1 //
   2 // Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
   3 // Copyright 2012, 2014 SAP AG. All rights reserved.
   4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5 //
   6 // This code is free software; you can redistribute it and/or modify it
   7 // under the terms of the GNU General Public License version 2 only, as
   8 // published by the Free Software Foundation.
   9 //
  10 // This code is distributed in the hope that it will be useful, but WITHOUT
  11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13 // version 2 for more details (a copy is included in the LICENSE file that
  14 // accompanied this code).
  15 //
  16 // You should have received a copy of the GNU General Public License version
  17 // 2 along with this work; if not, write to the Free Software Foundation,
  18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19 //
  20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21 // or visit www.oracle.com if you need additional information or have any
  22 // questions.
  23 //
  24 //
  25 
  26 //
  27 // PPC64 Architecture Description File
  28 //
  29 
  30 //----------REGISTER DEFINITION BLOCK------------------------------------------
  31 // This information is used by the matcher and the register allocator to
  32 // describe individual registers and classes of registers within the target
  33 // architecture.
  34 register %{
  35 //----------Architecture Description Register Definitions----------------------
  36 // General Registers
  37 // "reg_def"  name (register save type, C convention save type,
  38 //                  ideal register type, encoding);
  39 //
  40 // Register Save Types:
  41 //
  42 //   NS  = No-Save:     The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method, &
  44 //                      that they do not need to be saved at call sites.
  45 //
  46 //   SOC = Save-On-Call: The register allocator assumes that these registers
  47 //                      can be used without saving upon entry to the method,
  48 //                      but that they must be saved at call sites.
  49 //                      These are called "volatiles" on ppc.
  50 //
  51 //   SOE = Save-On-Entry: The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, but they do not need to be saved at call
  54 //                      sites.
  55 //                      These are called "nonvolatiles" on ppc.
  56 //
  57 //   AS  = Always-Save:   The register allocator assumes that these registers
  58 //                      must be saved before using them upon entry to the
  59 //                      method, & that they must be saved at call sites.
  60 //
  61 // Ideal Register Type is used to determine how to save & restore a
  62 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  63 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
  64 //
  65 // The encoding number is the actual bit-pattern placed into the opcodes.
  66 //
  67 // PPC64 register definitions, based on the 64-bit PowerPC ELF ABI
  68 // Supplement Version 1.7 as of 2003-10-29.
  69 //
  70 // For each 64-bit register we must define two registers: the register
  71 // itself, e.g. R3, and a corresponding virtual other (32-bit-)'half',
  72 // e.g. R3_H, which is needed by the allocator, but is not used
  73 // for stores, loads, etc.
  74 
  75 // ----------------------------
  76 // Integer/Long Registers
  77 // ----------------------------
  78 
  79   // PPC64 has 32 64-bit integer registers.
  80 
  81   // types: v = volatile, nv = non-volatile, s = system
  82   reg_def R0   ( SOC, SOC, Op_RegI,  0, R0->as_VMReg()         );  // v   used in prologs
  83   reg_def R0_H ( SOC, SOC, Op_RegI, 99, R0->as_VMReg()->next() );
  84   reg_def R1   ( NS,  NS,  Op_RegI,  1, R1->as_VMReg()         );  // s   SP
  85   reg_def R1_H ( NS,  NS,  Op_RegI, 99, R1->as_VMReg()->next() );
  86   reg_def R2   ( SOC, SOC, Op_RegI,  2, R2->as_VMReg()         );  // v   TOC
  87   reg_def R2_H ( SOC, SOC, Op_RegI, 99, R2->as_VMReg()->next() );
  88   reg_def R3   ( SOC, SOC, Op_RegI,  3, R3->as_VMReg()         );  // v   iarg1 & iret
  89   reg_def R3_H ( SOC, SOC, Op_RegI, 99, R3->as_VMReg()->next() );
  90   reg_def R4   ( SOC, SOC, Op_RegI,  4, R4->as_VMReg()         );  //     iarg2
  91   reg_def R4_H ( SOC, SOC, Op_RegI, 99, R4->as_VMReg()->next() );
  92   reg_def R5   ( SOC, SOC, Op_RegI,  5, R5->as_VMReg()         );  // v   iarg3
  93   reg_def R5_H ( SOC, SOC, Op_RegI, 99, R5->as_VMReg()->next() );
  94   reg_def R6   ( SOC, SOC, Op_RegI,  6, R6->as_VMReg()         );  // v   iarg4
  95   reg_def R6_H ( SOC, SOC, Op_RegI, 99, R6->as_VMReg()->next() );
  96   reg_def R7   ( SOC, SOC, Op_RegI,  7, R7->as_VMReg()         );  // v   iarg5
  97   reg_def R7_H ( SOC, SOC, Op_RegI, 99, R7->as_VMReg()->next() );
  98   reg_def R8   ( SOC, SOC, Op_RegI,  8, R8->as_VMReg()         );  // v   iarg6
  99   reg_def R8_H ( SOC, SOC, Op_RegI, 99, R8->as_VMReg()->next() );
 100   reg_def R9   ( SOC, SOC, Op_RegI,  9, R9->as_VMReg()         );  // v   iarg7
 101   reg_def R9_H ( SOC, SOC, Op_RegI, 99, R9->as_VMReg()->next() );
 102   reg_def R10  ( SOC, SOC, Op_RegI, 10, R10->as_VMReg()        );  // v   iarg8
 103   reg_def R10_H( SOC, SOC, Op_RegI, 99, R10->as_VMReg()->next());
 104   reg_def R11  ( SOC, SOC, Op_RegI, 11, R11->as_VMReg()        );  // v   ENV / scratch
 105   reg_def R11_H( SOC, SOC, Op_RegI, 99, R11->as_VMReg()->next());
 106   reg_def R12  ( SOC, SOC, Op_RegI, 12, R12->as_VMReg()        );  // v   scratch
 107   reg_def R12_H( SOC, SOC, Op_RegI, 99, R12->as_VMReg()->next());
 108   reg_def R13  ( NS,  NS,  Op_RegI, 13, R13->as_VMReg()        );  // s   system thread id
 109   reg_def R13_H( NS,  NS,  Op_RegI, 99, R13->as_VMReg()->next());
 110   reg_def R14  ( SOC, SOE, Op_RegI, 14, R14->as_VMReg()        );  // nv
 111   reg_def R14_H( SOC, SOE, Op_RegI, 99, R14->as_VMReg()->next());
 112   reg_def R15  ( SOC, SOE, Op_RegI, 15, R15->as_VMReg()        );  // nv
 113   reg_def R15_H( SOC, SOE, Op_RegI, 99, R15->as_VMReg()->next());
 114   reg_def R16  ( SOC, SOE, Op_RegI, 16, R16->as_VMReg()        );  // nv
 115   reg_def R16_H( SOC, SOE, Op_RegI, 99, R16->as_VMReg()->next());
 116   reg_def R17  ( SOC, SOE, Op_RegI, 17, R17->as_VMReg()        );  // nv
 117   reg_def R17_H( SOC, SOE, Op_RegI, 99, R17->as_VMReg()->next());
 118   reg_def R18  ( SOC, SOE, Op_RegI, 18, R18->as_VMReg()        );  // nv
 119   reg_def R18_H( SOC, SOE, Op_RegI, 99, R18->as_VMReg()->next());
 120   reg_def R19  ( SOC, SOE, Op_RegI, 19, R19->as_VMReg()        );  // nv
 121   reg_def R19_H( SOC, SOE, Op_RegI, 99, R19->as_VMReg()->next());
 122   reg_def R20  ( SOC, SOE, Op_RegI, 20, R20->as_VMReg()        );  // nv
 123   reg_def R20_H( SOC, SOE, Op_RegI, 99, R20->as_VMReg()->next());
 124   reg_def R21  ( SOC, SOE, Op_RegI, 21, R21->as_VMReg()        );  // nv
 125   reg_def R21_H( SOC, SOE, Op_RegI, 99, R21->as_VMReg()->next());
 126   reg_def R22  ( SOC, SOE, Op_RegI, 22, R22->as_VMReg()        );  // nv
 127   reg_def R22_H( SOC, SOE, Op_RegI, 99, R22->as_VMReg()->next());
 128   reg_def R23  ( SOC, SOE, Op_RegI, 23, R23->as_VMReg()        );  // nv
 129   reg_def R23_H( SOC, SOE, Op_RegI, 99, R23->as_VMReg()->next());
 130   reg_def R24  ( SOC, SOE, Op_RegI, 24, R24->as_VMReg()        );  // nv
 131   reg_def R24_H( SOC, SOE, Op_RegI, 99, R24->as_VMReg()->next());
 132   reg_def R25  ( SOC, SOE, Op_RegI, 25, R25->as_VMReg()        );  // nv
 133   reg_def R25_H( SOC, SOE, Op_RegI, 99, R25->as_VMReg()->next());
 134   reg_def R26  ( SOC, SOE, Op_RegI, 26, R26->as_VMReg()        );  // nv
 135   reg_def R26_H( SOC, SOE, Op_RegI, 99, R26->as_VMReg()->next());
 136   reg_def R27  ( SOC, SOE, Op_RegI, 27, R27->as_VMReg()        );  // nv
 137   reg_def R27_H( SOC, SOE, Op_RegI, 99, R27->as_VMReg()->next());
 138   reg_def R28  ( SOC, SOE, Op_RegI, 28, R28->as_VMReg()        );  // nv
 139   reg_def R28_H( SOC, SOE, Op_RegI, 99, R28->as_VMReg()->next());
 140   reg_def R29  ( SOC, SOE, Op_RegI, 29, R29->as_VMReg()        );  // nv
 141   reg_def R29_H( SOC, SOE, Op_RegI, 99, R29->as_VMReg()->next());
 142   reg_def R30  ( SOC, SOE, Op_RegI, 30, R30->as_VMReg()        );  // nv
 143   reg_def R30_H( SOC, SOE, Op_RegI, 99, R30->as_VMReg()->next());
 144   reg_def R31  ( SOC, SOE, Op_RegI, 31, R31->as_VMReg()        );  // nv
 145   reg_def R31_H( SOC, SOE, Op_RegI, 99, R31->as_VMReg()->next());
 146 
 147 
 148 // ----------------------------
 149 // Float/Double Registers
 150 // ----------------------------
 151 
 152   // Double Registers
 153   // The rules of ADL require that double registers be defined in pairs.
 154   // Each pair must be two 32-bit values, but not necessarily a pair of
 155   // single float registers. In each pair, ADLC-assigned register numbers
 156   // must be adjacent, with the lower number even. Finally, when the
 157   // CPU stores such a register pair to memory, the word associated with
 158   // the lower ADLC-assigned number must be stored to the lower address.
 159 
 160   // PPC64 has 32 64-bit floating-point registers. Each can store a single
 161   // or double precision floating-point value.
 162 
 163   // types: v = volatile, nv = non-volatile, s = system
 164   reg_def F0   ( SOC, SOC, Op_RegF,  0, F0->as_VMReg()         );  // v   scratch
 165   reg_def F0_H ( SOC, SOC, Op_RegF, 99, F0->as_VMReg()->next() );
 166   reg_def F1   ( SOC, SOC, Op_RegF,  1, F1->as_VMReg()         );  // v   farg1 & fret
 167   reg_def F1_H ( SOC, SOC, Op_RegF, 99, F1->as_VMReg()->next() );
 168   reg_def F2   ( SOC, SOC, Op_RegF,  2, F2->as_VMReg()         );  // v   farg2
 169   reg_def F2_H ( SOC, SOC, Op_RegF, 99, F2->as_VMReg()->next() );
 170   reg_def F3   ( SOC, SOC, Op_RegF,  3, F3->as_VMReg()         );  // v   farg3
 171   reg_def F3_H ( SOC, SOC, Op_RegF, 99, F3->as_VMReg()->next() );
 172   reg_def F4   ( SOC, SOC, Op_RegF,  4, F4->as_VMReg()         );  // v   farg4
 173   reg_def F4_H ( SOC, SOC, Op_RegF, 99, F4->as_VMReg()->next() );
 174   reg_def F5   ( SOC, SOC, Op_RegF,  5, F5->as_VMReg()         );  // v   farg5
 175   reg_def F5_H ( SOC, SOC, Op_RegF, 99, F5->as_VMReg()->next() );
 176   reg_def F6   ( SOC, SOC, Op_RegF,  6, F6->as_VMReg()         );  // v   farg6
 177   reg_def F6_H ( SOC, SOC, Op_RegF, 99, F6->as_VMReg()->next() );
 178   reg_def F7   ( SOC, SOC, Op_RegF,  7, F7->as_VMReg()         );  // v   farg7
 179   reg_def F7_H ( SOC, SOC, Op_RegF, 99, F7->as_VMReg()->next() );
 180   reg_def F8   ( SOC, SOC, Op_RegF,  8, F8->as_VMReg()         );  // v   farg8
 181   reg_def F8_H ( SOC, SOC, Op_RegF, 99, F8->as_VMReg()->next() );
 182   reg_def F9   ( SOC, SOC, Op_RegF,  9, F9->as_VMReg()         );  // v   farg9
 183   reg_def F9_H ( SOC, SOC, Op_RegF, 99, F9->as_VMReg()->next() );
 184   reg_def F10  ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()        );  // v   farg10
 185   reg_def F10_H( SOC, SOC, Op_RegF, 99, F10->as_VMReg()->next());
 186   reg_def F11  ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()        );  // v   farg11
 187   reg_def F11_H( SOC, SOC, Op_RegF, 99, F11->as_VMReg()->next());
 188   reg_def F12  ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()        );  // v   farg12
 189   reg_def F12_H( SOC, SOC, Op_RegF, 99, F12->as_VMReg()->next());
 190   reg_def F13  ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()        );  // v   farg13
 191   reg_def F13_H( SOC, SOC, Op_RegF, 99, F13->as_VMReg()->next());
 192   reg_def F14  ( SOC, SOE, Op_RegF, 14, F14->as_VMReg()        );  // nv
 193   reg_def F14_H( SOC, SOE, Op_RegF, 99, F14->as_VMReg()->next());
 194   reg_def F15  ( SOC, SOE, Op_RegF, 15, F15->as_VMReg()        );  // nv
 195   reg_def F15_H( SOC, SOE, Op_RegF, 99, F15->as_VMReg()->next());
 196   reg_def F16  ( SOC, SOE, Op_RegF, 16, F16->as_VMReg()        );  // nv
 197   reg_def F16_H( SOC, SOE, Op_RegF, 99, F16->as_VMReg()->next());
 198   reg_def F17  ( SOC, SOE, Op_RegF, 17, F17->as_VMReg()        );  // nv
 199   reg_def F17_H( SOC, SOE, Op_RegF, 99, F17->as_VMReg()->next());
 200   reg_def F18  ( SOC, SOE, Op_RegF, 18, F18->as_VMReg()        );  // nv
 201   reg_def F18_H( SOC, SOE, Op_RegF, 99, F18->as_VMReg()->next());
 202   reg_def F19  ( SOC, SOE, Op_RegF, 19, F19->as_VMReg()        );  // nv
 203   reg_def F19_H( SOC, SOE, Op_RegF, 99, F19->as_VMReg()->next());
 204   reg_def F20  ( SOC, SOE, Op_RegF, 20, F20->as_VMReg()        );  // nv
 205   reg_def F20_H( SOC, SOE, Op_RegF, 99, F20->as_VMReg()->next());
 206   reg_def F21  ( SOC, SOE, Op_RegF, 21, F21->as_VMReg()        );  // nv
 207   reg_def F21_H( SOC, SOE, Op_RegF, 99, F21->as_VMReg()->next());
 208   reg_def F22  ( SOC, SOE, Op_RegF, 22, F22->as_VMReg()        );  // nv
 209   reg_def F22_H( SOC, SOE, Op_RegF, 99, F22->as_VMReg()->next());
 210   reg_def F23  ( SOC, SOE, Op_RegF, 23, F23->as_VMReg()        );  // nv
 211   reg_def F23_H( SOC, SOE, Op_RegF, 99, F23->as_VMReg()->next());
 212   reg_def F24  ( SOC, SOE, Op_RegF, 24, F24->as_VMReg()        );  // nv
 213   reg_def F24_H( SOC, SOE, Op_RegF, 99, F24->as_VMReg()->next());
 214   reg_def F25  ( SOC, SOE, Op_RegF, 25, F25->as_VMReg()        );  // nv
 215   reg_def F25_H( SOC, SOE, Op_RegF, 99, F25->as_VMReg()->next());
 216   reg_def F26  ( SOC, SOE, Op_RegF, 26, F26->as_VMReg()        );  // nv
 217   reg_def F26_H( SOC, SOE, Op_RegF, 99, F26->as_VMReg()->next());
 218   reg_def F27  ( SOC, SOE, Op_RegF, 27, F27->as_VMReg()        );  // nv
 219   reg_def F27_H( SOC, SOE, Op_RegF, 99, F27->as_VMReg()->next());
 220   reg_def F28  ( SOC, SOE, Op_RegF, 28, F28->as_VMReg()        );  // nv
 221   reg_def F28_H( SOC, SOE, Op_RegF, 99, F28->as_VMReg()->next());
 222   reg_def F29  ( SOC, SOE, Op_RegF, 29, F29->as_VMReg()        );  // nv
 223   reg_def F29_H( SOC, SOE, Op_RegF, 99, F29->as_VMReg()->next());
 224   reg_def F30  ( SOC, SOE, Op_RegF, 30, F30->as_VMReg()        );  // nv
 225   reg_def F30_H( SOC, SOE, Op_RegF, 99, F30->as_VMReg()->next());
 226   reg_def F31  ( SOC, SOE, Op_RegF, 31, F31->as_VMReg()        );  // nv
 227   reg_def F31_H( SOC, SOE, Op_RegF, 99, F31->as_VMReg()->next());
 228 
 229 // ----------------------------
 230 // Special Registers
 231 // ----------------------------
 232 
 233 // Condition Codes Flag Registers
 234 
 235   // PPC64 has 8 condition code "registers" which are all contained
 236   // in the CR register.
 237 
 238   // types: v = volatile, nv = non-volatile, s = system
 239   reg_def CCR0(SOC, SOC, Op_RegFlags, 0, CCR0->as_VMReg());  // v
 240   reg_def CCR1(SOC, SOC, Op_RegFlags, 1, CCR1->as_VMReg());  // v
 241   reg_def CCR2(SOC, SOC, Op_RegFlags, 2, CCR2->as_VMReg());  // nv
 242   reg_def CCR3(SOC, SOC, Op_RegFlags, 3, CCR3->as_VMReg());  // nv
 243   reg_def CCR4(SOC, SOC, Op_RegFlags, 4, CCR4->as_VMReg());  // nv
 244   reg_def CCR5(SOC, SOC, Op_RegFlags, 5, CCR5->as_VMReg());  // v
 245   reg_def CCR6(SOC, SOC, Op_RegFlags, 6, CCR6->as_VMReg());  // v
 246   reg_def CCR7(SOC, SOC, Op_RegFlags, 7, CCR7->as_VMReg());  // v
 247 
 248   // Special registers of PPC64
 249 
 250   reg_def SR_XER(    SOC, SOC, Op_RegP, 0, SR_XER->as_VMReg());     // v
 251   reg_def SR_LR(     SOC, SOC, Op_RegP, 1, SR_LR->as_VMReg());      // v
 252   reg_def SR_CTR(    SOC, SOC, Op_RegP, 2, SR_CTR->as_VMReg());     // v
 253   reg_def SR_VRSAVE( SOC, SOC, Op_RegP, 3, SR_VRSAVE->as_VMReg());  // v
 254   reg_def SR_SPEFSCR(SOC, SOC, Op_RegP, 4, SR_SPEFSCR->as_VMReg()); // v
 255   reg_def SR_PPR(    SOC, SOC, Op_RegP, 5, SR_PPR->as_VMReg());     // v
 256 
 257 
 258 // ----------------------------
 259 // Specify priority of register selection within phases of register
 260 // allocation. Highest priority is first. A useful heuristic is to
 261 // give registers a low priority when they are required by machine
 262 // instructions, like EAX and EDX on I486, and choose no-save registers
 263 // before save-on-call, & save-on-call before save-on-entry. Registers
 264 // which participate in fixed calling sequences should come last.
 265 // Registers which are used as pairs must fall on an even boundary.
 266 
 267 // It's worth about 1% on SPEC geomean to get this right.
 268 
 269 // Chunk0, chunk1, and chunk2 form the MachRegisterNumbers enumeration
 270 // in adGlobals_ppc.hpp which defines the <register>_num values, e.g.
 271 // R3_num. Therefore, R3_num may not be (and in reality is not)
 272 // the same as R3->encoding()! Furthermore, we cannot make any
 273 // assumptions on ordering, e.g. R3_num may be less than R2_num.
 274 // Additionally, the function
 275 //   static enum RC rc_class(OptoReg::Name reg )
 276 // maps a given <register>_num value to its chunk type (except for flags)
 277 // and its current implementation relies on chunk0 and chunk1 having a
 278 // size of 64 each.
 279 
 280 // If you change this allocation class, please have a look at the
 281 // default values for the parameters RoundRobinIntegerRegIntervalStart
 282 // and RoundRobinFloatRegIntervalStart
 283 
 284 alloc_class chunk0 (
 285   // Chunk0 contains *all* 64 integer registers halves.
 286 
 287   // "non-volatile" registers
 288   R14, R14_H,
 289   R15, R15_H,
 290   R17, R17_H,
 291   R18, R18_H,
 292   R19, R19_H,
 293   R20, R20_H,
 294   R21, R21_H,
 295   R22, R22_H,
 296   R23, R23_H,
 297   R24, R24_H,
 298   R25, R25_H,
 299   R26, R26_H,
 300   R27, R27_H,
 301   R28, R28_H,
 302   R29, R29_H,
 303   R30, R30_H,
 304   R31, R31_H,
 305 
 306   // scratch/special registers
 307   R11, R11_H,
 308   R12, R12_H,
 309 
 310   // argument registers
 311   R10, R10_H,
 312   R9,  R9_H,
 313   R8,  R8_H,
 314   R7,  R7_H,
 315   R6,  R6_H,
 316   R5,  R5_H,
 317   R4,  R4_H,
 318   R3,  R3_H,
 319 
 320   // special registers, not available for allocation
 321   R16, R16_H,     // R16_thread
 322   R13, R13_H,     // system thread id
 323   R2,  R2_H,      // may be used for TOC
 324   R1,  R1_H,      // SP
 325   R0,  R0_H       // R0 (scratch)
 326 );
 327 
 328 // If you change this allocation class, please have a look at the
 329 // default values for the parameters RoundRobinIntegerRegIntervalStart
 330 // and RoundRobinFloatRegIntervalStart
 331 
 332 alloc_class chunk1 (
 333   // Chunk1 contains *all* 64 floating-point registers halves.
 334 
 335   // scratch register
 336   F0,  F0_H,
 337 
 338   // argument registers
 339   F13, F13_H,
 340   F12, F12_H,
 341   F11, F11_H,
 342   F10, F10_H,
 343   F9,  F9_H,
 344   F8,  F8_H,
 345   F7,  F7_H,
 346   F6,  F6_H,
 347   F5,  F5_H,
 348   F4,  F4_H,
 349   F3,  F3_H,
 350   F2,  F2_H,
 351   F1,  F1_H,
 352 
 353   // non-volatile registers
 354   F14, F14_H,
 355   F15, F15_H,
 356   F16, F16_H,
 357   F17, F17_H,
 358   F18, F18_H,
 359   F19, F19_H,
 360   F20, F20_H,
 361   F21, F21_H,
 362   F22, F22_H,
 363   F23, F23_H,
 364   F24, F24_H,
 365   F25, F25_H,
 366   F26, F26_H,
 367   F27, F27_H,
 368   F28, F28_H,
 369   F29, F29_H,
 370   F30, F30_H,
 371   F31, F31_H
 372 );
 373 
 374 alloc_class chunk2 (
 375   // Chunk2 contains *all* 8 condition code registers.
 376 
 377   CCR0,
 378   CCR1,
 379   CCR2,
 380   CCR3,
 381   CCR4,
 382   CCR5,
 383   CCR6,
 384   CCR7
 385 );
 386 
 387 alloc_class chunk3 (
 388   // special registers
 389   // These registers are not allocated, but used for nodes generated by postalloc expand.
 390   SR_XER,
 391   SR_LR,
 392   SR_CTR,
 393   SR_VRSAVE,
 394   SR_SPEFSCR,
 395   SR_PPR
 396 );
 397 
 398 //-------Architecture Description Register Classes-----------------------
 399 
 400 // Several register classes are automatically defined based upon
 401 // information in this architecture description.
 402 
 403 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 404 // 2) reg_class compiler_method_oop_reg    ( as defined in frame section )
 405 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 406 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 407 //
 408 
 409 // ----------------------------
 410 // 32 Bit Register Classes
 411 // ----------------------------
 412 
 413 // We specify registers twice, once as read/write, and once read-only.
 414 // We use the read-only registers for source operands. With this, we
 415 // can include preset read only registers in this class, as a hard-coded
 416 // '0'-register. (We used to simulate this on ppc.)
 417 
 418 // 32 bit registers that can be read and written i.e. these registers
 419 // can be dest (or src) of normal instructions.
 420 reg_class bits32_reg_rw(
 421 /*R0*/              // R0
 422 /*R1*/              // SP
 423   R2,               // TOC
 424   R3,
 425   R4,
 426   R5,
 427   R6,
 428   R7,
 429   R8,
 430   R9,
 431   R10,
 432   R11,
 433   R12,
 434 /*R13*/             // system thread id
 435   R14,
 436   R15,
 437 /*R16*/             // R16_thread
 438   R17,
 439   R18,
 440   R19,
 441   R20,
 442   R21,
 443   R22,
 444   R23,
 445   R24,
 446   R25,
 447   R26,
 448   R27,
 449   R28,
 450 /*R29*/             // global TOC
 451 /*R30*/             // Narrow Oop Base
 452   R31
 453 );
 454 
 455 // 32 bit registers that can only be read i.e. these registers can
 456 // only be src of all instructions.
 457 reg_class bits32_reg_ro(
 458 /*R0*/              // R0
 459 /*R1*/              // SP
 460   R2                // TOC
 461   R3,
 462   R4,
 463   R5,
 464   R6,
 465   R7,
 466   R8,
 467   R9,
 468   R10,
 469   R11,
 470   R12,
 471 /*R13*/             // system thread id
 472   R14,
 473   R15,
 474 /*R16*/             // R16_thread
 475   R17,
 476   R18,
 477   R19,
 478   R20,
 479   R21,
 480   R22,
 481   R23,
 482   R24,
 483   R25,
 484   R26,
 485   R27,
 486   R28,
 487 /*R29*/
 488 /*R30*/             // Narrow Oop Base
 489   R31
 490 );
 491 
 492 // Complement-required-in-pipeline operands for narrow oops.
 493 reg_class bits32_reg_ro_not_complement (
 494 /*R0*/     // R0
 495   R1,      // SP
 496   R2,      // TOC
 497   R3,
 498   R4,
 499   R5,
 500   R6,
 501   R7,
 502   R8,
 503   R9,
 504   R10,
 505   R11,
 506   R12,
 507 /*R13,*/   // system thread id
 508   R14,
 509   R15,
 510   R16,    // R16_thread
 511   R17,
 512   R18,
 513   R19,
 514   R20,
 515   R21,
 516   R22,
 517 /*R23,
 518   R24,
 519   R25,
 520   R26,
 521   R27,
 522   R28,*/
 523 /*R29,*/ // TODO: let allocator handle TOC!!
 524 /*R30,*/
 525   R31
 526 );
 527 
 528 // Complement-required-in-pipeline operands for narrow oops.
 529 // See 64-bit declaration.
 530 reg_class bits32_reg_ro_complement (
 531   R23,
 532   R24,
 533   R25,
 534   R26,
 535   R27,
 536   R28
 537 );
 538 
 539 reg_class rscratch1_bits32_reg(R11);
 540 reg_class rscratch2_bits32_reg(R12);
 541 reg_class rarg1_bits32_reg(R3);
 542 reg_class rarg2_bits32_reg(R4);
 543 reg_class rarg3_bits32_reg(R5);
 544 reg_class rarg4_bits32_reg(R6);
 545 
 546 // ----------------------------
 547 // 64 Bit Register Classes
 548 // ----------------------------
 549 // 64-bit build means 64-bit pointers means hi/lo pairs
 550 
 551 reg_class rscratch1_bits64_reg(R11_H, R11);
 552 reg_class rscratch2_bits64_reg(R12_H, R12);
 553 reg_class rarg1_bits64_reg(R3_H, R3);
 554 reg_class rarg2_bits64_reg(R4_H, R4);
 555 reg_class rarg3_bits64_reg(R5_H, R5);
 556 reg_class rarg4_bits64_reg(R6_H, R6);
 557 // Thread register, 'written' by tlsLoadP, see there.
 558 reg_class thread_bits64_reg(R16_H, R16);
 559 
 560 reg_class r19_bits64_reg(R19_H, R19);
 561 
 562 // 64 bit registers that can be read and written i.e. these registers
 563 // can be dest (or src) of normal instructions.
 564 reg_class bits64_reg_rw(
 565 /*R0_H,  R0*/     // R0
 566 /*R1_H,  R1*/     // SP
 567   R2_H,  R2,      // TOC
 568   R3_H,  R3,
 569   R4_H,  R4,
 570   R5_H,  R5,
 571   R6_H,  R6,
 572   R7_H,  R7,
 573   R8_H,  R8,
 574   R9_H,  R9,
 575   R10_H, R10,
 576   R11_H, R11,
 577   R12_H, R12,
 578 /*R13_H, R13*/   // system thread id
 579   R14_H, R14,
 580   R15_H, R15,
 581 /*R16_H, R16*/   // R16_thread
 582   R17_H, R17,
 583   R18_H, R18,
 584   R19_H, R19,
 585   R20_H, R20,
 586   R21_H, R21,
 587   R22_H, R22,
 588   R23_H, R23,
 589   R24_H, R24,
 590   R25_H, R25,
 591   R26_H, R26,
 592   R27_H, R27,
 593   R28_H, R28,
 594 /*R29_H, R29*/
 595 /*R30_H, R30*/
 596   R31_H, R31
 597 );
 598 
 599 // 64 bit registers used excluding r2, r11 and r12
 600 // Used to hold the TOC to avoid collisions with expanded LeafCall which uses
 601 // r2, r11 and r12 internally.
 602 reg_class bits64_reg_leaf_call(
 603 /*R0_H,  R0*/     // R0
 604 /*R1_H,  R1*/     // SP
 605 /*R2_H,  R2*/     // TOC
 606   R3_H,  R3,
 607   R4_H,  R4,
 608   R5_H,  R5,
 609   R6_H,  R6,
 610   R7_H,  R7,
 611   R8_H,  R8,
 612   R9_H,  R9,
 613   R10_H, R10,
 614 /*R11_H, R11*/
 615 /*R12_H, R12*/
 616 /*R13_H, R13*/   // system thread id
 617   R14_H, R14,
 618   R15_H, R15,
 619 /*R16_H, R16*/   // R16_thread
 620   R17_H, R17,
 621   R18_H, R18,
 622   R19_H, R19,
 623   R20_H, R20,
 624   R21_H, R21,
 625   R22_H, R22,
 626   R23_H, R23,
 627   R24_H, R24,
 628   R25_H, R25,
 629   R26_H, R26,
 630   R27_H, R27,
 631   R28_H, R28,
 632 /*R29_H, R29*/
 633 /*R30_H, R30*/
 634   R31_H, R31
 635 );
 636 
 637 // Used to hold the TOC to avoid collisions with expanded DynamicCall
 638 // which uses r19 as inline cache internally and expanded LeafCall which uses
 639 // r2, r11 and r12 internally.
 640 reg_class bits64_constant_table_base(
 641 /*R0_H,  R0*/     // R0
 642 /*R1_H,  R1*/     // SP
 643 /*R2_H,  R2*/     // TOC
 644   R3_H,  R3,
 645   R4_H,  R4,
 646   R5_H,  R5,
 647   R6_H,  R6,
 648   R7_H,  R7,
 649   R8_H,  R8,
 650   R9_H,  R9,
 651   R10_H, R10,
 652 /*R11_H, R11*/
 653 /*R12_H, R12*/
 654 /*R13_H, R13*/   // system thread id
 655   R14_H, R14,
 656   R15_H, R15,
 657 /*R16_H, R16*/   // R16_thread
 658   R17_H, R17,
 659   R18_H, R18,
 660 /*R19_H, R19*/
 661   R20_H, R20,
 662   R21_H, R21,
 663   R22_H, R22,
 664   R23_H, R23,
 665   R24_H, R24,
 666   R25_H, R25,
 667   R26_H, R26,
 668   R27_H, R27,
 669   R28_H, R28,
 670 /*R29_H, R29*/
 671 /*R30_H, R30*/
 672   R31_H, R31
 673 );
 674 
 675 // 64 bit registers that can only be read i.e. these registers can
 676 // only be src of all instructions.
 677 reg_class bits64_reg_ro(
 678 /*R0_H,  R0*/     // R0
 679   R1_H,  R1,
 680   R2_H,  R2,       // TOC
 681   R3_H,  R3,
 682   R4_H,  R4,
 683   R5_H,  R5,
 684   R6_H,  R6,
 685   R7_H,  R7,
 686   R8_H,  R8,
 687   R9_H,  R9,
 688   R10_H, R10,
 689   R11_H, R11,
 690   R12_H, R12,
 691 /*R13_H, R13*/   // system thread id
 692   R14_H, R14,
 693   R15_H, R15,
 694   R16_H, R16,    // R16_thread
 695   R17_H, R17,
 696   R18_H, R18,
 697   R19_H, R19,
 698   R20_H, R20,
 699   R21_H, R21,
 700   R22_H, R22,
 701   R23_H, R23,
 702   R24_H, R24,
 703   R25_H, R25,
 704   R26_H, R26,
 705   R27_H, R27,
 706   R28_H, R28,
 707 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
 708 /*R30_H, R30,*/
 709   R31_H, R31
 710 );
 711 
 712 // Complement-required-in-pipeline operands.
 713 reg_class bits64_reg_ro_not_complement (
 714 /*R0_H,  R0*/     // R0
 715   R1_H,  R1,      // SP
 716   R2_H,  R2,      // TOC
 717   R3_H,  R3,
 718   R4_H,  R4,
 719   R5_H,  R5,
 720   R6_H,  R6,
 721   R7_H,  R7,
 722   R8_H,  R8,
 723   R9_H,  R9,
 724   R10_H, R10,
 725   R11_H, R11,
 726   R12_H, R12,
 727 /*R13_H, R13*/   // system thread id
 728   R14_H, R14,
 729   R15_H, R15,
 730   R16_H, R16,    // R16_thread
 731   R17_H, R17,
 732   R18_H, R18,
 733   R19_H, R19,
 734   R20_H, R20,
 735   R21_H, R21,
 736   R22_H, R22,
 737 /*R23_H, R23,
 738   R24_H, R24,
 739   R25_H, R25,
 740   R26_H, R26,
 741   R27_H, R27,
 742   R28_H, R28,*/
 743 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
 744 /*R30_H, R30,*/
 745   R31_H, R31
 746 );
 747 
 748 // Complement-required-in-pipeline operands.
 749 // This register mask is used for the trap instructions that implement
 750 // the null checks on AIX. The trap instruction first computes the
 751 // complement of the value it shall trap on. Because of this, the
 752 // instruction can not be scheduled in the same cycle as an other
 753 // instruction reading the normal value of the same register. So we
 754 // force the value to check into 'bits64_reg_ro_not_complement'
 755 // and then copy it to 'bits64_reg_ro_complement' for the trap.
 756 reg_class bits64_reg_ro_complement (
 757   R23_H, R23,
 758   R24_H, R24,
 759   R25_H, R25,
 760   R26_H, R26,
 761   R27_H, R27,
 762   R28_H, R28
 763 );
 764 
 765 
 766 // ----------------------------
 767 // Special Class for Condition Code Flags Register
 768 
 769 reg_class int_flags(
 770 /*CCR0*/             // scratch
 771 /*CCR1*/             // scratch
 772 /*CCR2*/             // nv!
 773 /*CCR3*/             // nv!
 774 /*CCR4*/             // nv!
 775   CCR5,
 776   CCR6,
 777   CCR7
 778 );
 779 
 780 reg_class int_flags_CR0(CCR0);
 781 reg_class int_flags_CR1(CCR1);
 782 reg_class int_flags_CR6(CCR6);
 783 reg_class ctr_reg(SR_CTR);
 784 
 785 // ----------------------------
 786 // Float Register Classes
 787 // ----------------------------
 788 
 789 reg_class flt_reg(
 790 /*F0*/              // scratch
 791   F1,
 792   F2,
 793   F3,
 794   F4,
 795   F5,
 796   F6,
 797   F7,
 798   F8,
 799   F9,
 800   F10,
 801   F11,
 802   F12,
 803   F13,
 804   F14,              // nv!
 805   F15,              // nv!
 806   F16,              // nv!
 807   F17,              // nv!
 808   F18,              // nv!
 809   F19,              // nv!
 810   F20,              // nv!
 811   F21,              // nv!
 812   F22,              // nv!
 813   F23,              // nv!
 814   F24,              // nv!
 815   F25,              // nv!
 816   F26,              // nv!
 817   F27,              // nv!
 818   F28,              // nv!
 819   F29,              // nv!
 820   F30,              // nv!
 821   F31               // nv!
 822 );
 823 
 824 // Double precision float registers have virtual `high halves' that
 825 // are needed by the allocator.
 826 reg_class dbl_reg(
 827 /*F0,  F0_H*/     // scratch
 828   F1,  F1_H,
 829   F2,  F2_H,
 830   F3,  F3_H,
 831   F4,  F4_H,
 832   F5,  F5_H,
 833   F6,  F6_H,
 834   F7,  F7_H,
 835   F8,  F8_H,
 836   F9,  F9_H,
 837   F10, F10_H,
 838   F11, F11_H,
 839   F12, F12_H,
 840   F13, F13_H,
 841   F14, F14_H,    // nv!
 842   F15, F15_H,    // nv!
 843   F16, F16_H,    // nv!
 844   F17, F17_H,    // nv!
 845   F18, F18_H,    // nv!
 846   F19, F19_H,    // nv!
 847   F20, F20_H,    // nv!
 848   F21, F21_H,    // nv!
 849   F22, F22_H,    // nv!
 850   F23, F23_H,    // nv!
 851   F24, F24_H,    // nv!
 852   F25, F25_H,    // nv!
 853   F26, F26_H,    // nv!
 854   F27, F27_H,    // nv!
 855   F28, F28_H,    // nv!
 856   F29, F29_H,    // nv!
 857   F30, F30_H,    // nv!
 858   F31, F31_H     // nv!
 859 );
 860 
 861  %}
 862 
 863 //----------DEFINITION BLOCK---------------------------------------------------
 864 // Define name --> value mappings to inform the ADLC of an integer valued name
 865 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 866 // Format:
 867 //        int_def  <name>         ( <int_value>, <expression>);
 868 // Generated Code in ad_<arch>.hpp
 869 //        #define  <name>   (<expression>)
 870 //        // value == <int_value>
 871 // Generated code in ad_<arch>.cpp adlc_verification()
 872 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 873 //
 874 definitions %{
 875   // The default cost (of an ALU instruction).
 876   int_def DEFAULT_COST_LOW        (     30,      30);
 877   int_def DEFAULT_COST            (    100,     100);
 878   int_def HUGE_COST               (1000000, 1000000);
 879 
 880   // Memory refs
 881   int_def MEMORY_REF_COST_LOW     (    200, DEFAULT_COST * 2);
 882   int_def MEMORY_REF_COST         (    300, DEFAULT_COST * 3);
 883 
 884   // Branches are even more expensive.
 885   int_def BRANCH_COST             (    900, DEFAULT_COST * 9);
 886   int_def CALL_COST               (   1300, DEFAULT_COST * 13);
 887 %}
 888 
 889 
 890 //----------SOURCE BLOCK-------------------------------------------------------
 891 // This is a block of C++ code which provides values, functions, and
 892 // definitions necessary in the rest of the architecture description.
 893 source_hpp %{
 894   // Header information of the source block.
 895   // Method declarations/definitions which are used outside
 896   // the ad-scope can conveniently be defined here.
 897   //
 898   // To keep related declarations/definitions/uses close together,
 899   // we switch between source %{ }% and source_hpp %{ }% freely as needed.
 900 
 901   // Returns true if Node n is followed by a MemBar node that
 902   // will do an acquire. If so, this node must not do the acquire
 903   // operation.
 904   bool followed_by_acquire(const Node *n);
 905 %}
 906 
 907 source %{
 908 
 909 // Optimize load-acquire.
 910 //
 911 // Check if acquire is unnecessary due to following operation that does
 912 // acquire anyways.
 913 // Walk the pattern:
 914 //
 915 //      n: Load.acq
 916 //           |
 917 //      MemBarAcquire
 918 //       |         |
 919 //  Proj(ctrl)  Proj(mem)
 920 //       |         |
 921 //   MemBarRelease/Volatile
 922 //
 923 bool followed_by_acquire(const Node *load) {
 924   assert(load->is_Load(), "So far implemented only for loads.");
 925 
 926   // Find MemBarAcquire.
 927   const Node *mba = NULL;
 928   for (DUIterator_Fast imax, i = load->fast_outs(imax); i < imax; i++) {
 929     const Node *out = load->fast_out(i);
 930     if (out->Opcode() == Op_MemBarAcquire) {
 931       if (out->in(0) == load) continue; // Skip control edge, membar should be found via precedence edge.
 932       mba = out;
 933       break;
 934     }
 935   }
 936   if (!mba) return false;
 937 
 938   // Find following MemBar node.
 939   //
 940   // The following node must be reachable by control AND memory
 941   // edge to assure no other operations are in between the two nodes.
 942   //
 943   // So first get the Proj node, mem_proj, to use it to iterate forward.
 944   Node *mem_proj = NULL;
 945   for (DUIterator_Fast imax, i = mba->fast_outs(imax); i < imax; i++) {
 946     mem_proj = mba->fast_out(i);      // Throw out-of-bounds if proj not found
 947     assert(mem_proj->is_Proj(), "only projections here");
 948     ProjNode *proj = mem_proj->as_Proj();
 949     if (proj->_con == TypeFunc::Memory &&
 950         !Compile::current()->node_arena()->contains(mem_proj)) // Unmatched old-space only
 951       break;
 952   }
 953   assert(mem_proj->as_Proj()->_con == TypeFunc::Memory, "Graph broken");
 954 
 955   // Search MemBar behind Proj. If there are other memory operations
 956   // behind the Proj we lost.
 957   for (DUIterator_Fast jmax, j = mem_proj->fast_outs(jmax); j < jmax; j++) {
 958     Node *x = mem_proj->fast_out(j);
 959     // Proj might have an edge to a store or load node which precedes the membar.
 960     if (x->is_Mem()) return false;
 961 
 962     // On PPC64 release and volatile are implemented by an instruction
 963     // that also has acquire semantics. I.e. there is no need for an
 964     // acquire before these.
 965     int xop = x->Opcode();
 966     if (xop == Op_MemBarRelease || xop == Op_MemBarVolatile) {
 967       // Make sure we're not missing Call/Phi/MergeMem by checking
 968       // control edges. The control edge must directly lead back
 969       // to the MemBarAcquire
 970       Node *ctrl_proj = x->in(0);
 971       if (ctrl_proj->is_Proj() && ctrl_proj->in(0) == mba) {
 972         return true;
 973       }
 974     }
 975   }
 976 
 977   return false;
 978 }
 979 
 980 #define __ _masm.
 981 
 982 // Tertiary op of a LoadP or StoreP encoding.
 983 #define REGP_OP true
 984 
 985 // ****************************************************************************
 986 
 987 // REQUIRED FUNCTIONALITY
 988 
 989 // !!!!! Special hack to get all type of calls to specify the byte offset
 990 //       from the start of the call to the point where the return address
 991 //       will point.
 992 
 993 // PPC port: Removed use of lazy constant construct.
 994 
 995 int MachCallStaticJavaNode::ret_addr_offset() {
 996   // It's only a single branch-and-link instruction.
 997   return 4;
 998 }
 999 
1000 int MachCallDynamicJavaNode::ret_addr_offset() {
1001   // Offset is 4 with postalloc expanded calls (bl is one instruction). We use
1002   // postalloc expanded calls if we use inline caches and do not update method data.
1003   if (UseInlineCaches)
1004     return 4;
1005 
1006   int vtable_index = this->_vtable_index;
1007   if (vtable_index < 0) {
1008     // Must be invalid_vtable_index, not nonvirtual_vtable_index.
1009     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
1010     return 12;
1011   } else {
1012     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
1013     return 24;
1014   }
1015 }
1016 
1017 int MachCallRuntimeNode::ret_addr_offset() {
1018 #if defined(ABI_ELFv2)
1019   return 28;
1020 #else
1021   return 40;
1022 #endif
1023 }
1024 
1025 //=============================================================================
1026 
1027 // condition code conversions
1028 
1029 static int cc_to_boint(int cc) {
1030   return Assembler::bcondCRbiIs0 | (cc & 8);
1031 }
1032 
1033 static int cc_to_inverse_boint(int cc) {
1034   return Assembler::bcondCRbiIs0 | (8-(cc & 8));
1035 }
1036 
1037 static int cc_to_biint(int cc, int flags_reg) {
1038   return (flags_reg << 2) | (cc & 3);
1039 }
1040 
1041 //=============================================================================
1042 
1043 // Compute padding required for nodes which need alignment. The padding
1044 // is the number of bytes (not instructions) which will be inserted before
1045 // the instruction. The padding must match the size of a NOP instruction.
1046 
1047 int string_indexOf_imm1_charNode::compute_padding(int current_offset) const {
1048   return (3*4-current_offset)&31;
1049 }
1050 
1051 int string_indexOf_imm1Node::compute_padding(int current_offset) const {
1052   return (2*4-current_offset)&31;
1053 }
1054 
1055 int string_indexOf_immNode::compute_padding(int current_offset) const {
1056   return (3*4-current_offset)&31;
1057 }
1058 
1059 int string_indexOfNode::compute_padding(int current_offset) const {
1060   return (1*4-current_offset)&31;
1061 }
1062 
1063 int string_compareNode::compute_padding(int current_offset) const {
1064   return (4*4-current_offset)&31;
1065 }
1066 
1067 int string_equals_immNode::compute_padding(int current_offset) const {
1068   if (opnd_array(3)->constant() < 16) return 0; // Don't insert nops for short version (loop completely unrolled).
1069   return (2*4-current_offset)&31;
1070 }
1071 
1072 int string_equalsNode::compute_padding(int current_offset) const {
1073   return (7*4-current_offset)&31;
1074 }
1075 
1076 int inlineCallClearArrayNode::compute_padding(int current_offset) const {
1077   return (2*4-current_offset)&31;
1078 }
1079 
1080 //=============================================================================
1081 
1082 // Indicate if the safepoint node needs the polling page as an input.
1083 bool SafePointNode::needs_polling_address_input() {
1084   // The address is loaded from thread by a seperate node.
1085   return true;
1086 }
1087 
1088 //=============================================================================
1089 
1090 // Emit an interrupt that is caught by the debugger (for debugging compiler).
1091 void emit_break(CodeBuffer &cbuf) {
1092   MacroAssembler _masm(&cbuf);
1093   __ illtrap();
1094 }
1095 
1096 #ifndef PRODUCT
1097 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1098   st->print("BREAKPOINT");
1099 }
1100 #endif
1101 
1102 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1103   emit_break(cbuf);
1104 }
1105 
1106 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
1107   return MachNode::size(ra_);
1108 }
1109 
1110 //=============================================================================
1111 
1112 void emit_nop(CodeBuffer &cbuf) {
1113   MacroAssembler _masm(&cbuf);
1114   __ nop();
1115 }
1116 
1117 static inline void emit_long(CodeBuffer &cbuf, int value) {
1118   *((int*)(cbuf.insts_end())) = value;
1119   cbuf.set_insts_end(cbuf.insts_end() + BytesPerInstWord);
1120 }
1121 
1122 //=============================================================================
1123 
1124 %} // interrupt source
1125 
1126 source_hpp %{ // Header information of the source block.
1127 
1128 //--------------------------------------------------------------
1129 //---<  Used for optimization in Compile::Shorten_branches  >---
1130 //--------------------------------------------------------------
1131 
1132 const uint trampoline_stub_size     =  6 * BytesPerInstWord;
1133 
1134 class CallStubImpl {
1135 
1136  public:
1137 
1138   // Emit call stub, compiled java to interpreter.
1139   static void emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset);
1140 
1141   // Size of call trampoline stub.
1142   // This doesn't need to be accurate to the byte, but it
1143   // must be larger than or equal to the real size of the stub.
1144   static uint size_call_trampoline() {
1145     return trampoline_stub_size;
1146   }
1147 
1148   // number of relocations needed by a call trampoline stub
1149   static uint reloc_call_trampoline() {
1150     return 5;
1151   }
1152 
1153 };
1154 
1155 %} // end source_hpp
1156 
1157 source %{
1158 
1159 // Emit a trampoline stub for a call to a target which is too far away.
1160 //
1161 // code sequences:
1162 //
1163 // call-site:
1164 //   branch-and-link to <destination> or <trampoline stub>
1165 //
1166 // Related trampoline stub for this call-site in the stub section:
1167 //   load the call target from the constant pool
1168 //   branch via CTR (LR/link still points to the call-site above)
1169 
1170 void CallStubImpl::emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset) {
1171   // Start the stub.
1172   address stub = __ start_a_stub(Compile::MAX_stubs_size/2);
1173   if (stub == NULL) {
1174     Compile::current()->env()->record_out_of_memory_failure();
1175     return;
1176   }
1177 
1178   // For java_to_interp stubs we use R11_scratch1 as scratch register
1179   // and in call trampoline stubs we use R12_scratch2. This way we
1180   // can distinguish them (see is_NativeCallTrampolineStub_at()).
1181   Register reg_scratch = R12_scratch2;
1182 
1183   // Create a trampoline stub relocation which relates this trampoline stub
1184   // with the call instruction at insts_call_instruction_offset in the
1185   // instructions code-section.
1186   __ relocate(trampoline_stub_Relocation::spec(__ code()->insts()->start() + insts_call_instruction_offset));
1187   const int stub_start_offset = __ offset();
1188 
1189   // Now, create the trampoline stub's code:
1190   // - load the TOC
1191   // - load the call target from the constant pool
1192   // - call
1193   __ calculate_address_from_global_toc(reg_scratch, __ method_toc());
1194   __ ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, reg_scratch, false);
1195   __ mtctr(reg_scratch);
1196   __ bctr();
1197 
1198   const address stub_start_addr = __ addr_at(stub_start_offset);
1199 
1200   // FIXME: Assert that the trampoline stub can be identified and patched.
1201 
1202   // Assert that the encoded destination_toc_offset can be identified and that it is correct.
1203   assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
1204          "encoded offset into the constant pool must match");
1205   // Trampoline_stub_size should be good.
1206   assert((uint)(__ offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
1207   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
1208 
1209   // End the stub.
1210   __ end_a_stub();
1211 }
1212 
1213 //=============================================================================
1214 
1215 // Emit an inline branch-and-link call and a related trampoline stub.
1216 //
1217 // code sequences:
1218 //
1219 // call-site:
1220 //   branch-and-link to <destination> or <trampoline stub>
1221 //
1222 // Related trampoline stub for this call-site in the stub section:
1223 //   load the call target from the constant pool
1224 //   branch via CTR (LR/link still points to the call-site above)
1225 //
1226 
1227 typedef struct {
1228   int insts_call_instruction_offset;
1229   int ret_addr_offset;
1230 } EmitCallOffsets;
1231 
1232 // Emit a branch-and-link instruction that branches to a trampoline.
1233 // - Remember the offset of the branch-and-link instruction.
1234 // - Add a relocation at the branch-and-link instruction.
1235 // - Emit a branch-and-link.
1236 // - Remember the return pc offset.
1237 EmitCallOffsets emit_call_with_trampoline_stub(MacroAssembler &_masm, address entry_point, relocInfo::relocType rtype) {
1238   EmitCallOffsets offsets = { -1, -1 };
1239   const int start_offset = __ offset();
1240   offsets.insts_call_instruction_offset = __ offset();
1241 
1242   // No entry point given, use the current pc.
1243   if (entry_point == NULL) entry_point = __ pc();
1244 
1245   if (!Compile::current()->in_scratch_emit_size()) {
1246     // Put the entry point as a constant into the constant pool.
1247     const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
1248     const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
1249 
1250     // Emit the trampoline stub which will be related to the branch-and-link below.
1251     CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, offsets.insts_call_instruction_offset);
1252     if (Compile::current()->env()->failing()) { return offsets; } // Code cache may be full.
1253     __ relocate(rtype);
1254   }
1255 
1256   // Note: At this point we do not have the address of the trampoline
1257   // stub, and the entry point might be too far away for bl, so __ pc()
1258   // serves as dummy and the bl will be patched later.
1259   __ bl((address) __ pc());
1260 
1261   offsets.ret_addr_offset = __ offset() - start_offset;
1262 
1263   return offsets;
1264 }
1265 
1266 //=============================================================================
1267 
1268 // Factory for creating loadConL* nodes for large/small constant pool.
1269 
1270 static inline jlong replicate_immF(float con) {
1271   // Replicate float con 2 times and pack into vector.
1272   int val = *((int*)&con);
1273   jlong lval = val;
1274   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
1275   return lval;
1276 }
1277 
1278 //=============================================================================
1279 
1280 const RegMask& MachConstantBaseNode::_out_RegMask = BITS64_CONSTANT_TABLE_BASE_mask();
1281 int Compile::ConstantTable::calculate_table_base_offset() const {
1282   return 0;  // absolute addressing, no offset
1283 }
1284 
1285 bool MachConstantBaseNode::requires_postalloc_expand() const { return true; }
1286 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
1287   iRegPdstOper *op_dst = new iRegPdstOper();
1288   MachNode *m1 = new loadToc_hiNode();
1289   MachNode *m2 = new loadToc_loNode();
1290 
1291   m1->add_req(NULL);
1292   m2->add_req(NULL, m1);
1293   m1->_opnds[0] = op_dst;
1294   m2->_opnds[0] = op_dst;
1295   m2->_opnds[1] = op_dst;
1296   ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
1297   ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
1298   nodes->push(m1);
1299   nodes->push(m2);
1300 }
1301 
1302 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1303   // Is postalloc expanded.
1304   ShouldNotReachHere();
1305 }
1306 
1307 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
1308   return 0;
1309 }
1310 
1311 #ifndef PRODUCT
1312 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1313   st->print("-- \t// MachConstantBaseNode (empty encoding)");
1314 }
1315 #endif
1316 
1317 //=============================================================================
1318 
1319 #ifndef PRODUCT
1320 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1321   Compile* C = ra_->C;
1322   const long framesize = C->frame_slots() << LogBytesPerInt;
1323 
1324   st->print("PROLOG\n\t");
1325   if (C->need_stack_bang(framesize)) {
1326     st->print("stack_overflow_check\n\t");
1327   }
1328 
1329   if (!false /* TODO: PPC port C->is_frameless_method()*/) {
1330     st->print("save return pc\n\t");
1331     st->print("push frame %ld\n\t", -framesize);
1332   }
1333 }
1334 #endif
1335 
1336 // Macro used instead of the common __ to emulate the pipes of PPC.
1337 // Instead of e.g. __ ld(...) one hase to write ___(ld) ld(...) This enables the
1338 // micro scheduler to cope with "hand written" assembler like in the prolog. Though
1339 // still no scheduling of this code is possible, the micro scheduler is aware of the
1340 // code and can update its internal data. The following mechanism is used to achieve this:
1341 // The micro scheduler calls size() of each compound node during scheduling. size() does a
1342 // dummy emit and only during this dummy emit C->hb_scheduling() is not NULL.
1343 #if 0 // TODO: PPC port
1344 #define ___(op) if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
1345                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(ppc64Opcode_##op); \
1346                 _masm.
1347 #define ___stop if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
1348                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(archOpcode_none)
1349 #define ___advance if (UsePower6SchedulerPPC64 && C->hb_scheduling())                 \
1350                   C->hb_scheduling()->_pdScheduling->advance_offset
1351 #else
1352 #define ___(op) if (UsePower6SchedulerPPC64)                                          \
1353                   Unimplemented();                                                    \
1354                 _masm.
1355 #define ___stop if (UsePower6SchedulerPPC64)                                          \
1356                   Unimplemented()
1357 #define ___advance if (UsePower6SchedulerPPC64)                                       \
1358                   Unimplemented()
1359 #endif
1360 
1361 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1362   Compile* C = ra_->C;
1363   MacroAssembler _masm(&cbuf);
1364 
1365   const long framesize = C->frame_size_in_bytes();
1366   assert(framesize % (2 * wordSize) == 0, "must preserve 2*wordSize alignment");
1367 
1368   const bool method_is_frameless      = false /* TODO: PPC port C->is_frameless_method()*/;
1369 
1370   const Register return_pc            = R20; // Must match return_addr() in frame section.
