1 //
   2 // Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved.
   3 // Copyright 2012, 2015 SAP AG. All rights reserved.
   4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5 //
   6 // This code is free software; you can redistribute it and/or modify it
   7 // under the terms of the GNU General Public License version 2 only, as
   8 // published by the Free Software Foundation.
   9 //
  10 // This code is distributed in the hope that it will be useful, but WITHOUT
  11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13 // version 2 for more details (a copy is included in the LICENSE file that
  14 // accompanied this code).
  15 //
  16 // You should have received a copy of the GNU General Public License version
  17 // 2 along with this work; if not, write to the Free Software Foundation,
  18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19 //
  20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21 // or visit www.oracle.com if you need additional information or have any
  22 // questions.
  23 //
  24 //
  25 
  26 //
  27 // PPC64 Architecture Description File
  28 //
  29 
  30 //----------REGISTER DEFINITION BLOCK------------------------------------------
  31 // This information is used by the matcher and the register allocator to
  32 // describe individual registers and classes of registers within the target
  33 // architecture.
  34 register %{
  35 //----------Architecture Description Register Definitions----------------------
  36 // General Registers
  37 // "reg_def"  name (register save type, C convention save type,
  38 //                  ideal register type, encoding);
  39 //
  40 // Register Save Types:
  41 //
  42 //   NS  = No-Save:     The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method, &
  44 //                      that they do not need to be saved at call sites.
  45 //
  46 //   SOC = Save-On-Call: The register allocator assumes that these registers
  47 //                      can be used without saving upon entry to the method,
  48 //                      but that they must be saved at call sites.
  49 //                      These are called "volatiles" on ppc.
  50 //
  51 //   SOE = Save-On-Entry: The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, but they do not need to be saved at call
  54 //                      sites.
  55 //                      These are called "nonvolatiles" on ppc.
  56 //
  57 //   AS  = Always-Save:   The register allocator assumes that these registers
  58 //                      must be saved before using them upon entry to the
  59 //                      method, & that they must be saved at call sites.
  60 //
  61 // Ideal Register Type is used to determine how to save & restore a
  62 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  63 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
  64 //
  65 // The encoding number is the actual bit-pattern placed into the opcodes.
  66 //
  67 // PPC64 register definitions, based on the 64-bit PowerPC ELF ABI
  68 // Supplement Version 1.7 as of 2003-10-29.
  69 //
  70 // For each 64-bit register we must define two registers: the register
  71 // itself, e.g. R3, and a corresponding virtual other (32-bit-)'half',
  72 // e.g. R3_H, which is needed by the allocator, but is not used
  73 // for stores, loads, etc.
  74 
  75 // ----------------------------
  76 // Integer/Long Registers
  77 // ----------------------------
  78 
  79   // PPC64 has 32 64-bit integer registers.
  80 
  81   // types: v = volatile, nv = non-volatile, s = system
  82   reg_def R0   ( SOC, SOC, Op_RegI,  0, R0->as_VMReg()         );  // v   used in prologs
  83   reg_def R0_H ( SOC, SOC, Op_RegI, 99, R0->as_VMReg()->next() );
  84   reg_def R1   ( NS,  NS,  Op_RegI,  1, R1->as_VMReg()         );  // s   SP
  85   reg_def R1_H ( NS,  NS,  Op_RegI, 99, R1->as_VMReg()->next() );
  86   reg_def R2   ( SOC, SOC, Op_RegI,  2, R2->as_VMReg()         );  // v   TOC
  87   reg_def R2_H ( SOC, SOC, Op_RegI, 99, R2->as_VMReg()->next() );
  88   reg_def R3   ( SOC, SOC, Op_RegI,  3, R3->as_VMReg()         );  // v   iarg1 & iret
  89   reg_def R3_H ( SOC, SOC, Op_RegI, 99, R3->as_VMReg()->next() );
  90   reg_def R4   ( SOC, SOC, Op_RegI,  4, R4->as_VMReg()         );  //     iarg2
  91   reg_def R4_H ( SOC, SOC, Op_RegI, 99, R4->as_VMReg()->next() );
  92   reg_def R5   ( SOC, SOC, Op_RegI,  5, R5->as_VMReg()         );  // v   iarg3
  93   reg_def R5_H ( SOC, SOC, Op_RegI, 99, R5->as_VMReg()->next() );
  94   reg_def R6   ( SOC, SOC, Op_RegI,  6, R6->as_VMReg()         );  // v   iarg4
  95   reg_def R6_H ( SOC, SOC, Op_RegI, 99, R6->as_VMReg()->next() );
  96   reg_def R7   ( SOC, SOC, Op_RegI,  7, R7->as_VMReg()         );  // v   iarg5
  97   reg_def R7_H ( SOC, SOC, Op_RegI, 99, R7->as_VMReg()->next() );
  98   reg_def R8   ( SOC, SOC, Op_RegI,  8, R8->as_VMReg()         );  // v   iarg6
  99   reg_def R8_H ( SOC, SOC, Op_RegI, 99, R8->as_VMReg()->next() );
 100   reg_def R9   ( SOC, SOC, Op_RegI,  9, R9->as_VMReg()         );  // v   iarg7
 101   reg_def R9_H ( SOC, SOC, Op_RegI, 99, R9->as_VMReg()->next() );
 102   reg_def R10  ( SOC, SOC, Op_RegI, 10, R10->as_VMReg()        );  // v   iarg8
 103   reg_def R10_H( SOC, SOC, Op_RegI, 99, R10->as_VMReg()->next());
 104   reg_def R11  ( SOC, SOC, Op_RegI, 11, R11->as_VMReg()        );  // v   ENV / scratch
 105   reg_def R11_H( SOC, SOC, Op_RegI, 99, R11->as_VMReg()->next());
 106   reg_def R12  ( SOC, SOC, Op_RegI, 12, R12->as_VMReg()        );  // v   scratch
 107   reg_def R12_H( SOC, SOC, Op_RegI, 99, R12->as_VMReg()->next());
 108   reg_def R13  ( NS,  NS,  Op_RegI, 13, R13->as_VMReg()        );  // s   system thread id
 109   reg_def R13_H( NS,  NS,  Op_RegI, 99, R13->as_VMReg()->next());
 110   reg_def R14  ( SOC, SOE, Op_RegI, 14, R14->as_VMReg()        );  // nv
 111   reg_def R14_H( SOC, SOE, Op_RegI, 99, R14->as_VMReg()->next());
 112   reg_def R15  ( SOC, SOE, Op_RegI, 15, R15->as_VMReg()        );  // nv
 113   reg_def R15_H( SOC, SOE, Op_RegI, 99, R15->as_VMReg()->next());
 114   reg_def R16  ( SOC, SOE, Op_RegI, 16, R16->as_VMReg()        );  // nv
 115   reg_def R16_H( SOC, SOE, Op_RegI, 99, R16->as_VMReg()->next());
 116   reg_def R17  ( SOC, SOE, Op_RegI, 17, R17->as_VMReg()        );  // nv
 117   reg_def R17_H( SOC, SOE, Op_RegI, 99, R17->as_VMReg()->next());
 118   reg_def R18  ( SOC, SOE, Op_RegI, 18, R18->as_VMReg()        );  // nv
 119   reg_def R18_H( SOC, SOE, Op_RegI, 99, R18->as_VMReg()->next());
 120   reg_def R19  ( SOC, SOE, Op_RegI, 19, R19->as_VMReg()        );  // nv
 121   reg_def R19_H( SOC, SOE, Op_RegI, 99, R19->as_VMReg()->next());
 122   reg_def R20  ( SOC, SOE, Op_RegI, 20, R20->as_VMReg()        );  // nv
 123   reg_def R20_H( SOC, SOE, Op_RegI, 99, R20->as_VMReg()->next());
 124   reg_def R21  ( SOC, SOE, Op_RegI, 21, R21->as_VMReg()        );  // nv
 125   reg_def R21_H( SOC, SOE, Op_RegI, 99, R21->as_VMReg()->next());
 126   reg_def R22  ( SOC, SOE, Op_RegI, 22, R22->as_VMReg()        );  // nv
 127   reg_def R22_H( SOC, SOE, Op_RegI, 99, R22->as_VMReg()->next());
 128   reg_def R23  ( SOC, SOE, Op_RegI, 23, R23->as_VMReg()        );  // nv
 129   reg_def R23_H( SOC, SOE, Op_RegI, 99, R23->as_VMReg()->next());
 130   reg_def R24  ( SOC, SOE, Op_RegI, 24, R24->as_VMReg()        );  // nv
 131   reg_def R24_H( SOC, SOE, Op_RegI, 99, R24->as_VMReg()->next());
 132   reg_def R25  ( SOC, SOE, Op_RegI, 25, R25->as_VMReg()        );  // nv
 133   reg_def R25_H( SOC, SOE, Op_RegI, 99, R25->as_VMReg()->next());
 134   reg_def R26  ( SOC, SOE, Op_RegI, 26, R26->as_VMReg()        );  // nv
 135   reg_def R26_H( SOC, SOE, Op_RegI, 99, R26->as_VMReg()->next());
 136   reg_def R27  ( SOC, SOE, Op_RegI, 27, R27->as_VMReg()        );  // nv
 137   reg_def R27_H( SOC, SOE, Op_RegI, 99, R27->as_VMReg()->next());
 138   reg_def R28  ( SOC, SOE, Op_RegI, 28, R28->as_VMReg()        );  // nv
 139   reg_def R28_H( SOC, SOE, Op_RegI, 99, R28->as_VMReg()->next());
 140   reg_def R29  ( SOC, SOE, Op_RegI, 29, R29->as_VMReg()        );  // nv
 141   reg_def R29_H( SOC, SOE, Op_RegI, 99, R29->as_VMReg()->next());
 142   reg_def R30  ( SOC, SOE, Op_RegI, 30, R30->as_VMReg()        );  // nv
 143   reg_def R30_H( SOC, SOE, Op_RegI, 99, R30->as_VMReg()->next());
 144   reg_def R31  ( SOC, SOE, Op_RegI, 31, R31->as_VMReg()        );  // nv
 145   reg_def R31_H( SOC, SOE, Op_RegI, 99, R31->as_VMReg()->next());
 146 
 147 
 148 // ----------------------------
 149 // Float/Double Registers
 150 // ----------------------------
 151 
 152   // Double Registers
 153   // The rules of ADL require that double registers be defined in pairs.
 154   // Each pair must be two 32-bit values, but not necessarily a pair of
 155   // single float registers. In each pair, ADLC-assigned register numbers
 156   // must be adjacent, with the lower number even. Finally, when the
 157   // CPU stores such a register pair to memory, the word associated with
 158   // the lower ADLC-assigned number must be stored to the lower address.
 159 
 160   // PPC64 has 32 64-bit floating-point registers. Each can store a single
 161   // or double precision floating-point value.
 162 
 163   // types: v = volatile, nv = non-volatile, s = system
 164   reg_def F0   ( SOC, SOC, Op_RegF,  0, F0->as_VMReg()         );  // v   scratch
 165   reg_def F0_H ( SOC, SOC, Op_RegF, 99, F0->as_VMReg()->next() );
 166   reg_def F1   ( SOC, SOC, Op_RegF,  1, F1->as_VMReg()         );  // v   farg1 & fret
 167   reg_def F1_H ( SOC, SOC, Op_RegF, 99, F1->as_VMReg()->next() );
 168   reg_def F2   ( SOC, SOC, Op_RegF,  2, F2->as_VMReg()         );  // v   farg2
 169   reg_def F2_H ( SOC, SOC, Op_RegF, 99, F2->as_VMReg()->next() );
 170   reg_def F3   ( SOC, SOC, Op_RegF,  3, F3->as_VMReg()         );  // v   farg3
 171   reg_def F3_H ( SOC, SOC, Op_RegF, 99, F3->as_VMReg()->next() );
 172   reg_def F4   ( SOC, SOC, Op_RegF,  4, F4->as_VMReg()         );  // v   farg4
 173   reg_def F4_H ( SOC, SOC, Op_RegF, 99, F4->as_VMReg()->next() );
 174   reg_def F5   ( SOC, SOC, Op_RegF,  5, F5->as_VMReg()         );  // v   farg5
 175   reg_def F5_H ( SOC, SOC, Op_RegF, 99, F5->as_VMReg()->next() );
 176   reg_def F6   ( SOC, SOC, Op_RegF,  6, F6->as_VMReg()         );  // v   farg6
 177   reg_def F6_H ( SOC, SOC, Op_RegF, 99, F6->as_VMReg()->next() );
 178   reg_def F7   ( SOC, SOC, Op_RegF,  7, F7->as_VMReg()         );  // v   farg7
 179   reg_def F7_H ( SOC, SOC, Op_RegF, 99, F7->as_VMReg()->next() );
 180   reg_def F8   ( SOC, SOC, Op_RegF,  8, F8->as_VMReg()         );  // v   farg8
 181   reg_def F8_H ( SOC, SOC, Op_RegF, 99, F8->as_VMReg()->next() );
 182   reg_def F9   ( SOC, SOC, Op_RegF,  9, F9->as_VMReg()         );  // v   farg9
 183   reg_def F9_H ( SOC, SOC, Op_RegF, 99, F9->as_VMReg()->next() );
 184   reg_def F10  ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()        );  // v   farg10
 185   reg_def F10_H( SOC, SOC, Op_RegF, 99, F10->as_VMReg()->next());
 186   reg_def F11  ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()        );  // v   farg11
 187   reg_def F11_H( SOC, SOC, Op_RegF, 99, F11->as_VMReg()->next());
 188   reg_def F12  ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()        );  // v   farg12
 189   reg_def F12_H( SOC, SOC, Op_RegF, 99, F12->as_VMReg()->next());
 190   reg_def F13  ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()        );  // v   farg13
 191   reg_def F13_H( SOC, SOC, Op_RegF, 99, F13->as_VMReg()->next());
 192   reg_def F14  ( SOC, SOE, Op_RegF, 14, F14->as_VMReg()        );  // nv
 193   reg_def F14_H( SOC, SOE, Op_RegF, 99, F14->as_VMReg()->next());
 194   reg_def F15  ( SOC, SOE, Op_RegF, 15, F15->as_VMReg()        );  // nv
 195   reg_def F15_H( SOC, SOE, Op_RegF, 99, F15->as_VMReg()->next());
 196   reg_def F16  ( SOC, SOE, Op_RegF, 16, F16->as_VMReg()        );  // nv
 197   reg_def F16_H( SOC, SOE, Op_RegF, 99, F16->as_VMReg()->next());
 198   reg_def F17  ( SOC, SOE, Op_RegF, 17, F17->as_VMReg()        );  // nv
 199   reg_def F17_H( SOC, SOE, Op_RegF, 99, F17->as_VMReg()->next());
 200   reg_def F18  ( SOC, SOE, Op_RegF, 18, F18->as_VMReg()        );  // nv
 201   reg_def F18_H( SOC, SOE, Op_RegF, 99, F18->as_VMReg()->next());
 202   reg_def F19  ( SOC, SOE, Op_RegF, 19, F19->as_VMReg()        );  // nv
 203   reg_def F19_H( SOC, SOE, Op_RegF, 99, F19->as_VMReg()->next());
 204   reg_def F20  ( SOC, SOE, Op_RegF, 20, F20->as_VMReg()        );  // nv
 205   reg_def F20_H( SOC, SOE, Op_RegF, 99, F20->as_VMReg()->next());
 206   reg_def F21  ( SOC, SOE, Op_RegF, 21, F21->as_VMReg()        );  // nv
 207   reg_def F21_H( SOC, SOE, Op_RegF, 99, F21->as_VMReg()->next());
 208   reg_def F22  ( SOC, SOE, Op_RegF, 22, F22->as_VMReg()        );  // nv
 209   reg_def F22_H( SOC, SOE, Op_RegF, 99, F22->as_VMReg()->next());
 210   reg_def F23  ( SOC, SOE, Op_RegF, 23, F23->as_VMReg()        );  // nv
 211   reg_def F23_H( SOC, SOE, Op_RegF, 99, F23->as_VMReg()->next());
 212   reg_def F24  ( SOC, SOE, Op_RegF, 24, F24->as_VMReg()        );  // nv
 213   reg_def F24_H( SOC, SOE, Op_RegF, 99, F24->as_VMReg()->next());
 214   reg_def F25  ( SOC, SOE, Op_RegF, 25, F25->as_VMReg()        );  // nv
 215   reg_def F25_H( SOC, SOE, Op_RegF, 99, F25->as_VMReg()->next());
 216   reg_def F26  ( SOC, SOE, Op_RegF, 26, F26->as_VMReg()        );  // nv
 217   reg_def F26_H( SOC, SOE, Op_RegF, 99, F26->as_VMReg()->next());
 218   reg_def F27  ( SOC, SOE, Op_RegF, 27, F27->as_VMReg()        );  // nv
 219   reg_def F27_H( SOC, SOE, Op_RegF, 99, F27->as_VMReg()->next());
 220   reg_def F28  ( SOC, SOE, Op_RegF, 28, F28->as_VMReg()        );  // nv
 221   reg_def F28_H( SOC, SOE, Op_RegF, 99, F28->as_VMReg()->next());
 222   reg_def F29  ( SOC, SOE, Op_RegF, 29, F29->as_VMReg()        );  // nv
 223   reg_def F29_H( SOC, SOE, Op_RegF, 99, F29->as_VMReg()->next());
 224   reg_def F30  ( SOC, SOE, Op_RegF, 30, F30->as_VMReg()        );  // nv
 225   reg_def F30_H( SOC, SOE, Op_RegF, 99, F30->as_VMReg()->next());
 226   reg_def F31  ( SOC, SOE, Op_RegF, 31, F31->as_VMReg()        );  // nv
 227   reg_def F31_H( SOC, SOE, Op_RegF, 99, F31->as_VMReg()->next());
 228 
 229 // ----------------------------
 230 // Special Registers
 231 // ----------------------------
 232 
 233 // Condition Codes Flag Registers
 234 
 235   // PPC64 has 8 condition code "registers" which are all contained
 236   // in the CR register.
