1 /*
   2  * Copyright (c) 2002, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright 2012, 2015 SAP AG. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_PPC_VM_ASSEMBLER_PPC_HPP
  27 #define CPU_PPC_VM_ASSEMBLER_PPC_HPP
  28 
  29 #include "asm/register.hpp"
  30 
  31 // Address is an abstraction used to represent a memory location
  32 // as used in assembler instructions.
  33 // PPC instructions grok either baseReg + indexReg or baseReg + disp.
  34 // So far we do not use this as simplification by this class is low
  35 // on PPC with its simple addressing mode. Use RegisterOrConstant to
  36 // represent an offset.
  37 class Address VALUE_OBJ_CLASS_SPEC {
  38 };
  39 
  40 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
  41  private:
  42   address          _address;
  43   RelocationHolder _rspec;
  44 
  45   RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
  46     switch (rtype) {
  47     case relocInfo::external_word_type:
  48       return external_word_Relocation::spec(addr);
  49     case relocInfo::internal_word_type:
  50       return internal_word_Relocation::spec(addr);
  51     case relocInfo::opt_virtual_call_type:
  52       return opt_virtual_call_Relocation::spec();
  53     case relocInfo::static_call_type:
  54       return static_call_Relocation::spec();
  55     case relocInfo::runtime_call_type:
  56       return runtime_call_Relocation::spec();
  57     case relocInfo::none:
  58       return RelocationHolder();
  59     default:
  60       ShouldNotReachHere();
  61       return RelocationHolder();
  62     }
  63   }
  64 
  65  protected:
  66   // creation
  67   AddressLiteral() : _address(NULL), _rspec(NULL) {}
  68 
  69  public:
  70   AddressLiteral(address addr, RelocationHolder const& rspec)
  71     : _address(addr),
  72       _rspec(rspec) {}
  73 
  74   AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
  75     : _address((address) addr),
  76       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
  77 
  78   AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
  79     : _address((address) addr),
  80       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
  81 
  82   intptr_t value() const { return (intptr_t) _address; }
  83 
  84   const RelocationHolder& rspec() const { return _rspec; }
  85 };
  86 
  87 // Argument is an abstraction used to represent an outgoing
  88 // actual argument or an incoming formal parameter, whether
  89 // it resides in memory or in a register, in a manner consistent
  90 // with the PPC Application Binary Interface, or ABI. This is
  91 // often referred to as the native or C calling convention.
  92 
  93 class Argument VALUE_OBJ_CLASS_SPEC {
  94  private:
  95   int _number;  // The number of the argument.
  96  public:
  97   enum {
  98     // Only 8 registers may contain integer parameters.
  99     n_register_parameters = 8,
 100     // Can have up to 8 floating registers.
 101     n_float_register_parameters = 8,
 102 
 103     // PPC C calling conventions.
 104     // The first eight arguments are passed in int regs if they are int.
 105     n_int_register_parameters_c = 8,
 106     // The first thirteen float arguments are passed in float regs.
 107     n_float_register_parameters_c = 13,
 108     // Only the first 8 parameters are not placed on the stack. Aix disassembly
 109     // shows that xlC places all float args after argument 8 on the stack AND
 110     // in a register. This is not documented, but we follow this convention, too.
 111     n_regs_not_on_stack_c = 8,
 112   };
 113   // creation
 114   Argument(int number) : _number(number) {}
 115 
 116   int  number() const { return _number; }
 117 
 118   // Locating register-based arguments:
 119   bool is_register() const { return _number < n_register_parameters; }
 120 
 121   Register as_register() const {
 122     assert(is_register(), "must be a register argument");
 123     return as_Register(number() + R3_ARG1->encoding());
 124   }
 125 };
 126 
 127 #if !defined(ABI_ELFv2)
 128 // A ppc64 function descriptor.
 129 struct FunctionDescriptor VALUE_OBJ_CLASS_SPEC {
 130  private:
 131   address _entry;
 132   address _toc;
 133   address _env;
 134 
 135  public:
 136   inline address entry() const { return _entry; }
 137   inline address toc()   const { return _toc; }
 138   inline address env()   const { return _env; }
 139 
 140   inline void set_entry(address entry) { _entry = entry; }
 141   inline void set_toc(  address toc)   { _toc   = toc; }
 142   inline void set_env(  address env)   { _env   = env; }
 143 
 144   inline static ByteSize entry_offset() { return byte_offset_of(FunctionDescriptor, _entry); }
 145   inline static ByteSize toc_offset()   { return byte_offset_of(FunctionDescriptor, _toc); }
 146   inline static ByteSize env_offset()   { return byte_offset_of(FunctionDescriptor, _env); }
 147 
 148   // Friend functions can be called without loading toc and env.
 149   enum {
 150     friend_toc = 0xcafe,
 151     friend_env = 0xc0de
 152   };
 153 
 154   inline bool is_friend_function() const {
 155     return (toc() == (address) friend_toc) && (env() == (address) friend_env);
 156   }
 157 
 158   // Constructor for stack-allocated instances.
 159   FunctionDescriptor() {
 160     _entry = (address) 0xbad;
 161     _toc   = (address) 0xbad;
 162     _env   = (address) 0xbad;
 163   }
 164 };
 165 #endif
 166 
 167 class Assembler : public AbstractAssembler {
 168  protected:
 169   // Displacement routines
 170   static void print_instruction(int inst);
 171   static int  patched_branch(int dest_pos, int inst, int inst_pos);
 172   static int  branch_destination(int inst, int pos);
 173 
 174   friend class AbstractAssembler;
 175 
 176   // Code patchers need various routines like inv_wdisp()
 177   friend class NativeInstruction;
 178   friend class NativeGeneralJump;
 179   friend class Relocation;
 180 
 181  public:
 182 
 183   enum shifts {
 184     XO_21_29_SHIFT = 2,
 185     XO_21_30_SHIFT = 1,
 186     XO_27_29_SHIFT = 2,
 187     XO_30_31_SHIFT = 0,
 188     SPR_5_9_SHIFT  = 11u, // SPR_5_9 field in bits 11 -- 15
 189     SPR_0_4_SHIFT  = 16u, // SPR_0_4 field in bits 16 -- 20
 190     RS_SHIFT       = 21u, // RS field in bits 21 -- 25
 191     OPCODE_SHIFT   = 26u, // opcode in bits 26 -- 31
 192   };
 193 
 194   enum opcdxos_masks {
 195     XL_FORM_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
 196     ADDI_OPCODE_MASK    = (63u << OPCODE_SHIFT),
 197     ADDIS_OPCODE_MASK   = (63u << OPCODE_SHIFT),
 198     BXX_OPCODE_MASK     = (63u << OPCODE_SHIFT),
 199     BCXX_OPCODE_MASK    = (63u << OPCODE_SHIFT),
 200     // trap instructions
 201     TDI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
 202     TWI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
 203     TD_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (1023u << 1),
 204     TW_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (1023u << 1),
 205     LD_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (3u << XO_30_31_SHIFT), // DS-FORM
 206     STD_OPCODE_MASK     = LD_OPCODE_MASK,
 207     STDU_OPCODE_MASK    = STD_OPCODE_MASK,
 208     STDX_OPCODE_MASK    = (63u << OPCODE_SHIFT) | (1023u << 1),
 209     STDUX_OPCODE_MASK   = STDX_OPCODE_MASK,
 210     STW_OPCODE_MASK     = (63u << OPCODE_SHIFT),
 211     STWU_OPCODE_MASK    = STW_OPCODE_MASK,
 212     STWX_OPCODE_MASK    = (63u << OPCODE_SHIFT) | (1023u << 1),
 213     STWUX_OPCODE_MASK   = STWX_OPCODE_MASK,
 214     MTCTR_OPCODE_MASK   = ~(31u << RS_SHIFT),
 215     ORI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
 216     ORIS_OPCODE_MASK    = (63u << OPCODE_SHIFT),
 217     RLDICR_OPCODE_MASK  = (63u << OPCODE_SHIFT) | (7u << XO_27_29_SHIFT)
 218   };
 219 
 220   enum opcdxos {
 221     ADD_OPCODE    = (31u << OPCODE_SHIFT | 266u << 1),
 222     ADDC_OPCODE   = (31u << OPCODE_SHIFT |  10u << 1),
 223     ADDI_OPCODE   = (14u << OPCODE_SHIFT),
 224     ADDIS_OPCODE  = (15u << OPCODE_SHIFT),
 225     ADDIC__OPCODE = (13u << OPCODE_SHIFT),
 226     ADDE_OPCODE   = (31u << OPCODE_SHIFT | 138u << 1),
 227     ADDME_OPCODE  = (31u << OPCODE_SHIFT | 234u << 1),
 228     ADDZE_OPCODE  = (31u << OPCODE_SHIFT | 202u << 1),
 229     SUBF_OPCODE   = (31u << OPCODE_SHIFT |  40u << 1),
 230     SUBFC_OPCODE  = (31u << OPCODE_SHIFT |   8u << 1),
 231     SUBFE_OPCODE  = (31u << OPCODE_SHIFT | 136u << 1),
 232     SUBFIC_OPCODE = (8u  << OPCODE_SHIFT),
 233     SUBFME_OPCODE = (31u << OPCODE_SHIFT | 232u << 1),
 234     SUBFZE_OPCODE = (31u << OPCODE_SHIFT | 200u << 1),
 235     DIVW_OPCODE   = (31u << OPCODE_SHIFT | 491u << 1),
 236     MULLW_OPCODE  = (31u << OPCODE_SHIFT | 235u << 1),
 237     MULHW_OPCODE  = (31u << OPCODE_SHIFT |  75u << 1),
 238     MULHWU_OPCODE = (31u << OPCODE_SHIFT |  11u << 1),
 239     MULLI_OPCODE  = (7u  << OPCODE_SHIFT),
 240     AND_OPCODE    = (31u << OPCODE_SHIFT |  28u << 1),
 241     ANDI_OPCODE   = (28u << OPCODE_SHIFT),
 242     ANDIS_OPCODE  = (29u << OPCODE_SHIFT),
 243     ANDC_OPCODE   = (31u << OPCODE_SHIFT |  60u << 1),
 244     ORC_OPCODE    = (31u << OPCODE_SHIFT | 412u << 1),
 245     OR_OPCODE     = (31u << OPCODE_SHIFT | 444u << 1),
 246     ORI_OPCODE    = (24u << OPCODE_SHIFT),
 247     ORIS_OPCODE   = (25u << OPCODE_SHIFT),
 248     XOR_OPCODE    = (31u << OPCODE_SHIFT | 316u << 1),
 249     XORI_OPCODE   = (26u << OPCODE_SHIFT),
 250     XORIS_OPCODE  = (27u << OPCODE_SHIFT),
 251 
 252     NEG_OPCODE    = (31u << OPCODE_SHIFT | 104u << 1),
 253 
 254     RLWINM_OPCODE = (21u << OPCODE_SHIFT),
 255     CLRRWI_OPCODE = RLWINM_OPCODE,
 256     CLRLWI_OPCODE = RLWINM_OPCODE,
 257 
 258     RLWIMI_OPCODE = (20u << OPCODE_SHIFT),
 259 
 260     SLW_OPCODE    = (31u << OPCODE_SHIFT |  24u << 1),
 261     SLWI_OPCODE   = RLWINM_OPCODE,
 262     SRW_OPCODE    = (31u << OPCODE_SHIFT | 536u << 1),
 263     SRWI_OPCODE   = RLWINM_OPCODE,
 264     SRAW_OPCODE   = (31u << OPCODE_SHIFT | 792u << 1),
 265     SRAWI_OPCODE  = (31u << OPCODE_SHIFT | 824u << 1),
 266 
 267     CMP_OPCODE    = (31u << OPCODE_SHIFT |   0u << 1),
 268     CMPI_OPCODE   = (11u << OPCODE_SHIFT),
 269     CMPL_OPCODE   = (31u << OPCODE_SHIFT |  32u << 1),
 270     CMPLI_OPCODE  = (10u << OPCODE_SHIFT),
 271 
 272     ISEL_OPCODE   = (31u << OPCODE_SHIFT |  15u << 1),
 273 
 274     // Special purpose registers
 275     MTSPR_OPCODE  = (31u << OPCODE_SHIFT | 467u << 1),
 276     MFSPR_OPCODE  = (31u << OPCODE_SHIFT | 339u << 1),
 277 
 278     MTXER_OPCODE  = (MTSPR_OPCODE | 1 << SPR_0_4_SHIFT),
 279     MFXER_OPCODE  = (MFSPR_OPCODE | 1 << SPR_0_4_SHIFT),
 280 
 281     MTDSCR_OPCODE = (MTSPR_OPCODE | 3 << SPR_0_4_SHIFT),
 282     MFDSCR_OPCODE = (MFSPR_OPCODE | 3 << SPR_0_4_SHIFT),
 283 
 284     MTLR_OPCODE   = (MTSPR_OPCODE | 8 << SPR_0_4_SHIFT),
 285     MFLR_OPCODE   = (MFSPR_OPCODE | 8 << SPR_0_4_SHIFT),
 286 
 287     MTCTR_OPCODE  = (MTSPR_OPCODE | 9 << SPR_0_4_SHIFT),
 288     MFCTR_OPCODE  = (MFSPR_OPCODE | 9 << SPR_0_4_SHIFT),
 289 
 290     // Attention: Higher and lower half are inserted in reversed order.