1371   const Register callers_sp           = R21;
1372   const Register push_frame_temp      = R22;
1373   const Register toc_temp             = R23;
1374   assert_different_registers(R11, return_pc, callers_sp, push_frame_temp, toc_temp);
1375 
1376   if (method_is_frameless) {
1377     // Add nop at beginning of all frameless methods to prevent any
1378     // oop instructions from getting overwritten by make_not_entrant
1379     // (patching attempt would fail).
1380     ___(nop) nop();
1381   } else {
1382     // Get return pc.
1383     ___(mflr) mflr(return_pc);
1384   }
1385 
1386   // Calls to C2R adapters often do not accept exceptional returns.
1387   // We require that their callers must bang for them. But be
1388   // careful, because some VM calls (such as call site linkage) can
1389   // use several kilobytes of stack. But the stack safety zone should
1390   // account for that. See bugs 4446381, 4468289, 4497237.
1391 
1392   int bangsize = C->bang_size_in_bytes();
1393   assert(bangsize >= framesize || bangsize <= 0, "stack bang size incorrect");
1394   if (C->need_stack_bang(bangsize) && UseStackBanging) {
1395     // Unfortunately we cannot use the function provided in
1396     // assembler.cpp as we have to emulate the pipes. So I had to
1397     // insert the code of generate_stack_overflow_check(), see
1398     // assembler.cpp for some illuminative comments.
1399     const int page_size = os::vm_page_size();
1400     int bang_end = StackShadowPages * page_size;
1401 
1402     // This is how far the previous frame's stack banging extended.
1403     const int bang_end_safe = bang_end;
1404 
1405     if (bangsize > page_size) {
1406       bang_end += bangsize;
1407     }
1408 
1409     int bang_offset = bang_end_safe;
1410 
1411     while (bang_offset <= bang_end) {
1412       // Need at least one stack bang at end of shadow zone.
1413 
1414       // Again I had to copy code, this time from assembler_ppc.cpp,
1415       // bang_stack_with_offset - see there for comments.
1416 
1417       // Stack grows down, caller passes positive offset.
1418       assert(bang_offset > 0, "must bang with positive offset");
1419 
1420       long stdoffset = -bang_offset;
1421 
1422       if (Assembler::is_simm(stdoffset, 16)) {
1423         // Signed 16 bit offset, a simple std is ok.
1424         if (UseLoadInstructionsForStackBangingPPC64) {
1425           ___(ld) ld(R0,  (int)(signed short)stdoffset, R1_SP);
1426         } else {
1427           ___(std) std(R0, (int)(signed short)stdoffset, R1_SP);
1428         }
1429       } else if (Assembler::is_simm(stdoffset, 31)) {
1430         // Use largeoffset calculations for addis & ld/std.
1431         const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
1432         const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
1433 
1434         Register tmp = R11;
1435         ___(addis) addis(tmp, R1_SP, hi);
1436         if (UseLoadInstructionsForStackBangingPPC64) {
1437           ___(ld) ld(R0, lo, tmp);
1438         } else {
1439           ___(std) std(R0, lo, tmp);
1440         }
1441       } else {
1442         ShouldNotReachHere();
1443       }
1444 
1445       bang_offset += page_size;
1446     }
1447     // R11 trashed
1448   } // C->need_stack_bang(framesize) && UseStackBanging
1449 
1450   unsigned int bytes = (unsigned int)framesize;
1451   long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
1452   ciMethod *currMethod = C->method();
1453 
1454   // Optimized version for most common case.
1455   if (UsePower6SchedulerPPC64 &&
1456       !method_is_frameless && Assembler::is_simm((int)(-offset), 16) &&
1457       !(false /* ConstantsALot TODO: PPC port*/)) {
1458     ___(or) mr(callers_sp, R1_SP);
1459     ___(std) std(return_pc, _abi(lr), R1_SP);
1460     ___(stdu) stdu(R1_SP, -offset, R1_SP);
1461     return;
1462   }
1463 
1464   if (!method_is_frameless) {
1465     // Get callers sp.
1466     ___(or) mr(callers_sp, R1_SP);
1467 
1468     // Push method's frame, modifies SP.
1469     assert(Assembler::is_uimm(framesize, 32U), "wrong type");
1470     // The ABI is already accounted for in 'framesize' via the
1471     // 'out_preserve' area.
1472     Register tmp = push_frame_temp;
1473     // Had to insert code of push_frame((unsigned int)framesize, push_frame_temp).
1474     if (Assembler::is_simm(-offset, 16)) {
1475       ___(stdu) stdu(R1_SP, -offset, R1_SP);
1476     } else {
1477       long x = -offset;
1478       // Had to insert load_const(tmp, -offset).
1479       ___(addis)  lis( tmp, (int)((signed short)(((x >> 32) & 0xffff0000) >> 16)));
1480       ___(ori)    ori( tmp, tmp, ((x >> 32) & 0x0000ffff));
1481       ___(rldicr) sldi(tmp, tmp, 32);
1482       ___(oris)   oris(tmp, tmp, (x & 0xffff0000) >> 16);
1483       ___(ori)    ori( tmp, tmp, (x & 0x0000ffff));
1484 
1485       ___(stdux) stdux(R1_SP, R1_SP, tmp);
1486     }
1487   }
1488 #if 0 // TODO: PPC port
1489   // For testing large constant pools, emit a lot of constants to constant pool.
1490   // "Randomize" const_size.
1491   if (ConstantsALot) {
1492     const int num_consts = const_size();
1493     for (int i = 0; i < num_consts; i++) {
1494       __ long_constant(0xB0B5B00BBABE);
1495     }
1496   }
1497 #endif
1498   if (!method_is_frameless) {
1499     // Save return pc.
1500     ___(std) std(return_pc, _abi(lr), callers_sp);
1501   }
1502 }
1503 #undef ___
1504 #undef ___stop
1505 #undef ___advance
1506 
1507 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1508   // Variable size. determine dynamically.
1509   return MachNode::size(ra_);
1510 }
1511 
1512 int MachPrologNode::reloc() const {
1513   // Return number of relocatable values contained in this instruction.
1514   return 1; // 1 reloc entry for load_const(toc).
1515 }
1516 
1517 //=============================================================================
1518 
1519 #ifndef PRODUCT
1520 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1521   Compile* C = ra_->C;
1522 
1523   st->print("EPILOG\n\t");
1524   st->print("restore return pc\n\t");
1525   st->print("pop frame\n\t");
1526 
1527   if (do_polling() && C->is_method_compilation()) {
1528     st->print("touch polling page\n\t");
1529   }
1530 }
1531 #endif
1532 
1533 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1534   Compile* C = ra_->C;
1535   MacroAssembler _masm(&cbuf);
1536 
1537   const long framesize = ((long)C->frame_slots()) << LogBytesPerInt;
1538   assert(framesize >= 0, "negative frame-size?");
1539 
1540   const bool method_needs_polling = do_polling() && C->is_method_compilation();
1541   const bool method_is_frameless  = false /* TODO: PPC port C->is_frameless_method()*/;
1542   const Register return_pc        = R11;
1543   const Register polling_page     = R12;
1544 
1545   if (!method_is_frameless) {
1546     // Restore return pc relative to callers' sp.
1547     __ ld(return_pc, ((int)framesize) + _abi(lr), R1_SP);
1548   }
1549 
1550   if (method_needs_polling) {
1551     if (LoadPollAddressFromThread) {
1552       // TODO: PPC port __ ld(polling_page, in_bytes(JavaThread::poll_address_offset()), R16_thread);
1553       Unimplemented();
1554     } else {
1555       __ load_const_optimized(polling_page, (long)(address) os::get_polling_page()); // TODO: PPC port: get_standard_polling_page()
1556     }
1557   }
1558 
1559   if (!method_is_frameless) {
1560     // Move return pc to LR.
1561     __ mtlr(return_pc);
1562     // Pop frame (fixed frame-size).
1563     __ addi(R1_SP, R1_SP, (int)framesize);
1564   }
1565 
1566   if (method_needs_polling) {
1567     // We need to mark the code position where the load from the safepoint
1568     // polling page was emitted as relocInfo::poll_return_type here.
1569     __ relocate(relocInfo::poll_return_type);
1570     __ load_from_polling_page(polling_page);
1571   }
1572 }
1573 
1574 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1575   // Variable size. Determine dynamically.
1576   return MachNode::size(ra_);
1577 }
1578 
1579 int MachEpilogNode::reloc() const {
1580   // Return number of relocatable values contained in this instruction.
1581   return 1; // 1 for load_from_polling_page.
1582 }
1583 
1584 const Pipeline * MachEpilogNode::pipeline() const {
1585   return MachNode::pipeline_class();
1586 }
1587 
1588 // This method seems to be obsolete. It is declared in machnode.hpp
1589 // and defined in all *.ad files, but it is never called. Should we
1590 // get rid of it?
1591 int MachEpilogNode::safepoint_offset() const {
1592   assert(do_polling(), "no return for this epilog node");
1593   return 0;
1594 }
1595 
1596 #if 0 // TODO: PPC port
1597 void MachLoadPollAddrLateNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1598   MacroAssembler _masm(&cbuf);
1599   if (LoadPollAddressFromThread) {
1600     _masm.ld(R11, in_bytes(JavaThread::poll_address_offset()), R16_thread);
1601   } else {
1602     _masm.nop();
1603   }
1604 }
1605 
1606 uint MachLoadPollAddrLateNode::size(PhaseRegAlloc* ra_) const {
1607   if (LoadPollAddressFromThread) {
1608     return 4;
1609   } else {
1610     return 4;
1611   }
1612 }
1613 
1614 #ifndef PRODUCT
1615 void MachLoadPollAddrLateNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1616   st->print_cr(" LD R11, PollAddressOffset, R16_thread \t// LoadPollAddressFromThread");
1617 }
1618 #endif
1619 
1620 const RegMask &MachLoadPollAddrLateNode::out_RegMask() const {
1621   return RSCRATCH1_BITS64_REG_mask();
1622 }
1623 #endif // PPC port
1624 
1625 // =============================================================================
1626 
1627 // Figure out which register class each belongs in: rc_int, rc_float or
1628 // rc_stack.
1629 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1630 
1631 static enum RC rc_class(OptoReg::Name reg) {
1632   // Return the register class for the given register. The given register
1633   // reg is a <register>_num value, which is an index into the MachRegisterNumbers
1634   // enumeration in adGlobals_ppc.hpp.
1635 
1636   if (reg == OptoReg::Bad) return rc_bad;
1637 
1638   // We have 64 integer register halves, starting at index 0.
1639   if (reg < 64) return rc_int;
1640 
1641   // We have 64 floating-point register halves, starting at index 64.
1642   if (reg < 64+64) return rc_float;
1643 
1644   // Between float regs & stack are the flags regs.
1645   assert(OptoReg::is_stack(reg), "blow up if spilling flags");
1646 
1647   return rc_stack;
1648 }
1649 
1650 static int ld_st_helper(CodeBuffer *cbuf, const char *op_str, uint opcode, int reg, int offset,
1651                         bool do_print, Compile* C, outputStream *st) {
1652 
1653   assert(opcode == Assembler::LD_OPCODE   ||
1654          opcode == Assembler::STD_OPCODE  ||
1655          opcode == Assembler::LWZ_OPCODE  ||
1656          opcode == Assembler::STW_OPCODE  ||
1657          opcode == Assembler::LFD_OPCODE  ||
1658          opcode == Assembler::STFD_OPCODE ||
1659          opcode == Assembler::LFS_OPCODE  ||
1660          opcode == Assembler::STFS_OPCODE,
1661          "opcode not supported");
1662 
1663   if (cbuf) {
1664     int d =
1665       (Assembler::LD_OPCODE == opcode || Assembler::STD_OPCODE == opcode) ?
1666         Assembler::ds(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/)
1667       : Assembler::d1(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/); // Makes no difference in opt build.
1668     emit_long(*cbuf, opcode | Assembler::rt(Matcher::_regEncode[reg]) | d | Assembler::ra(R1_SP));
1669   }
1670 #ifndef PRODUCT
1671   else if (do_print) {
1672     st->print("%-7s %s, [R1_SP + #%d+%d] \t// spill copy",
1673               op_str,
1674               Matcher::regName[reg],
1675               offset, 0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/);
1676   }
1677 #endif
1678   return 4; // size
1679 }
1680 
1681 uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
1682   Compile* C = ra_->C;
1683 
1684   // Get registers to move.
1685   OptoReg::Name src_hi = ra_->get_reg_second(in(1));
1686   OptoReg::Name src_lo = ra_->get_reg_first(in(1));
1687   OptoReg::Name dst_hi = ra_->get_reg_second(this);
1688   OptoReg::Name dst_lo = ra_->get_reg_first(this);
1689 
1690   enum RC src_hi_rc = rc_class(src_hi);
1691   enum RC src_lo_rc = rc_class(src_lo);
1692   enum RC dst_hi_rc = rc_class(dst_hi);
1693   enum RC dst_lo_rc = rc_class(dst_lo);
1694 
1695   assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
1696   if (src_hi != OptoReg::Bad)
1697     assert((src_lo&1)==0 && src_lo+1==src_hi &&
1698            (dst_lo&1)==0 && dst_lo+1==dst_hi,
1699            "expected aligned-adjacent pairs");
1700   // Generate spill code!
1701   int size = 0;
1702 
1703   if (src_lo == dst_lo && src_hi == dst_hi)
1704     return size;            // Self copy, no move.
1705 
1706   // --------------------------------------
1707   // Memory->Memory Spill. Use R0 to hold the value.
1708   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
1709     int src_offset = ra_->reg2offset(src_lo);
1710     int dst_offset = ra_->reg2offset(dst_lo);
1711     if (src_hi != OptoReg::Bad) {
1712       assert(src_hi_rc==rc_stack && dst_hi_rc==rc_stack,
1713              "expected same type of move for high parts");
1714       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE,  R0_num, src_offset, !do_size, C, st);
1715       if (!cbuf && !do_size) st->print("\n\t");
1716       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, R0_num, dst_offset, !do_size, C, st);
1717     } else {
1718       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, R0_num, src_offset, !do_size, C, st);
1719       if (!cbuf && !do_size) st->print("\n\t");
1720       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, R0_num, dst_offset, !do_size, C, st);
1721     }
1722     return size;
1723   }
1724 
1725   // --------------------------------------
1726   // Check for float->int copy; requires a trip through memory.
1727   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
1728     Unimplemented();
1729   }
1730 
1731   // --------------------------------------
1732   // Check for integer reg-reg copy.
1733   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
1734       Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
1735       Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
1736       size = (Rsrc != Rdst) ? 4 : 0;
1737 
1738       if (cbuf) {
1739         MacroAssembler _masm(cbuf);
1740         if (size) {
1741           __ mr(Rdst, Rsrc);
1742         }
1743       }
1744 #ifndef PRODUCT
1745       else if (!do_size) {
1746         if (size) {
1747           st->print("%-7s %s, %s \t// spill copy", "MR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1748         } else {
1749           st->print("%-7s %s, %s \t// spill copy", "MR-NOP", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1750         }
1751       }
1752 #endif
1753       return size;
1754   }
1755 
1756   // Check for integer store.
1757   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
1758     int dst_offset = ra_->reg2offset(dst_lo);
1759     if (src_hi != OptoReg::Bad) {
1760       assert(src_hi_rc==rc_int && dst_hi_rc==rc_stack,
1761              "expected same type of move for high parts");
1762       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, src_lo, dst_offset, !do_size, C, st);
1763     } else {
1764       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, src_lo, dst_offset, !do_size, C, st);
1765     }
1766     return size;
1767   }
1768 
1769   // Check for integer load.
1770   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
1771     int src_offset = ra_->reg2offset(src_lo);
1772     if (src_hi != OptoReg::Bad) {
1773       assert(dst_hi_rc==rc_int && src_hi_rc==rc_stack,
1774              "expected same type of move for high parts");
1775       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE, dst_lo, src_offset, !do_size, C, st);
1776     } else {
1777       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, dst_lo, src_offset, !do_size, C, st);
1778     }
1779     return size;
1780   }
1781 
1782   // Check for float reg-reg copy.
1783   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
1784     if (cbuf) {
1785       MacroAssembler _masm(cbuf);
1786       FloatRegister Rsrc = as_FloatRegister(Matcher::_regEncode[src_lo]);
1787       FloatRegister Rdst = as_FloatRegister(Matcher::_regEncode[dst_lo]);
1788       __ fmr(Rdst, Rsrc);
1789     }
1790 #ifndef PRODUCT
1791     else if (!do_size) {
1792       st->print("%-7s %s, %s \t// spill copy", "FMR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1793     }
1794 #endif
1795     return 4;
1796   }
1797 
1798   // Check for float store.
1799   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
1800     int dst_offset = ra_->reg2offset(dst_lo);
1801     if (src_hi != OptoReg::Bad) {
1802       assert(src_hi_rc==rc_float && dst_hi_rc==rc_stack,
1803              "expected same type of move for high parts");
1804       size += ld_st_helper(cbuf, "STFD", Assembler::STFD_OPCODE, src_lo, dst_offset, !do_size, C, st);
1805     } else {
1806       size += ld_st_helper(cbuf, "STFS", Assembler::STFS_OPCODE, src_lo, dst_offset, !do_size, C, st);
1807     }
1808     return size;
1809   }
1810 
1811   // Check for float load.
1812   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
1813     int src_offset = ra_->reg2offset(src_lo);
1814     if (src_hi != OptoReg::Bad) {
1815       assert(dst_hi_rc==rc_float && src_hi_rc==rc_stack,
1816              "expected same type of move for high parts");
1817       size += ld_st_helper(cbuf, "LFD ", Assembler::LFD_OPCODE, dst_lo, src_offset, !do_size, C, st);
1818     } else {
1819       size += ld_st_helper(cbuf, "LFS ", Assembler::LFS_OPCODE, dst_lo, src_offset, !do_size, C, st);
1820     }
1821     return size;
1822   }
1823 
1824   // --------------------------------------------------------------------
1825   // Check for hi bits still needing moving. Only happens for misaligned
1826   // arguments to native calls.
1827   if (src_hi == dst_hi)
1828     return size;               // Self copy; no move.
1829 
1830   assert(src_hi_rc != rc_bad && dst_hi_rc != rc_bad, "src_hi & dst_hi cannot be Bad");
1831   ShouldNotReachHere(); // Unimplemented
1832   return 0;
1833 }
1834 
1835 #ifndef PRODUCT
1836 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1837   if (!ra_)
1838     st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
1839   else
1840     implementation(NULL, ra_, false, st);
1841 }
1842 #endif
1843 
1844 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1845   implementation(&cbuf, ra_, false, NULL);
1846 }
1847 
1848 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1849   return implementation(NULL, ra_, true, NULL);
1850 }
1851 
1852 #if 0 // TODO: PPC port
1853 ArchOpcode MachSpillCopyNode_archOpcode(MachSpillCopyNode *n, PhaseRegAlloc *ra_) {
1854 #ifndef PRODUCT
1855   if (ra_->node_regs_max_index() == 0) return archOpcode_undefined;
1856 #endif
1857   assert(ra_->node_regs_max_index() != 0, "");
1858 
1859   // Get registers to move.
1860   OptoReg::Name src_hi = ra_->get_reg_second(n->in(1));
1861   OptoReg::Name src_lo = ra_->get_reg_first(n->in(1));
1862   OptoReg::Name dst_hi = ra_->get_reg_second(n);
1863   OptoReg::Name dst_lo = ra_->get_reg_first(n);
1864 
1865   enum RC src_lo_rc = rc_class(src_lo);
1866   enum RC dst_lo_rc = rc_class(dst_lo);
1867 
1868   if (src_lo == dst_lo && src_hi == dst_hi)
1869     return ppc64Opcode_none;            // Self copy, no move.
1870 
1871   // --------------------------------------
1872   // Memory->Memory Spill. Use R0 to hold the value.
1873   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
1874     return ppc64Opcode_compound;
1875   }
1876 
1877   // --------------------------------------
1878   // Check for float->int copy; requires a trip through memory.
1879   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
1880     Unimplemented();
1881   }
1882 
1883   // --------------------------------------
1884   // Check for integer reg-reg copy.
1885   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
1886     Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
1887     Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
1888     if (Rsrc == Rdst) {
1889       return ppc64Opcode_none;
1890     } else {
1891       return ppc64Opcode_or;
1892     }
1893   }
1894 
1895   // Check for integer store.
1896   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
1897     if (src_hi != OptoReg::Bad) {
1898       return ppc64Opcode_std;
1899     } else {
1900       return ppc64Opcode_stw;
1901     }
1902   }
1903 
1904   // Check for integer load.
1905   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
1906     if (src_hi != OptoReg::Bad) {
1907       return ppc64Opcode_ld;
1908     } else {
1909       return ppc64Opcode_lwz;
1910     }
1911   }
1912 
1913   // Check for float reg-reg copy.
1914   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
1915     return ppc64Opcode_fmr;
1916   }
1917 
1918   // Check for float store.
1919   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
1920     if (src_hi != OptoReg::Bad) {
1921       return ppc64Opcode_stfd;
1922     } else {
1923       return ppc64Opcode_stfs;
1924     }
1925   }
1926 
1927   // Check for float load.
1928   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
1929     if (src_hi != OptoReg::Bad) {
1930       return ppc64Opcode_lfd;
1931     } else {
1932       return ppc64Opcode_lfs;
1933     }
1934   }
1935 
1936   // --------------------------------------------------------------------
1937   // Check for hi bits still needing moving. Only happens for misaligned
1938   // arguments to native calls.
1939   if (src_hi == dst_hi)
1940     return ppc64Opcode_none;               // Self copy; no move.
1941 
1942   ShouldNotReachHere();
1943   return ppc64Opcode_undefined;
1944 }
1945 #endif // PPC port
1946 
1947 #ifndef PRODUCT
1948 void MachNopNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1949   st->print("NOP \t// %d nops to pad for loops.", _count);
1950 }
1951 #endif
1952 
1953 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
1954   MacroAssembler _masm(&cbuf);
1955   // _count contains the number of nops needed for padding.
1956   for (int i = 0; i < _count; i++) {
1957     __ nop();
1958   }
1959 }
1960 
1961 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1962    return _count * 4;
1963 }
1964 
1965 #ifndef PRODUCT
1966 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1967   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1968   int reg = ra_->get_reg_first(this);
1969   st->print("ADDI %s, SP, %d \t// box node", Matcher::regName[reg], offset);
1970 }
1971 #endif
1972 
1973 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1974   MacroAssembler _masm(&cbuf);
1975 
1976   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1977   int reg    = ra_->get_encode(this);
1978 
1979   if (Assembler::is_simm(offset, 16)) {
1980     __ addi(as_Register(reg), R1, offset);
1981   } else {
1982     ShouldNotReachHere();
1983   }
1984 }
1985 
1986 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1987   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
1988   return 4;
1989 }
1990 
1991 #ifndef PRODUCT
1992 void MachUEPNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1993   st->print_cr("---- MachUEPNode ----");
1994   st->print_cr("...");
1995 }
1996 #endif
1997 
1998 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1999   // This is the unverified entry point.
2000   MacroAssembler _masm(&cbuf);
2001 
2002   // Inline_cache contains a klass.
2003   Register ic_klass       = as_Register(Matcher::inline_cache_reg_encode());
2004   Register receiver_klass = R12_scratch2;  // tmp
2005 
2006   assert_different_registers(ic_klass, receiver_klass, R11_scratch1, R3_ARG1);
2007   assert(R11_scratch1 == R11, "need prologue scratch register");
2008 
2009   // Check for NULL argument if we don't have implicit null checks.
2010   if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
2011     if (TrapBasedNullChecks) {
2012       __ trap_null_check(R3_ARG1);
2013     } else {
2014       Label valid;
2015       __ cmpdi(CCR0, R3_ARG1, 0);
2016       __ bne_predict_taken(CCR0, valid);
2017       // We have a null argument, branch to ic_miss_stub.
2018       __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
2019                            relocInfo::runtime_call_type);
2020       __ bind(valid);
2021     }
2022   }
2023   // Assume argument is not NULL, load klass from receiver.
2024   __ load_klass(receiver_klass, R3_ARG1);
2025 
2026   if (TrapBasedICMissChecks) {
2027     __ trap_ic_miss_check(receiver_klass, ic_klass);
2028   } else {
2029     Label valid;
2030     __ cmpd(CCR0, receiver_klass, ic_klass);
2031     __ beq_predict_taken(CCR0, valid);
2032     // We have an unexpected klass, branch to ic_miss_stub.
2033     __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
2034                          relocInfo::runtime_call_type);
2035     __ bind(valid);
2036   }
2037 
2038   // Argument is valid and klass is as expected, continue.
2039 }
2040 
2041 #if 0 // TODO: PPC port
2042 // Optimize UEP code on z (save a load_const() call in main path).
2043 int MachUEPNode::ep_offset() {
2044   return 0;
2045 }
2046 #endif
2047 
2048 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
2049   // Variable size. Determine dynamically.
2050   return MachNode::size(ra_);
2051 }
2052 
2053 //=============================================================================
2054 
2055 %} // interrupt source
2056 
2057 source_hpp %{ // Header information of the source block.
2058 
2059 class HandlerImpl {
2060 
2061  public:
2062 
2063   static int emit_exception_handler(CodeBuffer &cbuf);
2064   static int emit_deopt_handler(CodeBuffer& cbuf);
2065 
2066   static uint size_exception_handler() {
2067     // The exception_handler is a b64_patchable.
2068     return MacroAssembler::b64_patchable_size;
2069   }
2070 
2071   static uint size_deopt_handler() {
2072     // The deopt_handler is a bl64_patchable.
2073     return MacroAssembler::bl64_patchable_size;
2074   }
2075 
2076 };
2077 
2078 %} // end source_hpp
2079 
2080 source %{
2081 
2082 int HandlerImpl::emit_exception_handler(CodeBuffer &cbuf) {
2083   MacroAssembler _masm(&cbuf);
2084 
2085   address base = __ start_a_stub(size_exception_handler());
2086   if (base == NULL) return 0; // CodeBuffer::expand failed
2087 
2088   int offset = __ offset();
2089   __ b64_patchable((address)OptoRuntime::exception_blob()->content_begin(),
2090                        relocInfo::runtime_call_type);
2091   assert(__ offset() - offset == (int)size_exception_handler(), "must be fixed size");
2092   __ end_a_stub();
2093 
2094   return offset;
2095 }
2096 
2097 // The deopt_handler is like the exception handler, but it calls to
2098 // the deoptimization blob instead of jumping to the exception blob.
2099 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
2100   MacroAssembler _masm(&cbuf);
2101 
2102   address base = __ start_a_stub(size_deopt_handler());
2103   if (base == NULL) return 0; // CodeBuffer::expand failed
2104 
2105   int offset = __ offset();
2106   __ bl64_patchable((address)SharedRuntime::deopt_blob()->unpack(),
2107                         relocInfo::runtime_call_type);
2108   assert(__ offset() - offset == (int) size_deopt_handler(), "must be fixed size");
2109   __ end_a_stub();
2110 
2111   return offset;
2112 }
2113 
2114 //=============================================================================
2115 
2116 // Use a frame slots bias for frameless methods if accessing the stack.
2117 static int frame_slots_bias(int reg_enc, PhaseRegAlloc* ra_) {
2118   if (as_Register(reg_enc) == R1_SP) {
2119     return 0; // TODO: PPC port ra_->C->frame_slots_sp_bias_in_bytes();
2120   }
2121   return 0;
2122 }
2123 
2124 const bool Matcher::match_rule_supported(int opcode) {
2125   if (!has_match_rule(opcode))
2126     return false;
2127 
2128   switch (opcode) {
2129   case Op_SqrtD:
2130     return VM_Version::has_fsqrt();
2131   case Op_CountLeadingZerosI:
2132   case Op_CountLeadingZerosL:
2133   case Op_CountTrailingZerosI:
2134   case Op_CountTrailingZerosL:
2135     if (!UseCountLeadingZerosInstructionsPPC64)
2136       return false;
2137     break;
2138 
2139   case Op_PopCountI:
2140   case Op_PopCountL:
2141     return (UsePopCountInstruction && VM_Version::has_popcntw());
2142 
2143   case Op_StrComp:
2144     return SpecialStringCompareTo;
2145   case Op_StrEquals:
2146     return SpecialStringEquals;
2147   case Op_StrIndexOf:
2148     return SpecialStringIndexOf;
2149   }
2150 
2151   return true;  // Per default match rules are supported.
2152 }
2153 
2154 int Matcher::regnum_to_fpu_offset(int regnum) {
2155   // No user for this method?
2156   Unimplemented();
2157   return 999;
2158 }
2159 
2160 const bool Matcher::convL2FSupported(void) {
2161   // fcfids can do the conversion (>= Power7).
2162   // fcfid + frsp showed rounding problem when result should be 0x3f800001.
2163   return VM_Version::has_fcfids(); // False means that conversion is done by runtime call.
2164 }
2165 
2166 // Vector width in bytes.
2167 const int Matcher::vector_width_in_bytes(BasicType bt) {
2168   assert(MaxVectorSize == 8, "");
2169   return 8;
2170 }
2171 
2172 // Vector ideal reg.
2173 const int Matcher::vector_ideal_reg(int size) {
2174   assert(MaxVectorSize == 8 && size == 8, "");
2175   return Op_RegL;
2176 }
2177 
2178 const int Matcher::vector_shift_count_ideal_reg(int size) {
2179   fatal("vector shift is not supported");
2180   return Node::NotAMachineReg;
2181 }
2182 
2183 // Limits on vector size (number of elements) loaded into vector.
2184 const int Matcher::max_vector_size(const BasicType bt) {
2185   assert(is_java_primitive(bt), "only primitive type vectors");
2186   return vector_width_in_bytes(bt)/type2aelembytes(bt);
2187 }
2188 
2189 const int Matcher::min_vector_size(const BasicType bt) {
2190   return max_vector_size(bt); // Same as max.
2191 }
2192 
2193 // PPC doesn't support misaligned vectors store/load.
2194 const bool Matcher::misaligned_vectors_ok() {
2195   return false;
2196 }
2197 
2198 // PPC AES support not yet implemented
2199 const bool Matcher::pass_original_key_for_aes() {
2200   return false;
2201 }
2202 
2203 // RETURNS: whether this branch offset is short enough that a short
2204 // branch can be used.
2205 //
2206 // If the platform does not provide any short branch variants, then
2207 // this method should return `false' for offset 0.
2208 //
2209 // `Compile::Fill_buffer' will decide on basis of this information
2210 // whether to do the pass `Compile::Shorten_branches' at all.
2211 //
2212 // And `Compile::Shorten_branches' will decide on basis of this
2213 // information whether to replace particular branch sites by short
2214 // ones.
2215 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
2216   // Is the offset within the range of a ppc64 pc relative branch?
2217   bool b;
2218 
2219   const int safety_zone = 3 * BytesPerInstWord;
2220   b = Assembler::is_simm((offset<0 ? offset-safety_zone : offset+safety_zone),
2221                          29 - 16 + 1 + 2);
2222   return b;
2223 }
2224 
2225 const bool Matcher::isSimpleConstant64(jlong value) {
2226   // Probably always true, even if a temp register is required.
2227   return true;
2228 }
2229 /* TODO: PPC port
2230 // Make a new machine dependent decode node (with its operands).
2231 MachTypeNode *Matcher::make_decode_node() {
2232   assert(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0,
2233          "This method is only implemented for unscaled cOops mode so far");
2234   MachTypeNode *decode = new decodeN_unscaledNode();
2235   decode->set_opnd_array(0, new iRegPdstOper());
2236   decode->set_opnd_array(1, new iRegNsrcOper());
2237   return decode;
2238 }
2239 */
2240 // Threshold size for cleararray.
2241 const int Matcher::init_array_short_size = 8 * BytesPerLong;
2242 
2243 // false => size gets scaled to BytesPerLong, ok.
2244 const bool Matcher::init_array_count_is_in_bytes = false;
2245 
2246 // Use conditional move (CMOVL) on Power7.
2247 const int Matcher::long_cmove_cost() { return 0; } // this only makes long cmoves more expensive than int cmoves
2248 
2249 // Suppress CMOVF. Conditional move available (sort of) on PPC64 only from P7 onwards. Not exploited yet.
2250 // fsel doesn't accept a condition register as input, so this would be slightly different.
2251 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
2252 
2253 // Power6 requires postalloc expand (see block.cpp for description of postalloc expand).
2254 const bool Matcher::require_postalloc_expand = true;
2255 
2256 // Should the Matcher clone shifts on addressing modes, expecting them to
2257 // be subsumed into complex addressing expressions or compute them into
2258 // registers? True for Intel but false for most RISCs.
2259 const bool Matcher::clone_shift_expressions = false;
2260 
2261 // Do we need to mask the count passed to shift instructions or does
2262 // the cpu only look at the lower 5/6 bits anyway?
2263 // Off, as masks are generated in expand rules where required.
2264 // Constant shift counts are handled in Ideal phase.
2265 const bool Matcher::need_masked_shift_count = false;
2266 
2267 // This affects two different things:
2268 //  - how Decode nodes are matched
2269 //  - how ImplicitNullCheck opportunities are recognized
2270 // If true, the matcher will try to remove all Decodes and match them
2271 // (as operands) into nodes. NullChecks are not prepared to deal with
2272 // Decodes by final_graph_reshaping().
2273 // If false, final_graph_reshaping() forces the decode behind the Cmp
2274 // for a NullCheck. The matcher matches the Decode node into a register.
2275 // Implicit_null_check optimization moves the Decode along with the
2276 // memory operation back up before the NullCheck.
2277 bool Matcher::narrow_oop_use_complex_address() {
2278   // TODO: PPC port if (MatchDecodeNodes) return true;
2279   return false;
2280 }
2281 
2282 bool Matcher::narrow_klass_use_complex_address() {
2283   NOT_LP64(ShouldNotCallThis());
2284   assert(UseCompressedClassPointers, "only for compressed klass code");
2285   // TODO: PPC port if (MatchDecodeNodes) return true;
2286   return false;
2287 }
2288 
2289 // Is it better to copy float constants, or load them directly from memory?
2290 // Intel can load a float constant from a direct address, requiring no
2291 // extra registers. Most RISCs will have to materialize an address into a
2292 // register first, so they would do better to copy the constant from stack.
2293 const bool Matcher::rematerialize_float_constants = false;
2294 
2295 // If CPU can load and store mis-aligned doubles directly then no fixup is
2296 // needed. Else we split the double into 2 integer pieces and move it
2297 // piece-by-piece. Only happens when passing doubles into C code as the
2298 // Java calling convention forces doubles to be aligned.
2299 const bool Matcher::misaligned_doubles_ok = true;
2300 
2301 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
2302  Unimplemented();
2303 }
2304 
2305 // Advertise here if the CPU requires explicit rounding operations
2306 // to implement the UseStrictFP mode.
2307 const bool Matcher::strict_fp_requires_explicit_rounding = false;
2308 
2309 // Do floats take an entire double register or just half?
2310 //
2311 // A float occupies a ppc64 double register. For the allocator, a
2312 // ppc64 double register appears as a pair of float registers.
2313 bool Matcher::float_in_double() { return true; }
2314 
2315 // Do ints take an entire long register or just half?
2316 // The relevant question is how the int is callee-saved:
2317 // the whole long is written but de-opt'ing will have to extract
2318 // the relevant 32 bits.
2319 const bool Matcher::int_in_long = true;
2320 
2321 // Constants for c2c and c calling conventions.
2322 
2323 const MachRegisterNumbers iarg_reg[8] = {
2324   R3_num, R4_num, R5_num, R6_num,
2325   R7_num, R8_num, R9_num, R10_num
2326 };
2327 
2328 const MachRegisterNumbers farg_reg[13] = {
2329   F1_num, F2_num, F3_num, F4_num,
2330   F5_num, F6_num, F7_num, F8_num,
2331   F9_num, F10_num, F11_num, F12_num,
2332   F13_num
2333 };
2334 
2335 const int num_iarg_registers = sizeof(iarg_reg) / sizeof(iarg_reg[0]);
2336 
2337 const int num_farg_registers = sizeof(farg_reg) / sizeof(farg_reg[0]);
2338 
2339 // Return whether or not this register is ever used as an argument. This
2340 // function is used on startup to build the trampoline stubs in generateOptoStub.
2341 // Registers not mentioned will be killed by the VM call in the trampoline, and
2342 // arguments in those registers not be available to the callee.
2343 bool Matcher::can_be_java_arg(int reg) {
2344   // We return true for all registers contained in iarg_reg[] and
2345   // farg_reg[] and their virtual halves.
2346   // We must include the virtual halves in order to get STDs and LDs
2347   // instead of STWs and LWs in the trampoline stubs.
2348 
2349   if (   reg == R3_num  || reg == R3_H_num
2350       || reg == R4_num  || reg == R4_H_num
2351       || reg == R5_num  || reg == R5_H_num
2352       || reg == R6_num  || reg == R6_H_num
2353       || reg == R7_num  || reg == R7_H_num
2354       || reg == R8_num  || reg == R8_H_num
2355       || reg == R9_num  || reg == R9_H_num
2356       || reg == R10_num || reg == R10_H_num)
2357     return true;
2358 
2359   if (   reg == F1_num  || reg == F1_H_num
2360       || reg == F2_num  || reg == F2_H_num
2361       || reg == F3_num  || reg == F3_H_num
2362       || reg == F4_num  || reg == F4_H_num
2363       || reg == F5_num  || reg == F5_H_num
2364       || reg == F6_num  || reg == F6_H_num
2365       || reg == F7_num  || reg == F7_H_num
2366       || reg == F8_num  || reg == F8_H_num
2367       || reg == F9_num  || reg == F9_H_num
2368       || reg == F10_num || reg == F10_H_num
2369       || reg == F11_num || reg == F11_H_num
2370       || reg == F12_num || reg == F12_H_num
2371       || reg == F13_num || reg == F13_H_num)
2372     return true;
2373 
2374   return false;
2375 }
2376 
2377 bool Matcher::is_spillable_arg(int reg) {
2378   return can_be_java_arg(reg);
2379 }
2380 
2381 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
2382   return false;
2383 }
2384 
2385 // Register for DIVI projection of divmodI.
2386 RegMask Matcher::divI_proj_mask() {
2387   ShouldNotReachHere();
2388   return RegMask();
2389 }
2390 
2391 // Register for MODI projection of divmodI.
2392 RegMask Matcher::modI_proj_mask() {
2393   ShouldNotReachHere();
2394   return RegMask();
2395 }
2396 
2397 // Register for DIVL projection of divmodL.
2398 RegMask Matcher::divL_proj_mask() {
2399   ShouldNotReachHere();
2400   return RegMask();
2401 }
2402 
2403 // Register for MODL projection of divmodL.
2404 RegMask Matcher::modL_proj_mask() {
2405   ShouldNotReachHere();
2406   return RegMask();
2407 }
2408 
2409 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2410   return RegMask();
2411 }
2412 
2413 %}
2414 
2415 //----------ENCODING BLOCK-----------------------------------------------------
2416 // This block specifies the encoding classes used by the compiler to output
2417 // byte streams. Encoding classes are parameterized macros used by
2418 // Machine Instruction Nodes in order to generate the bit encoding of the
2419 // instruction. Operands specify their base encoding interface with the
2420 // interface keyword. There are currently supported four interfaces,
2421 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
2422 // operand to generate a function which returns its register number when
2423 // queried. CONST_INTER causes an operand to generate a function which
2424 // returns the value of the constant when queried. MEMORY_INTER causes an
2425 // operand to generate four functions which return the Base Register, the
2426 // Index Register, the Scale Value, and the Offset Value of the operand when
2427 // queried. COND_INTER causes an operand to generate six functions which
2428 // return the encoding code (ie - encoding bits for the instruction)
2429 // associated with each basic boolean condition for a conditional instruction.
2430 //
2431 // Instructions specify two basic values for encoding. Again, a function
2432 // is available to check if the constant displacement is an oop. They use the
2433 // ins_encode keyword to specify their encoding classes (which must be
2434 // a sequence of enc_class names, and their parameters, specified in
2435 // the encoding block), and they use the
2436 // opcode keyword to specify, in order, their primary, secondary, and
2437 // tertiary opcode. Only the opcode sections which a particular instruction
2438 // needs for encoding need to be specified.
2439 encode %{
2440   enc_class enc_unimplemented %{
2441     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2442     MacroAssembler _masm(&cbuf);
2443     __ unimplemented("Unimplemented mach node encoding in AD file.", 13);
2444   %}
2445 
2446   enc_class enc_untested %{
2447 #ifdef ASSERT
2448     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2449     MacroAssembler _masm(&cbuf);
2450     __ untested("Untested mach node encoding in AD file.");
2451 #else
2452     // TODO: PPC port $archOpcode(ppc64Opcode_none);
2453 #endif
2454   %}
2455 
2456   enc_class enc_lbz(iRegIdst dst, memory mem) %{
2457     // TODO: PPC port $archOpcode(ppc64Opcode_lbz);
2458     MacroAssembler _masm(&cbuf);
2459     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2460     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
2461   %}
2462 
2463   // Load acquire.
2464   enc_class enc_lbz_ac(iRegIdst dst, memory mem) %{
2465     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2466     MacroAssembler _masm(&cbuf);
2467     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2468     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
2469     __ twi_0($dst$$Register);
2470     __ isync();
2471   %}
2472 
2473   enc_class enc_lhz(iRegIdst dst, memory mem) %{
2474     // TODO: PPC port $archOpcode(ppc64Opcode_lhz);
2475 
2476     MacroAssembler _masm(&cbuf);
2477     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2478     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
2479   %}
2480 
2481   // Load acquire.
2482   enc_class enc_lhz_ac(iRegIdst dst, memory mem) %{
2483     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2484 
2485     MacroAssembler _masm(&cbuf);
2486     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2487     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
2488     __ twi_0($dst$$Register);
2489     __ isync();
2490   %}
2491 
2492   enc_class enc_lwz(iRegIdst dst, memory mem) %{
2493     // TODO: PPC port $archOpcode(ppc64Opcode_lwz);
2494 
2495     MacroAssembler _masm(&cbuf);
2496     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2497     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
2498   %}
2499 
2500   // Load acquire.
2501   enc_class enc_lwz_ac(iRegIdst dst, memory mem) %{
2502     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2503 
2504     MacroAssembler _masm(&cbuf);
2505     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2506     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
2507     __ twi_0($dst$$Register);
2508     __ isync();
2509   %}
2510 
2511   enc_class enc_ld(iRegLdst dst, memoryAlg4 mem) %{
2512     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2513     MacroAssembler _masm(&cbuf);
2514     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2515     // Operand 'ds' requires 4-alignment.
2516     assert((Idisp & 0x3) == 0, "unaligned offset");
2517     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
2518   %}
2519 
2520   // Load acquire.
2521   enc_class enc_ld_ac(iRegLdst dst, memoryAlg4 mem) %{
2522     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2523     MacroAssembler _masm(&cbuf);
2524     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2525     // Operand 'ds' requires 4-alignment.
2526     assert((Idisp & 0x3) == 0, "unaligned offset");
2527     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
2528     __ twi_0($dst$$Register);
2529     __ isync();
2530   %}
2531 
2532   enc_class enc_lfd(RegF dst, memory mem) %{
2533     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
2534     MacroAssembler _masm(&cbuf);
2535     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2536     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
2537   %}
2538 
2539   enc_class enc_load_long_constL(iRegLdst dst, immL src, iRegLdst toc) %{
2540     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2541 
2542     MacroAssembler _masm(&cbuf);
2543     int toc_offset = 0;
2544 
2545     if (!ra_->C->in_scratch_emit_size()) {
2546       address const_toc_addr;
2547       // Create a non-oop constant, no relocation needed.
2548       // If it is an IC, it has a virtual_call_Relocation.
2549       const_toc_addr = __ long_constant((jlong)$src$$constant);
2550 
2551       // Get the constant's TOC offset.
2552       toc_offset = __ offset_to_method_toc(const_toc_addr);
2553 
2554       // Keep the current instruction offset in mind.
2555       ((loadConLNode*)this)->_cbuf_insts_offset = __ offset();
2556     }
2557 
2558     __ ld($dst$$Register, toc_offset, $toc$$Register);
2559   %}
2560 
2561   enc_class enc_load_long_constL_hi(iRegLdst dst, iRegLdst toc, immL src) %{
2562     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
2563 
2564     MacroAssembler _masm(&cbuf);
2565 
2566     if (!ra_->C->in_scratch_emit_size()) {
2567       address const_toc_addr;
2568       // Create a non-oop constant, no relocation needed.
2569       // If it is an IC, it has a virtual_call_Relocation.
2570       const_toc_addr = __ long_constant((jlong)$src$$constant);
2571 
2572       // Get the constant's TOC offset.
2573       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
2574       // Store the toc offset of the constant.
2575       ((loadConL_hiNode*)this)->_const_toc_offset = toc_offset;
2576 
2577       // Also keep the current instruction offset in mind.
2578       ((loadConL_hiNode*)this)->_cbuf_insts_offset = __ offset();
2579     }
2580 
2581     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
2582   %}
2583 
2584 %} // encode
2585 
2586 source %{
2587 
2588 typedef struct {
2589   loadConL_hiNode *_large_hi;
2590   loadConL_loNode *_large_lo;
2591   loadConLNode    *_small;
2592   MachNode        *_last;
2593 } loadConLNodesTuple;
2594 
2595 loadConLNodesTuple loadConLNodesTuple_create(PhaseRegAlloc *ra_, Node *toc, immLOper *immSrc,
2596                                              OptoReg::Name reg_second, OptoReg::Name reg_first) {
2597   loadConLNodesTuple nodes;
2598 
2599   const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2600   if (large_constant_pool) {
2601     // Create new nodes.
2602     loadConL_hiNode *m1 = new loadConL_hiNode();
2603     loadConL_loNode *m2 = new loadConL_loNode();
2604 
2605     // inputs for new nodes
2606     m1->add_req(NULL, toc);
2607     m2->add_req(NULL, m1);
2608 
2609     // operands for new nodes
2610     m1->_opnds[0] = new iRegLdstOper(); // dst
2611     m1->_opnds[1] = immSrc;             // src
2612     m1->_opnds[2] = new iRegPdstOper(); // toc
2613     m2->_opnds[0] = new iRegLdstOper(); // dst
2614     m2->_opnds[1] = immSrc;             // src
2615     m2->_opnds[2] = new iRegLdstOper(); // base
2616 
2617     // Initialize ins_attrib TOC fields.
2618     m1->_const_toc_offset = -1;
2619     m2->_const_toc_offset_hi_node = m1;
2620 
2621     // Initialize ins_attrib instruction offset.
2622     m1->_cbuf_insts_offset = -1;
2623 
2624     // register allocation for new nodes
2625     ra_->set_pair(m1->_idx, reg_second, reg_first);
2626     ra_->set_pair(m2->_idx, reg_second, reg_first);
2627 
2628     // Create result.
2629     nodes._large_hi = m1;
2630     nodes._large_lo = m2;
2631     nodes._small = NULL;
2632     nodes._last = nodes._large_lo;
2633     assert(m2->bottom_type()->isa_long(), "must be long");
2634   } else {
2635     loadConLNode *m2 = new loadConLNode();
2636 
2637     // inputs for new nodes
2638     m2->add_req(NULL, toc);
2639 
2640     // operands for new nodes
2641     m2->_opnds[0] = new iRegLdstOper(); // dst
2642     m2->_opnds[1] = immSrc;             // src
2643     m2->_opnds[2] = new iRegPdstOper(); // toc
2644 
2645     // Initialize ins_attrib instruction offset.
2646     m2->_cbuf_insts_offset = -1;
2647 
2648     // register allocation for new nodes
2649     ra_->set_pair(m2->_idx, reg_second, reg_first);
2650 
2651     // Create result.
2652     nodes._large_hi = NULL;
2653     nodes._large_lo = NULL;
2654     nodes._small = m2;
2655     nodes._last = nodes._small;
2656     assert(m2->bottom_type()->isa_long(), "must be long");
2657   }
2658 
2659   return nodes;
2660 }
2661 
2662 %} // source
2663 
2664 encode %{
2665   // Postalloc expand emitter for loading a long constant from the method's TOC.
2666   // Enc_class needed as consttanttablebase is not supported by postalloc
2667   // expand.
2668   enc_class postalloc_expand_load_long_constant(iRegLdst dst, immL src, iRegLdst toc) %{
2669     // Create new nodes.
2670     loadConLNodesTuple loadConLNodes =
2671       loadConLNodesTuple_create(ra_, n_toc, op_src,
2672                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
2673 
2674     // Push new nodes.
2675     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
2676     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
2677 
2678     // some asserts
2679     assert(nodes->length() >= 1, "must have created at least 1 node");
2680     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
2681   %}
2682 
2683   enc_class enc_load_long_constP(iRegLdst dst, immP src, iRegLdst toc) %{
2684     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2685 
2686     MacroAssembler _masm(&cbuf);
2687     int toc_offset = 0;
2688 
2689     if (!ra_->C->in_scratch_emit_size()) {
2690       intptr_t val = $src$$constant;
2691       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
2692       address const_toc_addr;
2693       if (constant_reloc == relocInfo::oop_type) {
2694         // Create an oop constant and a corresponding relocation.
2695         AddressLiteral a = __ allocate_oop_address((jobject)val);
2696         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2697         __ relocate(a.rspec());
2698       } else if (constant_reloc == relocInfo::metadata_type) {
2699         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
2700         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2701         __ relocate(a.rspec());
2702       } else {
2703         // Create a non-oop constant, no relocation needed.
2704         const_toc_addr = __ long_constant((jlong)$src$$constant);
2705       }
2706 
2707       // Get the constant's TOC offset.
2708       toc_offset = __ offset_to_method_toc(const_toc_addr);
2709     }
2710 
2711     __ ld($dst$$Register, toc_offset, $toc$$Register);
2712   %}
2713 
2714   enc_class enc_load_long_constP_hi(iRegLdst dst, immP src, iRegLdst toc) %{
2715     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
2716 
2717     MacroAssembler _masm(&cbuf);
2718     if (!ra_->C->in_scratch_emit_size()) {
2719       intptr_t val = $src$$constant;
2720       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
2721       address const_toc_addr;
2722       if (constant_reloc == relocInfo::oop_type) {
2723         // Create an oop constant and a corresponding relocation.
2724         AddressLiteral a = __ allocate_oop_address((jobject)val);
2725         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2726         __ relocate(a.rspec());
2727       } else if (constant_reloc == relocInfo::metadata_type) {
2728         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
2729         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2730         __ relocate(a.rspec());
2731       } else {  // non-oop pointers, e.g. card mark base, heap top
2732         // Create a non-oop constant, no relocation needed.
2733         const_toc_addr = __ long_constant((jlong)$src$$constant);
2734       }
2735 
2736       // Get the constant's TOC offset.
2737       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
2738       // Store the toc offset of the constant.
2739       ((loadConP_hiNode*)this)->_const_toc_offset = toc_offset;
2740     }
2741 
2742     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
2743   %}
2744 
2745   // Postalloc expand emitter for loading a ptr constant from the method's TOC.
2746   // Enc_class needed as consttanttablebase is not supported by postalloc
2747   // expand.
2748   enc_class postalloc_expand_load_ptr_constant(iRegPdst dst, immP src, iRegLdst toc) %{
2749     const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2750     if (large_constant_pool) {
2751       // Create new nodes.
2752       loadConP_hiNode *m1 = new loadConP_hiNode();
2753       loadConP_loNode *m2 = new loadConP_loNode();
2754 
2755       // inputs for new nodes
2756       m1->add_req(NULL, n_toc);
2757       m2->add_req(NULL, m1);
2758 
2759       // operands for new nodes
2760       m1->_opnds[0] = new iRegPdstOper(); // dst
2761       m1->_opnds[1] = op_src;             // src
2762       m1->_opnds[2] = new iRegPdstOper(); // toc
2763       m2->_opnds[0] = new iRegPdstOper(); // dst
2764       m2->_opnds[1] = op_src;             // src
2765       m2->_opnds[2] = new iRegLdstOper(); // base
2766 
2767       // Initialize ins_attrib TOC fields.
2768       m1->_const_toc_offset = -1;
2769       m2->_const_toc_offset_hi_node = m1;
2770 
2771       // Register allocation for new nodes.
2772       ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2773       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2774 
2775       nodes->push(m1);
2776       nodes->push(m2);
2777       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
2778     } else {
2779       loadConPNode *m2 = new loadConPNode();
2780 
2781       // inputs for new nodes
2782       m2->add_req(NULL, n_toc);
2783 
2784       // operands for new nodes
2785       m2->_opnds[0] = new iRegPdstOper(); // dst
2786       m2->_opnds[1] = op_src;             // src
2787       m2->_opnds[2] = new iRegPdstOper(); // toc
2788 
2789       // Register allocation for new nodes.
2790       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2791 
2792       nodes->push(m2);
2793       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
2794     }
2795   %}
2796 
2797   // Enc_class needed as consttanttablebase is not supported by postalloc
2798   // expand.
2799   enc_class postalloc_expand_load_float_constant(regF dst, immF src, iRegLdst toc) %{
2800     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2801 
2802     MachNode *m2;
2803     if (large_constant_pool) {
2804       m2 = new loadConFCompNode();
2805     } else {
2806       m2 = new loadConFNode();
2807     }
2808     // inputs for new nodes
2809     m2->add_req(NULL, n_toc);
2810 
2811     // operands for new nodes
2812     m2->_opnds[0] = op_dst;
2813     m2->_opnds[1] = op_src;
2814     m2->_opnds[2] = new iRegPdstOper(); // constanttablebase
2815 
2816     // register allocation for new nodes
2817     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2818     nodes->push(m2);
2819   %}
2820 
2821   // Enc_class needed as consttanttablebase is not supported by postalloc
2822   // expand.
2823   enc_class postalloc_expand_load_double_constant(regD dst, immD src, iRegLdst toc) %{
2824     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2825 
2826     MachNode *m2;
2827     if (large_constant_pool) {
2828       m2 = new loadConDCompNode();
2829     } else {
2830       m2 = new loadConDNode();
2831     }
2832     // inputs for new nodes
2833     m2->add_req(NULL, n_toc);
2834 
2835     // operands for new nodes
2836     m2->_opnds[0] = op_dst;
2837     m2->_opnds[1] = op_src;
2838     m2->_opnds[2] = new iRegPdstOper(); // constanttablebase
2839 
2840     // register allocation for new nodes
2841     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2842     nodes->push(m2);
2843   %}
2844 
2845   enc_class enc_stw(iRegIsrc src, memory mem) %{
2846     // TODO: PPC port $archOpcode(ppc64Opcode_stw);
2847     MacroAssembler _masm(&cbuf);
2848     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2849     __ stw($src$$Register, Idisp, $mem$$base$$Register);
2850   %}
2851 
2852   enc_class enc_std(iRegIsrc src, memoryAlg4 mem) %{
2853     // TODO: PPC port $archOpcode(ppc64Opcode_std);
2854     MacroAssembler _masm(&cbuf);
2855     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2856     // Operand 'ds' requires 4-alignment.
2857     assert((Idisp & 0x3) == 0, "unaligned offset");
2858     __ std($src$$Register, Idisp, $mem$$base$$Register);
2859   %}
2860 
2861   enc_class enc_stfs(RegF src, memory mem) %{
2862     // TODO: PPC port $archOpcode(ppc64Opcode_stfs);
2863     MacroAssembler _masm(&cbuf);
2864     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2865     __ stfs($src$$FloatRegister, Idisp, $mem$$base$$Register);
2866   %}
2867 
2868   enc_class enc_stfd(RegF src, memory mem) %{
2869     // TODO: PPC port $archOpcode(ppc64Opcode_stfd);
2870     MacroAssembler _masm(&cbuf);
2871     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2872     __ stfd($src$$FloatRegister, Idisp, $mem$$base$$Register);
2873   %}
2874 
2875   // Use release_store for card-marking to ensure that previous
2876   // oop-stores are visible before the card-mark change.
2877   enc_class enc_cms_card_mark(memory mem, iRegLdst releaseFieldAddr) %{
2878     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2879     // FIXME: Implement this as a cmove and use a fixed condition code
2880     // register which is written on every transition to compiled code,
2881     // e.g. in call-stub and when returning from runtime stubs.
