cpp, "    node->add_req(in(j));\n");
3060     fprintf(fp_cpp, "  }\n");
3061     // Copy machine operands to new MachNode
3062     fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
3063     fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
3064     fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
3065     fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
3066     fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
3067     fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
3068     fprintf(fp_cpp, "      to[i] = _opnds[i]->clone();\n");
3069     fprintf(fp_cpp, "  }\n");
3070     fprintf(fp_cpp, "}\n");
3071   }
3072   fprintf(fp_cpp, "\n");
3073 }
3074 
3075 //------------------------------defineClasses----------------------------------
3076 // Define members of MachNode and MachOper classes based on
3077 // operand and instruction lists
3078 void ArchDesc::defineClasses(FILE *fp) {
3079 
3080   // Define the contents of an array containing the machine register names
3081   defineRegNames(fp, _register);
3082   // Define an array containing the machine register encoding values
3083   defineRegEncodes(fp, _register);
3084   // Generate an enumeration of user-defined register classes
3085   // and a list of register masks, one for each class.
3086   // Only define the RegMask value objects in the expand file.
3087   // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
3088   declare_register_masks(_HPP_file._fp);
3089   // build_register_masks(fp);
3090   build_register_masks(_CPP_EXPAND_file._fp);
3091   // Define the pipe_classes
3092   build_pipe_classes(_CPP_PIPELINE_file._fp);
3093 
3094   // Generate Machine Classes for each operand defined in AD file
3095   fprintf(fp,"\n");
3096   fprintf(fp,"\n");
3097   fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
3098   // Iterate through all operands
3099   _operands.reset();
3100   OperandForm *oper;
3101   for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
3102     // Ensure this is a machine-world instruction
3103     if ( oper->ideal_only() ) continue;
3104     // !!!!!
3105     // The declaration of labelOper is in machine-independent file: machnode
3106     if ( strcmp(oper->_ident,"label") == 0 ) {
3107       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3108 
3109       fprintf(fp,"MachOper  *%sOper::clone() const {\n", oper->_ident);
3110       fprintf(fp,"  return  new %sOper(_label, _block_num);\n", oper->_ident);
3111       fprintf(fp,"}\n");
3112 
3113       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3114               oper->_ident, machOperEnum(oper->_ident));
3115       // // Currently all XXXOper::Hash() methods are identical (990820)
3116       // define_hash(fp, oper->_ident);
3117       // // Currently all XXXOper::Cmp() methods are identical (990820)
3118       // define_cmp(fp, oper->_ident);
3119       fprintf(fp,"\n");
3120 
3121       continue;
3122     }
3123 
3124     // The declaration of methodOper is in machine-independent file: machnode
3125     if ( strcmp(oper->_ident,"method") == 0 ) {
3126       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3127 
3128       fprintf(fp,"MachOper  *%sOper::clone() const {\n", oper->_ident);
3129       fprintf(fp,"  return  new %sOper(_method);\n", oper->_ident);
3130       fprintf(fp,"}\n");
3131 
3132       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3133               oper->_ident, machOperEnum(oper->_ident));
3134       // // Currently all XXXOper::Hash() methods are identical (990820)
3135       // define_hash(fp, oper->_ident);
3136       // // Currently all XXXOper::Cmp() methods are identical (990820)
3137       // define_cmp(fp, oper->_ident);
3138       fprintf(fp,"\n");
3139 
3140       continue;
3141     }
3142 
3143     defineIn_RegMask(fp, _globalNames, *oper);
3144     defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
3145     // // Currently all XXXOper::Hash() methods are identical (990820)
3146     // define_hash(fp, oper->_ident);
3147     // // Currently all XXXOper::Cmp() methods are identical (990820)
3148     // define_cmp(fp, oper->_ident);
3149 
3150     // side-call to generate output that used to be in the header file:
3151     extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
3152     gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
3153 
3154   }
3155 
3156 
3157   // Generate Machine Classes for each instruction defined in AD file
3158   fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
3159   // Output the definitions for out_RegMask() // & kill_RegMask()
3160   _instructions.reset();
3161   InstructForm *instr;
3162   MachNodeForm *machnode;
3163   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3164     // Ensure this is a machine-world instruction
3165     if ( instr->ideal_only() ) continue;
3166 
3167     defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
3168   }
3169 
3170   bool used = false;
3171   // Output the definitions for expand rules & peephole rules
3172   _instructions.reset();
3173   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3174     // Ensure this is a machine-world instruction
3175     if ( instr->ideal_only() ) continue;
3176     // If there are multiple defs/kills, or an explicit expand rule, build rule
3177     if( instr->expands() || instr->needs_projections() ||
3178         instr->has_temps() ||
3179         instr->is_mach_constant() ||
3180         instr->needs_constant_base() ||
3181         instr->_matrule != NULL &&
3182         instr->num_opnds() != instr->num_unique_opnds() )
3183       defineExpand(_CPP_EXPAND_file._fp, instr);
3184     // If there is an explicit peephole rule, build it
3185     if ( instr->peepholes() )
3186       definePeephole(_CPP_PEEPHOLE_file._fp, instr);
3187 
3188     // Output code to convert to the cisc version, if applicable
3189     used |= instr->define_cisc_version(*this, fp);
3190 
3191     // Output code to convert to the short branch version, if applicable
3192     used |= instr->define_short_branch_methods(*this, fp);
3193   }
3194 
3195   // Construct the method called by cisc_version() to copy inputs and operands.