 291     MTTFHAR_OPCODE   = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
 292     MFTFHAR_OPCODE   = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
 293     MTTFIAR_OPCODE   = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 1 << SPR_0_4_SHIFT),
 294     MFTFIAR_OPCODE   = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 1 << SPR_0_4_SHIFT),
 295     MTTEXASR_OPCODE  = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 2 << SPR_0_4_SHIFT),
 296     MFTEXASR_OPCODE  = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 2 << SPR_0_4_SHIFT),
 297     MTTEXASRU_OPCODE = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 3 << SPR_0_4_SHIFT),
 298     MFTEXASRU_OPCODE = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 3 << SPR_0_4_SHIFT),
 299 
 300     MTVRSAVE_OPCODE  = (MTSPR_OPCODE | 8 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
 301     MFVRSAVE_OPCODE  = (MFSPR_OPCODE | 8 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
 302 
 303     MFTB_OPCODE   = (MFSPR_OPCODE | 8 << SPR_5_9_SHIFT | 12 << SPR_0_4_SHIFT),
 304 
 305     MTCRF_OPCODE  = (31u << OPCODE_SHIFT | 144u << 1),
 306     MFCR_OPCODE   = (31u << OPCODE_SHIFT | 19u << 1),
 307     MCRF_OPCODE   = (19u << OPCODE_SHIFT | 0u << 1),
 308 
 309     // condition register logic instructions
 310     CRAND_OPCODE  = (19u << OPCODE_SHIFT | 257u << 1),
 311     CRNAND_OPCODE = (19u << OPCODE_SHIFT | 225u << 1),
 312     CROR_OPCODE   = (19u << OPCODE_SHIFT | 449u << 1),
 313     CRXOR_OPCODE  = (19u << OPCODE_SHIFT | 193u << 1),
 314     CRNOR_OPCODE  = (19u << OPCODE_SHIFT |  33u << 1),
 315     CREQV_OPCODE  = (19u << OPCODE_SHIFT | 289u << 1),
 316     CRANDC_OPCODE = (19u << OPCODE_SHIFT | 129u << 1),
 317     CRORC_OPCODE  = (19u << OPCODE_SHIFT | 417u << 1),
 318 
 319     BCLR_OPCODE   = (19u << OPCODE_SHIFT | 16u << 1),
 320     BXX_OPCODE      = (18u << OPCODE_SHIFT),
 321     BCXX_OPCODE     = (16u << OPCODE_SHIFT),
 322 
 323     // CTR-related opcodes
 324     BCCTR_OPCODE  = (19u << OPCODE_SHIFT | 528u << 1),
 325 
 326     LWZ_OPCODE   = (32u << OPCODE_SHIFT),
 327     LWZX_OPCODE  = (31u << OPCODE_SHIFT |  23u << 1),
 328     LWZU_OPCODE  = (33u << OPCODE_SHIFT),
 329     LWBRX_OPCODE = (31u << OPCODE_SHIFT |  534 << 1),
 330 
 331     LHA_OPCODE   = (42u << OPCODE_SHIFT),
 332     LHAX_OPCODE  = (31u << OPCODE_SHIFT | 343u << 1),
 333     LHAU_OPCODE  = (43u << OPCODE_SHIFT),
 334 
 335     LHZ_OPCODE   = (40u << OPCODE_SHIFT),
 336     LHZX_OPCODE  = (31u << OPCODE_SHIFT | 279u << 1),
 337     LHZU_OPCODE  = (41u << OPCODE_SHIFT),
 338     LHBRX_OPCODE = (31u << OPCODE_SHIFT |  790 << 1),
 339 
 340     LBZ_OPCODE   = (34u << OPCODE_SHIFT),
 341     LBZX_OPCODE  = (31u << OPCODE_SHIFT |  87u << 1),
 342     LBZU_OPCODE  = (35u << OPCODE_SHIFT),
 343 
 344     STW_OPCODE   = (36u << OPCODE_SHIFT),
 345     STWX_OPCODE  = (31u << OPCODE_SHIFT | 151u << 1),
 346     STWU_OPCODE  = (37u << OPCODE_SHIFT),
 347     STWUX_OPCODE = (31u << OPCODE_SHIFT | 183u << 1),
 348 
 349     STH_OPCODE   = (44u << OPCODE_SHIFT),
 350     STHX_OPCODE  = (31u << OPCODE_SHIFT | 407u << 1),
 351     STHU_OPCODE  = (45u << OPCODE_SHIFT),
 352 
 353     STB_OPCODE   = (38u << OPCODE_SHIFT),
 354     STBX_OPCODE  = (31u << OPCODE_SHIFT | 215u << 1),
 355     STBU_OPCODE  = (39u << OPCODE_SHIFT),
 356 
 357     EXTSB_OPCODE = (31u << OPCODE_SHIFT | 954u << 1),
 358     EXTSH_OPCODE = (31u << OPCODE_SHIFT | 922u << 1),
 359     EXTSW_OPCODE = (31u << OPCODE_SHIFT | 986u << 1),               // X-FORM
 360 
 361     // 32 bit opcode encodings
 362 
 363     LWA_OPCODE    = (58u << OPCODE_SHIFT |   2u << XO_30_31_SHIFT), // DS-FORM
 364     LWAX_OPCODE   = (31u << OPCODE_SHIFT | 341u << XO_21_30_SHIFT), // X-FORM
 365 
 366     CNTLZW_OPCODE = (31u << OPCODE_SHIFT |  26u << XO_21_30_SHIFT), // X-FORM
 367 
 368     // 64 bit opcode encodings
 369 
 370     LD_OPCODE     = (58u << OPCODE_SHIFT |   0u << XO_30_31_SHIFT), // DS-FORM
 371     LDU_OPCODE    = (58u << OPCODE_SHIFT |   1u << XO_30_31_SHIFT), // DS-FORM
 372     LDX_OPCODE    = (31u << OPCODE_SHIFT |  21u << XO_21_30_SHIFT), // X-FORM
 373 
 374     STD_OPCODE    = (62u << OPCODE_SHIFT |   0u << XO_30_31_SHIFT), // DS-FORM
 375     STDU_OPCODE   = (62u << OPCODE_SHIFT |   1u << XO_30_31_SHIFT), // DS-FORM
 376     STDUX_OPCODE  = (31u << OPCODE_SHIFT | 181u << 1),                  // X-FORM
 377     STDX_OPCODE   = (31u << OPCODE_SHIFT | 149u << XO_21_30_SHIFT), // X-FORM
 378 
 379     RLDICR_OPCODE = (30u << OPCODE_SHIFT |   1u << XO_27_29_SHIFT), // MD-FORM
 380     RLDICL_OPCODE = (30u << OPCODE_SHIFT |   0u << XO_27_29_SHIFT), // MD-FORM
 381     RLDIC_OPCODE  = (30u << OPCODE_SHIFT |   2u << XO_27_29_SHIFT), // MD-FORM
 382     RLDIMI_OPCODE = (30u << OPCODE_SHIFT |   3u << XO_27_29_SHIFT), // MD-FORM
 383 
 384     SRADI_OPCODE  = (31u << OPCODE_SHIFT | 413u << XO_21_29_SHIFT), // XS-FORM
 385 
 386     SLD_OPCODE    = (31u << OPCODE_SHIFT |  27u << 1),              // X-FORM
 387     SRD_OPCODE    = (31u << OPCODE_SHIFT | 539u << 1),              // X-FORM
 388     SRAD_OPCODE   = (31u << OPCODE_SHIFT | 794u << 1),              // X-FORM
 389 
 390     MULLD_OPCODE  = (31u << OPCODE_SHIFT | 233u << 1),              // XO-FORM
 391     MULHD_OPCODE  = (31u << OPCODE_SHIFT |  73u << 1),              // XO-FORM
 392     MULHDU_OPCODE = (31u << OPCODE_SHIFT |   9u << 1),              // XO-FORM
 393     DIVD_OPCODE   = (31u << OPCODE_SHIFT | 489u << 1),              // XO-FORM
 394 
 395     CNTLZD_OPCODE = (31u << OPCODE_SHIFT |  58u << XO_21_30_SHIFT), // X-FORM
 396     NAND_OPCODE   = (31u << OPCODE_SHIFT | 476u << XO_21_30_SHIFT), // X-FORM
 397     NOR_OPCODE    = (31u << OPCODE_SHIFT | 124u << XO_21_30_SHIFT), // X-FORM
 398 
 399 
 400     // opcodes only used for floating arithmetic
 401     FADD_OPCODE   = (63u << OPCODE_SHIFT |  21u << 1),
 402     FADDS_OPCODE  = (59u << OPCODE_SHIFT |  21u << 1),
 403     FCMPU_OPCODE  = (63u << OPCODE_SHIFT |  00u << 1),
 404     FDIV_OPCODE   = (63u << OPCODE_SHIFT |  18u << 1),
 405     FDIVS_OPCODE  = (59u << OPCODE_SHIFT |  18u << 1),
 406     FMR_OPCODE    = (63u << OPCODE_SHIFT |  72u << 1),
 407     // These are special Power6 opcodes, reused for "lfdepx" and "stfdepx"
 408     // on Power7.  Do not use.
 409     // MFFGPR_OPCODE  = (31u << OPCODE_SHIFT | 607u << 1),
 410     // MFTGPR_OPCODE  = (31u << OPCODE_SHIFT | 735u << 1),
 411     CMPB_OPCODE    = (31u << OPCODE_SHIFT |  508  << 1),
 412     POPCNTB_OPCODE = (31u << OPCODE_SHIFT |  122  << 1),
 413     POPCNTW_OPCODE = (31u << OPCODE_SHIFT |  378  << 1),
 414     POPCNTD_OPCODE = (31u << OPCODE_SHIFT |  506  << 1),
 415     FABS_OPCODE    = (63u << OPCODE_SHIFT |  264u << 1),
 416     FNABS_OPCODE   = (63u << OPCODE_SHIFT |  136u << 1),
 417     FMUL_OPCODE    = (63u << OPCODE_SHIFT |   25u << 1),
 418     FMULS_OPCODE   = (59u << OPCODE_SHIFT |   25u << 1),
 419     FNEG_OPCODE    = (63u << OPCODE_SHIFT |   40u << 1),
 420     FSUB_OPCODE    = (63u << OPCODE_SHIFT |   20u << 1),
 421     FSUBS_OPCODE   = (59u << OPCODE_SHIFT |   20u << 1),
 422 
 423     // PPC64-internal FPU conversion opcodes
 424     FCFID_OPCODE   = (63u << OPCODE_SHIFT |  846u << 1),
 425     FCFIDS_OPCODE  = (59u << OPCODE_SHIFT |  846u << 1),
 426     FCTID_OPCODE   = (63u << OPCODE_SHIFT |  814u << 1),
 427     FCTIDZ_OPCODE  = (63u << OPCODE_SHIFT |  815u << 1),
 428     FCTIW_OPCODE   = (63u << OPCODE_SHIFT |   14u << 1),
 429     FCTIWZ_OPCODE  = (63u << OPCODE_SHIFT |   15u << 1),
 430     FRSP_OPCODE    = (63u << OPCODE_SHIFT |   12u << 1),
 431 
 432     // WARNING: using fmadd results in a non-compliant vm. Some floating
 433     // point tck tests will fail.
 434     FMADD_OPCODE   = (59u << OPCODE_SHIFT |   29u << 1),
 435     DMADD_OPCODE   = (63u << OPCODE_SHIFT |   29u << 1),
 436     FMSUB_OPCODE   = (59u << OPCODE_SHIFT |   28u << 1),
 437     DMSUB_OPCODE   = (63u << OPCODE_SHIFT |   28u << 1),
 438     FNMADD_OPCODE  = (59u << OPCODE_SHIFT |   31u << 1),
 439     DNMADD_OPCODE  = (63u << OPCODE_SHIFT |   31u << 1),
 440     FNMSUB_OPCODE  = (59u << OPCODE_SHIFT |   30u << 1),
 441     DNMSUB_OPCODE  = (63u << OPCODE_SHIFT |   30u << 1),
 442 
 443     LFD_OPCODE     = (50u << OPCODE_SHIFT |   00u << 1),
 444     LFDU_OPCODE    = (51u << OPCODE_SHIFT |   00u << 1),
 445     LFDX_OPCODE    = (31u << OPCODE_SHIFT |  599u << 1),
 446     LFS_OPCODE     = (48u << OPCODE_SHIFT |   00u << 1),
 447     LFSU_OPCODE    = (49u << OPCODE_SHIFT |   00u << 1),
 448     LFSX_OPCODE    = (31u << OPCODE_SHIFT |  535u << 1),
 449 
 450     STFD_OPCODE    = (54u << OPCODE_SHIFT |   00u << 1),
 451     STFDU_OPCODE   = (55u << OPCODE_SHIFT |   00u << 1),
 452     STFDX_OPCODE   = (31u << OPCODE_SHIFT |  727u << 1),
 453     STFS_OPCODE    = (52u << OPCODE_SHIFT |   00u << 1),
 454     STFSU_OPCODE   = (53u << OPCODE_SHIFT |   00u << 1),
 455     STFSX_OPCODE   = (31u << OPCODE_SHIFT |  663u << 1),
 456 
 457     FSQRT_OPCODE   = (63u << OPCODE_SHIFT |   22u << 1),            // A-FORM
 458     FSQRTS_OPCODE  = (59u << OPCODE_SHIFT |   22u << 1),            // A-FORM
 459 
 460     // Vector instruction support for >= Power6
 461     // Vector Storage Access
 462     LVEBX_OPCODE   = (31u << OPCODE_SHIFT |    7u << 1),
 463     LVEHX_OPCODE   = (31u << OPCODE_SHIFT |   39u << 1),
 464     LVEWX_OPCODE   = (31u << OPCODE_SHIFT |   71u << 1),
 465     LVX_OPCODE     = (31u << OPCODE_SHIFT |  103u << 1),
 466     LVXL_OPCODE    = (31u << OPCODE_SHIFT |  359u << 1),
 467     STVEBX_OPCODE  = (31u << OPCODE_SHIFT |  135u << 1),
 468     STVEHX_OPCODE  = (31u << OPCODE_SHIFT |  167u << 1),
 469     STVEWX_OPCODE  = (31u << OPCODE_SHIFT |  199u << 1),
 470     STVX_OPCODE    = (31u << OPCODE_SHIFT |  231u << 1),
 471     STVXL_OPCODE   = (31u << OPCODE_SHIFT |  487u << 1),
 472     LVSL_OPCODE    = (31u << OPCODE_SHIFT |    6u << 1),
 473     LVSR_OPCODE    = (31u << OPCODE_SHIFT |   38u << 1),
 474 
 475     // Vector Permute and Formatting
 476     VPKPX_OPCODE   = (4u  << OPCODE_SHIFT |  782u     ),
 477     VPKSHSS_OPCODE = (4u  << OPCODE_SHIFT |  398u     ),
 478     VPKSWSS_OPCODE = (4u  << OPCODE_SHIFT |  462u     ),
 479     VPKSHUS_OPCODE = (4u  << OPCODE_SHIFT |  270u     ),
 480     VPKSWUS_OPCODE = (4u  << OPCODE_SHIFT |  334u     ),
 481     VPKUHUM_OPCODE = (4u  << OPCODE_SHIFT |   14u     ),
 482     VPKUWUM_OPCODE = (4u  << OPCODE_SHIFT |   78u     ),
 483     VPKUHUS_OPCODE = (4u  << OPCODE_SHIFT |  142u     ),
 484     VPKUWUS_OPCODE = (4u  << OPCODE_SHIFT |  206u     ),
 485     VUPKHPX_OPCODE = (4u  << OPCODE_SHIFT |  846u     ),
 486     VUPKHSB_OPCODE = (4u  << OPCODE_SHIFT |  526u     ),
 487     VUPKHSH_OPCODE = (4u  << OPCODE_SHIFT |  590u     ),
 488     VUPKLPX_OPCODE = (4u  << OPCODE_SHIFT |  974u     ),
 489     VUPKLSB_OPCODE = (4u  << OPCODE_SHIFT |  654u     ),
 490     VUPKLSH_OPCODE = (4u  << OPCODE_SHIFT |  718u     ),
 491 
 492     VMRGHB_OPCODE  = (4u  << OPCODE_SHIFT |   12u     ),
 493     VMRGHW_OPCODE  = (4u  << OPCODE_SHIFT |  140u     ),
 494     VMRGHH_OPCODE  = (4u  << OPCODE_SHIFT |   76u     ),
 495     VMRGLB_OPCODE  = (4u  << OPCODE_SHIFT |  268u     ),
 496     VMRGLW_OPCODE  = (4u  << OPCODE_SHIFT |  396u     ),
 497     VMRGLH_OPCODE  = (4u  << OPCODE_SHIFT |  332u     ),
 498 
 499     VSPLT_OPCODE   = (4u  << OPCODE_SHIFT |  524u     ),