2882     //
2883     // Proposed code sequence for the cmove implementation:
2884     //
2885     // Label skip_release;
2886     // __ beq(CCRfixed, skip_release);
2887     // __ release();
2888     // __ bind(skip_release);
2889     // __ stb(card mark);
2890 
2891     MacroAssembler _masm(&cbuf);
2892     Label skip_storestore;
2893 
2894 #if 0 // TODO: PPC port
2895     // Check CMSCollectorCardTableModRefBSExt::_requires_release and do the
2896     // StoreStore barrier conditionally.
2897     __ lwz(R0, 0, $releaseFieldAddr$$Register);
2898     __ cmpwi(CCR0, R0, 0);
2899     __ beq_predict_taken(CCR0, skip_storestore);
2900 #endif
2901     __ li(R0, 0);
2902     __ membar(Assembler::StoreStore);
2903 #if 0 // TODO: PPC port
2904     __ bind(skip_storestore);
2905 #endif
2906 
2907     // Do the store.
2908     if ($mem$$index == 0) {
2909       __ stb(R0, $mem$$disp, $mem$$base$$Register);
2910     } else {
2911       assert(0 == $mem$$disp, "no displacement possible with indexed load/stores on ppc");
2912       __ stbx(R0, $mem$$base$$Register, $mem$$index$$Register);
2913     }
2914   %}
2915 
2916   enc_class postalloc_expand_encode_oop(iRegNdst dst, iRegPdst src, flagsReg crx) %{
2917 
2918     if (VM_Version::has_isel()) {
2919       // use isel instruction with Power 7
2920       cmpP_reg_imm16Node *n_compare  = new cmpP_reg_imm16Node();
2921       encodeP_subNode    *n_sub_base = new encodeP_subNode();
2922       encodeP_shiftNode  *n_shift    = new encodeP_shiftNode();
2923       cond_set_0_oopNode *n_cond_set = new cond_set_0_oopNode();
2924 
2925       n_compare->add_req(n_region, n_src);
2926       n_compare->_opnds[0] = op_crx;
2927       n_compare->_opnds[1] = op_src;
2928       n_compare->_opnds[2] = new immL16Oper(0);
2929 
2930       n_sub_base->add_req(n_region, n_src);
2931       n_sub_base->_opnds[0] = op_dst;
2932       n_sub_base->_opnds[1] = op_src;
2933       n_sub_base->_bottom_type = _bottom_type;
2934 
2935       n_shift->add_req(n_region, n_sub_base);
2936       n_shift->_opnds[0] = op_dst;
2937       n_shift->_opnds[1] = op_dst;
2938       n_shift->_bottom_type = _bottom_type;
2939 
2940       n_cond_set->add_req(n_region, n_compare, n_shift);
2941       n_cond_set->_opnds[0] = op_dst;
2942       n_cond_set->_opnds[1] = op_crx;
2943       n_cond_set->_opnds[2] = op_dst;
2944       n_cond_set->_bottom_type = _bottom_type;
2945 
2946       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
2947       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2948       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2949       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2950 
2951       nodes->push(n_compare);
2952       nodes->push(n_sub_base);
2953       nodes->push(n_shift);
2954       nodes->push(n_cond_set);
2955 
2956     } else {
2957       // before Power 7
2958       moveRegNode        *n_move     = new moveRegNode();
2959       cmpP_reg_imm16Node *n_compare  = new cmpP_reg_imm16Node();
2960       encodeP_shiftNode  *n_shift    = new encodeP_shiftNode();
2961       cond_sub_baseNode  *n_sub_base = new cond_sub_baseNode();
2962 
2963       n_move->add_req(n_region, n_src);
2964       n_move->_opnds[0] = op_dst;
2965       n_move->_opnds[1] = op_src;
2966       ra_->set_oop(n_move, true); // Until here, 'n_move' still produces an oop.
2967 
2968       n_compare->add_req(n_region, n_src);
2969       n_compare->add_prec(n_move);
2970 
2971       n_compare->_opnds[0] = op_crx;
2972       n_compare->_opnds[1] = op_src;
2973       n_compare->_opnds[2] = new immL16Oper(0);
2974 
2975       n_sub_base->add_req(n_region, n_compare, n_src);
2976       n_sub_base->_opnds[0] = op_dst;
2977       n_sub_base->_opnds[1] = op_crx;
2978       n_sub_base->_opnds[2] = op_src;
2979       n_sub_base->_bottom_type = _bottom_type;
2980 
2981       n_shift->add_req(n_region, n_sub_base);
2982       n_shift->_opnds[0] = op_dst;
2983       n_shift->_opnds[1] = op_dst;
2984       n_shift->_bottom_type = _bottom_type;
2985 
2986       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2987       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
2988       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2989       ra_->set_pair(n_move->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2990 
2991       nodes->push(n_move);
2992       nodes->push(n_compare);
2993       nodes->push(n_sub_base);
2994       nodes->push(n_shift);
2995     }
2996 
2997     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
2998   %}
2999 
3000   enc_class postalloc_expand_encode_oop_not_null(iRegNdst dst, iRegPdst src) %{
3001 
3002     encodeP_subNode *n1 = new encodeP_subNode();
3003     n1->add_req(n_region, n_src);
3004     n1->_opnds[0] = op_dst;
3005     n1->_opnds[1] = op_src;
3006     n1->_bottom_type = _bottom_type;
3007 
3008     encodeP_shiftNode *n2 = new encodeP_shiftNode();
3009     n2->add_req(n_region, n1);
3010     n2->_opnds[0] = op_dst;
3011     n2->_opnds[1] = op_dst;
3012     n2->_bottom_type = _bottom_type;
3013     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3014     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3015 
3016     nodes->push(n1);
3017     nodes->push(n2);
3018     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
3019   %}
3020 
3021   enc_class postalloc_expand_decode_oop(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
3022     decodeN_shiftNode *n_shift    = new decodeN_shiftNode();
3023     cmpN_reg_imm0Node *n_compare  = new cmpN_reg_imm0Node();
3024 
3025     n_compare->add_req(n_region, n_src);
3026     n_compare->_opnds[0] = op_crx;
3027     n_compare->_opnds[1] = op_src;
3028     n_compare->_opnds[2] = new immN_0Oper(TypeNarrowOop::NULL_PTR);
3029 
3030     n_shift->add_req(n_region, n_src);
3031     n_shift->_opnds[0] = op_dst;
3032     n_shift->_opnds[1] = op_src;
3033     n_shift->_bottom_type = _bottom_type;
3034 
3035     if (VM_Version::has_isel()) {
3036       // use isel instruction with Power 7
3037 
3038       decodeN_addNode *n_add_base = new decodeN_addNode();
3039       n_add_base->add_req(n_region, n_shift);
3040       n_add_base->_opnds[0] = op_dst;
3041       n_add_base->_opnds[1] = op_dst;
3042       n_add_base->_bottom_type = _bottom_type;
3043 
3044       cond_set_0_ptrNode *n_cond_set = new cond_set_0_ptrNode();
3045       n_cond_set->add_req(n_region, n_compare, n_add_base);
3046       n_cond_set->_opnds[0] = op_dst;
3047       n_cond_set->_opnds[1] = op_crx;
3048       n_cond_set->_opnds[2] = op_dst;
3049       n_cond_set->_bottom_type = _bottom_type;
3050 
3051       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
3052       ra_->set_oop(n_cond_set, true);
3053 
3054       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3055       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
3056       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3057       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3058 
3059       nodes->push(n_compare);
3060       nodes->push(n_shift);
3061       nodes->push(n_add_base);
3062       nodes->push(n_cond_set);
3063 
3064     } else {
3065       // before Power 7
3066       cond_add_baseNode *n_add_base = new cond_add_baseNode();
3067 
3068       n_add_base->add_req(n_region, n_compare, n_shift);
3069       n_add_base->_opnds[0] = op_dst;
3070       n_add_base->_opnds[1] = op_crx;
3071       n_add_base->_opnds[2] = op_dst;
3072       n_add_base->_bottom_type = _bottom_type;
3073 
3074       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
3075       ra_->set_oop(n_add_base, true);
3076 
3077       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3078       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
3079       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3080 
3081       nodes->push(n_compare);
3082       nodes->push(n_shift);
3083       nodes->push(n_add_base);
3084     }
3085   %}
3086 
3087   enc_class postalloc_expand_decode_oop_not_null(iRegPdst dst, iRegNsrc src) %{
3088     decodeN_shiftNode *n1 = new decodeN_shiftNode();
3089     n1->add_req(n_region, n_src);
3090     n1->_opnds[0] = op_dst;
3091     n1->_opnds[1] = op_src;
3092     n1->_bottom_type = _bottom_type;
3093 
3094     decodeN_addNode *n2 = new decodeN_addNode();
3095     n2->add_req(n_region, n1);
3096     n2->_opnds[0] = op_dst;
3097     n2->_opnds[1] = op_dst;
3098     n2->_bottom_type = _bottom_type;
3099     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3100     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3101 
3102     assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
3103     ra_->set_oop(n2, true);
3104 
3105     nodes->push(n1);
3106     nodes->push(n2);
3107   %}
3108 
3109   enc_class enc_cmove_reg(iRegIdst dst, flagsReg crx, iRegIsrc src, cmpOp cmp) %{
3110     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3111 
3112     MacroAssembler _masm(&cbuf);
3113     int cc        = $cmp$$cmpcode;
3114     int flags_reg = $crx$$reg;
3115     Label done;
3116     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3117     // Branch if not (cmp crx).
3118     __ bc(cc_to_inverse_boint(cc), cc_to_biint(cc, flags_reg), done);
3119     __ mr($dst$$Register, $src$$Register);
3120     // TODO PPC port __ endgroup_if_needed(_size == 12);
3121     __ bind(done);
3122   %}
3123 
3124   enc_class enc_cmove_imm(iRegIdst dst, flagsReg crx, immI16 src, cmpOp cmp) %{
3125     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3126 
3127     MacroAssembler _masm(&cbuf);
3128     Label done;
3129     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3130     // Branch if not (cmp crx).
3131     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
3132     __ li($dst$$Register, $src$$constant);
3133     // TODO PPC port __ endgroup_if_needed(_size == 12);
3134     __ bind(done);
3135   %}
3136 
3137   // New atomics.
3138   enc_class enc_GetAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
3139     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3140 
3141     MacroAssembler _masm(&cbuf);
3142     Register Rtmp   = R0;
3143     Register Rres   = $res$$Register;
3144     Register Rsrc   = $src$$Register;
3145     Register Rptr   = $mem_ptr$$Register;
3146     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3147     Register Rold   = RegCollision ? Rtmp : Rres;
3148 
3149     Label Lretry;
3150     __ bind(Lretry);
3151     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3152     __ add(Rtmp, Rsrc, Rold);
3153     __ stwcx_(Rtmp, Rptr);
3154     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3155       __ bne_predict_not_taken(CCR0, Lretry);
3156     } else {
3157       __ bne(                  CCR0, Lretry);
3158     }
3159     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
3160     __ fence();
3161   %}
3162 
3163   enc_class enc_GetAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
3164     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3165 
3166     MacroAssembler _masm(&cbuf);
3167     Register Rtmp   = R0;
3168     Register Rres   = $res$$Register;
3169     Register Rsrc   = $src$$Register;
3170     Register Rptr   = $mem_ptr$$Register;
3171     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3172     Register Rold   = RegCollision ? Rtmp : Rres;
3173 
3174     Label Lretry;
3175     __ bind(Lretry);
3176     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3177     __ add(Rtmp, Rsrc, Rold);
3178     __ stdcx_(Rtmp, Rptr);
3179     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3180       __ bne_predict_not_taken(CCR0, Lretry);
3181     } else {
3182       __ bne(                  CCR0, Lretry);
3183     }
3184     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
3185     __ fence();
3186   %}
3187 
3188   enc_class enc_GetAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
3189     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3190 
3191     MacroAssembler _masm(&cbuf);
3192     Register Rtmp   = R0;
3193     Register Rres   = $res$$Register;
3194     Register Rsrc   = $src$$Register;
3195     Register Rptr   = $mem_ptr$$Register;
3196     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3197     Register Rold   = RegCollision ? Rtmp : Rres;
3198 
3199     Label Lretry;
3200     __ bind(Lretry);
3201     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3202     __ stwcx_(Rsrc, Rptr);
3203     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3204       __ bne_predict_not_taken(CCR0, Lretry);
3205     } else {
3206       __ bne(                  CCR0, Lretry);
3207     }
3208     if (RegCollision) __ mr(Rres, Rtmp);
3209     __ fence();
3210   %}
3211 
3212   enc_class enc_GetAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
3213     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3214 
3215     MacroAssembler _masm(&cbuf);
3216     Register Rtmp   = R0;
3217     Register Rres   = $res$$Register;
3218     Register Rsrc   = $src$$Register;
3219     Register Rptr   = $mem_ptr$$Register;
3220     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3221     Register Rold   = RegCollision ? Rtmp : Rres;
3222 
3223     Label Lretry;
3224     __ bind(Lretry);
3225     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3226     __ stdcx_(Rsrc, Rptr);
3227     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3228       __ bne_predict_not_taken(CCR0, Lretry);
3229     } else {
3230       __ bne(                  CCR0, Lretry);
3231     }
3232     if (RegCollision) __ mr(Rres, Rtmp);
3233     __ fence();
3234   %}
3235 
3236   // This enc_class is needed so that scheduler gets proper
3237   // input mapping for latency computation.
3238   enc_class enc_andc(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
3239     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
3240     MacroAssembler _masm(&cbuf);
3241     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
3242   %}
3243 
3244   enc_class enc_convI2B_regI__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
3245     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3246 
3247     MacroAssembler _masm(&cbuf);
3248 
3249     Label done;
3250     __ cmpwi($crx$$CondRegister, $src$$Register, 0);
3251     __ li($dst$$Register, $zero$$constant);
3252     __ beq($crx$$CondRegister, done);
3253     __ li($dst$$Register, $notzero$$constant);
3254     __ bind(done);
3255   %}
3256 
3257   enc_class enc_convP2B_regP__cmove(iRegIdst dst, iRegPsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
3258     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3259 
3260     MacroAssembler _masm(&cbuf);
3261 
3262     Label done;
3263     __ cmpdi($crx$$CondRegister, $src$$Register, 0);
3264     __ li($dst$$Register, $zero$$constant);
3265     __ beq($crx$$CondRegister, done);
3266     __ li($dst$$Register, $notzero$$constant);
3267     __ bind(done);
3268   %}
3269 
3270   enc_class enc_cmove_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL mem ) %{
3271     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3272 
3273     MacroAssembler _masm(&cbuf);
3274     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
3275     Label done;
3276     __ bso($crx$$CondRegister, done);
3277     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
3278     // TODO PPC port __ endgroup_if_needed(_size == 12);
3279     __ bind(done);
3280   %}
3281 
3282   enc_class enc_bc(flagsReg crx, cmpOp cmp, Label lbl) %{
3283     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3284 
3285     MacroAssembler _masm(&cbuf);
3286     Label d;   // dummy
3287     __ bind(d);
3288     Label* p = ($lbl$$label);
3289     // `p' is `NULL' when this encoding class is used only to
3290     // determine the size of the encoded instruction.
3291     Label& l = (NULL == p)? d : *(p);
3292     int cc = $cmp$$cmpcode;
3293     int flags_reg = $crx$$reg;
3294     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3295     int bhint = Assembler::bhintNoHint;
3296 
3297     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3298       if (_prob <= PROB_NEVER) {
3299         bhint = Assembler::bhintIsNotTaken;
3300       } else if (_prob >= PROB_ALWAYS) {
3301         bhint = Assembler::bhintIsTaken;
3302       }
3303     }
3304 
3305     __ bc(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3306           cc_to_biint(cc, flags_reg),
3307           l);
3308   %}
3309 
3310   enc_class enc_bc_far(flagsReg crx, cmpOp cmp, Label lbl) %{
3311     // The scheduler doesn't know about branch shortening, so we set the opcode
3312     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
3313     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3314 
3315     MacroAssembler _masm(&cbuf);
3316     Label d;    // dummy
3317     __ bind(d);
3318     Label* p = ($lbl$$label);
3319     // `p' is `NULL' when this encoding class is used only to
3320     // determine the size of the encoded instruction.
3321     Label& l = (NULL == p)? d : *(p);
3322     int cc = $cmp$$cmpcode;
3323     int flags_reg = $crx$$reg;
3324     int bhint = Assembler::bhintNoHint;
3325 
3326     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3327       if (_prob <= PROB_NEVER) {
3328         bhint = Assembler::bhintIsNotTaken;
3329       } else if (_prob >= PROB_ALWAYS) {
3330         bhint = Assembler::bhintIsTaken;
3331       }
3332     }
3333 
3334     // Tell the conditional far branch to optimize itself when being relocated.
3335     __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3336                   cc_to_biint(cc, flags_reg),
3337                   l,
3338                   MacroAssembler::bc_far_optimize_on_relocate);
3339   %}
3340 
3341   // Branch used with Power6 scheduling (can be shortened without changing the node).
3342   enc_class enc_bc_short_far(flagsReg crx, cmpOp cmp, Label lbl) %{
3343     // The scheduler doesn't know about branch shortening, so we set the opcode
3344     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
3345     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3346 
3347     MacroAssembler _masm(&cbuf);
3348     Label d;   // dummy
3349     __ bind(d);
3350     Label* p = ($lbl$$label);
3351     // `p' is `NULL' when this encoding class is used only to
3352     // determine the size of the encoded instruction.
3353     Label& l = (NULL == p)? d : *(p);
3354     int cc = $cmp$$cmpcode;
3355     int flags_reg = $crx$$reg;
3356     int bhint = Assembler::bhintNoHint;
3357 
3358     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3359       if (_prob <= PROB_NEVER) {
3360         bhint = Assembler::bhintIsNotTaken;
3361       } else if (_prob >= PROB_ALWAYS) {
3362         bhint = Assembler::bhintIsTaken;
3363       }
3364     }
3365 
3366 #if 0 // TODO: PPC port
3367     if (_size == 8) {
3368       // Tell the conditional far branch to optimize itself when being relocated.
3369       __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3370                     cc_to_biint(cc, flags_reg),
3371                     l,
3372                     MacroAssembler::bc_far_optimize_on_relocate);
3373     } else {
3374       __ bc    (Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3375                     cc_to_biint(cc, flags_reg),
3376                     l);
3377     }
3378 #endif
3379     Unimplemented();
3380   %}
3381 
3382   // Postalloc expand emitter for loading a replicatef float constant from
3383   // the method's TOC.
3384   // Enc_class needed as consttanttablebase is not supported by postalloc
3385   // expand.
3386   enc_class postalloc_expand_load_replF_constant(iRegLdst dst, immF src, iRegLdst toc) %{
3387     // Create new nodes.
3388 
3389     // Make an operand with the bit pattern to load as float.
3390     immLOper *op_repl = new immLOper((jlong)replicate_immF(op_src->constantF()));
3391 
3392     loadConLNodesTuple loadConLNodes =
3393       loadConLNodesTuple_create(ra_, n_toc, op_repl,
3394                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
3395 
3396     // Push new nodes.
3397     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
3398     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
3399 
3400     assert(nodes->length() >= 1, "must have created at least 1 node");
3401     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
3402   %}
3403 
3404   // This enc_class is needed so that scheduler gets proper
3405   // input mapping for latency computation.
3406   enc_class enc_poll(immI dst, iRegLdst poll) %{
3407     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
3408     // Fake operand dst needed for PPC scheduler.
3409     assert($dst$$constant == 0x0, "dst must be 0x0");
3410 
3411     MacroAssembler _masm(&cbuf);
3412     // Mark the code position where the load from the safepoint
3413     // polling page was emitted as relocInfo::poll_type.
3414     __ relocate(relocInfo::poll_type);
3415     __ load_from_polling_page($poll$$Register);
3416   %}
3417 
3418   // A Java static call or a runtime call.
3419   //
3420   // Branch-and-link relative to a trampoline.
3421   // The trampoline loads the target address and does a long branch to there.
3422   // In case we call java, the trampoline branches to a interpreter_stub
3423   // which loads the inline cache and the real call target from the constant pool.
3424   //
3425   // This basically looks like this:
3426   //
3427   // >>>> consts      -+  -+
3428   //                   |   |- offset1
3429   // [call target1]    | <-+
3430   // [IC cache]        |- offset2
3431   // [call target2] <--+
3432   //
3433   // <<<< consts
3434   // >>>> insts
3435   //
3436   // bl offset16               -+  -+             ??? // How many bits available?
3437   //                            |   |
3438   // <<<< insts                 |   |
3439   // >>>> stubs                 |   |
3440   //                            |   |- trampoline_stub_Reloc
3441   // trampoline stub:           | <-+
3442   //   r2 = toc                 |
3443   //   r2 = [r2 + offset1]      |       // Load call target1 from const section
3444   //   mtctr r2                 |
3445   //   bctr                     |- static_stub_Reloc
3446   // comp_to_interp_stub:   <---+
3447   //   r1 = toc
3448   //   ICreg = [r1 + IC_offset]         // Load IC from const section
3449   //   r1    = [r1 + offset2]           // Load call target2 from const section
3450   //   mtctr r1
3451   //   bctr
3452   //
3453   // <<<< stubs
3454   //
3455   // The call instruction in the code either
3456   // - Branches directly to a compiled method if the offset is encodable in instruction.
3457   // - Branches to the trampoline stub if the offset to the compiled method is not encodable.
3458   // - Branches to the compiled_to_interp stub if the target is interpreted.
3459   //
3460   // Further there are three relocations from the loads to the constants in
3461   // the constant section.
3462   //
3463   // Usage of r1 and r2 in the stubs allows to distinguish them.
3464   enc_class enc_java_static_call(method meth) %{
3465     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
3466 
3467     MacroAssembler _masm(&cbuf);
3468     address entry_point = (address)$meth$$method;
3469 
3470     if (!_method) {
3471       // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
3472       emit_call_with_trampoline_stub(_masm, entry_point, relocInfo::runtime_call_type);
3473     } else {
3474       // Remember the offset not the address.
3475       const int start_offset = __ offset();
3476       // The trampoline stub.
3477       if (!Compile::current()->in_scratch_emit_size()) {
3478         // No entry point given, use the current pc.
3479         // Make sure branch fits into
3480         if (entry_point == 0) entry_point = __ pc();
3481 
3482         // Put the entry point as a constant into the constant pool.
3483         const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
3484         const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
3485 
3486         // Emit the trampoline stub which will be related to the branch-and-link below.
3487         CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
3488         if (Compile::current()->env()->failing()) { return; } // Code cache may be full.
3489         __ relocate(_optimized_virtual ?
3490                     relocInfo::opt_virtual_call_type : relocInfo::static_call_type);
3491       }
3492 
3493       // The real call.
3494       // Note: At this point we do not have the address of the trampoline
3495       // stub, and the entry point might be too far away for bl, so __ pc()
3496       // serves as dummy and the bl will be patched later.
3497       cbuf.set_insts_mark();
3498       __ bl(__ pc());  // Emits a relocation.
3499 
3500       // The stub for call to interpreter.
3501       CompiledStaticCall::emit_to_interp_stub(cbuf);
3502     }
3503   %}
3504 
3505   // Emit a method handle call.
3506   //
3507   // Method handle calls from compiled to compiled are going thru a
3508   // c2i -> i2c adapter, extending the frame for their arguments. The
3509   // caller however, returns directly to the compiled callee, that has
3510   // to cope with the extended frame. We restore the original frame by
3511   // loading the callers sp and adding the calculated framesize.
3512   enc_class enc_java_handle_call(method meth) %{
3513     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3514 
3515     MacroAssembler _masm(&cbuf);
3516     address entry_point = (address)$meth$$method;
3517 
3518     // Remember the offset not the address.
3519     const int start_offset = __ offset();
3520     // The trampoline stub.
3521     if (!ra_->C->in_scratch_emit_size()) {
3522       // No entry point given, use the current pc.
3523       // Make sure branch fits into
3524       if (entry_point == 0) entry_point = __ pc();
3525 
3526       // Put the entry point as a constant into the constant pool.
3527       const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
3528       const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
3529 
3530       // Emit the trampoline stub which will be related to the branch-and-link below.
3531       CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
3532       if (ra_->C->env()->failing()) { return; } // Code cache may be full.
3533       assert(_optimized_virtual, "methodHandle call should be a virtual call");
3534       __ relocate(relocInfo::opt_virtual_call_type);
3535     }
3536 
3537     // The real call.
3538     // Note: At this point we do not have the address of the trampoline
3539     // stub, and the entry point might be too far away for bl, so __ pc()
3540     // serves as dummy and the bl will be patched later.
3541     cbuf.set_insts_mark();
3542     __ bl(__ pc());  // Emits a relocation.
3543 
3544     assert(_method, "execute next statement conditionally");
3545     // The stub for call to interpreter.
3546     CompiledStaticCall::emit_to_interp_stub(cbuf);
3547 
3548     // Restore original sp.
3549     __ ld(R11_scratch1, 0, R1_SP); // Load caller sp.
3550     const long framesize = ra_->C->frame_slots() << LogBytesPerInt;
3551     unsigned int bytes = (unsigned int)framesize;
3552     long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
3553     if (Assembler::is_simm(-offset, 16)) {
3554       __ addi(R1_SP, R11_scratch1, -offset);
3555     } else {
3556       __ load_const_optimized(R12_scratch2, -offset);
3557       __ add(R1_SP, R11_scratch1, R12_scratch2);
3558     }
3559 #ifdef ASSERT
3560   __ ld(R12_scratch2, 0, R1_SP); // Load from unextended_sp.
3561   __ cmpd(CCR0, R11_scratch1, R12_scratch2);
3562   __ asm_assert_eq("backlink changed", 0x8000);
3563 #endif
3564     // If fails should store backlink before unextending.
3565 
3566     if (ra_->C->env()->failing()) {
3567       return;
3568     }
3569   %}
3570 
3571   // Second node of expanded dynamic call - the call.
3572   enc_class enc_java_dynamic_call_sched(method meth) %{
3573     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
3574 
3575     MacroAssembler _masm(&cbuf);
3576 
3577     if (!ra_->C->in_scratch_emit_size()) {
3578       // Create a call trampoline stub for the given method.
3579       const address entry_point = !($meth$$method) ? 0 : (address)$meth$$method;
3580       const address entry_point_const = __ address_constant(entry_point, RelocationHolder::none);
3581       const int entry_point_const_toc_offset = __ offset_to_method_toc(entry_point_const);
3582       CallStubImpl::emit_trampoline_stub(_masm, entry_point_const_toc_offset, __ offset());
3583       if (ra_->C->env()->failing()) { return; } // Code cache may be full.
3584 
3585       // Build relocation at call site with ic position as data.
3586       assert((_load_ic_hi_node != NULL && _load_ic_node == NULL) ||
3587              (_load_ic_hi_node == NULL && _load_ic_node != NULL),
3588              "must have one, but can't have both");
3589       assert((_load_ic_hi_node != NULL && _load_ic_hi_node->_cbuf_insts_offset != -1) ||
3590              (_load_ic_node != NULL    && _load_ic_node->_cbuf_insts_offset != -1),
3591              "must contain instruction offset");
3592       const int virtual_call_oop_addr_offset = _load_ic_hi_node != NULL
3593         ? _load_ic_hi_node->_cbuf_insts_offset
3594         : _load_ic_node->_cbuf_insts_offset;
3595       const address virtual_call_oop_addr = __ addr_at(virtual_call_oop_addr_offset);
3596       assert(MacroAssembler::is_load_const_from_method_toc_at(virtual_call_oop_addr),
3597              "should be load from TOC");
3598 
3599       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
3600     }
3601 
3602     // At this point I do not have the address of the trampoline stub,
3603     // and the entry point might be too far away for bl. Pc() serves
3604     // as dummy and bl will be patched later.
3605     __ bl((address) __ pc());
3606   %}
3607 
3608   // postalloc expand emitter for virtual calls.
3609   enc_class postalloc_expand_java_dynamic_call_sched(method meth, iRegLdst toc) %{
3610 
3611     // Create the nodes for loading the IC from the TOC.
3612     loadConLNodesTuple loadConLNodes_IC =
3613       loadConLNodesTuple_create(ra_, n_toc, new immLOper((jlong)Universe::non_oop_word()),
3614                                 OptoReg::Name(R19_H_num), OptoReg::Name(R19_num));
3615 
3616     // Create the call node.
3617     CallDynamicJavaDirectSchedNode *call = new CallDynamicJavaDirectSchedNode();
3618     call->_method_handle_invoke = _method_handle_invoke;
3619     call->_vtable_index      = _vtable_index;
3620     call->_method            = _method;
3621     call->_bci               = _bci;
3622     call->_optimized_virtual = _optimized_virtual;
3623     call->_tf                = _tf;
3624     call->_entry_point       = _entry_point;
3625     call->_cnt               = _cnt;
3626     call->_argsize           = _argsize;
3627     call->_oop_map           = _oop_map;
3628     call->_jvms              = _jvms;
3629     call->_jvmadj            = _jvmadj;
3630     call->_in_rms            = _in_rms;
3631     call->_nesting           = _nesting;
3632 
3633     // New call needs all inputs of old call.
3634     // Req...
3635     for (uint i = 0; i < req(); ++i) {
3636       // The expanded node does not need toc any more.
3637       // Add the inline cache constant here instead. This expresses the
3638       // register of the inline cache must be live at the call.
3639       // Else we would have to adapt JVMState by -1.
3640       if (i == mach_constant_base_node_input()) {
3641         call->add_req(loadConLNodes_IC._last);
3642       } else {
3643         call->add_req(in(i));
3644       }
3645     }
3646     // ...as well as prec
3647     for (uint i = req(); i < len(); ++i) {
3648       call->add_prec(in(i));
3649     }
3650 
3651     // Remember nodes loading the inline cache into r19.
3652     call->_load_ic_hi_node = loadConLNodes_IC._large_hi;
3653     call->_load_ic_node    = loadConLNodes_IC._small;
3654 
3655     // Operands for new nodes.
3656     call->_opnds[0] = _opnds[0];
3657     call->_opnds[1] = _opnds[1];
3658 
3659     // Only the inline cache is associated with a register.
3660     assert(Matcher::inline_cache_reg() == OptoReg::Name(R19_num), "ic reg should be R19");
3661 
3662     // Push new nodes.
3663     if (loadConLNodes_IC._large_hi) nodes->push(loadConLNodes_IC._large_hi);
3664     if (loadConLNodes_IC._last)     nodes->push(loadConLNodes_IC._last);
3665     nodes->push(call);
3666   %}
3667 
3668   // Compound version of call dynamic
3669   // Toc is only passed so that it can be used in ins_encode statement.
3670   // In the code we have to use $constanttablebase.
3671   enc_class enc_java_dynamic_call(method meth, iRegLdst toc) %{
3672     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3673     MacroAssembler _masm(&cbuf);
3674     int start_offset = __ offset();
3675 
3676     Register Rtoc = (ra_) ? $constanttablebase : R2_TOC;
3677 #if 0
3678     int vtable_index = this->_vtable_index;
3679     if (_vtable_index < 0) {
3680       // Must be invalid_vtable_index, not nonvirtual_vtable_index.
3681       assert(_vtable_index == Method::invalid_vtable_index, "correct sentinel value");
3682       Register ic_reg = as_Register(Matcher::inline_cache_reg_encode());
3683 
3684       // Virtual call relocation will point to ic load.
3685       address virtual_call_meta_addr = __ pc();
3686       // Load a clear inline cache.
3687       AddressLiteral empty_ic((address) Universe::non_oop_word());
3688       __ load_const_from_method_toc(ic_reg, empty_ic, Rtoc);
3689       // CALL to fixup routine.  Fixup routine uses ScopeDesc info
3690       // to determine who we intended to call.
3691       __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
3692       emit_call_with_trampoline_stub(_masm, (address)$meth$$method, relocInfo::none);
3693       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
3694              "Fix constant in ret_addr_offset()");
3695     } else {
3696       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
3697       // Go thru the vtable. Get receiver klass. Receiver already
3698       // checked for non-null. If we'll go thru a C2I adapter, the
3699       // interpreter expects method in R19_method.
3700 
3701       __ load_klass(R11_scratch1, R3);
3702 
3703       int entry_offset = InstanceKlass::vtable_start_offset() + _vtable_index * vtableEntry::size();
3704       int v_off = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
3705       __ li(R19_method, v_off);
3706       __ ldx(R19_method/*method oop*/, R19_method/*method offset*/, R11_scratch1/*class*/);
3707       // NOTE: for vtable dispatches, the vtable entry will never be
3708       // null. However it may very well end up in handle_wrong_method
3709       // if the method is abstract for the particular class.
3710       __ ld(R11_scratch1, in_bytes(Method::from_compiled_offset()), R19_method);
3711       // Call target. Either compiled code or C2I adapter.
3712       __ mtctr(R11_scratch1);
3713       __ bctrl();
3714       if (((MachCallDynamicJavaNode*)this)->ret_addr_offset() != __ offset() - start_offset) {
3715         tty->print(" %d, %d\n", ((MachCallDynamicJavaNode*)this)->ret_addr_offset(),__ offset() - start_offset);
3716       }
3717       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
3718              "Fix constant in ret_addr_offset()");
3719     }
3720 #endif
3721     Unimplemented();  // ret_addr_offset not yet fixed. Depends on compressed oops (load klass!).
3722   %}
3723 
3724   // a runtime call
3725   enc_class enc_java_to_runtime_call (method meth) %{
3726     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3727 
3728     MacroAssembler _masm(&cbuf);
3729     const address start_pc = __ pc();
3730 
3731 #if defined(ABI_ELFv2)
3732     address entry= !($meth$$method) ? NULL : (address)$meth$$method;
3733     __ call_c(entry, relocInfo::runtime_call_type);
3734 #else
3735     // The function we're going to call.
3736     FunctionDescriptor fdtemp;
3737     const FunctionDescriptor* fd = !($meth$$method) ? &fdtemp : (FunctionDescriptor*)$meth$$method;
3738 
3739     Register Rtoc = R12_scratch2;
3740     // Calculate the method's TOC.
3741     __ calculate_address_from_global_toc(Rtoc, __ method_toc());
3742     // Put entry, env, toc into the constant pool, this needs up to 3 constant
3743     // pool entries; call_c_using_toc will optimize the call.
3744     __ call_c_using_toc(fd, relocInfo::runtime_call_type, Rtoc);
3745 #endif
3746 
3747     // Check the ret_addr_offset.
3748     assert(((MachCallRuntimeNode*)this)->ret_addr_offset() ==  __ last_calls_return_pc() - start_pc,
3749            "Fix constant in ret_addr_offset()");
3750   %}
3751 
3752   // Move to ctr for leaf call.
3753   // This enc_class is needed so that scheduler gets proper
3754   // input mapping for latency computation.
3755   enc_class enc_leaf_call_mtctr(iRegLsrc src) %{
3756     // TODO: PPC port $archOpcode(ppc64Opcode_mtctr);
3757     MacroAssembler _masm(&cbuf);
3758     __ mtctr($src$$Register);
3759   %}
3760 
3761   // Postalloc expand emitter for runtime leaf calls.
3762   enc_class postalloc_expand_java_to_runtime_call(method meth, iRegLdst toc) %{
3763     loadConLNodesTuple loadConLNodes_Entry;
3764 #if defined(ABI_ELFv2)
3765     jlong entry_address = (jlong) this->entry_point();
3766     assert(entry_address, "need address here");
3767     loadConLNodes_Entry = loadConLNodesTuple_create(ra_, n_toc, new immLOper(entry_address),
3768                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
3769 #else
3770     // Get the struct that describes the function we are about to call.
3771     FunctionDescriptor* fd = (FunctionDescriptor*) this->entry_point();
3772     assert(fd, "need fd here");
3773     jlong entry_address = (jlong) fd->entry();
3774     // new nodes
3775     loadConLNodesTuple loadConLNodes_Env;
3776     loadConLNodesTuple loadConLNodes_Toc;
3777 
3778     // Create nodes and operands for loading the entry point.
3779     loadConLNodes_Entry = loadConLNodesTuple_create(ra_, n_toc, new immLOper(entry_address),
3780                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
3781 
3782 
3783     // Create nodes and operands for loading the env pointer.
3784     if (fd->env() != NULL) {
3785       loadConLNodes_Env = loadConLNodesTuple_create(ra_, n_toc, new immLOper((jlong) fd->env()),
3786                                                     OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
3787     } else {
3788       loadConLNodes_Env._large_hi = NULL;
3789       loadConLNodes_Env._large_lo = NULL;
3790       loadConLNodes_Env._small    = NULL;
3791       loadConLNodes_Env._last = new loadConL16Node();
3792       loadConLNodes_Env._last->_opnds[0] = new iRegLdstOper();
3793       loadConLNodes_Env._last->_opnds[1] = new immL16Oper(0);
3794       ra_->set_pair(loadConLNodes_Env._last->_idx, OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
3795     }
3796 
3797     // Create nodes and operands for loading the Toc point.
3798     loadConLNodes_Toc = loadConLNodesTuple_create(ra_, n_toc, new immLOper((jlong) fd->toc()),
3799                                                   OptoReg::Name(R2_H_num), OptoReg::Name(R2_num));
3800 #endif // ABI_ELFv2
3801     // mtctr node
3802     MachNode *mtctr = new CallLeafDirect_mtctrNode();
3803 
3804     assert(loadConLNodes_Entry._last != NULL, "entry must exist");
3805     mtctr->add_req(0, loadConLNodes_Entry._last);
3806 
3807     mtctr->_opnds[0] = new iRegLdstOper();
3808     mtctr->_opnds[1] = new iRegLdstOper();
3809 
3810     // call node
3811     MachCallLeafNode *call = new CallLeafDirectNode();
3812 
3813     call->_opnds[0] = _opnds[0];
3814     call->_opnds[1] = new methodOper((intptr_t) entry_address); // May get set later.
3815 
3816     // Make the new call node look like the old one.
3817     call->_name        = _name;
3818     call->_tf          = _tf;
3819     call->_entry_point = _entry_point;
3820     call->_cnt         = _cnt;
3821     call->_argsize     = _argsize;
3822     call->_oop_map     = _oop_map;
3823     guarantee(!_jvms, "You must clone the jvms and adapt the offsets by fix_jvms().");
3824     call->_jvms        = NULL;
3825     call->_jvmadj      = _jvmadj;
3826     call->_in_rms      = _in_rms;
3827     call->_nesting     = _nesting;
3828 
3829 
3830     // New call needs all inputs of old call.
3831     // Req...
3832     for (uint i = 0; i < req(); ++i) {
3833       if (i != mach_constant_base_node_input()) {
3834         call->add_req(in(i));
3835       }
3836     }
3837 
3838     // These must be reqired edges, as the registers are live up to
3839     // the call. Else the constants are handled as kills.
3840     call->add_req(mtctr);
3841 #if !defined(ABI_ELFv2)
3842     call->add_req(loadConLNodes_Env._last);
3843     call->add_req(loadConLNodes_Toc._last);
3844 #endif
3845 
3846     // ...as well as prec
3847     for (uint i = req(); i < len(); ++i) {
3848       call->add_prec(in(i));
3849     }
3850 
3851     // registers
3852     ra_->set1(mtctr->_idx, OptoReg::Name(SR_CTR_num));
3853 
3854     // Insert the new nodes.
3855     if (loadConLNodes_Entry._large_hi) nodes->push(loadConLNodes_Entry._large_hi);
3856     if (loadConLNodes_Entry._last)     nodes->push(loadConLNodes_Entry._last);
3857 #if !defined(ABI_ELFv2)
3858     if (loadConLNodes_Env._large_hi)   nodes->push(loadConLNodes_Env._large_hi);
3859     if (loadConLNodes_Env._last)       nodes->push(loadConLNodes_Env._last);
3860     if (loadConLNodes_Toc._large_hi)   nodes->push(loadConLNodes_Toc._large_hi);
3861     if (loadConLNodes_Toc._last)       nodes->push(loadConLNodes_Toc._last);
3862 #endif
3863     nodes->push(mtctr);
3864     nodes->push(call);
3865   %}
3866 %}
3867 
3868 //----------FRAME--------------------------------------------------------------
3869 // Definition of frame structure and management information.
3870 
3871 frame %{
3872   // What direction does stack grow in (assumed to be same for native & Java).
3873   stack_direction(TOWARDS_LOW);
3874 
3875   // These two registers define part of the calling convention between
3876   // compiled code and the interpreter.
3877 
3878   // Inline Cache Register or method for I2C.
3879   inline_cache_reg(R19); // R19_method
3880 
3881   // Method Oop Register when calling interpreter.
3882   interpreter_method_oop_reg(R19); // R19_method
3883 
3884   // Optional: name the operand used by cisc-spilling to access
3885   // [stack_pointer + offset].
3886   cisc_spilling_operand_name(indOffset);
3887 
3888   // Number of stack slots consumed by a Monitor enter.
3889   sync_stack_slots((frame::jit_monitor_size / VMRegImpl::stack_slot_size));
3890 
3891   // Compiled code's Frame Pointer.
3892   frame_pointer(R1); // R1_SP
3893 
3894   // Interpreter stores its frame pointer in a register which is
3895   // stored to the stack by I2CAdaptors. I2CAdaptors convert from
3896   // interpreted java to compiled java.
3897   //
3898   // R14_state holds pointer to caller's cInterpreter.
3899   interpreter_frame_pointer(R14); // R14_state
3900 
3901   stack_alignment(frame::alignment_in_bytes);
3902 
3903   in_preserve_stack_slots((frame::jit_in_preserve_size / VMRegImpl::stack_slot_size));
3904 
3905   // Number of outgoing stack slots killed above the
3906   // out_preserve_stack_slots for calls to C. Supports the var-args
3907   // backing area for register parms.
3908   //
3909   varargs_C_out_slots_killed(((frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size));
3910 
3911   // The after-PROLOG location of the return address. Location of
3912   // return address specifies a type (REG or STACK) and a number
3913   // representing the register number (i.e. - use a register name) or
3914   // stack slot.
3915   //
3916   // A: Link register is stored in stack slot ...
3917   // M:  ... but it's in the caller's frame according to PPC-64 ABI.
3918   // J: Therefore, we make sure that the link register is also in R11_scratch1
3919   //    at the end of the prolog.
3920   // B: We use R20, now.
3921   //return_addr(REG R20);
3922 
3923   // G: After reading the comments made by all the luminaries on their
3924   //    failure to tell the compiler where the return address really is,
3925   //    I hardly dare to try myself.  However, I'm convinced it's in slot
3926   //    4 what apparently works and saves us some spills.
3927   return_addr(STACK 4);
3928 
3929   // This is the body of the function
3930   //
3931   // void Matcher::calling_convention(OptoRegPair* sig, // array of ideal regs
3932   //                                  uint length,      // length of array
3933   //                                  bool is_outgoing)
3934   //
3935   // The `sig' array is to be updated. sig[j] represents the location
3936   // of the j-th argument, either a register or a stack slot.
3937 
3938   // Comment taken from i486.ad:
3939   // Body of function which returns an integer array locating
3940   // arguments either in registers or in stack slots. Passed an array
3941   // of ideal registers called "sig" and a "length" count. Stack-slot
3942   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3943   // arguments for a CALLEE. Incoming stack arguments are
3944   // automatically biased by the preserve_stack_slots field above.
3945   calling_convention %{
3946     // No difference between ingoing/outgoing. Just pass false.
3947     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
3948   %}
3949 
3950   // Comment taken from i486.ad:
3951   // Body of function which returns an integer array locating
3952   // arguments either in registers or in stack slots. Passed an array
3953   // of ideal registers called "sig" and a "length" count. Stack-slot
3954   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3955   // arguments for a CALLEE. Incoming stack arguments are
3956   // automatically biased by the preserve_stack_slots field above.
3957   c_calling_convention %{
3958     // This is obviously always outgoing.
3959     // C argument in register AND stack slot.
3960     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3961   %}
3962 
3963   // Location of native (C/C++) and interpreter return values. This
3964   // is specified to be the same as Java. In the 32-bit VM, long
3965   // values are actually returned from native calls in O0:O1 and
3966   // returned to the interpreter in I0:I1. The copying to and from
3967   // the register pairs is done by the appropriate call and epilog
3968   // opcodes. This simplifies the register allocator.
3969   c_return_value %{
3970     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
3971             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
3972             "only return normal values");
3973     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
3974     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
3975     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
3976     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
3977   %}
3978 
3979   // Location of compiled Java return values.  Same as C
3980   return_value %{
3981     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
3982             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
3983             "only return normal values");
3984     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
3985     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
3986     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
3987     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
3988   %}
3989 %}
3990 
3991 
3992 //----------ATTRIBUTES---------------------------------------------------------
3993 
3994 //----------Operand Attributes-------------------------------------------------
3995 op_attrib op_cost(1);          // Required cost attribute.
3996 
3997 //----------Instruction Attributes---------------------------------------------
3998 
3999 // Cost attribute. required.
4000 ins_attrib ins_cost(DEFAULT_COST);
4001 
4002 // Is this instruction a non-matching short branch variant of some
4003 // long branch? Not required.
4004 ins_attrib ins_short_branch(0);
4005 
4006 ins_attrib ins_is_TrapBasedCheckNode(true);
4007 
4008 // Number of constants.
4009 // This instruction uses the given number of constants
4010 // (optional attribute).
4011 // This is needed to determine in time whether the constant pool will
4012 // exceed 4000 entries. Before postalloc_expand the overall number of constants
4013 // is determined. It's also used to compute the constant pool size
4014 // in Output().
4015 ins_attrib ins_num_consts(0);
4016 
4017 // Required alignment attribute (must be a power of 2) specifies the
4018 // alignment that some part of the instruction (not necessarily the
4019 // start) requires. If > 1, a compute_padding() function must be
4020 // provided for the instruction.
4021 ins_attrib ins_alignment(1);
4022 
4023 // Enforce/prohibit rematerializations.
4024 // - If an instruction is attributed with 'ins_cannot_rematerialize(true)'
4025 //   then rematerialization of that instruction is prohibited and the
4026 //   instruction's value will be spilled if necessary.
4027 //   Causes that MachNode::rematerialize() returns false.
4028 // - If an instruction is attributed with 'ins_should_rematerialize(true)'
4029 //   then rematerialization should be enforced and a copy of the instruction
4030 //   should be inserted if possible; rematerialization is not guaranteed.
4031 //   Note: this may result in rematerializations in front of every use.
4032 //   Causes that MachNode::rematerialize() can return true.
4033 // (optional attribute)
4034 ins_attrib ins_cannot_rematerialize(false);
4035 ins_attrib ins_should_rematerialize(false);
4036 
4037 // Instruction has variable size depending on alignment.
4038 ins_attrib ins_variable_size_depending_on_alignment(false);
4039 
4040 // Instruction is a nop.
4041 ins_attrib ins_is_nop(false);
4042 
4043 // Instruction is mapped to a MachIfFastLock node (instead of MachFastLock).
4044 ins_attrib ins_use_mach_if_fast_lock_node(false);
4045 
4046 // Field for the toc offset of a constant.
4047 //
4048 // This is needed if the toc offset is not encodable as an immediate in
4049 // the PPC load instruction. If so, the upper (hi) bits of the offset are
4050 // added to the toc, and from this a load with immediate is performed.
4051 // With postalloc expand, we get two nodes that require the same offset
4052 // but which don't know about each other. The offset is only known
4053 // when the constant is added to the constant pool during emitting.
4054 // It is generated in the 'hi'-node adding the upper bits, and saved
4055 // in this node.  The 'lo'-node has a link to the 'hi'-node and reads
4056 // the offset from there when it gets encoded.
4057 ins_attrib ins_field_const_toc_offset(0);
4058 ins_attrib ins_field_const_toc_offset_hi_node(0);
4059 
4060 // A field that can hold the instructions offset in the code buffer.
4061 // Set in the nodes emitter.
4062 ins_attrib ins_field_cbuf_insts_offset(-1);
4063 
4064 // Fields for referencing a call's load-IC-node.
4065 // If the toc offset can not be encoded as an immediate in a load, we
4066 // use two nodes.
4067 ins_attrib ins_field_load_ic_hi_node(0);
4068 ins_attrib ins_field_load_ic_node(0);
4069 
4070 //----------OPERANDS-----------------------------------------------------------
4071 // Operand definitions must precede instruction definitions for correct
4072 // parsing in the ADLC because operands constitute user defined types
4073 // which are used in instruction definitions.
4074 //
4075 // Formats are generated automatically for constants and base registers.
4076 
4077 //----------Simple Operands----------------------------------------------------
4078 // Immediate Operands
4079 
4080 // Integer Immediate: 32-bit
4081 operand immI() %{
4082   match(ConI);
4083   op_cost(40);
4084   format %{ %}
4085   interface(CONST_INTER);
4086 %}
4087 
4088 operand immI8() %{
4089   predicate(Assembler::is_simm(n->get_int(), 8));
4090   op_cost(0);
4091   match(ConI);
4092   format %{ %}
4093   interface(CONST_INTER);
4094 %}
4095 
4096 // Integer Immediate: 16-bit
4097 operand immI16() %{
4098   predicate(Assembler::is_simm(n->get_int(), 16));
4099   op_cost(0);
4100   match(ConI);
4101   format %{ %}
4102   interface(CONST_INTER);
4103 %}
4104 
4105 // Integer Immediate: 32-bit, where lowest 16 bits are 0x0000.
4106 operand immIhi16() %{
4107   predicate(((n->get_int() & 0xffff0000) != 0) && ((n->get_int() & 0xffff) == 0));
4108   match(ConI);
4109   op_cost(0);
4110   format %{ %}
4111   interface(CONST_INTER);
4112 %}
4113 
4114 operand immInegpow2() %{
4115   predicate(is_power_of_2_long((jlong) (julong) (juint) (-(n->get_int()))));
4116   match(ConI);
4117   op_cost(0);
4118   format %{ %}
4119   interface(CONST_INTER);
4120 %}
4121 
4122 operand immIpow2minus1() %{
4123   predicate(is_power_of_2_long((((jlong) (n->get_int()))+1)));
4124   match(ConI);
4125   op_cost(0);
4126   format %{ %}
4127   interface(CONST_INTER);
4128 %}
4129 
4130 operand immIpowerOf2() %{
4131   predicate(is_power_of_2_long((((jlong) (julong) (juint) (n->get_int())))));
4132   match(ConI);
4133   op_cost(0);
4134   format %{ %}
4135   interface(CONST_INTER);
4136 %}
4137 
4138 // Unsigned Integer Immediate: the values 0-31
4139 operand uimmI5() %{
4140   predicate(Assembler::is_uimm(n->get_int(), 5));
4141   match(ConI);
4142   op_cost(0);
4143   format %{ %}
4144   interface(CONST_INTER);
4145 %}
4146 
4147 // Unsigned Integer Immediate: 6-bit
4148 operand uimmI6() %{
4149   predicate(Assembler::is_uimm(n->get_int(), 6));
4150   match(ConI);
4151   op_cost(0);
4152   format %{ %}
4153   interface(CONST_INTER);
4154 %}
4155 
4156 // Unsigned Integer Immediate:  6-bit int, greater than 32
4157 operand uimmI6_ge32() %{
4158   predicate(Assembler::is_uimm(n->get_int(), 6) && n->get_int() >= 32);
4159   match(ConI);
4160   op_cost(0);
4161   format %{ %}
4162   interface(CONST_INTER);
4163 %}
4164 
4165 // Unsigned Integer Immediate: 15-bit
4166 operand uimmI15() %{
4167   predicate(Assembler::is_uimm(n->get_int(), 15));
4168   match(ConI);
4169   op_cost(0);
4170   format %{ %}
4171   interface(CONST_INTER);
4172 %}
4173 
4174 // Unsigned Integer Immediate: 16-bit
4175 operand uimmI16() %{
4176   predicate(Assembler::is_uimm(n->get_int(), 16));
4177   match(ConI);
4178   op_cost(0);
4179   format %{ %}
4180   interface(CONST_INTER);
4181 %}
4182 
4183 // constant 'int 0'.
4184 operand immI_0() %{
4185   predicate(n->get_int() == 0);
4186   match(ConI);
4187   op_cost(0);
4188   format %{ %}
4189   interface(CONST_INTER);
4190 %}
4191 
4192 // constant 'int 1'.
4193 operand immI_1() %{
4194   predicate(n->get_int() == 1);
4195   match(ConI);
4196   op_cost(0);
4197   format %{ %}
4198   interface(CONST_INTER);
4199 %}
4200 
4201 // constant 'int -1'.
4202 operand immI_minus1() %{
4203   predicate(n->get_int() == -1);
4204   match(ConI);
4205   op_cost(0);
4206   format %{ %}
4207   interface(CONST_INTER);
4208 %}
4209 
4210 // int value 16.
4211 operand immI_16() %{
4212   predicate(n->get_int() == 16);
4213   match(ConI);
4214   op_cost(0);
4215   format %{ %}
4216   interface(CONST_INTER);
4217 %}
4218 
4219 // int value 24.
4220 operand immI_24() %{
4221   predicate(n->get_int() == 24);
4222   match(ConI);
4223   op_cost(0);
4224   format %{ %}
4225   interface(CONST_INTER);
4226 %}
4227 
4228 // Compressed oops constants
4229 // Pointer Immediate
4230 operand immN() %{
4231   match(ConN);
4232 
4233   op_cost(10);
4234   format %{ %}
4235   interface(CONST_INTER);
4236 %}
4237 
4238 // NULL Pointer Immediate
4239 operand immN_0() %{
4240   predicate(n->get_narrowcon() == 0);
4241   match(ConN);
4242 
4243   op_cost(0);
4244   format %{ %}
4245   interface(CONST_INTER);
4246 %}
4247 
4248 // Compressed klass constants
4249 operand immNKlass() %{
4250   match(ConNKlass);
4251 
4252   op_cost(0);
4253   format %{ %}
4254   interface(CONST_INTER);
4255 %}
4256 
4257 // This operand can be used to avoid matching of an instruct
4258 // with chain rule.
4259 operand immNKlass_NM() %{
4260   match(ConNKlass);
4261   predicate(false);
4262   op_cost(0);
4263   format %{ %}
4264   interface(CONST_INTER);
4265 %}
4266 
4267 // Pointer Immediate: 64-bit
4268 operand immP() %{
4269   match(ConP);
4270   op_cost(0);
4271   format %{ %}
4272   interface(CONST_INTER);
4273 %}
4274 
4275 // Operand to avoid match of loadConP.
4276 // This operand can be used to avoid matching of an instruct
4277 // with chain rule.
4278 operand immP_NM() %{
4279   match(ConP);
4280   predicate(false);
4281   op_cost(0);
4282   format %{ %}
4283   interface(CONST_INTER);
4284 %}
4285 
4286 // costant 'pointer 0'.
4287 operand immP_0() %{
4288   predicate(n->get_ptr() == 0);
4289   match(ConP);
4290   op_cost(0);
4291   format %{ %}
4292   interface(CONST_INTER);
4293 %}
4294 
4295 // pointer 0x0 or 0x1
4296 operand immP_0or1() %{
4297   predicate((n->get_ptr() == 0) || (n->get_ptr() == 1));
4298   match(ConP);
4299   op_cost(0);
4300   format %{ %}
4301   interface(CONST_INTER);
4302 %}
4303 
4304 operand immL() %{
4305   match(ConL);
4306   op_cost(40);
4307   format %{ %}
4308   interface(CONST_INTER);
4309 %}
4310 
4311 // Long Immediate: 16-bit
4312 operand immL16() %{
4313   predicate(Assembler::is_simm(n->get_long(), 16));
4314   match(ConL);
4315   op_cost(0);
4316   format %{ %}
4317   interface(CONST_INTER);
4318 %}
4319 
4320 // Long Immediate: 16-bit, 4-aligned
4321 operand immL16Alg4() %{
4322   predicate(Assembler::is_simm(n->get_long(), 16) && ((n->get_long() & 0x3) == 0));
4323   match(ConL);
4324   op_cost(0);
4325   format %{ %}
4326   interface(CONST_INTER);
4327 %}
4328 
4329 // Long Immediate: 32-bit, where lowest 16 bits are 0x0000.
4330 operand immL32hi16() %{
4331   predicate(Assembler::is_simm(n->get_long(), 32) && ((n->get_long() & 0xffffL) == 0L));
4332   match(ConL);
4333   op_cost(0);
4334   format %{ %}
4335   interface(CONST_INTER);
4336 %}
4337 
4338 // Long Immediate: 32-bit
4339 operand immL32() %{
4340   predicate(Assembler::is_simm(n->get_long(), 32));
4341   match(ConL);
4342   op_cost(0);
4343   format %{ %}
4344   interface(CONST_INTER);
4345 %}
4346 
4347 // Long Immediate: 64-bit, where highest 16 bits are not 0x0000.