3196   define_fill_new_machnode(used, fp);
3197 
3198   // Output the definitions for labels
3199   _instructions.reset();
3200   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3201     // Ensure this is a machine-world instruction
3202     if ( instr->ideal_only() ) continue;
3203 
3204     // Access the fields for operand Label
3205     int label_position = instr->label_position();
3206     if( label_position != -1 ) {
3207       // Set the label
3208       fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
3209       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3210               label_position );
3211       fprintf(fp,"  oper->_label     = label;\n");
3212       fprintf(fp,"  oper->_block_num = block_num;\n");
3213       fprintf(fp,"}\n");
3214       // Save the label
3215       fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
3216       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3217               label_position );
3218       fprintf(fp,"  *label = oper->_label;\n");
3219       fprintf(fp,"  *block_num = oper->_block_num;\n");
3220       fprintf(fp,"}\n");
3221     }
3222   }
3223 
3224   // Output the definitions for methods
3225   _instructions.reset();
3226   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3227     // Ensure this is a machine-world instruction
3228     if ( instr->ideal_only() ) continue;
3229 
3230     // Access the fields for operand Label
3231     int method_position = instr->method_position();
3232     if( method_position != -1 ) {
3233       // Access the method's address
3234       fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
3235       fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
3236               method_position );
3237       fprintf(fp,"}\n");
3238       fprintf(fp,"\n");
3239     }
3240   }
3241 
3242   // Define this instruction's number of relocation entries, base is '0'
3243   _instructions.reset();
3244   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3245     // Output the definition for number of relocation entries
3246     uint reloc_size = instr->reloc(_globalNames);
3247     if ( reloc_size != 0 ) {
3248       fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
3249       fprintf(fp,"  return %d;\n", reloc_size);
3250       fprintf(fp,"}\n");
3251       fprintf(fp,"\n");
3252     }
3253   }
3254   fprintf(fp,"\n");
3255 
3256   // Output the definitions for code generation
3257   //
3258   // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
3259   //   // ...  encoding defined by user
3260   //   return ptr;
3261   // }
3262   //
3263   _instructions.reset();
3264   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3265     // Ensure this is a machine-world instruction
3266     if ( instr->ideal_only() ) continue;
3267 
3268     if (instr->_insencode) {
3269       if (instr->postalloc_expands()) {
3270         // Don't write this to _CPP_EXPAND_file, as the code generated calls C-code
3271         // from code sections in ad file that is dumped to fp.
3272         define_postalloc_expand(fp, *instr);
3273       } else {
3274         defineEmit(fp, *instr);
3275       }
3276     }
3277     if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
3278     if (instr->_size)              defineSize        (fp, *instr);
3279 
3280     // side-call to generate output that used to be in the header file:
3281     extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
3282     gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
3283   }
3284 
3285   // Output the definitions for alias analysis
3286   _instructions.reset();
3287   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3288     // Ensure this is a machine-world instruction
3289     if ( instr->ideal_only() ) continue;
3290 
3291     // Analyze machine instructions that either USE or DEF memory.
3292     int memory_operand = instr->memory_operand(_globalNames);
3293     // Some guys kill all of memory
3294     if ( instr->is_wide_memory_kill(_globalNames) ) {
3295       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
3296     }
3297 
3298     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
3299       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
3300         fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
3301         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
3302       } else {
3303         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
3304   }
3305     }
3306   }
3307 
3308   // Get the length of the longest identifier
3309   int max_ident_len = 0;
3310   _instructions.reset();
3311 
3312   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3313     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3314       int ident_len = (int)strlen(instr->_ident);
3315       if( max_ident_len < ident_len )
3316         max_ident_len = ident_len;
3317     }
3318   }
3319 
3320   // Emit specifically for Node(s)
3321   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3322     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3323   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
3324     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3325   fprintf(_CPP_PIPELINE_file._fp, "\n");
3326 
3327   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3328     max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
3329   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
3330     max_ident_len, "MachNode");
3331   fprintf(_CPP_PIPELINE_file._fp, "\n");
3332 
3333   // Output the definitions for machine node specific pipeline data
3334   _machnodes.reset();
3335 
3336   for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
3337     fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3338       machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
3339   }
3340 
3341   fprintf(_CPP_PIPELINE_file._fp, "\n");
3342 
3343   // Output the definitions for instruction pipeline static data references
3344   _instructions.reset();
3345 
3346   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3347     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3348       fprintf(_CPP_PIPELINE_file._fp, "\n");
3349       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
3350         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3351       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3352         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3353     }
3354   }
3355 }
3356 
3357 
3358 // -------------------------------- maps ------------------------------------
3359 
3360 // Information needed to generate the ReduceOp mapping for the DFA
3361 class OutputReduceOp : public OutputMap {
3362 public:
3363   OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3364     : OutputMap(hpp, cpp, globals, AD, "reduceOp") {};
3365 
3366   void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
3367   void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
3368   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3369                        OutputMap::closing();
3370   }
3371   void map(OpClassForm &opc)  {
3372     const char *reduce = opc._ident;
3373     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3374     else          fprintf(_cpp, "  0");
3375   }
3376   void map(OperandForm &oper) {
3377     // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
3378     const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
3379     // operand stackSlot does not have a match rule, but produces a stackSlot
3380     if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
3381     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3382     else          fprintf(_cpp, "  0");
3383   }