 500     VSPLTH_OPCODE  = (4u  << OPCODE_SHIFT |  588u     ),
 501     VSPLTW_OPCODE  = (4u  << OPCODE_SHIFT |  652u     ),
 502     VSPLTISB_OPCODE= (4u  << OPCODE_SHIFT |  780u     ),
 503     VSPLTISH_OPCODE= (4u  << OPCODE_SHIFT |  844u     ),
 504     VSPLTISW_OPCODE= (4u  << OPCODE_SHIFT |  908u     ),
 505 
 506     VPERM_OPCODE   = (4u  << OPCODE_SHIFT |   43u     ),
 507     VSEL_OPCODE    = (4u  << OPCODE_SHIFT |   42u     ),
 508 
 509     VSL_OPCODE     = (4u  << OPCODE_SHIFT |  452u     ),
 510     VSLDOI_OPCODE  = (4u  << OPCODE_SHIFT |   44u     ),
 511     VSLO_OPCODE    = (4u  << OPCODE_SHIFT | 1036u     ),
 512     VSR_OPCODE     = (4u  << OPCODE_SHIFT |  708u     ),
 513     VSRO_OPCODE    = (4u  << OPCODE_SHIFT | 1100u     ),
 514 
 515     // Vector Integer
 516     VADDCUW_OPCODE = (4u  << OPCODE_SHIFT |  384u     ),
 517     VADDSHS_OPCODE = (4u  << OPCODE_SHIFT |  832u     ),
 518     VADDSBS_OPCODE = (4u  << OPCODE_SHIFT |  768u     ),
 519     VADDSWS_OPCODE = (4u  << OPCODE_SHIFT |  896u     ),
 520     VADDUBM_OPCODE = (4u  << OPCODE_SHIFT |    0u     ),
 521     VADDUWM_OPCODE = (4u  << OPCODE_SHIFT |  128u     ),
 522     VADDUHM_OPCODE = (4u  << OPCODE_SHIFT |   64u     ),
 523     VADDUBS_OPCODE = (4u  << OPCODE_SHIFT |  512u     ),
 524     VADDUWS_OPCODE = (4u  << OPCODE_SHIFT |  640u     ),
 525     VADDUHS_OPCODE = (4u  << OPCODE_SHIFT |  576u     ),
 526     VSUBCUW_OPCODE = (4u  << OPCODE_SHIFT | 1408u     ),
 527     VSUBSHS_OPCODE = (4u  << OPCODE_SHIFT | 1856u     ),
 528     VSUBSBS_OPCODE = (4u  << OPCODE_SHIFT | 1792u     ),
 529     VSUBSWS_OPCODE = (4u  << OPCODE_SHIFT | 1920u     ),
 530     VSUBUBM_OPCODE = (4u  << OPCODE_SHIFT | 1024u     ),
 531     VSUBUWM_OPCODE = (4u  << OPCODE_SHIFT | 1152u     ),
 532     VSUBUHM_OPCODE = (4u  << OPCODE_SHIFT | 1088u     ),
 533     VSUBUBS_OPCODE = (4u  << OPCODE_SHIFT | 1536u     ),
 534     VSUBUWS_OPCODE = (4u  << OPCODE_SHIFT | 1664u     ),
 535     VSUBUHS_OPCODE = (4u  << OPCODE_SHIFT | 1600u     ),
 536 
 537     VMULESB_OPCODE = (4u  << OPCODE_SHIFT |  776u     ),
 538     VMULEUB_OPCODE = (4u  << OPCODE_SHIFT |  520u     ),
 539     VMULESH_OPCODE = (4u  << OPCODE_SHIFT |  840u     ),
 540     VMULEUH_OPCODE = (4u  << OPCODE_SHIFT |  584u     ),
 541     VMULOSB_OPCODE = (4u  << OPCODE_SHIFT |  264u     ),
 542     VMULOUB_OPCODE = (4u  << OPCODE_SHIFT |    8u     ),
 543     VMULOSH_OPCODE = (4u  << OPCODE_SHIFT |  328u     ),
 544     VMULOUH_OPCODE = (4u  << OPCODE_SHIFT |   72u     ),
 545     VMHADDSHS_OPCODE=(4u  << OPCODE_SHIFT |   32u     ),
 546     VMHRADDSHS_OPCODE=(4u << OPCODE_SHIFT |   33u     ),
 547     VMLADDUHM_OPCODE=(4u  << OPCODE_SHIFT |   34u     ),
 548     VMSUBUHM_OPCODE= (4u  << OPCODE_SHIFT |   36u     ),
 549     VMSUMMBM_OPCODE= (4u  << OPCODE_SHIFT |   37u     ),
 550     VMSUMSHM_OPCODE= (4u  << OPCODE_SHIFT |   40u     ),
 551     VMSUMSHS_OPCODE= (4u  << OPCODE_SHIFT |   41u     ),
 552     VMSUMUHM_OPCODE= (4u  << OPCODE_SHIFT |   38u     ),
 553     VMSUMUHS_OPCODE= (4u  << OPCODE_SHIFT |   39u     ),
 554 
 555     VSUMSWS_OPCODE = (4u  << OPCODE_SHIFT | 1928u     ),
 556     VSUM2SWS_OPCODE= (4u  << OPCODE_SHIFT | 1672u     ),
 557     VSUM4SBS_OPCODE= (4u  << OPCODE_SHIFT | 1800u     ),
 558     VSUM4UBS_OPCODE= (4u  << OPCODE_SHIFT | 1544u     ),
 559     VSUM4SHS_OPCODE= (4u  << OPCODE_SHIFT | 1608u     ),
 560 
 561     VAVGSB_OPCODE  = (4u  << OPCODE_SHIFT | 1282u     ),
 562     VAVGSW_OPCODE  = (4u  << OPCODE_SHIFT | 1410u     ),
 563     VAVGSH_OPCODE  = (4u  << OPCODE_SHIFT | 1346u     ),
 564     VAVGUB_OPCODE  = (4u  << OPCODE_SHIFT | 1026u     ),
 565     VAVGUW_OPCODE  = (4u  << OPCODE_SHIFT | 1154u     ),
 566     VAVGUH_OPCODE  = (4u  << OPCODE_SHIFT | 1090u     ),
 567 
 568     VMAXSB_OPCODE  = (4u  << OPCODE_SHIFT |  258u     ),
 569     VMAXSW_OPCODE  = (4u  << OPCODE_SHIFT |  386u     ),
 570     VMAXSH_OPCODE  = (4u  << OPCODE_SHIFT |  322u     ),
 571     VMAXUB_OPCODE  = (4u  << OPCODE_SHIFT |    2u     ),
 572     VMAXUW_OPCODE  = (4u  << OPCODE_SHIFT |  130u     ),
 573     VMAXUH_OPCODE  = (4u  << OPCODE_SHIFT |   66u     ),
 574     VMINSB_OPCODE  = (4u  << OPCODE_SHIFT |  770u     ),
 575     VMINSW_OPCODE  = (4u  << OPCODE_SHIFT |  898u     ),
 576     VMINSH_OPCODE  = (4u  << OPCODE_SHIFT |  834u     ),
 577     VMINUB_OPCODE  = (4u  << OPCODE_SHIFT |  514u     ),
 578     VMINUW_OPCODE  = (4u  << OPCODE_SHIFT |  642u     ),
 579     VMINUH_OPCODE  = (4u  << OPCODE_SHIFT |  578u     ),
 580 
 581     VCMPEQUB_OPCODE= (4u  << OPCODE_SHIFT |    6u     ),
 582     VCMPEQUH_OPCODE= (4u  << OPCODE_SHIFT |   70u     ),
 583     VCMPEQUW_OPCODE= (4u  << OPCODE_SHIFT |  134u     ),
 584     VCMPGTSH_OPCODE= (4u  << OPCODE_SHIFT |  838u     ),
 585     VCMPGTSB_OPCODE= (4u  << OPCODE_SHIFT |  774u     ),
 586     VCMPGTSW_OPCODE= (4u  << OPCODE_SHIFT |  902u     ),
 587     VCMPGTUB_OPCODE= (4u  << OPCODE_SHIFT |  518u     ),
 588     VCMPGTUH_OPCODE= (4u  << OPCODE_SHIFT |  582u     ),
 589     VCMPGTUW_OPCODE= (4u  << OPCODE_SHIFT |  646u     ),
 590 
 591     VAND_OPCODE    = (4u  << OPCODE_SHIFT | 1028u     ),
 592     VANDC_OPCODE   = (4u  << OPCODE_SHIFT | 1092u     ),
 593     VNOR_OPCODE    = (4u  << OPCODE_SHIFT | 1284u     ),
 594     VOR_OPCODE     = (4u  << OPCODE_SHIFT | 1156u     ),
 595     VXOR_OPCODE    = (4u  << OPCODE_SHIFT | 1220u     ),
 596     VRLB_OPCODE    = (4u  << OPCODE_SHIFT |    4u     ),
 597     VRLW_OPCODE    = (4u  << OPCODE_SHIFT |  132u     ),
 598     VRLH_OPCODE    = (4u  << OPCODE_SHIFT |   68u     ),
 599     VSLB_OPCODE    = (4u  << OPCODE_SHIFT |  260u     ),
 600     VSKW_OPCODE    = (4u  << OPCODE_SHIFT |  388u     ),
 601     VSLH_OPCODE    = (4u  << OPCODE_SHIFT |  324u     ),
 602     VSRB_OPCODE    = (4u  << OPCODE_SHIFT |  516u     ),
 603     VSRW_OPCODE    = (4u  << OPCODE_SHIFT |  644u     ),
 604     VSRH_OPCODE    = (4u  << OPCODE_SHIFT |  580u     ),
 605     VSRAB_OPCODE   = (4u  << OPCODE_SHIFT |  772u     ),
 606     VSRAW_OPCODE   = (4u  << OPCODE_SHIFT |  900u     ),
 607     VSRAH_OPCODE   = (4u  << OPCODE_SHIFT |  836u     ),
 608 
 609     // Vector Floating-Point
 610     // not implemented yet
 611 
 612     // Vector Status and Control
 613     MTVSCR_OPCODE  = (4u  << OPCODE_SHIFT | 1604u     ),
 614     MFVSCR_OPCODE  = (4u  << OPCODE_SHIFT | 1540u     ),
 615 
 616     // AES (introduced with Power 8)
 617     VCIPHER_OPCODE      = (4u  << OPCODE_SHIFT | 1288u),
 618     VCIPHERLAST_OPCODE  = (4u  << OPCODE_SHIFT | 1289u),
 619     VNCIPHER_OPCODE     = (4u  << OPCODE_SHIFT | 1352u),
 620     VNCIPHERLAST_OPCODE = (4u  << OPCODE_SHIFT | 1353u),
 621     VSBOX_OPCODE        = (4u  << OPCODE_SHIFT | 1480u),
 622 
 623     // SHA (introduced with Power 8)
 624     VSHASIGMAD_OPCODE   = (4u  << OPCODE_SHIFT | 1730u),
 625     VSHASIGMAW_OPCODE   = (4u  << OPCODE_SHIFT | 1666u),
 626 
 627     // Vector Binary Polynomial Multiplication (introduced with Power 8)
 628     VPMSUMB_OPCODE      = (4u  << OPCODE_SHIFT | 1032u),
 629     VPMSUMD_OPCODE      = (4u  << OPCODE_SHIFT | 1224u),
 630     VPMSUMH_OPCODE      = (4u  << OPCODE_SHIFT | 1096u),
 631     VPMSUMW_OPCODE      = (4u  << OPCODE_SHIFT | 1160u),
 632 
 633     // Vector Permute and Xor (introduced with Power 8)
 634     VPERMXOR_OPCODE     = (4u  << OPCODE_SHIFT |   45u),
 635 
 636     // Transactional Memory instructions (introduced with Power 8)
 637     TBEGIN_OPCODE    = (31u << OPCODE_SHIFT |  654u << 1),
 638     TEND_OPCODE      = (31u << OPCODE_SHIFT |  686u << 1),
 639     TABORT_OPCODE    = (31u << OPCODE_SHIFT |  910u << 1),
 640     TABORTWC_OPCODE  = (31u << OPCODE_SHIFT |  782u << 1),
 641     TABORTWCI_OPCODE = (31u << OPCODE_SHIFT |  846u << 1),
 642     TABORTDC_OPCODE  = (31u << OPCODE_SHIFT |  814u << 1),
 643     TABORTDCI_OPCODE = (31u << OPCODE_SHIFT |  878u << 1),
 644     TSR_OPCODE       = (31u << OPCODE_SHIFT |  750u << 1),
 645     TCHECK_OPCODE    = (31u << OPCODE_SHIFT |  718u << 1),
 646 
 647     // Icache and dcache related instructions
 648     DCBA_OPCODE    = (31u << OPCODE_SHIFT |  758u << 1),
 649     DCBZ_OPCODE    = (31u << OPCODE_SHIFT | 1014u << 1),
 650     DCBST_OPCODE   = (31u << OPCODE_SHIFT |   54u << 1),
 651     DCBF_OPCODE    = (31u << OPCODE_SHIFT |   86u << 1),
 652 
 653     DCBT_OPCODE    = (31u << OPCODE_SHIFT |  278u << 1),
 654     DCBTST_OPCODE  = (31u << OPCODE_SHIFT |  246u << 1),
 655     ICBI_OPCODE    = (31u << OPCODE_SHIFT |  982u << 1),
 656 
 657     // Instruction synchronization
 658     ISYNC_OPCODE   = (19u << OPCODE_SHIFT |  150u << 1),
 659     // Memory barriers
 660     SYNC_OPCODE    = (31u << OPCODE_SHIFT |  598u << 1),
 661     EIEIO_OPCODE   = (31u << OPCODE_SHIFT |  854u << 1),
 662 
 663     // Wait instructions for polling.
 664     WAIT_OPCODE    = (31u << OPCODE_SHIFT |   62u << 1),
 665 
 666     // Trap instructions
 667     TDI_OPCODE     = (2u  << OPCODE_SHIFT),
 668     TWI_OPCODE     = (3u  << OPCODE_SHIFT),
 669     TD_OPCODE      = (31u << OPCODE_SHIFT |   68u << 1),
 670     TW_OPCODE      = (31u << OPCODE_SHIFT |    4u << 1),
 671 
 672     // Atomics.
 673     LWARX_OPCODE   = (31u << OPCODE_SHIFT |   20u << 1),
 674     LDARX_OPCODE   = (31u << OPCODE_SHIFT |   84u << 1),
 675     LQARX_OPCODE   = (31u << OPCODE_SHIFT |  276u << 1),
 676     STWCX_OPCODE   = (31u << OPCODE_SHIFT |  150u << 1),
 677     STDCX_OPCODE   = (31u << OPCODE_SHIFT |  214u << 1),
 678     STQCX_OPCODE   = (31u << OPCODE_SHIFT |  182u << 1)
 679 
 680   };
 681 
 682   // Trap instructions TO bits
 683   enum trap_to_bits {
 684     // single bits
 685     traptoLessThanSigned      = 1 << 4, // 0, left end
 686     traptoGreaterThanSigned   = 1 << 3,
 687     traptoEqual               = 1 << 2,
 688     traptoLessThanUnsigned    = 1 << 1,
 689     traptoGreaterThanUnsigned = 1 << 0, // 4, right end
 690 
 691     // compound ones
 692     traptoUnconditional       = (traptoLessThanSigned |
 693                                  traptoGreaterThanSigned |
 694                                  traptoEqual |
 695                                  traptoLessThanUnsigned |
 696                                  traptoGreaterThanUnsigned)
 697   };
 698 
 699   // Branch hints BH field
 700   enum branch_hint_bh {
 701     // bclr cases:
 702     bhintbhBCLRisReturn            = 0,
 703     bhintbhBCLRisNotReturnButSame  = 1,
 704     bhintbhBCLRisNotPredictable    = 3,
 705 
 706     // bcctr cases:
 707     bhintbhBCCTRisNotReturnButSame = 0,
 708     bhintbhBCCTRisNotPredictable   = 3
 709   };
 710 
 711   // Branch prediction hints AT field
 712   enum branch_hint_at {
 713     bhintatNoHint     = 0,  // at=00
 714     bhintatIsNotTaken = 2,  // at=10
 715     bhintatIsTaken    = 3   // at=11
 716   };
 717 
 718   // Branch prediction hints
 719   enum branch_hint_concept {
 720     // Use the same encoding as branch_hint_at to simply code.
 721     bhintNoHint       = bhintatNoHint,
 722     bhintIsNotTaken   = bhintatIsNotTaken,
 723     bhintIsTaken      = bhintatIsTaken
 724   };
 725 
 726   // Used in BO field of branch instruction.
 727   enum branch_condition {
 728     bcondCRbiIs0      =  4, // bo=001at
 729     bcondCRbiIs1      = 12, // bo=011at
 730     bcondAlways       = 20  // bo=10100
 731   };
 732 
 733   // Branch condition with combined prediction hints.