4348 operand immLhighest16() %{
4349   predicate((n->get_long() & 0xffff000000000000L) != 0L && (n->get_long() & 0x0000ffffffffffffL) == 0L);
4350   match(ConL);
4351   op_cost(0);
4352   format %{ %}
4353   interface(CONST_INTER);
4354 %}
4355 
4356 operand immLnegpow2() %{
4357   predicate(is_power_of_2_long((jlong)-(n->get_long())));
4358   match(ConL);
4359   op_cost(0);
4360   format %{ %}
4361   interface(CONST_INTER);
4362 %}
4363 
4364 operand immLpow2minus1() %{
4365   predicate(is_power_of_2_long((((jlong) (n->get_long()))+1)) &&
4366             (n->get_long() != (jlong)0xffffffffffffffffL));
4367   match(ConL);
4368   op_cost(0);
4369   format %{ %}
4370   interface(CONST_INTER);
4371 %}
4372 
4373 // constant 'long 0'.
4374 operand immL_0() %{
4375   predicate(n->get_long() == 0L);
4376   match(ConL);
4377   op_cost(0);
4378   format %{ %}
4379   interface(CONST_INTER);
4380 %}
4381 
4382 // constat ' long -1'.
4383 operand immL_minus1() %{
4384   predicate(n->get_long() == -1L);
4385   match(ConL);
4386   op_cost(0);
4387   format %{ %}
4388   interface(CONST_INTER);
4389 %}
4390 
4391 // Long Immediate: low 32-bit mask
4392 operand immL_32bits() %{
4393   predicate(n->get_long() == 0xFFFFFFFFL);
4394   match(ConL);
4395   op_cost(0);
4396   format %{ %}
4397   interface(CONST_INTER);
4398 %}
4399 
4400 // Unsigned Long Immediate: 16-bit
4401 operand uimmL16() %{
4402   predicate(Assembler::is_uimm(n->get_long(), 16));
4403   match(ConL);
4404   op_cost(0);
4405   format %{ %}
4406   interface(CONST_INTER);
4407 %}
4408 
4409 // Float Immediate
4410 operand immF() %{
4411   match(ConF);
4412   op_cost(40);
4413   format %{ %}
4414   interface(CONST_INTER);
4415 %}
4416 
4417 // constant 'float +0.0'.
4418 operand immF_0() %{
4419   predicate((n->getf() == 0) &&
4420             (fpclassify(n->getf()) == FP_ZERO) && (signbit(n->getf()) == 0));
4421   match(ConF);
4422   op_cost(0);
4423   format %{ %}
4424   interface(CONST_INTER);
4425 %}
4426 
4427 // Double Immediate
4428 operand immD() %{
4429   match(ConD);
4430   op_cost(40);
4431   format %{ %}
4432   interface(CONST_INTER);
4433 %}
4434 
4435 // Integer Register Operands
4436 // Integer Destination Register
4437 // See definition of reg_class bits32_reg_rw.
4438 operand iRegIdst() %{
4439   constraint(ALLOC_IN_RC(bits32_reg_rw));
4440   match(RegI);
4441   match(rscratch1RegI);
4442   match(rscratch2RegI);
4443   match(rarg1RegI);
4444   match(rarg2RegI);
4445   match(rarg3RegI);
4446   match(rarg4RegI);
4447   format %{ %}
4448   interface(REG_INTER);
4449 %}
4450 
4451 // Integer Source Register
4452 // See definition of reg_class bits32_reg_ro.
4453 operand iRegIsrc() %{
4454   constraint(ALLOC_IN_RC(bits32_reg_ro));
4455   match(RegI);
4456   match(rscratch1RegI);
4457   match(rscratch2RegI);
4458   match(rarg1RegI);
4459   match(rarg2RegI);
4460   match(rarg3RegI);
4461   match(rarg4RegI);
4462   format %{ %}
4463   interface(REG_INTER);
4464 %}
4465 
4466 operand rscratch1RegI() %{
4467   constraint(ALLOC_IN_RC(rscratch1_bits32_reg));
4468   match(iRegIdst);
4469   format %{ %}
4470   interface(REG_INTER);
4471 %}
4472 
4473 operand rscratch2RegI() %{
4474   constraint(ALLOC_IN_RC(rscratch2_bits32_reg));
4475   match(iRegIdst);
4476   format %{ %}
4477   interface(REG_INTER);
4478 %}
4479 
4480 operand rarg1RegI() %{
4481   constraint(ALLOC_IN_RC(rarg1_bits32_reg));
4482   match(iRegIdst);
4483   format %{ %}
4484   interface(REG_INTER);
4485 %}
4486 
4487 operand rarg2RegI() %{
4488   constraint(ALLOC_IN_RC(rarg2_bits32_reg));
4489   match(iRegIdst);
4490   format %{ %}
4491   interface(REG_INTER);
4492 %}
4493 
4494 operand rarg3RegI() %{
4495   constraint(ALLOC_IN_RC(rarg3_bits32_reg));
4496   match(iRegIdst);
4497   format %{ %}
4498   interface(REG_INTER);
4499 %}
4500 
4501 operand rarg4RegI() %{
4502   constraint(ALLOC_IN_RC(rarg4_bits32_reg));
4503   match(iRegIdst);
4504   format %{ %}
4505   interface(REG_INTER);
4506 %}
4507 
4508 operand rarg1RegL() %{
4509   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
4510   match(iRegLdst);
4511   format %{ %}
4512   interface(REG_INTER);
4513 %}
4514 
4515 operand rarg2RegL() %{
4516   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
4517   match(iRegLdst);
4518   format %{ %}
4519   interface(REG_INTER);
4520 %}
4521 
4522 operand rarg3RegL() %{
4523   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
4524   match(iRegLdst);
4525   format %{ %}
4526   interface(REG_INTER);
4527 %}
4528 
4529 operand rarg4RegL() %{
4530   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
4531   match(iRegLdst);
4532   format %{ %}
4533   interface(REG_INTER);
4534 %}
4535 
4536 // Pointer Destination Register
4537 // See definition of reg_class bits64_reg_rw.
4538 operand iRegPdst() %{
4539   constraint(ALLOC_IN_RC(bits64_reg_rw));
4540   match(RegP);
4541   match(rscratch1RegP);
4542   match(rscratch2RegP);
4543   match(rarg1RegP);
4544   match(rarg2RegP);
4545   match(rarg3RegP);
4546   match(rarg4RegP);
4547   format %{ %}
4548   interface(REG_INTER);
4549 %}
4550 
4551 // Pointer Destination Register
4552 // Operand not using r11 and r12 (killed in epilog).
4553 operand iRegPdstNoScratch() %{
4554   constraint(ALLOC_IN_RC(bits64_reg_leaf_call));
4555   match(RegP);
4556   match(rarg1RegP);
4557   match(rarg2RegP);
4558   match(rarg3RegP);
4559   match(rarg4RegP);
4560   format %{ %}
4561   interface(REG_INTER);
4562 %}
4563 
4564 // Pointer Source Register
4565 // See definition of reg_class bits64_reg_ro.
4566 operand iRegPsrc() %{
4567   constraint(ALLOC_IN_RC(bits64_reg_ro));
4568   match(RegP);
4569   match(iRegPdst);
4570   match(rscratch1RegP);
4571   match(rscratch2RegP);
4572   match(rarg1RegP);
4573   match(rarg2RegP);
4574   match(rarg3RegP);
4575   match(rarg4RegP);
4576   match(threadRegP);
4577   format %{ %}
4578   interface(REG_INTER);
4579 %}
4580 
4581 // Thread operand.
4582 operand threadRegP() %{
4583   constraint(ALLOC_IN_RC(thread_bits64_reg));
4584   match(iRegPdst);
4585   format %{ "R16" %}
4586   interface(REG_INTER);
4587 %}
4588 
4589 operand rscratch1RegP() %{
4590   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
4591   match(iRegPdst);
4592   format %{ "R11" %}
4593   interface(REG_INTER);
4594 %}
4595 
4596 operand rscratch2RegP() %{
4597   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
4598   match(iRegPdst);
4599   format %{ %}
4600   interface(REG_INTER);
4601 %}
4602 
4603 operand rarg1RegP() %{
4604   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
4605   match(iRegPdst);
4606   format %{ %}
4607   interface(REG_INTER);
4608 %}
4609 
4610 operand rarg2RegP() %{
4611   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
4612   match(iRegPdst);
4613   format %{ %}
4614   interface(REG_INTER);
4615 %}
4616 
4617 operand rarg3RegP() %{
4618   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
4619   match(iRegPdst);
4620   format %{ %}
4621   interface(REG_INTER);
4622 %}
4623 
4624 operand rarg4RegP() %{
4625   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
4626   match(iRegPdst);
4627   format %{ %}
4628   interface(REG_INTER);
4629 %}
4630 
4631 operand iRegNsrc() %{
4632   constraint(ALLOC_IN_RC(bits32_reg_ro));
4633   match(RegN);
4634   match(iRegNdst);
4635 
4636   format %{ %}
4637   interface(REG_INTER);
4638 %}
4639 
4640 operand iRegNdst() %{
4641   constraint(ALLOC_IN_RC(bits32_reg_rw));
4642   match(RegN);
4643 
4644   format %{ %}
4645   interface(REG_INTER);
4646 %}
4647 
4648 // Long Destination Register
4649 // See definition of reg_class bits64_reg_rw.
4650 operand iRegLdst() %{
4651   constraint(ALLOC_IN_RC(bits64_reg_rw));
4652   match(RegL);
4653   match(rscratch1RegL);
4654   match(rscratch2RegL);
4655   format %{ %}
4656   interface(REG_INTER);
4657 %}
4658 
4659 // Long Source Register
4660 // See definition of reg_class bits64_reg_ro.
4661 operand iRegLsrc() %{
4662   constraint(ALLOC_IN_RC(bits64_reg_ro));
4663   match(RegL);
4664   match(iRegLdst);
4665   match(rscratch1RegL);
4666   match(rscratch2RegL);
4667   format %{ %}
4668   interface(REG_INTER);
4669 %}
4670 
4671 // Special operand for ConvL2I.
4672 operand iRegL2Isrc(iRegLsrc reg) %{
4673   constraint(ALLOC_IN_RC(bits64_reg_ro));
4674   match(ConvL2I reg);
4675   format %{ "ConvL2I($reg)" %}
4676   interface(REG_INTER)
4677 %}
4678 
4679 operand rscratch1RegL() %{
4680   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
4681   match(RegL);
4682   format %{ %}
4683   interface(REG_INTER);
4684 %}
4685 
4686 operand rscratch2RegL() %{
4687   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
4688   match(RegL);
4689   format %{ %}
4690   interface(REG_INTER);
4691 %}
4692 
4693 // Condition Code Flag Registers
4694 operand flagsReg() %{
4695   constraint(ALLOC_IN_RC(int_flags));
4696   match(RegFlags);
4697   format %{ %}
4698   interface(REG_INTER);
4699 %}
4700 
4701 // Condition Code Flag Register CR0
4702 operand flagsRegCR0() %{
4703   constraint(ALLOC_IN_RC(int_flags_CR0));
4704   match(RegFlags);
4705   format %{ "CR0" %}
4706   interface(REG_INTER);
4707 %}
4708 
4709 operand flagsRegCR1() %{
4710   constraint(ALLOC_IN_RC(int_flags_CR1));
4711   match(RegFlags);
4712   format %{ "CR1" %}
4713   interface(REG_INTER);
4714 %}
4715 
4716 operand flagsRegCR6() %{
4717   constraint(ALLOC_IN_RC(int_flags_CR6));
4718   match(RegFlags);
4719   format %{ "CR6" %}
4720   interface(REG_INTER);
4721 %}
4722 
4723 operand regCTR() %{
4724   constraint(ALLOC_IN_RC(ctr_reg));
4725   // RegFlags should work. Introducing a RegSpecial type would cause a
4726   // lot of changes.
4727   match(RegFlags);
4728   format %{"SR_CTR" %}
4729   interface(REG_INTER);
4730 %}
4731 
4732 operand regD() %{
4733   constraint(ALLOC_IN_RC(dbl_reg));
4734   match(RegD);
4735   format %{ %}
4736   interface(REG_INTER);
4737 %}
4738 
4739 operand regF() %{
4740   constraint(ALLOC_IN_RC(flt_reg));
4741   match(RegF);
4742   format %{ %}
4743   interface(REG_INTER);
4744 %}
4745 
4746 // Special Registers
4747 
4748 // Method Register
4749 operand inline_cache_regP(iRegPdst reg) %{
4750   constraint(ALLOC_IN_RC(r19_bits64_reg)); // inline_cache_reg
4751   match(reg);
4752   format %{ %}
4753   interface(REG_INTER);
4754 %}
4755 
4756 operand compiler_method_oop_regP(iRegPdst reg) %{
4757   constraint(ALLOC_IN_RC(rscratch1_bits64_reg)); // compiler_method_oop_reg
4758   match(reg);
4759   format %{ %}
4760   interface(REG_INTER);
4761 %}
4762 
4763 operand interpreter_method_oop_regP(iRegPdst reg) %{
4764   constraint(ALLOC_IN_RC(r19_bits64_reg)); // interpreter_method_oop_reg
4765   match(reg);
4766   format %{ %}
4767   interface(REG_INTER);
4768 %}
4769 
4770 // Operands to remove register moves in unscaled mode.
4771 // Match read/write registers with an EncodeP node if neither shift nor add are required.
4772 operand iRegP2N(iRegPsrc reg) %{
4773   predicate(false /* TODO: PPC port MatchDecodeNodes*/&& Universe::narrow_oop_shift() == 0);
4774   constraint(ALLOC_IN_RC(bits64_reg_ro));
4775   match(EncodeP reg);
4776   format %{ "$reg" %}
4777   interface(REG_INTER)
4778 %}
4779 
4780 operand iRegN2P(iRegNsrc reg) %{
4781   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4782   constraint(ALLOC_IN_RC(bits32_reg_ro));
4783   match(DecodeN reg);
4784   match(DecodeNKlass reg);
4785   format %{ "$reg" %}
4786   interface(REG_INTER)
4787 %}
4788 
4789 //----------Complex Operands---------------------------------------------------
4790 // Indirect Memory Reference
4791 operand indirect(iRegPsrc reg) %{
4792   constraint(ALLOC_IN_RC(bits64_reg_ro));
4793   match(reg);
4794   op_cost(100);
4795   format %{ "[$reg]" %}
4796   interface(MEMORY_INTER) %{
4797     base($reg);
4798     index(0x0);
4799     scale(0x0);
4800     disp(0x0);
4801   %}
4802 %}
4803 
4804 // Indirect with Offset
4805 operand indOffset16(iRegPsrc reg, immL16 offset) %{
4806   constraint(ALLOC_IN_RC(bits64_reg_ro));
4807   match(AddP reg offset);
4808   op_cost(100);
4809   format %{ "[$reg + $offset]" %}
4810   interface(MEMORY_INTER) %{
4811     base($reg);
4812     index(0x0);
4813     scale(0x0);
4814     disp($offset);
4815   %}
4816 %}
4817 
4818 // Indirect with 4-aligned Offset
4819 operand indOffset16Alg4(iRegPsrc reg, immL16Alg4 offset) %{
4820   constraint(ALLOC_IN_RC(bits64_reg_ro));
4821   match(AddP reg offset);
4822   op_cost(100);
4823   format %{ "[$reg + $offset]" %}
4824   interface(MEMORY_INTER) %{
4825     base($reg);
4826     index(0x0);
4827     scale(0x0);
4828     disp($offset);
4829   %}
4830 %}
4831 
4832 //----------Complex Operands for Compressed OOPs-------------------------------
4833 // Compressed OOPs with narrow_oop_shift == 0.
4834 
4835 // Indirect Memory Reference, compressed OOP
4836 operand indirectNarrow(iRegNsrc reg) %{
4837   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4838   constraint(ALLOC_IN_RC(bits64_reg_ro));
4839   match(DecodeN reg);
4840   match(DecodeNKlass reg);
4841   op_cost(100);
4842   format %{ "[$reg]" %}
4843   interface(MEMORY_INTER) %{
4844     base($reg);
4845     index(0x0);
4846     scale(0x0);
4847     disp(0x0);
4848   %}
4849 %}
4850 
4851 // Indirect with Offset, compressed OOP
4852 operand indOffset16Narrow(iRegNsrc reg, immL16 offset) %{
4853   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4854   constraint(ALLOC_IN_RC(bits64_reg_ro));
4855   match(AddP (DecodeN reg) offset);
4856   match(AddP (DecodeNKlass reg) offset);
4857   op_cost(100);
4858   format %{ "[$reg + $offset]" %}
4859   interface(MEMORY_INTER) %{
4860     base($reg);
4861     index(0x0);
4862     scale(0x0);
4863     disp($offset);
4864   %}
4865 %}
4866 
4867 // Indirect with 4-aligned Offset, compressed OOP
4868 operand indOffset16NarrowAlg4(iRegNsrc reg, immL16Alg4 offset) %{
4869   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4870   constraint(ALLOC_IN_RC(bits64_reg_ro));
4871   match(AddP (DecodeN reg) offset);
4872   match(AddP (DecodeNKlass reg) offset);
4873   op_cost(100);
4874   format %{ "[$reg + $offset]" %}
4875   interface(MEMORY_INTER) %{
4876     base($reg);
4877     index(0x0);
4878     scale(0x0);
4879     disp($offset);
4880   %}
4881 %}
4882 
4883 //----------Special Memory Operands--------------------------------------------
4884 // Stack Slot Operand
4885 //
4886 // This operand is used for loading and storing temporary values on
4887 // the stack where a match requires a value to flow through memory.
4888 operand stackSlotI(sRegI reg) %{
4889   constraint(ALLOC_IN_RC(stack_slots));
4890   op_cost(100);
4891   //match(RegI);
4892   format %{ "[sp+$reg]" %}
4893   interface(MEMORY_INTER) %{
4894     base(0x1);   // R1_SP
4895     index(0x0);
4896     scale(0x0);
4897     disp($reg);  // Stack Offset
4898   %}
4899 %}
4900 
4901 operand stackSlotL(sRegL reg) %{
4902   constraint(ALLOC_IN_RC(stack_slots));
4903   op_cost(100);
4904   //match(RegL);
4905   format %{ "[sp+$reg]" %}
4906   interface(MEMORY_INTER) %{
4907     base(0x1);   // R1_SP
4908     index(0x0);
4909     scale(0x0);
4910     disp($reg);  // Stack Offset
4911   %}
4912 %}
4913 
4914 operand stackSlotP(sRegP reg) %{
4915   constraint(ALLOC_IN_RC(stack_slots));
4916   op_cost(100);
4917   //match(RegP);
4918   format %{ "[sp+$reg]" %}
4919   interface(MEMORY_INTER) %{
4920     base(0x1);   // R1_SP
4921     index(0x0);
4922     scale(0x0);
4923     disp($reg);  // Stack Offset
4924   %}
4925 %}
4926 
4927 operand stackSlotF(sRegF reg) %{
4928   constraint(ALLOC_IN_RC(stack_slots));
4929   op_cost(100);
4930   //match(RegF);
4931   format %{ "[sp+$reg]" %}
4932   interface(MEMORY_INTER) %{
4933     base(0x1);   // R1_SP
4934     index(0x0);
4935     scale(0x0);
4936     disp($reg);  // Stack Offset
4937   %}
4938 %}
4939 
4940 operand stackSlotD(sRegD reg) %{
4941   constraint(ALLOC_IN_RC(stack_slots));
4942   op_cost(100);
4943   //match(RegD);
4944   format %{ "[sp+$reg]" %}
4945   interface(MEMORY_INTER) %{
4946     base(0x1);   // R1_SP
4947     index(0x0);
4948     scale(0x0);
4949     disp($reg);  // Stack Offset
4950   %}
4951 %}
4952 
4953 // Operands for expressing Control Flow
4954 // NOTE: Label is a predefined operand which should not be redefined in
4955 //       the AD file. It is generically handled within the ADLC.
4956 
4957 //----------Conditional Branch Operands----------------------------------------
4958 // Comparison Op
4959 //
4960 // This is the operation of the comparison, and is limited to the
4961 // following set of codes: L (<), LE (<=), G (>), GE (>=), E (==), NE
4962 // (!=).
4963 //
4964 // Other attributes of the comparison, such as unsignedness, are specified
4965 // by the comparison instruction that sets a condition code flags register.
4966 // That result is represented by a flags operand whose subtype is appropriate
4967 // to the unsignedness (etc.) of the comparison.
4968 //
4969 // Later, the instruction which matches both the Comparison Op (a Bool) and
4970 // the flags (produced by the Cmp) specifies the coding of the comparison op
4971 // by matching a specific subtype of Bool operand below.
4972 
4973 // When used for floating point comparisons: unordered same as less.
4974 operand cmpOp() %{
4975   match(Bool);
4976   format %{ "" %}
4977   interface(COND_INTER) %{
4978                            // BO only encodes bit 4 of bcondCRbiIsX, as bits 1-3 are always '100'.
4979                            //           BO          &  BI
4980     equal(0xA);            // 10 10:   bcondCRbiIs1 & Condition::equal
4981     not_equal(0x2);        // 00 10:   bcondCRbiIs0 & Condition::equal
4982     less(0x8);             // 10 00:   bcondCRbiIs1 & Condition::less
4983     greater_equal(0x0);    // 00 00:   bcondCRbiIs0 & Condition::less
4984     less_equal(0x1);       // 00 01:   bcondCRbiIs0 & Condition::greater
4985     greater(0x9);          // 10 01:   bcondCRbiIs1 & Condition::greater
4986     overflow(0xB);         // 10 11:   bcondCRbiIs1 & Condition::summary_overflow
4987     no_overflow(0x3);      // 00 11:   bcondCRbiIs0 & Condition::summary_overflow
4988   %}
4989 %}
4990 
4991 //----------OPERAND CLASSES----------------------------------------------------
4992 // Operand Classes are groups of operands that are used to simplify
4993 // instruction definitions by not requiring the AD writer to specify
4994 // seperate instructions for every form of operand when the
4995 // instruction accepts multiple operand types with the same basic
4996 // encoding and format. The classic case of this is memory operands.
4997 // Indirect is not included since its use is limited to Compare & Swap.
4998 
4999 opclass memory(indirect, indOffset16 /*, indIndex, tlsReference*/, indirectNarrow, indOffset16Narrow);
5000 // Memory operand where offsets are 4-aligned. Required for ld, std.
5001 opclass memoryAlg4(indirect, indOffset16Alg4, indirectNarrow, indOffset16NarrowAlg4);
5002 opclass indirectMemory(indirect, indirectNarrow);
5003 
5004 // Special opclass for I and ConvL2I.
5005 opclass iRegIsrc_iRegL2Isrc(iRegIsrc, iRegL2Isrc);
5006 
5007 // Operand classes to match encode and decode. iRegN_P2N is only used
5008 // for storeN. I have never seen an encode node elsewhere.
5009 opclass iRegN_P2N(iRegNsrc, iRegP2N);
5010 opclass iRegP_N2P(iRegPsrc, iRegN2P);
5011 
5012 //----------PIPELINE-----------------------------------------------------------
5013 
5014 pipeline %{
5015 
5016 // See J.M.Tendler et al. "Power4 system microarchitecture", IBM
5017 // J. Res. & Dev., No. 1, Jan. 2002.
5018 
5019 //----------ATTRIBUTES---------------------------------------------------------
5020 attributes %{
5021 
5022   // Power4 instructions are of fixed length.
5023   fixed_size_instructions;
5024 
5025   // TODO: if `bundle' means number of instructions fetched
5026   // per cycle, this is 8. If `bundle' means Power4 `group', that is
5027   // max instructions issued per cycle, this is 5.
5028   max_instructions_per_bundle = 8;
5029 
5030   // A Power4 instruction is 4 bytes long.
5031   instruction_unit_size = 4;
5032 
5033   // The Power4 processor fetches 64 bytes...
5034   instruction_fetch_unit_size = 64;
5035 
5036   // ...in one line
5037   instruction_fetch_units = 1
5038 
5039   // Unused, list one so that array generated by adlc is not empty.
5040   // Aix compiler chokes if _nop_count = 0.
5041   nops(fxNop);
5042 %}
5043 
5044 //----------RESOURCES----------------------------------------------------------
5045 // Resources are the functional units available to the machine
5046 resources(
5047    PPC_BR,         // branch unit
5048    PPC_CR,         // condition unit
5049    PPC_FX1,        // integer arithmetic unit 1
5050    PPC_FX2,        // integer arithmetic unit 2
5051    PPC_LDST1,      // load/store unit 1
5052    PPC_LDST2,      // load/store unit 2
5053    PPC_FP1,        // float arithmetic unit 1
5054    PPC_FP2,        // float arithmetic unit 2
5055    PPC_LDST = PPC_LDST1 | PPC_LDST2,
5056    PPC_FX = PPC_FX1 | PPC_FX2,
5057    PPC_FP = PPC_FP1 | PPC_FP2
5058  );
5059 
5060 //----------PIPELINE DESCRIPTION-----------------------------------------------
5061 // Pipeline Description specifies the stages in the machine's pipeline
5062 pipe_desc(
5063    // Power4 longest pipeline path
5064    PPC_IF,   // instruction fetch
5065    PPC_IC,
5066    //PPC_BP, // branch prediction
5067    PPC_D0,   // decode
5068    PPC_D1,   // decode
5069    PPC_D2,   // decode
5070    PPC_D3,   // decode
5071    PPC_Xfer1,
5072    PPC_GD,   // group definition
5073    PPC_MP,   // map
5074    PPC_ISS,  // issue
5075    PPC_RF,   // resource fetch
5076    PPC_EX1,  // execute (all units)
5077    PPC_EX2,  // execute (FP, LDST)
5078    PPC_EX3,  // execute (FP, LDST)
5079    PPC_EX4,  // execute (FP)
5080    PPC_EX5,  // execute (FP)
5081    PPC_EX6,  // execute (FP)
5082    PPC_WB,   // write back
5083    PPC_Xfer2,
5084    PPC_CP
5085  );
5086 
5087 //----------PIPELINE CLASSES---------------------------------------------------
5088 // Pipeline Classes describe the stages in which input and output are
5089 // referenced by the hardware pipeline.
5090 
5091 // Simple pipeline classes.
5092 
5093 // Default pipeline class.
5094 pipe_class pipe_class_default() %{
5095   single_instruction;
5096   fixed_latency(2);
5097 %}
5098 
5099 // Pipeline class for empty instructions.
5100 pipe_class pipe_class_empty() %{
5101   single_instruction;
5102   fixed_latency(0);
5103 %}
5104 
5105 // Pipeline class for compares.
5106 pipe_class pipe_class_compare() %{
5107   single_instruction;
5108   fixed_latency(16);
5109 %}
5110 
5111 // Pipeline class for traps.
5112 pipe_class pipe_class_trap() %{
5113   single_instruction;
5114   fixed_latency(100);
5115 %}
5116 
5117 // Pipeline class for memory operations.
5118 pipe_class pipe_class_memory() %{
5119   single_instruction;
5120   fixed_latency(16);
5121 %}
5122 
5123 // Pipeline class for call.
5124 pipe_class pipe_class_call() %{
5125   single_instruction;
5126   fixed_latency(100);
5127 %}
5128 
5129 // Define the class for the Nop node.
5130 define %{
5131    MachNop = pipe_class_default;
5132 %}
5133 
5134 %}
5135 
5136 //----------INSTRUCTIONS-------------------------------------------------------
5137 
5138 // Naming of instructions:
5139 //   opA_operB / opA_operB_operC:
5140 //     Operation 'op' with one or two source operands 'oper'. Result
5141 //     type is A, source operand types are B and C.
5142 //     Iff A == B == C, B and C are left out.
5143 //
5144 // The instructions are ordered according to the following scheme:
5145 //  - loads
5146 //  - load constants
5147 //  - prefetch
5148 //  - store
5149 //  - encode/decode
5150 //  - membar
5151 //  - conditional moves
5152 //  - compare & swap
5153 //  - arithmetic and logic operations
5154 //    * int: Add, Sub, Mul, Div, Mod
5155 //    * int: lShift, arShift, urShift, rot
5156 //    * float: Add, Sub, Mul, Div
5157 //    * and, or, xor ...
5158 //  - register moves: float <-> int, reg <-> stack, repl
5159 //  - cast (high level type cast, XtoP, castPP, castII, not_null etc.
5160 //  - conv (low level type cast requiring bit changes (sign extend etc)
5161 //  - compares, range & zero checks.
5162 //  - branches
5163 //  - complex operations, intrinsics, min, max, replicate
5164 //  - lock
5165 //  - Calls
5166 //
5167 // If there are similar instructions with different types they are sorted:
5168 // int before float
5169 // small before big
5170 // signed before unsigned
5171 // e.g., loadS before loadUS before loadI before loadF.
5172 
5173 
5174 //----------Load/Store Instructions--------------------------------------------
5175 
5176 //----------Load Instructions--------------------------------------------------
5177 
5178 // Converts byte to int.
5179 // As convB2I_reg, but without match rule.  The match rule of convB2I_reg
5180 // reuses the 'amount' operand, but adlc expects that operand specification
5181 // and operands in match rule are equivalent.
5182 instruct convB2I_reg_2(iRegIdst dst, iRegIsrc src) %{
5183   effect(DEF dst, USE src);
5184   format %{ "EXTSB   $dst, $src \t// byte->int" %}
5185   size(4);
5186   ins_encode %{
5187     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
5188     __ extsb($dst$$Register, $src$$Register);
5189   %}
5190   ins_pipe(pipe_class_default);
5191 %}
5192 
5193 instruct loadUB_indirect(iRegIdst dst, indirectMemory mem) %{
5194   // match-rule, false predicate
5195   match(Set dst (LoadB mem));
5196   predicate(false);
5197 
5198   format %{ "LBZ     $dst, $mem" %}
5199   size(4);
5200   ins_encode( enc_lbz(dst, mem) );
5201   ins_pipe(pipe_class_memory);
5202 %}
5203 
5204 instruct loadUB_indirect_ac(iRegIdst dst, indirectMemory mem) %{
5205   // match-rule, false predicate
5206   match(Set dst (LoadB mem));
5207   predicate(false);
5208 
5209   format %{ "LBZ     $dst, $mem\n\t"
5210             "TWI     $dst\n\t"
5211             "ISYNC" %}
5212   size(12);
5213   ins_encode( enc_lbz_ac(dst, mem) );
5214   ins_pipe(pipe_class_memory);
5215 %}
5216 
5217 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
5218 instruct loadB_indirect_Ex(iRegIdst dst, indirectMemory mem) %{
5219   match(Set dst (LoadB mem));
5220   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5221   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5222   expand %{
5223     iRegIdst tmp;
5224     loadUB_indirect(tmp, mem);
5225     convB2I_reg_2(dst, tmp);
5226   %}
5227 %}
5228 
5229 instruct loadB_indirect_ac_Ex(iRegIdst dst, indirectMemory mem) %{
5230   match(Set dst (LoadB mem));
5231   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
5232   expand %{
5233     iRegIdst tmp;
5234     loadUB_indirect_ac(tmp, mem);
5235     convB2I_reg_2(dst, tmp);
5236   %}
5237 %}
5238 
5239 instruct loadUB_indOffset16(iRegIdst dst, indOffset16 mem) %{
5240   // match-rule, false predicate
5241   match(Set dst (LoadB mem));
5242   predicate(false);
5243 
5244   format %{ "LBZ     $dst, $mem" %}
5245   size(4);
5246   ins_encode( enc_lbz(dst, mem) );
5247   ins_pipe(pipe_class_memory);
5248 %}
5249 
5250 instruct loadUB_indOffset16_ac(iRegIdst dst, indOffset16 mem) %{
5251   // match-rule, false predicate
5252   match(Set dst (LoadB mem));
5253   predicate(false);
5254 
5255   format %{ "LBZ     $dst, $mem\n\t"
5256             "TWI     $dst\n\t"
5257             "ISYNC" %}
5258   size(12);
5259   ins_encode( enc_lbz_ac(dst, mem) );
5260   ins_pipe(pipe_class_memory);
5261 %}
5262 
5263 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
5264 instruct loadB_indOffset16_Ex(iRegIdst dst, indOffset16 mem) %{
5265   match(Set dst (LoadB mem));
5266   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5267   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5268 
5269   expand %{
5270     iRegIdst tmp;
5271     loadUB_indOffset16(tmp, mem);
5272     convB2I_reg_2(dst, tmp);
5273   %}
5274 %}
5275 
5276 instruct loadB_indOffset16_ac_Ex(iRegIdst dst, indOffset16 mem) %{
5277   match(Set dst (LoadB mem));
5278   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
5279 
5280   expand %{
5281     iRegIdst tmp;
5282     loadUB_indOffset16_ac(tmp, mem);
5283     convB2I_reg_2(dst, tmp);
5284   %}
5285 %}
5286 
5287 // Load Unsigned Byte (8bit UNsigned) into an int reg.
5288 instruct loadUB(iRegIdst dst, memory mem) %{
5289   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5290   match(Set dst (LoadUB mem));
5291   ins_cost(MEMORY_REF_COST);
5292 
5293   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int" %}
5294   size(4);
5295   ins_encode( enc_lbz(dst, mem) );
5296   ins_pipe(pipe_class_memory);
5297 %}
5298 
5299 // Load  Unsigned Byte (8bit UNsigned) acquire.
5300 instruct loadUB_ac(iRegIdst dst, memory mem) %{
5301   match(Set dst (LoadUB mem));
5302   ins_cost(3*MEMORY_REF_COST);
5303 
5304   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int, acquire\n\t"
5305             "TWI     $dst\n\t"
5306             "ISYNC" %}
5307   size(12);
5308   ins_encode( enc_lbz_ac(dst, mem) );
5309   ins_pipe(pipe_class_memory);
5310 %}
5311 
5312 // Load Unsigned Byte (8bit UNsigned) into a Long Register.
5313 instruct loadUB2L(iRegLdst dst, memory mem) %{
5314   match(Set dst (ConvI2L (LoadUB mem)));
5315   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
5316   ins_cost(MEMORY_REF_COST);
5317 
5318   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long" %}
5319   size(4);
5320   ins_encode( enc_lbz(dst, mem) );
5321   ins_pipe(pipe_class_memory);
5322 %}
5323 
5324 instruct loadUB2L_ac(iRegLdst dst, memory mem) %{
5325   match(Set dst (ConvI2L (LoadUB mem)));
5326   ins_cost(3*MEMORY_REF_COST);
5327 
5328   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long, acquire\n\t"
5329             "TWI     $dst\n\t"
5330             "ISYNC" %}
5331   size(12);
5332   ins_encode( enc_lbz_ac(dst, mem) );
5333   ins_pipe(pipe_class_memory);
5334 %}
5335 
5336 // Load Short (16bit signed)
5337 instruct loadS(iRegIdst dst, memory mem) %{
5338   match(Set dst (LoadS mem));
5339   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5340   ins_cost(MEMORY_REF_COST);
5341 
5342   format %{ "LHA     $dst, $mem" %}
5343   size(4);
5344   ins_encode %{
5345     // TODO: PPC port $archOpcode(ppc64Opcode_lha);
5346     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5347     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
5348   %}
5349   ins_pipe(pipe_class_memory);
5350 %}
5351 
5352 // Load Short (16bit signed) acquire.
5353 instruct loadS_ac(iRegIdst dst, memory mem) %{
5354   match(Set dst (LoadS mem));
5355   ins_cost(3*MEMORY_REF_COST);
5356 
5357   format %{ "LHA     $dst, $mem\t acquire\n\t"
5358             "TWI     $dst\n\t"
5359             "ISYNC" %}
5360   size(12);
5361   ins_encode %{
5362     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5363     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5364     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
5365     __ twi_0($dst$$Register);
5366     __ isync();
5367   %}
5368   ins_pipe(pipe_class_memory);
5369 %}
5370 
5371 // Load Char (16bit unsigned)
5372 instruct loadUS(iRegIdst dst, memory mem) %{
5373   match(Set dst (LoadUS mem));
5374   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5375   ins_cost(MEMORY_REF_COST);
5376 
5377   format %{ "LHZ     $dst, $mem" %}
5378   size(4);
5379   ins_encode( enc_lhz(dst, mem) );
5380   ins_pipe(pipe_class_memory);
5381 %}
5382 
5383 // Load Char (16bit unsigned) acquire.
5384 instruct loadUS_ac(iRegIdst dst, memory mem) %{
5385   match(Set dst (LoadUS mem));
5386   ins_cost(3*MEMORY_REF_COST);
5387 
5388   format %{ "LHZ     $dst, $mem \t// acquire\n\t"
5389             "TWI     $dst\n\t"
5390             "ISYNC" %}
5391   size(12);
5392   ins_encode( enc_lhz_ac(dst, mem) );
5393   ins_pipe(pipe_class_memory);
5394 %}
5395 
5396 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register.
5397 instruct loadUS2L(iRegLdst dst, memory mem) %{
5398   match(Set dst (ConvI2L (LoadUS mem)));
5399   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
5400   ins_cost(MEMORY_REF_COST);
5401 
5402   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long" %}
5403   size(4);
5404   ins_encode( enc_lhz(dst, mem) );
5405   ins_pipe(pipe_class_memory);
5406 %}
5407 
5408 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register acquire.
5409 instruct loadUS2L_ac(iRegLdst dst, memory mem) %{
5410   match(Set dst (ConvI2L (LoadUS mem)));
5411   ins_cost(3*MEMORY_REF_COST);
5412 
5413   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long, acquire\n\t"
5414             "TWI     $dst\n\t"
5415             "ISYNC" %}
5416   size(12);
5417   ins_encode( enc_lhz_ac(dst, mem) );
5418   ins_pipe(pipe_class_memory);
5419 %}
5420 
5421 // Load Integer.
5422 instruct loadI(iRegIdst dst, memory mem) %{
5423   match(Set dst (LoadI mem));
5424   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5425   ins_cost(MEMORY_REF_COST);
5426 
5427   format %{ "LWZ     $dst, $mem" %}
5428   size(4);
5429   ins_encode( enc_lwz(dst, mem) );
5430   ins_pipe(pipe_class_memory);
5431 %}
5432 
5433 // Load Integer acquire.
5434 instruct loadI_ac(iRegIdst dst, memory mem) %{
5435   match(Set dst (LoadI mem));
5436   ins_cost(3*MEMORY_REF_COST);
5437 
5438   format %{ "LWZ     $dst, $mem \t// load acquire\n\t"
5439             "TWI     $dst\n\t"
5440             "ISYNC" %}
5441   size(12);
5442   ins_encode( enc_lwz_ac(dst, mem) );
5443   ins_pipe(pipe_class_memory);
5444 %}
5445 
5446 // Match loading integer and casting it to unsigned int in
5447 // long register.
5448 // LoadI + ConvI2L + AndL 0xffffffff.
5449 instruct loadUI2L(iRegLdst dst, memory mem, immL_32bits mask) %{
5450   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5451   predicate(_kids[0]->_kids[0]->_leaf->as_Load()->is_unordered());
5452   ins_cost(MEMORY_REF_COST);
5453 
5454   format %{ "LWZ     $dst, $mem \t// zero-extend to long" %}
5455   size(4);
5456   ins_encode( enc_lwz(dst, mem) );
5457   ins_pipe(pipe_class_memory);
5458 %}
5459 
5460 // Match loading integer and casting it to long.
5461 instruct loadI2L(iRegLdst dst, memory mem) %{
5462   match(Set dst (ConvI2L (LoadI mem)));
5463   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
5464   ins_cost(MEMORY_REF_COST);
5465 
5466   format %{ "LWA     $dst, $mem \t// loadI2L" %}
5467   size(4);
5468   ins_encode %{
5469     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
5470     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5471     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
5472   %}
5473   ins_pipe(pipe_class_memory);
5474 %}
5475 
5476 // Match loading integer and casting it to long - acquire.
5477 instruct loadI2L_ac(iRegLdst dst, memory mem) %{
5478   match(Set dst (ConvI2L (LoadI mem)));
5479   ins_cost(3*MEMORY_REF_COST);
5480 
5481   format %{ "LWA     $dst, $mem \t// loadI2L acquire"
5482             "TWI     $dst\n\t"
5483             "ISYNC" %}
5484   size(12);
5485   ins_encode %{
5486     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
5487     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5488     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
5489     __ twi_0($dst$$Register);
5490     __ isync();
5491   %}
5492   ins_pipe(pipe_class_memory);
5493 %}
5494 
5495 // Load Long - aligned
5496 instruct loadL(iRegLdst dst, memoryAlg4 mem) %{
5497   match(Set dst (LoadL mem));
5498   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5499   ins_cost(MEMORY_REF_COST);
5500 
5501   format %{ "LD      $dst, $mem \t// long" %}
5502   size(4);
5503   ins_encode( enc_ld(dst, mem) );
5504   ins_pipe(pipe_class_memory);
5505 %}
5506 
5507 // Load Long - aligned acquire.
5508 instruct loadL_ac(iRegLdst dst, memoryAlg4 mem) %{
5509   match(Set dst (LoadL mem));
5510   ins_cost(3*MEMORY_REF_COST);
5511 
5512   format %{ "LD      $dst, $mem \t// long acquire\n\t"
5513             "TWI     $dst\n\t"
5514             "ISYNC" %}
5515   size(12);
5516   ins_encode( enc_ld_ac(dst, mem) );
5517   ins_pipe(pipe_class_memory);
5518 %}
5519 
5520 // Load Long - UNaligned
5521 instruct loadL_unaligned(iRegLdst dst, memoryAlg4 mem) %{
5522   match(Set dst (LoadL_unaligned mem));
5523   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
5524   ins_cost(MEMORY_REF_COST);
5525 
5526   format %{ "LD      $dst, $mem \t// unaligned long" %}
5527   size(4);
5528   ins_encode( enc_ld(dst, mem) );
5529   ins_pipe(pipe_class_memory);
5530 %}
5531 
5532 // Load nodes for superwords
5533 
5534 // Load Aligned Packed Byte
5535 instruct loadV8(iRegLdst dst, memoryAlg4 mem) %{
5536   predicate(n->as_LoadVector()->memory_size() == 8);
5537   match(Set dst (LoadVector mem));
5538   ins_cost(MEMORY_REF_COST);
5539 
5540   format %{ "LD      $dst, $mem \t// load 8-byte Vector" %}
5541   size(4);
5542   ins_encode( enc_ld(dst, mem) );
5543   ins_pipe(pipe_class_memory);
5544 %}
5545 
5546 // Load Range, range = array length (=jint)
5547 instruct loadRange(iRegIdst dst, memory mem) %{
5548   match(Set dst (LoadRange mem));
5549   ins_cost(MEMORY_REF_COST);
5550 
5551   format %{ "LWZ     $dst, $mem \t// range" %}
5552   size(4);
5553   ins_encode( enc_lwz(dst, mem) );
5554   ins_pipe(pipe_class_memory);
5555 %}
5556 
5557 // Load Compressed Pointer
5558 instruct loadN(iRegNdst dst, memory mem) %{
5559   match(Set dst (LoadN mem));
5560   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5561   ins_cost(MEMORY_REF_COST);
5562 
5563   format %{ "LWZ     $dst, $mem \t// load compressed ptr" %}
5564   size(4);
5565   ins_encode( enc_lwz(dst, mem) );
5566   ins_pipe(pipe_class_memory);
5567 %}
5568 
5569 // Load Compressed Pointer acquire.
5570 instruct loadN_ac(iRegNdst dst, memory mem) %{
5571   match(Set dst (LoadN mem));
5572   ins_cost(3*MEMORY_REF_COST);
5573 
5574   format %{ "LWZ     $dst, $mem \t// load acquire compressed ptr\n\t"
5575             "TWI     $dst\n\t"
5576             "ISYNC" %}
5577   size(12);
5578   ins_encode( enc_lwz_ac(dst, mem) );
5579   ins_pipe(pipe_class_memory);
5580 %}
5581 
5582 // Load Compressed Pointer and decode it if narrow_oop_shift == 0.
5583 instruct loadN2P_unscaled(iRegPdst dst, memory mem) %{
5584   match(Set dst (DecodeN (LoadN mem)));
5585   predicate(_kids[0]->_leaf->as_Load()->is_unordered() && Universe::narrow_oop_shift() == 0);
5586   ins_cost(MEMORY_REF_COST);
5587 
5588   format %{ "LWZ     $dst, $mem \t// DecodeN (unscaled)" %}
5589   size(4);
5590   ins_encode( enc_lwz(dst, mem) );
5591   ins_pipe(pipe_class_memory);
5592 %}
5593 
5594 // Load Pointer
5595 instruct loadP(iRegPdst dst, memoryAlg4 mem) %{
5596   match(Set dst (LoadP mem));
5597   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5598   ins_cost(MEMORY_REF_COST);
5599 
5600   format %{ "LD      $dst, $mem \t// ptr" %}
5601   size(4);
5602   ins_encode( enc_ld(dst, mem) );
5603   ins_pipe(pipe_class_memory);
5604 %}
5605 
5606 // Load Pointer acquire.
5607 instruct loadP_ac(iRegPdst dst, memoryAlg4 mem) %{
5608   match(Set dst (LoadP mem));
5609   ins_cost(3*MEMORY_REF_COST);
5610 
5611   format %{ "LD      $dst, $mem \t// ptr acquire\n\t"
5612             "TWI     $dst\n\t"
5613             "ISYNC" %}
5614   size(12);
5615   ins_encode( enc_ld_ac(dst, mem) );
5616   ins_pipe(pipe_class_memory);
5617 %}
5618 
5619 // LoadP + CastP2L
5620 instruct loadP2X(iRegLdst dst, memoryAlg4 mem) %{
5621   match(Set dst (CastP2X (LoadP mem)));
5622   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
5623   ins_cost(MEMORY_REF_COST);
5624 
5625   format %{ "LD      $dst, $mem \t// ptr + p2x" %}
5626   size(4);
5627   ins_encode( enc_ld(dst, mem) );
5628   ins_pipe(pipe_class_memory);
5629 %}
5630 
5631 // Load compressed klass pointer.
5632 instruct loadNKlass(iRegNdst dst, memory mem) %{
5633   match(Set dst (LoadNKlass mem));
5634   ins_cost(MEMORY_REF_COST);
5635 
5636   format %{ "LWZ     $dst, $mem \t// compressed klass ptr" %}
5637   size(4);
5638   ins_encode( enc_lwz(dst, mem) );
5639   ins_pipe(pipe_class_memory);
5640 %}
5641 
5642 // Load Klass Pointer
5643 instruct loadKlass(iRegPdst dst, memoryAlg4 mem) %{
5644   match(Set dst (LoadKlass mem));
5645   ins_cost(MEMORY_REF_COST);
5646 
5647   format %{ "LD      $dst, $mem \t// klass ptr" %}
5648   size(4);
5649   ins_encode( enc_ld(dst, mem) );
5650   ins_pipe(pipe_class_memory);
5651 %}
5652 
5653 // Load Float
5654 instruct loadF(regF dst, memory mem) %{
5655   match(Set dst (LoadF mem));
5656   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5657   ins_cost(MEMORY_REF_COST);
5658 
5659   format %{ "LFS     $dst, $mem" %}
5660   size(4);
5661   ins_encode %{
5662     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
5663     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5664     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5665   %}
5666   ins_pipe(pipe_class_memory);
5667 %}
5668 
5669 // Load Float acquire.
5670 instruct loadF_ac(regF dst, memory mem) %{
5671   match(Set dst (LoadF mem));
5672   ins_cost(3*MEMORY_REF_COST);
5673 
5674   format %{ "LFS     $dst, $mem \t// acquire\n\t"
5675             "FCMPU   cr0, $dst, $dst\n\t"
5676             "BNE     cr0, next\n"
5677             "next:\n\t"
5678             "ISYNC" %}
5679   size(16);
5680   ins_encode %{
5681     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5682     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5683     Label next;
5684     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5685     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
5686     __ bne(CCR0, next);
5687     __ bind(next);
5688     __ isync();
5689   %}
5690   ins_pipe(pipe_class_memory);
5691 %}
5692 
5693 // Load Double - aligned
5694 instruct loadD(regD dst, memory mem) %{
5695   match(Set dst (LoadD mem));
5696   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5697   ins_cost(MEMORY_REF_COST);
5698 
5699   format %{ "LFD     $dst, $mem" %}
5700   size(4);
5701   ins_encode( enc_lfd(dst, mem) );
5702   ins_pipe(pipe_class_memory);
5703 %}
5704 
5705 // Load Double - aligned acquire.
5706 instruct loadD_ac(regD dst, memory mem) %{
5707   match(Set dst (LoadD mem));
5708   ins_cost(3*MEMORY_REF_COST);
5709 
5710   format %{ "LFD     $dst, $mem \t// acquire\n\t"
5711             "FCMPU   cr0, $dst, $dst\n\t"
5712             "BNE     cr0, next\n"
5713             "next:\n\t"
5714             "ISYNC" %}
5715   size(16);
5716   ins_encode %{
5717     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5718     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5719     Label next;
5720     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5721     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
5722     __ bne(CCR0, next);
5723     __ bind(next);
5724     __ isync();
5725   %}
5726   ins_pipe(pipe_class_memory);
5727 %}
5728 
5729 // Load Double - UNaligned
5730 instruct loadD_unaligned(regD dst, memory mem) %{
5731   match(Set dst (LoadD_unaligned mem));
5732   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
5733   ins_cost(MEMORY_REF_COST);
5734 
5735   format %{ "LFD     $dst, $mem" %}
5736   size(4);
5737   ins_encode( enc_lfd(dst, mem) );
5738   ins_pipe(pipe_class_memory);
5739 %}
5740 
5741 //----------Constants--------------------------------------------------------
5742 
5743 // Load MachConstantTableBase: add hi offset to global toc.
5744 // TODO: Handle hidden register r29 in bundler!
5745 instruct loadToc_hi(iRegLdst dst) %{
5746   effect(DEF dst);
5747   ins_cost(DEFAULT_COST);
5748 
5749   format %{ "ADDIS   $dst, R29, DISP.hi \t// load TOC hi" %}
5750   size(4);
5751   ins_encode %{
5752     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5753     __ calculate_address_from_global_toc_hi16only($dst$$Register, __ method_toc());
5754   %}
5755   ins_pipe(pipe_class_default);
5756 %}
5757 
5758 // Load MachConstantTableBase: add lo offset to global toc.
5759 instruct loadToc_lo(iRegLdst dst, iRegLdst src) %{
5760   effect(DEF dst, USE src);
5761   ins_cost(DEFAULT_COST);
5762 
5763   format %{ "ADDI    $dst, $src, DISP.lo \t// load TOC lo" %}
5764   size(4);
5765   ins_encode %{
5766     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5767     __ calculate_address_from_global_toc_lo16only($dst$$Register, __ method_toc());
5768   %}
5769   ins_pipe(pipe_class_default);
5770 %}
5771 
5772 // Load 16-bit integer constant 0xssss????
5773 instruct loadConI16(iRegIdst dst, immI16 src) %{
5774   match(Set dst src);
5775 
5776   format %{ "LI      $dst, $src" %}
5777   size(4);
5778   ins_encode %{
5779     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5780     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
5781   %}
5782   ins_pipe(pipe_class_default);
5783 %}
5784 
5785 // Load integer constant 0x????0000
5786 instruct loadConIhi16(iRegIdst dst, immIhi16 src) %{
5787   match(Set dst src);
5788   ins_cost(DEFAULT_COST);
5789 
5790   format %{ "LIS     $dst, $src.hi" %}
5791   size(4);
5792   ins_encode %{
5793     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5794     // Lis sign extends 16-bit src then shifts it 16 bit to the left.
5795     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
5796   %}
5797   ins_pipe(pipe_class_default);
5798 %}
5799 
5800 // Part 2 of loading 32 bit constant: hi16 is is src1 (properly shifted
5801 // and sign extended), this adds the low 16 bits.
5802 instruct loadConI32_lo16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
5803   // no match-rule, false predicate
5804   effect(DEF dst, USE src1, USE src2);
5805   predicate(false);
5806 
5807   format %{ "ORI     $dst, $src1.hi, $src2.lo" %}
5808   size(4);
5809   ins_encode %{
5810     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5811     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
5812   %}
5813   ins_pipe(pipe_class_default);
5814 %}
5815 
5816 instruct loadConI_Ex(iRegIdst dst, immI src) %{
5817   match(Set dst src);
5818   ins_cost(DEFAULT_COST*2);
5819 
5820   expand %{
5821     // Would like to use $src$$constant.
5822     immI16 srcLo %{ _opnds[1]->constant() %}
5823     // srcHi can be 0000 if srcLo sign-extends to a negative number.
5824     immIhi16 srcHi %{ _opnds[1]->constant() %}
5825     iRegIdst tmpI;
5826     loadConIhi16(tmpI, srcHi);
5827     loadConI32_lo16(dst, tmpI, srcLo);
5828   %}
5829 %}
5830 
5831 // No constant pool entries required.
5832 instruct loadConL16(iRegLdst dst, immL16 src) %{
5833   match(Set dst src);
5834 
5835   format %{ "LI      $dst, $src \t// long" %}
5836   size(4);
5837   ins_encode %{
5838     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5839     __ li($dst$$Register, (int)((short) ($src$$constant & 0xFFFF)));
5840   %}
5841   ins_pipe(pipe_class_default);
5842 %}
5843 
5844 // Load long constant 0xssssssss????0000
5845 instruct loadConL32hi16(iRegLdst dst, immL32hi16 src) %{
5846   match(Set dst src);
5847   ins_cost(DEFAULT_COST);
5848 
5849   format %{ "LIS     $dst, $src.hi \t// long" %}
5850   size(4);
5851   ins_encode %{
5852     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5853     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
5854   %}
5855   ins_pipe(pipe_class_default);
5856 %}
5857 
5858 // To load a 32 bit constant: merge lower 16 bits into already loaded
5859 // high 16 bits.
5860 instruct loadConL32_lo16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
5861   // no match-rule, false predicate
5862   effect(DEF dst, USE src1, USE src2);
5863   predicate(false);
5864 
5865   format %{ "ORI     $dst, $src1, $src2.lo" %}
5866   size(4);
5867   ins_encode %{
5868     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5869     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
5870   %}
5871   ins_pipe(pipe_class_default);
5872 %}
5873 
5874 // Load 32-bit long constant
5875 instruct loadConL32_Ex(iRegLdst dst, immL32 src) %{
5876   match(Set dst src);
5877   ins_cost(DEFAULT_COST*2);
5878 
5879   expand %{
5880     // Would like to use $src$$constant.
5881     immL16     srcLo %{ _opnds[1]->constant() /*& 0x0000FFFFL */%}
5882     // srcHi can be 0000 if srcLo sign-extends to a negative number.
5883     immL32hi16 srcHi %{ _opnds[1]->constant() /*& 0xFFFF0000L */%}
5884     iRegLdst tmpL;
5885     loadConL32hi16(tmpL, srcHi);
5886     loadConL32_lo16(dst, tmpL, srcLo);
5887   %}
5888 %}
5889 
5890 // Load long constant 0x????000000000000.
5891 instruct loadConLhighest16_Ex(iRegLdst dst, immLhighest16 src) %{
5892   match(Set dst src);
5893   ins_cost(DEFAULT_COST);
5894 
5895   expand %{
5896     immL32hi16 srcHi %{ _opnds[1]->constant() >> 32 /*& 0xFFFF0000L */%}
5897     immI shift32 %{ 32 %}
5898     iRegLdst tmpL;
5899     loadConL32hi16(tmpL, srcHi);
5900     lshiftL_regL_immI(dst, tmpL, shift32);
5901   %}
5902 %}
5903 
5904 // Expand node for constant pool load: small offset.
5905 instruct loadConL(iRegLdst dst, immL src, iRegLdst toc) %{
5906   effect(DEF dst, USE src, USE toc);
5907   ins_cost(MEMORY_REF_COST);
5908 
5909   ins_num_consts(1);
5910   // Needed so that CallDynamicJavaDirect can compute the address of this
5911   // instruction for relocation.
5912   ins_field_cbuf_insts_offset(int);
5913 
5914   format %{ "LD      $dst, offset, $toc \t// load long $src from TOC" %}
5915   size(4);
5916   ins_encode( enc_load_long_constL(dst, src, toc) );
5917   ins_pipe(pipe_class_memory);
5918 %}
5919 
5920 // Expand node for constant pool load: large offset.
5921 instruct loadConL_hi(iRegLdst dst, immL src, iRegLdst toc) %{
5922   effect(DEF dst, USE src, USE toc);
5923   predicate(false);
5924 
5925   ins_num_consts(1);
5926   ins_field_const_toc_offset(int);
5927   // Needed so that CallDynamicJavaDirect can compute the address of this
5928   // instruction for relocation.
5929   ins_field_cbuf_insts_offset(int);
5930 
5931   format %{ "ADDIS   $dst, $toc, offset \t// load long $src from TOC (hi)" %}
5932   size(4);
5933   ins_encode( enc_load_long_constL_hi(dst, toc, src) );
5934   ins_pipe(pipe_class_default);
5935 %}
5936 
5937 // Expand node for constant pool load: large offset.