3384   void map(InstructForm &inst) {
3385     const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
3386     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3387     else          fprintf(_cpp, "  0");
3388   }
3389   void map(char         *reduce) {
3390     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3391     else          fprintf(_cpp, "  0");
3392   }
3393 };
3394 
3395 // Information needed to generate the LeftOp mapping for the DFA
3396 class OutputLeftOp : public OutputMap {
3397 public:
3398   OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3399     : OutputMap(hpp, cpp, globals, AD, "leftOp") {};
3400 
3401   void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
3402   void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
3403   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3404                        OutputMap::closing();
3405   }
3406   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3407   void map(OperandForm &oper) {
3408     const char *reduce = oper.reduce_left(_globals);
3409     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3410     else          fprintf(_cpp, "  0");
3411   }
3412   void map(char        *name) {
3413     const char *reduce = _AD.reduceLeft(name);
3414     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3415     else          fprintf(_cpp, "  0");
3416   }
3417   void map(InstructForm &inst) {
3418     const char *reduce = inst.reduce_left(_globals);
3419     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3420     else          fprintf(_cpp, "  0");
3421   }
3422 };
3423 
3424 
3425 // Information needed to generate the RightOp mapping for the DFA
3426 class OutputRightOp : public OutputMap {
3427 public:
3428   OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3429     : OutputMap(hpp, cpp, globals, AD, "rightOp") {};
3430 
3431   void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
3432   void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
3433   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3434                        OutputMap::closing();
3435   }
3436   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3437   void map(OperandForm &oper) {
3438     const char *reduce = oper.reduce_right(_globals);
3439     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3440     else          fprintf(_cpp, "  0");
3441   }
3442   void map(char        *name) {
3443     const char *reduce = _AD.reduceRight(name);
3444     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3445     else          fprintf(_cpp, "  0");
3446   }
3447   void map(InstructForm &inst) {
3448     const char *reduce = inst.reduce_right(_globals);
3449     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3450     else          fprintf(_cpp, "  0");
3451   }
3452 };
3453 
3454 
3455 // Information needed to generate the Rule names for the DFA
3456 class OutputRuleName : public OutputMap {
3457 public:
3458   OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3459     : OutputMap(hpp, cpp, globals, AD, "ruleName") {};
3460 
3461   void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
3462   void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
3463   void closing()     { fprintf(_cpp, "  \"invalid rule name\" // no trailing comma\n");
3464                        OutputMap::closing();
3465   }
3466   void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
3467   void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
3468   void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
3469   void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
3470 };
3471 
3472 
3473 // Information needed to generate the swallowed mapping for the DFA
3474 class OutputSwallowed : public OutputMap {
3475 public:
3476   OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3477     : OutputMap(hpp, cpp, globals, AD, "swallowed") {};
3478 
3479   void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
3480   void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
3481   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3482                        OutputMap::closing();
3483   }
3484   void map(OperandForm &oper) { // Generate the entry for this opcode
3485     const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
3486     fprintf(_cpp, "  %s", swallowed);
3487   }
3488   void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
3489   void map(char        *name) { fprintf(_cpp, "  false"); }
3490   void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
3491 };
3492 
3493 
3494 // Information needed to generate the decision array for instruction chain rule
3495 class OutputInstChainRule : public OutputMap {
3496 public:
3497   OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3498     : OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};
3499 
3500   void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
3501   void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
3502   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3503                        OutputMap::closing();
3504   }
3505   void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
3506   void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
3507   void map(char        *name)  { fprintf(_cpp, "  false"); }
3508   void map(InstructForm &inst) { // Check for simple chain rule
3509     const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
3510     fprintf(_cpp, "  %s", chain);
3511   }
3512 };
3513 
3514 
3515 //---------------------------build_map------------------------------------
3516 // Build  mapping from enumeration for densely packed operands
3517 // TO result and child types.
3518 void ArchDesc::build_map(OutputMap &map) {
3519   FILE         *fp_hpp = map.decl_file();
3520   FILE         *fp_cpp = map.def_file();
3521   int           idx    = 0;
3522   OperandForm  *op;
3523   OpClassForm  *opc;
3524   InstructForm *inst;
3525 
3526   // Construct this mapping
3527   map.declaration();
3528   fprintf(fp_cpp,"\n");
3529   map.definition();
3530 
3531   // Output the mapping for operands
3532   map.record_position(OutputMap::BEGIN_OPERANDS, idx );
3533   _operands.reset();
3534   for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3535     // Ensure this is a machine-world instruction
3536     if ( op->ideal_only() )  continue;
3537 
3538     // Generate the entry for this opcode
3539     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
3540     ++idx;
3541   };
3542   fprintf(fp_cpp, "  // last operand\n");
3543 
3544   // Place all user-defined operand classes into the mapping
3545   map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
3546   _opclass.reset();
3547   for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
3548     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
3549     ++idx;
3550   };
3551   fprintf(fp_cpp, "  // last operand class\n");
3552 
3553   // Place all internally defined operands into the mapping
3554   map.record_position(OutputMap::BEGIN_INTERNALS, idx );
3555   _internalOpNames.reset();
3556   char *name = NULL;
3557   for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
3558     fprintf(fp_cpp, "  /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
3559     ++idx;
3560   };
3561   fprintf(fp_cpp, "  // last internally defined operand\n");
3562 
3563   // Place all user-defined instructions into the mapping
3564   if( map.do_instructions() ) {
3565     map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
3566     // Output all simple instruction chain rules first
3567     map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
3568     {
3569       _instructions.reset();