 734   enum branch_condition_with_hint {
 735     bcondCRbiIs0_bhintNoHint     = bcondCRbiIs0 | bhintatNoHint,
 736     bcondCRbiIs0_bhintIsNotTaken = bcondCRbiIs0 | bhintatIsNotTaken,
 737     bcondCRbiIs0_bhintIsTaken    = bcondCRbiIs0 | bhintatIsTaken,
 738     bcondCRbiIs1_bhintNoHint     = bcondCRbiIs1 | bhintatNoHint,
 739     bcondCRbiIs1_bhintIsNotTaken = bcondCRbiIs1 | bhintatIsNotTaken,
 740     bcondCRbiIs1_bhintIsTaken    = bcondCRbiIs1 | bhintatIsTaken,
 741   };
 742 
 743   // Elemental Memory Barriers (>=Power 8)
 744   enum Elemental_Membar_mask_bits {
 745     StoreStore = 1 << 0,
 746     StoreLoad  = 1 << 1,
 747     LoadStore  = 1 << 2,
 748     LoadLoad   = 1 << 3
 749   };
 750 
 751   // Branch prediction hints.
 752   inline static int add_bhint_to_boint(const int bhint, const int boint) {
 753     switch (boint) {
 754       case bcondCRbiIs0:
 755       case bcondCRbiIs1:
 756         // branch_hint and branch_hint_at have same encodings
 757         assert(   (int)bhintNoHint     == (int)bhintatNoHint
 758                && (int)bhintIsNotTaken == (int)bhintatIsNotTaken
 759                && (int)bhintIsTaken    == (int)bhintatIsTaken,
 760                "wrong encodings");
 761         assert((bhint & 0x03) == bhint, "wrong encodings");
 762         return (boint & ~0x03) | bhint;
 763       case bcondAlways:
 764         // no branch_hint
 765         return boint;
 766       default:
 767         ShouldNotReachHere();
 768         return 0;
 769     }
 770   }
 771 
 772   // Extract bcond from boint.
 773   inline static int inv_boint_bcond(const int boint) {
 774     int r_bcond = boint & ~0x03;
 775     assert(r_bcond == bcondCRbiIs0 ||
 776            r_bcond == bcondCRbiIs1 ||
 777            r_bcond == bcondAlways,
 778            "bad branch condition");
 779     return r_bcond;
 780   }
 781 
 782   // Extract bhint from boint.
 783   inline static int inv_boint_bhint(const int boint) {
 784     int r_bhint = boint & 0x03;
 785     assert(r_bhint == bhintatNoHint ||
 786            r_bhint == bhintatIsNotTaken ||
 787            r_bhint == bhintatIsTaken,
 788            "bad branch hint");
 789     return r_bhint;
 790   }
 791 
 792   // Calculate opposite of given bcond.
 793   inline static int opposite_bcond(const int bcond) {
 794     switch (bcond) {
 795       case bcondCRbiIs0:
 796         return bcondCRbiIs1;
 797       case bcondCRbiIs1:
 798         return bcondCRbiIs0;
 799       default:
 800         ShouldNotReachHere();
 801         return 0;
 802     }
 803   }
 804 
 805   // Calculate opposite of given bhint.
 806   inline static int opposite_bhint(const int bhint) {
 807     switch (bhint) {
 808       case bhintatNoHint:
 809         return bhintatNoHint;
 810       case bhintatIsNotTaken:
 811         return bhintatIsTaken;
 812       case bhintatIsTaken:
 813         return bhintatIsNotTaken;
 814       default:
 815         ShouldNotReachHere();
 816         return 0;
 817     }
 818   }
 819 
 820   // PPC branch instructions
 821   enum ppcops {
 822     b_op    = 18,
 823     bc_op   = 16,
 824     bcr_op  = 19
 825   };
 826 
 827   enum Condition {
 828     negative         = 0,
 829     less             = 0,
 830     positive         = 1,
 831     greater          = 1,
 832     zero             = 2,
 833     equal            = 2,
 834     summary_overflow = 3,
 835   };
 836 
 837  public:
 838   // Helper functions for groups of instructions
 839 
 840   enum Predict { pt = 1, pn = 0 }; // pt = predict taken
 841 
 842   // instruction must start at passed address
 843   static int instr_len(unsigned char *instr) { return BytesPerInstWord; }
 844 
 845   // instruction must be left-justified in argument
 846   static int instr_len(unsigned long instr)  { return BytesPerInstWord; }
 847 
 848   // longest instructions
 849   static int instr_maxlen() { return BytesPerInstWord; }
 850 
 851   // Test if x is within signed immediate range for nbits.
 852   static bool is_simm(int x, unsigned int nbits) {
 853     assert(0 < nbits && nbits < 32, "out of bounds");
 854     const int   min      = -( ((int)1) << nbits-1 );
 855     const int   maxplus1 =  ( ((int)1) << nbits-1 );
 856     return min <= x && x < maxplus1;
 857   }
 858 
 859   static bool is_simm(jlong x, unsigned int nbits) {
 860     assert(0 < nbits && nbits < 64, "out of bounds");
 861     const jlong min      = -( ((jlong)1) << nbits-1 );
 862     const jlong maxplus1 =  ( ((jlong)1) << nbits-1 );
 863     return min <= x && x < maxplus1;
 864   }
 865 
 866   // Test if x is within unsigned immediate range for nbits
 867   static bool is_uimm(int x, unsigned int nbits) {
 868     assert(0 < nbits && nbits < 32, "out of bounds");
 869     const int   maxplus1 = ( ((int)1) << nbits );
 870     return 0 <= x && x < maxplus1;
 871   }
 872 
 873   static bool is_uimm(jlong x, unsigned int nbits) {
 874     assert(0 < nbits && nbits < 64, "out of bounds");
 875     const jlong maxplus1 =  ( ((jlong)1) << nbits );
 876     return 0 <= x && x < maxplus1;
 877   }
 878 
 879  protected:
 880   // helpers
 881 
 882   // X is supposed to fit in a field "nbits" wide
 883   // and be sign-extended. Check the range.
 884   static void assert_signed_range(intptr_t x, int nbits) {
 885     assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
 886            "value out of range");
 887   }
 888 
 889   static void assert_signed_word_disp_range(intptr_t x, int nbits) {
 890     assert((x & 3) == 0, "not word aligned");
 891     assert_signed_range(x, nbits + 2);
 892   }
 893 
 894   static void assert_unsigned_const(int x, int nbits) {
 895     assert(juint(x) < juint(1 << nbits), "unsigned constant out of range");
 896   }
 897 
 898   static int fmask(juint hi_bit, juint lo_bit) {
 899     assert(hi_bit >= lo_bit && hi_bit < 32, "bad bits");
 900     return (1 << ( hi_bit-lo_bit + 1 )) - 1;
 901   }
 902 
 903   // inverse of u_field
 904   static int inv_u_field(int x, int hi_bit, int lo_bit) {
 905     juint r = juint(x) >> lo_bit;
 906     r &= fmask(hi_bit, lo_bit);
 907     return int(r);
 908   }
 909 
 910   // signed version: extract from field and sign-extend
 911   static int inv_s_field_ppc(int x, int hi_bit, int lo_bit) {
 912     x = x << (31-hi_bit);
 913     x = x >> (31-hi_bit+lo_bit);
 914     return x;
 915   }
 916 
 917   static int u_field(int x, int hi_bit, int lo_bit) {
 918     assert((x & ~fmask(hi_bit, lo_bit)) == 0, "value out of range");
 919     int r = x << lo_bit;
 920     assert(inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
 921     return r;
 922   }
 923 
 924   // Same as u_field for signed values
 925   static int s_field(int x, int hi_bit, int lo_bit) {
 926     int nbits = hi_bit - lo_bit + 1;
 927     assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
 928       "value out of range");
 929     x &= fmask(hi_bit, lo_bit);
 930     int r = x << lo_bit;
 931     return r;
 932   }
 933 
 934   // inv_op for ppc instructions
 935   static int inv_op_ppc(int x) { return inv_u_field(x, 31, 26); }
 936 
 937   // Determine target address from li, bd field of branch instruction.
 938   static intptr_t inv_li_field(int x) {
 939     intptr_t r = inv_s_field_ppc(x, 25, 2);
 940     r = (r << 2);
 941     return r;
 942   }
 943   static intptr_t inv_bd_field(int x, intptr_t pos) {
 944     intptr_t r = inv_s_field_ppc(x, 15, 2);
 945     r = (r << 2) + pos;
 946     return r;
 947   }
 948 
 949   #define inv_opp_u_field(x, hi_bit, lo_bit) inv_u_field(x, 31-(lo_bit), 31-(hi_bit))
 950   #define inv_opp_s_field(x, hi_bit, lo_bit) inv_s_field_ppc(x, 31-(lo_bit), 31-(hi_bit))
 951   // Extract instruction fields from instruction words.
 952  public:
 953   static int inv_ra_field(int x)  { return inv_opp_u_field(x, 15, 11); }
 954   static int inv_rb_field(int x)  { return inv_opp_u_field(x, 20, 16); }
 955   static int inv_rt_field(int x)  { return inv_opp_u_field(x, 10,  6); }
 956   static int inv_rta_field(int x) { return inv_opp_u_field(x, 15, 11); }
 957   static int inv_rs_field(int x)  { return inv_opp_u_field(x, 10,  6); }
 958   // Ds uses opp_s_field(x, 31, 16), but lowest 2 bits must be 0.
 959   // Inv_ds_field uses range (x, 29, 16) but shifts by 2 to ensure that lowest bits are 0.
 960   static int inv_ds_field(int x)  { return inv_opp_s_field(x, 29, 16) << 2; }
 961   static int inv_d1_field(int x)  { return inv_opp_s_field(x, 31, 16); }
 962   static int inv_si_field(int x)  { return inv_opp_s_field(x, 31, 16); }
 963   static int inv_to_field(int x)  { return inv_opp_u_field(x, 10, 6);  }
 964   static int inv_lk_field(int x)  { return inv_opp_u_field(x, 31, 31); }
 965   static int inv_bo_field(int x)  { return inv_opp_u_field(x, 10,  6); }
 966   static int inv_bi_field(int x)  { return inv_opp_u_field(x, 15, 11); }
 967 
 968   #define opp_u_field(x, hi_bit, lo_bit) u_field(x, 31-(lo_bit), 31-(hi_bit))
 969   #define opp_s_field(x, hi_bit, lo_bit) s_field(x, 31-(lo_bit), 31-(hi_bit))
 970 
 971   // instruction fields
 972   static int aa(       int         x)  { return  opp_u_field(x,             30, 30); }
 973   static int ba(       int         x)  { return  opp_u_field(x,             15, 11); }
 974   static int bb(       int         x)  { return  opp_u_field(x,             20, 16); }
 975   static int bc(       int         x)  { return  opp_u_field(x,             25, 21); }
 976   static int bd(       int         x)  { return  opp_s_field(x,             29, 16); }
 977   static int bf( ConditionRegister cr) { return  bf(cr->encoding()); }
 978   static int bf(       int         x)  { return  opp_u_field(x,              8,  6); }
 979   static int bfa(ConditionRegister cr) { return  bfa(cr->encoding()); }
 980   static int bfa(      int         x)  { return  opp_u_field(x,             13, 11); }
 981   static int bh(       int         x)  { return  opp_u_field(x,             20, 19); }
 982   static int bi(       int         x)  { return  opp_u_field(x,             15, 11); }
 983   static int bi0(ConditionRegister cr, Condition c) { return (cr->encoding() << 2) | c; }
 984   static int bo(       int         x)  { return  opp_u_field(x,             10,  6); }
 985   static int bt(       int         x)  { return  opp_u_field(x,             10,  6); }
 986   static int d1(       int         x)  { return  opp_s_field(x,             31, 16); }
 987   static int ds(       int         x)  { assert((x & 0x3) == 0, "unaligned offset"); return opp_s_field(x, 31, 16); }
 988   static int eh(       int         x)  { return  opp_u_field(x,             31, 31); }
 989   static int flm(      int         x)  { return  opp_u_field(x,             14,  7); }
 990   static int fra(    FloatRegister r)  { return  fra(r->encoding());}
 991   static int frb(    FloatRegister r)  { return  frb(r->encoding());}
 992   static int frc(    FloatRegister r)  { return  frc(r->encoding());}
 993   static int frs(    FloatRegister r)  { return  frs(r->encoding());}
 994   static int frt(    FloatRegister r)  { return  frt(r->encoding());}
 995   static int fra(      int         x)  { return  opp_u_field(x,             15, 11); }
 996   static int frb(      int         x)  { return  opp_u_field(x,             20, 16); }
 997   static int frc(      int         x)  { return  opp_u_field(x,             25, 21); }
 998   static int frs(      int         x)  { return  opp_u_field(x,             10,  6); }
 999   static int frt(      int         x)  { return  opp_u_field(x,             10,  6); }
1000   static int fxm(      int         x)  { return  opp_u_field(x,             19, 12); }
1001   static int l10(      int         x)  { return  opp_u_field(x,             10, 10); }
1002   static int l15(      int         x)  { return  opp_u_field(x,             15, 15); }
1003   static int l910(     int         x)  { return  opp_u_field(x,             10,  9); }
1004   static int e1215(    int         x)  { return  opp_u_field(x,             15, 12); }
1005   static int lev(      int         x)  { return  opp_u_field(x,             26, 20); }
1006   static int li(       int         x)  { return  opp_s_field(x,             29,  6); }
1007   static int lk(       int         x)  { return  opp_u_field(x,             31, 31); }
1008   static int mb2125(   int         x)  { return  opp_u_field(x,             25, 21); }
1009   static int me2630(   int         x)  { return  opp_u_field(x,             30, 26); }
1010   static int mb2126(   int         x)  { return  opp_u_field(((x & 0x1f) << 1) | ((x & 0x20) >> 5), 26, 21); }
1011   static int me2126(   int         x)  { return  mb2126(x); }
1012   static int nb(       int         x)  { return  opp_u_field(x,             20, 16); }
1013   //static int opcd(   int         x)  { return  opp_u_field(x,              5,  0); } // is contained in our opcodes
1014   static int oe(       int         x)  { return  opp_u_field(x,             21, 21); }
1015   static int ra(       Register    r)  { return  ra(r->encoding()); }
1016   static int ra(       int         x)  { return  opp_u_field(x,             15, 11); }
1017   static int rb(       Register    r)  { return  rb(r->encoding()); }
1018   static int rb(       int         x)  { return  opp_u_field(x,             20, 16); }
1019   static int rc(       int         x)  { return  opp_u_field(x,             31, 31); }
1020   static int rs(       Register    r)  { return  rs(r->encoding()); }
1021   static int rs(       int         x)  { return  opp_u_field(x,             10,  6); }
1022   // we don't want to use R0 in memory accesses, because it has value `0' then
1023   static int ra0mem(   Register    r)  { assert(r != R0, "cannot use register R0 in memory access"); return ra(r); }
1024   static int ra0mem(   int         x)  { assert(x != 0,  "cannot use register 0 in memory access");  return ra(x); }
1025 
1026   // register r is target
1027   static int rt(       Register    r)  { return rs(r); }
1028   static int rt(       int         x)  { return rs(x); }
1029   static int rta(      Register    r)  { return ra(r); }
1030   static int rta0mem(  Register    r)  { rta(r); return ra0mem(r); }
1031 
1032   static int sh1620(   int         x)  { return  opp_u_field(x,             20, 16); }
1033   static int sh30(     int         x)  { return  opp_u_field(x,             30, 30); }
1034   static int sh162030( int         x)  { return  sh1620(x & 0x1f) | sh30((x & 0x20) >> 5); }
1035   static int si(       int         x)  { return  opp_s_field(x,             31, 16); }
1036   static int spr(      int         x)  { return  opp_u_field(x,             20, 11); }
1037   static int sr(       int         x)  { return  opp_u_field(x,             15, 12); }
1038   static int tbr(      int         x)  { return  opp_u_field(x,             20, 11); }
1039   static int th(       int         x)  { return  opp_u_field(x,             10,  7); }
1040   static int thct(     int         x)  { assert((x&8) == 0, "must be valid cache specification");  return th(x); }
1041   static int thds(     int         x)  { assert((x&8) == 8, "must be valid stream specification"); return th(x); }
1042   static int to(       int         x)  { return  opp_u_field(x,             10,  6); }
1043   static int u(        int         x)  { return  opp_u_field(x,             19, 16); }
1044   static int ui(       int         x)  { return  opp_u_field(x,             31, 16); }
1045 
1046   // Support vector instructions for >= Power6.