5938 // No constant pool entries required.
5939 instruct loadConL_lo(iRegLdst dst, immL src, iRegLdst base) %{
5940   effect(DEF dst, USE src, USE base);
5941   predicate(false);
5942 
5943   ins_field_const_toc_offset_hi_node(loadConL_hiNode*);
5944 
5945   format %{ "LD      $dst, offset, $base \t// load long $src from TOC (lo)" %}
5946   size(4);
5947   ins_encode %{
5948     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
5949     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
5950     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
5951   %}
5952   ins_pipe(pipe_class_memory);
5953 %}
5954 
5955 // Load long constant from constant table. Expand in case of
5956 // offset > 16 bit is needed.
5957 // Adlc adds toc node MachConstantTableBase.
5958 instruct loadConL_Ex(iRegLdst dst, immL src) %{
5959   match(Set dst src);
5960   ins_cost(MEMORY_REF_COST);
5961 
5962   format %{ "LD      $dst, offset, $constanttablebase\t// load long $src from table, postalloc expanded" %}
5963   // We can not inline the enc_class for the expand as that does not support constanttablebase.
5964   postalloc_expand( postalloc_expand_load_long_constant(dst, src, constanttablebase) );
5965 %}
5966 
5967 // Load NULL as compressed oop.
5968 instruct loadConN0(iRegNdst dst, immN_0 src) %{
5969   match(Set dst src);
5970   ins_cost(DEFAULT_COST);
5971 
5972   format %{ "LI      $dst, $src \t// compressed ptr" %}
5973   size(4);
5974   ins_encode %{
5975     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5976     __ li($dst$$Register, 0);
5977   %}
5978   ins_pipe(pipe_class_default);
5979 %}
5980 
5981 // Load hi part of compressed oop constant.
5982 instruct loadConN_hi(iRegNdst dst, immN src) %{
5983   effect(DEF dst, USE src);
5984   ins_cost(DEFAULT_COST);
5985 
5986   format %{ "LIS     $dst, $src \t// narrow oop hi" %}
5987   size(4);
5988   ins_encode %{
5989     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5990     __ lis($dst$$Register, (int)(short)(($src$$constant >> 16) & 0xffff));
5991   %}
5992   ins_pipe(pipe_class_default);
5993 %}
5994 
5995 // Add lo part of compressed oop constant to already loaded hi part.
5996 instruct loadConN_lo(iRegNdst dst, iRegNsrc src1, immN src2) %{
5997   effect(DEF dst, USE src1, USE src2);
5998   ins_cost(DEFAULT_COST);
5999 
6000   format %{ "ORI     $dst, $src1, $src2 \t// narrow oop lo" %}
6001   size(4);
6002   ins_encode %{
6003     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
6004     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
6005     int oop_index = __ oop_recorder()->find_index((jobject)$src2$$constant);
6006     RelocationHolder rspec = oop_Relocation::spec(oop_index);
6007     __ relocate(rspec, 1);
6008     __ ori($dst$$Register, $src1$$Register, $src2$$constant & 0xffff);
6009   %}
6010   ins_pipe(pipe_class_default);
6011 %}
6012 
6013 // Needed to postalloc expand loadConN: ConN is loaded as ConI
6014 // leaving the upper 32 bits with sign-extension bits.
6015 // This clears these bits: dst = src & 0xFFFFFFFF.
6016 // TODO: Eventually call this maskN_regN_FFFFFFFF.
6017 instruct clearMs32b(iRegNdst dst, iRegNsrc src) %{
6018   effect(DEF dst, USE src);
6019   predicate(false);
6020 
6021   format %{ "MASK    $dst, $src, 0xFFFFFFFF" %} // mask
6022   size(4);
6023   ins_encode %{
6024     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6025     __ clrldi($dst$$Register, $src$$Register, 0x20);
6026   %}
6027   ins_pipe(pipe_class_default);
6028 %}
6029 
6030 // Loading ConN must be postalloc expanded so that edges between
6031 // the nodes are safe. They may not interfere with a safepoint.
6032 // GL TODO: This needs three instructions: better put this into the constant pool.
6033 instruct loadConN_Ex(iRegNdst dst, immN src) %{
6034   match(Set dst src);
6035   ins_cost(DEFAULT_COST*2);
6036 
6037   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
6038   postalloc_expand %{
6039     MachNode *m1 = new loadConN_hiNode();
6040     MachNode *m2 = new loadConN_loNode();
6041     MachNode *m3 = new clearMs32bNode();
6042     m1->add_req(NULL);
6043     m2->add_req(NULL, m1);
6044     m3->add_req(NULL, m2);
6045     m1->_opnds[0] = op_dst;
6046     m1->_opnds[1] = op_src;
6047     m2->_opnds[0] = op_dst;
6048     m2->_opnds[1] = op_dst;
6049     m2->_opnds[2] = op_src;
6050     m3->_opnds[0] = op_dst;
6051     m3->_opnds[1] = op_dst;
6052     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6053     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6054     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6055     nodes->push(m1);
6056     nodes->push(m2);
6057     nodes->push(m3);
6058   %}
6059 %}
6060 
6061 // We have seen a safepoint between the hi and lo parts, and this node was handled
6062 // as an oop. Therefore this needs a match rule so that build_oop_map knows this is
6063 // not a narrow oop.
6064 instruct loadConNKlass_hi(iRegNdst dst, immNKlass_NM src) %{
6065   match(Set dst src);
6066   effect(DEF dst, USE src);
6067   ins_cost(DEFAULT_COST);
6068 
6069   format %{ "LIS     $dst, $src \t// narrow klass hi" %}
6070   size(4);
6071   ins_encode %{
6072     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
6073     intptr_t Csrc = Klass::encode_klass((Klass *)$src$$constant);
6074     __ lis($dst$$Register, (int)(short)((Csrc >> 16) & 0xffff));
6075   %}
6076   ins_pipe(pipe_class_default);
6077 %}
6078 
6079 // As loadConNKlass_hi this must be recognized as narrow klass, not oop!
6080 instruct loadConNKlass_mask(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
6081   match(Set dst src1);
6082   effect(TEMP src2);
6083   ins_cost(DEFAULT_COST);
6084 
6085   format %{ "MASK    $dst, $src2, 0xFFFFFFFF" %} // mask
6086   size(4);
6087   ins_encode %{
6088     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6089     __ clrldi($dst$$Register, $src2$$Register, 0x20);
6090   %}
6091   ins_pipe(pipe_class_default);
6092 %}
6093 
6094 // This needs a match rule so that build_oop_map knows this is
6095 // not a narrow oop.
6096 instruct loadConNKlass_lo(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
6097   match(Set dst src1);
6098   effect(TEMP src2);
6099   ins_cost(DEFAULT_COST);
6100 
6101   format %{ "ORI    $dst, $src1, $src2 \t// narrow klass lo" %}
6102   size(4);
6103   ins_encode %{
6104     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
6105     intptr_t Csrc = Klass::encode_klass((Klass *)$src1$$constant);
6106     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
6107     int klass_index = __ oop_recorder()->find_index((Klass *)$src1$$constant);
6108     RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6109 
6110     __ relocate(rspec, 1);
6111     __ ori($dst$$Register, $src2$$Register, Csrc & 0xffff);
6112   %}
6113   ins_pipe(pipe_class_default);
6114 %}
6115 
6116 // Loading ConNKlass must be postalloc expanded so that edges between
6117 // the nodes are safe. They may not interfere with a safepoint.
6118 instruct loadConNKlass_Ex(iRegNdst dst, immNKlass src) %{
6119   match(Set dst src);
6120   ins_cost(DEFAULT_COST*2);
6121 
6122   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
6123   postalloc_expand %{
6124     // Load high bits into register. Sign extended.
6125     MachNode *m1 = new loadConNKlass_hiNode();
6126     m1->add_req(NULL);
6127     m1->_opnds[0] = op_dst;
6128     m1->_opnds[1] = op_src;
6129     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6130     nodes->push(m1);
6131 
6132     MachNode *m2 = m1;
6133     if (!Assembler::is_uimm((jlong)Klass::encode_klass((Klass *)op_src->constant()), 31)) {
6134       // Value might be 1-extended. Mask out these bits.
6135       m2 = new loadConNKlass_maskNode();
6136       m2->add_req(NULL, m1);
6137       m2->_opnds[0] = op_dst;
6138       m2->_opnds[1] = op_src;
6139       m2->_opnds[2] = op_dst;
6140       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6141       nodes->push(m2);
6142     }
6143 
6144     MachNode *m3 = new loadConNKlass_loNode();
6145     m3->add_req(NULL, m2);
6146     m3->_opnds[0] = op_dst;
6147     m3->_opnds[1] = op_src;
6148     m3->_opnds[2] = op_dst;
6149     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6150     nodes->push(m3);
6151   %}
6152 %}
6153 
6154 // 0x1 is used in object initialization (initial object header).
6155 // No constant pool entries required.
6156 instruct loadConP0or1(iRegPdst dst, immP_0or1 src) %{
6157   match(Set dst src);
6158 
6159   format %{ "LI      $dst, $src \t// ptr" %}
6160   size(4);
6161   ins_encode %{
6162     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
6163     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
6164   %}
6165   ins_pipe(pipe_class_default);
6166 %}
6167 
6168 // Expand node for constant pool load: small offset.
6169 // The match rule is needed to generate the correct bottom_type(),
6170 // however this node should never match. The use of predicate is not
6171 // possible since ADLC forbids predicates for chain rules. The higher
6172 // costs do not prevent matching in this case. For that reason the
6173 // operand immP_NM with predicate(false) is used.
6174 instruct loadConP(iRegPdst dst, immP_NM src, iRegLdst toc) %{
6175   match(Set dst src);
6176   effect(TEMP toc);
6177 
6178   ins_num_consts(1);
6179 
6180   format %{ "LD      $dst, offset, $toc \t// load ptr $src from TOC" %}
6181   size(4);
6182   ins_encode( enc_load_long_constP(dst, src, toc) );
6183   ins_pipe(pipe_class_memory);
6184 %}
6185 
6186 // Expand node for constant pool load: large offset.
6187 instruct loadConP_hi(iRegPdst dst, immP_NM src, iRegLdst toc) %{
6188   effect(DEF dst, USE src, USE toc);
6189   predicate(false);
6190 
6191   ins_num_consts(1);
6192   ins_field_const_toc_offset(int);
6193 
6194   format %{ "ADDIS   $dst, $toc, offset \t// load ptr $src from TOC (hi)" %}
6195   size(4);
6196   ins_encode( enc_load_long_constP_hi(dst, src, toc) );
6197   ins_pipe(pipe_class_default);
6198 %}
6199 
6200 // Expand node for constant pool load: large offset.
6201 instruct loadConP_lo(iRegPdst dst, immP_NM src, iRegLdst base) %{
6202   match(Set dst src);
6203   effect(TEMP base);
6204 
6205   ins_field_const_toc_offset_hi_node(loadConP_hiNode*);
6206 
6207   format %{ "LD      $dst, offset, $base \t// load ptr $src from TOC (lo)" %}
6208   size(4);
6209   ins_encode %{
6210     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
6211     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
6212     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
6213   %}
6214   ins_pipe(pipe_class_memory);
6215 %}
6216 
6217 // Load pointer constant from constant table. Expand in case an
6218 // offset > 16 bit is needed.
6219 // Adlc adds toc node MachConstantTableBase.
6220 instruct loadConP_Ex(iRegPdst dst, immP src) %{
6221   match(Set dst src);
6222   ins_cost(MEMORY_REF_COST);
6223 
6224   // This rule does not use "expand" because then
6225   // the result type is not known to be an Oop.  An ADLC
6226   // enhancement will be needed to make that work - not worth it!
6227 
6228   // If this instruction rematerializes, it prolongs the live range
6229   // of the toc node, causing illegal graphs.
6230   // assert(edge_from_to(_reg_node[reg_lo],def)) fails in verify_good_schedule().
6231   ins_cannot_rematerialize(true);
6232 
6233   format %{ "LD    $dst, offset, $constanttablebase \t//  load ptr $src from table, postalloc expanded" %}
6234   postalloc_expand( postalloc_expand_load_ptr_constant(dst, src, constanttablebase) );
6235 %}
6236 
6237 // Expand node for constant pool load: small offset.
6238 instruct loadConF(regF dst, immF src, iRegLdst toc) %{
6239   effect(DEF dst, USE src, USE toc);
6240   ins_cost(MEMORY_REF_COST);
6241 
6242   ins_num_consts(1);
6243 
6244   format %{ "LFS     $dst, offset, $toc \t// load float $src from TOC" %}
6245   size(4);
6246   ins_encode %{
6247     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
6248     address float_address = __ float_constant($src$$constant);
6249     __ lfs($dst$$FloatRegister, __ offset_to_method_toc(float_address), $toc$$Register);
6250   %}
6251   ins_pipe(pipe_class_memory);
6252 %}
6253 
6254 // Expand node for constant pool load: large offset.
6255 instruct loadConFComp(regF dst, immF src, iRegLdst toc) %{
6256   effect(DEF dst, USE src, USE toc);
6257   ins_cost(MEMORY_REF_COST);
6258 
6259   ins_num_consts(1);
6260 
6261   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
6262             "LFS     $dst, offset_lo, $toc \t// load float $src from TOC (hi/lo)\n\t"
6263             "ADDIS   $toc, $toc, -offset_hi"%}
6264   size(12);
6265   ins_encode %{
6266     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6267     FloatRegister Rdst    = $dst$$FloatRegister;
6268     Register Rtoc         = $toc$$Register;
6269     address float_address = __ float_constant($src$$constant);
6270     int offset            = __ offset_to_method_toc(float_address);
6271     int hi = (offset + (1<<15))>>16;
6272     int lo = offset - hi * (1<<16);
6273 
6274     __ addis(Rtoc, Rtoc, hi);
6275     __ lfs(Rdst, lo, Rtoc);
6276     __ addis(Rtoc, Rtoc, -hi);
6277   %}
6278   ins_pipe(pipe_class_memory);
6279 %}
6280 
6281 // Adlc adds toc node MachConstantTableBase.
6282 instruct loadConF_Ex(regF dst, immF src) %{
6283   match(Set dst src);
6284   ins_cost(MEMORY_REF_COST);
6285 
6286   // See loadConP.
6287   ins_cannot_rematerialize(true);
6288 
6289   format %{ "LFS     $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
6290   postalloc_expand( postalloc_expand_load_float_constant(dst, src, constanttablebase) );
6291 %}
6292 
6293 // Expand node for constant pool load: small offset.
6294 instruct loadConD(regD dst, immD src, iRegLdst toc) %{
6295   effect(DEF dst, USE src, USE toc);
6296   ins_cost(MEMORY_REF_COST);
6297 
6298   ins_num_consts(1);
6299 
6300   format %{ "LFD     $dst, offset, $toc \t// load double $src from TOC" %}
6301   size(4);
6302   ins_encode %{
6303     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
6304     int offset =  __ offset_to_method_toc(__ double_constant($src$$constant));
6305     __ lfd($dst$$FloatRegister, offset, $toc$$Register);
6306   %}
6307   ins_pipe(pipe_class_memory);
6308 %}
6309 
6310 // Expand node for constant pool load: large offset.
6311 instruct loadConDComp(regD dst, immD src, iRegLdst toc) %{
6312   effect(DEF dst, USE src, USE toc);
6313   ins_cost(MEMORY_REF_COST);
6314 
6315   ins_num_consts(1);
6316 
6317   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
6318             "LFD     $dst, offset_lo, $toc \t// load double $src from TOC (hi/lo)\n\t"
6319             "ADDIS   $toc, $toc, -offset_hi" %}
6320   size(12);
6321   ins_encode %{
6322     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6323     FloatRegister Rdst    = $dst$$FloatRegister;
6324     Register      Rtoc    = $toc$$Register;
6325     address float_address = __ double_constant($src$$constant);
6326     int offset            = __ offset_to_method_toc(float_address);
6327     int hi = (offset + (1<<15))>>16;
6328     int lo = offset - hi * (1<<16);
6329 
6330     __ addis(Rtoc, Rtoc, hi);
6331     __ lfd(Rdst, lo, Rtoc);
6332     __ addis(Rtoc, Rtoc, -hi);
6333   %}
6334   ins_pipe(pipe_class_memory);
6335 %}
6336 
6337 // Adlc adds toc node MachConstantTableBase.
6338 instruct loadConD_Ex(regD dst, immD src) %{
6339   match(Set dst src);
6340   ins_cost(MEMORY_REF_COST);
6341 
6342   // See loadConP.
6343   ins_cannot_rematerialize(true);
6344 
6345   format %{ "ConD    $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
6346   postalloc_expand( postalloc_expand_load_double_constant(dst, src, constanttablebase) );
6347 %}
6348 
6349 // Prefetch instructions.
6350 // Must be safe to execute with invalid address (cannot fault).
6351 
6352 instruct prefetchr(indirectMemory mem, iRegLsrc src) %{
6353   match(PrefetchRead (AddP mem src));
6354   ins_cost(MEMORY_REF_COST);
6355 
6356   format %{ "PREFETCH $mem, 0, $src \t// Prefetch read-many" %}
6357   size(4);
6358   ins_encode %{
6359     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
6360     __ dcbt($src$$Register, $mem$$base$$Register);
6361   %}
6362   ins_pipe(pipe_class_memory);
6363 %}
6364 
6365 instruct prefetchr_no_offset(indirectMemory mem) %{
6366   match(PrefetchRead mem);
6367   ins_cost(MEMORY_REF_COST);
6368 
6369   format %{ "PREFETCH $mem" %}
6370   size(4);
6371   ins_encode %{
6372     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
6373     __ dcbt($mem$$base$$Register);
6374   %}
6375   ins_pipe(pipe_class_memory);
6376 %}
6377 
6378 instruct prefetchw(indirectMemory mem, iRegLsrc src) %{
6379   match(PrefetchWrite (AddP mem src));
6380   ins_cost(MEMORY_REF_COST);
6381 
6382   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many (and read)" %}
6383   size(4);
6384   ins_encode %{
6385     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6386     __ dcbtst($src$$Register, $mem$$base$$Register);
6387   %}
6388   ins_pipe(pipe_class_memory);
6389 %}
6390 
6391 instruct prefetchw_no_offset(indirectMemory mem) %{
6392   match(PrefetchWrite mem);
6393   ins_cost(MEMORY_REF_COST);
6394 
6395   format %{ "PREFETCH $mem" %}
6396   size(4);
6397   ins_encode %{
6398     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6399     __ dcbtst($mem$$base$$Register);
6400   %}
6401   ins_pipe(pipe_class_memory);
6402 %}
6403 
6404 // Special prefetch versions which use the dcbz instruction.
6405 instruct prefetch_alloc_zero(indirectMemory mem, iRegLsrc src) %{
6406   match(PrefetchAllocation (AddP mem src));
6407   predicate(AllocatePrefetchStyle == 3);
6408   ins_cost(MEMORY_REF_COST);
6409 
6410   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many with zero" %}
6411   size(4);
6412   ins_encode %{
6413     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6414     __ dcbz($src$$Register, $mem$$base$$Register);
6415   %}
6416   ins_pipe(pipe_class_memory);
6417 %}
6418 
6419 instruct prefetch_alloc_zero_no_offset(indirectMemory mem) %{
6420   match(PrefetchAllocation mem);
6421   predicate(AllocatePrefetchStyle == 3);
6422   ins_cost(MEMORY_REF_COST);
6423 
6424   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many with zero" %}
6425   size(4);
6426   ins_encode %{
6427     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6428     __ dcbz($mem$$base$$Register);
6429   %}
6430   ins_pipe(pipe_class_memory);
6431 %}
6432 
6433 instruct prefetch_alloc(indirectMemory mem, iRegLsrc src) %{
6434   match(PrefetchAllocation (AddP mem src));
6435   predicate(AllocatePrefetchStyle != 3);
6436   ins_cost(MEMORY_REF_COST);
6437 
6438   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many" %}
6439   size(4);
6440   ins_encode %{
6441     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6442     __ dcbtst($src$$Register, $mem$$base$$Register);
6443   %}
6444   ins_pipe(pipe_class_memory);
6445 %}
6446 
6447 instruct prefetch_alloc_no_offset(indirectMemory mem) %{
6448   match(PrefetchAllocation mem);
6449   predicate(AllocatePrefetchStyle != 3);
6450   ins_cost(MEMORY_REF_COST);
6451 
6452   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many" %}
6453   size(4);
6454   ins_encode %{
6455     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6456     __ dcbtst($mem$$base$$Register);
6457   %}
6458   ins_pipe(pipe_class_memory);
6459 %}
6460 
6461 //----------Store Instructions-------------------------------------------------
6462 
6463 // Store Byte
6464 instruct storeB(memory mem, iRegIsrc src) %{
6465   match(Set mem (StoreB mem src));
6466   ins_cost(MEMORY_REF_COST);
6467 
6468   format %{ "STB     $src, $mem \t// byte" %}
6469   size(4);
6470   ins_encode %{
6471     // TODO: PPC port $archOpcode(ppc64Opcode_stb);
6472     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
6473     __ stb($src$$Register, Idisp, $mem$$base$$Register);
6474   %}
6475   ins_pipe(pipe_class_memory);
6476 %}
6477 
6478 // Store Char/Short
6479 instruct storeC(memory mem, iRegIsrc src) %{
6480   match(Set mem (StoreC mem src));
6481   ins_cost(MEMORY_REF_COST);
6482 
6483   format %{ "STH     $src, $mem \t// short" %}
6484   size(4);
6485   ins_encode %{
6486     // TODO: PPC port $archOpcode(ppc64Opcode_sth);
6487     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
6488     __ sth($src$$Register, Idisp, $mem$$base$$Register);
6489   %}
6490   ins_pipe(pipe_class_memory);
6491 %}
6492 
6493 // Store Integer
6494 instruct storeI(memory mem, iRegIsrc src) %{
6495   match(Set mem (StoreI mem src));
6496   ins_cost(MEMORY_REF_COST);
6497 
6498   format %{ "STW     $src, $mem" %}
6499   size(4);
6500   ins_encode( enc_stw(src, mem) );
6501   ins_pipe(pipe_class_memory);
6502 %}
6503 
6504 // ConvL2I + StoreI.
6505 instruct storeI_convL2I(memory mem, iRegLsrc src) %{
6506   match(Set mem (StoreI mem (ConvL2I src)));
6507   ins_cost(MEMORY_REF_COST);
6508 
6509   format %{ "STW     l2i($src), $mem" %}
6510   size(4);
6511   ins_encode( enc_stw(src, mem) );
6512   ins_pipe(pipe_class_memory);
6513 %}
6514 
6515 // Store Long
6516 instruct storeL(memoryAlg4 mem, iRegLsrc src) %{
6517   match(Set mem (StoreL mem src));
6518   ins_cost(MEMORY_REF_COST);
6519 
6520   format %{ "STD     $src, $mem \t// long" %}
6521   size(4);
6522   ins_encode( enc_std(src, mem) );
6523   ins_pipe(pipe_class_memory);
6524 %}
6525 
6526 // Store super word nodes.
6527 
6528 // Store Aligned Packed Byte long register to memory
6529 instruct storeA8B(memoryAlg4 mem, iRegLsrc src) %{
6530   predicate(n->as_StoreVector()->memory_size() == 8);
6531   match(Set mem (StoreVector mem src));
6532   ins_cost(MEMORY_REF_COST);
6533 
6534   format %{ "STD     $mem, $src \t// packed8B" %}
6535   size(4);
6536   ins_encode( enc_std(src, mem) );
6537   ins_pipe(pipe_class_memory);
6538 %}
6539 
6540 // Store Compressed Oop
6541 instruct storeN(memory dst, iRegN_P2N src) %{
6542   match(Set dst (StoreN dst src));
6543   ins_cost(MEMORY_REF_COST);
6544 
6545   format %{ "STW     $src, $dst \t// compressed oop" %}
6546   size(4);
6547   ins_encode( enc_stw(src, dst) );
6548   ins_pipe(pipe_class_memory);
6549 %}
6550 
6551 // Store Compressed KLass
6552 instruct storeNKlass(memory dst, iRegN_P2N src) %{
6553   match(Set dst (StoreNKlass dst src));
6554   ins_cost(MEMORY_REF_COST);
6555 
6556   format %{ "STW     $src, $dst \t// compressed klass" %}
6557   size(4);
6558   ins_encode( enc_stw(src, dst) );
6559   ins_pipe(pipe_class_memory);
6560 %}
6561 
6562 // Store Pointer
6563 instruct storeP(memoryAlg4 dst, iRegPsrc src) %{
6564   match(Set dst (StoreP dst src));
6565   ins_cost(MEMORY_REF_COST);
6566 
6567   format %{ "STD     $src, $dst \t// ptr" %}
6568   size(4);
6569   ins_encode( enc_std(src, dst) );
6570   ins_pipe(pipe_class_memory);
6571 %}
6572 
6573 // Store Float
6574 instruct storeF(memory mem, regF src) %{
6575   match(Set mem (StoreF mem src));
6576   ins_cost(MEMORY_REF_COST);
6577 
6578   format %{ "STFS    $src, $mem" %}
6579   size(4);
6580   ins_encode( enc_stfs(src, mem) );
6581   ins_pipe(pipe_class_memory);
6582 %}
6583 
6584 // Store Double
6585 instruct storeD(memory mem, regD src) %{
6586   match(Set mem (StoreD mem src));
6587   ins_cost(MEMORY_REF_COST);
6588 
6589   format %{ "STFD    $src, $mem" %}
6590   size(4);
6591   ins_encode( enc_stfd(src, mem) );
6592   ins_pipe(pipe_class_memory);
6593 %}
6594 
6595 //----------Store Instructions With Zeros--------------------------------------
6596 
6597 // Card-mark for CMS garbage collection.
6598 // This cardmark does an optimization so that it must not always
6599 // do a releasing store. For this, it gets the address of
6600 // CMSCollectorCardTableModRefBSExt::_requires_release as input.
6601 // (Using releaseFieldAddr in the match rule is a hack.)
6602 instruct storeCM_CMS(memory mem, iRegLdst releaseFieldAddr) %{
6603   match(Set mem (StoreCM mem releaseFieldAddr));
6604   predicate(false);
6605   ins_cost(MEMORY_REF_COST);
6606 
6607   // See loadConP.
6608   ins_cannot_rematerialize(true);
6609 
6610   format %{ "STB     #0, $mem \t// CMS card-mark byte (must be 0!), checking requires_release in [$releaseFieldAddr]" %}
6611   ins_encode( enc_cms_card_mark(mem, releaseFieldAddr) );
6612   ins_pipe(pipe_class_memory);
6613 %}
6614 
6615 // Card-mark for CMS garbage collection.
6616 // This cardmark does an optimization so that it must not always
6617 // do a releasing store. For this, it needs the constant address of
6618 // CMSCollectorCardTableModRefBSExt::_requires_release.
6619 // This constant address is split off here by expand so we can use
6620 // adlc / matcher functionality to load it from the constant section.
6621 instruct storeCM_CMS_ExEx(memory mem, immI_0 zero) %{
6622   match(Set mem (StoreCM mem zero));
6623   predicate(UseConcMarkSweepGC);
6624 
6625   expand %{
6626     immL baseImm %{ 0 /* TODO: PPC port (jlong)CMSCollectorCardTableModRefBSExt::requires_release_address() */ %}
6627     iRegLdst releaseFieldAddress;
6628     loadConL_Ex(releaseFieldAddress, baseImm);
6629     storeCM_CMS(mem, releaseFieldAddress);
6630   %}
6631 %}
6632 
6633 instruct storeCM_G1(memory mem, immI_0 zero) %{
6634   match(Set mem (StoreCM mem zero));
6635   predicate(UseG1GC);
6636   ins_cost(MEMORY_REF_COST);
6637 
6638   ins_cannot_rematerialize(true);
6639 
6640   format %{ "STB     #0, $mem \t// CMS card-mark byte store (G1)" %}
6641   size(8);
6642   ins_encode %{
6643     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6644     __ li(R0, 0);
6645     //__ release(); // G1: oops are allowed to get visible after dirty marking
6646     guarantee($mem$$base$$Register != R1_SP, "use frame_slots_bias");
6647     __ stb(R0, $mem$$disp, $mem$$base$$Register);
6648   %}
6649   ins_pipe(pipe_class_memory);
6650 %}
6651 
6652 // Convert oop pointer into compressed form.
6653 
6654 // Nodes for postalloc expand.
6655 
6656 // Shift node for expand.
6657 instruct encodeP_shift(iRegNdst dst, iRegNsrc src) %{
6658   // The match rule is needed to make it a 'MachTypeNode'!
6659   match(Set dst (EncodeP src));
6660   predicate(false);
6661 
6662   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
6663   size(4);
6664   ins_encode %{
6665     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6666     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
6667   %}
6668   ins_pipe(pipe_class_default);
6669 %}
6670 
6671 // Add node for expand.
6672 instruct encodeP_sub(iRegPdst dst, iRegPdst src) %{
6673   // The match rule is needed to make it a 'MachTypeNode'!
6674   match(Set dst (EncodeP src));
6675   predicate(false);
6676 
6677   format %{ "SUB     $dst, $src, oop_base \t// encode" %}
6678   size(4);
6679   ins_encode %{
6680     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
6681     __ subf($dst$$Register, R30, $src$$Register);
6682   %}
6683   ins_pipe(pipe_class_default);
6684 %}
6685 
6686 // Conditional sub base.
6687 instruct cond_sub_base(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
6688   // The match rule is needed to make it a 'MachTypeNode'!
6689   match(Set dst (EncodeP (Binary crx src1)));
6690   predicate(false);
6691 
6692   ins_variable_size_depending_on_alignment(true);
6693 
6694   format %{ "BEQ     $crx, done\n\t"
6695             "SUB     $dst, $src1, R30 \t// encode: subtract base if != NULL\n"
6696             "done:" %}
6697   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
6698   ins_encode %{
6699     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
6700     Label done;
6701     __ beq($crx$$CondRegister, done);
6702     __ subf($dst$$Register, R30, $src1$$Register);
6703     // TODO PPC port __ endgroup_if_needed(_size == 12);
6704     __ bind(done);
6705   %}
6706   ins_pipe(pipe_class_default);
6707 %}
6708 
6709 // Power 7 can use isel instruction
6710 instruct cond_set_0_oop(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
6711   // The match rule is needed to make it a 'MachTypeNode'!
6712   match(Set dst (EncodeP (Binary crx src1)));
6713   predicate(false);
6714 
6715   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// encode: preserve 0" %}
6716   size(4);
6717   ins_encode %{
6718     // This is a Power7 instruction for which no machine description exists.
6719     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6720     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
6721   %}
6722   ins_pipe(pipe_class_default);
6723 %}
6724 
6725 // base != 0
6726 // 32G aligned narrow oop base.
6727 instruct encodeP_32GAligned(iRegNdst dst, iRegPsrc src) %{
6728   match(Set dst (EncodeP src));
6729   predicate(false /* TODO: PPC port Universe::narrow_oop_base_disjoint()*/);
6730 
6731   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
6732   size(4);
6733   ins_encode %{
6734     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6735     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
6736   %}
6737   ins_pipe(pipe_class_default);
6738 %}
6739 
6740 // shift != 0, base != 0
6741 instruct encodeP_Ex(iRegNdst dst, flagsReg crx, iRegPsrc src) %{
6742   match(Set dst (EncodeP src));
6743   effect(TEMP crx);
6744   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull &&
6745             Universe::narrow_oop_shift() != 0 &&
6746             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
6747 
6748   format %{ "EncodeP $dst, $crx, $src \t// postalloc expanded" %}
6749   postalloc_expand( postalloc_expand_encode_oop(dst, src, crx));
6750 %}
6751 
6752 // shift != 0, base != 0
6753 instruct encodeP_not_null_Ex(iRegNdst dst, iRegPsrc src) %{
6754   match(Set dst (EncodeP src));
6755   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull &&
6756             Universe::narrow_oop_shift() != 0 &&
6757             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
6758 
6759   format %{ "EncodeP $dst, $src\t// $src != Null, postalloc expanded" %}
6760   postalloc_expand( postalloc_expand_encode_oop_not_null(dst, src) );
6761 %}
6762 
6763 // shift != 0, base == 0
6764 // TODO: This is the same as encodeP_shift. Merge!
6765 instruct encodeP_not_null_base_null(iRegNdst dst, iRegPsrc src) %{
6766   match(Set dst (EncodeP src));
6767   predicate(Universe::narrow_oop_shift() != 0 &&
6768             Universe::narrow_oop_base() ==0);
6769 
6770   format %{ "SRDI    $dst, $src, #3 \t// encodeP, $src != NULL" %}
6771   size(4);
6772   ins_encode %{
6773     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6774     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
6775   %}
6776   ins_pipe(pipe_class_default);
6777 %}
6778 
6779 // Compressed OOPs with narrow_oop_shift == 0.
6780 // shift == 0, base == 0
6781 instruct encodeP_narrow_oop_shift_0(iRegNdst dst, iRegPsrc src) %{
6782   match(Set dst (EncodeP src));
6783   predicate(Universe::narrow_oop_shift() == 0);
6784 
6785   format %{ "MR      $dst, $src \t// Ptr->Narrow" %}
6786   // variable size, 0 or 4.
6787   ins_encode %{
6788     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6789     __ mr_if_needed($dst$$Register, $src$$Register);
6790   %}
6791   ins_pipe(pipe_class_default);
6792 %}
6793 
6794 // Decode nodes.
6795 
6796 // Shift node for expand.
6797 instruct decodeN_shift(iRegPdst dst, iRegPsrc src) %{
6798   // The match rule is needed to make it a 'MachTypeNode'!
6799   match(Set dst (DecodeN src));
6800   predicate(false);
6801 
6802   format %{ "SLDI    $dst, $src, #3 \t// DecodeN" %}
6803   size(4);
6804   ins_encode %{
6805     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
6806     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
6807   %}
6808   ins_pipe(pipe_class_default);
6809 %}
6810 
6811 // Add node for expand.
6812 instruct decodeN_add(iRegPdst dst, iRegPdst src) %{
6813   // The match rule is needed to make it a 'MachTypeNode'!
6814   match(Set dst (DecodeN src));
6815   predicate(false);
6816 
6817   format %{ "ADD     $dst, $src, R30 \t// DecodeN, add oop base" %}
6818   size(4);
6819   ins_encode %{
6820     // TODO: PPC port $archOpcode(ppc64Opcode_add);
6821     __ add($dst$$Register, $src$$Register, R30);
6822   %}
6823   ins_pipe(pipe_class_default);
6824 %}
6825 
6826 // conditianal add base for expand
6827 instruct cond_add_base(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
6828   // The match rule is needed to make it a 'MachTypeNode'!
6829   // NOTICE that the rule is nonsense - we just have to make sure that:
6830   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
6831   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
6832   match(Set dst (DecodeN (Binary crx src1)));
6833   predicate(false);
6834 
6835   ins_variable_size_depending_on_alignment(true);
6836 
6837   format %{ "BEQ     $crx, done\n\t"
6838             "ADD     $dst, $src1, R30 \t// DecodeN: add oop base if $src1 != NULL\n"
6839             "done:" %}
6840   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling()) */? 12 : 8);
6841   ins_encode %{
6842     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
6843     Label done;
6844     __ beq($crx$$CondRegister, done);
6845     __ add($dst$$Register, $src1$$Register, R30);
6846     // TODO PPC port  __ endgroup_if_needed(_size == 12);
6847     __ bind(done);
6848   %}
6849   ins_pipe(pipe_class_default);
6850 %}
6851 
6852 instruct cond_set_0_ptr(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
6853   // The match rule is needed to make it a 'MachTypeNode'!
6854   // NOTICE that the rule is nonsense - we just have to make sure that:
6855   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
6856   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
6857   match(Set dst (DecodeN (Binary crx src1)));
6858   predicate(false);
6859 
6860   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// decode: preserve 0" %}
6861   size(4);
6862   ins_encode %{
6863     // This is a Power7 instruction for which no machine description exists.
6864     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6865     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
6866   %}
6867   ins_pipe(pipe_class_default);
6868 %}
6869 
6870 //  shift != 0, base != 0
6871 instruct decodeN_Ex(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
6872   match(Set dst (DecodeN src));
6873   predicate((n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6874              n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant) &&
6875             Universe::narrow_oop_shift() != 0 &&
6876             Universe::narrow_oop_base() != 0);
6877   effect(TEMP crx);
6878 
6879   format %{ "DecodeN $dst, $src \t// Kills $crx, postalloc expanded" %}
6880   postalloc_expand( postalloc_expand_decode_oop(dst, src, crx) );
6881 %}
6882 
6883 // shift != 0, base == 0
6884 instruct decodeN_nullBase(iRegPdst dst, iRegNsrc src) %{
6885   match(Set dst (DecodeN src));
6886   predicate(Universe::narrow_oop_shift() != 0 &&
6887             Universe::narrow_oop_base() == 0);
6888 
6889   format %{ "SLDI    $dst, $src, #3 \t// DecodeN (zerobased)" %}
6890   size(4);
6891   ins_encode %{
6892     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
6893     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
6894   %}
6895   ins_pipe(pipe_class_default);
6896 %}
6897 
6898 // src != 0, shift != 0, base != 0
6899 instruct decodeN_notNull_addBase_Ex(iRegPdst dst, iRegNsrc src) %{
6900   match(Set dst (DecodeN src));
6901   predicate((n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6902              n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
6903             Universe::narrow_oop_shift() != 0 &&
6904             Universe::narrow_oop_base() != 0);
6905 
6906   format %{ "DecodeN $dst, $src \t// $src != NULL, postalloc expanded" %}
6907   postalloc_expand( postalloc_expand_decode_oop_not_null(dst, src));
6908 %}
6909 
6910 // Compressed OOPs with narrow_oop_shift == 0.
6911 instruct decodeN_unscaled(iRegPdst dst, iRegNsrc src) %{
6912   match(Set dst (DecodeN src));
6913   predicate(Universe::narrow_oop_shift() == 0);
6914   ins_cost(DEFAULT_COST);
6915 
6916   format %{ "MR      $dst, $src \t// DecodeN (unscaled)" %}
6917   // variable size, 0 or 4.
6918   ins_encode %{
6919     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6920     __ mr_if_needed($dst$$Register, $src$$Register);
6921   %}
6922   ins_pipe(pipe_class_default);
6923 %}
6924 
6925 // Convert compressed oop into int for vectors alignment masking.
6926 instruct decodeN2I_unscaled(iRegIdst dst, iRegNsrc src) %{
6927   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
6928   predicate(Universe::narrow_oop_shift() == 0);
6929   ins_cost(DEFAULT_COST);
6930 
6931   format %{ "MR      $dst, $src \t// (int)DecodeN (unscaled)" %}
6932   // variable size, 0 or 4.
6933   ins_encode %{
6934     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6935     __ mr_if_needed($dst$$Register, $src$$Register);
6936   %}
6937   ins_pipe(pipe_class_default);
6938 %}
6939 
6940 // Convert klass pointer into compressed form.
6941 
6942 // Nodes for postalloc expand.
6943 
6944 // Shift node for expand.
6945 instruct encodePKlass_shift(iRegNdst dst, iRegNsrc src) %{
6946   // The match rule is needed to make it a 'MachTypeNode'!
6947   match(Set dst (EncodePKlass src));
6948   predicate(false);
6949 
6950   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
6951   size(4);
6952   ins_encode %{
6953     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6954     __ srdi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
6955   %}
6956   ins_pipe(pipe_class_default);
6957 %}
6958 
6959 // Add node for expand.
6960 instruct encodePKlass_sub_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
6961   // The match rule is needed to make it a 'MachTypeNode'!
6962   match(Set dst (EncodePKlass (Binary base src)));
6963   predicate(false);
6964 
6965   format %{ "SUB     $dst, $base, $src \t// encode" %}
6966   size(4);
6967   ins_encode %{
6968     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
6969     __ subf($dst$$Register, $base$$Register, $src$$Register);
6970   %}
6971   ins_pipe(pipe_class_default);
6972 %}
6973 
6974 // base != 0
6975 // 32G aligned narrow oop base.
6976 instruct encodePKlass_32GAligned(iRegNdst dst, iRegPsrc src) %{
6977   match(Set dst (EncodePKlass src));
6978   predicate(false /* TODO: PPC port Universe::narrow_klass_base_disjoint()*/);
6979 
6980   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
6981   size(4);
6982   ins_encode %{
6983     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6984     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_klass_shift(), 32);
6985   %}
6986   ins_pipe(pipe_class_default);
6987 %}
6988 
6989 // shift != 0, base != 0
6990 instruct encodePKlass_not_null_Ex(iRegNdst dst, iRegLsrc base, iRegPsrc src) %{
6991   match(Set dst (EncodePKlass (Binary base src)));
6992   predicate(false);
6993 
6994   format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
6995   postalloc_expand %{
6996     encodePKlass_sub_baseNode *n1 = new encodePKlass_sub_baseNode();
6997     n1->add_req(n_region, n_base, n_src);
6998     n1->_opnds[0] = op_dst;
6999     n1->_opnds[1] = op_base;
7000     n1->_opnds[2] = op_src;
7001     n1->_bottom_type = _bottom_type;
7002 
7003     encodePKlass_shiftNode *n2 = new encodePKlass_shiftNode();
7004     n2->add_req(n_region, n1);
7005     n2->_opnds[0] = op_dst;
7006     n2->_opnds[1] = op_dst;
7007     n2->_bottom_type = _bottom_type;
7008     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7009     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7010 
7011     nodes->push(n1);
7012     nodes->push(n2);
7013   %}
7014 %}
7015 
7016 // shift != 0, base != 0
7017 instruct encodePKlass_not_null_ExEx(iRegNdst dst, iRegPsrc src) %{
7018   match(Set dst (EncodePKlass src));
7019   //predicate(Universe::narrow_klass_shift() != 0 &&
7020   //          true /* TODO: PPC port Universe::narrow_klass_base_overlaps()*/);
7021 
7022   //format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
7023   ins_cost(DEFAULT_COST*2);  // Don't count constant.
7024   expand %{
7025     immL baseImm %{ (jlong)(intptr_t)Universe::narrow_klass_base() %}
7026     iRegLdst base;
7027     loadConL_Ex(base, baseImm);
7028     encodePKlass_not_null_Ex(dst, base, src);
7029   %}
7030 %}
7031 
7032 // Decode nodes.
7033 
7034 // Shift node for expand.
7035 instruct decodeNKlass_shift(iRegPdst dst, iRegPsrc src) %{
7036   // The match rule is needed to make it a 'MachTypeNode'!
7037   match(Set dst (DecodeNKlass src));
7038   predicate(false);
7039 
7040   format %{ "SLDI    $dst, $src, #3 \t// DecodeNKlass" %}
7041   size(4);
7042   ins_encode %{
7043     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
7044     __ sldi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
7045   %}
7046   ins_pipe(pipe_class_default);
7047 %}
7048 
7049 // Add node for expand.
7050 
7051 instruct decodeNKlass_add_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
7052   // The match rule is needed to make it a 'MachTypeNode'!
7053   match(Set dst (DecodeNKlass (Binary base src)));
7054   predicate(false);
7055 
7056   format %{ "ADD     $dst, $base, $src \t// DecodeNKlass, add klass base" %}
7057   size(4);
7058   ins_encode %{
7059     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7060     __ add($dst$$Register, $base$$Register, $src$$Register);
7061   %}
7062   ins_pipe(pipe_class_default);
7063 %}
7064 
7065 // src != 0, shift != 0, base != 0
7066 instruct decodeNKlass_notNull_addBase_Ex(iRegPdst dst, iRegLsrc base, iRegNsrc src) %{
7067   match(Set dst (DecodeNKlass (Binary base src)));
7068   //effect(kill src); // We need a register for the immediate result after shifting.
7069   predicate(false);
7070 
7071   format %{ "DecodeNKlass $dst =  $base + ($src << 3) \t// $src != NULL, postalloc expanded" %}
7072   postalloc_expand %{
7073     decodeNKlass_add_baseNode *n1 = new decodeNKlass_add_baseNode();
7074     n1->add_req(n_region, n_base, n_src);
7075     n1->_opnds[0] = op_dst;
7076     n1->_opnds[1] = op_base;
7077     n1->_opnds[2] = op_src;
7078     n1->_bottom_type = _bottom_type;
7079 
7080     decodeNKlass_shiftNode *n2 = new decodeNKlass_shiftNode();
7081     n2->add_req(n_region, n1);
7082     n2->_opnds[0] = op_dst;
7083     n2->_opnds[1] = op_dst;
7084     n2->_bottom_type = _bottom_type;
7085 
7086     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7087     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7088 
7089     nodes->push(n1);
7090     nodes->push(n2);
7091   %}
7092 %}
7093 
7094 // src != 0, shift != 0, base != 0
7095 instruct decodeNKlass_notNull_addBase_ExEx(iRegPdst dst, iRegNsrc src) %{
7096   match(Set dst (DecodeNKlass src));
7097   // predicate(Universe::narrow_klass_shift() != 0 &&
7098   //           Universe::narrow_klass_base() != 0);
7099 
7100   //format %{ "DecodeNKlass $dst, $src \t// $src != NULL, expanded" %}
7101 
7102   ins_cost(DEFAULT_COST*2);  // Don't count constant.
7103   expand %{
7104     // We add first, then we shift. Like this, we can get along with one register less.
7105     // But we have to load the base pre-shifted.
7106     immL baseImm %{ (jlong)((intptr_t)Universe::narrow_klass_base() >> Universe::narrow_klass_shift()) %}
7107     iRegLdst base;
7108     loadConL_Ex(base, baseImm);
7109     decodeNKlass_notNull_addBase_Ex(dst, base, src);
7110   %}
7111 %}
7112 
7113 //----------MemBar Instructions-----------------------------------------------
7114 // Memory barrier flavors
7115 
7116 instruct membar_acquire() %{
7117   match(LoadFence);
7118   ins_cost(4*MEMORY_REF_COST);
7119 
7120   format %{ "MEMBAR-acquire" %}
7121   size(4);
7122   ins_encode %{
7123     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7124     __ acquire();
7125   %}
7126   ins_pipe(pipe_class_default);
7127 %}
7128 
7129 instruct unnecessary_membar_acquire() %{
7130   match(MemBarAcquire);
7131   ins_cost(0);
7132 
7133   format %{ " -- \t// redundant MEMBAR-acquire - empty" %}
7134   size(0);
7135   ins_encode( /*empty*/ );
7136   ins_pipe(pipe_class_default);
7137 %}
7138 
7139 instruct membar_acquire_lock() %{
7140   match(MemBarAcquireLock);
7141   ins_cost(0);
7142 
7143   format %{ " -- \t// redundant MEMBAR-acquire - empty (acquire as part of CAS in prior FastLock)" %}
7144   size(0);
7145   ins_encode( /*empty*/ );
7146   ins_pipe(pipe_class_default);
7147 %}
7148 
7149 instruct membar_release() %{
7150   match(MemBarRelease);
7151   match(StoreFence);
7152   ins_cost(4*MEMORY_REF_COST);
7153 
7154   format %{ "MEMBAR-release" %}
7155   size(4);
7156   ins_encode %{
7157     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7158     __ release();
7159   %}
7160   ins_pipe(pipe_class_default);
7161 %}
7162 
7163 instruct membar_storestore() %{
7164   match(MemBarStoreStore);
7165   ins_cost(4*MEMORY_REF_COST);
7166 
7167   format %{ "MEMBAR-store-store" %}
7168   size(4);
7169   ins_encode %{
7170     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7171     __ membar(Assembler::StoreStore);
7172   %}
7173   ins_pipe(pipe_class_default);
7174 %}
7175 
7176 instruct membar_release_lock() %{
7177   match(MemBarReleaseLock);
7178   ins_cost(0);
7179 
7180   format %{ " -- \t// redundant MEMBAR-release - empty (release in FastUnlock)" %}
7181   size(0);
7182   ins_encode( /*empty*/ );
7183   ins_pipe(pipe_class_default);
7184 %}
7185 
7186 instruct membar_volatile() %{
7187   match(MemBarVolatile);
7188   ins_cost(4*MEMORY_REF_COST);
7189 
7190   format %{ "MEMBAR-volatile" %}
7191   size(4);
7192   ins_encode %{
7193     // TODO: PPC port $archOpcode(ppc64Opcode_sync);
7194     __ fence();
7195   %}
7196   ins_pipe(pipe_class_default);
7197 %}
7198 
7199 // This optimization is wrong on PPC. The following pattern is not supported:
7200 //  MemBarVolatile
7201 //   ^        ^
7202 //   |        |
7203 //  CtrlProj MemProj
7204 //   ^        ^
7205 //   |        |
7206 //   |       Load
7207 //   |
7208 //  MemBarVolatile
7209 //
7210 //  The first MemBarVolatile could get optimized out! According to
7211 //  Vladimir, this pattern can not occur on Oracle platforms.
7212 //  However, it does occur on PPC64 (because of membars in
7213 //  inline_unsafe_load_store).
7214 //
7215 // Add this node again if we found a good solution for inline_unsafe_load_store().
7216 // Don't forget to look at the implementation of post_store_load_barrier again,
7217 // we did other fixes in that method.
7218 //instruct unnecessary_membar_volatile() %{
7219 //  match(MemBarVolatile);
7220 //  predicate(Matcher::post_store_load_barrier(n));
7221 //  ins_cost(0);
7222 //
7223 //  format %{ " -- \t// redundant MEMBAR-volatile - empty" %}
7224 //  size(0);
7225 //  ins_encode( /*empty*/ );
7226 //  ins_pipe(pipe_class_default);
7227 //%}
7228 
7229 instruct membar_CPUOrder() %{
7230   match(MemBarCPUOrder);
7231   ins_cost(0);
7232 
7233   format %{ " -- \t// MEMBAR-CPUOrder - empty: PPC64 processors are self-consistent." %}
7234   size(0);
7235   ins_encode( /*empty*/ );
7236   ins_pipe(pipe_class_default);
7237 %}
7238 
7239 //----------Conditional Move---------------------------------------------------
7240 
7241 // Cmove using isel.
7242 instruct cmovI_reg_isel(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
7243   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7244   predicate(VM_Version::has_isel());
7245   ins_cost(DEFAULT_COST);
7246 
7247   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7248   size(4);
7249   ins_encode %{
7250     // This is a Power7 instruction for which no machine description
7251     // exists. Anyways, the scheduler should be off on Power7.
7252     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7253     int cc        = $cmp$$cmpcode;
7254     __ isel($dst$$Register, $crx$$CondRegister,
7255             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7256   %}
7257   ins_pipe(pipe_class_default);
7258 %}
7259 
7260 instruct cmovI_reg(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
7261   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7262   predicate(!VM_Version::has_isel());
7263   ins_cost(DEFAULT_COST+BRANCH_COST);
7264 
7265   ins_variable_size_depending_on_alignment(true);
7266 
7267   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7268   // Worst case is branch + move + stop, no stop without scheduler
7269   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7270   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7271   ins_pipe(pipe_class_default);
7272 %}
7273 
7274 instruct cmovI_imm(cmpOp cmp, flagsReg crx, iRegIdst dst, immI16 src) %{
7275   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7276   ins_cost(DEFAULT_COST+BRANCH_COST);
7277 
7278   ins_variable_size_depending_on_alignment(true);
7279 
7280   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7281   // Worst case is branch + move + stop, no stop without scheduler
7282   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7283   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7284   ins_pipe(pipe_class_default);
7285 %}
7286 
7287 // Cmove using isel.
7288 instruct cmovL_reg_isel(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
7289   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7290   predicate(VM_Version::has_isel());
7291   ins_cost(DEFAULT_COST);
7292 
7293   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7294   size(4);
7295   ins_encode %{
7296     // This is a Power7 instruction for which no machine description
7297     // exists. Anyways, the scheduler should be off on Power7.
7298     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7299     int cc        = $cmp$$cmpcode;
7300     __ isel($dst$$Register, $crx$$CondRegister,
7301             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7302   %}
7303   ins_pipe(pipe_class_default);
7304 %}
7305 
7306 instruct cmovL_reg(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
7307   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7308   predicate(!VM_Version::has_isel());
7309   ins_cost(DEFAULT_COST+BRANCH_COST);
7310 
7311   ins_variable_size_depending_on_alignment(true);
7312 
7313   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7314   // Worst case is branch + move + stop, no stop without scheduler.
7315   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7316   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7317   ins_pipe(pipe_class_default);
7318 %}
7319 
7320 instruct cmovL_imm(cmpOp cmp, flagsReg crx, iRegLdst dst, immL16 src) %{
7321   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7322   ins_cost(DEFAULT_COST+BRANCH_COST);
7323 
7324   ins_variable_size_depending_on_alignment(true);
7325 
7326   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7327   // Worst case is branch + move + stop, no stop without scheduler.
7328   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7329   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7330   ins_pipe(pipe_class_default);
7331 %}
7332 
7333 // Cmove using isel.
7334 instruct cmovN_reg_isel(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
7335   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7336   predicate(VM_Version::has_isel());
7337   ins_cost(DEFAULT_COST);
7338 
7339   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7340   size(4);
7341   ins_encode %{
7342     // This is a Power7 instruction for which no machine description
7343     // exists. Anyways, the scheduler should be off on Power7.
7344     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7345     int cc        = $cmp$$cmpcode;
7346     __ isel($dst$$Register, $crx$$CondRegister,
7347             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7348   %}
7349   ins_pipe(pipe_class_default);
7350 %}
7351 
7352 // Conditional move for RegN. Only cmov(reg, reg).
7353 instruct cmovN_reg(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
7354   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7355   predicate(!VM_Version::has_isel());
7356   ins_cost(DEFAULT_COST+BRANCH_COST);
7357 
7358   ins_variable_size_depending_on_alignment(true);
7359 
7360   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7361   // Worst case is branch + move + stop, no stop without scheduler.
7362   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7363   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7364   ins_pipe(pipe_class_default);
7365 %}
7366 
7367 instruct cmovN_imm(cmpOp cmp, flagsReg crx, iRegNdst dst, immN_0 src) %{
7368   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7369   ins_cost(DEFAULT_COST+BRANCH_COST);
7370 
7371   ins_variable_size_depending_on_alignment(true);
7372 
7373   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7374   // Worst case is branch + move + stop, no stop without scheduler.
7375   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7376   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7377   ins_pipe(pipe_class_default);
7378 %}
7379 
7380 // Cmove using isel.
7381 instruct cmovP_reg_isel(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegPsrc src) %{
7382   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7383   predicate(VM_Version::has_isel());
7384   ins_cost(DEFAULT_COST);
7385 
7386   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7387   size(4);
7388   ins_encode %{
7389     // This is a Power7 instruction for which no machine description
7390     // exists. Anyways, the scheduler should be off on Power7.
7391     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7392     int cc        = $cmp$$cmpcode;
7393     __ isel($dst$$Register, $crx$$CondRegister,
7394             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7395   %}
7396   ins_pipe(pipe_class_default);
7397 %}
7398 
7399 instruct cmovP_reg(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegP_N2P src) %{
7400   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7401   predicate(!VM_Version::has_isel());
7402   ins_cost(DEFAULT_COST+BRANCH_COST);
7403 
7404   ins_variable_size_depending_on_alignment(true);
7405 
7406   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7407   // Worst case is branch + move + stop, no stop without scheduler.
7408   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7409   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7410   ins_pipe(pipe_class_default);
7411 %}
7412 
7413 instruct cmovP_imm(cmpOp cmp, flagsReg crx, iRegPdst dst, immP_0 src) %{
7414   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7415   ins_cost(DEFAULT_COST+BRANCH_COST);
7416 
7417   ins_variable_size_depending_on_alignment(true);
7418 
7419   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7420   // Worst case is branch + move + stop, no stop without scheduler.
7421   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7422   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7423   ins_pipe(pipe_class_default);
7424 %}
7425 
7426 instruct cmovF_reg(cmpOp cmp, flagsReg crx, regF dst, regF src) %{
7427   match(Set dst (CMoveF (Binary cmp crx) (Binary dst src)));
7428   ins_cost(DEFAULT_COST+BRANCH_COST);
7429 
7430   ins_variable_size_depending_on_alignment(true);
7431 
7432   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
7433   // Worst case is branch + move + stop, no stop without scheduler.
7434   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
7435   ins_encode %{
7436     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
7437     Label done;
7438     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
7439     // Branch if not (cmp crx).
7440     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
7441     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
7442     // TODO PPC port __ endgroup_if_needed(_size == 12);
7443     __ bind(done);
7444   %}
7445   ins_pipe(pipe_class_default);
7446 %}
7447 
7448 instruct cmovD_reg(cmpOp cmp, flagsReg crx, regD dst, regD src) %{
7449   match(Set dst (CMoveD (Binary cmp crx) (Binary dst src)));
7450   ins_cost(DEFAULT_COST+BRANCH_COST);
7451 
7452   ins_variable_size_depending_on_alignment(true);
7453 
7454   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
7455   // Worst case is branch + move + stop, no stop without scheduler.