 237 
 238   // types: v = volatile, nv = non-volatile, s = system
 239   reg_def CCR0(SOC, SOC, Op_RegFlags, 0, CCR0->as_VMReg());  // v
 240   reg_def CCR1(SOC, SOC, Op_RegFlags, 1, CCR1->as_VMReg());  // v
 241   reg_def CCR2(SOC, SOC, Op_RegFlags, 2, CCR2->as_VMReg());  // nv
 242   reg_def CCR3(SOC, SOC, Op_RegFlags, 3, CCR3->as_VMReg());  // nv
 243   reg_def CCR4(SOC, SOC, Op_RegFlags, 4, CCR4->as_VMReg());  // nv
 244   reg_def CCR5(SOC, SOC, Op_RegFlags, 5, CCR5->as_VMReg());  // v
 245   reg_def CCR6(SOC, SOC, Op_RegFlags, 6, CCR6->as_VMReg());  // v
 246   reg_def CCR7(SOC, SOC, Op_RegFlags, 7, CCR7->as_VMReg());  // v
 247 
 248   // Special registers of PPC64
 249 
 250   reg_def SR_XER(    SOC, SOC, Op_RegP, 0, SR_XER->as_VMReg());     // v
 251   reg_def SR_LR(     SOC, SOC, Op_RegP, 1, SR_LR->as_VMReg());      // v
 252   reg_def SR_CTR(    SOC, SOC, Op_RegP, 2, SR_CTR->as_VMReg());     // v
 253   reg_def SR_VRSAVE( SOC, SOC, Op_RegP, 3, SR_VRSAVE->as_VMReg());  // v
 254   reg_def SR_SPEFSCR(SOC, SOC, Op_RegP, 4, SR_SPEFSCR->as_VMReg()); // v
 255   reg_def SR_PPR(    SOC, SOC, Op_RegP, 5, SR_PPR->as_VMReg());     // v
 256 
 257 
 258 // ----------------------------
 259 // Specify priority of register selection within phases of register
 260 // allocation. Highest priority is first. A useful heuristic is to
 261 // give registers a low priority when they are required by machine
 262 // instructions, like EAX and EDX on I486, and choose no-save registers
 263 // before save-on-call, & save-on-call before save-on-entry. Registers
 264 // which participate in fixed calling sequences should come last.
 265 // Registers which are used as pairs must fall on an even boundary.
 266 
 267 // It's worth about 1% on SPEC geomean to get this right.
 268 
 269 // Chunk0, chunk1, and chunk2 form the MachRegisterNumbers enumeration
 270 // in adGlobals_ppc.hpp which defines the <register>_num values, e.g.
 271 // R3_num. Therefore, R3_num may not be (and in reality is not)
 272 // the same as R3->encoding()! Furthermore, we cannot make any
 273 // assumptions on ordering, e.g. R3_num may be less than R2_num.
 274 // Additionally, the function
 275 //   static enum RC rc_class(OptoReg::Name reg )
 276 // maps a given <register>_num value to its chunk type (except for flags)
 277 // and its current implementation relies on chunk0 and chunk1 having a
 278 // size of 64 each.
 279 
 280 // If you change this allocation class, please have a look at the
 281 // default values for the parameters RoundRobinIntegerRegIntervalStart
 282 // and RoundRobinFloatRegIntervalStart
 283 
 284 alloc_class chunk0 (
 285   // Chunk0 contains *all* 64 integer registers halves.
 286 
 287   // "non-volatile" registers
 288   R14, R14_H,
 289   R15, R15_H,
 290   R17, R17_H,
 291   R18, R18_H,
 292   R19, R19_H,
 293   R20, R20_H,
 294   R21, R21_H,
 295   R22, R22_H,
 296   R23, R23_H,
 297   R24, R24_H,
 298   R25, R25_H,
 299   R26, R26_H,
 300   R27, R27_H,
 301   R28, R28_H,
 302   R29, R29_H,
 303   R30, R30_H,
 304   R31, R31_H,
 305 
 306   // scratch/special registers
 307   R11, R11_H,
 308   R12, R12_H,
 309 
 310   // argument registers
 311   R10, R10_H,
 312   R9,  R9_H,
 313   R8,  R8_H,
 314   R7,  R7_H,
 315   R6,  R6_H,
 316   R5,  R5_H,
 317   R4,  R4_H,
 318   R3,  R3_H,
 319 
 320   // special registers, not available for allocation
 321   R16, R16_H,     // R16_thread
 322   R13, R13_H,     // system thread id
 323   R2,  R2_H,      // may be used for TOC
 324   R1,  R1_H,      // SP
 325   R0,  R0_H       // R0 (scratch)
 326 );
 327 
 328 // If you change this allocation class, please have a look at the
 329 // default values for the parameters RoundRobinIntegerRegIntervalStart
 330 // and RoundRobinFloatRegIntervalStart
 331 
 332 alloc_class chunk1 (
 333   // Chunk1 contains *all* 64 floating-point registers halves.
 334 
 335   // scratch register
 336   F0,  F0_H,
 337 
 338   // argument registers
 339   F13, F13_H,
 340   F12, F12_H,
 341   F11, F11_H,
 342   F10, F10_H,
 343   F9,  F9_H,
 344   F8,  F8_H,
 345   F7,  F7_H,
 346   F6,  F6_H,
 347   F5,  F5_H,
 348   F4,  F4_H,
 349   F3,  F3_H,
 350   F2,  F2_H,
 351   F1,  F1_H,
 352 
 353   // non-volatile registers
 354   F14, F14_H,
 355   F15, F15_H,
 356   F16, F16_H,
 357   F17, F17_H,
 358   F18, F18_H,
 359   F19, F19_H,
 360   F20, F20_H,
 361   F21, F21_H,
 362   F22, F22_H,
 363   F23, F23_H,
 364   F24, F24_H,
 365   F25, F25_H,
 366   F26, F26_H,
 367   F27, F27_H,
 368   F28, F28_H,
 369   F29, F29_H,
 370   F30, F30_H,
 371   F31, F31_H
 372 );
 373 
 374 alloc_class chunk2 (
 375   // Chunk2 contains *all* 8 condition code registers.
 376 
 377   CCR0,
 378   CCR1,
 379   CCR2,
 380   CCR3,
 381   CCR4,
 382   CCR5,
 383   CCR6,
 384   CCR7
 385 );
 386 
 387 alloc_class chunk3 (
 388   // special registers
 389   // These registers are not allocated, but used for nodes generated by postalloc expand.
 390   SR_XER,
 391   SR_LR,
 392   SR_CTR,
 393   SR_VRSAVE,
 394   SR_SPEFSCR,
 395   SR_PPR
 396 );
 397 
 398 //-------Architecture Description Register Classes-----------------------
 399 
 400 // Several register classes are automatically defined based upon
 401 // information in this architecture description.
 402 
 403 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 404 // 2) reg_class compiler_method_oop_reg    ( as defined in frame section )
 405 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 406 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 407 //
 408 
 409 // ----------------------------
 410 // 32 Bit Register Classes
 411 // ----------------------------
 412 
 413 // We specify registers twice, once as read/write, and once read-only.
 414 // We use the read-only registers for source operands. With this, we
 415 // can include preset read only registers in this class, as a hard-coded
 416 // '0'-register. (We used to simulate this on ppc.)
 417 
 418 // 32 bit registers that can be read and written i.e. these registers
 419 // can be dest (or src) of normal instructions.
 420 reg_class bits32_reg_rw(
 421 /*R0*/              // R0
 422 /*R1*/              // SP
 423   R2,               // TOC
 424   R3,
 425   R4,
 426   R5,
 427   R6,
 428   R7,
 429   R8,
 430   R9,
 431   R10,
 432   R11,
 433   R12,
 434 /*R13*/             // system thread id
 435   R14,
 436   R15,
 437 /*R16*/             // R16_thread
 438   R17,
 439   R18,
 440   R19,
 441   R20,
 442   R21,
 443   R22,
 444   R23,
 445   R24,
 446   R25,
 447   R26,
 448   R27,
 449   R28,
 450 /*R29*/             // global TOC
 451 /*R30*/             // Narrow Oop Base
 452   R31
 453 );
 454 
 455 // 32 bit registers that can only be read i.e. these registers can
 456 // only be src of all instructions.
 457 reg_class bits32_reg_ro(
 458 /*R0*/              // R0
 459 /*R1*/              // SP
 460   R2                // TOC
 461   R3,
 462   R4,
 463   R5,
 464   R6,
 465   R7,
 466   R8,
 467   R9,
 468   R10,
 469   R11,
 470   R12,
 471 /*R13*/             // system thread id
 472   R14,
 473   R15,
 474 /*R16*/             // R16_thread
 475   R17,
 476   R18,
 477   R19,
 478   R20,
 479   R21,
 480   R22,
 481   R23,
 482   R24,
 483   R25,
 484   R26,
 485   R27,
 486   R28,
 487 /*R29*/
 488 /*R30*/             // Narrow Oop Base
 489   R31
 490 );
 491 
 492 // Complement-required-in-pipeline operands for narrow oops.
 493 reg_class bits32_reg_ro_not_complement (
 494 /*R0*/     // R0
 495   R1,      // SP
 496   R2,      // TOC
 497   R3,
 498   R4,
 499   R5,
 500   R6,
 501   R7,
 502   R8,
 503   R9,
 504   R10,
 505   R11,
 506   R12,
 507 /*R13,*/   // system thread id
 508   R14,
 509   R15,
 510   R16,    // R16_thread
 511   R17,
 512   R18,
 513   R19,
 514   R20,
 515   R21,
 516   R22,
 517 /*R23,
 518   R24,
 519   R25,
 520   R26,
 521   R27,
 522   R28,*/
 523 /*R29,*/ // TODO: let allocator handle TOC!!
 524 /*R30,*/
 525   R31
 526 );
 527 
 528 // Complement-required-in-pipeline operands for narrow oops.
 529 // See 64-bit declaration.
 530 reg_class bits32_reg_ro_complement (
 531   R23,
 532   R24,
 533   R25,
 534   R26,
 535   R27,
 536   R28
 537 );
 538 
 539 reg_class rscratch1_bits32_reg(R11);
 540 reg_class rscratch2_bits32_reg(R12);
 541 reg_class rarg1_bits32_reg(R3);
 542 reg_class rarg2_bits32_reg(R4);
 543 reg_class rarg3_bits32_reg(R5);
 544 reg_class rarg4_bits32_reg(R6);
 545 
 546 // ----------------------------
 547 // 64 Bit Register Classes
 548 // ----------------------------
 549 // 64-bit build means 64-bit pointers means hi/lo pairs
 550 
 551 reg_class rscratch1_bits64_reg(R11_H, R11);
 552 reg_class rscratch2_bits64_reg(R12_H, R12);
 553 reg_class rarg1_bits64_reg(R3_H, R3);
 554 reg_class rarg2_bits64_reg(R4_H, R4);
 555 reg_class rarg3_bits64_reg(R5_H, R5);
 556 reg_class rarg4_bits64_reg(R6_H, R6);
 557 // Thread register, 'written' by tlsLoadP, see there.
 558 reg_class thread_bits64_reg(R16_H, R16);
 559 
 560 reg_class r19_bits64_reg(R19_H, R19);
 561 
 562 // 64 bit registers that can be read and written i.e. these registers
 563 // can be dest (or src) of normal instructions.
 564 reg_class bits64_reg_rw(
 565 /*R0_H,  R0*/     // R0
 566 /*R1_H,  R1*/     // SP
 567   R2_H,  R2,      // TOC
 568   R3_H,  R3,
 569   R4_H,  R4,
 570   R5_H,  R5,
 571   R6_H,  R6,
 572   R7_H,  R7,
 573   R8_H,  R8,
 574   R9_H,  R9,
 575   R10_H, R10,
 576   R11_H, R11,
 577   R12_H, R12,
 578 /*R13_H, R13*/   // system thread id
 579   R14_H, R14,
 580   R15_H, R15,
 581 /*R16_H, R16*/   // R16_thread
 582   R17_H, R17,
 583   R18_H, R18,
 584   R19_H, R19,
 585   R20_H, R20,
 586   R21_H, R21,
 587   R22_H, R22,
 588   R23_H, R23,
 589   R24_H, R24,
 590   R25_H, R25,
 591   R26_H, R26,
 592   R27_H, R27,
 593   R28_H, R28,
 594 /*R29_H, R29*/
 595 /*R30_H, R30*/
 596   R31_H, R31
 597 );
 598 
 599 // 64 bit registers used excluding r2, r11 and r12
 600 // Used to hold the TOC to avoid collisions with expanded LeafCall which uses
 601 // r2, r11 and r12 internally.
 602 reg_class bits64_reg_leaf_call(
 603 /*R0_H,  R0*/     // R0
 604 /*R1_H,  R1*/     // SP
 605 /*R2_H,  R2*/     // TOC
 606   R3_H,  R3,
 607   R4_H,  R4,
 608   R5_H,  R5,
 609   R6_H,  R6,
 610   R7_H,  R7,
 611   R8_H,  R8,
 612   R9_H,  R9,
 613   R10_H, R10,
 614 /*R11_H, R11*/
 615 /*R12_H, R12*/
 616 /*R13_H, R13*/   // system thread id
 617   R14_H, R14,
 618   R15_H, R15,
 619 /*R16_H, R16*/   // R16_thread
 620   R17_H, R17,
 621   R18_H, R18,
 622   R19_H, R19,
 623   R20_H, R20,
 624   R21_H, R21,
 625   R22_H, R22,
 626   R23_H, R23,
 627   R24_H, R24,
 628   R25_H, R25,
 629   R26_H, R26,
 630   R27_H, R27,
 631   R28_H, R28,
 632 /*R29_H, R29*/
 633 /*R30_H, R30*/
 634   R31_H, R31
 635 );
 636 
 637 // Used to hold the TOC to avoid collisions with expanded DynamicCall
 638 // which uses r19 as inline cache internally and expanded LeafCall which uses
 639 // r2, r11 and r12 internally.
 640 reg_class bits64_constant_table_base(
 641 /*R0_H,  R0*/     // R0
 642 /*R1_H,  R1*/     // SP
 643 /*R2_H,  R2*/     // TOC
 644   R3_H,  R3,
 645   R4_H,  R4,
 646   R5_H,  R5,
 647   R6_H,  R6,
 648   R7_H,  R7,
 649   R8_H,  R8,
 650   R9_H,  R9,
 651   R10_H, R10,
 652 /*R11_H, R11*/
 653 /*R12_H, R12*/
 654 /*R13_H, R13*/   // system thread id
 655   R14_H, R14,
 656   R15_H, R15,
 657 /*R16_H, R16*/   // R16_thread
 658   R17_H, R17,
 659   R18_H, R18,
 660 /*R19_H, R19*/
 661   R20_H, R20,
 662   R21_H, R21,
 663   R22_H, R22,
 664   R23_H, R23,
 665   R24_H, R24,
 666   R25_H, R25,
 667   R26_H, R26,
 668   R27_H, R27,
 669   R28_H, R28,
 670 /*R29_H, R29*/
 671 /*R30_H, R30*/
 672   R31_H, R31
 673 );
 674 
 675 // 64 bit registers that can only be read i.e. these registers can
 676 // only be src of all instructions.
 677 reg_class bits64_reg_ro(
 678 /*R0_H,  R0*/     // R0
 679   R1_H,  R1,
 680   R2_H,  R2,       // TOC
 681   R3_H,  R3,
 682   R4_H,  R4,
 683   R5_H,  R5,
 684   R6_H,  R6,
 685   R7_H,  R7,
 686   R8_H,  R8,
 687   R9_H,  R9,
 688   R10_H, R10,
 689   R11_H, R11,
 690   R12_H, R12,
 691 /*R13_H, R13*/   // system thread id
 692   R14_H, R14,
 693   R15_H, R15,
 694   R16_H, R16,    // R16_thread
 695   R17_H, R17,
 696   R18_H, R18,
 697   R19_H, R19,
 698   R20_H, R20,
 699   R21_H, R21,
 700   R22_H, R22,
 701   R23_H, R23,
 702   R24_H, R24,
 703   R25_H, R25,
 704   R26_H, R26,
 705   R27_H, R27,
 706   R28_H, R28,
 707 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
 708 /*R30_H, R30,*/
 709   R31_H, R31
 710 );
 711 
 712 // Complement-required-in-pipeline operands.
 713 reg_class bits64_reg_ro_not_complement (
 714 /*R0_H,  R0*/     // R0
 715   R1_H,  R1,      // SP
 716   R2_H,  R2,      // TOC
 717   R3_H,  R3,
 718   R4_H,  R4,
 719   R5_H,  R5,
 720   R6_H,  R6,
 721   R7_H,  R7,
 722   R8_H,  R8,
 723   R9_H,  R9,
 724   R10_H, R10,
 725   R11_H, R11,
 726   R12_H, R12,
 727 /*R13_H, R13*/   // system thread id
 728   R14_H, R14,
 729   R15_H, R15,
 730   R16_H, R16,    // R16_thread
 731   R17_H, R17,
 732   R18_H, R18,
 733   R19_H, R19,
 734   R20_H, R20,
 735   R21_H, R21,
 736   R22_H, R22,
 737 /*R23_H, R23,
 738   R24_H, R24,
 739   R25_H, R25,
 740   R26_H, R26,
 741   R27_H, R27,
 742   R28_H, R28,*/
 743 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
 744 /*R30_H, R30,*/
 745   R31_H, R31
 746 );
 747 
 748 // Complement-required-in-pipeline operands.
 749 // This register mask is used for the trap instructions that implement
 750 // the null checks on AIX. The trap instruction first computes the
 751 // complement of the value it shall trap on. Because of this, the
 752 // instruction can not be scheduled in the same cycle as an other
 753 // instruction reading the normal value of the same register. So we
 754 // force the value to check into 'bits64_reg_ro_not_complement'
 755 // and then copy it to 'bits64_reg_ro_complement' for the trap.