1047   static int vra(      int         x)  { return  opp_u_field(x,             15, 11); }
1048   static int vrb(      int         x)  { return  opp_u_field(x,             20, 16); }
1049   static int vrc(      int         x)  { return  opp_u_field(x,             25, 21); }
1050   static int vrs(      int         x)  { return  opp_u_field(x,             10,  6); }
1051   static int vrt(      int         x)  { return  opp_u_field(x,             10,  6); }
1052 
1053   static int vra(   VectorRegister r)  { return  vra(r->encoding());}
1054   static int vrb(   VectorRegister r)  { return  vrb(r->encoding());}
1055   static int vrc(   VectorRegister r)  { return  vrc(r->encoding());}
1056   static int vrs(   VectorRegister r)  { return  vrs(r->encoding());}
1057   static int vrt(   VectorRegister r)  { return  vrt(r->encoding());}
1058 
1059   static int vsplt_uim( int        x)  { return  opp_u_field(x,             15, 12); } // for vsplt* instructions
1060   static int vsplti_sim(int        x)  { return  opp_u_field(x,             15, 11); } // for vsplti* instructions
1061   static int vsldoi_shb(int        x)  { return  opp_u_field(x,             25, 22); } // for vsldoi instruction
1062   static int vcmp_rc(   int        x)  { return  opp_u_field(x,             21, 21); } // for vcmp* instructions
1063 
1064   //static int xo1(     int        x)  { return  opp_u_field(x,             29, 21); }// is contained in our opcodes
1065   //static int xo2(     int        x)  { return  opp_u_field(x,             30, 21); }// is contained in our opcodes
1066   //static int xo3(     int        x)  { return  opp_u_field(x,             30, 22); }// is contained in our opcodes
1067   //static int xo4(     int        x)  { return  opp_u_field(x,             30, 26); }// is contained in our opcodes
1068   //static int xo5(     int        x)  { return  opp_u_field(x,             29, 27); }// is contained in our opcodes
1069   //static int xo6(     int        x)  { return  opp_u_field(x,             30, 27); }// is contained in our opcodes
1070   //static int xo7(     int        x)  { return  opp_u_field(x,             31, 30); }// is contained in our opcodes
1071 
1072  protected:
1073   // Compute relative address for branch.
1074   static intptr_t disp(intptr_t x, intptr_t off) {
1075     int xx = x - off;
1076     xx = xx >> 2;
1077     return xx;
1078   }
1079 
1080  public:
1081   // signed immediate, in low bits, nbits long
1082   static int simm(int x, int nbits) {
1083     assert_signed_range(x, nbits);
1084     return x & ((1 << nbits) - 1);
1085   }
1086 
1087   // unsigned immediate, in low bits, nbits long
1088   static int uimm(int x, int nbits) {
1089     assert_unsigned_const(x, nbits);
1090     return x & ((1 << nbits) - 1);
1091   }
1092 
1093   static void set_imm(int* instr, short s) {
1094     // imm is always in the lower 16 bits of the instruction,
1095     // so this is endian-neutral. Same for the get_imm below.
1096     uint32_t w = *(uint32_t *)instr;
1097     *instr = (int)((w & ~0x0000FFFF) | (s & 0x0000FFFF));
1098   }
1099 
1100   static int get_imm(address a, int instruction_number) {
1101     return (short)((int *)a)[instruction_number];
1102   }
1103 
1104   static inline int hi16_signed(  int x) { return (int)(int16_t)(x >> 16); }
1105   static inline int lo16_unsigned(int x) { return x & 0xffff; }
1106 
1107  protected:
1108 
1109   // Extract the top 32 bits in a 64 bit word.
1110   static int32_t hi32(int64_t x) {
1111     int32_t r = int32_t((uint64_t)x >> 32);
1112     return r;
1113   }
1114 
1115  public:
1116 
1117   static inline unsigned int align_addr(unsigned int addr, unsigned int a) {
1118     return ((addr + (a - 1)) & ~(a - 1));
1119   }
1120 
1121   static inline bool is_aligned(unsigned int addr, unsigned int a) {
1122     return (0 == addr % a);
1123   }
1124 
1125   void flush() {
1126     AbstractAssembler::flush();
1127   }
1128 
1129   inline void emit_int32(int);  // shadows AbstractAssembler::emit_int32
1130   inline void emit_data(int);
1131   inline void emit_data(int, RelocationHolder const&);
1132   inline void emit_data(int, relocInfo::relocType rtype);
1133 
1134   // Emit an address.
1135   inline address emit_addr(const address addr = NULL);
1136 
1137 #if !defined(ABI_ELFv2)
1138   // Emit a function descriptor with the specified entry point, TOC,
1139   // and ENV. If the entry point is NULL, the descriptor will point
1140   // just past the descriptor.
1141   // Use values from friend functions as defaults.
1142   inline address emit_fd(address entry = NULL,
1143                          address toc = (address) FunctionDescriptor::friend_toc,
1144                          address env = (address) FunctionDescriptor::friend_env);
1145 #endif
1146 
1147   /////////////////////////////////////////////////////////////////////////////////////
1148   // PPC instructions
1149   /////////////////////////////////////////////////////////////////////////////////////
1150 
1151   // Memory instructions use r0 as hard coded 0, e.g. to simulate loading
1152   // immediates. The normal instruction encoders enforce that r0 is not
1153   // passed to them. Use either extended mnemonics encoders or the special ra0
1154   // versions.
1155 
1156   // Issue an illegal instruction.
1157   inline void illtrap();
1158   static inline bool is_illtrap(int x);
1159 
1160   // PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions
1161   inline void addi( Register d, Register a, int si16);
1162   inline void addis(Register d, Register a, int si16);
1163  private:
1164   inline void addi_r0ok( Register d, Register a, int si16);
1165   inline void addis_r0ok(Register d, Register a, int si16);
1166  public:
1167   inline void addic_( Register d, Register a, int si16);
1168   inline void subfic( Register d, Register a, int si16);
1169   inline void add(    Register d, Register a, Register b);
1170   inline void add_(   Register d, Register a, Register b);
1171   inline void subf(   Register d, Register a, Register b);  // d = b - a    "Sub_from", as in ppc spec.
1172   inline void sub(    Register d, Register a, Register b);  // d = a - b    Swap operands of subf for readability.
1173   inline void subf_(  Register d, Register a, Register b);
1174   inline void addc(   Register d, Register a, Register b);
1175   inline void addc_(  Register d, Register a, Register b);
1176   inline void subfc(  Register d, Register a, Register b);
1177   inline void subfc_( Register d, Register a, Register b);
1178   inline void adde(   Register d, Register a, Register b);
1179   inline void adde_(  Register d, Register a, Register b);
1180   inline void subfe(  Register d, Register a, Register b);
1181   inline void subfe_( Register d, Register a, Register b);
1182   inline void addme(  Register d, Register a);
1183   inline void addme_( Register d, Register a);
1184   inline void subfme( Register d, Register a);
1185   inline void subfme_(Register d, Register a);
1186   inline void addze(  Register d, Register a);
1187   inline void addze_( Register d, Register a);
1188   inline void subfze( Register d, Register a);
1189   inline void subfze_(Register d, Register a);
1190   inline void neg(    Register d, Register a);
1191   inline void neg_(   Register d, Register a);
1192   inline void mulli(  Register d, Register a, int si16);
1193   inline void mulld(  Register d, Register a, Register b);
1194   inline void mulld_( Register d, Register a, Register b);
1195   inline void mullw(  Register d, Register a, Register b);
1196   inline void mullw_( Register d, Register a, Register b);
1197   inline void mulhw(  Register d, Register a, Register b);
1198   inline void mulhw_( Register d, Register a, Register b);
1199   inline void mulhd(  Register d, Register a, Register b);
1200   inline void mulhd_( Register d, Register a, Register b);
1201   inline void mulhdu( Register d, Register a, Register b);
1202   inline void mulhdu_(Register d, Register a, Register b);
1203   inline void divd(   Register d, Register a, Register b);
1204   inline void divd_(  Register d, Register a, Register b);
1205   inline void divw(   Register d, Register a, Register b);
1206   inline void divw_(  Register d, Register a, Register b);
1207 
1208   // Fixed-Point Arithmetic Instructions with Overflow detection
1209   inline void addo(    Register d, Register a, Register b);
1210   inline void addo_(   Register d, Register a, Register b);
1211   inline void subfo(   Register d, Register a, Register b);
1212   inline void subfo_(  Register d, Register a, Register b);
1213   inline void addco(   Register d, Register a, Register b);
1214   inline void addco_(  Register d, Register a, Register b);
1215   inline void subfco(  Register d, Register a, Register b);
1216   inline void subfco_( Register d, Register a, Register b);
1217   inline void addeo(   Register d, Register a, Register b);
1218   inline void addeo_(  Register d, Register a, Register b);
1219   inline void subfeo(  Register d, Register a, Register b);
1220   inline void subfeo_( Register d, Register a, Register b);
1221   inline void addmeo(  Register d, Register a);
1222   inline void addmeo_( Register d, Register a);
1223   inline void subfmeo( Register d, Register a);
1224   inline void subfmeo_(Register d, Register a);
1225   inline void addzeo(  Register d, Register a);
1226   inline void addzeo_( Register d, Register a);
1227   inline void subfzeo( Register d, Register a);
1228   inline void subfzeo_(Register d, Register a);
1229   inline void nego(    Register d, Register a);
1230   inline void nego_(   Register d, Register a);
1231   inline void mulldo(  Register d, Register a, Register b);
1232   inline void mulldo_( Register d, Register a, Register b);
1233   inline void mullwo(  Register d, Register a, Register b);
1234   inline void mullwo_( Register d, Register a, Register b);
1235   inline void divdo(   Register d, Register a, Register b);
1236   inline void divdo_(  Register d, Register a, Register b);
1237   inline void divwo(   Register d, Register a, Register b);
1238   inline void divwo_(  Register d, Register a, Register b);
1239 
1240   // extended mnemonics
1241   inline void li(   Register d, int si16);
1242   inline void lis(  Register d, int si16);
1243   inline void addir(Register d, int si16, Register a);
1244 
1245   static bool is_addi(int x) {
1246      return ADDI_OPCODE == (x & ADDI_OPCODE_MASK);
1247   }
1248   static bool is_addis(int x) {
1249      return ADDIS_OPCODE == (x & ADDIS_OPCODE_MASK);
1250   }
1251   static bool is_bxx(int x) {
1252      return BXX_OPCODE == (x & BXX_OPCODE_MASK);
1253   }
1254   static bool is_b(int x) {
1255      return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 0;
1256   }
1257   static bool is_bl(int x) {
1258      return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 1;
1259   }
1260   static bool is_bcxx(int x) {
1261      return BCXX_OPCODE == (x & BCXX_OPCODE_MASK);
1262   }
1263   static bool is_bxx_or_bcxx(int x) {
1264      return is_bxx(x) || is_bcxx(x);
1265   }
1266   static bool is_bctrl(int x) {
1267      return x == 0x4e800421;
1268   }
1269   static bool is_bctr(int x) {
1270      return x == 0x4e800420;
1271   }
1272   static bool is_bclr(int x) {
1273      return BCLR_OPCODE == (x & XL_FORM_OPCODE_MASK);
1274   }
1275   static bool is_li(int x) {
1276      return is_addi(x) && inv_ra_field(x)==0;
1277   }
1278   static bool is_lis(int x) {
1279      return is_addis(x) && inv_ra_field(x)==0;
1280   }
1281   static bool is_mtctr(int x) {
1282      return MTCTR_OPCODE == (x & MTCTR_OPCODE_MASK);
1283   }
1284   static bool is_ld(int x) {
1285      return LD_OPCODE == (x & LD_OPCODE_MASK);
1286   }
1287   static bool is_std(int x) {
1288      return STD_OPCODE == (x & STD_OPCODE_MASK);
1289   }
1290   static bool is_stdu(int x) {
1291      return STDU_OPCODE == (x & STDU_OPCODE_MASK);
1292   }
1293   static bool is_stdx(int x) {
1294      return STDX_OPCODE == (x & STDX_OPCODE_MASK);
1295   }
1296   static bool is_stdux(int x) {
1297      return STDUX_OPCODE == (x & STDUX_OPCODE_MASK);
1298   }
1299   static bool is_stwx(int x) {
1300      return STWX_OPCODE == (x & STWX_OPCODE_MASK);
1301   }
1302   static bool is_stwux(int x) {
1303      return STWUX_OPCODE == (x & STWUX_OPCODE_MASK);
1304   }
1305   static bool is_stw(int x) {
1306      return STW_OPCODE == (x & STW_OPCODE_MASK);
1307   }
1308   static bool is_stwu(int x) {
1309      return STWU_OPCODE == (x & STWU_OPCODE_MASK);
1310   }
1311   static bool is_ori(int x) {
1312      return ORI_OPCODE == (x & ORI_OPCODE_MASK);
1313   };
1314   static bool is_oris(int x) {
1315      return ORIS_OPCODE == (x & ORIS_OPCODE_MASK);
1316   };
1317   static bool is_rldicr(int x) {
1318      return (RLDICR_OPCODE == (x & RLDICR_OPCODE_MASK));
1319   };
1320   static bool is_nop(int x) {
1321     return x == 0x60000000;
1322   }
1323   // endgroup opcode for Power6
1324   static bool is_endgroup(int x) {
1325     return is_ori(x) && inv_ra_field(x) == 1 && inv_rs_field(x) == 1 && inv_d1_field(x) == 0;
1326   }
1327 
1328 
1329  private:
1330   // PPC 1, section 3.3.9, Fixed-Point Compare Instructions
1331   inline void cmpi( ConditionRegister bf, int l, Register a, int si16);
1332   inline void cmp(  ConditionRegister bf, int l, Register a, Register b);
1333   inline void cmpli(ConditionRegister bf, int l, Register a, int ui16);
1334   inline void cmpl( ConditionRegister bf, int l, Register a, Register b);
1335 
1336  public:
1337   // extended mnemonics of Compare Instructions
1338   inline void cmpwi( ConditionRegister crx, Register a, int si16);
1339   inline void cmpdi( ConditionRegister crx, Register a, int si16);
1340   inline void cmpw(  ConditionRegister crx, Register a, Register b);
1341   inline void cmpd(  ConditionRegister crx, Register a, Register b);
1342   inline void cmplwi(ConditionRegister crx, Register a, int ui16);
1343   inline void cmpldi(ConditionRegister crx, Register a, int ui16);
1344   inline void cmplw( ConditionRegister crx, Register a, Register b);
1345   inline void cmpld( ConditionRegister crx, Register a, Register b);
1346 
1347   inline void isel(   Register d, Register a, Register b, int bc);
1348   // Convenient version which takes: Condition register, Condition code and invert flag. Omit b to keep old value.
1349   inline void isel(   Register d, ConditionRegister cr, Condition cc, bool inv, Register a, Register b = noreg);
1350   // Set d = 0 if (cr.cc) equals 1, otherwise b.
1351   inline void isel_0( Register d, ConditionRegister cr, Condition cc, Register b = noreg);
1352 
1353   // PPC 1, section 3.3.11, Fixed-Point Logical Instructions
1354          void andi(   Register a, Register s, long ui16);   // optimized version
1355   inline void andi_(  Register a, Register s, int ui16);
1356   inline void andis_( Register a, Register s, int ui16);
1357   inline void ori(    Register a, Register s, int ui16);
1358   inline void oris(   Register a, Register s, int ui16);
1359   inline void xori(   Register a, Register s, int ui16);
1360   inline void xoris(  Register a, Register s, int ui16);
1361   inline void andr(   Register a, Register s, Register b);  // suffixed by 'r' as 'and' is C++ keyword
1362   inline void and_(   Register a, Register s, Register b);
1363   // Turn or0(rx,rx,rx) into a nop and avoid that we accidently emit a
1364   // SMT-priority change instruction (see SMT instructions below).