3570       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3571         // Ensure this is a machine-world instruction
3572         if ( inst->ideal_only() )  continue;
3573         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3574         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3575 
3576         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3577         ++idx;
3578       };
3579       map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
3580       _instructions.reset();
3581       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3582         // Ensure this is a machine-world instruction
3583         if ( inst->ideal_only() )  continue;
3584         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3585         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3586 
3587         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3588         ++idx;
3589       };
3590       map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
3591     }
3592     // Output all instructions that are NOT simple chain rules
3593     {
3594       _instructions.reset();
3595       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3596         // Ensure this is a machine-world instruction
3597         if ( inst->ideal_only() )  continue;
3598         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3599         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3600 
3601         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3602         ++idx;
3603       };
3604       map.record_position(OutputMap::END_REMATERIALIZE, idx );
3605       _instructions.reset();
3606       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3607         // Ensure this is a machine-world instruction
3608         if ( inst->ideal_only() )  continue;
3609         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3610         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3611 
3612         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3613         ++idx;
3614       };
3615     }
3616     fprintf(fp_cpp, "  // last instruction\n");
3617     map.record_position(OutputMap::END_INSTRUCTIONS, idx );
3618   }
3619   // Finish defining table
3620   map.closing();
3621 };
3622 
3623 
3624 // Helper function for buildReduceMaps
3625 char reg_save_policy(const char *calling_convention) {
3626   char callconv;
3627 
3628   if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
3629   else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
3630   else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
3631   else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
3632   else                                         callconv = 'Z';
3633 
3634   return callconv;
3635 }
3636 
3637 void ArchDesc::generate_needs_clone_jvms(FILE *fp_cpp) {
3638   fprintf(fp_cpp, "bool Compile::needs_clone_jvms() { return %s; }\n\n",
3639           _needs_clone_jvms ? "true" : "false");
3640 }
3641 
3642 //---------------------------generate_assertion_checks-------------------
3643 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
3644   fprintf(fp_cpp, "\n");
3645 
3646   fprintf(fp_cpp, "#ifndef PRODUCT\n");
3647   fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
3648   globalDefs().print_asserts(fp_cpp);
3649   fprintf(fp_cpp, "}\n");
3650   fprintf(fp_cpp, "#endif\n");
3651   fprintf(fp_cpp, "\n");
3652 }
3653 
3654 //---------------------------addSourceBlocks-----------------------------
3655 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
3656   if (_source.count() > 0)
3657     _source.output(fp_cpp);
3658 
3659   generate_adlc_verification(fp_cpp);
3660 }
3661 //---------------------------addHeaderBlocks-----------------------------
3662 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
3663   if (_header.count() > 0)
3664     _header.output(fp_hpp);
3665 }
3666 //-------------------------addPreHeaderBlocks----------------------------
3667 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
3668   // Output #defines from definition block
3669   globalDefs().print_defines(fp_hpp);
3670 
3671   if (_pre_header.count() > 0)
3672     _pre_header.output(fp_hpp);
3673 }
3674 
3675 //---------------------------buildReduceMaps-----------------------------
3676 // Build  mapping from enumeration for densely packed operands
3677 // TO result and child types.
3678 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
3679   RegDef       *rdef;
3680   RegDef       *next;
3681 
3682   // The emit bodies currently require functions defined in the source block.
3683 
3684   // Build external declarations for mappings
3685   fprintf(fp_hpp, "\n");
3686   fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
3687   fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
3688   fprintf(fp_hpp, "extern const int   register_save_type[];\n");
3689   fprintf(fp_hpp, "\n");
3690 
3691   // Construct Save-Policy array
3692   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
3693   fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
3694   _register->reset_RegDefs();
3695   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3696     next              = _register->iter_RegDefs();
3697     char policy       = reg_save_policy(rdef->_callconv);
3698     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3699     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3700   }
3701   fprintf(fp_cpp, "};\n\n");
3702 
3703   // Construct Native Save-Policy array
3704   fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
3705   fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
3706   _register->reset_RegDefs();
3707   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3708     next        = _register->iter_RegDefs();
3709     char policy = reg_save_policy(rdef->_c_conv);
3710     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3711     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3712   }
3713   fprintf(fp_cpp, "};\n\n");
3714 
3715   // Construct Register Save Type array
3716   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
3717   fprintf(fp_cpp, "const        int register_save_type[] = {\n");
3718   _register->reset_RegDefs();
3719   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3720     next = _register->iter_RegDefs();
3721     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3722     fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
3723   }
3724   fprintf(fp_cpp, "};\n\n");
3725 
3726   // Construct the table for reduceOp
3727   OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
3728   build_map(output_reduce_op);
3729   // Construct the table for leftOp
3730   OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
3731   build_map(output_left_op);
3732   // Construct the table for rightOp
3733   OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
3734   build_map(output_right_op);
3735   // Construct the table of rule names
3736   OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
3737   build_map(output_rule_name);
3738   // Construct the boolean table for subsumed operands
3739   OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
3740   build_map(output_swallowed);
3741   // // // Preserve in case we decide to use this table instead of another
3742   //// Construct the boolean table for instruction chain rules
3743   //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
3744   //build_map(output_inst_chain);
3745 
3746 }
3747 
3748 
3749 //---------------------------buildMachOperGenerator---------------------------
3750 
3751 // Recurse through match tree, building path through corresponding state tree,
3752 // Until we reach the constant we are looking for.