 756 reg_class bits64_reg_ro_complement (
 757   R23_H, R23,
 758   R24_H, R24,
 759   R25_H, R25,
 760   R26_H, R26,
 761   R27_H, R27,
 762   R28_H, R28
 763 );
 764 
 765 
 766 // ----------------------------
 767 // Special Class for Condition Code Flags Register
 768 
 769 reg_class int_flags(
 770 /*CCR0*/             // scratch
 771 /*CCR1*/             // scratch
 772 /*CCR2*/             // nv!
 773 /*CCR3*/             // nv!
 774 /*CCR4*/             // nv!
 775   CCR5,
 776   CCR6,
 777   CCR7
 778 );
 779 
 780 reg_class int_flags_CR0(CCR0);
 781 reg_class int_flags_CR1(CCR1);
 782 reg_class int_flags_CR6(CCR6);
 783 reg_class ctr_reg(SR_CTR);
 784 
 785 // ----------------------------
 786 // Float Register Classes
 787 // ----------------------------
 788 
 789 reg_class flt_reg(
 790 /*F0*/              // scratch
 791   F1,
 792   F2,
 793   F3,
 794   F4,
 795   F5,
 796   F6,
 797   F7,
 798   F8,
 799   F9,
 800   F10,
 801   F11,
 802   F12,
 803   F13,
 804   F14,              // nv!
 805   F15,              // nv!
 806   F16,              // nv!
 807   F17,              // nv!
 808   F18,              // nv!
 809   F19,              // nv!
 810   F20,              // nv!
 811   F21,              // nv!
 812   F22,              // nv!
 813   F23,              // nv!
 814   F24,              // nv!
 815   F25,              // nv!
 816   F26,              // nv!
 817   F27,              // nv!
 818   F28,              // nv!
 819   F29,              // nv!
 820   F30,              // nv!
 821   F31               // nv!
 822 );
 823 
 824 // Double precision float registers have virtual `high halves' that
 825 // are needed by the allocator.
 826 reg_class dbl_reg(
 827 /*F0,  F0_H*/     // scratch
 828   F1,  F1_H,
 829   F2,  F2_H,
 830   F3,  F3_H,
 831   F4,  F4_H,
 832   F5,  F5_H,
 833   F6,  F6_H,
 834   F7,  F7_H,
 835   F8,  F8_H,
 836   F9,  F9_H,
 837   F10, F10_H,
 838   F11, F11_H,
 839   F12, F12_H,
 840   F13, F13_H,
 841   F14, F14_H,    // nv!
 842   F15, F15_H,    // nv!
 843   F16, F16_H,    // nv!
 844   F17, F17_H,    // nv!
 845   F18, F18_H,    // nv!
 846   F19, F19_H,    // nv!
 847   F20, F20_H,    // nv!
 848   F21, F21_H,    // nv!
 849   F22, F22_H,    // nv!
 850   F23, F23_H,    // nv!
 851   F24, F24_H,    // nv!
 852   F25, F25_H,    // nv!
 853   F26, F26_H,    // nv!
 854   F27, F27_H,    // nv!
 855   F28, F28_H,    // nv!
 856   F29, F29_H,    // nv!
 857   F30, F30_H,    // nv!
 858   F31, F31_H     // nv!
 859 );
 860 
 861  %}
 862 
 863 //----------DEFINITION BLOCK---------------------------------------------------
 864 // Define name --> value mappings to inform the ADLC of an integer valued name
 865 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 866 // Format:
 867 //        int_def  <name>         ( <int_value>, <expression>);
 868 // Generated Code in ad_<arch>.hpp
 869 //        #define  <name>   (<expression>)
 870 //        // value == <int_value>
 871 // Generated code in ad_<arch>.cpp adlc_verification()
 872 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 873 //
 874 definitions %{
 875   // The default cost (of an ALU instruction).
 876   int_def DEFAULT_COST_LOW        (     30,      30);
 877   int_def DEFAULT_COST            (    100,     100);
 878   int_def HUGE_COST               (1000000, 1000000);
 879 
 880   // Memory refs
 881   int_def MEMORY_REF_COST_LOW     (    200, DEFAULT_COST * 2);
 882   int_def MEMORY_REF_COST         (    300, DEFAULT_COST * 3);
 883 
 884   // Branches are even more expensive.
 885   int_def BRANCH_COST             (    900, DEFAULT_COST * 9);
 886   int_def CALL_COST               (   1300, DEFAULT_COST * 13);
 887 %}
 888 
 889 
 890 //----------SOURCE BLOCK-------------------------------------------------------
 891 // This is a block of C++ code which provides values, functions, and
 892 // definitions necessary in the rest of the architecture description.
 893 source_hpp %{
 894   // Header information of the source block.
 895   // Method declarations/definitions which are used outside
 896   // the ad-scope can conveniently be defined here.
 897   //
 898   // To keep related declarations/definitions/uses close together,
 899   // we switch between source %{ }% and source_hpp %{ }% freely as needed.
 900 
 901   // Returns true if Node n is followed by a MemBar node that
 902   // will do an acquire. If so, this node must not do the acquire
 903   // operation.
 904   bool followed_by_acquire(const Node *n);
 905 %}
 906 
 907 source %{
 908 
 909 // Optimize load-acquire.
 910 //
 911 // Check if acquire is unnecessary due to following operation that does
 912 // acquire anyways.
 913 // Walk the pattern:
 914 //
 915 //      n: Load.acq
 916 //           |
 917 //      MemBarAcquire
 918 //       |         |
 919 //  Proj(ctrl)  Proj(mem)
 920 //       |         |
 921 //   MemBarRelease/Volatile
 922 //
 923 bool followed_by_acquire(const Node *load) {
 924   assert(load->is_Load(), "So far implemented only for loads.");
 925 
 926   // Find MemBarAcquire.
 927   const Node *mba = NULL;
 928   for (DUIterator_Fast imax, i = load->fast_outs(imax); i < imax; i++) {
 929     const Node *out = load->fast_out(i);
 930     if (out->Opcode() == Op_MemBarAcquire) {
 931       if (out->in(0) == load) continue; // Skip control edge, membar should be found via precedence edge.
 932       mba = out;
 933       break;
 934     }
 935   }
 936   if (!mba) return false;
 937 
 938   // Find following MemBar node.
 939   //
 940   // The following node must be reachable by control AND memory
 941   // edge to assure no other operations are in between the two nodes.
 942   //
 943   // So first get the Proj node, mem_proj, to use it to iterate forward.
 944   Node *mem_proj = NULL;
 945   for (DUIterator_Fast imax, i = mba->fast_outs(imax); i < imax; i++) {
 946     mem_proj = mba->fast_out(i);      // Throw out-of-bounds if proj not found
 947     assert(mem_proj->is_Proj(), "only projections here");
 948     ProjNode *proj = mem_proj->as_Proj();
 949     if (proj->_con == TypeFunc::Memory &&
 950         !Compile::current()->node_arena()->contains(mem_proj)) // Unmatched old-space only
 951       break;
 952   }
 953   assert(mem_proj->as_Proj()->_con == TypeFunc::Memory, "Graph broken");
 954 
 955   // Search MemBar behind Proj. If there are other memory operations
 956   // behind the Proj we lost.
 957   for (DUIterator_Fast jmax, j = mem_proj->fast_outs(jmax); j < jmax; j++) {
 958     Node *x = mem_proj->fast_out(j);
 959     // Proj might have an edge to a store or load node which precedes the membar.
 960     if (x->is_Mem()) return false;
 961 
 962     // On PPC64 release and volatile are implemented by an instruction
 963     // that also has acquire semantics. I.e. there is no need for an
 964     // acquire before these.
 965     int xop = x->Opcode();
 966     if (xop == Op_MemBarRelease || xop == Op_MemBarVolatile) {
 967       // Make sure we're not missing Call/Phi/MergeMem by checking
 968       // control edges. The control edge must directly lead back
 969       // to the MemBarAcquire
 970       Node *ctrl_proj = x->in(0);
 971       if (ctrl_proj->is_Proj() && ctrl_proj->in(0) == mba) {
 972         return true;
 973       }
 974     }
 975   }
 976 
 977   return false;
 978 }
 979 
 980 #define __ _masm.
 981 
 982 // Tertiary op of a LoadP or StoreP encoding.
 983 #define REGP_OP true
 984 
 985 // ****************************************************************************
 986 
 987 // REQUIRED FUNCTIONALITY
 988 
 989 // !!!!! Special hack to get all type of calls to specify the byte offset
 990 //       from the start of the call to the point where the return address
 991 //       will point.
 992 
 993 // PPC port: Removed use of lazy constant construct.
 994 
 995 int MachCallStaticJavaNode::ret_addr_offset() {
 996   // It's only a single branch-and-link instruction.
 997   return 4;
 998 }
 999 
1000 int MachCallDynamicJavaNode::ret_addr_offset() {
1001   // Offset is 4 with postalloc expanded calls (bl is one instruction). We use
1002   // postalloc expanded calls if we use inline caches and do not update method data.
1003   if (UseInlineCaches)
1004     return 4;
1005 
1006   int vtable_index = this->_vtable_index;
1007   if (vtable_index < 0) {
1008     // Must be invalid_vtable_index, not nonvirtual_vtable_index.
1009     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
1010     return 12;
1011   } else {
1012     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
1013     return 24;
1014   }
1015 }
1016 
1017 int MachCallRuntimeNode::ret_addr_offset() {
1018 #if defined(ABI_ELFv2)
1019   return 28;
1020 #else
1021   return 40;
1022 #endif
1023 }
1024 
1025 //=============================================================================
1026 
1027 // condition code conversions
1028 
1029 static int cc_to_boint(int cc) {
1030   return Assembler::bcondCRbiIs0 | (cc & 8);
1031 }
1032 
1033 static int cc_to_inverse_boint(int cc) {
1034   return Assembler::bcondCRbiIs0 | (8-(cc & 8));
1035 }
1036 
1037 static int cc_to_biint(int cc, int flags_reg) {
1038   return (flags_reg << 2) | (cc & 3);
1039 }
1040 
1041 //=============================================================================
1042 
1043 // Compute padding required for nodes which need alignment. The padding
1044 // is the number of bytes (not instructions) which will be inserted before
1045 // the instruction. The padding must match the size of a NOP instruction.
1046 
1047 int string_indexOf_imm1_charNode::compute_padding(int current_offset) const {
1048   return (3*4-current_offset)&31;
1049 }
1050 
1051 int string_indexOf_imm1Node::compute_padding(int current_offset) const {
1052   return (2*4-current_offset)&31;
1053 }
1054 
1055 int string_indexOf_immNode::compute_padding(int current_offset) const {
1056   return (3*4-current_offset)&31;
1057 }
1058 
1059 int string_indexOfNode::compute_padding(int current_offset) const {
1060   return (1*4-current_offset)&31;
1061 }
1062 
1063 int string_compareNode::compute_padding(int current_offset) const {
1064   return (4*4-current_offset)&31;
1065 }
1066 
1067 int string_equals_immNode::compute_padding(int current_offset) const {
1068   if (opnd_array(3)->constant() < 16) return 0; // Don't insert nops for short version (loop completely unrolled).
1069   return (2*4-current_offset)&31;
1070 }
1071 
1072 int string_equalsNode::compute_padding(int current_offset) const {
1073   return (7*4-current_offset)&31;
1074 }
1075 
1076 int inlineCallClearArrayNode::compute_padding(int current_offset) const {
1077   return (2*4-current_offset)&31;
1078 }
1079 
1080 //=============================================================================
1081 
1082 // Indicate if the safepoint node needs the polling page as an input.
1083 bool SafePointNode::needs_polling_address_input() {
1084   // The address is loaded from thread by a seperate node.
1085   return true;
1086 }
1087 
1088 //=============================================================================
1089 
1090 // Emit an interrupt that is caught by the debugger (for debugging compiler).
1091 void emit_break(CodeBuffer &cbuf) {
1092   MacroAssembler _masm(&cbuf);
1093   __ illtrap();
1094 }
1095 
1096 #ifndef PRODUCT
1097 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1098   st->print("BREAKPOINT");
1099 }
1100 #endif
1101 
1102 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1103   emit_break(cbuf);
1104 }
1105 
1106 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
1107   return MachNode::size(ra_);
1108 }
1109 
1110 //=============================================================================
1111 
1112 void emit_nop(CodeBuffer &cbuf) {
1113   MacroAssembler _masm(&cbuf);
1114   __ nop();
1115 }
1116 
1117 static inline void emit_long(CodeBuffer &cbuf, int value) {
1118   *((int*)(cbuf.insts_end())) = value;
1119   cbuf.set_insts_end(cbuf.insts_end() + BytesPerInstWord);
1120 }
1121 
1122 //=============================================================================
1123 
1124 %} // interrupt source
1125 
1126 source_hpp %{ // Header information of the source block.
1127 
1128 //--------------------------------------------------------------
1129 //---<  Used for optimization in Compile::Shorten_branches  >---
1130 //--------------------------------------------------------------
1131 
1132 const uint trampoline_stub_size     =  6 * BytesPerInstWord;
1133 
1134 class CallStubImpl {
1135 
1136  public:
1137 
1138   // Emit call stub, compiled java to interpreter.
1139   static void emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset);
1140 
1141   // Size of call trampoline stub.
1142   // This doesn't need to be accurate to the byte, but it
1143   // must be larger than or equal to the real size of the stub.
1144   static uint size_call_trampoline() {
1145     return trampoline_stub_size;
1146   }
1147 
1148   // number of relocations needed by a call trampoline stub
1149   static uint reloc_call_trampoline() {
1150     return 5;
1151   }
1152 
1153 };
1154 
1155 %} // end source_hpp
1156 
1157 source %{
1158 
1159 // Emit a trampoline stub for a call to a target which is too far away.
1160 //
1161 // code sequences:
1162 //
1163 // call-site:
1164 //   branch-and-link to <destination> or <trampoline stub>
1165 //
1166 // Related trampoline stub for this call-site in the stub section:
1167 //   load the call target from the constant pool
1168 //   branch via CTR (LR/link still points to the call-site above)
1169 
1170 void CallStubImpl::emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset) {
1171   // Start the stub.
1172   address stub = __ start_a_stub(Compile::MAX_stubs_size/2);
1173   if (stub == NULL) {
1174     Compile::current()->env()->record_out_of_memory_failure();
1175     return;
1176   }
1177 
1178   // For java_to_interp stubs we use R11_scratch1 as scratch register
1179   // and in call trampoline stubs we use R12_scratch2. This way we
1180   // can distinguish them (see is_NativeCallTrampolineStub_at()).
1181   Register reg_scratch = R12_scratch2;
1182 
1183   // Create a trampoline stub relocation which relates this trampoline stub
1184   // with the call instruction at insts_call_instruction_offset in the
1185   // instructions code-section.
1186   __ relocate(trampoline_stub_Relocation::spec(__ code()->insts()->start() + insts_call_instruction_offset));
1187   const int stub_start_offset = __ offset();
1188 
1189   // Now, create the trampoline stub's code:
1190   // - load the TOC
1191   // - load the call target from the constant pool
1192   // - call
1193   __ calculate_address_from_global_toc(reg_scratch, __ method_toc());
1194   __ ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, reg_scratch, false);
1195   __ mtctr(reg_scratch);
1196   __ bctr();
1197 
1198   const address stub_start_addr = __ addr_at(stub_start_offset);
1199 
1200   // FIXME: Assert that the trampoline stub can be identified and patched.
1201 
1202   // Assert that the encoded destination_toc_offset can be identified and that it is correct.
1203   assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
1204          "encoded offset into the constant pool must match");
1205   // Trampoline_stub_size should be good.
1206   assert((uint)(__ offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
1207   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
1208 
1209   // End the stub.
1210   __ end_a_stub();
1211 }
1212 
1213 //=============================================================================
1214 
1215 // Emit an inline branch-and-link call and a related trampoline stub.
1216 //
1217 // code sequences:
1218 //
1219 // call-site:
1220 //   branch-and-link to <destination> or <trampoline stub>
1221 //
1222 // Related trampoline stub for this call-site in the stub section:
1223 //   load the call target from the constant pool
1224 //   branch via CTR (LR/link still points to the call-site above)
1225 //
1226 
1227 typedef struct {
1228   int insts_call_instruction_offset;
1229   int ret_addr_offset;
1230 } EmitCallOffsets;
1231 
1232 // Emit a branch-and-link instruction that branches to a trampoline.
1233 // - Remember the offset of the branch-and-link instruction.
1234 // - Add a relocation at the branch-and-link instruction.
1235 // - Emit a branch-and-link.
1236 // - Remember the return pc offset.
1237 EmitCallOffsets emit_call_with_trampoline_stub(MacroAssembler &_masm, address entry_point, relocInfo::relocType rtype) {
1238   EmitCallOffsets offsets = { -1, -1 };
1239   const int start_offset = __ offset();
1240   offsets.insts_call_instruction_offset = __ offset();
1241 
1242   // No entry point given, use the current pc.
1243   if (entry_point == NULL) entry_point = __ pc();
1244 
1245   if (!Compile::current()->in_scratch_emit_size()) {
1246     // Put the entry point as a constant into the constant pool.
1247     const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
1248     const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
1249 
1250     // Emit the trampoline stub which will be related to the branch-and-link below.
1251     CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, offsets.insts_call_instruction_offset);
1252     if (Compile::current()->env()->failing()) { return offsets; } // Code cache may be full.
1253     __ relocate(rtype);
1254   }
1255 
1256   // Note: At this point we do not have the address of the trampoline
1257   // stub, and the entry point might be too far away for bl, so __ pc()
1258   // serves as dummy and the bl will be patched later.
1259   __ bl((address) __ pc());
1260 
1261   offsets.ret_addr_offset = __ offset() - start_offset;
1262 
1263   return offsets;
1264 }
1265 
1266 //=============================================================================
1267 
1268 // Factory for creating loadConL* nodes for large/small constant pool.
1269 
1270 static inline jlong replicate_immF(float con) {
1271   // Replicate float con 2 times and pack into vector.