7456   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
7457   ins_encode %{
7458     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
7459     Label done;
7460     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
7461     // Branch if not (cmp crx).
7462     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
7463     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
7464     // TODO PPC port __ endgroup_if_needed(_size == 12);
7465     __ bind(done);
7466   %}
7467   ins_pipe(pipe_class_default);
7468 %}
7469 
7470 //----------Conditional_store--------------------------------------------------
7471 // Conditional-store of the updated heap-top.
7472 // Used during allocation of the shared heap.
7473 // Sets flags (EQ) on success. Implemented with a CASA on Sparc.
7474 
7475 // As compareAndSwapL, but return flag register instead of boolean value in
7476 // int register.
7477 // Used by sun/misc/AtomicLongCSImpl.java.
7478 // Mem_ptr must be a memory operand, else this node does not get
7479 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
7480 // can be rematerialized which leads to errors.
7481 instruct storeLConditional_regP_regL_regL(flagsReg crx, indirect mem_ptr, iRegLsrc oldVal, iRegLsrc newVal) %{
7482   match(Set crx (StoreLConditional mem_ptr (Binary oldVal newVal)));
7483   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
7484   ins_encode %{
7485     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7486     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
7487                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
7488                 noreg, NULL, true);
7489   %}
7490   ins_pipe(pipe_class_default);
7491 %}
7492 
7493 // As compareAndSwapP, but return flag register instead of boolean value in
7494 // int register.
7495 // This instruction is matched if UseTLAB is off.
7496 // Mem_ptr must be a memory operand, else this node does not get
7497 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
7498 // can be rematerialized which leads to errors.
7499 instruct storePConditional_regP_regP_regP(flagsReg crx, indirect mem_ptr, iRegPsrc oldVal, iRegPsrc newVal) %{
7500   match(Set crx (StorePConditional mem_ptr (Binary oldVal newVal)));
7501   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
7502   ins_encode %{
7503     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7504     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
7505                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
7506                 noreg, NULL, true);
7507   %}
7508   ins_pipe(pipe_class_default);
7509 %}
7510 
7511 // Implement LoadPLocked. Must be ordered against changes of the memory location
7512 // by storePConditional.
7513 // Don't know whether this is ever used.
7514 instruct loadPLocked(iRegPdst dst, memory mem) %{
7515   match(Set dst (LoadPLocked mem));
7516   ins_cost(MEMORY_REF_COST);
7517 
7518   format %{ "LD      $dst, $mem \t// loadPLocked\n\t"
7519             "TWI     $dst\n\t"
7520             "ISYNC" %}
7521   size(12);
7522   ins_encode( enc_ld_ac(dst, mem) );
7523   ins_pipe(pipe_class_memory);
7524 %}
7525 
7526 //----------Compare-And-Swap---------------------------------------------------
7527 
7528 // CompareAndSwap{P,I,L} have more than one output, therefore "CmpI
7529 // (CompareAndSwap ...)" or "If (CmpI (CompareAndSwap ..))"  cannot be
7530 // matched.
7531 
7532 instruct compareAndSwapI_regP_regI_regI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src1, iRegIsrc src2) %{
7533   match(Set res (CompareAndSwapI mem_ptr (Binary src1 src2)));
7534   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
7535   // Variable size: instruction count smaller if regs are disjoint.
7536   ins_encode %{
7537     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7538     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7539     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7540                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7541                 $res$$Register, true);
7542   %}
7543   ins_pipe(pipe_class_default);
7544 %}
7545 
7546 instruct compareAndSwapN_regP_regN_regN(iRegIdst res, iRegPdst mem_ptr, iRegNsrc src1, iRegNsrc src2) %{
7547   match(Set res (CompareAndSwapN mem_ptr (Binary src1 src2)));
7548   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
7549   // Variable size: instruction count smaller if regs are disjoint.
7550   ins_encode %{
7551     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7552     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7553     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7554                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7555                 $res$$Register, true);
7556   %}
7557   ins_pipe(pipe_class_default);
7558 %}
7559 
7560 instruct compareAndSwapL_regP_regL_regL(iRegIdst res, iRegPdst mem_ptr, iRegLsrc src1, iRegLsrc src2) %{
7561   match(Set res (CompareAndSwapL mem_ptr (Binary src1 src2)));
7562   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool" %}
7563   // Variable size: instruction count smaller if regs are disjoint.
7564   ins_encode %{
7565     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7566     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7567     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7568                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7569                 $res$$Register, NULL, true);
7570   %}
7571   ins_pipe(pipe_class_default);
7572 %}
7573 
7574 instruct compareAndSwapP_regP_regP_regP(iRegIdst res, iRegPdst mem_ptr, iRegPsrc src1, iRegPsrc src2) %{
7575   match(Set res (CompareAndSwapP mem_ptr (Binary src1 src2)));
7576   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool; ptr" %}
7577   // Variable size: instruction count smaller if regs are disjoint.
7578   ins_encode %{
7579     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7580     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7581     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7582                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7583                 $res$$Register, NULL, true);
7584   %}
7585   ins_pipe(pipe_class_default);
7586 %}
7587 
7588 instruct getAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
7589   match(Set res (GetAndAddI mem_ptr src));
7590   format %{ "GetAndAddI $res, $mem_ptr, $src" %}
7591   // Variable size: instruction count smaller if regs are disjoint.
7592   ins_encode( enc_GetAndAddI(res, mem_ptr, src) );
7593   ins_pipe(pipe_class_default);
7594 %}
7595 
7596 instruct getAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
7597   match(Set res (GetAndAddL mem_ptr src));
7598   format %{ "GetAndAddL $res, $mem_ptr, $src" %}
7599   // Variable size: instruction count smaller if regs are disjoint.
7600   ins_encode( enc_GetAndAddL(res, mem_ptr, src) );
7601   ins_pipe(pipe_class_default);
7602 %}
7603 
7604 instruct getAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
7605   match(Set res (GetAndSetI mem_ptr src));
7606   format %{ "GetAndSetI $res, $mem_ptr, $src" %}
7607   // Variable size: instruction count smaller if regs are disjoint.
7608   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
7609   ins_pipe(pipe_class_default);
7610 %}
7611 
7612 instruct getAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
7613   match(Set res (GetAndSetL mem_ptr src));
7614   format %{ "GetAndSetL $res, $mem_ptr, $src" %}
7615   // Variable size: instruction count smaller if regs are disjoint.
7616   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
7617   ins_pipe(pipe_class_default);
7618 %}
7619 
7620 instruct getAndSetP(iRegPdst res, iRegPdst mem_ptr, iRegPsrc src) %{
7621   match(Set res (GetAndSetP mem_ptr src));
7622   format %{ "GetAndSetP $res, $mem_ptr, $src" %}
7623   // Variable size: instruction count smaller if regs are disjoint.
7624   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
7625   ins_pipe(pipe_class_default);
7626 %}
7627 
7628 instruct getAndSetN(iRegNdst res, iRegPdst mem_ptr, iRegNsrc src) %{
7629   match(Set res (GetAndSetN mem_ptr src));
7630   format %{ "GetAndSetN $res, $mem_ptr, $src" %}
7631   // Variable size: instruction count smaller if regs are disjoint.
7632   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
7633   ins_pipe(pipe_class_default);
7634 %}
7635 
7636 //----------Arithmetic Instructions--------------------------------------------
7637 // Addition Instructions
7638 
7639 // Register Addition
7640 instruct addI_reg_reg(iRegIdst dst, iRegIsrc_iRegL2Isrc src1, iRegIsrc_iRegL2Isrc src2) %{
7641   match(Set dst (AddI src1 src2));
7642   format %{ "ADD     $dst, $src1, $src2" %}
7643   size(4);
7644   ins_encode %{
7645     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7646     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7647   %}
7648   ins_pipe(pipe_class_default);
7649 %}
7650 
7651 // Expand does not work with above instruct. (??)
7652 instruct addI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
7653   // no match-rule
7654   effect(DEF dst, USE src1, USE src2);
7655   format %{ "ADD     $dst, $src1, $src2" %}
7656   size(4);
7657   ins_encode %{
7658     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7659     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7660   %}
7661   ins_pipe(pipe_class_default);
7662 %}
7663 
7664 instruct tree_addI_addI_addI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
7665   match(Set dst (AddI (AddI (AddI src1 src2) src3) src4));
7666   ins_cost(DEFAULT_COST*3);
7667 
7668   expand %{
7669     // FIXME: we should do this in the ideal world.
7670     iRegIdst tmp1;
7671     iRegIdst tmp2;
7672     addI_reg_reg(tmp1, src1, src2);
7673     addI_reg_reg_2(tmp2, src3, src4); // Adlc complains about addI_reg_reg.
7674     addI_reg_reg(dst, tmp1, tmp2);
7675   %}
7676 %}
7677 
7678 // Immediate Addition
7679 instruct addI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
7680   match(Set dst (AddI src1 src2));
7681   format %{ "ADDI    $dst, $src1, $src2" %}
7682   size(4);
7683   ins_encode %{
7684     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7685     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7686   %}
7687   ins_pipe(pipe_class_default);
7688 %}
7689 
7690 // Immediate Addition with 16-bit shifted operand
7691 instruct addI_reg_immhi16(iRegIdst dst, iRegIsrc src1, immIhi16 src2) %{
7692   match(Set dst (AddI src1 src2));
7693   format %{ "ADDIS   $dst, $src1, $src2" %}
7694   size(4);
7695   ins_encode %{
7696     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7697     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7698   %}
7699   ins_pipe(pipe_class_default);
7700 %}
7701 
7702 // Long Addition
7703 instruct addL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7704   match(Set dst (AddL src1 src2));
7705   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
7706   size(4);
7707   ins_encode %{
7708     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7709     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7710   %}
7711   ins_pipe(pipe_class_default);
7712 %}
7713 
7714 // Expand does not work with above instruct. (??)
7715 instruct addL_reg_reg_2(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7716   // no match-rule
7717   effect(DEF dst, USE src1, USE src2);
7718   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
7719   size(4);
7720   ins_encode %{
7721     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7722     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7723   %}
7724   ins_pipe(pipe_class_default);
7725 %}
7726 
7727 instruct tree_addL_addL_addL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, iRegLsrc src3, iRegLsrc src4) %{
7728   match(Set dst (AddL (AddL (AddL src1 src2) src3) src4));
7729   ins_cost(DEFAULT_COST*3);
7730 
7731   expand %{
7732     // FIXME: we should do this in the ideal world.
7733     iRegLdst tmp1;
7734     iRegLdst tmp2;
7735     addL_reg_reg(tmp1, src1, src2);
7736     addL_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
7737     addL_reg_reg(dst, tmp1, tmp2);
7738   %}
7739 %}
7740 
7741 // AddL + ConvL2I.
7742 instruct addI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
7743   match(Set dst (ConvL2I (AddL src1 src2)));
7744 
7745   format %{ "ADD     $dst, $src1, $src2 \t// long + l2i" %}
7746   size(4);
7747   ins_encode %{
7748     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7749     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7750   %}
7751   ins_pipe(pipe_class_default);
7752 %}
7753 
7754 // No constant pool entries required.
7755 instruct addL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
7756   match(Set dst (AddL src1 src2));
7757 
7758   format %{ "ADDI    $dst, $src1, $src2" %}
7759   size(4);
7760   ins_encode %{
7761     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7762     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7763   %}
7764   ins_pipe(pipe_class_default);
7765 %}
7766 
7767 // Long Immediate Addition with 16-bit shifted operand.
7768 // No constant pool entries required.
7769 instruct addL_reg_immhi16(iRegLdst dst, iRegLsrc src1, immL32hi16 src2) %{
7770   match(Set dst (AddL src1 src2));
7771 
7772   format %{ "ADDIS   $dst, $src1, $src2" %}
7773   size(4);
7774   ins_encode %{
7775     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7776     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7777   %}
7778   ins_pipe(pipe_class_default);
7779 %}
7780 
7781 // Pointer Register Addition
7782 instruct addP_reg_reg(iRegPdst dst, iRegP_N2P src1, iRegLsrc src2) %{
7783   match(Set dst (AddP src1 src2));
7784   format %{ "ADD     $dst, $src1, $src2" %}
7785   size(4);
7786   ins_encode %{
7787     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7788     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7789   %}
7790   ins_pipe(pipe_class_default);
7791 %}
7792 
7793 // Pointer Immediate Addition
7794 // No constant pool entries required.
7795 instruct addP_reg_imm16(iRegPdst dst, iRegP_N2P src1, immL16 src2) %{
7796   match(Set dst (AddP src1 src2));
7797 
7798   format %{ "ADDI    $dst, $src1, $src2" %}
7799   size(4);
7800   ins_encode %{
7801     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7802     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7803   %}
7804   ins_pipe(pipe_class_default);
7805 %}
7806 
7807 // Pointer Immediate Addition with 16-bit shifted operand.
7808 // No constant pool entries required.
7809 instruct addP_reg_immhi16(iRegPdst dst, iRegP_N2P src1, immL32hi16 src2) %{
7810   match(Set dst (AddP src1 src2));
7811 
7812   format %{ "ADDIS   $dst, $src1, $src2" %}
7813   size(4);
7814   ins_encode %{
7815     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7816     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7817   %}
7818   ins_pipe(pipe_class_default);
7819 %}
7820 
7821 //---------------------
7822 // Subtraction Instructions
7823 
7824 // Register Subtraction
7825 instruct subI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
7826   match(Set dst (SubI src1 src2));
7827   format %{ "SUBF    $dst, $src2, $src1" %}
7828   size(4);
7829   ins_encode %{
7830     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7831     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7832   %}
7833   ins_pipe(pipe_class_default);
7834 %}
7835 
7836 // Immediate Subtraction
7837 // The compiler converts "x-c0" into "x+ -c0" (see SubINode::Ideal),
7838 // so this rule seems to be unused.
7839 instruct subI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
7840   match(Set dst (SubI src1 src2));
7841   format %{ "SUBI    $dst, $src1, $src2" %}
7842   size(4);
7843   ins_encode %{
7844     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7845     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
7846   %}
7847   ins_pipe(pipe_class_default);
7848 %}
7849 
7850 // SubI from constant (using subfic).
7851 instruct subI_imm16_reg(iRegIdst dst, immI16 src1, iRegIsrc src2) %{
7852   match(Set dst (SubI src1 src2));
7853   format %{ "SUBI    $dst, $src1, $src2" %}
7854 
7855   size(4);
7856   ins_encode %{
7857     // TODO: PPC port $archOpcode(ppc64Opcode_subfic);
7858     __ subfic($dst$$Register, $src2$$Register, $src1$$constant);
7859   %}
7860   ins_pipe(pipe_class_default);
7861 %}
7862 
7863 // Turn the sign-bit of an integer into a 32-bit mask, 0x0...0 for
7864 // positive integers and 0xF...F for negative ones.
7865 instruct signmask32I_regI(iRegIdst dst, iRegIsrc src) %{
7866   // no match-rule, false predicate
7867   effect(DEF dst, USE src);
7868   predicate(false);
7869 
7870   format %{ "SRAWI   $dst, $src, #31" %}
7871   size(4);
7872   ins_encode %{
7873     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
7874     __ srawi($dst$$Register, $src$$Register, 0x1f);
7875   %}
7876   ins_pipe(pipe_class_default);
7877 %}
7878 
7879 instruct absI_reg_Ex(iRegIdst dst, iRegIsrc src) %{
7880   match(Set dst (AbsI src));
7881   ins_cost(DEFAULT_COST*3);
7882 
7883   expand %{
7884     iRegIdst tmp1;
7885     iRegIdst tmp2;
7886     signmask32I_regI(tmp1, src);
7887     xorI_reg_reg(tmp2, tmp1, src);
7888     subI_reg_reg(dst, tmp2, tmp1);
7889   %}
7890 %}
7891 
7892 instruct negI_regI(iRegIdst dst, immI_0 zero, iRegIsrc src2) %{
7893   match(Set dst (SubI zero src2));
7894   format %{ "NEG     $dst, $src2" %}
7895   size(4);
7896   ins_encode %{
7897     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
7898     __ neg($dst$$Register, $src2$$Register);
7899   %}
7900   ins_pipe(pipe_class_default);
7901 %}
7902 
7903 // Long subtraction
7904 instruct subL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7905   match(Set dst (SubL src1 src2));
7906   format %{ "SUBF    $dst, $src2, $src1 \t// long" %}
7907   size(4);
7908   ins_encode %{
7909     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7910     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7911   %}
7912   ins_pipe(pipe_class_default);
7913 %}
7914 
7915 // SubL + convL2I.
7916 instruct subI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
7917   match(Set dst (ConvL2I (SubL src1 src2)));
7918 
7919   format %{ "SUBF    $dst, $src2, $src1 \t// long + l2i" %}
7920   size(4);
7921   ins_encode %{
7922     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7923     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7924   %}
7925   ins_pipe(pipe_class_default);
7926 %}
7927 
7928 // Immediate Subtraction
7929 // The compiler converts "x-c0" into "x+ -c0" (see SubLNode::Ideal),
7930 // so this rule seems to be unused.
7931 // No constant pool entries required.
7932 instruct subL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
7933   match(Set dst (SubL src1 src2));
7934 
7935   format %{ "SUBI    $dst, $src1, $src2 \t// long" %}
7936   size(4);
7937   ins_encode %{
7938     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7939     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
7940   %}
7941   ins_pipe(pipe_class_default);
7942 %}
7943 
7944 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
7945 // positive longs and 0xF...F for negative ones.
7946 instruct signmask64I_regL(iRegIdst dst, iRegLsrc src) %{
7947   // no match-rule, false predicate
7948   effect(DEF dst, USE src);
7949   predicate(false);
7950 
7951   format %{ "SRADI   $dst, $src, #63" %}
7952   size(4);
7953   ins_encode %{
7954     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
7955     __ sradi($dst$$Register, $src$$Register, 0x3f);
7956   %}
7957   ins_pipe(pipe_class_default);
7958 %}
7959 
7960 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
7961 // positive longs and 0xF...F for negative ones.
7962 instruct signmask64L_regL(iRegLdst dst, iRegLsrc src) %{
7963   // no match-rule, false predicate
7964   effect(DEF dst, USE src);
7965   predicate(false);
7966 
7967   format %{ "SRADI   $dst, $src, #63" %}
7968   size(4);
7969   ins_encode %{
7970     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
7971     __ sradi($dst$$Register, $src$$Register, 0x3f);
7972   %}
7973   ins_pipe(pipe_class_default);
7974 %}
7975 
7976 // Long negation
7977 instruct negL_reg_reg(iRegLdst dst, immL_0 zero, iRegLsrc src2) %{
7978   match(Set dst (SubL zero src2));
7979   format %{ "NEG     $dst, $src2 \t// long" %}
7980   size(4);
7981   ins_encode %{
7982     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
7983     __ neg($dst$$Register, $src2$$Register);
7984   %}
7985   ins_pipe(pipe_class_default);
7986 %}
7987 
7988 // NegL + ConvL2I.
7989 instruct negI_con0_regL(iRegIdst dst, immL_0 zero, iRegLsrc src2) %{
7990   match(Set dst (ConvL2I (SubL zero src2)));
7991 
7992   format %{ "NEG     $dst, $src2 \t// long + l2i" %}
7993   size(4);
7994   ins_encode %{
7995     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
7996     __ neg($dst$$Register, $src2$$Register);
7997   %}
7998   ins_pipe(pipe_class_default);
7999 %}
8000 
8001 // Multiplication Instructions
8002 // Integer Multiplication
8003 
8004 // Register Multiplication
8005 instruct mulI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8006   match(Set dst (MulI src1 src2));
8007   ins_cost(DEFAULT_COST);
8008 
8009   format %{ "MULLW   $dst, $src1, $src2" %}
8010   size(4);
8011   ins_encode %{
8012     // TODO: PPC port $archOpcode(ppc64Opcode_mullw);
8013     __ mullw($dst$$Register, $src1$$Register, $src2$$Register);
8014   %}
8015   ins_pipe(pipe_class_default);
8016 %}
8017 
8018 // Immediate Multiplication
8019 instruct mulI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
8020   match(Set dst (MulI src1 src2));
8021   ins_cost(DEFAULT_COST);
8022 
8023   format %{ "MULLI   $dst, $src1, $src2" %}
8024   size(4);
8025   ins_encode %{
8026     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
8027     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
8028   %}
8029   ins_pipe(pipe_class_default);
8030 %}
8031 
8032 instruct mulL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8033   match(Set dst (MulL src1 src2));
8034   ins_cost(DEFAULT_COST);
8035 
8036   format %{ "MULLD   $dst $src1, $src2 \t// long" %}
8037   size(4);
8038   ins_encode %{
8039     // TODO: PPC port $archOpcode(ppc64Opcode_mulld);
8040     __ mulld($dst$$Register, $src1$$Register, $src2$$Register);
8041   %}
8042   ins_pipe(pipe_class_default);
8043 %}
8044 
8045 // Multiply high for optimized long division by constant.
8046 instruct mulHighL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8047   match(Set dst (MulHiL src1 src2));
8048   ins_cost(DEFAULT_COST);
8049 
8050   format %{ "MULHD   $dst $src1, $src2 \t// long" %}
8051   size(4);
8052   ins_encode %{
8053     // TODO: PPC port $archOpcode(ppc64Opcode_mulhd);
8054     __ mulhd($dst$$Register, $src1$$Register, $src2$$Register);
8055   %}
8056   ins_pipe(pipe_class_default);
8057 %}
8058 
8059 // Immediate Multiplication
8060 instruct mulL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
8061   match(Set dst (MulL src1 src2));
8062   ins_cost(DEFAULT_COST);
8063 
8064   format %{ "MULLI   $dst, $src1, $src2" %}
8065   size(4);
8066   ins_encode %{
8067     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
8068     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
8069   %}
8070   ins_pipe(pipe_class_default);
8071 %}
8072 
8073 // Integer Division with Immediate -1: Negate.
8074 instruct divI_reg_immIvalueMinus1(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
8075   match(Set dst (DivI src1 src2));
8076   ins_cost(DEFAULT_COST);
8077 
8078   format %{ "NEG     $dst, $src1 \t// /-1" %}
8079   size(4);
8080   ins_encode %{
8081     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
8082     __ neg($dst$$Register, $src1$$Register);
8083   %}
8084   ins_pipe(pipe_class_default);
8085 %}
8086 
8087 // Integer Division with constant, but not -1.
8088 // We should be able to improve this by checking the type of src2.
8089 // It might well be that src2 is known to be positive.
8090 instruct divI_reg_regnotMinus1(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8091   match(Set dst (DivI src1 src2));
8092   predicate(n->in(2)->find_int_con(-1) != -1); // src2 is a constant, but not -1
8093   ins_cost(2*DEFAULT_COST);
8094 
8095   format %{ "DIVW    $dst, $src1, $src2 \t// /not-1" %}
8096   size(4);
8097   ins_encode %{
8098     // TODO: PPC port $archOpcode(ppc64Opcode_divw);
8099     __ divw($dst$$Register, $src1$$Register, $src2$$Register);
8100   %}
8101   ins_pipe(pipe_class_default);
8102 %}
8103 
8104 instruct cmovI_bne_negI_reg(iRegIdst dst, flagsReg crx, iRegIsrc src1) %{
8105   effect(USE_DEF dst, USE src1, USE crx);
8106   predicate(false);
8107 
8108   ins_variable_size_depending_on_alignment(true);
8109 
8110   format %{ "CMOVE   $dst, neg($src1), $crx" %}
8111   // Worst case is branch + move + stop, no stop without scheduler.
8112   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
8113   ins_encode %{
8114     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
8115     Label done;
8116     __ bne($crx$$CondRegister, done);
8117     __ neg($dst$$Register, $src1$$Register);
8118     // TODO PPC port __ endgroup_if_needed(_size == 12);
8119     __ bind(done);
8120   %}
8121   ins_pipe(pipe_class_default);
8122 %}
8123 
8124 // Integer Division with Registers not containing constants.
8125 instruct divI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8126   match(Set dst (DivI src1 src2));
8127   ins_cost(10*DEFAULT_COST);
8128 
8129   expand %{
8130     immI16 imm %{ (int)-1 %}
8131     flagsReg tmp1;
8132     cmpI_reg_imm16(tmp1, src2, imm);          // check src2 == -1
8133     divI_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
8134     cmovI_bne_negI_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
8135   %}
8136 %}
8137 
8138 // Long Division with Immediate -1: Negate.
8139 instruct divL_reg_immLvalueMinus1(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
8140   match(Set dst (DivL src1 src2));
8141   ins_cost(DEFAULT_COST);
8142 
8143   format %{ "NEG     $dst, $src1 \t// /-1, long" %}
8144   size(4);
8145   ins_encode %{
8146     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
8147     __ neg($dst$$Register, $src1$$Register);
8148   %}
8149   ins_pipe(pipe_class_default);
8150 %}
8151 
8152 // Long Division with constant, but not -1.
8153 instruct divL_reg_regnotMinus1(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8154   match(Set dst (DivL src1 src2));
8155   predicate(n->in(2)->find_long_con(-1L) != -1L); // Src2 is a constant, but not -1.
8156   ins_cost(2*DEFAULT_COST);
8157 
8158   format %{ "DIVD    $dst, $src1, $src2 \t// /not-1, long" %}
8159   size(4);
8160   ins_encode %{
8161     // TODO: PPC port $archOpcode(ppc64Opcode_divd);
8162     __ divd($dst$$Register, $src1$$Register, $src2$$Register);
8163   %}
8164   ins_pipe(pipe_class_default);
8165 %}
8166 
8167 instruct cmovL_bne_negL_reg(iRegLdst dst, flagsReg crx, iRegLsrc src1) %{
8168   effect(USE_DEF dst, USE src1, USE crx);
8169   predicate(false);
8170 
8171   ins_variable_size_depending_on_alignment(true);
8172 
8173   format %{ "CMOVE   $dst, neg($src1), $crx" %}
8174   // Worst case is branch + move + stop, no stop without scheduler.
8175   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
8176   ins_encode %{
8177     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
8178     Label done;
8179     __ bne($crx$$CondRegister, done);
8180     __ neg($dst$$Register, $src1$$Register);
8181     // TODO PPC port __ endgroup_if_needed(_size == 12);
8182     __ bind(done);
8183   %}
8184   ins_pipe(pipe_class_default);
8185 %}
8186 
8187 // Long Division with Registers not containing constants.
8188 instruct divL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8189   match(Set dst (DivL src1 src2));
8190   ins_cost(10*DEFAULT_COST);
8191 
8192   expand %{
8193     immL16 imm %{ (int)-1 %}
8194     flagsReg tmp1;
8195     cmpL_reg_imm16(tmp1, src2, imm);          // check src2 == -1
8196     divL_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
8197     cmovL_bne_negL_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
8198   %}
8199 %}
8200 
8201 // Integer Remainder with registers.
8202 instruct modI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8203   match(Set dst (ModI src1 src2));
8204   ins_cost(10*DEFAULT_COST);
8205 
8206   expand %{
8207     immI16 imm %{ (int)-1 %}
8208     flagsReg tmp1;
8209     iRegIdst tmp2;
8210     iRegIdst tmp3;
8211     cmpI_reg_imm16(tmp1, src2, imm);           // check src2 == -1
8212     divI_reg_regnotMinus1(tmp2, src1, src2);   // tmp2 = src1 / src2
8213     cmovI_bne_negI_reg(tmp2, tmp1, src1);      // cmove tmp2 = neg(src1) if src2 == -1
8214     mulI_reg_reg(tmp3, src2, tmp2);            // tmp3 = src2 * tmp2
8215     subI_reg_reg(dst, src1, tmp3);             // dst = src1 - tmp3
8216   %}
8217 %}
8218 
8219 // Long Remainder with registers
8220 instruct modL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, flagsRegCR0 cr0) %{
8221   match(Set dst (ModL src1 src2));
8222   ins_cost(10*DEFAULT_COST);
8223 
8224   expand %{
8225     immL16 imm %{ (int)-1 %}
8226     flagsReg tmp1;
8227     iRegLdst tmp2;
8228     iRegLdst tmp3;
8229     cmpL_reg_imm16(tmp1, src2, imm);             // check src2 == -1
8230     divL_reg_regnotMinus1(tmp2, src1, src2);     // tmp2 = src1 / src2
8231     cmovL_bne_negL_reg(tmp2, tmp1, src1);        // cmove tmp2 = neg(src1) if src2 == -1
8232     mulL_reg_reg(tmp3, src2, tmp2);              // tmp3 = src2 * tmp2
8233     subL_reg_reg(dst, src1, tmp3);               // dst = src1 - tmp3
8234   %}
8235 %}
8236 
8237 // Integer Shift Instructions
8238 
8239 // Register Shift Left
8240 
8241 // Clear all but the lowest #mask bits.
8242 // Used to normalize shift amounts in registers.
8243 instruct maskI_reg_imm(iRegIdst dst, iRegIsrc src, uimmI6 mask) %{
8244   // no match-rule, false predicate
8245   effect(DEF dst, USE src, USE mask);
8246   predicate(false);
8247 
8248   format %{ "MASK    $dst, $src, $mask \t// clear $mask upper bits" %}
8249   size(4);
8250   ins_encode %{
8251     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8252     __ clrldi($dst$$Register, $src$$Register, $mask$$constant);
8253   %}
8254   ins_pipe(pipe_class_default);
8255 %}
8256 
8257 instruct lShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8258   // no match-rule, false predicate
8259   effect(DEF dst, USE src1, USE src2);
8260   predicate(false);
8261 
8262   format %{ "SLW     $dst, $src1, $src2" %}
8263   size(4);
8264   ins_encode %{
8265     // TODO: PPC port $archOpcode(ppc64Opcode_slw);
8266     __ slw($dst$$Register, $src1$$Register, $src2$$Register);
8267   %}
8268   ins_pipe(pipe_class_default);
8269 %}
8270 
8271 instruct lShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8272   match(Set dst (LShiftI src1 src2));
8273   ins_cost(DEFAULT_COST*2);
8274   expand %{
8275     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8276     iRegIdst tmpI;
8277     maskI_reg_imm(tmpI, src2, mask);
8278     lShiftI_reg_reg(dst, src1, tmpI);
8279   %}
8280 %}
8281 
8282 // Register Shift Left Immediate
8283 instruct lShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8284   match(Set dst (LShiftI src1 src2));
8285 
8286   format %{ "SLWI    $dst, $src1, ($src2 & 0x1f)" %}
8287   size(4);
8288   ins_encode %{
8289     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8290     __ slwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8291   %}
8292   ins_pipe(pipe_class_default);
8293 %}
8294 
8295 // AndI with negpow2-constant + LShiftI
8296 instruct lShiftI_andI_immInegpow2_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
8297   match(Set dst (LShiftI (AndI src1 src2) src3));
8298   predicate(UseRotateAndMaskInstructionsPPC64);
8299 
8300   format %{ "RLWINM  $dst, lShiftI(AndI($src1, $src2), $src3)" %}
8301   size(4);
8302   ins_encode %{
8303     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
8304     long src2      = $src2$$constant;
8305     long src3      = $src3$$constant;
8306     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
8307     if (maskbits >= 32) {
8308       __ li($dst$$Register, 0); // addi
8309     } else {
8310       __ rlwinm($dst$$Register, $src1$$Register, src3 & 0x1f, 0, (31-maskbits) & 0x1f);
8311     }
8312   %}
8313   ins_pipe(pipe_class_default);
8314 %}
8315 
8316 // RShiftI + AndI with negpow2-constant + LShiftI
8317 instruct lShiftI_andI_immInegpow2_rShiftI_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
8318   match(Set dst (LShiftI (AndI (RShiftI src1 src3) src2) src3));
8319   predicate(UseRotateAndMaskInstructionsPPC64);
8320 
8321   format %{ "RLWINM  $dst, lShiftI(AndI(RShiftI($src1, $src3), $src2), $src3)" %}
8322   size(4);
8323   ins_encode %{
8324     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
8325     long src2      = $src2$$constant;
8326     long src3      = $src3$$constant;
8327     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
8328     if (maskbits >= 32) {
8329       __ li($dst$$Register, 0); // addi
8330     } else {
8331       __ rlwinm($dst$$Register, $src1$$Register, 0, 0, (31-maskbits) & 0x1f);
8332     }
8333   %}
8334   ins_pipe(pipe_class_default);
8335 %}
8336 
8337 instruct lShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8338   // no match-rule, false predicate
8339   effect(DEF dst, USE src1, USE src2);
8340   predicate(false);
8341 
8342   format %{ "SLD     $dst, $src1, $src2" %}
8343   size(4);
8344   ins_encode %{
8345     // TODO: PPC port $archOpcode(ppc64Opcode_sld);
8346     __ sld($dst$$Register, $src1$$Register, $src2$$Register);
8347   %}
8348   ins_pipe(pipe_class_default);
8349 %}
8350 
8351 // Register Shift Left
8352 instruct lShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8353   match(Set dst (LShiftL src1 src2));
8354   ins_cost(DEFAULT_COST*2);
8355   expand %{
8356     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8357     iRegIdst tmpI;
8358     maskI_reg_imm(tmpI, src2, mask);
8359     lShiftL_regL_regI(dst, src1, tmpI);
8360   %}
8361 %}
8362 
8363 // Register Shift Left Immediate
8364 instruct lshiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8365   match(Set dst (LShiftL src1 src2));
8366   format %{ "SLDI    $dst, $src1, ($src2 & 0x3f)" %}
8367   size(4);
8368   ins_encode %{
8369     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8370     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8371   %}
8372   ins_pipe(pipe_class_default);
8373 %}
8374 
8375 // If we shift more than 32 bits, we need not convert I2L.
8376 instruct lShiftL_regI_immGE32(iRegLdst dst, iRegIsrc src1, uimmI6_ge32 src2) %{
8377   match(Set dst (LShiftL (ConvI2L src1) src2));
8378   ins_cost(DEFAULT_COST);
8379 
8380   size(4);
8381   format %{ "SLDI    $dst, i2l($src1), $src2" %}
8382   ins_encode %{
8383     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8384     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8385   %}
8386   ins_pipe(pipe_class_default);
8387 %}
8388 
8389 // Shift a postivie int to the left.
8390 // Clrlsldi clears the upper 32 bits and shifts.
8391 instruct scaledPositiveI2L_lShiftL_convI2L_reg_imm6(iRegLdst dst, iRegIsrc src1, uimmI6 src2) %{
8392   match(Set dst (LShiftL (ConvI2L src1) src2));
8393   predicate(((ConvI2LNode*)(_kids[0]->_leaf))->type()->is_long()->is_positive_int());
8394 
8395   format %{ "SLDI    $dst, i2l(positive_int($src1)), $src2" %}
8396   size(4);
8397   ins_encode %{
8398     // TODO: PPC port $archOpcode(ppc64Opcode_rldic);
8399     __ clrlsldi($dst$$Register, $src1$$Register, 0x20, $src2$$constant);
8400   %}
8401   ins_pipe(pipe_class_default);
8402 %}
8403 
8404 instruct arShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8405   // no match-rule, false predicate
8406   effect(DEF dst, USE src1, USE src2);
8407   predicate(false);
8408 
8409   format %{ "SRAW    $dst, $src1, $src2" %}
8410   size(4);
8411   ins_encode %{
8412     // TODO: PPC port $archOpcode(ppc64Opcode_sraw);
8413     __ sraw($dst$$Register, $src1$$Register, $src2$$Register);
8414   %}
8415   ins_pipe(pipe_class_default);
8416 %}
8417 
8418 // Register Arithmetic Shift Right
8419 instruct arShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8420   match(Set dst (RShiftI src1 src2));
8421   ins_cost(DEFAULT_COST*2);
8422   expand %{
8423     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8424     iRegIdst tmpI;
8425     maskI_reg_imm(tmpI, src2, mask);
8426     arShiftI_reg_reg(dst, src1, tmpI);
8427   %}
8428 %}
8429 
8430 // Register Arithmetic Shift Right Immediate
8431 instruct arShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8432   match(Set dst (RShiftI src1 src2));
8433 
8434   format %{ "SRAWI   $dst, $src1, ($src2 & 0x1f)" %}
8435   size(4);
8436   ins_encode %{
8437     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
8438     __ srawi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8439   %}
8440   ins_pipe(pipe_class_default);
8441 %}
8442 
8443 instruct arShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8444   // no match-rule, false predicate
8445   effect(DEF dst, USE src1, USE src2);
8446   predicate(false);
8447 
8448   format %{ "SRAD    $dst, $src1, $src2" %}
8449   size(4);
8450   ins_encode %{
8451     // TODO: PPC port $archOpcode(ppc64Opcode_srad);
8452     __ srad($dst$$Register, $src1$$Register, $src2$$Register);
8453   %}
8454   ins_pipe(pipe_class_default);
8455 %}
8456 
8457 // Register Shift Right Arithmetic Long
8458 instruct arShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8459   match(Set dst (RShiftL src1 src2));
8460   ins_cost(DEFAULT_COST*2);
8461 
8462   expand %{
8463     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8464     iRegIdst tmpI;
8465     maskI_reg_imm(tmpI, src2, mask);
8466     arShiftL_regL_regI(dst, src1, tmpI);
8467   %}
8468 %}
8469 
8470 // Register Shift Right Immediate
8471 instruct arShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8472   match(Set dst (RShiftL src1 src2));
8473 
8474   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f)" %}
8475   size(4);
8476   ins_encode %{
8477     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
8478     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8479   %}
8480   ins_pipe(pipe_class_default);
8481 %}
8482 
8483 // RShiftL + ConvL2I
8484 instruct convL2I_arShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
8485   match(Set dst (ConvL2I (RShiftL src1 src2)));
8486 
8487   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
8488   size(4);
8489   ins_encode %{
8490     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
8491     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8492   %}
8493   ins_pipe(pipe_class_default);
8494 %}
8495 
8496 instruct urShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8497   // no match-rule, false predicate
8498   effect(DEF dst, USE src1, USE src2);
8499   predicate(false);
8500 
8501   format %{ "SRW     $dst, $src1, $src2" %}
8502   size(4);
8503   ins_encode %{
8504     // TODO: PPC port $archOpcode(ppc64Opcode_srw);
8505     __ srw($dst$$Register, $src1$$Register, $src2$$Register);
8506   %}
8507   ins_pipe(pipe_class_default);
8508 %}
8509 
8510 // Register Shift Right
8511 instruct urShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8512   match(Set dst (URShiftI src1 src2));
8513   ins_cost(DEFAULT_COST*2);
8514 
8515   expand %{
8516     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8517     iRegIdst tmpI;
8518     maskI_reg_imm(tmpI, src2, mask);
8519     urShiftI_reg_reg(dst, src1, tmpI);
8520   %}
8521 %}
8522 
8523 // Register Shift Right Immediate
8524 instruct urShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8525   match(Set dst (URShiftI src1 src2));
8526 
8527   format %{ "SRWI    $dst, $src1, ($src2 & 0x1f)" %}
8528   size(4);
8529   ins_encode %{
8530     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8531     __ srwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8532   %}
8533   ins_pipe(pipe_class_default);
8534 %}
8535 
8536 instruct urShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8537   // no match-rule, false predicate
8538   effect(DEF dst, USE src1, USE src2);
8539   predicate(false);
8540 
8541   format %{ "SRD     $dst, $src1, $src2" %}
8542   size(4);
8543   ins_encode %{
8544     // TODO: PPC port $archOpcode(ppc64Opcode_srd);
8545     __ srd($dst$$Register, $src1$$Register, $src2$$Register);
8546   %}
8547   ins_pipe(pipe_class_default);
8548 %}
8549 
8550 // Register Shift Right
8551 instruct urShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8552   match(Set dst (URShiftL src1 src2));
8553   ins_cost(DEFAULT_COST*2);
8554 
8555   expand %{
8556     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8557     iRegIdst tmpI;
8558     maskI_reg_imm(tmpI, src2, mask);
8559     urShiftL_regL_regI(dst, src1, tmpI);
8560   %}
8561 %}
8562 
8563 // Register Shift Right Immediate
8564 instruct urShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8565   match(Set dst (URShiftL src1 src2));
8566 
8567   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f)" %}
8568   size(4);
8569   ins_encode %{
8570     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8571     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8572   %}
8573   ins_pipe(pipe_class_default);
8574 %}
8575 
8576 // URShiftL + ConvL2I.
8577 instruct convL2I_urShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
8578   match(Set dst (ConvL2I (URShiftL src1 src2)));
8579 
8580   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
8581   size(4);
8582   ins_encode %{
8583     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8584     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8585   %}
8586   ins_pipe(pipe_class_default);
8587 %}
8588 
8589 // Register Shift Right Immediate with a CastP2X
8590 instruct shrP_convP2X_reg_imm6(iRegLdst dst, iRegP_N2P src1, uimmI6 src2) %{
8591   match(Set dst (URShiftL (CastP2X src1) src2));
8592 
8593   format %{ "SRDI    $dst, $src1, $src2 \t// Cast ptr $src1 to long and shift" %}
8594   size(4);
8595   ins_encode %{
8596     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8597     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8598   %}
8599   ins_pipe(pipe_class_default);
8600 %}
8601 
8602 instruct sxtI_reg(iRegIdst dst, iRegIsrc src) %{
8603   match(Set dst (ConvL2I (ConvI2L src)));
8604 
8605   format %{ "EXTSW   $dst, $src \t// int->int" %}
8606   size(4);
8607   ins_encode %{
8608     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
8609     __ extsw($dst$$Register, $src$$Register);
8610   %}
8611   ins_pipe(pipe_class_default);
8612 %}
8613 
8614 //----------Rotate Instructions------------------------------------------------
8615 
8616 // Rotate Left by 8-bit immediate
8617 instruct rotlI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 lshift, immI8 rshift) %{
8618   match(Set dst (OrI (LShiftI src lshift) (URShiftI src rshift)));
8619   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8620 
8621   format %{ "ROTLWI  $dst, $src, $lshift" %}
8622   size(4);
8623   ins_encode %{
8624     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8625     __ rotlwi($dst$$Register, $src$$Register, $lshift$$constant);
8626   %}
8627   ins_pipe(pipe_class_default);
8628 %}
8629 
8630 // Rotate Right by 8-bit immediate
8631 instruct rotrI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 rshift, immI8 lshift) %{
8632   match(Set dst (OrI (URShiftI src rshift) (LShiftI src lshift)));
8633   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8634 
8635   format %{ "ROTRWI  $dst, $rshift" %}
8636   size(4);
8637   ins_encode %{
8638     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8639     __ rotrwi($dst$$Register, $src$$Register, $rshift$$constant);
8640   %}
8641   ins_pipe(pipe_class_default);
8642 %}
8643 
8644 //----------Floating Point Arithmetic Instructions-----------------------------
8645 
8646 // Add float single precision
8647 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
8648   match(Set dst (AddF src1 src2));
8649 
8650   format %{ "FADDS   $dst, $src1, $src2" %}
8651   size(4);
8652   ins_encode %{
8653     // TODO: PPC port $archOpcode(ppc64Opcode_fadds);
8654     __ fadds($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8655   %}
8656   ins_pipe(pipe_class_default);
8657 %}
8658 
8659 // Add float double precision
8660 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
8661   match(Set dst (AddD src1 src2));
8662 
8663   format %{ "FADD    $dst, $src1, $src2" %}
8664   size(4);
8665   ins_encode %{
8666     // TODO: PPC port $archOpcode(ppc64Opcode_fadd);
8667     __ fadd($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8668   %}
8669   ins_pipe(pipe_class_default);
8670 %}
8671 
8672 // Sub float single precision
8673 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
8674   match(Set dst (SubF src1 src2));
8675 
8676   format %{ "FSUBS   $dst, $src1, $src2" %}
8677   size(4);
8678   ins_encode %{
8679     // TODO: PPC port $archOpcode(ppc64Opcode_fsubs);
8680     __ fsubs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8681   %}
8682   ins_pipe(pipe_class_default);
8683 %}
8684 
8685 // Sub float double precision
8686 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
8687   match(Set dst (SubD src1 src2));
8688   format %{ "FSUB    $dst, $src1, $src2" %}
8689   size(4);
8690   ins_encode %{
8691     // TODO: PPC port $archOpcode(ppc64Opcode_fsub);
8692     __ fsub($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8693   %}
8694   ins_pipe(pipe_class_default);
8695 %}
8696 
8697 // Mul float single precision
8698 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
8699   match(Set dst (MulF src1 src2));
8700   format %{ "FMULS   $dst, $src1, $src2" %}
8701   size(4);
8702   ins_encode %{
8703     // TODO: PPC port $archOpcode(ppc64Opcode_fmuls);
8704     __ fmuls($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8705   %}
8706   ins_pipe(pipe_class_default);
8707 %}
8708 
8709 // Mul float double precision
8710 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
8711   match(Set dst (MulD src1 src2));
8712   format %{ "FMUL    $dst, $src1, $src2" %}
8713   size(4);
8714   ins_encode %{
8715     // TODO: PPC port $archOpcode(ppc64Opcode_fmul);
8716     __ fmul($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8717   %}
8718   ins_pipe(pipe_class_default);
8719 %}
8720 
8721 // Div float single precision
8722 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
8723   match(Set dst (DivF src1 src2));
8724   format %{ "FDIVS   $dst, $src1, $src2" %}
8725   size(4);
8726   ins_encode %{
8727     // TODO: PPC port $archOpcode(ppc64Opcode_fdivs);
8728     __ fdivs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8729   %}
8730   ins_pipe(pipe_class_default);
8731 %}
8732 
8733 // Div float double precision
8734 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
8735   match(Set dst (DivD src1 src2));
8736   format %{ "FDIV    $dst, $src1, $src2" %}
8737   size(4);
8738   ins_encode %{
8739     // TODO: PPC port $archOpcode(ppc64Opcode_fdiv);
8740     __ fdiv($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8741   %}
8742   ins_pipe(pipe_class_default);
8743 %}
8744 
8745 // Absolute float single precision
8746 instruct absF_reg(regF dst, regF src) %{
8747   match(Set dst (AbsF src));
8748   format %{ "FABS    $dst, $src \t// float" %}
8749   size(4);
8750   ins_encode %{
8751     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
8752     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
8753   %}
8754   ins_pipe(pipe_class_default);
8755 %}
8756 
8757 // Absolute float double precision
8758 instruct absD_reg(regD dst, regD src) %{
8759   match(Set dst (AbsD src));
8760   format %{ "FABS    $dst, $src \t// double" %}
8761   size(4);
8762   ins_encode %{
8763     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
8764     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
8765   %}
8766   ins_pipe(pipe_class_default);
8767 %}
8768 
8769 instruct negF_reg(regF dst, regF src) %{
8770   match(Set dst (NegF src));
8771   format %{ "FNEG    $dst, $src \t// float" %}
8772   size(4);
8773   ins_encode %{
8774     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
8775     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
8776   %}
8777   ins_pipe(pipe_class_default);
8778 %}
8779 
8780 instruct negD_reg(regD dst, regD src) %{
8781   match(Set dst (NegD src));
8782   format %{ "FNEG    $dst, $src \t// double" %}
8783   size(4);
8784   ins_encode %{
8785     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
8786     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
8787   %}
8788   ins_pipe(pipe_class_default);
8789 %}
8790 
8791 // AbsF + NegF.
8792 instruct negF_absF_reg(regF dst, regF src) %{
8793   match(Set dst (NegF (AbsF src)));
8794   format %{ "FNABS   $dst, $src \t// float" %}
8795   size(4);
8796   ins_encode %{
8797     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
8798     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
8799   %}
8800   ins_pipe(pipe_class_default);
8801 %}
8802 
8803 // AbsD + NegD.
8804 instruct negD_absD_reg(regD dst, regD src) %{
8805   match(Set dst (NegD (AbsD src)));
8806   format %{ "FNABS   $dst, $src \t// double" %}
8807   size(4);
8808   ins_encode %{
8809     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
8810     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
8811   %}
8812   ins_pipe(pipe_class_default);
8813 %}
8814 
8815 // VM_Version::has_fsqrt() decides if this node will be used.
8816 // Sqrt float double precision
8817 instruct sqrtD_reg(regD dst, regD src) %{
8818   match(Set dst (SqrtD src));
8819   format %{ "FSQRT   $dst, $src" %}
8820   size(4);
8821   ins_encode %{
8822     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrt);
8823     __ fsqrt($dst$$FloatRegister, $src$$FloatRegister);
8824   %}
8825   ins_pipe(pipe_class_default);
8826 %}
8827 
8828 // Single-precision sqrt.
8829 instruct sqrtF_reg(regF dst, regF src) %{
8830   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
8831   predicate(VM_Version::has_fsqrts());
8832   ins_cost(DEFAULT_COST);
8833 
8834   format %{ "FSQRTS  $dst, $src" %}
8835   size(4);
8836   ins_encode %{
8837     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrts);
8838     __ fsqrts($dst$$FloatRegister, $src$$FloatRegister);
8839   %}
8840   ins_pipe(pipe_class_default);
8841 %}
8842 
8843 instruct roundDouble_nop(regD dst) %{
8844   match(Set dst (RoundDouble dst));
8845   ins_cost(0);
8846 
8847   format %{ " -- \t// RoundDouble not needed - empty" %}
8848   size(0);
8849   // PPC results are already "rounded" (i.e., normal-format IEEE).
8850   ins_encode( /*empty*/ );
8851   ins_pipe(pipe_class_default);
8852 %}
8853 
8854 instruct roundFloat_nop(regF dst) %{
8855   match(Set dst (RoundFloat dst));
8856   ins_cost(0);
8857 
8858   format %{ " -- \t// RoundFloat not needed - empty" %}
8859   size(0);
8860   // PPC results are already "rounded" (i.e., normal-format IEEE).
8861   ins_encode( /*empty*/ );
8862   ins_pipe(pipe_class_default);
8863 %}
8864 
8865 //----------Logical Instructions-----------------------------------------------
8866 
8867 // And Instructions
8868 
8869 // Register And
8870 instruct andI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8871   match(Set dst (AndI src1 src2));
8872   format %{ "AND     $dst, $src1, $src2" %}
8873   size(4);
8874   ins_encode %{
8875     // TODO: PPC port $archOpcode(ppc64Opcode_and);
8876     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
8877   %}
8878   ins_pipe(pipe_class_default);
8879 %}
8880 
8881 // Immediate And
8882 instruct andI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2, flagsRegCR0 cr0) %{
8883   match(Set dst (AndI src1 src2));
8884   effect(KILL cr0);
8885 
8886   format %{ "ANDI    $dst, $src1, $src2" %}
8887   size(4);
8888   ins_encode %{
8889     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
8890     // FIXME: avoid andi_ ?
8891     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
8892   %}
8893   ins_pipe(pipe_class_default);
8894 %}
8895 
8896 // Immediate And where the immediate is a negative power of 2.
8897 instruct andI_reg_immInegpow2(iRegIdst dst, iRegIsrc src1, immInegpow2 src2) %{
8898   match(Set dst (AndI src1 src2));
8899   format %{ "ANDWI   $dst, $src1, $src2" %}
8900   size(4);
8901   ins_encode %{
8902     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8903     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)(julong)(juint)-($src2$$constant)));
8904   %}
8905   ins_pipe(pipe_class_default);
8906 %}
8907 
8908 instruct andI_reg_immIpow2minus1(iRegIdst dst, iRegIsrc src1, immIpow2minus1 src2) %{
8909   match(Set dst (AndI src1 src2));
8910   format %{ "ANDWI   $dst, $src1, $src2" %}
8911   size(4);
8912   ins_encode %{
8913     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8914     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
8915   %}
8916   ins_pipe(pipe_class_default);
8917 %}
8918 
8919 instruct andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src1, immIpowerOf2 src2) %{
8920   match(Set dst (AndI src1 src2));
8921   predicate(UseRotateAndMaskInstructionsPPC64);
8922   format %{ "ANDWI   $dst, $src1, $src2" %}
8923   size(4);
8924   ins_encode %{
8925     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8926     __ rlwinm($dst$$Register, $src1$$Register, 0,
8927               (31-log2_long((jlong) $src2$$constant)) & 0x1f, (31-log2_long((jlong) $src2$$constant)) & 0x1f);
8928   %}
8929   ins_pipe(pipe_class_default);
8930 %}
8931 
8932 // Register And Long
8933 instruct andL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8934   match(Set dst (AndL src1 src2));
8935   ins_cost(DEFAULT_COST);
8936 
8937   format %{ "AND     $dst, $src1, $src2 \t// long" %}
8938   size(4);
8939   ins_encode %{
8940     // TODO: PPC port $archOpcode(ppc64Opcode_and);
8941     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
8942   %}
8943   ins_pipe(pipe_class_default);
8944 %}
8945 
8946 // Immediate And long
8947 instruct andL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2, flagsRegCR0 cr0) %{
8948   match(Set dst (AndL src1 src2));
8949   effect(KILL cr0);
8950   ins_cost(DEFAULT_COST);
8951 
8952   format %{ "ANDI    $dst, $src1, $src2 \t// long" %}
8953   size(4);
8954   ins_encode %{
8955     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
8956     // FIXME: avoid andi_ ?
8957     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
8958   %}
8959   ins_pipe(pipe_class_default);
8960 %}
8961 
8962 // Immediate And Long where the immediate is a negative power of 2.
8963 instruct andL_reg_immLnegpow2(iRegLdst dst, iRegLsrc src1, immLnegpow2 src2) %{
8964   match(Set dst (AndL src1 src2));
8965   format %{ "ANDDI   $dst, $src1, $src2" %}
8966   size(4);
8967   ins_encode %{
8968     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8969     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)-$src2$$constant));
8970   %}
8971   ins_pipe(pipe_class_default);
8972 %}
8973 
8974 instruct andL_reg_immLpow2minus1(iRegLdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
8975   match(Set dst (AndL src1 src2));
8976   format %{ "ANDDI   $dst, $src1, $src2" %}
8977   size(4);
8978   ins_encode %{
8979     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8980     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
8981   %}
8982   ins_pipe(pipe_class_default);
8983 %}
8984 
8985 // AndL + ConvL2I.
8986 instruct convL2I_andL_reg_immLpow2minus1(iRegIdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
8987   match(Set dst (ConvL2I (AndL src1 src2)));
8988   ins_cost(DEFAULT_COST);
8989 
8990   format %{ "ANDDI   $dst, $src1, $src2 \t// long + l2i" %}
8991   size(4);
8992   ins_encode %{
8993     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8994     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
8995   %}
8996   ins_pipe(pipe_class_default);
8997 %}
8998 
8999 // Or Instructions
9000 
9001 // Register Or
9002 instruct orI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9003   match(Set dst (OrI src1 src2));
9004   format %{ "OR      $dst, $src1, $src2" %}
9005   size(4);
9006   ins_encode %{
9007     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9008     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
9009   %}
9010   ins_pipe(pipe_class_default);
9011 %}
9012 
9013 // Expand does not work with above instruct. (??)
9014 instruct orI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9015   // no match-rule
9016   effect(DEF dst, USE src1, USE src2);
9017   format %{ "OR      $dst, $src1, $src2" %}
9018   size(4);
9019   ins_encode %{
9020     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9021     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
9022   %}
9023   ins_pipe(pipe_class_default);
9024 %}
9025 
9026 instruct tree_orI_orI_orI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
9027   match(Set dst (OrI (OrI (OrI src1 src2) src3) src4));
9028   ins_cost(DEFAULT_COST*3);
9029 
9030   expand %{
9031     // FIXME: we should do this in the ideal world.
9032     iRegIdst tmp1;
9033     iRegIdst tmp2;
9034     orI_reg_reg(tmp1, src1, src2);
9035     orI_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
9036     orI_reg_reg(dst, tmp1, tmp2);
9037   %}
9038 %}
9039 
9040 // Immediate Or
9041 instruct orI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
9042   match(Set dst (OrI src1 src2));
9043   format %{ "ORI     $dst, $src1, $src2" %}
9044   size(4);
9045   ins_encode %{
9046     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
9047     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
9048   %}
9049   ins_pipe(pipe_class_default);
9050 %}
9051 
9052 // Register Or Long
9053 instruct orL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
9054   match(Set dst (OrL src1 src2));
9055   ins_cost(DEFAULT_COST);
9056 
9057   size(4);
9058   format %{ "OR      $dst, $src1, $src2 \t// long" %}
9059   ins_encode %{
9060     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9061     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
9062   %}
9063   ins_pipe(pipe_class_default);
9064 %}
9065 
9066 // OrL + ConvL2I.