3753 static void path_to_constant(FILE *fp, FormDict &globals,
3754                              MatchNode *mnode, uint idx) {
3755   if ( ! mnode) return;
3756 
3757   unsigned    position = 0;
3758   const char *result   = NULL;
3759   const char *name     = NULL;
3760   const char *optype   = NULL;
3761 
3762   // Base Case: access constant in ideal node linked to current state node
3763   // Each type of constant has its own access function
3764   if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
3765        && mnode->base_operand(position, globals, result, name, optype) ) {
3766     if (         strcmp(optype,"ConI") == 0 ) {
3767       fprintf(fp, "_leaf->get_int()");
3768     } else if ( (strcmp(optype,"ConP") == 0) ) {
3769       fprintf(fp, "_leaf->bottom_type()->is_ptr()");
3770     } else if ( (strcmp(optype,"ConN") == 0) ) {
3771       fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
3772     } else if ( (strcmp(optype,"ConNKlass") == 0) ) {
3773       fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
3774     } else if ( (strcmp(optype,"ConF") == 0) ) {
3775       fprintf(fp, "_leaf->getf()");
3776     } else if ( (strcmp(optype,"ConD") == 0) ) {
3777       fprintf(fp, "_leaf->getd()");
3778     } else if ( (strcmp(optype,"ConL") == 0) ) {
3779       fprintf(fp, "_leaf->get_long()");
3780     } else if ( (strcmp(optype,"Con")==0) ) {
3781       // !!!!! - Update if adding a machine-independent constant type
3782       fprintf(fp, "_leaf->get_int()");
3783       assert( false, "Unsupported constant type, pointer or indefinite");
3784     } else if ( (strcmp(optype,"Bool") == 0) ) {
3785       fprintf(fp, "_leaf->as_Bool()->_test._test");
3786     } else {
3787       assert( false, "Unsupported constant type");
3788     }
3789     return;
3790   }
3791 
3792   // If constant is in left child, build path and recurse
3793   uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
3794   uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
3795   if ( (mnode->_lChild) && (lConsts > idx) ) {
3796     fprintf(fp, "_kids[0]->");
3797     path_to_constant(fp, globals, mnode->_lChild, idx);
3798     return;
3799   }
3800   // If constant is in right child, build path and recurse
3801   if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
3802     idx = idx - lConsts;
3803     fprintf(fp, "_kids[1]->");
3804     path_to_constant(fp, globals, mnode->_rChild, idx);
3805     return;
3806   }
3807   assert( false, "ShouldNotReachHere()");
3808 }
3809 
3810 // Generate code that is executed when generating a specific Machine Operand
3811 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
3812                             OperandForm &op) {
3813   const char *opName         = op._ident;
3814   const char *opEnumName     = AD.machOperEnum(opName);
3815   uint        num_consts     = op.num_consts(globalNames);
3816 
3817   // Generate the case statement for this opcode
3818   fprintf(fp, "  case %s:", opEnumName);
3819   fprintf(fp, "\n    return new %sOper(", opName);
3820   // Access parameters for constructor from the stat object
3821   //
3822   // Build access to condition code value
3823   if ( (num_consts > 0) ) {
3824     uint i = 0;
3825     path_to_constant(fp, globalNames, op._matrule, i);
3826     for ( i = 1; i < num_consts; ++i ) {
3827       fprintf(fp, ", ");
3828       path_to_constant(fp, globalNames, op._matrule, i);
3829     }
3830   }
3831   fprintf(fp, " );\n");
3832 }
3833 
3834 
3835 // Build switch to invoke "new" MachNode or MachOper
3836 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
3837   int idx = 0;
3838 
3839   // Build switch to invoke 'new' for a specific MachOper
3840   fprintf(fp_cpp, "\n");
3841   fprintf(fp_cpp, "\n");
3842   fprintf(fp_cpp,
3843           "//------------------------- MachOper Generator ---------------\n");
3844   fprintf(fp_cpp,
3845           "// A switch statement on the dense-packed user-defined type system\n"
3846           "// that invokes 'new' on the corresponding class constructor.\n");
3847   fprintf(fp_cpp, "\n");
3848   fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
3849   fprintf(fp_cpp, "(int opcode)");
3850   fprintf(fp_cpp, "{\n");
3851   fprintf(fp_cpp, "\n");
3852   fprintf(fp_cpp, "  switch(opcode) {\n");
3853 
3854   // Place all user-defined operands into the mapping
3855   _operands.reset();
3856   int  opIndex = 0;
3857   OperandForm *op;
3858   for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
3859     // Ensure this is a machine-world instruction
3860     if ( op->ideal_only() )  continue;
3861 
3862     genMachOperCase(fp_cpp, _globalNames, *this, *op);
3863   };
3864 
3865   // Do not iterate over operand classes for the  operand generator!!!
3866 
3867   // Place all internal operands into the mapping
3868   _internalOpNames.reset();
3869   const char *iopn;
3870   for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
3871     const char *opEnumName = machOperEnum(iopn);
3872     // Generate the case statement for this opcode
3873     fprintf(fp_cpp, "  case %s:", opEnumName);
3874     fprintf(fp_cpp, "    return NULL;\n");
3875   };
3876 
3877   // Generate the default case for switch(opcode)
3878   fprintf(fp_cpp, "  \n");
3879   fprintf(fp_cpp, "  default:\n");
3880   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
3881   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
3882   fprintf(fp_cpp, "    break;\n");
3883   fprintf(fp_cpp, "  }\n");
3884 
3885   // Generate the closing for method Matcher::MachOperGenerator
3886   fprintf(fp_cpp, "  return NULL;\n");
3887   fprintf(fp_cpp, "};\n");
3888 }
3889 
3890 
3891 //---------------------------buildMachNode-------------------------------------
3892 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
3893 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
3894   const char *opType  = NULL;
3895   const char *opClass = inst->_ident;
3896 
3897   // Create the MachNode object
3898   fprintf(fp_cpp, "%s %sNode *node = new %sNode();\n",indent, opClass,opClass);
3899 
3900   if ( (inst->num_post_match_opnds() != 0) ) {
3901     // Instruction that contains operands which are not in match rule.
3902     //
3903     // Check if the first post-match component may be an interesting def
3904     bool           dont_care = false;
3905     ComponentList &comp_list = inst->_components;
3906     Component     *comp      = NULL;
3907     comp_list.reset();
3908     if ( comp_list.match_iter() != NULL )    dont_care = true;
3909 
3910     // Insert operands that are not in match-rule.
3911     // Only insert a DEF if the do_care flag is set
3912     comp_list.reset();
3913     while ( comp = comp_list.post_match_iter() ) {
3914       // Check if we don't care about DEFs or KILLs that are not USEs
3915       if ( dont_care && (! comp->isa(Component::USE)) ) {
3916         continue;
3917       }
3918       dont_care = true;
3919       // For each operand not in the match rule, call MachOperGenerator
3920       // with the enum for the opcode that needs to be built.