1272   int val = *((int*)&con);
1273   jlong lval = val;
1274   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
1275   return lval;
1276 }
1277 
1278 //=============================================================================
1279 
1280 const RegMask& MachConstantBaseNode::_out_RegMask = BITS64_CONSTANT_TABLE_BASE_mask();
1281 int Compile::ConstantTable::calculate_table_base_offset() const {
1282   return 0;  // absolute addressing, no offset
1283 }
1284 
1285 bool MachConstantBaseNode::requires_postalloc_expand() const { return true; }
1286 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
1287   iRegPdstOper *op_dst = new iRegPdstOper();
1288   MachNode *m1 = new loadToc_hiNode();
1289   MachNode *m2 = new loadToc_loNode();
1290 
1291   m1->add_req(NULL);
1292   m2->add_req(NULL, m1);
1293   m1->_opnds[0] = op_dst;
1294   m2->_opnds[0] = op_dst;
1295   m2->_opnds[1] = op_dst;
1296   ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
1297   ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
1298   nodes->push(m1);
1299   nodes->push(m2);
1300 }
1301 
1302 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1303   // Is postalloc expanded.
1304   ShouldNotReachHere();
1305 }
1306 
1307 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
1308   return 0;
1309 }
1310 
1311 #ifndef PRODUCT
1312 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1313   st->print("-- \t// MachConstantBaseNode (empty encoding)");
1314 }
1315 #endif
1316 
1317 //=============================================================================
1318 
1319 #ifndef PRODUCT
1320 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1321   Compile* C = ra_->C;
1322   const long framesize = C->frame_slots() << LogBytesPerInt;
1323 
1324   st->print("PROLOG\n\t");
1325   if (C->need_stack_bang(framesize)) {
1326     st->print("stack_overflow_check\n\t");
1327   }
1328 
1329   if (!false /* TODO: PPC port C->is_frameless_method()*/) {
1330     st->print("save return pc\n\t");
1331     st->print("push frame %ld\n\t", -framesize);
1332   }
1333 }
1334 #endif
1335 
1336 // Macro used instead of the common __ to emulate the pipes of PPC.
1337 // Instead of e.g. __ ld(...) one hase to write ___(ld) ld(...) This enables the
1338 // micro scheduler to cope with "hand written" assembler like in the prolog. Though
1339 // still no scheduling of this code is possible, the micro scheduler is aware of the
1340 // code and can update its internal data. The following mechanism is used to achieve this:
1341 // The micro scheduler calls size() of each compound node during scheduling. size() does a
1342 // dummy emit and only during this dummy emit C->hb_scheduling() is not NULL.
1343 #if 0 // TODO: PPC port
1344 #define ___(op) if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
1345                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(ppc64Opcode_##op); \
1346                 _masm.
1347 #define ___stop if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
1348                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(archOpcode_none)
1349 #define ___advance if (UsePower6SchedulerPPC64 && C->hb_scheduling())                 \
1350                   C->hb_scheduling()->_pdScheduling->advance_offset
1351 #else
1352 #define ___(op) if (UsePower6SchedulerPPC64)                                          \
1353                   Unimplemented();                                                    \
1354                 _masm.
1355 #define ___stop if (UsePower6SchedulerPPC64)                                          \
1356                   Unimplemented()
1357 #define ___advance if (UsePower6SchedulerPPC64)                                       \
1358                   Unimplemented()
1359 #endif
1360 
1361 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1362   Compile* C = ra_->C;
1363   MacroAssembler _masm(&cbuf);
1364 
1365   const long framesize = C->frame_size_in_bytes();
1366   assert(framesize % (2 * wordSize) == 0, "must preserve 2*wordSize alignment");
1367 
1368   const bool method_is_frameless      = false /* TODO: PPC port C->is_frameless_method()*/;
1369 
1370   const Register return_pc            = R20; // Must match return_addr() in frame section.
1371   const Register callers_sp           = R21;
1372   const Register push_frame_temp      = R22;
1373   const Register toc_temp             = R23;
1374   assert_different_registers(R11, return_pc, callers_sp, push_frame_temp, toc_temp);
1375 
1376   if (method_is_frameless) {
1377     // Add nop at beginning of all frameless methods to prevent any
1378     // oop instructions from getting overwritten by make_not_entrant
1379     // (patching attempt would fail).
1380     ___(nop) nop();
1381   } else {
1382     // Get return pc.
1383     ___(mflr) mflr(return_pc);
1384   }
1385 
1386   // Calls to C2R adapters often do not accept exceptional returns.
1387   // We require that their callers must bang for them. But be
1388   // careful, because some VM calls (such as call site linkage) can
1389   // use several kilobytes of stack. But the stack safety zone should
1390   // account for that. See bugs 4446381, 4468289, 4497237.
1391 
1392   int bangsize = C->bang_size_in_bytes();
1393   assert(bangsize >= framesize || bangsize <= 0, "stack bang size incorrect");
1394   if (C->need_stack_bang(bangsize) && UseStackBanging) {
1395     // Unfortunately we cannot use the function provided in
1396     // assembler.cpp as we have to emulate the pipes. So I had to
1397     // insert the code of generate_stack_overflow_check(), see
1398     // assembler.cpp for some illuminative comments.
1399     const int page_size = os::vm_page_size();
1400     int bang_end = StackShadowPages * page_size;
1401 
1402     // This is how far the previous frame's stack banging extended.
1403     const int bang_end_safe = bang_end;
1404 
1405     if (bangsize > page_size) {
1406       bang_end += bangsize;
1407     }
1408 
1409     int bang_offset = bang_end_safe;
1410 
1411     while (bang_offset <= bang_end) {
1412       // Need at least one stack bang at end of shadow zone.
1413 
1414       // Again I had to copy code, this time from assembler_ppc.cpp,
1415       // bang_stack_with_offset - see there for comments.
1416 
1417       // Stack grows down, caller passes positive offset.
1418       assert(bang_offset > 0, "must bang with positive offset");
1419 
1420       long stdoffset = -bang_offset;
1421 
1422       if (Assembler::is_simm(stdoffset, 16)) {
1423         // Signed 16 bit offset, a simple std is ok.
1424         if (UseLoadInstructionsForStackBangingPPC64) {
1425           ___(ld) ld(R0,  (int)(signed short)stdoffset, R1_SP);
1426         } else {
1427           ___(std) std(R0, (int)(signed short)stdoffset, R1_SP);
1428         }
1429       } else if (Assembler::is_simm(stdoffset, 31)) {
1430         // Use largeoffset calculations for addis & ld/std.
1431         const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
1432         const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
1433 
1434         Register tmp = R11;
1435         ___(addis) addis(tmp, R1_SP, hi);
1436         if (UseLoadInstructionsForStackBangingPPC64) {
1437           ___(ld) ld(R0, lo, tmp);
1438         } else {
1439           ___(std) std(R0, lo, tmp);
1440         }
1441       } else {
1442         ShouldNotReachHere();
1443       }
1444 
1445       bang_offset += page_size;
1446     }
1447     // R11 trashed
1448   } // C->need_stack_bang(framesize) && UseStackBanging
1449 
1450   unsigned int bytes = (unsigned int)framesize;
1451   long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
1452   ciMethod *currMethod = C->method();
1453 
1454   // Optimized version for most common case.
1455   if (UsePower6SchedulerPPC64 &&
1456       !method_is_frameless && Assembler::is_simm((int)(-offset), 16) &&
1457       !(false /* ConstantsALot TODO: PPC port*/)) {
1458     ___(or) mr(callers_sp, R1_SP);
1459     ___(std) std(return_pc, _abi(lr), R1_SP);
1460     ___(stdu) stdu(R1_SP, -offset, R1_SP);
1461     return;
1462   }
1463 
1464   if (!method_is_frameless) {
1465     // Get callers sp.
1466     ___(or) mr(callers_sp, R1_SP);
1467 
1468     // Push method's frame, modifies SP.
1469     assert(Assembler::is_uimm(framesize, 32U), "wrong type");
1470     // The ABI is already accounted for in 'framesize' via the
1471     // 'out_preserve' area.
1472     Register tmp = push_frame_temp;
1473     // Had to insert code of push_frame((unsigned int)framesize, push_frame_temp).
1474     if (Assembler::is_simm(-offset, 16)) {
1475       ___(stdu) stdu(R1_SP, -offset, R1_SP);
1476     } else {
1477       long x = -offset;
1478       // Had to insert load_const(tmp, -offset).
1479       ___(addis)  lis( tmp, (int)((signed short)(((x >> 32) & 0xffff0000) >> 16)));
1480       ___(ori)    ori( tmp, tmp, ((x >> 32) & 0x0000ffff));
1481       ___(rldicr) sldi(tmp, tmp, 32);
1482       ___(oris)   oris(tmp, tmp, (x & 0xffff0000) >> 16);
1483       ___(ori)    ori( tmp, tmp, (x & 0x0000ffff));
1484 
1485       ___(stdux) stdux(R1_SP, R1_SP, tmp);
1486     }
1487   }
1488 #if 0 // TODO: PPC port
1489   // For testing large constant pools, emit a lot of constants to constant pool.
1490   // "Randomize" const_size.
1491   if (ConstantsALot) {
1492     const int num_consts = const_size();
1493     for (int i = 0; i < num_consts; i++) {
1494       __ long_constant(0xB0B5B00BBABE);
1495     }
1496   }
1497 #endif
1498   if (!method_is_frameless) {
1499     // Save return pc.
1500     ___(std) std(return_pc, _abi(lr), callers_sp);
1501   }
1502 }
1503 #undef ___
1504 #undef ___stop
1505 #undef ___advance
1506 
1507 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1508   // Variable size. determine dynamically.
1509   return MachNode::size(ra_);
1510 }
1511 
1512 int MachPrologNode::reloc() const {
1513   // Return number of relocatable values contained in this instruction.
1514   return 1; // 1 reloc entry for load_const(toc).
1515 }
1516 
1517 //=============================================================================
1518 
1519 #ifndef PRODUCT
1520 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1521   Compile* C = ra_->C;
1522 
1523   st->print("EPILOG\n\t");
1524   st->print("restore return pc\n\t");
1525   st->print("pop frame\n\t");
1526 
1527   if (do_polling() && C->is_method_compilation()) {
1528     st->print("touch polling page\n\t");
1529   }
1530 }
1531 #endif
1532 
1533 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1534   Compile* C = ra_->C;
1535   MacroAssembler _masm(&cbuf);
1536 
1537   const long framesize = ((long)C->frame_slots()) << LogBytesPerInt;
1538   assert(framesize >= 0, "negative frame-size?");
1539 
1540   const bool method_needs_polling = do_polling() && C->is_method_compilation();
1541   const bool method_is_frameless  = false /* TODO: PPC port C->is_frameless_method()*/;
1542   const Register return_pc        = R11;
1543   const Register polling_page     = R12;
1544 
1545   if (!method_is_frameless) {
1546     // Restore return pc relative to callers' sp.
1547     __ ld(return_pc, ((int)framesize) + _abi(lr), R1_SP);
1548   }
1549 
1550   if (method_needs_polling) {
1551     if (LoadPollAddressFromThread) {
1552       // TODO: PPC port __ ld(polling_page, in_bytes(JavaThread::poll_address_offset()), R16_thread);
1553       Unimplemented();
1554     } else {
1555       __ load_const_optimized(polling_page, (long)(address) os::get_polling_page()); // TODO: PPC port: get_standard_polling_page()
1556     }
1557   }
1558 
1559   if (!method_is_frameless) {
1560     // Move return pc to LR.
1561     __ mtlr(return_pc);
1562     // Pop frame (fixed frame-size).
1563     __ addi(R1_SP, R1_SP, (int)framesize);
1564   }
1565 
1566   if (method_needs_polling) {
1567     // We need to mark the code position where the load from the safepoint
1568     // polling page was emitted as relocInfo::poll_return_type here.
1569     __ relocate(relocInfo::poll_return_type);
1570     __ load_from_polling_page(polling_page);
1571   }
1572 }
1573 
1574 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1575   // Variable size. Determine dynamically.
1576   return MachNode::size(ra_);
1577 }
1578 
1579 int MachEpilogNode::reloc() const {
1580   // Return number of relocatable values contained in this instruction.
1581   return 1; // 1 for load_from_polling_page.
1582 }
1583 
1584 const Pipeline * MachEpilogNode::pipeline() const {
1585   return MachNode::pipeline_class();
1586 }
1587 
1588 // This method seems to be obsolete. It is declared in machnode.hpp
1589 // and defined in all *.ad files, but it is never called. Should we
1590 // get rid of it?
1591 int MachEpilogNode::safepoint_offset() const {
1592   assert(do_polling(), "no return for this epilog node");
1593   return 0;
1594 }
1595 
1596 #if 0 // TODO: PPC port
1597 void MachLoadPollAddrLateNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1598   MacroAssembler _masm(&cbuf);
1599   if (LoadPollAddressFromThread) {
1600     _masm.ld(R11, in_bytes(JavaThread::poll_address_offset()), R16_thread);
1601   } else {
1602     _masm.nop();
1603   }
1604 }
1605 
1606 uint MachLoadPollAddrLateNode::size(PhaseRegAlloc* ra_) const {
1607   if (LoadPollAddressFromThread) {
1608     return 4;
1609   } else {
1610     return 4;
1611   }
1612 }
1613 
1614 #ifndef PRODUCT
1615 void MachLoadPollAddrLateNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1616   st->print_cr(" LD R11, PollAddressOffset, R16_thread \t// LoadPollAddressFromThread");
1617 }
1618 #endif
1619 
1620 const RegMask &MachLoadPollAddrLateNode::out_RegMask() const {
1621   return RSCRATCH1_BITS64_REG_mask();
1622 }
1623 #endif // PPC port
1624 
1625 // =============================================================================
1626 
1627 // Figure out which register class each belongs in: rc_int, rc_float or
1628 // rc_stack.
1629 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1630 
1631 static enum RC rc_class(OptoReg::Name reg) {
1632   // Return the register class for the given register. The given register
1633   // reg is a <register>_num value, which is an index into the MachRegisterNumbers
1634   // enumeration in adGlobals_ppc.hpp.
1635 
1636   if (reg == OptoReg::Bad) return rc_bad;
1637 
1638   // We have 64 integer register halves, starting at index 0.
1639   if (reg < 64) return rc_int;
1640 
1641   // We have 64 floating-point register halves, starting at index 64.
1642   if (reg < 64+64) return rc_float;
1643 
1644   // Between float regs & stack are the flags regs.
1645   assert(OptoReg::is_stack(reg), "blow up if spilling flags");
1646 
1647   return rc_stack;
1648 }
1649 
1650 static int ld_st_helper(CodeBuffer *cbuf, const char *op_str, uint opcode, int reg, int offset,
1651                         bool do_print, Compile* C, outputStream *st) {
1652 
1653   assert(opcode == Assembler::LD_OPCODE   ||
1654          opcode == Assembler::STD_OPCODE  ||
1655          opcode == Assembler::LWZ_OPCODE  ||
1656          opcode == Assembler::STW_OPCODE  ||
1657          opcode == Assembler::LFD_OPCODE  ||
1658          opcode == Assembler::STFD_OPCODE ||
1659          opcode == Assembler::LFS_OPCODE  ||
1660          opcode == Assembler::STFS_OPCODE,
1661          "opcode not supported");
1662 
1663   if (cbuf) {
1664     int d =
1665       (Assembler::LD_OPCODE == opcode || Assembler::STD_OPCODE == opcode) ?
1666         Assembler::ds(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/)
1667       : Assembler::d1(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/); // Makes no difference in opt build.
1668     emit_long(*cbuf, opcode | Assembler::rt(Matcher::_regEncode[reg]) | d | Assembler::ra(R1_SP));
1669   }
1670 #ifndef PRODUCT
1671   else if (do_print) {
1672     st->print("%-7s %s, [R1_SP + #%d+%d] \t// spill copy",
1673               op_str,
1674               Matcher::regName[reg],
1675               offset, 0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/);
1676   }
1677 #endif
1678   return 4; // size
1679 }
1680 
1681 uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
1682   Compile* C = ra_->C;
1683 
1684   // Get registers to move.
1685   OptoReg::Name src_hi = ra_->get_reg_second(in(1));
1686   OptoReg::Name src_lo = ra_->get_reg_first(in(1));
1687   OptoReg::Name dst_hi = ra_->get_reg_second(this);
1688   OptoReg::Name dst_lo = ra_->get_reg_first(this);
1689 
1690   enum RC src_hi_rc = rc_class(src_hi);
1691   enum RC src_lo_rc = rc_class(src_lo);
1692   enum RC dst_hi_rc = rc_class(dst_hi);
1693   enum RC dst_lo_rc = rc_class(dst_lo);
1694 
1695   assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
1696   if (src_hi != OptoReg::Bad)
1697     assert((src_lo&1)==0 && src_lo+1==src_hi &&
1698            (dst_lo&1)==0 && dst_lo+1==dst_hi,
1699            "expected aligned-adjacent pairs");
1700   // Generate spill code!
1701   int size = 0;
1702 
1703   if (src_lo == dst_lo && src_hi == dst_hi)
1704     return size;            // Self copy, no move.
1705 
1706   // --------------------------------------
1707   // Memory->Memory Spill. Use R0 to hold the value.
1708   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
1709     int src_offset = ra_->reg2offset(src_lo);
1710     int dst_offset = ra_->reg2offset(dst_lo);
1711     if (src_hi != OptoReg::Bad) {
1712       assert(src_hi_rc==rc_stack && dst_hi_rc==rc_stack,
1713              "expected same type of move for high parts");
1714       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE,  R0_num, src_offset, !do_size, C, st);
1715       if (!cbuf && !do_size) st->print("\n\t");
1716       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, R0_num, dst_offset, !do_size, C, st);
1717     } else {
1718       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, R0_num, src_offset, !do_size, C, st);
1719       if (!cbuf && !do_size) st->print("\n\t");
1720       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, R0_num, dst_offset, !do_size, C, st);
1721     }
1722     return size;
1723   }
1724 
1725   // --------------------------------------
1726   // Check for float->int copy; requires a trip through memory.