1365   inline void or_unchecked(Register a, Register s, Register b);
1366   inline void orr(    Register a, Register s, Register b);  // suffixed by 'r' as 'or' is C++ keyword
1367   inline void or_(    Register a, Register s, Register b);
1368   inline void xorr(   Register a, Register s, Register b);  // suffixed by 'r' as 'xor' is C++ keyword
1369   inline void xor_(   Register a, Register s, Register b);
1370   inline void nand(   Register a, Register s, Register b);
1371   inline void nand_(  Register a, Register s, Register b);
1372   inline void nor(    Register a, Register s, Register b);
1373   inline void nor_(   Register a, Register s, Register b);
1374   inline void andc(   Register a, Register s, Register b);
1375   inline void andc_(  Register a, Register s, Register b);
1376   inline void orc(    Register a, Register s, Register b);
1377   inline void orc_(   Register a, Register s, Register b);
1378   inline void extsb(  Register a, Register s);
1379   inline void extsh(  Register a, Register s);
1380   inline void extsw(  Register a, Register s);
1381 
1382   // extended mnemonics
1383   inline void nop();
1384   // NOP for FP and BR units (different versions to allow them to be in one group)
1385   inline void fpnop0();
1386   inline void fpnop1();
1387   inline void brnop0();
1388   inline void brnop1();
1389   inline void brnop2();
1390 
1391   inline void mr(      Register d, Register s);
1392   inline void ori_opt( Register d, int ui16);
1393   inline void oris_opt(Register d, int ui16);
1394 
1395   // endgroup opcode for Power6
1396   inline void endgroup();
1397 
1398   // count instructions
1399   inline void cntlzw(  Register a, Register s);
1400   inline void cntlzw_( Register a, Register s);
1401   inline void cntlzd(  Register a, Register s);
1402   inline void cntlzd_( Register a, Register s);
1403 
1404   // PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions
1405   inline void sld(     Register a, Register s, Register b);
1406   inline void sld_(    Register a, Register s, Register b);
1407   inline void slw(     Register a, Register s, Register b);
1408   inline void slw_(    Register a, Register s, Register b);
1409   inline void srd(     Register a, Register s, Register b);
1410   inline void srd_(    Register a, Register s, Register b);
1411   inline void srw(     Register a, Register s, Register b);
1412   inline void srw_(    Register a, Register s, Register b);
1413   inline void srad(    Register a, Register s, Register b);
1414   inline void srad_(   Register a, Register s, Register b);
1415   inline void sraw(    Register a, Register s, Register b);
1416   inline void sraw_(   Register a, Register s, Register b);
1417   inline void sradi(   Register a, Register s, int sh6);
1418   inline void sradi_(  Register a, Register s, int sh6);
1419   inline void srawi(   Register a, Register s, int sh5);
1420   inline void srawi_(  Register a, Register s, int sh5);
1421 
1422   // extended mnemonics for Shift Instructions
1423   inline void sldi(    Register a, Register s, int sh6);
1424   inline void sldi_(   Register a, Register s, int sh6);
1425   inline void slwi(    Register a, Register s, int sh5);
1426   inline void slwi_(   Register a, Register s, int sh5);
1427   inline void srdi(    Register a, Register s, int sh6);
1428   inline void srdi_(   Register a, Register s, int sh6);
1429   inline void srwi(    Register a, Register s, int sh5);
1430   inline void srwi_(   Register a, Register s, int sh5);
1431 
1432   inline void clrrdi(  Register a, Register s, int ui6);
1433   inline void clrrdi_( Register a, Register s, int ui6);
1434   inline void clrldi(  Register a, Register s, int ui6);
1435   inline void clrldi_( Register a, Register s, int ui6);
1436   inline void clrlsldi(Register a, Register s, int clrl6, int shl6);
1437   inline void clrlsldi_(Register a, Register s, int clrl6, int shl6);
1438   inline void extrdi(  Register a, Register s, int n, int b);
1439   // testbit with condition register
1440   inline void testbitdi(ConditionRegister cr, Register a, Register s, int ui6);
1441 
1442   // rotate instructions
1443   inline void rotldi(  Register a, Register s, int n);
1444   inline void rotrdi(  Register a, Register s, int n);
1445   inline void rotlwi(  Register a, Register s, int n);
1446   inline void rotrwi(  Register a, Register s, int n);
1447 
1448   // Rotate Instructions
1449   inline void rldic(   Register a, Register s, int sh6, int mb6);
1450   inline void rldic_(  Register a, Register s, int sh6, int mb6);
1451   inline void rldicr(  Register a, Register s, int sh6, int mb6);
1452   inline void rldicr_( Register a, Register s, int sh6, int mb6);
1453   inline void rldicl(  Register a, Register s, int sh6, int mb6);
1454   inline void rldicl_( Register a, Register s, int sh6, int mb6);
1455   inline void rlwinm(  Register a, Register s, int sh5, int mb5, int me5);
1456   inline void rlwinm_( Register a, Register s, int sh5, int mb5, int me5);
1457   inline void rldimi(  Register a, Register s, int sh6, int mb6);
1458   inline void rldimi_( Register a, Register s, int sh6, int mb6);
1459   inline void rlwimi(  Register a, Register s, int sh5, int mb5, int me5);
1460   inline void insrdi(  Register a, Register s, int n,   int b);
1461   inline void insrwi(  Register a, Register s, int n,   int b);
1462 
1463   // PPC 1, section 3.3.2 Fixed-Point Load Instructions
1464   // 4 bytes
1465   inline void lwzx( Register d, Register s1, Register s2);
1466   inline void lwz(  Register d, int si16,    Register s1);
1467   inline void lwzu( Register d, int si16,    Register s1);
1468 
1469   // 4 bytes
1470   inline void lwax( Register d, Register s1, Register s2);
1471   inline void lwa(  Register d, int si16,    Register s1);
1472 
1473   // 4 bytes reversed
1474   inline void lwbrx( Register d, Register s1, Register s2);
1475 
1476   // 2 bytes
1477   inline void lhzx( Register d, Register s1, Register s2);
1478   inline void lhz(  Register d, int si16,    Register s1);
1479   inline void lhzu( Register d, int si16,    Register s1);
1480 
1481   // 2 bytes reversed
1482   inline void lhbrx( Register d, Register s1, Register s2);
1483 
1484   // 2 bytes
1485   inline void lhax( Register d, Register s1, Register s2);
1486   inline void lha(  Register d, int si16,    Register s1);
1487   inline void lhau( Register d, int si16,    Register s1);
1488 
1489   // 1 byte
1490   inline void lbzx( Register d, Register s1, Register s2);
1491   inline void lbz(  Register d, int si16,    Register s1);
1492   inline void lbzu( Register d, int si16,    Register s1);
1493 
1494   // 8 bytes
1495   inline void ldx(  Register d, Register s1, Register s2);
1496   inline void ld(   Register d, int si16,    Register s1);
1497   inline void ldu(  Register d, int si16,    Register s1);
1498 
1499   //  PPC 1, section 3.3.3 Fixed-Point Store Instructions
1500   inline void stwx( Register d, Register s1, Register s2);
1501   inline void stw(  Register d, int si16,    Register s1);
1502   inline void stwu( Register d, int si16,    Register s1);
1503 
1504   inline void sthx( Register d, Register s1, Register s2);
1505   inline void sth(  Register d, int si16,    Register s1);
1506   inline void sthu( Register d, int si16,    Register s1);
1507 
1508   inline void stbx( Register d, Register s1, Register s2);
1509   inline void stb(  Register d, int si16,    Register s1);
1510   inline void stbu( Register d, int si16,    Register s1);
1511 
1512   inline void stdx( Register d, Register s1, Register s2);
1513   inline void std(  Register d, int si16,    Register s1);
1514   inline void stdu( Register d, int si16,    Register s1);
1515   inline void stdux(Register s, Register a,  Register b);
1516 
1517   // PPC 1, section 3.3.13 Move To/From System Register Instructions
1518   inline void mtlr( Register s1);
1519   inline void mflr( Register d);
1520   inline void mtctr(Register s1);
1521   inline void mfctr(Register d);
1522   inline void mtcrf(int fxm, Register s);
1523   inline void mfcr( Register d);
1524   inline void mcrf( ConditionRegister crd, ConditionRegister cra);
1525   inline void mtcr( Register s);
1526 
1527   // Special purpose registers
1528   // Exception Register
1529   inline void mtxer(Register s1);
1530   inline void mfxer(Register d);
1531   // Vector Register Save Register
1532   inline void mtvrsave(Register s1);
1533   inline void mfvrsave(Register d);
1534   // Timebase
1535   inline void mftb(Register d);
1536   // Introduced with Power 8:
1537   // Data Stream Control Register
1538   inline void mtdscr(Register s1);
1539   inline void mfdscr(Register d );
1540   // Transactional Memory Registers
1541   inline void mftfhar(Register d);
1542   inline void mftfiar(Register d);
1543   inline void mftexasr(Register d);
1544   inline void mftexasru(Register d);
1545 
1546   // TEXASR bit description
1547   enum transaction_failure_reason {
1548     // Upper half (TEXASRU):
1549     tm_failure_persistent =  7, // The failure is likely to recur on each execution.
1550     tm_disallowed         =  8, // The instruction is not permitted.
1551     tm_nesting_of         =  9, // The maximum transaction level was exceeded.
1552     tm_footprint_of       = 10, // The tracking limit for transactional storage accesses was exceeded.
1553     tm_self_induced_cf    = 11, // A self-induced conflict occurred in Suspended state.
1554     tm_non_trans_cf       = 12, // A conflict occurred with a non-transactional access by another processor.
1555     tm_trans_cf           = 13, // A conflict occurred with another transaction.
1556     tm_translation_cf     = 14, // A conflict occurred with a TLB invalidation.
1557     tm_inst_fetch_cf      = 16, // An instruction fetch was performed from a block that was previously written transactionally.
1558     tm_tabort             = 31, // Termination was caused by the execution of an abort instruction.
1559     // Lower half:
1560     tm_suspended          = 32, // Failure was recorded in Suspended state.
1561     tm_failure_summary    = 36, // Failure has been detected and recorded.
1562     tm_tfiar_exact        = 37, // Value in the TFIAR is exact.
1563     tm_rot                = 38, // Rollback-only transaction.
1564   };
1565 
1566   // PPC 1, section 2.4.1 Branch Instructions
1567   inline void b(  address a, relocInfo::relocType rt = relocInfo::none);
1568   inline void b(  Label& L);
1569   inline void bl( address a, relocInfo::relocType rt = relocInfo::none);
1570   inline void bl( Label& L);
1571   inline void bc( int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
1572   inline void bc( int boint, int biint, Label& L);
1573   inline void bcl(int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
1574   inline void bcl(int boint, int biint, Label& L);
1575 
1576   inline void bclr(  int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
1577   inline void bclrl( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
1578   inline void bcctr( int boint, int biint, int bhint = bhintbhBCCTRisNotReturnButSame,
1579                          relocInfo::relocType rt = relocInfo::none);
1580   inline void bcctrl(int boint, int biint, int bhint = bhintbhBCLRisReturn,
1581                          relocInfo::relocType rt = relocInfo::none);
1582 
1583   // helper function for b, bcxx
1584   inline bool is_within_range_of_b(address a, address pc);
1585   inline bool is_within_range_of_bcxx(address a, address pc);
1586 
1587   // get the destination of a bxx branch (b, bl, ba, bla)
1588   static inline address  bxx_destination(address baddr);
1589   static inline address  bxx_destination(int instr, address pc);
1590   static inline intptr_t bxx_destination_offset(int instr, intptr_t bxx_pos);
1591 
1592   // extended mnemonics for branch instructions
1593   inline void blt(ConditionRegister crx, Label& L);
1594   inline void bgt(ConditionRegister crx, Label& L);
1595   inline void beq(ConditionRegister crx, Label& L);
1596   inline void bso(ConditionRegister crx, Label& L);
1597   inline void bge(ConditionRegister crx, Label& L);
1598   inline void ble(ConditionRegister crx, Label& L);
1599   inline void bne(ConditionRegister crx, Label& L);
1600   inline void bns(ConditionRegister crx, Label& L);
1601 
1602   // Branch instructions with static prediction hints.
1603   inline void blt_predict_taken(    ConditionRegister crx, Label& L);
1604   inline void bgt_predict_taken(    ConditionRegister crx, Label& L);
1605   inline void beq_predict_taken(    ConditionRegister crx, Label& L);
1606   inline void bso_predict_taken(    ConditionRegister crx, Label& L);
1607   inline void bge_predict_taken(    ConditionRegister crx, Label& L);
1608   inline void ble_predict_taken(    ConditionRegister crx, Label& L);
1609   inline void bne_predict_taken(    ConditionRegister crx, Label& L);
1610   inline void bns_predict_taken(    ConditionRegister crx, Label& L);
1611   inline void blt_predict_not_taken(ConditionRegister crx, Label& L);
1612   inline void bgt_predict_not_taken(ConditionRegister crx, Label& L);
1613   inline void beq_predict_not_taken(ConditionRegister crx, Label& L);
1614   inline void bso_predict_not_taken(ConditionRegister crx, Label& L);
1615   inline void bge_predict_not_taken(ConditionRegister crx, Label& L);
1616   inline void ble_predict_not_taken(ConditionRegister crx, Label& L);
1617   inline void bne_predict_not_taken(ConditionRegister crx, Label& L);
1618   inline void bns_predict_not_taken(ConditionRegister crx, Label& L);
1619 
1620   // for use in conjunction with testbitdi:
1621   inline void btrue( ConditionRegister crx, Label& L);
1622   inline void bfalse(ConditionRegister crx, Label& L);
1623 
1624   inline void bltl(ConditionRegister crx, Label& L);
1625   inline void bgtl(ConditionRegister crx, Label& L);
1626   inline void beql(ConditionRegister crx, Label& L);
1627   inline void bsol(ConditionRegister crx, Label& L);
1628   inline void bgel(ConditionRegister crx, Label& L);
1629   inline void blel(ConditionRegister crx, Label& L);
1630   inline void bnel(ConditionRegister crx, Label& L);
1631   inline void bnsl(ConditionRegister crx, Label& L);
1632 
1633   // extended mnemonics for Branch Instructions via LR
1634   // We use `blr' for returns.
1635   inline void blr(relocInfo::relocType rt = relocInfo::none);
1636 
1637   // extended mnemonics for Branch Instructions with CTR
1638   // bdnz means `decrement CTR and jump to L if CTR is not zero'
1639   inline void bdnz(Label& L);
1640   // Decrement and branch if result is zero.
1641   inline void bdz(Label& L);
1642   // we use `bctr[l]' for jumps/calls in function descriptor glue
1643   // code, e.g. calls to runtime functions
1644   inline void bctr( relocInfo::relocType rt = relocInfo::none);
1645   inline void bctrl(relocInfo::relocType rt = relocInfo::none);
1646   // conditional jumps/branches via CTR
1647   inline void beqctr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1648   inline void beqctrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1649   inline void bnectr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1650   inline void bnectrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1651 
1652   // condition register logic instructions
1653   // NOTE: There's a preferred form: d and s2 should point into the same condition register.
1654   inline void crand( int d, int s1, int s2);
1655   inline void crnand(int d, int s1, int s2);
1656   inline void cror(  int d, int s1, int s2);
1657   inline void crxor( int d, int s1, int s2);
1658   inline void crnor( int d, int s1, int s2);
1659   inline void creqv( int d, int s1, int s2);
1660   inline void crandc(int d, int s1, int s2);
1661   inline void crorc( int d, int s1, int s2);
1662 
1663   // More convenient version.