3921       ComponentList clist = inst->_components;
3922       int         index  = clist.operand_position(comp->_name, comp->_usedef, inst);
3923       const char *opcode = machOperEnum(comp->_type);
3924       fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
3925       fprintf(fp_cpp, "MachOperGenerator(%s));\n", opcode);
3926       }
3927   }
3928   else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
3929     // An instruction that chains from a constant!
3930     // In this case, we need to subsume the constant into the node
3931     // at operand position, oper_input_base().
3932     //
3933     // Fill in the constant
3934     fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
3935             inst->oper_input_base(_globalNames));
3936     // #####
3937     // Check for multiple constants and then fill them in.
3938     // Just like MachOperGenerator
3939     const char *opName = inst->_matrule->_rChild->_opType;
3940     fprintf(fp_cpp, "new %sOper(", opName);
3941     // Grab operand form
3942     OperandForm *op = (_globalNames[opName])->is_operand();
3943     // Look up the number of constants
3944     uint num_consts = op->num_consts(_globalNames);
3945     if ( (num_consts > 0) ) {
3946       uint i = 0;
3947       path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3948       for ( i = 1; i < num_consts; ++i ) {
3949         fprintf(fp_cpp, ", ");
3950         path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3951       }
3952     }
3953     fprintf(fp_cpp, " );\n");
3954     // #####
3955   }
3956 
3957   // Fill in the bottom_type where requested
3958   if (inst->captures_bottom_type(_globalNames)) {
3959     if (strncmp("MachCall", inst->mach_base_class(_globalNames), strlen("MachCall"))) {
3960       fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
3961     }
3962   }
3963   if( inst->is_ideal_if() ) {
3964     fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
3965     fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
3966   }
3967   if( inst->is_ideal_fastlock() ) {
3968     fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
3969     fprintf(fp_cpp, "%s node->_rtm_counters = _leaf->as_FastLock()->rtm_counters();\n", indent);
3970     fprintf(fp_cpp, "%s node->_stack_rtm_counters = _leaf->as_FastLock()->stack_rtm_counters();\n", indent);
3971   }
3972 
3973 }
3974 
3975 //---------------------------declare_cisc_version------------------------------
3976 // Build CISC version of this instruction
3977 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
3978   if( AD.can_cisc_spill() ) {
3979     InstructForm *inst_cisc = cisc_spill_alternate();
3980     if (inst_cisc != NULL) {
3981       fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
3982       fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset);\n");
3983       fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
3984       fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
3985     }
3986   }
3987 }
3988 
3989 //---------------------------define_cisc_version-------------------------------
3990 // Build CISC version of this instruction
3991 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
3992   InstructForm *inst_cisc = this->cisc_spill_alternate();
3993   if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
3994     const char   *name      = inst_cisc->_ident;
3995     assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
3996     OperandForm *cisc_oper = AD.cisc_spill_operand();
3997     assert( cisc_oper != NULL, "insanity check");
3998     const char *cisc_oper_name  = cisc_oper->_ident;
3999     assert( cisc_oper_name != NULL, "insanity check");
4000     //
4001     // Set the correct reg_mask_or_stack for the cisc operand
4002     fprintf(fp_cpp, "\n");
4003     fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
4004     // Lookup the correct reg_mask_or_stack
4005     const char *reg_mask_name = cisc_reg_mask_name();
4006     fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
4007     fprintf(fp_cpp, "}\n");
4008     //
4009     // Construct CISC version of this instruction
4010     fprintf(fp_cpp, "\n");
4011     fprintf(fp_cpp, "// Build CISC version of this instruction\n");
4012     fprintf(fp_cpp, "MachNode *%sNode::cisc_version(int offset) {\n", this->_ident);
4013     // Create the MachNode object
4014     fprintf(fp_cpp, "  %sNode *node = new %sNode();\n", name, name);
4015     // Fill in the bottom_type where requested
4016     if ( this->captures_bottom_type(AD.globalNames()) ) {
4017       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
4018     }
4019 
4020     uint cur_num_opnds = num_opnds();
4021     if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
4022       fprintf(fp_cpp,"  node->_num_opnds = %d;\n", num_unique_opnds());
4023     }
4024 
4025     fprintf(fp_cpp, "\n");
4026     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
4027     fprintf(fp_cpp, "  fill_new_machnode(node);\n");
4028     // Construct operand to access [stack_pointer + offset]
4029     fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
4030     fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new %sOper(offset));\n", cisc_oper_name);
4031     fprintf(fp_cpp, "\n");
4032 
4033     // Return result and exit scope
4034     fprintf(fp_cpp, "  return node;\n");
4035     fprintf(fp_cpp, "}\n");
4036     fprintf(fp_cpp, "\n");
4037     return true;
4038   }
4039   return false;
4040 }
4041 
4042 //---------------------------declare_short_branch_methods----------------------
4043 // Build prototypes for short branch methods
4044 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
4045   if (has_short_branch_form()) {
4046     fprintf(fp_hpp, "  virtual MachNode      *short_branch_version();\n");
4047   }
4048 }
4049 
4050 //---------------------------define_short_branch_methods-----------------------
4051 // Build definitions for short branch methods
4052 bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
4053   if (has_short_branch_form()) {
4054     InstructForm *short_branch = short_branch_form();
4055     const char   *name         = short_branch->_ident;
4056 
4057     // Construct short_branch_version() method.