1727   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
1728     Unimplemented();
1729   }
1730 
1731   // --------------------------------------
1732   // Check for integer reg-reg copy.
1733   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
1734       Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
1735       Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
1736       size = (Rsrc != Rdst) ? 4 : 0;
1737 
1738       if (cbuf) {
1739         MacroAssembler _masm(cbuf);
1740         if (size) {
1741           __ mr(Rdst, Rsrc);
1742         }
1743       }
1744 #ifndef PRODUCT
1745       else if (!do_size) {
1746         if (size) {
1747           st->print("%-7s %s, %s \t// spill copy", "MR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1748         } else {
1749           st->print("%-7s %s, %s \t// spill copy", "MR-NOP", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1750         }
1751       }
1752 #endif
1753       return size;
1754   }
1755 
1756   // Check for integer store.
1757   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
1758     int dst_offset = ra_->reg2offset(dst_lo);
1759     if (src_hi != OptoReg::Bad) {
1760       assert(src_hi_rc==rc_int && dst_hi_rc==rc_stack,
1761              "expected same type of move for high parts");
1762       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, src_lo, dst_offset, !do_size, C, st);
1763     } else {
1764       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, src_lo, dst_offset, !do_size, C, st);
1765     }
1766     return size;
1767   }
1768 
1769   // Check for integer load.
1770   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
1771     int src_offset = ra_->reg2offset(src_lo);
1772     if (src_hi != OptoReg::Bad) {
1773       assert(dst_hi_rc==rc_int && src_hi_rc==rc_stack,
1774              "expected same type of move for high parts");
1775       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE, dst_lo, src_offset, !do_size, C, st);
1776     } else {
1777       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, dst_lo, src_offset, !do_size, C, st);
1778     }
1779     return size;
1780   }
1781 
1782   // Check for float reg-reg copy.
1783   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
1784     if (cbuf) {
1785       MacroAssembler _masm(cbuf);
1786       FloatRegister Rsrc = as_FloatRegister(Matcher::_regEncode[src_lo]);
1787       FloatRegister Rdst = as_FloatRegister(Matcher::_regEncode[dst_lo]);
1788       __ fmr(Rdst, Rsrc);
1789     }
1790 #ifndef PRODUCT
1791     else if (!do_size) {
1792       st->print("%-7s %s, %s \t// spill copy", "FMR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1793     }
1794 #endif
1795     return 4;
1796   }
1797 
1798   // Check for float store.
1799   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
1800     int dst_offset = ra_->reg2offset(dst_lo);
1801     if (src_hi != OptoReg::Bad) {
1802       assert(src_hi_rc==rc_float && dst_hi_rc==rc_stack,
1803              "expected same type of move for high parts");
1804       size += ld_st_helper(cbuf, "STFD", Assembler::STFD_OPCODE, src_lo, dst_offset, !do_size, C, st);
1805     } else {
1806       size += ld_st_helper(cbuf, "STFS", Assembler::STFS_OPCODE, src_lo, dst_offset, !do_size, C, st);
1807     }
1808     return size;
1809   }
1810 
1811   // Check for float load.
1812   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
1813     int src_offset = ra_->reg2offset(src_lo);
1814     if (src_hi != OptoReg::Bad) {
1815       assert(dst_hi_rc==rc_float && src_hi_rc==rc_stack,
1816              "expected same type of move for high parts");
1817       size += ld_st_helper(cbuf, "LFD ", Assembler::LFD_OPCODE, dst_lo, src_offset, !do_size, C, st);
1818     } else {
1819       size += ld_st_helper(cbuf, "LFS ", Assembler::LFS_OPCODE, dst_lo, src_offset, !do_size, C, st);
1820     }
1821     return size;
1822   }
1823 
1824   // --------------------------------------------------------------------
1825   // Check for hi bits still needing moving. Only happens for misaligned
1826   // arguments to native calls.
1827   if (src_hi == dst_hi)
1828     return size;               // Self copy; no move.
1829 
1830   assert(src_hi_rc != rc_bad && dst_hi_rc != rc_bad, "src_hi & dst_hi cannot be Bad");
1831   ShouldNotReachHere(); // Unimplemented
1832   return 0;
1833 }
1834 
1835 #ifndef PRODUCT
1836 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1837   if (!ra_)
1838     st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
1839   else
1840     implementation(NULL, ra_, false, st);
1841 }
1842 #endif
1843 
1844 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1845   implementation(&cbuf, ra_, false, NULL);
1846 }
1847 
1848 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1849   return implementation(NULL, ra_, true, NULL);
1850 }
1851 
1852 #if 0 // TODO: PPC port
1853 ArchOpcode MachSpillCopyNode_archOpcode(MachSpillCopyNode *n, PhaseRegAlloc *ra_) {
1854 #ifndef PRODUCT
1855   if (ra_->node_regs_max_index() == 0) return archOpcode_undefined;
1856 #endif
1857   assert(ra_->node_regs_max_index() != 0, "");
1858 
1859   // Get registers to move.
1860   OptoReg::Name src_hi = ra_->get_reg_second(n->in(1));
1861   OptoReg::Name src_lo = ra_->get_reg_first(n->in(1));
1862   OptoReg::Name dst_hi = ra_->get_reg_second(n);
1863   OptoReg::Name dst_lo = ra_->get_reg_first(n);
1864 
1865   enum RC src_lo_rc = rc_class(src_lo);
1866   enum RC dst_lo_rc = rc_class(dst_lo);
1867 
1868   if (src_lo == dst_lo && src_hi == dst_hi)
1869     return ppc64Opcode_none;            // Self copy, no move.
1870 
1871   // --------------------------------------
1872   // Memory->Memory Spill. Use R0 to hold the value.
1873   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
1874     return ppc64Opcode_compound;
1875   }
1876 
1877   // --------------------------------------
1878   // Check for float->int copy; requires a trip through memory.
1879   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
1880     Unimplemented();
1881   }
1882 
1883   // --------------------------------------
1884   // Check for integer reg-reg copy.
1885   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
1886     Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
1887     Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
1888     if (Rsrc == Rdst) {
1889       return ppc64Opcode_none;
1890     } else {
1891       return ppc64Opcode_or;
1892     }
1893   }
1894 
1895   // Check for integer store.
1896   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
1897     if (src_hi != OptoReg::Bad) {
1898       return ppc64Opcode_std;
1899     } else {
1900       return ppc64Opcode_stw;
1901     }
1902   }
1903 
1904   // Check for integer load.
1905   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
1906     if (src_hi != OptoReg::Bad) {
1907       return ppc64Opcode_ld;
1908     } else {
1909       return ppc64Opcode_lwz;
1910     }
1911   }
1912 
1913   // Check for float reg-reg copy.
1914   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
1915     return ppc64Opcode_fmr;
1916   }
1917 
1918   // Check for float store.
1919   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
1920     if (src_hi != OptoReg::Bad) {
1921       return ppc64Opcode_stfd;
1922     } else {
1923       return ppc64Opcode_stfs;
1924     }
1925   }
1926 
1927   // Check for float load.
1928   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
1929     if (src_hi != OptoReg::Bad) {
1930       return ppc64Opcode_lfd;
1931     } else {
1932       return ppc64Opcode_lfs;
1933     }
1934   }
1935 
1936   // --------------------------------------------------------------------
1937   // Check for hi bits still needing moving. Only happens for misaligned
1938   // arguments to native calls.
1939   if (src_hi == dst_hi) {
1940     return ppc64Opcode_none;               // Self copy; no move.
1941   }
1942 
1943   ShouldNotReachHere();
1944   return ppc64Opcode_undefined;
1945 }
1946 #endif // PPC port
1947 
1948 #ifndef PRODUCT
1949 void MachNopNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1950   st->print("NOP \t// %d nops to pad for loops.", _count);
1951 }
1952 #endif
1953 
1954 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
1955   MacroAssembler _masm(&cbuf);
1956   // _count contains the number of nops needed for padding.
1957   for (int i = 0; i < _count; i++) {
1958     __ nop();
1959   }
1960 }
1961 
1962 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1963   return _count * 4;
1964 }
1965 
1966 #ifndef PRODUCT
1967 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1968   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1969   char reg_str[128];
1970   ra_->dump_register(this, reg_str);
1971   st->print("ADDI    %s, SP, %d \t// box node", reg_str, offset);
1972 }
1973 #endif
1974 
1975 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1976   MacroAssembler _masm(&cbuf);
1977 
1978   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1979   int reg    = ra_->get_encode(this);
1980 
1981   if (Assembler::is_simm(offset, 16)) {
1982     __ addi(as_Register(reg), R1, offset);
1983   } else {
1984     ShouldNotReachHere();
1985   }
1986 }
1987 
1988 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1989   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
1990   return 4;
1991 }
1992 
1993 #ifndef PRODUCT
1994 void MachUEPNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1995   st->print_cr("---- MachUEPNode ----");
1996   st->print_cr("...");
1997 }
1998 #endif
1999 
2000 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
2001   // This is the unverified entry point.
2002   MacroAssembler _masm(&cbuf);
2003 
2004   // Inline_cache contains a klass.
2005   Register ic_klass       = as_Register(Matcher::inline_cache_reg_encode());
2006   Register receiver_klass = R12_scratch2;  // tmp
2007 
2008   assert_different_registers(ic_klass, receiver_klass, R11_scratch1, R3_ARG1);
2009   assert(R11_scratch1 == R11, "need prologue scratch register");
2010 
2011   // Check for NULL argument if we don't have implicit null checks.
2012   if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
2013     if (TrapBasedNullChecks) {
2014       __ trap_null_check(R3_ARG1);
2015     } else {
2016       Label valid;
2017       __ cmpdi(CCR0, R3_ARG1, 0);
2018       __ bne_predict_taken(CCR0, valid);
2019       // We have a null argument, branch to ic_miss_stub.
2020       __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
2021                            relocInfo::runtime_call_type);
2022       __ bind(valid);
2023     }
2024   }
2025   // Assume argument is not NULL, load klass from receiver.
2026   __ load_klass(receiver_klass, R3_ARG1);
2027 
2028   if (TrapBasedICMissChecks) {
2029     __ trap_ic_miss_check(receiver_klass, ic_klass);
2030   } else {
2031     Label valid;
2032     __ cmpd(CCR0, receiver_klass, ic_klass);
2033     __ beq_predict_taken(CCR0, valid);
2034     // We have an unexpected klass, branch to ic_miss_stub.
2035     __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
2036                          relocInfo::runtime_call_type);
2037     __ bind(valid);
2038   }
2039 
2040   // Argument is valid and klass is as expected, continue.
2041 }
2042 
2043 #if 0 // TODO: PPC port
2044 // Optimize UEP code on z (save a load_const() call in main path).
2045 int MachUEPNode::ep_offset() {
2046   return 0;
2047 }
2048 #endif
2049 
2050 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
2051   // Variable size. Determine dynamically.
2052   return MachNode::size(ra_);
2053 }
2054 
2055 //=============================================================================
2056 
2057 %} // interrupt source
2058 
2059 source_hpp %{ // Header information of the source block.
2060 
2061 class HandlerImpl {
2062 
2063  public:
2064 
2065   static int emit_exception_handler(CodeBuffer &cbuf);
2066   static int emit_deopt_handler(CodeBuffer& cbuf);
2067 
2068   static uint size_exception_handler() {
2069     // The exception_handler is a b64_patchable.
2070     return MacroAssembler::b64_patchable_size;
2071   }
2072 
2073   static uint size_deopt_handler() {
2074     // The deopt_handler is a bl64_patchable.
2075     return MacroAssembler::bl64_patchable_size;
2076   }
2077 
2078 };
2079 
2080 %} // end source_hpp
2081 
2082 source %{
2083 
2084 int HandlerImpl::emit_exception_handler(CodeBuffer &cbuf) {
2085   MacroAssembler _masm(&cbuf);
2086 
2087   address base = __ start_a_stub(size_exception_handler());
2088   if (base == NULL) return 0; // CodeBuffer::expand failed
2089 
2090   int offset = __ offset();
2091   __ b64_patchable((address)OptoRuntime::exception_blob()->content_begin(),
2092                        relocInfo::runtime_call_type);
2093   assert(__ offset() - offset == (int)size_exception_handler(), "must be fixed size");
2094   __ end_a_stub();
2095 
2096   return offset;
2097 }
2098 
2099 // The deopt_handler is like the exception handler, but it calls to
2100 // the deoptimization blob instead of jumping to the exception blob.
2101 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
2102   MacroAssembler _masm(&cbuf);
2103 
2104   address base = __ start_a_stub(size_deopt_handler());
2105   if (base == NULL) return 0; // CodeBuffer::expand failed
2106 
2107   int offset = __ offset();
2108   __ bl64_patchable((address)SharedRuntime::deopt_blob()->unpack(),
2109                         relocInfo::runtime_call_type);
2110   assert(__ offset() - offset == (int) size_deopt_handler(), "must be fixed size");
2111   __ end_a_stub();
2112 
2113   return offset;
2114 }
2115 
2116 //=============================================================================
2117 
2118 // Use a frame slots bias for frameless methods if accessing the stack.
2119 static int frame_slots_bias(int reg_enc, PhaseRegAlloc* ra_) {
2120   if (as_Register(reg_enc) == R1_SP) {
2121     return 0; // TODO: PPC port ra_->C->frame_slots_sp_bias_in_bytes();
2122   }
2123   return 0;
2124 }
2125 
2126 const bool Matcher::match_rule_supported(int opcode) {
2127   if (!has_match_rule(opcode))
2128     return false;
2129 
2130   switch (opcode) {
2131   case Op_SqrtD:
2132     return VM_Version::has_fsqrt();
2133   case Op_CountLeadingZerosI:
2134   case Op_CountLeadingZerosL:
2135   case Op_CountTrailingZerosI:
2136   case Op_CountTrailingZerosL:
2137     if (!UseCountLeadingZerosInstructionsPPC64)
2138       return false;
2139     break;
2140 
2141   case Op_PopCountI:
2142   case Op_PopCountL:
2143     return (UsePopCountInstruction && VM_Version::has_popcntw());
2144 
2145   case Op_StrComp:
2146     return SpecialStringCompareTo;
2147   case Op_StrEquals:
2148     return SpecialStringEquals;
2149   case Op_StrIndexOf:
2150     return SpecialStringIndexOf;
2151   }
2152 
2153   return true;  // Per default match rules are supported.
2154 }
2155 
2156 int Matcher::regnum_to_fpu_offset(int regnum) {
2157   // No user for this method?
2158   Unimplemented();
2159   return 999;
2160 }
2161 
2162 const bool Matcher::convL2FSupported(void) {
2163   // fcfids can do the conversion (>= Power7).
2164   // fcfid + frsp showed rounding problem when result should be 0x3f800001.
2165   return VM_Version::has_fcfids(); // False means that conversion is done by runtime call.
2166 }
2167 
2168 // Vector width in bytes.
2169 const int Matcher::vector_width_in_bytes(BasicType bt) {
2170   assert(MaxVectorSize == 8, "");
2171   return 8;
2172 }
2173 
2174 // Vector ideal reg.
2175 const int Matcher::vector_ideal_reg(int size) {
2176   assert(MaxVectorSize == 8 && size == 8, "");
2177   return Op_RegL;
2178 }
2179 
2180 const int Matcher::vector_shift_count_ideal_reg(int size) {
2181   fatal("vector shift is not supported");
2182   return Node::NotAMachineReg;
2183 }
2184 
2185 // Limits on vector size (number of elements) loaded into vector.
2186 const int Matcher::max_vector_size(const BasicType bt) {
2187   assert(is_java_primitive(bt), "only primitive type vectors");
2188   return vector_width_in_bytes(bt)/type2aelembytes(bt);
2189 }
2190 
2191 const int Matcher::min_vector_size(const BasicType bt) {
2192   return max_vector_size(bt); // Same as max.
2193 }
2194 
2195 // PPC doesn't support misaligned vectors store/load.
2196 const bool Matcher::misaligned_vectors_ok() {
2197   return false;
2198 }
2199 
2200 // PPC AES support not yet implemented
2201 const bool Matcher::pass_original_key_for_aes() {
2202   return false;
2203 }
2204 
2205 // RETURNS: whether this branch offset is short enough that a short
2206 // branch can be used.
2207 //
2208 // If the platform does not provide any short branch variants, then
2209 // this method should return `false' for offset 0.
2210 //
2211 // `Compile::Fill_buffer' will decide on basis of this information
2212 // whether to do the pass `Compile::Shorten_branches' at all.
2213 //
2214 // And `Compile::Shorten_branches' will decide on basis of this
2215 // information whether to replace particular branch sites by short
2216 // ones.
2217 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
2218   // Is the offset within the range of a ppc64 pc relative branch?
2219   bool b;
2220 
2221   const int safety_zone = 3 * BytesPerInstWord;
2222   b = Assembler::is_simm((offset<0 ? offset-safety_zone : offset+safety_zone),
2223                          29 - 16 + 1 + 2);
2224   return b;
2225 }
2226 
2227 const bool Matcher::isSimpleConstant64(jlong value) {
2228   // Probably always true, even if a temp register is required.
2229   return true;
2230 }
2231 /* TODO: PPC port
2232 // Make a new machine dependent decode node (with its operands).
2233 MachTypeNode *Matcher::make_decode_node() {
2234   assert(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0,
2235          "This method is only implemented for unscaled cOops mode so far");
2236   MachTypeNode *decode = new decodeN_unscaledNode();
2237   decode->set_opnd_array(0, new iRegPdstOper());
2238   decode->set_opnd_array(1, new iRegNsrcOper());
2239   return decode;
2240 }
2241 */
2242 // Threshold size for cleararray.
2243 const int Matcher::init_array_short_size = 8 * BytesPerLong;
2244 
2245 // false => size gets scaled to BytesPerLong, ok.
2246 const bool Matcher::init_array_count_is_in_bytes = false;
2247 
2248 // Use conditional move (CMOVL) on Power7.