9067 instruct orI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
9068   match(Set dst (ConvL2I (OrL src1 src2)));
9069   ins_cost(DEFAULT_COST);
9070 
9071   format %{ "OR      $dst, $src1, $src2 \t// long + l2i" %}
9072   size(4);
9073   ins_encode %{
9074     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9075     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
9076   %}
9077   ins_pipe(pipe_class_default);
9078 %}
9079 
9080 // Immediate Or long
9081 instruct orL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 con) %{
9082   match(Set dst (OrL src1 con));
9083   ins_cost(DEFAULT_COST);
9084 
9085   format %{ "ORI     $dst, $src1, $con \t// long" %}
9086   size(4);
9087   ins_encode %{
9088     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
9089     __ ori($dst$$Register, $src1$$Register, ($con$$constant) & 0xFFFF);
9090   %}
9091   ins_pipe(pipe_class_default);
9092 %}
9093 
9094 // Xor Instructions
9095 
9096 // Register Xor
9097 instruct xorI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9098   match(Set dst (XorI src1 src2));
9099   format %{ "XOR     $dst, $src1, $src2" %}
9100   size(4);
9101   ins_encode %{
9102     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9103     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9104   %}
9105   ins_pipe(pipe_class_default);
9106 %}
9107 
9108 // Expand does not work with above instruct. (??)
9109 instruct xorI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9110   // no match-rule
9111   effect(DEF dst, USE src1, USE src2);
9112   format %{ "XOR     $dst, $src1, $src2" %}
9113   size(4);
9114   ins_encode %{
9115     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9116     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9117   %}
9118   ins_pipe(pipe_class_default);
9119 %}
9120 
9121 instruct tree_xorI_xorI_xorI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
9122   match(Set dst (XorI (XorI (XorI src1 src2) src3) src4));
9123   ins_cost(DEFAULT_COST*3);
9124 
9125   expand %{
9126     // FIXME: we should do this in the ideal world.
9127     iRegIdst tmp1;
9128     iRegIdst tmp2;
9129     xorI_reg_reg(tmp1, src1, src2);
9130     xorI_reg_reg_2(tmp2, src3, src4); // Adlc complains about xorI_reg_reg.
9131     xorI_reg_reg(dst, tmp1, tmp2);
9132   %}
9133 %}
9134 
9135 // Immediate Xor
9136 instruct xorI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
9137   match(Set dst (XorI src1 src2));
9138   format %{ "XORI    $dst, $src1, $src2" %}
9139   size(4);
9140   ins_encode %{
9141     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
9142     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
9143   %}
9144   ins_pipe(pipe_class_default);
9145 %}
9146 
9147 // Register Xor Long
9148 instruct xorL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
9149   match(Set dst (XorL src1 src2));
9150   ins_cost(DEFAULT_COST);
9151 
9152   format %{ "XOR     $dst, $src1, $src2 \t// long" %}
9153   size(4);
9154   ins_encode %{
9155     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9156     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9157   %}
9158   ins_pipe(pipe_class_default);
9159 %}
9160 
9161 // XorL + ConvL2I.
9162 instruct xorI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
9163   match(Set dst (ConvL2I (XorL src1 src2)));
9164   ins_cost(DEFAULT_COST);
9165 
9166   format %{ "XOR     $dst, $src1, $src2 \t// long + l2i" %}
9167   size(4);
9168   ins_encode %{
9169     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9170     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9171   %}
9172   ins_pipe(pipe_class_default);
9173 %}
9174 
9175 // Immediate Xor Long
9176 instruct xorL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2) %{
9177   match(Set dst (XorL src1 src2));
9178   ins_cost(DEFAULT_COST);
9179 
9180   format %{ "XORI    $dst, $src1, $src2 \t// long" %}
9181   size(4);
9182   ins_encode %{
9183     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
9184     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
9185   %}
9186   ins_pipe(pipe_class_default);
9187 %}
9188 
9189 instruct notI_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
9190   match(Set dst (XorI src1 src2));
9191   ins_cost(DEFAULT_COST);
9192 
9193   format %{ "NOT     $dst, $src1 ($src2)" %}
9194   size(4);
9195   ins_encode %{
9196     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
9197     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
9198   %}
9199   ins_pipe(pipe_class_default);
9200 %}
9201 
9202 instruct notL_reg(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
9203   match(Set dst (XorL src1 src2));
9204   ins_cost(DEFAULT_COST);
9205 
9206   format %{ "NOT     $dst, $src1 ($src2) \t// long" %}
9207   size(4);
9208   ins_encode %{
9209     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
9210     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
9211   %}
9212   ins_pipe(pipe_class_default);
9213 %}
9214 
9215 // And-complement
9216 instruct andcI_reg_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2, iRegIsrc src3) %{
9217   match(Set dst (AndI (XorI src1 src2) src3));
9218   ins_cost(DEFAULT_COST);
9219 
9220   format %{ "ANDW    $dst, xori($src1, $src2), $src3" %}
9221   size(4);
9222   ins_encode( enc_andc(dst, src3, src1) );
9223   ins_pipe(pipe_class_default);
9224 %}
9225 
9226 // And-complement
9227 instruct andcL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
9228   // no match-rule, false predicate
9229   effect(DEF dst, USE src1, USE src2);
9230   predicate(false);
9231 
9232   format %{ "ANDC    $dst, $src1, $src2" %}
9233   size(4);
9234   ins_encode %{
9235     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
9236     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
9237   %}
9238   ins_pipe(pipe_class_default);
9239 %}
9240 
9241 //----------Moves between int/long and float/double----------------------------
9242 //
9243 // The following rules move values from int/long registers/stack-locations
9244 // to float/double registers/stack-locations and vice versa, without doing any
9245 // conversions. These rules are used to implement the bit-conversion methods
9246 // of java.lang.Float etc., e.g.
9247 //   int   floatToIntBits(float value)
9248 //   float intBitsToFloat(int bits)
9249 //
9250 // Notes on the implementation on ppc64:
9251 // We only provide rules which move between a register and a stack-location,
9252 // because we always have to go through memory when moving between a float
9253 // register and an integer register.
9254 
9255 //---------- Chain stack slots between similar types --------
9256 
9257 // These are needed so that the rules below can match.
9258 
9259 // Load integer from stack slot
9260 instruct stkI_to_regI(iRegIdst dst, stackSlotI src) %{
9261   match(Set dst src);
9262   ins_cost(MEMORY_REF_COST);
9263 
9264   format %{ "LWZ     $dst, $src" %}
9265   size(4);
9266   ins_encode( enc_lwz(dst, src) );
9267   ins_pipe(pipe_class_memory);
9268 %}
9269 
9270 // Store integer to stack slot
9271 instruct regI_to_stkI(stackSlotI dst, iRegIsrc src) %{
9272   match(Set dst src);
9273   ins_cost(MEMORY_REF_COST);
9274 
9275   format %{ "STW     $src, $dst \t// stk" %}
9276   size(4);
9277   ins_encode( enc_stw(src, dst) ); // rs=rt
9278   ins_pipe(pipe_class_memory);
9279 %}
9280 
9281 // Load long from stack slot
9282 instruct stkL_to_regL(iRegLdst dst, stackSlotL src) %{
9283   match(Set dst src);
9284   ins_cost(MEMORY_REF_COST);
9285 
9286   format %{ "LD      $dst, $src \t// long" %}
9287   size(4);
9288   ins_encode( enc_ld(dst, src) );
9289   ins_pipe(pipe_class_memory);
9290 %}
9291 
9292 // Store long to stack slot
9293 instruct regL_to_stkL(stackSlotL dst, iRegLsrc src) %{
9294   match(Set dst src);
9295   ins_cost(MEMORY_REF_COST);
9296 
9297   format %{ "STD     $src, $dst \t// long" %}
9298   size(4);
9299   ins_encode( enc_std(src, dst) ); // rs=rt
9300   ins_pipe(pipe_class_memory);
9301 %}
9302 
9303 //----------Moves between int and float
9304 
9305 // Move float value from float stack-location to integer register.
9306 instruct moveF2I_stack_reg(iRegIdst dst, stackSlotF src) %{
9307   match(Set dst (MoveF2I src));
9308   ins_cost(MEMORY_REF_COST);
9309 
9310   format %{ "LWZ     $dst, $src \t// MoveF2I" %}
9311   size(4);
9312   ins_encode( enc_lwz(dst, src) );
9313   ins_pipe(pipe_class_memory);
9314 %}
9315 
9316 // Move float value from float register to integer stack-location.
9317 instruct moveF2I_reg_stack(stackSlotI dst, regF src) %{
9318   match(Set dst (MoveF2I src));
9319   ins_cost(MEMORY_REF_COST);
9320 
9321   format %{ "STFS    $src, $dst \t// MoveF2I" %}
9322   size(4);
9323   ins_encode( enc_stfs(src, dst) );
9324   ins_pipe(pipe_class_memory);
9325 %}
9326 
9327 // Move integer value from integer stack-location to float register.
9328 instruct moveI2F_stack_reg(regF dst, stackSlotI src) %{
9329   match(Set dst (MoveI2F src));
9330   ins_cost(MEMORY_REF_COST);
9331 
9332   format %{ "LFS     $dst, $src \t// MoveI2F" %}
9333   size(4);
9334   ins_encode %{
9335     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
9336     int Idisp = $src$$disp + frame_slots_bias($src$$base, ra_);
9337     __ lfs($dst$$FloatRegister, Idisp, $src$$base$$Register);
9338   %}
9339   ins_pipe(pipe_class_memory);
9340 %}
9341 
9342 // Move integer value from integer register to float stack-location.
9343 instruct moveI2F_reg_stack(stackSlotF dst, iRegIsrc src) %{
9344   match(Set dst (MoveI2F src));
9345   ins_cost(MEMORY_REF_COST);
9346 
9347   format %{ "STW     $src, $dst \t// MoveI2F" %}
9348   size(4);
9349   ins_encode( enc_stw(src, dst) );
9350   ins_pipe(pipe_class_memory);
9351 %}
9352 
9353 //----------Moves between long and float
9354 
9355 instruct moveF2L_reg_stack(stackSlotL dst, regF src) %{
9356   // no match-rule, false predicate
9357   effect(DEF dst, USE src);
9358   predicate(false);
9359 
9360   format %{ "storeD  $src, $dst \t// STACK" %}
9361   size(4);
9362   ins_encode( enc_stfd(src, dst) );
9363   ins_pipe(pipe_class_default);
9364 %}
9365 
9366 //----------Moves between long and double
9367 
9368 // Move double value from double stack-location to long register.
9369 instruct moveD2L_stack_reg(iRegLdst dst, stackSlotD src) %{
9370   match(Set dst (MoveD2L src));
9371   ins_cost(MEMORY_REF_COST);
9372   size(4);
9373   format %{ "LD      $dst, $src \t// MoveD2L" %}
9374   ins_encode( enc_ld(dst, src) );
9375   ins_pipe(pipe_class_memory);
9376 %}
9377 
9378 // Move double value from double register to long stack-location.
9379 instruct moveD2L_reg_stack(stackSlotL dst, regD src) %{
9380   match(Set dst (MoveD2L src));
9381   effect(DEF dst, USE src);
9382   ins_cost(MEMORY_REF_COST);
9383 
9384   format %{ "STFD    $src, $dst \t// MoveD2L" %}
9385   size(4);
9386   ins_encode( enc_stfd(src, dst) );
9387   ins_pipe(pipe_class_memory);
9388 %}
9389 
9390 // Move long value from long stack-location to double register.
9391 instruct moveL2D_stack_reg(regD dst, stackSlotL src) %{
9392   match(Set dst (MoveL2D src));
9393   ins_cost(MEMORY_REF_COST);
9394 
9395   format %{ "LFD     $dst, $src \t// MoveL2D" %}
9396   size(4);
9397   ins_encode( enc_lfd(dst, src) );
9398   ins_pipe(pipe_class_memory);
9399 %}
9400 
9401 // Move long value from long register to double stack-location.
9402 instruct moveL2D_reg_stack(stackSlotD dst, iRegLsrc src) %{
9403   match(Set dst (MoveL2D src));
9404   ins_cost(MEMORY_REF_COST);
9405 
9406   format %{ "STD     $src, $dst \t// MoveL2D" %}
9407   size(4);
9408   ins_encode( enc_std(src, dst) );
9409   ins_pipe(pipe_class_memory);
9410 %}
9411 
9412 //----------Register Move Instructions-----------------------------------------
9413 
9414 // Replicate for Superword
9415 
9416 instruct moveReg(iRegLdst dst, iRegIsrc src) %{
9417   predicate(false);
9418   effect(DEF dst, USE src);
9419 
9420   format %{ "MR      $dst, $src \t// replicate " %}
9421   // variable size, 0 or 4.
9422   ins_encode %{
9423     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9424     __ mr_if_needed($dst$$Register, $src$$Register);
9425   %}
9426   ins_pipe(pipe_class_default);
9427 %}
9428 
9429 //----------Cast instructions (Java-level type cast)---------------------------
9430 
9431 // Cast Long to Pointer for unsafe natives.
9432 instruct castX2P(iRegPdst dst, iRegLsrc src) %{
9433   match(Set dst (CastX2P src));
9434 
9435   format %{ "MR      $dst, $src \t// Long->Ptr" %}
9436   // variable size, 0 or 4.
9437   ins_encode %{
9438     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9439     __ mr_if_needed($dst$$Register, $src$$Register);
9440   %}
9441  ins_pipe(pipe_class_default);
9442 %}
9443 
9444 // Cast Pointer to Long for unsafe natives.
9445 instruct castP2X(iRegLdst dst, iRegP_N2P src) %{
9446   match(Set dst (CastP2X src));
9447 
9448   format %{ "MR      $dst, $src \t// Ptr->Long" %}
9449   // variable size, 0 or 4.
9450   ins_encode %{
9451     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9452     __ mr_if_needed($dst$$Register, $src$$Register);
9453   %}
9454   ins_pipe(pipe_class_default);
9455 %}
9456 
9457 instruct castPP(iRegPdst dst) %{
9458   match(Set dst (CastPP dst));
9459   format %{ " -- \t// castPP of $dst" %}
9460   size(0);
9461   ins_encode( /*empty*/ );
9462   ins_pipe(pipe_class_default);
9463 %}
9464 
9465 instruct castII(iRegIdst dst) %{
9466   match(Set dst (CastII dst));
9467   format %{ " -- \t// castII of $dst" %}
9468   size(0);
9469   ins_encode( /*empty*/ );
9470   ins_pipe(pipe_class_default);
9471 %}
9472 
9473 instruct checkCastPP(iRegPdst dst) %{
9474   match(Set dst (CheckCastPP dst));
9475   format %{ " -- \t// checkcastPP of $dst" %}
9476   size(0);
9477   ins_encode( /*empty*/ );
9478   ins_pipe(pipe_class_default);
9479 %}
9480 
9481 //----------Convert instructions-----------------------------------------------
9482 
9483 // Convert to boolean.
9484 
9485 // int_to_bool(src) : { 1   if src != 0
9486 //                    { 0   else
9487 //
9488 // strategy:
9489 // 1) Count leading zeros of 32 bit-value src,
9490 //    this returns 32 (0b10.0000) iff src == 0 and <32 otherwise.
9491 // 2) Shift 5 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
9492 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
9493 
9494 // convI2Bool
9495 instruct convI2Bool_reg__cntlz_Ex(iRegIdst dst, iRegIsrc src) %{
9496   match(Set dst (Conv2B src));
9497   predicate(UseCountLeadingZerosInstructionsPPC64);
9498   ins_cost(DEFAULT_COST);
9499 
9500   expand %{
9501     immI shiftAmount %{ 0x5 %}
9502     uimmI16 mask %{ 0x1 %}
9503     iRegIdst tmp1;
9504     iRegIdst tmp2;
9505     countLeadingZerosI(tmp1, src);
9506     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
9507     xorI_reg_uimm16(dst, tmp2, mask);
9508   %}
9509 %}
9510 
9511 instruct convI2Bool_reg__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx) %{
9512   match(Set dst (Conv2B src));
9513   effect(TEMP crx);
9514   predicate(!UseCountLeadingZerosInstructionsPPC64);
9515   ins_cost(DEFAULT_COST);
9516 
9517   format %{ "CMPWI   $crx, $src, #0 \t// convI2B"
9518             "LI      $dst, #0\n\t"
9519             "BEQ     $crx, done\n\t"
9520             "LI      $dst, #1\n"
9521             "done:" %}
9522   size(16);
9523   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x0, 0x1) );
9524   ins_pipe(pipe_class_compare);
9525 %}
9526 
9527 // ConvI2B + XorI
9528 instruct xorI_convI2Bool_reg_immIvalue1__cntlz_Ex(iRegIdst dst, iRegIsrc src, immI_1 mask) %{
9529   match(Set dst (XorI (Conv2B src) mask));
9530   predicate(UseCountLeadingZerosInstructionsPPC64);
9531   ins_cost(DEFAULT_COST);
9532 
9533   expand %{
9534     immI shiftAmount %{ 0x5 %}
9535     iRegIdst tmp1;
9536     countLeadingZerosI(tmp1, src);
9537     urShiftI_reg_imm(dst, tmp1, shiftAmount);
9538   %}
9539 %}
9540 
9541 instruct xorI_convI2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI_1 mask) %{
9542   match(Set dst (XorI (Conv2B src) mask));
9543   effect(TEMP crx);
9544   predicate(!UseCountLeadingZerosInstructionsPPC64);
9545   ins_cost(DEFAULT_COST);
9546 
9547   format %{ "CMPWI   $crx, $src, #0 \t// Xor(convI2B($src), $mask)"
9548             "LI      $dst, #1\n\t"
9549             "BEQ     $crx, done\n\t"
9550             "LI      $dst, #0\n"
9551             "done:" %}
9552   size(16);
9553   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x1, 0x0) );
9554   ins_pipe(pipe_class_compare);
9555 %}
9556 
9557 // AndI 0b0..010..0 + ConvI2B
9558 instruct convI2Bool_andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src, immIpowerOf2 mask) %{
9559   match(Set dst (Conv2B (AndI src mask)));
9560   predicate(UseRotateAndMaskInstructionsPPC64);
9561   ins_cost(DEFAULT_COST);
9562 
9563   format %{ "RLWINM  $dst, $src, $mask \t// convI2B(AndI($src, $mask))" %}
9564   size(4);
9565   ins_encode %{
9566     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
9567     __ rlwinm($dst$$Register, $src$$Register, (32-log2_long((jlong)$mask$$constant)) & 0x1f, 31, 31);
9568   %}
9569   ins_pipe(pipe_class_default);
9570 %}
9571 
9572 // Convert pointer to boolean.
9573 //
9574 // ptr_to_bool(src) : { 1   if src != 0
9575 //                    { 0   else
9576 //
9577 // strategy:
9578 // 1) Count leading zeros of 64 bit-value src,
9579 //    this returns 64 (0b100.0000) iff src == 0 and <64 otherwise.
9580 // 2) Shift 6 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
9581 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
9582 
9583 // ConvP2B
9584 instruct convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src) %{
9585   match(Set dst (Conv2B src));
9586   predicate(UseCountLeadingZerosInstructionsPPC64);
9587   ins_cost(DEFAULT_COST);
9588 
9589   expand %{
9590     immI shiftAmount %{ 0x6 %}
9591     uimmI16 mask %{ 0x1 %}
9592     iRegIdst tmp1;
9593     iRegIdst tmp2;
9594     countLeadingZerosP(tmp1, src);
9595     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
9596     xorI_reg_uimm16(dst, tmp2, mask);
9597   %}
9598 %}
9599 
9600 instruct convP2Bool_reg__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx) %{
9601   match(Set dst (Conv2B src));
9602   effect(TEMP crx);
9603   predicate(!UseCountLeadingZerosInstructionsPPC64);
9604   ins_cost(DEFAULT_COST);
9605 
9606   format %{ "CMPDI   $crx, $src, #0 \t// convP2B"
9607             "LI      $dst, #0\n\t"
9608             "BEQ     $crx, done\n\t"
9609             "LI      $dst, #1\n"
9610             "done:" %}
9611   size(16);
9612   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x0, 0x1) );
9613   ins_pipe(pipe_class_compare);
9614 %}
9615 
9616 // ConvP2B + XorI
9617 instruct xorI_convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src, immI_1 mask) %{
9618   match(Set dst (XorI (Conv2B src) mask));
9619   predicate(UseCountLeadingZerosInstructionsPPC64);
9620   ins_cost(DEFAULT_COST);
9621 
9622   expand %{
9623     immI shiftAmount %{ 0x6 %}
9624     iRegIdst tmp1;
9625     countLeadingZerosP(tmp1, src);
9626     urShiftI_reg_imm(dst, tmp1, shiftAmount);
9627   %}
9628 %}
9629 
9630 instruct xorI_convP2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx, immI_1 mask) %{
9631   match(Set dst (XorI (Conv2B src) mask));
9632   effect(TEMP crx);
9633   predicate(!UseCountLeadingZerosInstructionsPPC64);
9634   ins_cost(DEFAULT_COST);
9635 
9636   format %{ "CMPDI   $crx, $src, #0 \t// XorI(convP2B($src), $mask)"
9637             "LI      $dst, #1\n\t"
9638             "BEQ     $crx, done\n\t"
9639             "LI      $dst, #0\n"
9640             "done:" %}
9641   size(16);
9642   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x1, 0x0) );
9643   ins_pipe(pipe_class_compare);
9644 %}
9645 
9646 // if src1 < src2, return -1 else return 0
9647 instruct cmpLTMask_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9648   match(Set dst (CmpLTMask src1 src2));
9649   ins_cost(DEFAULT_COST*4);
9650 
9651   expand %{
9652     iRegLdst src1s;
9653     iRegLdst src2s;
9654     iRegLdst diff;
9655     convI2L_reg(src1s, src1); // Ensure proper sign extension.
9656     convI2L_reg(src2s, src2); // Ensure proper sign extension.
9657     subL_reg_reg(diff, src1s, src2s);
9658     // Need to consider >=33 bit result, therefore we need signmaskL.
9659     signmask64I_regL(dst, diff);
9660   %}
9661 %}
9662 
9663 instruct cmpLTMask_reg_immI0(iRegIdst dst, iRegIsrc src1, immI_0 src2) %{
9664   match(Set dst (CmpLTMask src1 src2)); // if src1 < src2, return -1 else return 0
9665   format %{ "SRAWI   $dst, $src1, $src2 \t// CmpLTMask" %}
9666   size(4);
9667   ins_encode %{
9668     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
9669     __ srawi($dst$$Register, $src1$$Register, 0x1f);
9670   %}
9671   ins_pipe(pipe_class_default);
9672 %}
9673 
9674 //----------Arithmetic Conversion Instructions---------------------------------
9675 
9676 // Convert to Byte  -- nop
9677 // Convert to Short -- nop
9678 
9679 // Convert to Int
9680 
9681 instruct convB2I_reg(iRegIdst dst, iRegIsrc src, immI_24 amount) %{
9682   match(Set dst (RShiftI (LShiftI src amount) amount));
9683   format %{ "EXTSB   $dst, $src \t// byte->int" %}
9684   size(4);
9685   ins_encode %{
9686     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
9687     __ extsb($dst$$Register, $src$$Register);
9688   %}
9689   ins_pipe(pipe_class_default);
9690 %}
9691 
9692 // LShiftI 16 + RShiftI 16 converts short to int.
9693 instruct convS2I_reg(iRegIdst dst, iRegIsrc src, immI_16 amount) %{
9694   match(Set dst (RShiftI (LShiftI src amount) amount));
9695   format %{ "EXTSH   $dst, $src \t// short->int" %}
9696   size(4);
9697   ins_encode %{
9698     // TODO: PPC port $archOpcode(ppc64Opcode_extsh);
9699     __ extsh($dst$$Register, $src$$Register);
9700   %}
9701   ins_pipe(pipe_class_default);
9702 %}
9703 
9704 // ConvL2I + ConvI2L: Sign extend int in long register.
9705 instruct sxtI_L2L_reg(iRegLdst dst, iRegLsrc src) %{
9706   match(Set dst (ConvI2L (ConvL2I src)));
9707 
9708   format %{ "EXTSW   $dst, $src \t// long->long" %}
9709   size(4);
9710   ins_encode %{
9711     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
9712     __ extsw($dst$$Register, $src$$Register);
9713   %}
9714   ins_pipe(pipe_class_default);
9715 %}
9716 
9717 instruct convL2I_reg(iRegIdst dst, iRegLsrc src) %{
9718   match(Set dst (ConvL2I src));
9719   format %{ "MR      $dst, $src \t// long->int" %}
9720   // variable size, 0 or 4
9721   ins_encode %{
9722     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9723     __ mr_if_needed($dst$$Register, $src$$Register);
9724   %}
9725   ins_pipe(pipe_class_default);
9726 %}
9727 
9728 instruct convD2IRaw_regD(regD dst, regD src) %{
9729   // no match-rule, false predicate
9730   effect(DEF dst, USE src);
9731   predicate(false);
9732 
9733   format %{ "FCTIWZ $dst, $src \t// convD2I, $src != NaN" %}
9734   size(4);
9735   ins_encode %{
9736     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);;
9737     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
9738   %}
9739   ins_pipe(pipe_class_default);
9740 %}
9741 
9742 instruct cmovI_bso_stackSlotL(iRegIdst dst, flagsReg crx, stackSlotL src) %{
9743   // no match-rule, false predicate
9744   effect(DEF dst, USE crx, USE src);
9745   predicate(false);
9746 
9747   ins_variable_size_depending_on_alignment(true);
9748 
9749   format %{ "cmovI   $crx, $dst, $src" %}
9750   // Worst case is branch + move + stop, no stop without scheduler.
9751   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
9752   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
9753   ins_pipe(pipe_class_default);
9754 %}
9755 
9756 instruct cmovI_bso_stackSlotL_conLvalue0_Ex(iRegIdst dst, flagsReg crx, stackSlotL mem) %{
9757   // no match-rule, false predicate
9758   effect(DEF dst, USE crx, USE mem);
9759   predicate(false);
9760 
9761   format %{ "CmovI   $dst, $crx, $mem \t// postalloc expanded" %}
9762   postalloc_expand %{
9763     //
9764     // replaces
9765     //
9766     //   region  dst  crx  mem
9767     //    \       |    |   /
9768     //     dst=cmovI_bso_stackSlotL_conLvalue0
9769     //
9770     // with
9771     //
9772     //   region  dst
9773     //    \       /
9774     //     dst=loadConI16(0)
9775     //      |
9776     //      ^  region  dst  crx  mem
9777     //      |   \       |    |    /
9778     //      dst=cmovI_bso_stackSlotL
9779     //
9780 
9781     // Create new nodes.
9782     MachNode *m1 = new loadConI16Node();
9783     MachNode *m2 = new cmovI_bso_stackSlotLNode();
9784 
9785     // inputs for new nodes
9786     m1->add_req(n_region);
9787     m2->add_req(n_region, n_crx, n_mem);
9788 
9789     // precedences for new nodes
9790     m2->add_prec(m1);
9791 
9792     // operands for new nodes
9793     m1->_opnds[0] = op_dst;
9794     m1->_opnds[1] = new immI16Oper(0);
9795 
9796     m2->_opnds[0] = op_dst;
9797     m2->_opnds[1] = op_crx;
9798     m2->_opnds[2] = op_mem;
9799 
9800     // registers for new nodes
9801     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9802     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9803 
9804     // Insert new nodes.
9805     nodes->push(m1);
9806     nodes->push(m2);
9807   %}
9808 %}
9809 
9810 // Double to Int conversion, NaN is mapped to 0.
9811 instruct convD2I_reg_ExEx(iRegIdst dst, regD src) %{
9812   match(Set dst (ConvD2I src));
9813   ins_cost(DEFAULT_COST);
9814 
9815   expand %{
9816     regD tmpD;
9817     stackSlotL tmpS;
9818     flagsReg crx;
9819     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9820     convD2IRaw_regD(tmpD, src);                         // Convert float to int (speculated).
9821     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
9822     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9823   %}
9824 %}
9825 
9826 instruct convF2IRaw_regF(regF dst, regF src) %{
9827   // no match-rule, false predicate
9828   effect(DEF dst, USE src);
9829   predicate(false);
9830 
9831   format %{ "FCTIWZ $dst, $src \t// convF2I, $src != NaN" %}
9832   size(4);
9833   ins_encode %{
9834     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
9835     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
9836   %}
9837   ins_pipe(pipe_class_default);
9838 %}
9839 
9840 // Float to Int conversion, NaN is mapped to 0.
9841 instruct convF2I_regF_ExEx(iRegIdst dst, regF src) %{
9842   match(Set dst (ConvF2I src));
9843   ins_cost(DEFAULT_COST);
9844 
9845   expand %{
9846     regF tmpF;
9847     stackSlotL tmpS;
9848     flagsReg crx;
9849     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9850     convF2IRaw_regF(tmpF, src);                         // Convert float to int (speculated).
9851     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
9852     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9853   %}
9854 %}
9855 
9856 // Convert to Long
9857 
9858 instruct convI2L_reg(iRegLdst dst, iRegIsrc src) %{
9859   match(Set dst (ConvI2L src));
9860   format %{ "EXTSW   $dst, $src \t// int->long" %}
9861   size(4);
9862   ins_encode %{
9863     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
9864     __ extsw($dst$$Register, $src$$Register);
9865   %}
9866   ins_pipe(pipe_class_default);
9867 %}
9868 
9869 // Zero-extend: convert unsigned int to long (convUI2L).
9870 instruct zeroExtendL_regI(iRegLdst dst, iRegIsrc src, immL_32bits mask) %{
9871   match(Set dst (AndL (ConvI2L src) mask));
9872   ins_cost(DEFAULT_COST);
9873 
9874   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
9875   size(4);
9876   ins_encode %{
9877     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
9878     __ clrldi($dst$$Register, $src$$Register, 32);
9879   %}
9880   ins_pipe(pipe_class_default);
9881 %}
9882 
9883 // Zero-extend: convert unsigned int to long in long register.
9884 instruct zeroExtendL_regL(iRegLdst dst, iRegLsrc src, immL_32bits mask) %{
9885   match(Set dst (AndL src mask));
9886   ins_cost(DEFAULT_COST);
9887 
9888   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
9889   size(4);
9890   ins_encode %{
9891     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
9892     __ clrldi($dst$$Register, $src$$Register, 32);
9893   %}
9894   ins_pipe(pipe_class_default);
9895 %}
9896 
9897 instruct convF2LRaw_regF(regF dst, regF src) %{
9898   // no match-rule, false predicate
9899   effect(DEF dst, USE src);
9900   predicate(false);
9901 
9902   format %{ "FCTIDZ $dst, $src \t// convF2L, $src != NaN" %}
9903   size(4);
9904   ins_encode %{
9905     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
9906     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
9907   %}
9908   ins_pipe(pipe_class_default);
9909 %}
9910 
9911 instruct cmovL_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL src) %{
9912   // no match-rule, false predicate
9913   effect(DEF dst, USE crx, USE src);
9914   predicate(false);
9915 
9916   ins_variable_size_depending_on_alignment(true);
9917 
9918   format %{ "cmovL   $crx, $dst, $src" %}
9919   // Worst case is branch + move + stop, no stop without scheduler.
9920   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
9921   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
9922   ins_pipe(pipe_class_default);
9923 %}
9924 
9925 instruct cmovL_bso_stackSlotL_conLvalue0_Ex(iRegLdst dst, flagsReg crx, stackSlotL mem) %{
9926   // no match-rule, false predicate
9927   effect(DEF dst, USE crx, USE mem);
9928   predicate(false);
9929 
9930   format %{ "CmovL   $dst, $crx, $mem \t// postalloc expanded" %}
9931   postalloc_expand %{
9932     //
9933     // replaces
9934     //
9935     //   region  dst  crx  mem
9936     //    \       |    |   /
9937     //     dst=cmovL_bso_stackSlotL_conLvalue0
9938     //
9939     // with
9940     //
9941     //   region  dst
9942     //    \       /
9943     //     dst=loadConL16(0)
9944     //      |
9945     //      ^  region  dst  crx  mem
9946     //      |   \       |    |    /
9947     //      dst=cmovL_bso_stackSlotL
9948     //
9949 
9950     // Create new nodes.
9951     MachNode *m1 = new loadConL16Node();
9952     MachNode *m2 = new cmovL_bso_stackSlotLNode();
9953 
9954     // inputs for new nodes
9955     m1->add_req(n_region);
9956     m2->add_req(n_region, n_crx, n_mem);
9957     m2->add_prec(m1);
9958 
9959     // operands for new nodes
9960     m1->_opnds[0] = op_dst;
9961     m1->_opnds[1] = new immL16Oper(0);
9962     m2->_opnds[0] = op_dst;
9963     m2->_opnds[1] = op_crx;
9964     m2->_opnds[2] = op_mem;
9965 
9966     // registers for new nodes
9967     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9968     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9969 
9970     // Insert new nodes.
9971     nodes->push(m1);
9972     nodes->push(m2);
9973   %}
9974 %}
9975 
9976 // Float to Long conversion, NaN is mapped to 0.
9977 instruct convF2L_reg_ExEx(iRegLdst dst, regF src) %{
9978   match(Set dst (ConvF2L src));
9979   ins_cost(DEFAULT_COST);
9980 
9981   expand %{
9982     regF tmpF;
9983     stackSlotL tmpS;
9984     flagsReg crx;
9985     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9986     convF2LRaw_regF(tmpF, src);                         // Convert float to long (speculated).
9987     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
9988     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9989   %}
9990 %}
9991 
9992 instruct convD2LRaw_regD(regD dst, regD src) %{
9993   // no match-rule, false predicate
9994   effect(DEF dst, USE src);
9995   predicate(false);
9996 
9997   format %{ "FCTIDZ $dst, $src \t// convD2L $src != NaN" %}
9998   size(4);
9999   ins_encode %{
10000     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
10001     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
10002   %}
10003   ins_pipe(pipe_class_default);
10004 %}
10005 
10006 // Double to Long conversion, NaN is mapped to 0.
10007 instruct convD2L_reg_ExEx(iRegLdst dst, regD src) %{
10008   match(Set dst (ConvD2L src));
10009   ins_cost(DEFAULT_COST);
10010 
10011   expand %{
10012     regD tmpD;
10013     stackSlotL tmpS;
10014     flagsReg crx;
10015     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
10016     convD2LRaw_regD(tmpD, src);                         // Convert float to long (speculated).
10017     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
10018     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
10019   %}
10020 %}
10021 
10022 // Convert to Float
10023 
10024 // Placed here as needed in expand.
10025 instruct convL2DRaw_regD(regD dst, regD src) %{
10026   // no match-rule, false predicate
10027   effect(DEF dst, USE src);
10028   predicate(false);
10029 
10030   format %{ "FCFID $dst, $src \t// convL2D" %}
10031   size(4);
10032   ins_encode %{
10033     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
10034     __ fcfid($dst$$FloatRegister, $src$$FloatRegister);
10035   %}
10036   ins_pipe(pipe_class_default);
10037 %}
10038 
10039 // Placed here as needed in expand.
10040 instruct convD2F_reg(regF dst, regD src) %{
10041   match(Set dst (ConvD2F src));
10042   format %{ "FRSP    $dst, $src \t// convD2F" %}
10043   size(4);
10044   ins_encode %{
10045     // TODO: PPC port $archOpcode(ppc64Opcode_frsp);
10046     __ frsp($dst$$FloatRegister, $src$$FloatRegister);
10047   %}
10048   ins_pipe(pipe_class_default);
10049 %}
10050 
10051 // Integer to Float conversion.
10052 instruct convI2F_ireg_Ex(regF dst, iRegIsrc src) %{
10053   match(Set dst (ConvI2F src));
10054   predicate(!VM_Version::has_fcfids());
10055   ins_cost(DEFAULT_COST);
10056 
10057   expand %{
10058     iRegLdst tmpL;
10059     stackSlotL tmpS;
10060     regD tmpD;
10061     regD tmpD2;
10062     convI2L_reg(tmpL, src);              // Sign-extension int to long.
10063     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
10064     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10065     convL2DRaw_regD(tmpD2, tmpD);        // Convert to double.
10066     convD2F_reg(dst, tmpD2);             // Convert double to float.
10067   %}
10068 %}
10069 
10070 instruct convL2FRaw_regF(regF dst, regD src) %{
10071   // no match-rule, false predicate
10072   effect(DEF dst, USE src);
10073   predicate(false);
10074 
10075   format %{ "FCFIDS $dst, $src \t// convL2F" %}
10076   size(4);
10077   ins_encode %{
10078     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
10079     __ fcfids($dst$$FloatRegister, $src$$FloatRegister);
10080   %}
10081   ins_pipe(pipe_class_default);
10082 %}
10083 
10084 // Integer to Float conversion. Special version for Power7.
10085 instruct convI2F_ireg_fcfids_Ex(regF dst, iRegIsrc src) %{
10086   match(Set dst (ConvI2F src));
10087   predicate(VM_Version::has_fcfids());
10088   ins_cost(DEFAULT_COST);
10089 
10090   expand %{
10091     iRegLdst tmpL;
10092     stackSlotL tmpS;
10093     regD tmpD;
10094     convI2L_reg(tmpL, src);              // Sign-extension int to long.
10095     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
10096     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10097     convL2FRaw_regF(dst, tmpD);          // Convert to float.
10098   %}
10099 %}
10100 
10101 // L2F to avoid runtime call.
10102 instruct convL2F_ireg_fcfids_Ex(regF dst, iRegLsrc src) %{
10103   match(Set dst (ConvL2F src));
10104   predicate(VM_Version::has_fcfids());
10105   ins_cost(DEFAULT_COST);
10106 
10107   expand %{
10108     stackSlotL tmpS;
10109     regD tmpD;
10110     regL_to_stkL(tmpS, src);             // Store long to stack.
10111     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10112     convL2FRaw_regF(dst, tmpD);          // Convert to float.
10113   %}
10114 %}
10115 
10116 // Moved up as used in expand.
10117 //instruct convD2F_reg(regF dst, regD src) %{%}
10118 
10119 // Convert to Double
10120 
10121 // Integer to Double conversion.
10122 instruct convI2D_reg_Ex(regD dst, iRegIsrc src) %{
10123   match(Set dst (ConvI2D src));
10124   ins_cost(DEFAULT_COST);
10125 
10126   expand %{
10127     iRegLdst tmpL;
10128     stackSlotL tmpS;
10129     regD tmpD;
10130     convI2L_reg(tmpL, src);              // Sign-extension int to long.
10131     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
10132     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10133     convL2DRaw_regD(dst, tmpD);          // Convert to double.
10134   %}
10135 %}
10136 
10137 // Long to Double conversion
10138 instruct convL2D_reg_Ex(regD dst, stackSlotL src) %{
10139   match(Set dst (ConvL2D src));
10140   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10141 
10142   expand %{
10143     regD tmpD;
10144     moveL2D_stack_reg(tmpD, src);
10145     convL2DRaw_regD(dst, tmpD);
10146   %}
10147 %}
10148 
10149 instruct convF2D_reg(regD dst, regF src) %{
10150   match(Set dst (ConvF2D src));
10151   format %{ "FMR     $dst, $src \t// float->double" %}
10152   // variable size, 0 or 4
10153   ins_encode %{
10154     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
10155     __ fmr_if_needed($dst$$FloatRegister, $src$$FloatRegister);
10156   %}
10157   ins_pipe(pipe_class_default);
10158 %}
10159 
10160 //----------Control Flow Instructions------------------------------------------
10161 // Compare Instructions
10162 
10163 // Compare Integers
10164 instruct cmpI_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
10165   match(Set crx (CmpI src1 src2));
10166   size(4);
10167   format %{ "CMPW    $crx, $src1, $src2" %}
10168   ins_encode %{
10169     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
10170     __ cmpw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10171   %}
10172   ins_pipe(pipe_class_compare);
10173 %}
10174 
10175 instruct cmpI_reg_imm16(flagsReg crx, iRegIsrc src1, immI16 src2) %{
10176   match(Set crx (CmpI src1 src2));
10177   format %{ "CMPWI   $crx, $src1, $src2" %}
10178   size(4);
10179   ins_encode %{
10180     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10181     __ cmpwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10182   %}
10183   ins_pipe(pipe_class_compare);
10184 %}
10185 
10186 // (src1 & src2) == 0?
10187 instruct testI_reg_imm(flagsRegCR0 cr0, iRegIsrc src1, uimmI16 src2, immI_0 zero) %{
10188   match(Set cr0 (CmpI (AndI src1 src2) zero));
10189   // r0 is killed
10190   format %{ "ANDI    R0, $src1, $src2 \t// BTST int" %}
10191   size(4);
10192   ins_encode %{
10193     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
10194     // FIXME: avoid andi_ ?
10195     __ andi_(R0, $src1$$Register, $src2$$constant);
10196   %}
10197   ins_pipe(pipe_class_compare);
10198 %}
10199 
10200 instruct cmpL_reg_reg(flagsReg crx, iRegLsrc src1, iRegLsrc src2) %{
10201   match(Set crx (CmpL src1 src2));
10202   format %{ "CMPD    $crx, $src1, $src2" %}
10203   size(4);
10204   ins_encode %{
10205     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
10206     __ cmpd($crx$$CondRegister, $src1$$Register, $src2$$Register);
10207   %}
10208   ins_pipe(pipe_class_compare);
10209 %}
10210 
10211 instruct cmpL_reg_imm16(flagsReg crx, iRegLsrc src1, immL16 src2) %{
10212   match(Set crx (CmpL src1 src2));
10213   format %{ "CMPDI   $crx, $src1, $src2" %}
10214   size(4);
10215   ins_encode %{
10216     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10217     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10218   %}
10219   ins_pipe(pipe_class_compare);
10220 %}
10221 
10222 instruct testL_reg_reg(flagsRegCR0 cr0, iRegLsrc src1, iRegLsrc src2, immL_0 zero) %{
10223   match(Set cr0 (CmpL (AndL src1 src2) zero));
10224   // r0 is killed
10225   format %{ "AND     R0, $src1, $src2 \t// BTST long" %}
10226   size(4);
10227   ins_encode %{
10228     // TODO: PPC port $archOpcode(ppc64Opcode_and_);
10229     __ and_(R0, $src1$$Register, $src2$$Register);
10230   %}
10231   ins_pipe(pipe_class_compare);
10232 %}
10233 
10234 instruct testL_reg_imm(flagsRegCR0 cr0, iRegLsrc src1, uimmL16 src2, immL_0 zero) %{
10235   match(Set cr0 (CmpL (AndL src1 src2) zero));
10236   // r0 is killed
10237   format %{ "ANDI    R0, $src1, $src2 \t// BTST long" %}
10238   size(4);
10239   ins_encode %{
10240     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
10241     // FIXME: avoid andi_ ?
10242     __ andi_(R0, $src1$$Register, $src2$$constant);
10243   %}
10244   ins_pipe(pipe_class_compare);
10245 %}
10246 
10247 instruct cmovI_conIvalueMinus1_conIvalue1(iRegIdst dst, flagsReg crx) %{
10248   // no match-rule, false predicate
10249   effect(DEF dst, USE crx);
10250   predicate(false);
10251 
10252   ins_variable_size_depending_on_alignment(true);
10253 
10254   format %{ "cmovI   $crx, $dst, -1, 0, +1" %}
10255   // Worst case is branch + move + branch + move + stop, no stop without scheduler.
10256   size(false /* TODO: PPC PORTInsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 20 : 16);
10257   ins_encode %{
10258     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
10259     Label done;
10260     // li(Rdst, 0);              // equal -> 0
10261     __ beq($crx$$CondRegister, done);
10262     __ li($dst$$Register, 1);    // greater -> +1
10263     __ bgt($crx$$CondRegister, done);
10264     __ li($dst$$Register, -1);   // unordered or less -> -1
10265     // TODO: PPC port__ endgroup_if_needed(_size == 20);
10266     __ bind(done);
10267   %}
10268   ins_pipe(pipe_class_compare);
10269 %}
10270 
10271 instruct cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(iRegIdst dst, flagsReg crx) %{
10272   // no match-rule, false predicate
10273   effect(DEF dst, USE crx);
10274   predicate(false);
10275 
10276   format %{ "CmovI    $crx, $dst, -1, 0, +1 \t// postalloc expanded" %}
10277   postalloc_expand %{
10278     //
10279     // replaces
10280     //
10281     //   region  crx
10282     //    \       |
10283     //     dst=cmovI_conIvalueMinus1_conIvalue0_conIvalue1
10284     //
10285     // with
10286     //
10287     //   region
10288     //    \
10289     //     dst=loadConI16(0)
10290     //      |
10291     //      ^  region  crx
10292     //      |   \       |
10293     //      dst=cmovI_conIvalueMinus1_conIvalue1
10294     //
10295 
10296     // Create new nodes.
10297     MachNode *m1 = new loadConI16Node();
10298     MachNode *m2 = new cmovI_conIvalueMinus1_conIvalue1Node();
10299 
10300     // inputs for new nodes
10301     m1->add_req(n_region);
10302     m2->add_req(n_region, n_crx);
10303     m2->add_prec(m1);
10304 
10305     // operands for new nodes
10306     m1->_opnds[0] = op_dst;
10307     m1->_opnds[1] = new immI16Oper(0);
10308     m2->_opnds[0] = op_dst;
10309     m2->_opnds[1] = op_crx;
10310 
10311     // registers for new nodes
10312     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
10313     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
10314 
10315     // Insert new nodes.
10316     nodes->push(m1);
10317     nodes->push(m2);
10318   %}
10319 %}
10320 
10321 // Manifest a CmpL3 result in an integer register. Very painful.
10322 // This is the test to avoid.
10323 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
10324 instruct cmpL3_reg_reg_ExEx(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
10325   match(Set dst (CmpL3 src1 src2));
10326   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10327 
10328   expand %{
10329     flagsReg tmp1;
10330     cmpL_reg_reg(tmp1, src1, src2);
10331     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10332   %}
10333 %}
10334 
10335 // Implicit range checks.
10336 // A range check in the ideal world has one of the following shapes:
10337 //  - (If le (CmpU length index)), (IfTrue  throw exception)
10338 //  - (If lt (CmpU index length)), (IfFalse throw exception)
10339 //
10340 // Match range check 'If le (CmpU length index)'.
10341 instruct rangeCheck_iReg_uimm15(cmpOp cmp, iRegIsrc src_length, uimmI15 index, label labl) %{
10342   match(If cmp (CmpU src_length index));
10343   effect(USE labl);
10344   predicate(TrapBasedRangeChecks &&
10345             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le &&
10346             PROB_UNLIKELY(_leaf->as_If()->_prob) >= PROB_ALWAYS &&
10347             (Matcher::branches_to_uncommon_trap(_leaf)));
10348 
10349   ins_is_TrapBasedCheckNode(true);
10350 
10351   format %{ "TWI     $index $cmp $src_length \t// RangeCheck => trap $labl" %}
10352   size(4);
10353   ins_encode %{
10354     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
10355     if ($cmp$$cmpcode == 0x1 /* less_equal */) {
10356       __ trap_range_check_le($src_length$$Register, $index$$constant);
10357     } else {
10358       // Both successors are uncommon traps, probability is 0.
10359       // Node got flipped during fixup flow.
10360       assert($cmp$$cmpcode == 0x9, "must be greater");
10361       __ trap_range_check_g($src_length$$Register, $index$$constant);
10362     }
10363   %}
10364   ins_pipe(pipe_class_trap);
10365 %}
10366 
10367 // Match range check 'If lt (CmpU index length)'.
10368 instruct rangeCheck_iReg_iReg(cmpOp cmp, iRegIsrc src_index, iRegIsrc src_length, label labl) %{
10369   match(If cmp (CmpU src_index src_length));
10370   effect(USE labl);
10371   predicate(TrapBasedRangeChecks &&
10372             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
10373             _leaf->as_If()->_prob >= PROB_ALWAYS &&
10374             (Matcher::branches_to_uncommon_trap(_leaf)));
10375 
10376   ins_is_TrapBasedCheckNode(true);
10377 
10378   format %{ "TW      $src_index $cmp $src_length \t// RangeCheck => trap $labl" %}
10379   size(4);
10380   ins_encode %{
10381     // TODO: PPC port $archOpcode(ppc64Opcode_tw);
10382     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
10383       __ trap_range_check_ge($src_index$$Register, $src_length$$Register);
10384     } else {
10385       // Both successors are uncommon traps, probability is 0.
10386       // Node got flipped during fixup flow.
10387       assert($cmp$$cmpcode == 0x8, "must be less");
10388       __ trap_range_check_l($src_index$$Register, $src_length$$Register);
10389     }
10390   %}
10391   ins_pipe(pipe_class_trap);
10392 %}
10393 
10394 // Match range check 'If lt (CmpU index length)'.
10395 instruct rangeCheck_uimm15_iReg(cmpOp cmp, iRegIsrc src_index, uimmI15 length, label labl) %{
10396   match(If cmp (CmpU src_index length));
10397   effect(USE labl);
10398   predicate(TrapBasedRangeChecks &&
10399             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
10400             _leaf->as_If()->_prob >= PROB_ALWAYS &&
10401             (Matcher::branches_to_uncommon_trap(_leaf)));
10402 
10403   ins_is_TrapBasedCheckNode(true);
10404 
10405   format %{ "TWI     $src_index $cmp $length \t// RangeCheck => trap $labl" %}
10406   size(4);
10407   ins_encode %{
10408     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
10409     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
10410       __ trap_range_check_ge($src_index$$Register, $length$$constant);
10411     } else {
10412       // Both successors are uncommon traps, probability is 0.
10413       // Node got flipped during fixup flow.
10414       assert($cmp$$cmpcode == 0x8, "must be less");
10415       __ trap_range_check_l($src_index$$Register, $length$$constant);
10416     }
10417   %}
10418   ins_pipe(pipe_class_trap);
10419 %}
10420 
10421 instruct compU_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
10422   match(Set crx (CmpU src1 src2));
10423   format %{ "CMPLW   $crx, $src1, $src2 \t// unsigned" %}
10424   size(4);
10425   ins_encode %{
10426     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10427     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10428   %}
10429   ins_pipe(pipe_class_compare);
10430 %}
10431 
10432 instruct compU_reg_uimm16(flagsReg crx, iRegIsrc src1, uimmI16 src2) %{
10433   match(Set crx (CmpU src1 src2));
10434   size(4);
10435   format %{ "CMPLWI  $crx, $src1, $src2" %}
10436   ins_encode %{
10437     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
10438     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10439   %}
10440   ins_pipe(pipe_class_compare);
10441 %}
10442 
10443 // Implicit zero checks (more implicit null checks).
10444 // No constant pool entries required.
10445 instruct zeroCheckN_iReg_imm0(cmpOp cmp, iRegNsrc value, immN_0 zero, label labl) %{
10446   match(If cmp (CmpN value zero));
10447   effect(USE labl);
10448   predicate(TrapBasedNullChecks &&
10449             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
10450             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
10451             Matcher::branches_to_uncommon_trap(_leaf));
10452   ins_cost(1);
10453 
10454   ins_is_TrapBasedCheckNode(true);
10455 
10456   format %{ "TDI     $value $cmp $zero \t// ZeroCheckN => trap $labl" %}
10457   size(4);
10458   ins_encode %{
10459     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
10460     if ($cmp$$cmpcode == 0xA) {
10461       __ trap_null_check($value$$Register);
10462     } else {
10463       // Both successors are uncommon traps, probability is 0.
10464       // Node got flipped during fixup flow.
10465       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
10466       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
10467     }
10468   %}
10469   ins_pipe(pipe_class_trap);
10470 %}
10471 
10472 // Compare narrow oops.
10473 instruct cmpN_reg_reg(flagsReg crx, iRegNsrc src1, iRegNsrc src2) %{
10474   match(Set crx (CmpN src1 src2));
10475 
10476   size(4);
10477   ins_cost(DEFAULT_COST);
10478   format %{ "CMPLW   $crx, $src1, $src2 \t// compressed ptr" %}
10479   ins_encode %{
10480     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10481     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10482   %}
10483   ins_pipe(pipe_class_compare);
10484 %}
10485 
10486 instruct cmpN_reg_imm0(flagsReg crx, iRegNsrc src1, immN_0 src2) %{
10487   match(Set crx (CmpN src1 src2));
10488   // Make this more expensive than zeroCheckN_iReg_imm0.
10489   ins_cost(DEFAULT_COST);
10490 
10491   format %{ "CMPLWI  $crx, $src1, $src2 \t// compressed ptr" %}
10492   size(4);
10493   ins_encode %{
10494     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
10495     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10496   %}
10497   ins_pipe(pipe_class_compare);
10498 %}
10499 
10500 // Implicit zero checks (more implicit null checks).
10501 // No constant pool entries required.
10502 instruct zeroCheckP_reg_imm0(cmpOp cmp, iRegP_N2P value, immP_0 zero, label labl) %{
10503   match(If cmp (CmpP value zero));
10504   effect(USE labl);
10505   predicate(TrapBasedNullChecks &&
10506             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
10507             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
10508             Matcher::branches_to_uncommon_trap(_leaf));
10509 
10510   ins_is_TrapBasedCheckNode(true);
10511 
10512   format %{ "TDI     $value $cmp $zero \t// ZeroCheckP => trap $labl" %}
10513   size(4);
10514   ins_encode %{
10515     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
10516     if ($cmp$$cmpcode == 0xA) {
10517       __ trap_null_check($value$$Register);
10518     } else {
10519       // Both successors are uncommon traps, probability is 0.
10520       // Node got flipped during fixup flow.
10521       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
10522       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
10523     }
10524   %}
10525   ins_pipe(pipe_class_trap);
10526 %}
10527 
10528 // Compare Pointers
10529 instruct cmpP_reg_reg(flagsReg crx, iRegP_N2P src1, iRegP_N2P src2) %{
10530   match(Set crx (CmpP src1 src2));
10531   format %{ "CMPLD   $crx, $src1, $src2 \t// ptr" %}
10532   size(4);
10533   ins_encode %{
10534     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10535     __ cmpld($crx$$CondRegister, $src1$$Register, $src2$$Register);
10536   %}
10537   ins_pipe(pipe_class_compare);
10538 %}
10539 
10540 // Used in postalloc expand.
10541 instruct cmpP_reg_imm16(flagsReg crx, iRegPsrc src1, immL16 src2) %{
10542   // This match rule prevents reordering of node before a safepoint.
10543   // This only makes sense if this instructions is used exclusively
10544   // for the expansion of EncodeP!
10545   match(Set crx (CmpP src1 src2));
10546   predicate(false);
10547 
10548   format %{ "CMPDI   $crx, $src1, $src2" %}
10549   size(4);
10550   ins_encode %{
10551     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10552     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10553   %}
10554   ins_pipe(pipe_class_compare);
10555 %}
10556 
10557 //----------Float Compares----------------------------------------------------
10558 
10559 instruct cmpFUnordered_reg_reg(flagsReg crx, regF src1, regF src2) %{
10560   // no match-rule, false predicate
10561   effect(DEF crx, USE src1, USE src2);
10562   predicate(false);
10563 
10564   format %{ "cmpFUrd $crx, $src1, $src2" %}
10565   size(4);
10566   ins_encode %{
10567     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
10568     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
10569   %}
10570   ins_pipe(pipe_class_default);
10571 %}
10572 
10573 instruct cmov_bns_less(flagsReg crx) %{
10574   // no match-rule, false predicate
10575   effect(DEF crx);
10576   predicate(false);
10577 
10578   ins_variable_size_depending_on_alignment(true);
10579 
10580   format %{ "cmov    $crx" %}
10581   // Worst case is branch + move + stop, no stop without scheduler.
10582   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 16 : 12);
10583   ins_encode %{
10584     // TODO: PPC port $archOpcode(ppc64Opcode_cmovecr);
10585     Label done;
10586     __ bns($crx$$CondRegister, done);        // not unordered -> keep crx
10587     __ li(R0, 0);
10588     __ cmpwi($crx$$CondRegister, R0, 1);     // unordered -> set crx to 'less'
10589     // TODO PPC port __ endgroup_if_needed(_size == 16);
10590     __ bind(done);
10591   %}
10592   ins_pipe(pipe_class_default);
10593 %}
10594 
10595 // Compare floating, generate condition code.
10596 instruct cmpF_reg_reg_Ex(flagsReg crx, regF src1, regF src2) %{
10597   // FIXME: should we match 'If cmp (CmpF src1 src2))' ??
10598   //
10599   // The following code sequence occurs a lot in mpegaudio:
10600   //
10601   // block BXX:
10602   // 0: instruct cmpFUnordered_reg_reg (cmpF_reg_reg-0):
10603   //    cmpFUrd CCR6, F11, F9
10604   // 4: instruct cmov_bns_less (cmpF_reg_reg-1):
10605   //    cmov CCR6
10606   // 8: instruct branchConSched:
10607   //    B_FARle CCR6, B56  P=0.500000 C=-1.000000
10608   match(Set crx (CmpF src1 src2));
10609   ins_cost(DEFAULT_COST+BRANCH_COST);
10610 
10611   format %{ "CmpF    $crx, $src1, $src2 \t// postalloc expanded" %}
10612   postalloc_expand %{
10613     //
10614     // replaces
10615     //
10616     //   region  src1  src2
10617     //    \       |     |
10618     //     crx=cmpF_reg_reg
10619     //
10620     // with
10621     //
10622     //   region  src1  src2
10623     //    \       |     |
10624     //     crx=cmpFUnordered_reg_reg
10625     //      |
10626     //      ^  region
10627     //      |   \
10628     //      crx=cmov_bns_less
10629     //
10630 
10631     // Create new nodes.