1664   int condition_register_bit(ConditionRegister cr, Condition c) {
1665     return 4 * (int)(intptr_t)cr + c;
1666   }
1667   void crand( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1668   void crnand(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1669   void cror(  ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1670   void crxor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1671   void crnor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1672   void creqv( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1673   void crandc(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1674   void crorc( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1675 
1676   // icache and dcache related instructions
1677   inline void icbi(  Register s1, Register s2);
1678   //inline void dcba(Register s1, Register s2); // Instruction for embedded processor only.
1679   inline void dcbz(  Register s1, Register s2);
1680   inline void dcbst( Register s1, Register s2);
1681   inline void dcbf(  Register s1, Register s2);
1682 
1683   enum ct_cache_specification {
1684     ct_primary_cache   = 0,
1685     ct_secondary_cache = 2
1686   };
1687   // dcache read hint
1688   inline void dcbt(    Register s1, Register s2);
1689   inline void dcbtct(  Register s1, Register s2, int ct);
1690   inline void dcbtds(  Register s1, Register s2, int ds);
1691   // dcache write hint
1692   inline void dcbtst(  Register s1, Register s2);
1693   inline void dcbtstct(Register s1, Register s2, int ct);
1694 
1695   //  machine barrier instructions:
1696   //
1697   //  - sync    two-way memory barrier, aka fence
1698   //  - lwsync  orders  Store|Store,
1699   //                     Load|Store,
1700   //                     Load|Load,
1701   //            but not Store|Load
1702   //  - eieio   orders memory accesses for device memory (only)
1703   //  - isync   invalidates speculatively executed instructions
1704   //            From the Power ISA 2.06 documentation:
1705   //             "[...] an isync instruction prevents the execution of
1706   //            instructions following the isync until instructions
1707   //            preceding the isync have completed, [...]"
1708   //            From IBM's AIX assembler reference:
1709   //             "The isync [...] instructions causes the processor to
1710   //            refetch any instructions that might have been fetched
1711   //            prior to the isync instruction. The instruction isync
1712   //            causes the processor to wait for all previous instructions
1713   //            to complete. Then any instructions already fetched are
1714   //            discarded and instruction processing continues in the
1715   //            environment established by the previous instructions."
1716   //
1717   //  semantic barrier instructions:
1718   //  (as defined in orderAccess.hpp)
1719   //
1720   //  - release  orders Store|Store,       (maps to lwsync)
1721   //                     Load|Store
1722   //  - acquire  orders  Load|Store,       (maps to lwsync)
1723   //                     Load|Load
1724   //  - fence    orders Store|Store,       (maps to sync)
1725   //                     Load|Store,
1726   //                     Load|Load,
1727   //                    Store|Load
1728   //
1729  private:
1730   inline void sync(int l);
1731  public:
1732   inline void sync();
1733   inline void lwsync();
1734   inline void ptesync();
1735   inline void eieio();
1736   inline void isync();
1737   inline void elemental_membar(int e); // Elemental Memory Barriers (>=Power 8)
1738 
1739   // Wait instructions for polling. Attention: May result in SIGILL.
1740   inline void wait();
1741   inline void waitrsv(); // >=Power7
1742 
1743   // atomics
1744   inline void lwarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
1745   inline void ldarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
1746   inline void lqarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
1747   inline bool lxarx_hint_exclusive_access();
1748   inline void lwarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
1749   inline void ldarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
1750   inline void lqarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
1751   inline void stwcx_( Register s, Register a, Register b);
1752   inline void stdcx_( Register s, Register a, Register b);
1753   inline void stqcx_( Register s, Register a, Register b);
1754 
1755   // Instructions for adjusting thread priority for simultaneous
1756   // multithreading (SMT) on Power5.
1757  private:
1758   inline void smt_prio_very_low();
1759   inline void smt_prio_medium_high();
1760   inline void smt_prio_high();
1761 
1762  public:
1763   inline void smt_prio_low();
1764   inline void smt_prio_medium_low();
1765   inline void smt_prio_medium();
1766   // >= Power7
1767   inline void smt_yield();
1768   inline void smt_mdoio();
1769   inline void smt_mdoom();
1770 
1771   // trap instructions
1772   inline void twi_0(Register a); // for load with acquire semantics use load+twi_0+isync (trap can't occur)
1773   // NOT FOR DIRECT USE!!
1774  protected:
1775   inline void tdi_unchecked(int tobits, Register a, int si16);
1776   inline void twi_unchecked(int tobits, Register a, int si16);
1777   inline void tdi(          int tobits, Register a, int si16);   // asserts UseSIGTRAP
1778   inline void twi(          int tobits, Register a, int si16);   // asserts UseSIGTRAP
1779   inline void td(           int tobits, Register a, Register b); // asserts UseSIGTRAP
1780   inline void tw(           int tobits, Register a, Register b); // asserts UseSIGTRAP
1781 
1782   static bool is_tdi(int x, int tobits, int ra, int si16) {
1783      return (TDI_OPCODE == (x & TDI_OPCODE_MASK))
1784          && (tobits == inv_to_field(x))
1785          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1786          && (si16 == inv_si_field(x));
1787   }
1788 
1789   static bool is_twi(int x, int tobits, int ra, int si16) {
1790      return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
1791          && (tobits == inv_to_field(x))
1792          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1793          && (si16 == inv_si_field(x));
1794   }
1795 
1796   static bool is_twi(int x, int tobits, int ra) {
1797      return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
1798          && (tobits == inv_to_field(x))
1799          && (ra == -1/*any reg*/ || ra == inv_ra_field(x));
1800   }
1801 
1802   static bool is_td(int x, int tobits, int ra, int rb) {
1803      return (TD_OPCODE == (x & TD_OPCODE_MASK))
1804          && (tobits == inv_to_field(x))
1805          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1806          && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
1807   }
1808 
1809   static bool is_tw(int x, int tobits, int ra, int rb) {
1810      return (TW_OPCODE == (x & TW_OPCODE_MASK))
1811          && (tobits == inv_to_field(x))
1812          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1813          && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
1814   }
1815 
1816  public:
1817   // PPC floating point instructions
1818   // PPC 1, section 4.6.2 Floating-Point Load Instructions
1819   inline void lfs(  FloatRegister d, int si16,   Register a);
1820   inline void lfsu( FloatRegister d, int si16,   Register a);
1821   inline void lfsx( FloatRegister d, Register a, Register b);
1822   inline void lfd(  FloatRegister d, int si16,   Register a);
1823   inline void lfdu( FloatRegister d, int si16,   Register a);
1824   inline void lfdx( FloatRegister d, Register a, Register b);
1825 
1826   // PPC 1, section 4.6.3 Floating-Point Store Instructions
1827   inline void stfs(  FloatRegister s, int si16,   Register a);
1828   inline void stfsu( FloatRegister s, int si16,   Register a);
1829   inline void stfsx( FloatRegister s, Register a, Register b);
1830   inline void stfd(  FloatRegister s, int si16,   Register a);
1831   inline void stfdu( FloatRegister s, int si16,   Register a);
1832   inline void stfdx( FloatRegister s, Register a, Register b);
1833 
1834   // PPC 1, section 4.6.4 Floating-Point Move Instructions
1835   inline void fmr(  FloatRegister d, FloatRegister b);
1836   inline void fmr_( FloatRegister d, FloatRegister b);
1837 
1838   //  inline void mffgpr( FloatRegister d, Register b);
1839   //  inline void mftgpr( Register d, FloatRegister b);
1840   inline void cmpb(   Register a, Register s, Register b);
1841   inline void popcntb(Register a, Register s);
1842   inline void popcntw(Register a, Register s);
1843   inline void popcntd(Register a, Register s);
1844 
1845   inline void fneg(  FloatRegister d, FloatRegister b);
1846   inline void fneg_( FloatRegister d, FloatRegister b);
1847   inline void fabs(  FloatRegister d, FloatRegister b);
1848   inline void fabs_( FloatRegister d, FloatRegister b);
1849   inline void fnabs( FloatRegister d, FloatRegister b);
1850   inline void fnabs_(FloatRegister d, FloatRegister b);
1851 
1852   // PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic Instructions
1853   inline void fadd(  FloatRegister d, FloatRegister a, FloatRegister b);
1854   inline void fadd_( FloatRegister d, FloatRegister a, FloatRegister b);
1855   inline void fadds( FloatRegister d, FloatRegister a, FloatRegister b);
1856   inline void fadds_(FloatRegister d, FloatRegister a, FloatRegister b);
1857   inline void fsub(  FloatRegister d, FloatRegister a, FloatRegister b);
1858   inline void fsub_( FloatRegister d, FloatRegister a, FloatRegister b);
1859   inline void fsubs( FloatRegister d, FloatRegister a, FloatRegister b);
1860   inline void fsubs_(FloatRegister d, FloatRegister a, FloatRegister b);
1861   inline void fmul(  FloatRegister d, FloatRegister a, FloatRegister c);
1862   inline void fmul_( FloatRegister d, FloatRegister a, FloatRegister c);
1863   inline void fmuls( FloatRegister d, FloatRegister a, FloatRegister c);
1864   inline void fmuls_(FloatRegister d, FloatRegister a, FloatRegister c);
1865   inline void fdiv(  FloatRegister d, FloatRegister a, FloatRegister b);
1866   inline void fdiv_( FloatRegister d, FloatRegister a, FloatRegister b);
1867   inline void fdivs( FloatRegister d, FloatRegister a, FloatRegister b);
1868   inline void fdivs_(FloatRegister d, FloatRegister a, FloatRegister b);
1869 
1870   // PPC 1, section 4.6.6 Floating-Point Rounding and Conversion Instructions
1871   inline void frsp(  FloatRegister d, FloatRegister b);
1872   inline void fctid( FloatRegister d, FloatRegister b);
1873   inline void fctidz(FloatRegister d, FloatRegister b);
1874   inline void fctiw( FloatRegister d, FloatRegister b);
1875   inline void fctiwz(FloatRegister d, FloatRegister b);
1876   inline void fcfid( FloatRegister d, FloatRegister b);
1877   inline void fcfids(FloatRegister d, FloatRegister b);
1878 
1879   // PPC 1, section 4.6.7 Floating-Point Compare Instructions
1880   inline void fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b);
1881 
1882   inline void fsqrt( FloatRegister d, FloatRegister b);
1883   inline void fsqrts(FloatRegister d, FloatRegister b);
1884 
1885   // Vector instructions for >= Power6.
1886   inline void lvebx(    VectorRegister d, Register s1, Register s2);
1887   inline void lvehx(    VectorRegister d, Register s1, Register s2);
1888   inline void lvewx(    VectorRegister d, Register s1, Register s2);
1889   inline void lvx(      VectorRegister d, Register s1, Register s2);
1890   inline void lvxl(     VectorRegister d, Register s1, Register s2);
1891   inline void stvebx(   VectorRegister d, Register s1, Register s2);
1892   inline void stvehx(   VectorRegister d, Register s1, Register s2);
1893   inline void stvewx(   VectorRegister d, Register s1, Register s2);
1894   inline void stvx(     VectorRegister d, Register s1, Register s2);
1895   inline void stvxl(    VectorRegister d, Register s1, Register s2);
1896   inline void lvsl(     VectorRegister d, Register s1, Register s2);
1897   inline void lvsr(     VectorRegister d, Register s1, Register s2);
1898   inline void vpkpx(    VectorRegister d, VectorRegister a, VectorRegister b);
1899   inline void vpkshss(  VectorRegister d, VectorRegister a, VectorRegister b);
1900   inline void vpkswss(  VectorRegister d, VectorRegister a, VectorRegister b);
1901   inline void vpkshus(  VectorRegister d, VectorRegister a, VectorRegister b);
1902   inline void vpkswus(  VectorRegister d, VectorRegister a, VectorRegister b);
1903   inline void vpkuhum(  VectorRegister d, VectorRegister a, VectorRegister b);
1904   inline void vpkuwum(  VectorRegister d, VectorRegister a, VectorRegister b);
1905   inline void vpkuhus(  VectorRegister d, VectorRegister a, VectorRegister b);
1906   inline void vpkuwus(  VectorRegister d, VectorRegister a, VectorRegister b);
1907   inline void vupkhpx(  VectorRegister d, VectorRegister b);
1908   inline void vupkhsb(  VectorRegister d, VectorRegister b);
1909   inline void vupkhsh(  VectorRegister d, VectorRegister b);
1910   inline void vupklpx(  VectorRegister d, VectorRegister b);
1911   inline void vupklsb(  VectorRegister d, VectorRegister b);
1912   inline void vupklsh(  VectorRegister d, VectorRegister b);
1913   inline void vmrghb(   VectorRegister d, VectorRegister a, VectorRegister b);
1914   inline void vmrghw(   VectorRegister d, VectorRegister a, VectorRegister b);
1915   inline void vmrghh(   VectorRegister d, VectorRegister a, VectorRegister b);
1916   inline void vmrglb(   VectorRegister d, VectorRegister a, VectorRegister b);
1917   inline void vmrglw(   VectorRegister d, VectorRegister a, VectorRegister b);
1918   inline void vmrglh(   VectorRegister d, VectorRegister a, VectorRegister b);
1919   inline void vsplt(    VectorRegister d, int ui4,          VectorRegister b);
1920   inline void vsplth(   VectorRegister d, int ui3,          VectorRegister b);
1921   inline void vspltw(   VectorRegister d, int ui2,          VectorRegister b);
1922   inline void vspltisb( VectorRegister d, int si5);
1923   inline void vspltish( VectorRegister d, int si5);
1924   inline void vspltisw( VectorRegister d, int si5);
1925   inline void vperm(    VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1926   inline void vsel(     VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1927   inline void vsl(      VectorRegister d, VectorRegister a, VectorRegister b);
1928   inline void vsldoi(   VectorRegister d, VectorRegister a, VectorRegister b, int si4);
1929   inline void vslo(     VectorRegister d, VectorRegister a, VectorRegister b);
1930   inline void vsr(      VectorRegister d, VectorRegister a, VectorRegister b);
1931   inline void vsro(     VectorRegister d, VectorRegister a, VectorRegister b);
1932   inline void vaddcuw(  VectorRegister d, VectorRegister a, VectorRegister b);
1933   inline void vaddshs(  VectorRegister d, VectorRegister a, VectorRegister b);
1934   inline void vaddsbs(  VectorRegister d, VectorRegister a, VectorRegister b);
1935   inline void vaddsws(  VectorRegister d, VectorRegister a, VectorRegister b);
1936   inline void vaddubm(  VectorRegister d, VectorRegister a, VectorRegister b);
1937   inline void vadduwm(  VectorRegister d, VectorRegister a, VectorRegister b);
1938   inline void vadduhm(  VectorRegister d, VectorRegister a, VectorRegister b);
1939   inline void vaddubs(  VectorRegister d, VectorRegister a, VectorRegister b);
1940   inline void vadduws(  VectorRegister d, VectorRegister a, VectorRegister b);
1941   inline void vadduhs(  VectorRegister d, VectorRegister a, VectorRegister b);
1942   inline void vsubcuw(  VectorRegister d, VectorRegister a, VectorRegister b);
1943   inline void vsubshs(  VectorRegister d, VectorRegister a, VectorRegister b);
1944   inline void vsubsbs(  VectorRegister d, VectorRegister a, VectorRegister b);
1945   inline void vsubsws(  VectorRegister d, VectorRegister a, VectorRegister b);
1946   inline void vsububm(  VectorRegister d, VectorRegister a, VectorRegister b);
1947   inline void vsubuwm(  VectorRegister d, VectorRegister a, VectorRegister b);