2249 const int Matcher::long_cmove_cost() { return 0; } // this only makes long cmoves more expensive than int cmoves
2250 
2251 // Suppress CMOVF. Conditional move available (sort of) on PPC64 only from P7 onwards. Not exploited yet.
2252 // fsel doesn't accept a condition register as input, so this would be slightly different.
2253 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
2254 
2255 // Power6 requires postalloc expand (see block.cpp for description of postalloc expand).
2256 const bool Matcher::require_postalloc_expand = true;
2257 
2258 // Should the Matcher clone shifts on addressing modes, expecting them to
2259 // be subsumed into complex addressing expressions or compute them into
2260 // registers? True for Intel but false for most RISCs.
2261 const bool Matcher::clone_shift_expressions = false;
2262 
2263 // Do we need to mask the count passed to shift instructions or does
2264 // the cpu only look at the lower 5/6 bits anyway?
2265 // Off, as masks are generated in expand rules where required.
2266 // Constant shift counts are handled in Ideal phase.
2267 const bool Matcher::need_masked_shift_count = false;
2268 
2269 // This affects two different things:
2270 //  - how Decode nodes are matched
2271 //  - how ImplicitNullCheck opportunities are recognized
2272 // If true, the matcher will try to remove all Decodes and match them
2273 // (as operands) into nodes. NullChecks are not prepared to deal with
2274 // Decodes by final_graph_reshaping().
2275 // If false, final_graph_reshaping() forces the decode behind the Cmp
2276 // for a NullCheck. The matcher matches the Decode node into a register.
2277 // Implicit_null_check optimization moves the Decode along with the
2278 // memory operation back up before the NullCheck.
2279 bool Matcher::narrow_oop_use_complex_address() {
2280   // TODO: PPC port if (MatchDecodeNodes) return true;
2281   return false;
2282 }
2283 
2284 bool Matcher::narrow_klass_use_complex_address() {
2285   NOT_LP64(ShouldNotCallThis());
2286   assert(UseCompressedClassPointers, "only for compressed klass code");
2287   // TODO: PPC port if (MatchDecodeNodes) return true;
2288   return false;
2289 }
2290 
2291 // Is it better to copy float constants, or load them directly from memory?
2292 // Intel can load a float constant from a direct address, requiring no
2293 // extra registers. Most RISCs will have to materialize an address into a
2294 // register first, so they would do better to copy the constant from stack.
2295 const bool Matcher::rematerialize_float_constants = false;
2296 
2297 // If CPU can load and store mis-aligned doubles directly then no fixup is
2298 // needed. Else we split the double into 2 integer pieces and move it
2299 // piece-by-piece. Only happens when passing doubles into C code as the
2300 // Java calling convention forces doubles to be aligned.
2301 const bool Matcher::misaligned_doubles_ok = true;
2302 
2303 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
2304  Unimplemented();
2305 }
2306 
2307 // Advertise here if the CPU requires explicit rounding operations
2308 // to implement the UseStrictFP mode.
2309 const bool Matcher::strict_fp_requires_explicit_rounding = false;
2310 
2311 // Do floats take an entire double register or just half?
2312 //
2313 // A float occupies a ppc64 double register. For the allocator, a
2314 // ppc64 double register appears as a pair of float registers.
2315 bool Matcher::float_in_double() { return true; }
2316 
2317 // Do ints take an entire long register or just half?
2318 // The relevant question is how the int is callee-saved:
2319 // the whole long is written but de-opt'ing will have to extract
2320 // the relevant 32 bits.
2321 const bool Matcher::int_in_long = true;
2322 
2323 // Constants for c2c and c calling conventions.
2324 
2325 const MachRegisterNumbers iarg_reg[8] = {
2326   R3_num, R4_num, R5_num, R6_num,
2327   R7_num, R8_num, R9_num, R10_num
2328 };
2329 
2330 const MachRegisterNumbers farg_reg[13] = {
2331   F1_num, F2_num, F3_num, F4_num,
2332   F5_num, F6_num, F7_num, F8_num,
2333   F9_num, F10_num, F11_num, F12_num,
2334   F13_num
2335 };
2336 
2337 const int num_iarg_registers = sizeof(iarg_reg) / sizeof(iarg_reg[0]);
2338 
2339 const int num_farg_registers = sizeof(farg_reg) / sizeof(farg_reg[0]);
2340 
2341 // Return whether or not this register is ever used as an argument. This
2342 // function is used on startup to build the trampoline stubs in generateOptoStub.
2343 // Registers not mentioned will be killed by the VM call in the trampoline, and
2344 // arguments in those registers not be available to the callee.
2345 bool Matcher::can_be_java_arg(int reg) {
2346   // We return true for all registers contained in iarg_reg[] and
2347   // farg_reg[] and their virtual halves.
2348   // We must include the virtual halves in order to get STDs and LDs
2349   // instead of STWs and LWs in the trampoline stubs.
2350 
2351   if (   reg == R3_num  || reg == R3_H_num
2352       || reg == R4_num  || reg == R4_H_num
2353       || reg == R5_num  || reg == R5_H_num
2354       || reg == R6_num  || reg == R6_H_num
2355       || reg == R7_num  || reg == R7_H_num
2356       || reg == R8_num  || reg == R8_H_num
2357       || reg == R9_num  || reg == R9_H_num
2358       || reg == R10_num || reg == R10_H_num)
2359     return true;
2360 
2361   if (   reg == F1_num  || reg == F1_H_num
2362       || reg == F2_num  || reg == F2_H_num
2363       || reg == F3_num  || reg == F3_H_num
2364       || reg == F4_num  || reg == F4_H_num
2365       || reg == F5_num  || reg == F5_H_num
2366       || reg == F6_num  || reg == F6_H_num
2367       || reg == F7_num  || reg == F7_H_num
2368       || reg == F8_num  || reg == F8_H_num
2369       || reg == F9_num  || reg == F9_H_num
2370       || reg == F10_num || reg == F10_H_num
2371       || reg == F11_num || reg == F11_H_num
2372       || reg == F12_num || reg == F12_H_num
2373       || reg == F13_num || reg == F13_H_num)
2374     return true;
2375 
2376   return false;
2377 }
2378 
2379 bool Matcher::is_spillable_arg(int reg) {
2380   return can_be_java_arg(reg);
2381 }
2382 
2383 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
2384   return false;
2385 }
2386 
2387 // Register for DIVI projection of divmodI.
2388 RegMask Matcher::divI_proj_mask() {
2389   ShouldNotReachHere();
2390   return RegMask();
2391 }
2392 
2393 // Register for MODI projection of divmodI.
2394 RegMask Matcher::modI_proj_mask() {
2395   ShouldNotReachHere();
2396   return RegMask();
2397 }
2398 
2399 // Register for DIVL projection of divmodL.
2400 RegMask Matcher::divL_proj_mask() {
2401   ShouldNotReachHere();
2402   return RegMask();
2403 }
2404 
2405 // Register for MODL projection of divmodL.
2406 RegMask Matcher::modL_proj_mask() {
2407   ShouldNotReachHere();
2408   return RegMask();
2409 }
2410 
2411 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2412   return RegMask();
2413 }
2414 
2415 %}
2416 
2417 //----------ENCODING BLOCK-----------------------------------------------------
2418 // This block specifies the encoding classes used by the compiler to output
2419 // byte streams. Encoding classes are parameterized macros used by
2420 // Machine Instruction Nodes in order to generate the bit encoding of the
2421 // instruction. Operands specify their base encoding interface with the
2422 // interface keyword. There are currently supported four interfaces,
2423 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
2424 // operand to generate a function which returns its register number when
2425 // queried. CONST_INTER causes an operand to generate a function which
2426 // returns the value of the constant when queried. MEMORY_INTER causes an
2427 // operand to generate four functions which return the Base Register, the
2428 // Index Register, the Scale Value, and the Offset Value of the operand when
2429 // queried. COND_INTER causes an operand to generate six functions which
2430 // return the encoding code (ie - encoding bits for the instruction)
2431 // associated with each basic boolean condition for a conditional instruction.
2432 //
2433 // Instructions specify two basic values for encoding. Again, a function
2434 // is available to check if the constant displacement is an oop. They use the
2435 // ins_encode keyword to specify their encoding classes (which must be
2436 // a sequence of enc_class names, and their parameters, specified in
2437 // the encoding block), and they use the
2438 // opcode keyword to specify, in order, their primary, secondary, and
2439 // tertiary opcode. Only the opcode sections which a particular instruction
2440 // needs for encoding need to be specified.
2441 encode %{
2442   enc_class enc_unimplemented %{
2443     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2444     MacroAssembler _masm(&cbuf);
2445     __ unimplemented("Unimplemented mach node encoding in AD file.", 13);
2446   %}
2447 
2448   enc_class enc_untested %{
2449 #ifdef ASSERT
2450     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2451     MacroAssembler _masm(&cbuf);
2452     __ untested("Untested mach node encoding in AD file.");
2453 #else
2454     // TODO: PPC port $archOpcode(ppc64Opcode_none);
2455 #endif
2456   %}
2457 
2458   enc_class enc_lbz(iRegIdst dst, memory mem) %{
2459     // TODO: PPC port $archOpcode(ppc64Opcode_lbz);
2460     MacroAssembler _masm(&cbuf);
2461     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2462     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
2463   %}
2464 
2465   // Load acquire.
2466   enc_class enc_lbz_ac(iRegIdst dst, memory mem) %{
2467     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2468     MacroAssembler _masm(&cbuf);
2469     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2470     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
2471     __ twi_0($dst$$Register);
2472     __ isync();
2473   %}
2474 
2475   enc_class enc_lhz(iRegIdst dst, memory mem) %{
2476     // TODO: PPC port $archOpcode(ppc64Opcode_lhz);
2477 
2478     MacroAssembler _masm(&cbuf);
2479     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2480     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
2481   %}
2482 
2483   // Load acquire.
2484   enc_class enc_lhz_ac(iRegIdst dst, memory mem) %{
2485     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2486 
2487     MacroAssembler _masm(&cbuf);
2488     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2489     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
2490     __ twi_0($dst$$Register);
2491     __ isync();
2492   %}
2493 
2494   enc_class enc_lwz(iRegIdst dst, memory mem) %{
2495     // TODO: PPC port $archOpcode(ppc64Opcode_lwz);
2496 
2497     MacroAssembler _masm(&cbuf);
2498     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2499     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
2500   %}
2501 
2502   // Load acquire.
2503   enc_class enc_lwz_ac(iRegIdst dst, memory mem) %{
2504     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2505 
2506     MacroAssembler _masm(&cbuf);
2507     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2508     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
2509     __ twi_0($dst$$Register);
2510     __ isync();
2511   %}
2512 
2513   enc_class enc_ld(iRegLdst dst, memoryAlg4 mem) %{
2514     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2515     MacroAssembler _masm(&cbuf);
2516     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2517     // Operand 'ds' requires 4-alignment.
2518     assert((Idisp & 0x3) == 0, "unaligned offset");
2519     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
2520   %}
2521 
2522   // Load acquire.
2523   enc_class enc_ld_ac(iRegLdst dst, memoryAlg4 mem) %{
2524     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2525     MacroAssembler _masm(&cbuf);
2526     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2527     // Operand 'ds' requires 4-alignment.
2528     assert((Idisp & 0x3) == 0, "unaligned offset");
2529     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
2530     __ twi_0($dst$$Register);
2531     __ isync();
2532   %}
2533 
2534   enc_class enc_lfd(RegF dst, memory mem) %{
2535     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
2536     MacroAssembler _masm(&cbuf);
2537     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2538     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
2539   %}
2540 
2541   enc_class enc_load_long_constL(iRegLdst dst, immL src, iRegLdst toc) %{
2542     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2543 
2544     MacroAssembler _masm(&cbuf);
2545     int toc_offset = 0;
2546 
2547     if (!ra_->C->in_scratch_emit_size()) {
2548       address const_toc_addr;
2549       // Create a non-oop constant, no relocation needed.
2550       // If it is an IC, it has a virtual_call_Relocation.
2551       const_toc_addr = __ long_constant((jlong)$src$$constant);
2552 
2553       // Get the constant's TOC offset.
2554       toc_offset = __ offset_to_method_toc(const_toc_addr);
2555 
2556       // Keep the current instruction offset in mind.
2557       ((loadConLNode*)this)->_cbuf_insts_offset = __ offset();
2558     }
2559 
2560     __ ld($dst$$Register, toc_offset, $toc$$Register);
2561   %}
2562 
2563   enc_class enc_load_long_constL_hi(iRegLdst dst, iRegLdst toc, immL src) %{
2564     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
2565 
2566     MacroAssembler _masm(&cbuf);
2567 
2568     if (!ra_->C->in_scratch_emit_size()) {
2569       address const_toc_addr;
2570       // Create a non-oop constant, no relocation needed.
2571       // If it is an IC, it has a virtual_call_Relocation.
2572       const_toc_addr = __ long_constant((jlong)$src$$constant);
2573 
2574       // Get the constant's TOC offset.
2575       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
2576       // Store the toc offset of the constant.
2577       ((loadConL_hiNode*)this)->_const_toc_offset = toc_offset;
2578 
2579       // Also keep the current instruction offset in mind.
2580       ((loadConL_hiNode*)this)->_cbuf_insts_offset = __ offset();
2581     }
2582 
2583     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
2584   %}
2585 
2586 %} // encode
2587 
2588 source %{
2589 
2590 typedef struct {
2591   loadConL_hiNode *_large_hi;
2592   loadConL_loNode *_large_lo;
2593   loadConLNode    *_small;
2594   MachNode        *_last;
2595 } loadConLNodesTuple;
2596 
2597 loadConLNodesTuple loadConLNodesTuple_create(PhaseRegAlloc *ra_, Node *toc, immLOper *immSrc,
2598                                              OptoReg::Name reg_second, OptoReg::Name reg_first) {
2599   loadConLNodesTuple nodes;
2600 
2601   const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2602   if (large_constant_pool) {
2603     // Create new nodes.
2604     loadConL_hiNode *m1 = new loadConL_hiNode();
2605     loadConL_loNode *m2 = new loadConL_loNode();
2606 
2607     // inputs for new nodes
2608     m1->add_req(NULL, toc);
2609     m2->add_req(NULL, m1);
2610 
2611     // operands for new nodes
2612     m1->_opnds[0] = new iRegLdstOper(); // dst
2613     m1->_opnds[1] = immSrc;             // src
2614     m1->_opnds[2] = new iRegPdstOper(); // toc
2615     m2->_opnds[0] = new iRegLdstOper(); // dst
2616     m2->_opnds[1] = immSrc;             // src
2617     m2->_opnds[2] = new iRegLdstOper(); // base
2618 
2619     // Initialize ins_attrib TOC fields.
2620     m1->_const_toc_offset = -1;
2621     m2->_const_toc_offset_hi_node = m1;
2622 
2623     // Initialize ins_attrib instruction offset.
2624     m1->_cbuf_insts_offset = -1;
2625 
2626     // register allocation for new nodes
2627     ra_->set_pair(m1->_idx, reg_second, reg_first);
2628     ra_->set_pair(m2->_idx, reg_second, reg_first);
2629 
2630     // Create result.
2631     nodes._large_hi = m1;
2632     nodes._large_lo = m2;
2633     nodes._small = NULL;
2634     nodes._last = nodes._large_lo;
2635     assert(m2->bottom_type()->isa_long(), "must be long");
2636   } else {
2637     loadConLNode *m2 = new loadConLNode();
2638 
2639     // inputs for new nodes
2640     m2->add_req(NULL, toc);
2641 
2642     // operands for new nodes
2643     m2->_opnds[0] = new iRegLdstOper(); // dst
2644     m2->_opnds[1] = immSrc;             // src
2645     m2->_opnds[2] = new iRegPdstOper(); // toc
2646 
2647     // Initialize ins_attrib instruction offset.
2648     m2->_cbuf_insts_offset = -1;
2649 
2650     // register allocation for new nodes
2651     ra_->set_pair(m2->_idx, reg_second, reg_first);
2652 
2653     // Create result.
2654     nodes._large_hi = NULL;
2655     nodes._large_lo = NULL;
2656     nodes._small = m2;
2657     nodes._last = nodes._small;
2658     assert(m2->bottom_type()->isa_long(), "must be long");
2659   }
2660 
2661   return nodes;
2662 }
2663 
2664 %} // source
2665 
2666 encode %{
2667   // Postalloc expand emitter for loading a long constant from the method's TOC.
2668   // Enc_class needed as consttanttablebase is not supported by postalloc
2669   // expand.
2670   enc_class postalloc_expand_load_long_constant(iRegLdst dst, immL src, iRegLdst toc) %{
2671     // Create new nodes.
2672     loadConLNodesTuple loadConLNodes =
2673       loadConLNodesTuple_create(ra_, n_toc, op_src,
2674                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
2675 
2676     // Push new nodes.
2677     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
2678     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
2679 
2680     // some asserts
2681     assert(nodes->length() >= 1, "must have created at least 1 node");
2682     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
2683   %}
2684 
2685   enc_class enc_load_long_constP(iRegLdst dst, immP src, iRegLdst toc) %{
2686     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2687 
2688     MacroAssembler _masm(&cbuf);
2689     int toc_offset = 0;
2690 
2691     if (!ra_->C->in_scratch_emit_size()) {
2692       intptr_t val = $src$$constant;
2693       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
2694       address const_toc_addr;
2695       if (constant_reloc == relocInfo::oop_type) {
2696         // Create an oop constant and a corresponding relocation.
2697         AddressLiteral a = __ allocate_oop_address((jobject)val);
2698         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2699         __ relocate(a.rspec());
2700       } else if (constant_reloc == relocInfo::metadata_type) {
2701         AddressLiteral a = __ constant_metadata_address((Metadata *)val);
2702         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2703         __ relocate(a.rspec());
2704       } else {
2705         // Create a non-oop constant, no relocation needed.
2706         const_toc_addr = __ long_constant((jlong)$src$$constant);
2707       }
2708 
2709       // Get the constant's TOC offset.