10632     MachNode *m1 = new cmpFUnordered_reg_regNode();
10633     MachNode *m2 = new cmov_bns_lessNode();
10634 
10635     // inputs for new nodes
10636     m1->add_req(n_region, n_src1, n_src2);
10637     m2->add_req(n_region);
10638     m2->add_prec(m1);
10639 
10640     // operands for new nodes
10641     m1->_opnds[0] = op_crx;
10642     m1->_opnds[1] = op_src1;
10643     m1->_opnds[2] = op_src2;
10644     m2->_opnds[0] = op_crx;
10645 
10646     // registers for new nodes
10647     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10648     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10649 
10650     // Insert new nodes.
10651     nodes->push(m1);
10652     nodes->push(m2);
10653   %}
10654 %}
10655 
10656 // Compare float, generate -1,0,1
10657 instruct cmpF3_reg_reg_ExEx(iRegIdst dst, regF src1, regF src2) %{
10658   match(Set dst (CmpF3 src1 src2));
10659   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10660 
10661   expand %{
10662     flagsReg tmp1;
10663     cmpFUnordered_reg_reg(tmp1, src1, src2);
10664     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10665   %}
10666 %}
10667 
10668 instruct cmpDUnordered_reg_reg(flagsReg crx, regD src1, regD src2) %{
10669   // no match-rule, false predicate
10670   effect(DEF crx, USE src1, USE src2);
10671   predicate(false);
10672 
10673   format %{ "cmpFUrd $crx, $src1, $src2" %}
10674   size(4);
10675   ins_encode %{
10676     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
10677     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
10678   %}
10679   ins_pipe(pipe_class_default);
10680 %}
10681 
10682 instruct cmpD_reg_reg_Ex(flagsReg crx, regD src1, regD src2) %{
10683   match(Set crx (CmpD src1 src2));
10684   ins_cost(DEFAULT_COST+BRANCH_COST);
10685 
10686   format %{ "CmpD    $crx, $src1, $src2 \t// postalloc expanded" %}
10687   postalloc_expand %{
10688     //
10689     // replaces
10690     //
10691     //   region  src1  src2
10692     //    \       |     |
10693     //     crx=cmpD_reg_reg
10694     //
10695     // with
10696     //
10697     //   region  src1  src2
10698     //    \       |     |
10699     //     crx=cmpDUnordered_reg_reg
10700     //      |
10701     //      ^  region
10702     //      |   \
10703     //      crx=cmov_bns_less
10704     //
10705 
10706     // create new nodes
10707     MachNode *m1 = new cmpDUnordered_reg_regNode();
10708     MachNode *m2 = new cmov_bns_lessNode();
10709 
10710     // inputs for new nodes
10711     m1->add_req(n_region, n_src1, n_src2);
10712     m2->add_req(n_region);
10713     m2->add_prec(m1);
10714 
10715     // operands for new nodes
10716     m1->_opnds[0] = op_crx;
10717     m1->_opnds[1] = op_src1;
10718     m1->_opnds[2] = op_src2;
10719     m2->_opnds[0] = op_crx;
10720 
10721     // registers for new nodes
10722     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10723     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10724 
10725     // Insert new nodes.
10726     nodes->push(m1);
10727     nodes->push(m2);
10728   %}
10729 %}
10730 
10731 // Compare double, generate -1,0,1
10732 instruct cmpD3_reg_reg_ExEx(iRegIdst dst, regD src1, regD src2) %{
10733   match(Set dst (CmpD3 src1 src2));
10734   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10735 
10736   expand %{
10737     flagsReg tmp1;
10738     cmpDUnordered_reg_reg(tmp1, src1, src2);
10739     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10740   %}
10741 %}
10742 
10743 //----------Branches---------------------------------------------------------
10744 // Jump
10745 
10746 // Direct Branch.
10747 instruct branch(label labl) %{
10748   match(Goto);
10749   effect(USE labl);
10750   ins_cost(BRANCH_COST);
10751 
10752   format %{ "B       $labl" %}
10753   size(4);
10754   ins_encode %{
10755     // TODO: PPC port $archOpcode(ppc64Opcode_b);
10756      Label d;    // dummy
10757      __ bind(d);
10758      Label* p = $labl$$label;
10759      // `p' is `NULL' when this encoding class is used only to
10760      // determine the size of the encoded instruction.
10761      Label& l = (NULL == p)? d : *(p);
10762      __ b(l);
10763   %}
10764   ins_pipe(pipe_class_default);
10765 %}
10766 
10767 // Conditional Near Branch
10768 instruct branchCon(cmpOp cmp, flagsReg crx, label lbl) %{
10769   // Same match rule as `branchConFar'.
10770   match(If cmp crx);
10771   effect(USE lbl);
10772   ins_cost(BRANCH_COST);
10773 
10774   // If set to 1 this indicates that the current instruction is a
10775   // short variant of a long branch. This avoids using this
10776   // instruction in first-pass matching. It will then only be used in
10777   // the `Shorten_branches' pass.
10778   ins_short_branch(1);
10779 
10780   format %{ "B$cmp     $crx, $lbl" %}
10781   size(4);
10782   ins_encode( enc_bc(crx, cmp, lbl) );
10783   ins_pipe(pipe_class_default);
10784 %}
10785 
10786 // This is for cases when the ppc64 `bc' instruction does not
10787 // reach far enough. So we emit a far branch here, which is more
10788 // expensive.
10789 //
10790 // Conditional Far Branch
10791 instruct branchConFar(cmpOp cmp, flagsReg crx, label lbl) %{
10792   // Same match rule as `branchCon'.
10793   match(If cmp crx);
10794   effect(USE crx, USE lbl);
10795   predicate(!false /* TODO: PPC port HB_Schedule*/);
10796   // Higher cost than `branchCon'.
10797   ins_cost(5*BRANCH_COST);
10798 
10799   // This is not a short variant of a branch, but the long variant.
10800   ins_short_branch(0);
10801 
10802   format %{ "B_FAR$cmp $crx, $lbl" %}
10803   size(8);
10804   ins_encode( enc_bc_far(crx, cmp, lbl) );
10805   ins_pipe(pipe_class_default);
10806 %}
10807 
10808 // Conditional Branch used with Power6 scheduler (can be far or short).
10809 instruct branchConSched(cmpOp cmp, flagsReg crx, label lbl) %{
10810   // Same match rule as `branchCon'.
10811   match(If cmp crx);
10812   effect(USE crx, USE lbl);
10813   predicate(false /* TODO: PPC port HB_Schedule*/);
10814   // Higher cost than `branchCon'.
10815   ins_cost(5*BRANCH_COST);
10816 
10817   // Actually size doesn't depend on alignment but on shortening.
10818   ins_variable_size_depending_on_alignment(true);
10819   // long variant.
10820   ins_short_branch(0);
10821 
10822   format %{ "B_FAR$cmp $crx, $lbl" %}
10823   size(8); // worst case
10824   ins_encode( enc_bc_short_far(crx, cmp, lbl) );
10825   ins_pipe(pipe_class_default);
10826 %}
10827 
10828 instruct branchLoopEnd(cmpOp cmp, flagsReg crx, label labl) %{
10829   match(CountedLoopEnd cmp crx);
10830   effect(USE labl);
10831   ins_cost(BRANCH_COST);
10832 
10833   // short variant.
10834   ins_short_branch(1);
10835 
10836   format %{ "B$cmp     $crx, $labl \t// counted loop end" %}
10837   size(4);
10838   ins_encode( enc_bc(crx, cmp, labl) );
10839   ins_pipe(pipe_class_default);
10840 %}
10841 
10842 instruct branchLoopEndFar(cmpOp cmp, flagsReg crx, label labl) %{
10843   match(CountedLoopEnd cmp crx);
10844   effect(USE labl);
10845   predicate(!false /* TODO: PPC port HB_Schedule */);
10846   ins_cost(BRANCH_COST);
10847 
10848   // Long variant.
10849   ins_short_branch(0);
10850 
10851   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
10852   size(8);
10853   ins_encode( enc_bc_far(crx, cmp, labl) );
10854   ins_pipe(pipe_class_default);
10855 %}
10856 
10857 // Conditional Branch used with Power6 scheduler (can be far or short).
10858 instruct branchLoopEndSched(cmpOp cmp, flagsReg crx, label labl) %{
10859   match(CountedLoopEnd cmp crx);
10860   effect(USE labl);
10861   predicate(false /* TODO: PPC port HB_Schedule */);
10862   // Higher cost than `branchCon'.
10863   ins_cost(5*BRANCH_COST);
10864 
10865   // Actually size doesn't depend on alignment but on shortening.
10866   ins_variable_size_depending_on_alignment(true);
10867   // Long variant.
10868   ins_short_branch(0);
10869 
10870   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
10871   size(8); // worst case
10872   ins_encode( enc_bc_short_far(crx, cmp, labl) );
10873   ins_pipe(pipe_class_default);
10874 %}
10875 
10876 // ============================================================================
10877 // Java runtime operations, intrinsics and other complex operations.
10878 
10879 // The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
10880 // array for an instance of the superklass. Set a hidden internal cache on a
10881 // hit (cache is checked with exposed code in gen_subtype_check()). Return
10882 // not zero for a miss or zero for a hit. The encoding ALSO sets flags.
10883 //
10884 // GL TODO: Improve this.
10885 // - result should not be a TEMP
10886 // - Add match rule as on sparc avoiding additional Cmp.
10887 instruct partialSubtypeCheck(iRegPdst result, iRegP_N2P subklass, iRegP_N2P superklass,
10888                              iRegPdst tmp_klass, iRegPdst tmp_arrayptr) %{
10889   match(Set result (PartialSubtypeCheck subklass superklass));
10890   effect(TEMP result, TEMP tmp_klass, TEMP tmp_arrayptr);
10891   ins_cost(DEFAULT_COST*10);
10892 
10893   format %{ "PartialSubtypeCheck $result = ($subklass instanceOf $superklass) tmp: $tmp_klass, $tmp_arrayptr" %}
10894   ins_encode %{
10895     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10896     __ check_klass_subtype_slow_path($subklass$$Register, $superklass$$Register, $tmp_arrayptr$$Register,
10897                                      $tmp_klass$$Register, NULL, $result$$Register);
10898   %}
10899   ins_pipe(pipe_class_default);
10900 %}
10901 
10902 // inlined locking and unlocking
10903 
10904 instruct cmpFastLock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
10905   match(Set crx (FastLock oop box));
10906   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
10907   // TODO PPC port predicate(!UseNewFastLockPPC64 || UseBiasedLocking);
10908 
10909   format %{ "FASTLOCK  $oop, $box, $tmp1, $tmp2, $tmp3" %}
10910   ins_encode %{
10911     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10912     __ compiler_fast_lock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
10913                                  $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
10914     // If locking was successfull, crx should indicate 'EQ'.
10915     // The compiler generates a branch to the runtime call to
10916     // _complete_monitor_locking_Java for the case where crx is 'NE'.
10917   %}
10918   ins_pipe(pipe_class_compare);
10919 %}
10920 
10921 instruct cmpFastUnlock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
10922   match(Set crx (FastUnlock oop box));
10923   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
10924 
10925   format %{ "FASTUNLOCK  $oop, $box, $tmp1, $tmp2" %}
10926   ins_encode %{
10927     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10928     __ compiler_fast_unlock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
10929                                    $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
10930     // If unlocking was successfull, crx should indicate 'EQ'.
10931     // The compiler generates a branch to the runtime call to
10932     // _complete_monitor_unlocking_Java for the case where crx is 'NE'.
10933   %}
10934   ins_pipe(pipe_class_compare);
10935 %}
10936 
10937 // Align address.
10938 instruct align_addr(iRegPdst dst, iRegPsrc src, immLnegpow2 mask) %{
10939   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
10940 
10941   format %{ "ANDDI   $dst, $src, $mask \t// next aligned address" %}
10942   size(4);
10943   ins_encode %{
10944     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
10945     __ clrrdi($dst$$Register, $src$$Register, log2_long((jlong)-$mask$$constant));
10946   %}
10947   ins_pipe(pipe_class_default);
10948 %}
10949 
10950 // Array size computation.
10951 instruct array_size(iRegLdst dst, iRegPsrc end, iRegPsrc start) %{
10952   match(Set dst (SubL (CastP2X end) (CastP2X start)));
10953 
10954   format %{ "SUB     $dst, $end, $start \t// array size in bytes" %}
10955   size(4);
10956   ins_encode %{
10957     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
10958     __ subf($dst$$Register, $start$$Register, $end$$Register);
10959   %}
10960   ins_pipe(pipe_class_default);
10961 %}
10962 
10963 // Clear-array with dynamic array-size.
10964 instruct inlineCallClearArray(rarg1RegL cnt, rarg2RegP base, Universe dummy, regCTR ctr) %{
10965   match(Set dummy (ClearArray cnt base));
10966   effect(USE_KILL cnt, USE_KILL base, KILL ctr);
10967   ins_cost(MEMORY_REF_COST);
10968 
10969   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
10970 
10971   format %{ "ClearArray $cnt, $base" %}
10972   ins_encode %{
10973     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10974     __ clear_memory_doubleword($base$$Register, $cnt$$Register); // kills cnt, base, R0
10975   %}
10976   ins_pipe(pipe_class_default);
10977 %}
10978 
10979 // String_IndexOf for needle of length 1.
10980 //
10981 // Match needle into immediate operands: no loadConP node needed. Saves one
10982 // register and two instructions over string_indexOf_imm1Node.
10983 //
10984 // Assumes register result differs from all input registers.
10985 //
10986 // Preserves registers haystack, haycnt
10987 // Kills     registers tmp1, tmp2
10988 // Defines   registers result
10989 //
10990 // Use dst register classes if register gets killed, as it is the case for tmp registers!
10991 //
10992 // Unfortunately this does not match too often. In many situations the AddP is used
10993 // by several nodes, even several StrIndexOf nodes, breaking the match tree.
10994 instruct string_indexOf_imm1_char(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
10995                                   immP needleImm, immL offsetImm, immI_1 needlecntImm,
10996                                   iRegIdst tmp1, iRegIdst tmp2,
10997                                   flagsRegCR0 cr0, flagsRegCR1 cr1) %{
10998   predicate(SpecialStringIndexOf);  // type check implicit by parameter type, See Matcher::match_rule_supported
10999   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary (AddP needleImm offsetImm) needlecntImm)));
11000 
11001   effect(TEMP result, TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1);
11002 
11003   ins_cost(150);
11004   format %{ "String IndexOf CSCL1 $haystack[0..$haycnt], $needleImm+$offsetImm[0..$needlecntImm]"
11005             "-> $result \t// KILL $haycnt, $tmp1, $tmp2, $cr0, $cr1" %}
11006 
11007   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted
11008   ins_encode %{
11009     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11010     immPOper *needleOper = (immPOper *)$needleImm;
11011     const TypeOopPtr *t = needleOper->type()->isa_oopptr();
11012     ciTypeArray* needle_values = t->const_oop()->as_type_array();  // Pointer to live char *
11013 
11014     __ string_indexof_1($result$$Register,
11015                         $haystack$$Register, $haycnt$$Register,
11016                         R0, needle_values->char_at(0),
11017                         $tmp1$$Register, $tmp2$$Register);
11018   %}
11019   ins_pipe(pipe_class_compare);
11020 %}
11021 
11022 // String_IndexOf for needle of length 1.
11023 //
11024 // Special case requires less registers and emits less instructions.
11025 //
11026 // Assumes register result differs from all input registers.
11027 //
11028 // Preserves registers haystack, haycnt
11029 // Kills     registers tmp1, tmp2, needle
11030 // Defines   registers result
11031 //
11032 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11033 instruct string_indexOf_imm1(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
11034                              rscratch2RegP needle, immI_1 needlecntImm,
11035                              iRegIdst tmp1, iRegIdst tmp2,
11036                              flagsRegCR0 cr0, flagsRegCR1 cr1) %{
11037   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
11038   effect(USE_KILL needle, /* TDEF needle, */ TEMP result,
11039          TEMP tmp1, TEMP tmp2);
11040   // Required for EA: check if it is still a type_array.
11041   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
11042             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
11043   ins_cost(180);
11044 
11045   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11046 
11047   format %{ "String IndexOf SCL1 $haystack[0..$haycnt], $needle[0..$needlecntImm]"
11048             " -> $result \t// KILL $haycnt, $needle, $tmp1, $tmp2, $cr0, $cr1" %}
11049   ins_encode %{
11050     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11051     Node *ndl = in(operand_index($needle));  // The node that defines needle.
11052     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
11053     guarantee(needle_values, "sanity");
11054     if (needle_values != NULL) {
11055       __ string_indexof_1($result$$Register,
11056                           $haystack$$Register, $haycnt$$Register,
11057                           R0, needle_values->char_at(0),
11058                           $tmp1$$Register, $tmp2$$Register);
11059     } else {
11060       __ string_indexof_1($result$$Register,
11061                           $haystack$$Register, $haycnt$$Register,
11062                           $needle$$Register, 0,
11063                           $tmp1$$Register, $tmp2$$Register);
11064     }
11065   %}
11066   ins_pipe(pipe_class_compare);
11067 %}
11068 
11069 // String_IndexOf.
11070 //
11071 // Length of needle as immediate. This saves instruction loading constant needle
11072 // length.
11073 // @@@ TODO Specify rules for length < 8 or so, and roll out comparison of needle
11074 // completely or do it in vector instruction. This should save registers for
11075 // needlecnt and needle.
11076 //
11077 // Assumes register result differs from all input registers.
11078 // Overwrites haycnt, needlecnt.
11079 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11080 instruct string_indexOf_imm(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt,
11081                             iRegPsrc needle, uimmI15 needlecntImm,
11082                             iRegIdst tmp1, iRegIdst tmp2, iRegIdst tmp3, iRegIdst tmp4, iRegIdst tmp5,
11083                             flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
11084   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
11085   effect(USE_KILL haycnt, /* better: TDEF haycnt, */ TEMP result,
11086          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, KILL cr0, KILL cr1, KILL cr6);
11087   // Required for EA: check if it is still a type_array.
11088   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
11089             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
11090   ins_cost(250);
11091 
11092   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11093 
11094   format %{ "String IndexOf SCL $haystack[0..$haycnt], $needle[0..$needlecntImm]"
11095             " -> $result \t// KILL $haycnt, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5, $cr0, $cr1" %}
11096   ins_encode %{
11097     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11098     Node *ndl = in(operand_index($needle));  // The node that defines needle.
11099     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
11100 
11101     __ string_indexof($result$$Register,
11102                       $haystack$$Register, $haycnt$$Register,
11103                       $needle$$Register, needle_values, $tmp5$$Register, $needlecntImm$$constant,
11104                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
11105   %}
11106   ins_pipe(pipe_class_compare);
11107 %}
11108 
11109 // StrIndexOf node.
11110 //
11111 // Assumes register result differs from all input registers.
11112 // Overwrites haycnt, needlecnt.
11113 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11114 instruct string_indexOf(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt, iRegPsrc needle, rscratch2RegI needlecnt,
11115                         iRegLdst tmp1, iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4,
11116                         flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
11117   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
11118   effect(USE_KILL haycnt, USE_KILL needlecnt, /*better: TDEF haycnt, TDEF needlecnt,*/
11119          TEMP result,
11120          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr0, KILL cr1, KILL cr6);
11121   predicate(SpecialStringIndexOf);  // See Matcher::match_rule_supported.
11122   ins_cost(300);
11123 
11124   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11125 
11126   format %{ "String IndexOf $haystack[0..$haycnt], $needle[0..$needlecnt]"
11127              " -> $result \t// KILL $haycnt, $needlecnt, $tmp1, $tmp2, $tmp3, $tmp4, $cr0, $cr1" %}
11128   ins_encode %{
11129     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11130     __ string_indexof($result$$Register,
11131                       $haystack$$Register, $haycnt$$Register,
11132                       $needle$$Register, NULL, $needlecnt$$Register, 0,  // needlecnt not constant.
11133                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
11134   %}
11135   ins_pipe(pipe_class_compare);
11136 %}
11137 
11138 // String equals with immediate.
11139 instruct string_equals_imm(iRegPsrc str1, iRegPsrc str2, uimmI15 cntImm, iRegIdst result,
11140                            iRegPdst tmp1, iRegPdst tmp2,
11141                            flagsRegCR0 cr0, flagsRegCR6 cr6, regCTR ctr) %{
11142   match(Set result (StrEquals (Binary str1 str2) cntImm));
11143   effect(TEMP result, TEMP tmp1, TEMP tmp2,
11144          KILL cr0, KILL cr6, KILL ctr);
11145   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
11146   ins_cost(250);
11147 
11148   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11149 
11150   format %{ "String Equals SCL [0..$cntImm]($str1),[0..$cntImm]($str2)"
11151             " -> $result \t// KILL $cr0, $cr6, $ctr, TEMP $result, $tmp1, $tmp2" %}
11152   ins_encode %{
11153     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11154     __ char_arrays_equalsImm($str1$$Register, $str2$$Register, $cntImm$$constant,
11155                              $result$$Register, $tmp1$$Register, $tmp2$$Register);
11156   %}
11157   ins_pipe(pipe_class_compare);
11158 %}
11159 
11160 // String equals.
11161 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
11162 instruct string_equals(iRegPsrc str1, iRegPsrc str2, iRegIsrc cnt, iRegIdst result,
11163                        iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3, iRegPdst tmp4, iRegPdst tmp5,
11164                        flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
11165   match(Set result (StrEquals (Binary str1 str2) cnt));
11166   effect(TEMP result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5,
11167          KILL cr0, KILL cr1, KILL cr6, KILL ctr);
11168   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
11169   ins_cost(300);
11170 
11171   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11172 
11173   format %{ "String Equals [0..$cnt]($str1),[0..$cnt]($str2) -> $result"
11174             " \t// KILL $cr0, $cr1, $cr6, $ctr, TEMP $result, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5" %}
11175   ins_encode %{
11176     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11177     __ char_arrays_equals($str1$$Register, $str2$$Register, $cnt$$Register, $result$$Register,
11178                           $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, $tmp5$$Register);
11179   %}
11180   ins_pipe(pipe_class_compare);
11181 %}
11182 
11183 // String compare.
11184 // Char[] pointers are passed in.
11185 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
11186 instruct string_compare(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt1, rarg4RegI cnt2, iRegIdst result,
11187                         iRegPdst tmp, flagsRegCR0 cr0, regCTR ctr) %{
11188   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11189   effect(USE_KILL cnt1, USE_KILL cnt2, USE_KILL str1, USE_KILL str2, TEMP result, TEMP tmp, KILL cr0, KILL ctr);
11190   ins_cost(300);
11191 
11192   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11193 
11194   format %{ "String Compare $str1[0..$cnt1], $str2[0..$cnt2] -> $result"
11195             " \t// TEMP $tmp, $result KILLs $str1, $cnt1, $str2, $cnt2, $cr0, $ctr" %}
11196   ins_encode %{
11197     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11198     __ string_compare($str1$$Register, $str2$$Register, $cnt1$$Register, $cnt2$$Register,
11199                       $result$$Register, $tmp$$Register);
11200   %}
11201   ins_pipe(pipe_class_compare);
11202 %}
11203 
11204 //---------- Min/Max Instructions ---------------------------------------------
11205 
11206 instruct minI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
11207   match(Set dst (MinI src1 src2));
11208   ins_cost(DEFAULT_COST*6);
11209 
11210   expand %{
11211     iRegLdst src1s;
11212     iRegLdst src2s;
11213     iRegLdst diff;
11214     iRegLdst sm;
11215     iRegLdst doz; // difference or zero
11216     convI2L_reg(src1s, src1); // Ensure proper sign extension.
11217     convI2L_reg(src2s, src2); // Ensure proper sign extension.
11218     subL_reg_reg(diff, src2s, src1s);
11219     // Need to consider >=33 bit result, therefore we need signmaskL.
11220     signmask64L_regL(sm, diff);
11221     andL_reg_reg(doz, diff, sm); // <=0
11222     addI_regL_regL(dst, doz, src1s);
11223   %}
11224 %}
11225 
11226 instruct maxI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
11227   match(Set dst (MaxI src1 src2));
11228   ins_cost(DEFAULT_COST*6);
11229 
11230   expand %{
11231     iRegLdst src1s;
11232     iRegLdst src2s;
11233     iRegLdst diff;
11234     iRegLdst sm;
11235     iRegLdst doz; // difference or zero
11236     convI2L_reg(src1s, src1); // Ensure proper sign extension.
11237     convI2L_reg(src2s, src2); // Ensure proper sign extension.
11238     subL_reg_reg(diff, src2s, src1s);
11239     // Need to consider >=33 bit result, therefore we need signmaskL.
11240     signmask64L_regL(sm, diff);
11241     andcL_reg_reg(doz, diff, sm); // >=0
11242     addI_regL_regL(dst, doz, src1s);
11243   %}
11244 %}
11245 
11246 //---------- Population Count Instructions ------------------------------------
11247 
11248 // Popcnt for Power7.
11249 instruct popCountI(iRegIdst dst, iRegIsrc src) %{
11250   match(Set dst (PopCountI src));
11251   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
11252   ins_cost(DEFAULT_COST);
11253 
11254   format %{ "POPCNTW $dst, $src" %}
11255   size(4);
11256   ins_encode %{
11257     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
11258     __ popcntw($dst$$Register, $src$$Register);
11259   %}
11260   ins_pipe(pipe_class_default);
11261 %}
11262 
11263 // Popcnt for Power7.
11264 instruct popCountL(iRegIdst dst, iRegLsrc src) %{
11265   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
11266   match(Set dst (PopCountL src));
11267   ins_cost(DEFAULT_COST);
11268 
11269   format %{ "POPCNTD $dst, $src" %}
11270   size(4);
11271   ins_encode %{
11272     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
11273     __ popcntd($dst$$Register, $src$$Register);
11274   %}
11275   ins_pipe(pipe_class_default);
11276 %}
11277 
11278 instruct countLeadingZerosI(iRegIdst dst, iRegIsrc src) %{
11279   match(Set dst (CountLeadingZerosI src));
11280   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
11281   ins_cost(DEFAULT_COST);
11282 
11283   format %{ "CNTLZW  $dst, $src" %}
11284   size(4);
11285   ins_encode %{
11286     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzw);
11287     __ cntlzw($dst$$Register, $src$$Register);
11288   %}
11289   ins_pipe(pipe_class_default);
11290 %}
11291 
11292 instruct countLeadingZerosL(iRegIdst dst, iRegLsrc src) %{
11293   match(Set dst (CountLeadingZerosL src));
11294   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
11295   ins_cost(DEFAULT_COST);
11296 
11297   format %{ "CNTLZD  $dst, $src" %}
11298   size(4);
11299   ins_encode %{
11300     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
11301     __ cntlzd($dst$$Register, $src$$Register);
11302   %}
11303   ins_pipe(pipe_class_default);
11304 %}
11305 
11306 instruct countLeadingZerosP(iRegIdst dst, iRegPsrc src) %{
11307   // no match-rule, false predicate
11308   effect(DEF dst, USE src);
11309   predicate(false);
11310 
11311   format %{ "CNTLZD  $dst, $src" %}
11312   size(4);
11313   ins_encode %{
11314     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
11315     __ cntlzd($dst$$Register, $src$$Register);
11316   %}
11317   ins_pipe(pipe_class_default);
11318 %}
11319 
11320 instruct countTrailingZerosI_Ex(iRegIdst dst, iRegIsrc src) %{
11321   match(Set dst (CountTrailingZerosI src));
11322   predicate(UseCountLeadingZerosInstructionsPPC64);
11323   ins_cost(DEFAULT_COST);
11324 
11325   expand %{
11326     immI16 imm1 %{ (int)-1 %}
11327     immI16 imm2 %{ (int)32 %}
11328     immI_minus1 m1 %{ -1 %}
11329     iRegIdst tmpI1;
11330     iRegIdst tmpI2;
11331     iRegIdst tmpI3;
11332     addI_reg_imm16(tmpI1, src, imm1);
11333     andcI_reg_reg(tmpI2, src, m1, tmpI1);
11334     countLeadingZerosI(tmpI3, tmpI2);
11335     subI_imm16_reg(dst, imm2, tmpI3);
11336   %}
11337 %}
11338 
11339 instruct countTrailingZerosL_Ex(iRegIdst dst, iRegLsrc src) %{
11340   match(Set dst (CountTrailingZerosL src));
11341   predicate(UseCountLeadingZerosInstructionsPPC64);
11342   ins_cost(DEFAULT_COST);
11343 
11344   expand %{
11345     immL16 imm1 %{ (long)-1 %}
11346     immI16 imm2 %{ (int)64 %}
11347     iRegLdst tmpL1;
11348     iRegLdst tmpL2;
11349     iRegIdst tmpL3;
11350     addL_reg_imm16(tmpL1, src, imm1);
11351     andcL_reg_reg(tmpL2, tmpL1, src);
11352     countLeadingZerosL(tmpL3, tmpL2);
11353     subI_imm16_reg(dst, imm2, tmpL3);
11354  %}
11355 %}
11356 
11357 // Expand nodes for byte_reverse_int.
11358 instruct insrwi_a(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
11359   effect(DEF dst, USE src, USE pos, USE shift);
11360   predicate(false);
11361 
11362   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
11363   size(4);
11364   ins_encode %{
11365     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
11366     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
11367   %}
11368   ins_pipe(pipe_class_default);
11369 %}
11370 
11371 // As insrwi_a, but with USE_DEF.
11372 instruct insrwi(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
11373   effect(USE_DEF dst, USE src, USE pos, USE shift);
11374   predicate(false);
11375 
11376   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
11377   size(4);
11378   ins_encode %{
11379     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
11380     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
11381   %}
11382   ins_pipe(pipe_class_default);
11383 %}
11384 
11385 // Just slightly faster than java implementation.
11386 instruct bytes_reverse_int_Ex(iRegIdst dst, iRegIsrc src) %{
11387   match(Set dst (ReverseBytesI src));
11388   predicate(UseCountLeadingZerosInstructionsPPC64);
11389   ins_cost(DEFAULT_COST);
11390 
11391   expand %{
11392     immI16 imm24 %{ (int) 24 %}
11393     immI16 imm16 %{ (int) 16 %}
11394     immI16  imm8 %{ (int)  8 %}
11395     immI16  imm4 %{ (int)  4 %}
11396     immI16  imm0 %{ (int)  0 %}
11397     iRegLdst tmpI1;
11398     iRegLdst tmpI2;
11399     iRegLdst tmpI3;
11400 
11401     urShiftI_reg_imm(tmpI1, src, imm24);
11402     insrwi_a(dst, tmpI1, imm24, imm8);
11403     urShiftI_reg_imm(tmpI2, src, imm16);
11404     insrwi(dst, tmpI2, imm8, imm16);
11405     urShiftI_reg_imm(tmpI3, src, imm8);
11406     insrwi(dst, tmpI3, imm8, imm8);
11407     insrwi(dst, src, imm0, imm8);
11408   %}
11409 %}
11410 
11411 //---------- Replicate Vector Instructions ------------------------------------
11412 
11413 // Insrdi does replicate if src == dst.
11414 instruct repl32(iRegLdst dst) %{
11415   predicate(false);
11416   effect(USE_DEF dst);
11417 
11418   format %{ "INSRDI  $dst, #0, $dst, #32 \t// replicate" %}
11419   size(4);
11420   ins_encode %{
11421     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11422     __ insrdi($dst$$Register, $dst$$Register, 32, 0);
11423   %}
11424   ins_pipe(pipe_class_default);
11425 %}
11426 
11427 // Insrdi does replicate if src == dst.
11428 instruct repl48(iRegLdst dst) %{
11429   predicate(false);
11430   effect(USE_DEF dst);
11431 
11432   format %{ "INSRDI  $dst, #0, $dst, #48 \t// replicate" %}
11433   size(4);
11434   ins_encode %{
11435     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11436     __ insrdi($dst$$Register, $dst$$Register, 48, 0);
11437   %}
11438   ins_pipe(pipe_class_default);
11439 %}
11440 
11441 // Insrdi does replicate if src == dst.
11442 instruct repl56(iRegLdst dst) %{
11443   predicate(false);
11444   effect(USE_DEF dst);
11445 
11446   format %{ "INSRDI  $dst, #0, $dst, #56 \t// replicate" %}
11447   size(4);
11448   ins_encode %{
11449     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11450     __ insrdi($dst$$Register, $dst$$Register, 56, 0);
11451   %}
11452   ins_pipe(pipe_class_default);
11453 %}
11454 
11455 instruct repl8B_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11456   match(Set dst (ReplicateB src));
11457   predicate(n->as_Vector()->length() == 8);
11458   expand %{
11459     moveReg(dst, src);
11460     repl56(dst);
11461     repl48(dst);
11462     repl32(dst);
11463   %}
11464 %}
11465 
11466 instruct repl8B_immI0(iRegLdst dst, immI_0 zero) %{
11467   match(Set dst (ReplicateB zero));
11468   predicate(n->as_Vector()->length() == 8);
11469   format %{ "LI      $dst, #0 \t// replicate8B" %}
11470   size(4);
11471   ins_encode %{
11472     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11473     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11474   %}
11475   ins_pipe(pipe_class_default);
11476 %}
11477 
11478 instruct repl8B_immIminus1(iRegLdst dst, immI_minus1 src) %{
11479   match(Set dst (ReplicateB src));
11480   predicate(n->as_Vector()->length() == 8);
11481   format %{ "LI      $dst, #-1 \t// replicate8B" %}
11482   size(4);
11483   ins_encode %{
11484     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11485     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11486   %}
11487   ins_pipe(pipe_class_default);
11488 %}
11489 
11490 instruct repl4S_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11491   match(Set dst (ReplicateS src));
11492   predicate(n->as_Vector()->length() == 4);
11493   expand %{
11494     moveReg(dst, src);
11495     repl48(dst);
11496     repl32(dst);
11497   %}
11498 %}
11499 
11500 instruct repl4S_immI0(iRegLdst dst, immI_0 zero) %{
11501   match(Set dst (ReplicateS zero));
11502   predicate(n->as_Vector()->length() == 4);
11503   format %{ "LI      $dst, #0 \t// replicate4C" %}
11504   size(4);
11505   ins_encode %{
11506     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11507     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11508   %}
11509   ins_pipe(pipe_class_default);
11510 %}
11511 
11512 instruct repl4S_immIminus1(iRegLdst dst, immI_minus1 src) %{
11513   match(Set dst (ReplicateS src));
11514   predicate(n->as_Vector()->length() == 4);
11515   format %{ "LI      $dst, -1 \t// replicate4C" %}
11516   size(4);
11517   ins_encode %{
11518     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11519     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11520   %}
11521   ins_pipe(pipe_class_default);
11522 %}
11523 
11524 instruct repl2I_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11525   match(Set dst (ReplicateI src));
11526   predicate(n->as_Vector()->length() == 2);
11527   ins_cost(2 * DEFAULT_COST);
11528   expand %{
11529     moveReg(dst, src);
11530     repl32(dst);
11531   %}
11532 %}
11533 
11534 instruct repl2I_immI0(iRegLdst dst, immI_0 zero) %{
11535   match(Set dst (ReplicateI zero));
11536   predicate(n->as_Vector()->length() == 2);
11537   format %{ "LI      $dst, #0 \t// replicate4C" %}
11538   size(4);
11539   ins_encode %{
11540     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11541     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11542   %}
11543   ins_pipe(pipe_class_default);
11544 %}
11545 
11546 instruct repl2I_immIminus1(iRegLdst dst, immI_minus1 src) %{
11547   match(Set dst (ReplicateI src));
11548   predicate(n->as_Vector()->length() == 2);
11549   format %{ "LI      $dst, -1 \t// replicate4C" %}
11550   size(4);
11551   ins_encode %{
11552     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11553     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11554   %}
11555   ins_pipe(pipe_class_default);
11556 %}
11557 
11558 // Move float to int register via stack, replicate.
11559 instruct repl2F_reg_Ex(iRegLdst dst, regF src) %{
11560   match(Set dst (ReplicateF src));
11561   predicate(n->as_Vector()->length() == 2);
11562   ins_cost(2 * MEMORY_REF_COST + DEFAULT_COST);
11563   expand %{
11564     stackSlotL tmpS;
11565     iRegIdst tmpI;
11566     moveF2I_reg_stack(tmpS, src);   // Move float to stack.
11567     moveF2I_stack_reg(tmpI, tmpS);  // Move stack to int reg.
11568     moveReg(dst, tmpI);             // Move int to long reg.
11569     repl32(dst);                    // Replicate bitpattern.
11570   %}
11571 %}
11572 
11573 // Replicate scalar constant to packed float values in Double register
11574 instruct repl2F_immF_Ex(iRegLdst dst, immF src) %{
11575   match(Set dst (ReplicateF src));
11576   predicate(n->as_Vector()->length() == 2);
11577   ins_cost(5 * DEFAULT_COST);
11578 
11579   format %{ "LD      $dst, offset, $constanttablebase\t// load replicated float $src $src from table, postalloc expanded" %}
11580   postalloc_expand( postalloc_expand_load_replF_constant(dst, src, constanttablebase) );
11581 %}
11582 
11583 // Replicate scalar zero constant to packed float values in Double register
11584 instruct repl2F_immF0(iRegLdst dst, immF_0 zero) %{
11585   match(Set dst (ReplicateF zero));
11586   predicate(n->as_Vector()->length() == 2);
11587 
11588   format %{ "LI      $dst, #0 \t// replicate2F" %}
11589   ins_encode %{
11590     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11591     __ li($dst$$Register, 0x0);
11592   %}
11593   ins_pipe(pipe_class_default);
11594 %}
11595 
11596 // ============================================================================
11597 // Safepoint Instruction
11598 
11599 instruct safePoint_poll(iRegPdst poll) %{
11600   match(SafePoint poll);
11601   predicate(LoadPollAddressFromThread);
11602 
11603   // It caused problems to add the effect that r0 is killed, but this
11604   // effect no longer needs to be mentioned, since r0 is not contained
11605   // in a reg_class.
11606 
11607   format %{ "LD      R0, #0, $poll \t// Safepoint poll for GC" %}
11608   size(4);
11609   ins_encode( enc_poll(0x0, poll) );
11610   ins_pipe(pipe_class_default);
11611 %}
11612 
11613 // Safepoint without per-thread support. Load address of page to poll
11614 // as constant.
11615 // Rscratch2RegP is R12.
11616 // LoadConPollAddr node is added in pd_post_matching_hook(). It must be
11617 // a seperate node so that the oop map is at the right location.
11618 instruct safePoint_poll_conPollAddr(rscratch2RegP poll) %{
11619   match(SafePoint poll);
11620   predicate(!LoadPollAddressFromThread);
11621 
11622   // It caused problems to add the effect that r0 is killed, but this
11623   // effect no longer needs to be mentioned, since r0 is not contained
11624   // in a reg_class.
11625 
11626   format %{ "LD      R0, #0, R12 \t// Safepoint poll for GC" %}
11627   ins_encode( enc_poll(0x0, poll) );
11628   ins_pipe(pipe_class_default);
11629 %}
11630 
11631 // ============================================================================
11632 // Call Instructions
11633 
11634 // Call Java Static Instruction
11635 
11636 // Schedulable version of call static node.
11637 instruct CallStaticJavaDirect(method meth) %{
11638   match(CallStaticJava);
11639   effect(USE meth);
11640   predicate(!((CallStaticJavaNode*)n)->is_method_handle_invoke());
11641   ins_cost(CALL_COST);
11642 
11643   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
11644 
11645   format %{ "CALL,static $meth \t// ==> " %}
11646   size(4);
11647   ins_encode( enc_java_static_call(meth) );
11648   ins_pipe(pipe_class_call);
11649 %}
11650 
11651 // Schedulable version of call static node.
11652 instruct CallStaticJavaDirectHandle(method meth) %{
11653   match(CallStaticJava);
11654   effect(USE meth);
11655   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
11656   ins_cost(CALL_COST);
11657 
11658   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
11659 
11660   format %{ "CALL,static $meth \t// ==> " %}
11661   ins_encode( enc_java_handle_call(meth) );
11662   ins_pipe(pipe_class_call);
11663 %}
11664 
11665 // Call Java Dynamic Instruction
11666 
11667 // Used by postalloc expand of CallDynamicJavaDirectSchedEx (actual call).
11668 // Loading of IC was postalloc expanded. The nodes loading the IC are reachable
11669 // via fields ins_field_load_ic_hi_node and ins_field_load_ic_node.
11670 // The call destination must still be placed in the constant pool.
11671 instruct CallDynamicJavaDirectSched(method meth) %{
11672   match(CallDynamicJava); // To get all the data fields we need ...
11673   effect(USE meth);
11674   predicate(false);       // ... but never match.
11675 
11676   ins_field_load_ic_hi_node(loadConL_hiNode*);
11677   ins_field_load_ic_node(loadConLNode*);
11678   ins_num_consts(1 /* 1 patchable constant: call destination */);
11679 
11680   format %{ "BL        \t// dynamic $meth ==> " %}
11681   size(4);
11682   ins_encode( enc_java_dynamic_call_sched(meth) );
11683   ins_pipe(pipe_class_call);
11684 %}
11685 
11686 // Schedulable (i.e. postalloc expanded) version of call dynamic java.
11687 // We use postalloc expanded calls if we use inline caches
11688 // and do not update method data.
11689 //
11690 // This instruction has two constants: inline cache (IC) and call destination.
11691 // Loading the inline cache will be postalloc expanded, thus leaving a call with
11692 // one constant.
11693 instruct CallDynamicJavaDirectSched_Ex(method meth) %{
11694   match(CallDynamicJava);
11695   effect(USE meth);
11696   predicate(UseInlineCaches);
11697   ins_cost(CALL_COST);
11698 
11699   ins_num_consts(2 /* 2 patchable constants: inline cache, call destination. */);
11700 
11701   format %{ "CALL,dynamic $meth \t// postalloc expanded" %}
11702   postalloc_expand( postalloc_expand_java_dynamic_call_sched(meth, constanttablebase) );
11703 %}
11704 
11705 // Compound version of call dynamic java
11706 // We use postalloc expanded calls if we use inline caches
11707 // and do not update method data.
11708 instruct CallDynamicJavaDirect(method meth) %{
11709   match(CallDynamicJava);
11710   effect(USE meth);
11711   predicate(!UseInlineCaches);
11712   ins_cost(CALL_COST);
11713 
11714   // Enc_java_to_runtime_call needs up to 4 constants (method data oop).
11715   ins_num_consts(4);
11716 
11717   format %{ "CALL,dynamic $meth \t// ==> " %}
11718   ins_encode( enc_java_dynamic_call(meth, constanttablebase) );
11719   ins_pipe(pipe_class_call);
11720 %}
11721 
11722 // Call Runtime Instruction
11723 
11724 instruct CallRuntimeDirect(method meth) %{
11725   match(CallRuntime);
11726   effect(USE meth);
11727   ins_cost(CALL_COST);
11728 
11729   // Enc_java_to_runtime_call needs up to 3 constants: call target,
11730   // env for callee, C-toc.
11731   ins_num_consts(3);
11732 
11733   format %{ "CALL,runtime" %}
11734   ins_encode( enc_java_to_runtime_call(meth) );
11735   ins_pipe(pipe_class_call);
11736 %}
11737 
11738 // Call Leaf
11739 
11740 // Used by postalloc expand of CallLeafDirect_Ex (mtctr).
11741 instruct CallLeafDirect_mtctr(iRegLdst dst, iRegLsrc src) %{
11742   effect(DEF dst, USE src);
11743 
11744   ins_num_consts(1);
11745 
11746   format %{ "MTCTR   $src" %}
11747   size(4);
11748   ins_encode( enc_leaf_call_mtctr(src) );
11749   ins_pipe(pipe_class_default);
11750 %}
11751 
11752 // Used by postalloc expand of CallLeafDirect_Ex (actual call).
11753 instruct CallLeafDirect(method meth) %{
11754   match(CallLeaf);   // To get the data all the data fields we need ...
11755   effect(USE meth);
11756   predicate(false);  // but never match.
11757 
11758   format %{ "BCTRL     \t// leaf call $meth ==> " %}
11759   size(4);
11760   ins_encode %{
11761     // TODO: PPC port $archOpcode(ppc64Opcode_bctrl);
11762     __ bctrl();
11763   %}
11764   ins_pipe(pipe_class_call);
11765 %}
11766 
11767 // postalloc expand of CallLeafDirect.
11768 // Load adress to call from TOC, then bl to it.
11769 instruct CallLeafDirect_Ex(method meth) %{
11770   match(CallLeaf);
11771   effect(USE meth);
11772   ins_cost(CALL_COST);
11773 
11774   // Postalloc_expand_java_to_runtime_call needs up to 3 constants: call target,
11775   // env for callee, C-toc.
11776   ins_num_consts(3);
11777 
11778   format %{ "CALL,runtime leaf $meth \t// postalloc expanded" %}
11779   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
11780 %}
11781 
11782 // Call runtime without safepoint - same as CallLeaf.
11783 // postalloc expand of CallLeafNoFPDirect.
11784 // Load adress to call from TOC, then bl to it.
11785 instruct CallLeafNoFPDirect_Ex(method meth) %{
11786   match(CallLeafNoFP);
11787   effect(USE meth);
11788   ins_cost(CALL_COST);
11789 
11790   // Enc_java_to_runtime_call needs up to 3 constants: call target,
11791   // env for callee, C-toc.
11792   ins_num_consts(3);
11793 
11794   format %{ "CALL,runtime leaf nofp $meth \t// postalloc expanded" %}
11795   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
11796 %}
11797 
11798 // Tail Call; Jump from runtime stub to Java code.
11799 // Also known as an 'interprocedural jump'.
11800 // Target of jump will eventually return to caller.
11801 // TailJump below removes the return address.
11802 instruct TailCalljmpInd(iRegPdstNoScratch jump_target, inline_cache_regP method_oop) %{
11803   match(TailCall jump_target method_oop);
11804   ins_cost(CALL_COST);
11805 
11806   format %{ "MTCTR   $jump_target \t// $method_oop holds method oop\n\t"
11807             "BCTR         \t// tail call" %}
11808   size(8);
11809   ins_encode %{
11810     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11811     __ mtctr($jump_target$$Register);
11812     __ bctr();
11813   %}
11814   ins_pipe(pipe_class_call);
11815 %}
11816 
11817 // Return Instruction
11818 instruct Ret() %{
11819   match(Return);
11820   format %{ "BLR      \t// branch to link register" %}
11821   size(4);
11822   ins_encode %{
11823     // TODO: PPC port $archOpcode(ppc64Opcode_blr);
11824     // LR is restored in MachEpilogNode. Just do the RET here.
11825     __ blr();
11826   %}
11827   ins_pipe(pipe_class_default);
11828 %}
11829 
11830 // Tail Jump; remove the return address; jump to target.
11831 // TailCall above leaves the return address around.
11832 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
11833 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
11834 // "restore" before this instruction (in Epilogue), we need to materialize it
11835 // in %i0.
11836 instruct tailjmpInd(iRegPdstNoScratch jump_target, rarg1RegP ex_oop) %{
11837   match(TailJump jump_target ex_oop);
11838   ins_cost(CALL_COST);
11839 
11840   format %{ "LD      R4_ARG2 = LR\n\t"
11841             "MTCTR   $jump_target\n\t"
11842             "BCTR     \t// TailJump, exception oop: $ex_oop" %}
11843   size(12);
11844   ins_encode %{
11845     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11846     __ ld(R4_ARG2/* issuing pc */, _abi(lr), R1_SP);
11847     __ mtctr($jump_target$$Register);
11848     __ bctr();
11849   %}
11850   ins_pipe(pipe_class_call);
11851 %}
11852 
11853 // Create exception oop: created by stack-crawling runtime code.
11854 // Created exception is now available to this handler, and is setup
11855 // just prior to jumping to this handler. No code emitted.
11856 instruct CreateException(rarg1RegP ex_oop) %{
11857   match(Set ex_oop (CreateEx));
11858   ins_cost(0);
11859 
11860   format %{ " -- \t// exception oop; no code emitted" %}
11861   size(0);
11862   ins_encode( /*empty*/ );
11863   ins_pipe(pipe_class_default);
11864 %}
11865 
11866 // Rethrow exception: The exception oop will come in the first
11867 // argument position. Then JUMP (not call) to the rethrow stub code.
11868 instruct RethrowException() %{
11869   match(Rethrow);
11870   ins_cost(CALL_COST);
11871 
11872   format %{ "Jmp     rethrow_stub" %}
11873   ins_encode %{
11874     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11875     cbuf.set_insts_mark();
11876     __ b64_patchable((address)OptoRuntime::rethrow_stub(), relocInfo::runtime_call_type);
11877   %}
11878   ins_pipe(pipe_class_call);
11879 %}
11880 
11881 // Die now.
11882 instruct ShouldNotReachHere() %{
11883   match(Halt);
11884   ins_cost(CALL_COST);
11885 
11886   format %{ "ShouldNotReachHere" %}
11887   size(4);
11888   ins_encode %{
11889     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
11890     __ trap_should_not_reach_here();
11891   %}
11892   ins_pipe(pipe_class_default);
11893 %}
11894 
11895 // This name is KNOWN by the ADLC and cannot be changed.  The ADLC
11896 // forces a 'TypeRawPtr::BOTTOM' output type for this guy.
11897 // Get a DEF on threadRegP, no costs, no encoding, use
11898 // 'ins_should_rematerialize(true)' to avoid spilling.
11899 instruct tlsLoadP(threadRegP dst) %{
11900   match(Set dst (ThreadLocal));
11901   ins_cost(0);
11902 
11903   ins_should_rematerialize(true);
11904 
11905   format %{ " -- \t// $dst=Thread::current(), empty" %}
11906   size(0);
11907   ins_encode( /*empty*/ );
11908   ins_pipe(pipe_class_empty);
11909 %}
11910 
11911 //---Some PPC specific nodes---------------------------------------------------
11912 
11913 // Stop a group.
11914 instruct endGroup() %{
11915   ins_cost(0);
11916 
11917   ins_is_nop(true);
11918 
11919   format %{ "End Bundle (ori r1, r1, 0)" %}
11920   size(4);
11921   ins_encode %{
11922     // TODO: PPC port $archOpcode(ppc64Opcode_endgroup);
11923     __ endgroup();
11924   %}
11925   ins_pipe(pipe_class_default);
11926 %}
11927 
11928 // Nop instructions
11929 
11930 instruct fxNop() %{
11931   ins_cost(0);
11932 
11933   ins_is_nop(true);
11934 
11935   format %{ "fxNop" %}
11936   size(4);
11937   ins_encode %{
11938     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
11939     __ nop();
11940   %}
11941   ins_pipe(pipe_class_default);
11942 %}
11943 
11944 instruct fpNop0() %{
11945   ins_cost(0);
11946 
11947   ins_is_nop(true);
11948 
11949   format %{ "fpNop0" %}
11950   size(4);
11951   ins_encode %{
11952     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
11953     __ fpnop0();
11954   %}
11955   ins_pipe(pipe_class_default);
11956 %}
11957 
11958 instruct fpNop1() %{
11959   ins_cost(0);
11960 
11961   ins_is_nop(true);
11962 
11963   format %{ "fpNop1" %}
11964   size(4);
11965   ins_encode %{
11966     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
11967     __ fpnop1();
11968   %}
11969   ins_pipe(pipe_class_default);
11970 %}
11971 
11972 instruct brNop0() %{
11973   ins_cost(0);
11974   size(4);
11975   format %{ "brNop0" %}
11976   ins_encode %{
11977     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
11978     __ brnop0();
11979   %}
11980   ins_is_nop(true);
11981   ins_pipe(pipe_class_default);
11982 %}
11983 
11984 instruct brNop1() %{
11985   ins_cost(0);
11986 
11987   ins_is_nop(true);
11988 
11989   format %{ "brNop1" %}
11990   size(4);
11991   ins_encode %{
11992     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
11993     __ brnop1();
11994   %}
11995   ins_pipe(pipe_class_default);
11996 %}
11997 
11998 instruct brNop2() %{
11999   ins_cost(0);
12000 
12001   ins_is_nop(true);
12002 
12003   format %{ "brNop2" %}
12004   size(4);
12005   ins_encode %{
12006     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
12007     __ brnop2();
12008   %}
12009   ins_pipe(pipe_class_default);
12010 %}
12011 
12012 //----------PEEPHOLE RULES-----------------------------------------------------
12013 // These must follow all instruction definitions as they use the names
12014 // defined in the instructions definitions.
12015 //
12016 // peepmatch ( root_instr_name [preceeding_instruction]* );
12017 //
12018 // peepconstraint %{
12019 // (instruction_number.operand_name relational_op instruction_number.operand_name
12020 //  [, ...] );
12021 // // instruction numbers are zero-based using left to right order in peepmatch
12022 //
12023 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
12024 // // provide an instruction_number.operand_name for each operand that appears
12025 // // in the replacement instruction's match rule
12026 //
12027 // ---------VM FLAGS---------------------------------------------------------
12028 //
12029 // All peephole optimizations can be turned off using -XX:-OptoPeephole
12030 //
12031 // Each peephole rule is given an identifying number starting with zero and
12032 // increasing by one in the order seen by the parser. An individual peephole
12033 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
12034 // on the command-line.
12035 //
12036 // ---------CURRENT LIMITATIONS----------------------------------------------
12037 //
12038 // Only match adjacent instructions in same basic block
12039 // Only equality constraints
12040 // Only constraints between operands, not (0.dest_reg == EAX_enc)
12041 // Only one replacement instruction
12042 //
12043 // ---------EXAMPLE----------------------------------------------------------
12044 //
12045 // // pertinent parts of existing instructions in architecture description
12046 // instruct movI(eRegI dst, eRegI src) %{
12047 //   match(Set dst (CopyI src));
12048 // %}
12049 //
12050 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
12051 //   match(Set dst (AddI dst src));
12052 //   effect(KILL cr);
12053 // %}
12054 //
12055 // // Change (inc mov) to lea
12056 // peephole %{
12057 //   // increment preceeded by register-register move
12058 //   peepmatch ( incI_eReg movI );
12059 //   // require that the destination register of the increment
12060 //   // match the destination register of the move
12061 //   peepconstraint ( 0.dst == 1.dst );
12062 //   // construct a replacement instruction that sets
12063 //   // the destination to ( move's source register + one )
12064 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12065 // %}
12066 //
12067 // Implementation no longer uses movX instructions since
12068 // machine-independent system no longer uses CopyX nodes.
12069 //
12070 // peephole %{
12071 //   peepmatch ( incI_eReg movI );
12072 //   peepconstraint ( 0.dst == 1.dst );
12073 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12074 // %}
12075 //
12076 // peephole %{
12077 //   peepmatch ( decI_eReg movI );
12078 //   peepconstraint ( 0.dst == 1.dst );
12079 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12080 // %}
12081 //
12082 // peephole %{
12083 //   peepmatch ( addI_eReg_imm movI );
12084 //   peepconstraint ( 0.dst == 1.dst );
12085 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12086 // %}
12087 //
12088 // peephole %{
12089 //   peepmatch ( addP_eReg_imm movP );
12090 //   peepconstraint ( 0.dst == 1.dst );
12091 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
12092 // %}
12093 
12094 // // Change load of spilled value to only a spill
12095 // instruct storeI(memory mem, eRegI src) %{
12096 //   match(Set mem (StoreI mem src));
12097 // %}
12098 //
12099 // instruct loadI(eRegI dst, memory mem) %{
12100 //   match(Set dst (LoadI mem));
12101 // %}
12102 //
12103 peephole %{
12104   peepmatch ( loadI storeI );
12105   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
12106   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
12107 %}
12108 
12109 peephole %{
12110   peepmatch ( loadL storeL );
12111   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
12112   peepreplace ( storeL( 1.mem 1.mem 1.src ) );
12113 %}
12114 
12115 peephole %{
12116   peepmatch ( loadP storeP );
12117   peepconstraint ( 1.src == 0.dst, 1.dst == 0.mem );
12118   peepreplace ( storeP( 1.dst 1.dst 1.src ) );
12119 %}
12120 
12121 //----------SMARTSPILL RULES---------------------------------------------------
12122 // These must follow all instruction definitions as they use the names
12123 // defined in the instructions definitions.