4058     fprintf(fp_cpp, "// Build short branch version of this instruction\n");
4059     fprintf(fp_cpp, "MachNode *%sNode::short_branch_version() {\n", this->_ident);
4060     // Create the MachNode object
4061     fprintf(fp_cpp, "  %sNode *node = new %sNode();\n", name, name);
4062     if( is_ideal_if() ) {
4063       fprintf(fp_cpp, "  node->_prob = _prob;\n");
4064       fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
4065     }
4066     // Fill in the bottom_type where requested
4067     if ( this->captures_bottom_type(AD.globalNames()) ) {
4068       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
4069     }
4070 
4071     fprintf(fp_cpp, "\n");
4072     // Short branch version must use same node index for access
4073     // through allocator's tables
4074     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
4075     fprintf(fp_cpp, "  fill_new_machnode(node);\n");
4076 
4077     // Return result and exit scope
4078     fprintf(fp_cpp, "  return node;\n");
4079     fprintf(fp_cpp, "}\n");
4080     fprintf(fp_cpp,"\n");
4081     return true;
4082   }
4083   return false;
4084 }
4085 
4086 
4087 //---------------------------buildMachNodeGenerator----------------------------
4088 // Build switch to invoke appropriate "new" MachNode for an opcode
4089 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
4090 
4091   // Build switch to invoke 'new' for a specific MachNode
4092   fprintf(fp_cpp, "\n");
4093   fprintf(fp_cpp, "\n");
4094   fprintf(fp_cpp,
4095           "//------------------------- MachNode Generator ---------------\n");
4096   fprintf(fp_cpp,
4097           "// A switch statement on the dense-packed user-defined type system\n"
4098           "// that invokes 'new' on the corresponding class constructor.\n");
4099   fprintf(fp_cpp, "\n");
4100   fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
4101   fprintf(fp_cpp, "(int opcode)");
4102   fprintf(fp_cpp, "{\n");
4103   fprintf(fp_cpp, "  switch(opcode) {\n");
4104 
4105   // Provide constructor for all user-defined instructions
4106   _instructions.reset();
4107   int  opIndex = operandFormCount();
4108   InstructForm *inst;
4109   for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4110     // Ensure that matrule is defined.
4111     if ( inst->_matrule == NULL ) continue;
4112 
4113     int         opcode  = opIndex++;
4114     const char *opClass = inst->_ident;
4115     char       *opType  = NULL;
4116 
4117     // Generate the case statement for this instruction
4118     fprintf(fp_cpp, "  case %s_rule:", opClass);
4119 
4120     // Start local scope
4121     fprintf(fp_cpp, " {\n");
4122     // Generate code to construct the new MachNode
4123     buildMachNode(fp_cpp, inst, "     ");
4124     // Return result and exit scope
4125     fprintf(fp_cpp, "      return node;\n");
4126     fprintf(fp_cpp, "    }\n");
4127   }
4128 
4129   // Generate the default case for switch(opcode)
4130   fprintf(fp_cpp, "  \n");
4131   fprintf(fp_cpp, "  default:\n");
4132   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
4133   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
4134   fprintf(fp_cpp, "    break;\n");
4135   fprintf(fp_cpp, "  };\n");
4136 
4137   // Generate the closing for method Matcher::MachNodeGenerator
4138   fprintf(fp_cpp, "  return NULL;\n");
4139   fprintf(fp_cpp, "}\n");
4140 }
4141 
4142 
4143 //---------------------------buildInstructMatchCheck--------------------------
4144 // Output the method to Matcher which checks whether or not a specific
4145 // instruction has a matching rule for the host architecture.
4146 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
4147   fprintf(fp_cpp, "\n\n");
4148   fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
4149   fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
4150   fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
4151   fprintf(fp_cpp, "}\n\n");
4152 
4153   fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
4154   int i;
4155   for (i = 0; i < _last_opcode - 1; i++) {
4156     fprintf(fp_cpp, "    %-5s,  // %s\n",
4157             _has_match_rule[i] ? "true" : "false",
4158             NodeClassNames[i]);
4159   }
4160   fprintf(fp_cpp, "    %-5s   // %s\n",
4161           _has_match_rule[i] ? "true" : "false",
4162           NodeClassNames[i]);
4163   fprintf(fp_cpp, "};\n");
4164 }
4165 
4166 //---------------------------buildFrameMethods---------------------------------
4167 // Output the methods to Matcher which specify frame behavior
4168 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
4169   fprintf(fp_cpp,"\n\n");
4170   // Stack Direction
4171   fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
4172           _frame->_direction ? "true" : "false");
4173   // Sync Stack Slots
4174   fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
4175           _frame->_sync_stack_slots);
4176   // Java Stack Alignment
4177   fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
4178           _frame->_alignment);
4179   // Java Return Address Location
4180   fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
4181   if (_frame->_return_addr_loc) {
4182     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4183             _frame->_return_addr);
4184   }
4185   else {
4186     fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
4187             _frame->_return_addr);
4188   }
4189   // Java Stack Slot Preservation
4190   fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
4191   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
4192   // Top Of Stack Slot Preservation, for both Java and C
4193   fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
4194   fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
4195   // varargs C out slots killed
4196   fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
4197   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
4198   // Java Argument Position
4199   fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
4200   fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
4201   fprintf(fp_cpp,"}\n\n");
4202   // Native Argument Position
4203   fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
4204   fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
4205   fprintf(fp_cpp,"}\n\n");
4206   // Java Return Value Location
4207   fprintf(fp_cpp,"OptoRegPair Matcher::return_value(int ideal_reg, bool is_outgoing) {\n");
4208   fprintf(fp_cpp,"%s\n", _frame->_return_value);
4209   fprintf(fp_cpp,"}\n\n");
4210   // Native Return Value Location
4211   fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(int ideal_reg, bool is_outgoing) {\n");
4212   fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
4213   fprintf(fp_cpp,"}\n\n");
4214 
4215   // Inline Cache Register, mask definition, and encoding
4216   fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
4217   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4218           _frame->_inline_cache_reg);
4219   fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
4220   fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
4221 
4222   // Interpreter's Method Oop Register, mask definition, and encoding
4223   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
4224   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4225           _frame->_interpreter_method_oop_reg);
4226   fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
4227   fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
4228 
4229   // Interpreter's Frame Pointer Register, mask definition, and encoding
4230   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
4231   if (_frame->_interpreter_frame_pointer_reg == NULL)
4232     fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
4233   else
4234     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4235             _frame->_interpreter_frame_pointer_reg);