2710       toc_offset = __ offset_to_method_toc(const_toc_addr);
2711     }
2712 
2713     __ ld($dst$$Register, toc_offset, $toc$$Register);
2714   %}
2715 
2716   enc_class enc_load_long_constP_hi(iRegLdst dst, immP src, iRegLdst toc) %{
2717     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
2718 
2719     MacroAssembler _masm(&cbuf);
2720     if (!ra_->C->in_scratch_emit_size()) {
2721       intptr_t val = $src$$constant;
2722       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
2723       address const_toc_addr;
2724       if (constant_reloc == relocInfo::oop_type) {
2725         // Create an oop constant and a corresponding relocation.
2726         AddressLiteral a = __ allocate_oop_address((jobject)val);
2727         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2728         __ relocate(a.rspec());
2729       } else if (constant_reloc == relocInfo::metadata_type) {
2730         AddressLiteral a = __ constant_metadata_address((Metadata *)val);
2731         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2732         __ relocate(a.rspec());
2733       } else {  // non-oop pointers, e.g. card mark base, heap top
2734         // Create a non-oop constant, no relocation needed.
2735         const_toc_addr = __ long_constant((jlong)$src$$constant);
2736       }
2737 
2738       // Get the constant's TOC offset.
2739       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
2740       // Store the toc offset of the constant.
2741       ((loadConP_hiNode*)this)->_const_toc_offset = toc_offset;
2742     }
2743 
2744     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
2745   %}
2746 
2747   // Postalloc expand emitter for loading a ptr constant from the method's TOC.
2748   // Enc_class needed as consttanttablebase is not supported by postalloc
2749   // expand.
2750   enc_class postalloc_expand_load_ptr_constant(iRegPdst dst, immP src, iRegLdst toc) %{
2751     const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2752     if (large_constant_pool) {
2753       // Create new nodes.
2754       loadConP_hiNode *m1 = new loadConP_hiNode();
2755       loadConP_loNode *m2 = new loadConP_loNode();
2756 
2757       // inputs for new nodes
2758       m1->add_req(NULL, n_toc);
2759       m2->add_req(NULL, m1);
2760 
2761       // operands for new nodes
2762       m1->_opnds[0] = new iRegPdstOper(); // dst
2763       m1->_opnds[1] = op_src;             // src
2764       m1->_opnds[2] = new iRegPdstOper(); // toc
2765       m2->_opnds[0] = new iRegPdstOper(); // dst
2766       m2->_opnds[1] = op_src;             // src
2767       m2->_opnds[2] = new iRegLdstOper(); // base
2768 
2769       // Initialize ins_attrib TOC fields.
2770       m1->_const_toc_offset = -1;
2771       m2->_const_toc_offset_hi_node = m1;
2772 
2773       // Register allocation for new nodes.
2774       ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2775       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2776 
2777       nodes->push(m1);
2778       nodes->push(m2);
2779       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
2780     } else {
2781       loadConPNode *m2 = new loadConPNode();
2782 
2783       // inputs for new nodes
2784       m2->add_req(NULL, n_toc);
2785 
2786       // operands for new nodes
2787       m2->_opnds[0] = new iRegPdstOper(); // dst
2788       m2->_opnds[1] = op_src;             // src
2789       m2->_opnds[2] = new iRegPdstOper(); // toc
2790 
2791       // Register allocation for new nodes.
2792       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2793 
2794       nodes->push(m2);
2795       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
2796     }
2797   %}
2798 
2799   // Enc_class needed as consttanttablebase is not supported by postalloc
2800   // expand.
2801   enc_class postalloc_expand_load_float_constant(regF dst, immF src, iRegLdst toc) %{
2802     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2803 
2804     MachNode *m2;
2805     if (large_constant_pool) {
2806       m2 = new loadConFCompNode();
2807     } else {
2808       m2 = new loadConFNode();
2809     }
2810     // inputs for new nodes
2811     m2->add_req(NULL, n_toc);
2812 
2813     // operands for new nodes
2814     m2->_opnds[0] = op_dst;
2815     m2->_opnds[1] = op_src;
2816     m2->_opnds[2] = new iRegPdstOper(); // constanttablebase
2817 
2818     // register allocation for new nodes
2819     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2820     nodes->push(m2);
2821   %}
2822 
2823   // Enc_class needed as consttanttablebase is not supported by postalloc
2824   // expand.
2825   enc_class postalloc_expand_load_double_constant(regD dst, immD src, iRegLdst toc) %{
2826     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2827 
2828     MachNode *m2;
2829     if (large_constant_pool) {
2830       m2 = new loadConDCompNode();
2831     } else {
2832       m2 = new loadConDNode();
2833     }
2834     // inputs for new nodes
2835     m2->add_req(NULL, n_toc);
2836 
2837     // operands for new nodes
2838     m2->_opnds[0] = op_dst;
2839     m2->_opnds[1] = op_src;
2840     m2->_opnds[2] = new iRegPdstOper(); // constanttablebase
2841 
2842     // register allocation for new nodes
2843     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2844     nodes->push(m2);
2845   %}
2846 
2847   enc_class enc_stw(iRegIsrc src, memory mem) %{
2848     // TODO: PPC port $archOpcode(ppc64Opcode_stw);
2849     MacroAssembler _masm(&cbuf);
2850     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2851     __ stw($src$$Register, Idisp, $mem$$base$$Register);
2852   %}
2853 
2854   enc_class enc_std(iRegIsrc src, memoryAlg4 mem) %{
2855     // TODO: PPC port $archOpcode(ppc64Opcode_std);
2856     MacroAssembler _masm(&cbuf);
2857     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2858     // Operand 'ds' requires 4-alignment.
2859     assert((Idisp & 0x3) == 0, "unaligned offset");
2860     __ std($src$$Register, Idisp, $mem$$base$$Register);
2861   %}
2862 
2863   enc_class enc_stfs(RegF src, memory mem) %{
2864     // TODO: PPC port $archOpcode(ppc64Opcode_stfs);
2865     MacroAssembler _masm(&cbuf);
2866     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2867     __ stfs($src$$FloatRegister, Idisp, $mem$$base$$Register);
2868   %}
2869 
2870   enc_class enc_stfd(RegF src, memory mem) %{
2871     // TODO: PPC port $archOpcode(ppc64Opcode_stfd);
2872     MacroAssembler _masm(&cbuf);
2873     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2874     __ stfd($src$$FloatRegister, Idisp, $mem$$base$$Register);
2875   %}
2876 
2877   // Use release_store for card-marking to ensure that previous
2878   // oop-stores are visible before the card-mark change.
2879   enc_class enc_cms_card_mark(memory mem, iRegLdst releaseFieldAddr) %{
2880     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2881     // FIXME: Implement this as a cmove and use a fixed condition code
2882     // register which is written on every transition to compiled code,
2883     // e.g. in call-stub and when returning from runtime stubs.
2884     //
2885     // Proposed code sequence for the cmove implementation:
2886     //
2887     // Label skip_release;
2888     // __ beq(CCRfixed, skip_release);
2889     // __ release();
2890     // __ bind(skip_release);
2891     // __ stb(card mark);
2892 
2893     MacroAssembler _masm(&cbuf);
2894     Label skip_storestore;
2895 
2896 #if 0 // TODO: PPC port
2897     // Check CMSCollectorCardTableModRefBSExt::_requires_release and do the
2898     // StoreStore barrier conditionally.
2899     __ lwz(R0, 0, $releaseFieldAddr$$Register);
2900     __ cmpwi(CCR0, R0, 0);
2901     __ beq_predict_taken(CCR0, skip_storestore);
2902 #endif
2903     __ li(R0, 0);
2904     __ membar(Assembler::StoreStore);
2905 #if 0 // TODO: PPC port
2906     __ bind(skip_storestore);
2907 #endif
2908 
2909     // Do the store.
2910     if ($mem$$index == 0) {
2911       __ stb(R0, $mem$$disp, $mem$$base$$Register);
2912     } else {
2913       assert(0 == $mem$$disp, "no displacement possible with indexed load/stores on ppc");
2914       __ stbx(R0, $mem$$base$$Register, $mem$$index$$Register);
2915     }
2916   %}
2917 
2918   enc_class postalloc_expand_encode_oop(iRegNdst dst, iRegPdst src, flagsReg crx) %{
2919 
2920     if (VM_Version::has_isel()) {
2921       // use isel instruction with Power 7
2922       cmpP_reg_imm16Node *n_compare  = new cmpP_reg_imm16Node();
2923       encodeP_subNode    *n_sub_base = new encodeP_subNode();
2924       encodeP_shiftNode  *n_shift    = new encodeP_shiftNode();
2925       cond_set_0_oopNode *n_cond_set = new cond_set_0_oopNode();
2926 
2927       n_compare->add_req(n_region, n_src);
2928       n_compare->_opnds[0] = op_crx;
2929       n_compare->_opnds[1] = op_src;
2930       n_compare->_opnds[2] = new immL16Oper(0);
2931 
2932       n_sub_base->add_req(n_region, n_src);
2933       n_sub_base->_opnds[0] = op_dst;
2934       n_sub_base->_opnds[1] = op_src;
2935       n_sub_base->_bottom_type = _bottom_type;
2936 
2937       n_shift->add_req(n_region, n_sub_base);
2938       n_shift->_opnds[0] = op_dst;
2939       n_shift->_opnds[1] = op_dst;
2940       n_shift->_bottom_type = _bottom_type;
2941 
2942       n_cond_set->add_req(n_region, n_compare, n_shift);
2943       n_cond_set->_opnds[0] = op_dst;
2944       n_cond_set->_opnds[1] = op_crx;
2945       n_cond_set->_opnds[2] = op_dst;
2946       n_cond_set->_bottom_type = _bottom_type;
2947 
2948       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
2949       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2950       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2951       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2952 
2953       nodes->push(n_compare);
2954       nodes->push(n_sub_base);
2955       nodes->push(n_shift);
2956       nodes->push(n_cond_set);
2957 
2958     } else {
2959       // before Power 7
2960       moveRegNode        *n_move     = new moveRegNode();
2961       cmpP_reg_imm16Node *n_compare  = new cmpP_reg_imm16Node();
2962       encodeP_shiftNode  *n_shift    = new encodeP_shiftNode();
2963       cond_sub_baseNode  *n_sub_base = new cond_sub_baseNode();
2964 
2965       n_move->add_req(n_region, n_src);
2966       n_move->_opnds[0] = op_dst;
2967       n_move->_opnds[1] = op_src;
2968       ra_->set_oop(n_move, true); // Until here, 'n_move' still produces an oop.
2969 
2970       n_compare->add_req(n_region, n_src);
2971       n_compare->add_prec(n_move);
2972 
2973       n_compare->_opnds[0] = op_crx;
2974       n_compare->_opnds[1] = op_src;
2975       n_compare->_opnds[2] = new immL16Oper(0);
2976 
2977       n_sub_base->add_req(n_region, n_compare, n_src);
2978       n_sub_base->_opnds[0] = op_dst;
2979       n_sub_base->_opnds[1] = op_crx;
2980       n_sub_base->_opnds[2] = op_src;
2981       n_sub_base->_bottom_type = _bottom_type;
2982 
2983       n_shift->add_req(n_region, n_sub_base);
2984       n_shift->_opnds[0] = op_dst;
2985       n_shift->_opnds[1] = op_dst;
2986       n_shift->_bottom_type = _bottom_type;
2987 
2988       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2989       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
2990       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2991       ra_->set_pair(n_move->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2992 
2993       nodes->push(n_move);
2994       nodes->push(n_compare);
2995       nodes->push(n_sub_base);
2996       nodes->push(n_shift);
2997     }
2998 
2999     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
3000   %}
3001 
3002   enc_class postalloc_expand_encode_oop_not_null(iRegNdst dst, iRegPdst src) %{
3003 
3004     encodeP_subNode *n1 = new encodeP_subNode();
3005     n1->add_req(n_region, n_src);
3006     n1->_opnds[0] = op_dst;
3007     n1->_opnds[1] = op_src;
3008     n1->_bottom_type = _bottom_type;
3009 
3010     encodeP_shiftNode *n2 = new encodeP_shiftNode();
3011     n2->add_req(n_region, n1);
3012     n2->_opnds[0] = op_dst;
3013     n2->_opnds[1] = op_dst;
3014     n2->_bottom_type = _bottom_type;
3015     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3016     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3017 
3018     nodes->push(n1);
3019     nodes->push(n2);
3020     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
3021   %}
3022 
3023   enc_class postalloc_expand_decode_oop(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
3024     decodeN_shiftNode *n_shift    = new decodeN_shiftNode();
3025     cmpN_reg_imm0Node *n_compare  = new cmpN_reg_imm0Node();
3026 
3027     n_compare->add_req(n_region, n_src);
3028     n_compare->_opnds[0] = op_crx;
3029     n_compare->_opnds[1] = op_src;
3030     n_compare->_opnds[2] = new immN_0Oper(TypeNarrowOop::NULL_PTR);
3031 
3032     n_shift->add_req(n_region, n_src);
3033     n_shift->_opnds[0] = op_dst;
3034     n_shift->_opnds[1] = op_src;
3035     n_shift->_bottom_type = _bottom_type;
3036 
3037     if (VM_Version::has_isel()) {
3038       // use isel instruction with Power 7
3039 
3040       decodeN_addNode *n_add_base = new decodeN_addNode();
3041       n_add_base->add_req(n_region, n_shift);
3042       n_add_base->_opnds[0] = op_dst;
3043       n_add_base->_opnds[1] = op_dst;
3044       n_add_base->_bottom_type = _bottom_type;
3045 
3046       cond_set_0_ptrNode *n_cond_set = new cond_set_0_ptrNode();
3047       n_cond_set->add_req(n_region, n_compare, n_add_base);
3048       n_cond_set->_opnds[0] = op_dst;
3049       n_cond_set->_opnds[1] = op_crx;
3050       n_cond_set->_opnds[2] = op_dst;
3051       n_cond_set->_bottom_type = _bottom_type;
3052 
3053       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
3054       ra_->set_oop(n_cond_set, true);
3055 
3056       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3057       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
3058       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3059       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3060 
3061       nodes->push(n_compare);
3062       nodes->push(n_shift);
3063       nodes->push(n_add_base);
3064       nodes->push(n_cond_set);
3065 
3066     } else {
3067       // before Power 7
3068       cond_add_baseNode *n_add_base = new cond_add_baseNode();
3069 
3070       n_add_base->add_req(n_region, n_compare, n_shift);
3071       n_add_base->_opnds[0] = op_dst;
3072       n_add_base->_opnds[1] = op_crx;
3073       n_add_base->_opnds[2] = op_dst;
3074       n_add_base->_bottom_type = _bottom_type;
3075 
3076       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
3077       ra_->set_oop(n_add_base, true);
3078 
3079       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3080       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
3081       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3082 
3083       nodes->push(n_compare);
3084       nodes->push(n_shift);
3085       nodes->push(n_add_base);
3086     }
3087   %}
3088 
3089   enc_class postalloc_expand_decode_oop_not_null(iRegPdst dst, iRegNsrc src) %{
3090     decodeN_shiftNode *n1 = new decodeN_shiftNode();
3091     n1->add_req(n_region, n_src);
3092     n1->_opnds[0] = op_dst;
3093     n1->_opnds[1] = op_src;
3094     n1->_bottom_type = _bottom_type;
3095 
3096     decodeN_addNode *n2 = new decodeN_addNode();
3097     n2->add_req(n_region, n1);
3098     n2->_opnds[0] = op_dst;
3099     n2->_opnds[1] = op_dst;
3100     n2->_bottom_type = _bottom_type;
3101     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3102     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3103 
3104     assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
3105     ra_->set_oop(n2, true);
3106 
3107     nodes->push(n1);
3108     nodes->push(n2);
3109   %}
3110 
3111   enc_class enc_cmove_reg(iRegIdst dst, flagsReg crx, iRegIsrc src, cmpOp cmp) %{
3112     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3113 
3114     MacroAssembler _masm(&cbuf);
3115     int cc        = $cmp$$cmpcode;
3116     int flags_reg = $crx$$reg;
3117     Label done;
3118     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3119     // Branch if not (cmp crx).
3120     __ bc(cc_to_inverse_boint(cc), cc_to_biint(cc, flags_reg), done);
3121     __ mr($dst$$Register, $src$$Register);
3122     // TODO PPC port __ endgroup_if_needed(_size == 12);
3123     __ bind(done);
3124   %}
3125 
3126   enc_class enc_cmove_imm(iRegIdst dst, flagsReg crx, immI16 src, cmpOp cmp) %{
3127     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3128 
3129     MacroAssembler _masm(&cbuf);
3130     Label done;
3131     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3132     // Branch if not (cmp crx).
3133     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
3134     __ li($dst$$Register, $src$$constant);
3135     // TODO PPC port __ endgroup_if_needed(_size == 12);
3136     __ bind(done);
3137   %}
3138 
3139   // New atomics.