1948   inline void vsubuhm(  VectorRegister d, VectorRegister a, VectorRegister b);
1949   inline void vsububs(  VectorRegister d, VectorRegister a, VectorRegister b);
1950   inline void vsubuws(  VectorRegister d, VectorRegister a, VectorRegister b);
1951   inline void vsubuhs(  VectorRegister d, VectorRegister a, VectorRegister b);
1952   inline void vmulesb(  VectorRegister d, VectorRegister a, VectorRegister b);
1953   inline void vmuleub(  VectorRegister d, VectorRegister a, VectorRegister b);
1954   inline void vmulesh(  VectorRegister d, VectorRegister a, VectorRegister b);
1955   inline void vmuleuh(  VectorRegister d, VectorRegister a, VectorRegister b);
1956   inline void vmulosb(  VectorRegister d, VectorRegister a, VectorRegister b);
1957   inline void vmuloub(  VectorRegister d, VectorRegister a, VectorRegister b);
1958   inline void vmulosh(  VectorRegister d, VectorRegister a, VectorRegister b);
1959   inline void vmulouh(  VectorRegister d, VectorRegister a, VectorRegister b);
1960   inline void vmhaddshs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1961   inline void vmhraddshs(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c);
1962   inline void vmladduhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1963   inline void vmsubuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1964   inline void vmsummbm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1965   inline void vmsumshm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1966   inline void vmsumshs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1967   inline void vmsumuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1968   inline void vmsumuhs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1969   inline void vsumsws(  VectorRegister d, VectorRegister a, VectorRegister b);
1970   inline void vsum2sws( VectorRegister d, VectorRegister a, VectorRegister b);
1971   inline void vsum4sbs( VectorRegister d, VectorRegister a, VectorRegister b);
1972   inline void vsum4ubs( VectorRegister d, VectorRegister a, VectorRegister b);
1973   inline void vsum4shs( VectorRegister d, VectorRegister a, VectorRegister b);
1974   inline void vavgsb(   VectorRegister d, VectorRegister a, VectorRegister b);
1975   inline void vavgsw(   VectorRegister d, VectorRegister a, VectorRegister b);
1976   inline void vavgsh(   VectorRegister d, VectorRegister a, VectorRegister b);
1977   inline void vavgub(   VectorRegister d, VectorRegister a, VectorRegister b);
1978   inline void vavguw(   VectorRegister d, VectorRegister a, VectorRegister b);
1979   inline void vavguh(   VectorRegister d, VectorRegister a, VectorRegister b);
1980   inline void vmaxsb(   VectorRegister d, VectorRegister a, VectorRegister b);
1981   inline void vmaxsw(   VectorRegister d, VectorRegister a, VectorRegister b);
1982   inline void vmaxsh(   VectorRegister d, VectorRegister a, VectorRegister b);
1983   inline void vmaxub(   VectorRegister d, VectorRegister a, VectorRegister b);
1984   inline void vmaxuw(   VectorRegister d, VectorRegister a, VectorRegister b);
1985   inline void vmaxuh(   VectorRegister d, VectorRegister a, VectorRegister b);
1986   inline void vminsb(   VectorRegister d, VectorRegister a, VectorRegister b);
1987   inline void vminsw(   VectorRegister d, VectorRegister a, VectorRegister b);
1988   inline void vminsh(   VectorRegister d, VectorRegister a, VectorRegister b);
1989   inline void vminub(   VectorRegister d, VectorRegister a, VectorRegister b);
1990   inline void vminuw(   VectorRegister d, VectorRegister a, VectorRegister b);
1991   inline void vminuh(   VectorRegister d, VectorRegister a, VectorRegister b);
1992   inline void vcmpequb( VectorRegister d, VectorRegister a, VectorRegister b);
1993   inline void vcmpequh( VectorRegister d, VectorRegister a, VectorRegister b);
1994   inline void vcmpequw( VectorRegister d, VectorRegister a, VectorRegister b);
1995   inline void vcmpgtsh( VectorRegister d, VectorRegister a, VectorRegister b);
1996   inline void vcmpgtsb( VectorRegister d, VectorRegister a, VectorRegister b);
1997   inline void vcmpgtsw( VectorRegister d, VectorRegister a, VectorRegister b);
1998   inline void vcmpgtub( VectorRegister d, VectorRegister a, VectorRegister b);
1999   inline void vcmpgtuh( VectorRegister d, VectorRegister a, VectorRegister b);
2000   inline void vcmpgtuw( VectorRegister d, VectorRegister a, VectorRegister b);
2001   inline void vcmpequb_(VectorRegister d, VectorRegister a, VectorRegister b);
2002   inline void vcmpequh_(VectorRegister d, VectorRegister a, VectorRegister b);
2003   inline void vcmpequw_(VectorRegister d, VectorRegister a, VectorRegister b);
2004   inline void vcmpgtsh_(VectorRegister d, VectorRegister a, VectorRegister b);
2005   inline void vcmpgtsb_(VectorRegister d, VectorRegister a, VectorRegister b);
2006   inline void vcmpgtsw_(VectorRegister d, VectorRegister a, VectorRegister b);
2007   inline void vcmpgtub_(VectorRegister d, VectorRegister a, VectorRegister b);
2008   inline void vcmpgtuh_(VectorRegister d, VectorRegister a, VectorRegister b);
2009   inline void vcmpgtuw_(VectorRegister d, VectorRegister a, VectorRegister b);
2010   inline void vand(     VectorRegister d, VectorRegister a, VectorRegister b);
2011   inline void vandc(    VectorRegister d, VectorRegister a, VectorRegister b);
2012   inline void vnor(     VectorRegister d, VectorRegister a, VectorRegister b);
2013   inline void vor(      VectorRegister d, VectorRegister a, VectorRegister b);
2014   inline void vxor(     VectorRegister d, VectorRegister a, VectorRegister b);
2015   inline void vrlb(     VectorRegister d, VectorRegister a, VectorRegister b);
2016   inline void vrlw(     VectorRegister d, VectorRegister a, VectorRegister b);
2017   inline void vrlh(     VectorRegister d, VectorRegister a, VectorRegister b);
2018   inline void vslb(     VectorRegister d, VectorRegister a, VectorRegister b);
2019   inline void vskw(     VectorRegister d, VectorRegister a, VectorRegister b);
2020   inline void vslh(     VectorRegister d, VectorRegister a, VectorRegister b);
2021   inline void vsrb(     VectorRegister d, VectorRegister a, VectorRegister b);
2022   inline void vsrw(     VectorRegister d, VectorRegister a, VectorRegister b);
2023   inline void vsrh(     VectorRegister d, VectorRegister a, VectorRegister b);
2024   inline void vsrab(    VectorRegister d, VectorRegister a, VectorRegister b);
2025   inline void vsraw(    VectorRegister d, VectorRegister a, VectorRegister b);
2026   inline void vsrah(    VectorRegister d, VectorRegister a, VectorRegister b);
2027   // Vector Floating-Point not implemented yet
2028   inline void mtvscr(   VectorRegister b);
2029   inline void mfvscr(   VectorRegister d);
2030 
2031   // AES (introduced with Power 8)
2032   inline void vcipher(     VectorRegister d, VectorRegister a, VectorRegister b);
2033   inline void vcipherlast( VectorRegister d, VectorRegister a, VectorRegister b);
2034   inline void vncipher(    VectorRegister d, VectorRegister a, VectorRegister b);
2035   inline void vncipherlast(VectorRegister d, VectorRegister a, VectorRegister b);
2036   inline void vsbox(       VectorRegister d, VectorRegister a);
2037 
2038   // SHA (introduced with Power 8)
2039   // Not yet implemented.
2040 
2041   // Vector Binary Polynomial Multiplication (introduced with Power 8)
2042   inline void vpmsumb(  VectorRegister d, VectorRegister a, VectorRegister b);
2043   inline void vpmsumd(  VectorRegister d, VectorRegister a, VectorRegister b);
2044   inline void vpmsumh(  VectorRegister d, VectorRegister a, VectorRegister b);
2045   inline void vpmsumw(  VectorRegister d, VectorRegister a, VectorRegister b);
2046 
2047   // Vector Permute and Xor (introduced with Power 8)
2048   inline void vpermxor( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2049 
2050   // Transactional Memory instructions (introduced with Power 8)
2051   inline void tbegin_();    // R=0
2052   inline void tbeginrot_(); // R=1 Rollback-Only Transaction
2053   inline void tend_();    // A=0
2054   inline void tendall_(); // A=1
2055   inline void tabort_();
2056   inline void tabort_(Register a);
2057   inline void tabortwc_(int t, Register a, Register b);
2058   inline void tabortwci_(int t, Register a, int si);
2059   inline void tabortdc_(int t, Register a, Register b);
2060   inline void tabortdci_(int t, Register a, int si);
2061   inline void tsuspend_(); // tsr with L=0
2062   inline void tresume_();  // tsr with L=1
2063   inline void tcheck(int f);
2064 
2065   static bool is_tbegin(int x) {
2066     return TBEGIN_OPCODE == (x & (0x3f << OPCODE_SHIFT | 0x3ff << 1));
2067   }
2068 
2069   // The following encoders use r0 as second operand. These instructions
2070   // read r0 as '0'.
2071   inline void lwzx( Register d, Register s2);
2072   inline void lwz(  Register d, int si16);
2073   inline void lwax( Register d, Register s2);
2074   inline void lwa(  Register d, int si16);
2075   inline void lwbrx(Register d, Register s2);
2076   inline void lhzx( Register d, Register s2);
2077   inline void lhz(  Register d, int si16);
2078   inline void lhax( Register d, Register s2);
2079   inline void lha(  Register d, int si16);
2080   inline void lhbrx(Register d, Register s2);
2081   inline void lbzx( Register d, Register s2);
2082   inline void lbz(  Register d, int si16);
2083   inline void ldx(  Register d, Register s2);
2084   inline void ld(   Register d, int si16);
2085   inline void stwx( Register d, Register s2);
2086   inline void stw(  Register d, int si16);
2087   inline void sthx( Register d, Register s2);
2088   inline void sth(  Register d, int si16);
2089   inline void stbx( Register d, Register s2);
2090   inline void stb(  Register d, int si16);
2091   inline void stdx( Register d, Register s2);
2092   inline void std(  Register d, int si16);
2093 
2094   // PPC 2, section 3.2.1 Instruction Cache Instructions
2095   inline void icbi(    Register s2);
2096   // PPC 2, section 3.2.2 Data Cache Instructions
2097   //inlinevoid dcba(   Register s2); // Instruction for embedded processor only.
2098   inline void dcbz(    Register s2);
2099   inline void dcbst(   Register s2);
2100   inline void dcbf(    Register s2);
2101   // dcache read hint
2102   inline void dcbt(    Register s2);
2103   inline void dcbtct(  Register s2, int ct);
2104   inline void dcbtds(  Register s2, int ds);
2105   // dcache write hint
2106   inline void dcbtst(  Register s2);
2107   inline void dcbtstct(Register s2, int ct);
2108 
2109   // Atomics: use ra0mem to disallow R0 as base.
2110   inline void lwarx_unchecked(Register d, Register b, int eh1);
2111   inline void ldarx_unchecked(Register d, Register b, int eh1);
2112   inline void lqarx_unchecked(Register d, Register b, int eh1);
2113   inline void lwarx( Register d, Register b, bool hint_exclusive_access);
2114   inline void ldarx( Register d, Register b, bool hint_exclusive_access);
2115   inline void lqarx( Register d, Register b, bool hint_exclusive_access);
2116   inline void stwcx_(Register s, Register b);
2117   inline void stdcx_(Register s, Register b);
2118   inline void stqcx_(Register s, Register b);
2119   inline void lfs(   FloatRegister d, int si16);
2120   inline void lfsx(  FloatRegister d, Register b);
2121   inline void lfd(   FloatRegister d, int si16);
2122   inline void lfdx(  FloatRegister d, Register b);
2123   inline void stfs(  FloatRegister s, int si16);
2124   inline void stfsx( FloatRegister s, Register b);
2125   inline void stfd(  FloatRegister s, int si16);
2126   inline void stfdx( FloatRegister s, Register b);
2127   inline void lvebx( VectorRegister d, Register s2);
2128   inline void lvehx( VectorRegister d, Register s2);
2129   inline void lvewx( VectorRegister d, Register s2);
2130   inline void lvx(   VectorRegister d, Register s2);
2131   inline void lvxl(  VectorRegister d, Register s2);
2132   inline void stvebx(VectorRegister d, Register s2);
2133   inline void stvehx(VectorRegister d, Register s2);
2134   inline void stvewx(VectorRegister d, Register s2);
2135   inline void stvx(  VectorRegister d, Register s2);
2136   inline void stvxl( VectorRegister d, Register s2);
2137   inline void lvsl(  VectorRegister d, Register s2);
2138   inline void lvsr(  VectorRegister d, Register s2);
2139 
2140   // RegisterOrConstant versions.
2141   // These emitters choose between the versions using two registers and
2142   // those with register and immediate, depending on the content of roc.
2143   // If the constant is not encodable as immediate, instructions to
2144   // load the constant are emitted beforehand. Store instructions need a
2145   // tmp reg if the constant is not encodable as immediate.
2146   // Size unpredictable.
2147   void ld(  Register d, RegisterOrConstant roc, Register s1 = noreg);
2148   void lwa( Register d, RegisterOrConstant roc, Register s1 = noreg);
2149   void lwz( Register d, RegisterOrConstant roc, Register s1 = noreg);
2150   void lha( Register d, RegisterOrConstant roc, Register s1 = noreg);
2151   void lhz( Register d, RegisterOrConstant roc, Register s1 = noreg);
2152   void lbz( Register d, RegisterOrConstant roc, Register s1 = noreg);
2153   void std( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2154   void stw( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2155   void sth( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2156   void stb( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2157   void add( Register d, RegisterOrConstant roc, Register s1);
2158   void subf(Register d, RegisterOrConstant roc, Register s1);
2159   void cmpd(ConditionRegister d, RegisterOrConstant roc, Register s1);
2160 
2161 
2162   // Emit several instructions to load a 64 bit constant. This issues a fixed
2163   // instruction pattern so that the constant can be patched later on.
2164   enum {
2165     load_const_size = 5 * BytesPerInstWord
2166   };
2167          void load_const(Register d, long a,            Register tmp = noreg);
2168   inline void load_const(Register d, void* a,           Register tmp = noreg);
2169   inline void load_const(Register d, Label& L,          Register tmp = noreg);
2170   inline void load_const(Register d, AddressLiteral& a, Register tmp = noreg);
2171 
2172   // Load a 64 bit constant, optimized, not identifyable.
2173   // Tmp can be used to increase ILP. Set return_simm16_rest = true to get a
2174   // 16 bit immediate offset. This is useful if the offset can be encoded in
2175   // a succeeding instruction.
2176          int load_const_optimized(Register d, long a,  Register tmp = noreg, bool return_simm16_rest = false);
2177   inline int load_const_optimized(Register d, void* a, Register tmp = noreg, bool return_simm16_rest = false) {
2178     return load_const_optimized(d, (long)(unsigned long)a, tmp, return_simm16_rest);
2179   }
2180 
2181   // If return_simm16_rest, the return value needs to get added afterwards.
2182          int add_const_optimized(Register d, Register s, long x, Register tmp = R0, bool return_simm16_rest = false);
2183   inline int add_const_optimized(Register d, Register s, void* a, Register tmp = R0, bool return_simm16_rest = false) {
2184     return add_const_optimized(d, s, (long)(unsigned long)a, tmp, return_simm16_rest);
2185   }
2186 
2187   // If return_simm16_rest, the return value needs to get added afterwards.
2188   inline int sub_const_optimized(Register d, Register s, long x, Register tmp = R0, bool return_simm16_rest = false) {
2189     return add_const_optimized(d, s, -x, tmp, return_simm16_rest);
2190   }
2191   inline int sub_const_optimized(Register d, Register s, void* a, Register tmp = R0, bool return_simm16_rest = false) {
2192     return sub_const_optimized(d, s, (long)(unsigned long)a, tmp, return_simm16_rest);
2193   }
2194 
2195   // Creation
2196   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2197 #ifdef CHECK_DELAY
2198     delay_state = no_delay;
2199 #endif
2200   }
2201 
2202   // Testing
2203 #ifndef PRODUCT
2204   void test_asm();
2205 #endif
2206 };
2207 
2208 
2209 #endif // CPU_PPC_VM_ASSEMBLER_PPC_HPP