4236 
4237   // Frame Pointer definition
4238   /* CNC - I can not contemplate having a different frame pointer between
4239      Java and native code; makes my head hurt to think about it.
4240   fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
4241   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4242           _frame->_frame_pointer);
4243   */
4244   // (Native) Frame Pointer definition
4245   fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
4246   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4247           _frame->_frame_pointer);
4248 
4249   // Number of callee-save + always-save registers for calling convention
4250   fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
4251   fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
4252   RegDef *rdef;
4253   int nof_saved_registers = 0;
4254   _register->reset_RegDefs();
4255   while( (rdef = _register->iter_RegDefs()) != NULL ) {
4256     if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
4257       ++nof_saved_registers;
4258   }
4259   fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
4260   fprintf(fp_cpp, "};\n\n");
4261 }
4262 
4263 
4264 
4265 
4266 static int PrintAdlcCisc = 0;
4267 //---------------------------identify_cisc_spilling----------------------------
4268 // Get info for the CISC_oracle and MachNode::cisc_version()
4269 void ArchDesc::identify_cisc_spill_instructions() {
4270 
4271   if (_frame == NULL)
4272     return;
4273 
4274   // Find the user-defined operand for cisc-spilling
4275   if( _frame->_cisc_spilling_operand_name != NULL ) {
4276     const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
4277     OperandForm *oper = form ? form->is_operand() : NULL;
4278     // Verify the user's suggestion
4279     if( oper != NULL ) {
4280       // Ensure that match field is defined.
4281       if ( oper->_matrule != NULL )  {
4282         MatchRule &mrule = *oper->_matrule;
4283         if( strcmp(mrule._opType,"AddP") == 0 ) {
4284           MatchNode *left = mrule._lChild;
4285           MatchNode *right= mrule._rChild;
4286           if( left != NULL && right != NULL ) {
4287             const Form *left_op  = _globalNames[left->_opType]->is_operand();
4288             const Form *right_op = _globalNames[right->_opType]->is_operand();
4289             if(  (left_op != NULL && right_op != NULL)
4290               && (left_op->interface_type(_globalNames) == Form::register_interface)
4291               && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
4292               // Successfully verified operand
4293               set_cisc_spill_operand( oper );
4294               if( _cisc_spill_debug ) {
4295                 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
4296              }
4297             }
4298           }
4299         }
4300       }
4301     }
4302   }
4303 
4304   if( cisc_spill_operand() != NULL ) {
4305     // N^2 comparison of instructions looking for a cisc-spilling version
4306     _instructions.reset();
4307     InstructForm *instr;
4308     for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
4309       // Ensure that match field is defined.
4310       if ( instr->_matrule == NULL )  continue;
4311 
4312       MatchRule &mrule = *instr->_matrule;
4313       Predicate *pred  =  instr->build_predicate();
4314 
4315       // Grab the machine type of the operand
4316       const char *rootOp = instr->_ident;
4317       mrule._machType    = rootOp;
4318 
4319       // Find result type for match
4320       const char *result = instr->reduce_result();
4321 
4322       if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
4323       bool  found_cisc_alternate = false;
4324       _instructions.reset2();
4325       InstructForm *instr2;
4326       for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
4327         // Ensure that match field is defined.
4328         if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
4329         if ( instr2->_matrule != NULL
4330             && (instr != instr2 )                // Skip self
4331             && (instr2->reduce_result() != NULL) // want same result
4332             && (strcmp(result, instr2->reduce_result()) == 0)) {
4333           MatchRule &mrule2 = *instr2->_matrule;
4334           Predicate *pred2  =  instr2->build_predicate();
4335           found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
4336         }
4337       }
4338     }
4339   }
4340 }
4341 
4342 //---------------------------build_cisc_spilling-------------------------------
4343 // Get info for the CISC_oracle and MachNode::cisc_version()
4344 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
4345   // Output the table for cisc spilling
4346   fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
4347   _instructions.reset();
4348   InstructForm *inst = NULL;
4349   for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4350     // Ensure this is a machine-world instruction
4351     if ( inst->ideal_only() )  continue;
4352     const char *inst_name = inst->_ident;
4353     int   operand   = inst->cisc_spill_operand();
4354     if( operand != AdlcVMDeps::Not_cisc_spillable ) {
4355       InstructForm *inst2 = inst->cisc_spill_alternate();
4356       fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
4357     }
4358   }
4359   fprintf(fp_cpp, "\n\n");
4360 }
4361 
4362 //---------------------------identify_short_branches----------------------------
4363 // Get info for our short branch replacement oracle.
4364 void ArchDesc::identify_short_branches() {
4365   // Walk over all instructions, checking to see if they match a short
4366   // branching alternate.
4367   _instructions.reset();
4368   InstructForm *instr;
4369   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4370     // The instruction must have a match rule.
4371     if (instr->_matrule != NULL &&
4372         instr->is_short_branch()) {
4373 
4374       _instructions.reset2();
4375       InstructForm *instr2;
4376       while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
4377         instr2->check_branch_variant(*this, instr);
4378       }
4379     }
4380   }
4381 }
4382 
4383 
4384 //---------------------------identify_unique_operands---------------------------
4385 // Identify unique operands.
4386 void ArchDesc::identify_unique_operands() {
4387   // Walk over all instructions.
4388   _instructions.reset();
4389   InstructForm *instr;
4390   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4391     // Ensure this is a machine-world instruction
4392     if (!instr->ideal_only()) {
4393       instr->set_unique_opnds();
4394     }
4395   }
4396 }