3140   enc_class enc_GetAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
3141     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3142 
3143     MacroAssembler _masm(&cbuf);
3144     Register Rtmp   = R0;
3145     Register Rres   = $res$$Register;
3146     Register Rsrc   = $src$$Register;
3147     Register Rptr   = $mem_ptr$$Register;
3148     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3149     Register Rold   = RegCollision ? Rtmp : Rres;
3150 
3151     Label Lretry;
3152     __ bind(Lretry);
3153     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3154     __ add(Rtmp, Rsrc, Rold);
3155     __ stwcx_(Rtmp, Rptr);
3156     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3157       __ bne_predict_not_taken(CCR0, Lretry);
3158     } else {
3159       __ bne(                  CCR0, Lretry);
3160     }
3161     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
3162     __ fence();
3163   %}
3164 
3165   enc_class enc_GetAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
3166     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3167 
3168     MacroAssembler _masm(&cbuf);
3169     Register Rtmp   = R0;
3170     Register Rres   = $res$$Register;
3171     Register Rsrc   = $src$$Register;
3172     Register Rptr   = $mem_ptr$$Register;
3173     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3174     Register Rold   = RegCollision ? Rtmp : Rres;
3175 
3176     Label Lretry;
3177     __ bind(Lretry);
3178     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3179     __ add(Rtmp, Rsrc, Rold);
3180     __ stdcx_(Rtmp, Rptr);
3181     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3182       __ bne_predict_not_taken(CCR0, Lretry);
3183     } else {
3184       __ bne(                  CCR0, Lretry);
3185     }
3186     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
3187     __ fence();
3188   %}
3189 
3190   enc_class enc_GetAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
3191     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3192 
3193     MacroAssembler _masm(&cbuf);
3194     Register Rtmp   = R0;
3195     Register Rres   = $res$$Register;
3196     Register Rsrc   = $src$$Register;
3197     Register Rptr   = $mem_ptr$$Register;
3198     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3199     Register Rold   = RegCollision ? Rtmp : Rres;
3200 
3201     Label Lretry;
3202     __ bind(Lretry);
3203     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3204     __ stwcx_(Rsrc, Rptr);
3205     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3206       __ bne_predict_not_taken(CCR0, Lretry);
3207     } else {
3208       __ bne(                  CCR0, Lretry);
3209     }
3210     if (RegCollision) __ mr(Rres, Rtmp);
3211     __ fence();
3212   %}
3213 
3214   enc_class enc_GetAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
3215     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3216 
3217     MacroAssembler _masm(&cbuf);
3218     Register Rtmp   = R0;
3219     Register Rres   = $res$$Register;
3220     Register Rsrc   = $src$$Register;
3221     Register Rptr   = $mem_ptr$$Register;
3222     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3223     Register Rold   = RegCollision ? Rtmp : Rres;
3224 
3225     Label Lretry;
3226     __ bind(Lretry);
3227     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3228     __ stdcx_(Rsrc, Rptr);
3229     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3230       __ bne_predict_not_taken(CCR0, Lretry);
3231     } else {
3232       __ bne(                  CCR0, Lretry);
3233     }
3234     if (RegCollision) __ mr(Rres, Rtmp);
3235     __ fence();
3236   %}
3237 
3238   // This enc_class is needed so that scheduler gets proper
3239   // input mapping for latency computation.
3240   enc_class enc_andc(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
3241     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
3242     MacroAssembler _masm(&cbuf);
3243     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
3244   %}
3245 
3246   enc_class enc_convI2B_regI__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
3247     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3248 
3249     MacroAssembler _masm(&cbuf);
3250 
3251     Label done;
3252     __ cmpwi($crx$$CondRegister, $src$$Register, 0);
3253     __ li($dst$$Register, $zero$$constant);
3254     __ beq($crx$$CondRegister, done);
3255     __ li($dst$$Register, $notzero$$constant);
3256     __ bind(done);
3257   %}
3258 
3259   enc_class enc_convP2B_regP__cmove(iRegIdst dst, iRegPsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
3260     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3261 
3262     MacroAssembler _masm(&cbuf);
3263 
3264     Label done;
3265     __ cmpdi($crx$$CondRegister, $src$$Register, 0);
3266     __ li($dst$$Register, $zero$$constant);
3267     __ beq($crx$$CondRegister, done);
3268     __ li($dst$$Register, $notzero$$constant);
3269     __ bind(done);
3270   %}
3271 
3272   enc_class enc_cmove_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL mem ) %{
3273     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3274 
3275     MacroAssembler _masm(&cbuf);
3276     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
3277     Label done;
3278     __ bso($crx$$CondRegister, done);
3279     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
3280     // TODO PPC port __ endgroup_if_needed(_size == 12);
3281     __ bind(done);
3282   %}
3283 
3284   enc_class enc_bc(flagsReg crx, cmpOp cmp, Label lbl) %{
3285     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3286 
3287     MacroAssembler _masm(&cbuf);
3288     Label d;   // dummy
3289     __ bind(d);
3290     Label* p = ($lbl$$label);
3291     // `p' is `NULL' when this encoding class is used only to
3292     // determine the size of the encoded instruction.
3293     Label& l = (NULL == p)? d : *(p);
3294     int cc = $cmp$$cmpcode;
3295     int flags_reg = $crx$$reg;
3296     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3297     int bhint = Assembler::bhintNoHint;
3298 
3299     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3300       if (_prob <= PROB_NEVER) {
3301         bhint = Assembler::bhintIsNotTaken;
3302       } else if (_prob >= PROB_ALWAYS) {
3303         bhint = Assembler::bhintIsTaken;
3304       }
3305     }
3306 
3307     __ bc(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3308           cc_to_biint(cc, flags_reg),
3309           l);
3310   %}
3311 
3312   enc_class enc_bc_far(flagsReg crx, cmpOp cmp, Label lbl) %{
3313     // The scheduler doesn't know about branch shortening, so we set the opcode
3314     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
3315     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3316 
3317     MacroAssembler _masm(&cbuf);
3318     Label d;    // dummy
3319     __ bind(d);
3320     Label* p = ($lbl$$label);
3321     // `p' is `NULL' when this encoding class is used only to
3322     // determine the size of the encoded instruction.
3323     Label& l = (NULL == p)? d : *(p);
3324     int cc = $cmp$$cmpcode;
3325     int flags_reg = $crx$$reg;
3326     int bhint = Assembler::bhintNoHint;
3327 
3328     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3329       if (_prob <= PROB_NEVER) {
3330         bhint = Assembler::bhintIsNotTaken;
3331       } else if (_prob >= PROB_ALWAYS) {
3332         bhint = Assembler::bhintIsTaken;
3333       }
3334     }
3335 
3336     // Tell the conditional far branch to optimize itself when being relocated.
3337     __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3338                   cc_to_biint(cc, flags_reg),
3339                   l,
3340                   MacroAssembler::bc_far_optimize_on_relocate);
3341   %}
3342 
3343   // Branch used with Power6 scheduling (can be shortened without changing the node).
3344   enc_class enc_bc_short_far(flagsReg crx, cmpOp cmp, Label lbl) %{
3345     // The scheduler doesn't know about branch shortening, so we set the opcode
3346     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
3347     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3348 
3349     MacroAssembler _masm(&cbuf);
3350     Label d;   // dummy
3351     __ bind(d);
3352     Label* p = ($lbl$$label);
3353     // `p' is `NULL' when this encoding class is used only to
3354     // determine the size of the encoded instruction.
3355     Label& l = (NULL == p)? d : *(p);
3356     int cc = $cmp$$cmpcode;
3357     int flags_reg = $crx$$reg;
3358     int bhint = Assembler::bhintNoHint;
3359 
3360     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3361       if (_prob <= PROB_NEVER) {
3362         bhint = Assembler::bhintIsNotTaken;
3363       } else if (_prob >= PROB_ALWAYS) {
3364         bhint = Assembler::bhintIsTaken;
3365       }
3366     }
3367 
3368 #if 0 // TODO: PPC port
3369     if (_size == 8) {
3370       // Tell the conditional far branch to optimize itself when being relocated.
3371       __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3372                     cc_to_biint(cc, flags_reg),
3373                     l,
3374                     MacroAssembler::bc_far_optimize_on_relocate);
3375     } else {
3376       __ bc    (Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3377                     cc_to_biint(cc, flags_reg),
3378                     l);
3379     }
3380 #endif
3381     Unimplemented();
3382   %}
3383 
3384   // Postalloc expand emitter for loading a replicatef float constant from
3385   // the method's TOC.
3386   // Enc_class needed as consttanttablebase is not supported by postalloc
3387   // expand.
3388   enc_class postalloc_expand_load_replF_constant(iRegLdst dst, immF src, iRegLdst toc) %{
3389     // Create new nodes.
3390 
3391     // Make an operand with the bit pattern to load as float.
3392     immLOper *op_repl = new immLOper((jlong)replicate_immF(op_src->constantF()));
3393 
3394     loadConLNodesTuple loadConLNodes =
3395       loadConLNodesTuple_create(ra_, n_toc, op_repl,
3396                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
3397 
3398     // Push new nodes.
3399     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
3400     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
3401 
3402     assert(nodes->length() >= 1, "must have created at least 1 node");
3403     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
3404   %}
3405 
3406   // This enc_class is needed so that scheduler gets proper
3407   // input mapping for latency computation.
3408   enc_class enc_poll(immI dst, iRegLdst poll) %{
3409     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
3410     // Fake operand dst needed for PPC scheduler.
3411     assert($dst$$constant == 0x0, "dst must be 0x0");
3412 
3413     MacroAssembler _masm(&cbuf);
3414     // Mark the code position where the load from the safepoint
3415     // polling page was emitted as relocInfo::poll_type.
3416     __ relocate(relocInfo::poll_type);
3417     __ load_from_polling_page($poll$$Register);
3418   %}
3419 
3420   // A Java static call or a runtime call.
3421   //
3422   // Branch-and-link relative to a trampoline.
3423   // The trampoline loads the target address and does a long branch to there.
3424   // In case we call java, the trampoline branches to a interpreter_stub
3425   // which loads the inline cache and the real call target from the constant pool.
3426   //
3427   // This basically looks like this:
3428   //
3429   // >>>> consts      -+  -+
3430   //                   |   |- offset1
3431   // [call target1]    | <-+
3432   // [IC cache]        |- offset2
3433   // [call target2] <--+
3434   //
3435   // <<<< consts
3436   // >>>> insts
3437   //
3438   // bl offset16               -+  -+             ??? // How many bits available?
3439   //                            |   |
3440   // <<<< insts                 |   |
3441   // >>>> stubs                 |   |
3442   //                            |   |- trampoline_stub_Reloc
3443   // trampoline stub:           | <-+
3444   //   r2 = toc                 |
3445   //   r2 = [r2 + offset1]      |       // Load call target1 from const section
3446   //   mtctr r2                 |
3447   //   bctr                     |- static_stub_Reloc
3448   // comp_to_interp_stub:   <---+
3449   //   r1 = toc
3450   //   ICreg = [r1 + IC_offset]         // Load IC from const section
3451   //   r1    = [r1 + offset2]           // Load call target2 from const section
3452   //   mtctr r1
3453   //   bctr
3454   //
3455   // <<<< stubs
3456   //
3457   // The call instruction in the code either
3458   // - Branches directly to a compiled method if the offset is encodable in instruction.
3459   // - Branches to the trampoline stub if the offset to the compiled method is not encodable.
3460   // - Branches to the compiled_to_interp stub if the target is interpreted.
3461   //
3462   // Further there are three relocations from the loads to the constants in
3463   // the constant section.
3464   //
3465   // Usage of r1 and r2 in the stubs allows to distinguish them.
3466   enc_class enc_java_static_call(method meth) %{
3467     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
3468 
3469     MacroAssembler _masm(&cbuf);
3470     address entry_point = (address)$meth$$method;
3471 
3472     if (!_method) {
3473       // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
3474       emit_call_with_trampoline_stub(_masm, entry_point, relocInfo::runtime_call_type);
3475     } else {
3476       // Remember the offset not the address.
3477       const int start_offset = __ offset();
3478       // The trampoline stub.
3479       if (!Compile::current()->in_scratch_emit_size()) {
3480         // No entry point given, use the current pc.
3481         // Make sure branch fits into
3482         if (entry_point == 0) entry_point = __ pc();
3483 
3484         // Put the entry point as a constant into the constant pool.
3485         const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
3486         const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
3487 
3488         // Emit the trampoline stub which will be related to the branch-and-link below.
3489         CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
3490         if (Compile::current()->env()->failing()) { return; } // Code cache may be full.
3491         __ relocate(_optimized_virtual ?
3492                     relocInfo::opt_virtual_call_type : relocInfo::static_call_type);
3493       }
3494 
3495       // The real call.
3496       // Note: At this point we do not have the address of the trampoline
3497       // stub, and the entry point might be too far away for bl, so __ pc()
3498       // serves as dummy and the bl will be patched later.
3499       cbuf.set_insts_mark();
3500       __ bl(__ pc());  // Emits a relocation.
3501 
3502       // The stub for call to interpreter.
3503       CompiledStaticCall::emit_to_interp_stub(cbuf);
3504     }
3505   %}
3506 
3507   // Emit a method handle call.
3508   //
3509   // Method handle calls from compiled to compiled are going thru a
3510   // c2i -> i2c adapter, extending the frame for their arguments. The
3511   // caller however, returns directly to the compiled callee, that has
3512   // to cope with the extended frame. We restore the original frame by
3513   // loading the callers sp and adding the calculated framesize.
3514   enc_class enc_java_handle_call(method meth) %{
3515     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3516 
3517     MacroAssembler _masm(&cbuf);
3518     address entry_point = (address)$meth$$method;
3519 
3520     // Remember the offset not the address.
3521     const int start_offset = __ offset();
3522     // The trampoline stub.
3523     if (!ra_->C->in_scratch_emit_size()) {
3524       // No entry point given, use the current pc.
3525       // Make sure branch fits into
3526       if (entry_point == 0) entry_point = __ pc();
3527 
3528       // Put the entry point as a constant into the constant pool.
3529       const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
3530       const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
3531 
3532       // Emit the trampoline stub which will be related to the branch-and-link below.
3533       CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
3534       if (ra_->C->env()->failing()) { return; } // Code cache may be full.
3535       assert(_optimized_virtual, "methodHandle call should be a virtual call");
3536       __ relocate(relocInfo::opt_virtual_call_type);
3537     }
3538 
3539     // The real call.
3540     // Note: At this point we do not have the address of the trampoline
3541     // stub, and the entry point might be too far away for bl, so __ pc()
3542     // serves as dummy and the bl will be patched later.
3543     cbuf.set_insts_mark();
3544     __ bl(__ pc());  // Emits a relocation.
3545 
3546     assert(_method, "execute next statement conditionally");
3547     // The stub for call to interpreter.
3548     CompiledStaticCall::emit_to_interp_stub(cbuf);
3549 
3550     // Restore original sp.
3551     __ ld(R11_scratch1, 0, R1_SP); // Load caller sp.
3552     const long framesize = ra_->C->frame_slots() << LogBytesPerInt;
3553     unsigned int bytes = (unsigned int)framesize;
3554     long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
3555     if (Assembler::is_simm(-offset, 16)) {
3556       __ addi(R1_SP, R11_scratch1, -offset);
3557     } else {
3558       __ load_const_optimized(R12_scratch2, -offset);
3559       __ add(R1_SP, R11_scratch1, R12_scratch2);
3560     }
3561 #ifdef ASSERT
3562   __ ld(R12_scratch2, 0, R1_SP); // Load from unextended_sp.
3563   __ cmpd(CCR0, R11_scratch1, R12_scratch2);
3564   __ asm_assert_eq("backlink changed", 0x8000);
3565 #endif
3566     // If fails should store backlink before unextending.
3567 
3568     if (ra_->C->env()->failing()) {
3569       return;
3570     }
3571   %}
3572 
3573   // Second node of expanded dynamic call - the call.
3574   enc_class enc_java_dynamic_call_sched(method meth) %{
3575     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
3576 
3577     MacroAssembler _masm(&cbuf);
3578 
3579     if (!ra_->C->in_scratch_emit_size()) {
3580       // Create a call trampoline stub for the given method.
3581       const address entry_point = !($meth$$method) ? 0 : (address)$meth$$method;
3582       const address entry_point_const = __ address_constant(entry_point, RelocationHolder::none);
3583       const int entry_point_const_toc_offset = __ offset_to_method_toc(entry_point_const);
3584       CallStubImpl::emit_trampoline_stub(_masm, entry_point_const_toc_offset, __ offset());
3585       if (ra_->C->env()->failing()) { return; } // Code cache may be full.
3586 
3587       // Build relocation at call site with ic position as data.
3588       assert((_load_ic_hi_node != NULL && _load_ic_node == NULL) ||
3589              (_load_ic_hi_node == NULL && _load_ic_node != NULL),
3590              "must have one, but can't have both");
3591       assert((_load_ic_hi_node != NULL && _load_ic_hi_node->_cbuf_insts_offset != -1) ||
3592              (_load_ic_node != NULL    && _load_ic_node->_cbuf_insts_offset != -1),
3593              "must contain instruction offset");
3594       const int virtual_call_oop_addr_offset = _load_ic_hi_node != NULL
3595         ? _load_ic_hi_node->_cbuf_insts_offset
3596         : _load_ic_node->_cbuf_insts_offset;
3597       const address virtual_call_oop_addr = __ addr_at(virtual_call_oop_addr_offset);
3598       assert(MacroAssembler::is_load_const_from_method_toc_at(virtual_call_oop_addr),
3599              "should be load from TOC");
3600 
3601       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
3602     }
3603 
3604     // At this point I do not have the address of the trampoline stub,
3605     // and the entry point might be too far away for bl. Pc() serves
3606     // as dummy and bl will be patched later.
3607     __ bl((address) __ pc());
3608   %}
3609 
3610   // postalloc expand emitter for virtual calls.
3611   enc_class postalloc_expand_java_dynamic_call_sched(method meth, iRegLdst toc) %{
3612 
3613     // Create the nodes for loading the IC from the TOC.
3614     loadConLNodesTuple loadConLNodes_IC =
3615       loadConLNodesTuple_create(ra_, n_toc, new immLOper((jlong)Universe::non_oop_word()),
3616                                 OptoReg::Name(R19_H_num), OptoReg::Name(R19_num));
3617 
3618     // Create the call node.
3619     CallDynamicJavaDirectSchedNode *call = new CallDynamicJavaDirectSchedNode();
3620     call->_method_handle_invoke = _method_handle_invoke;
3621     call->_vtable_index      = _vtable_index;
3622     call->_method            = _method;
3623     call->_bci               = _bci;
3624     call->_optimized_virtual = _optimized_virtual;
3625     call->_tf                = _tf;
3626     call->_entry_point       = _entry_point;
3627     call->_cnt               = _cnt;
3628     call->_argsize           = _argsize;
3629     call->_oop_map           = _oop_map;
3630     call->_jvms              = _jvms;
3631     call->_jvmadj            = _jvmadj;
3632     call->_in_rms            = _in_rms;
3633     call->_nesting           = _nesting;
3634 
3635     // New call needs all inputs of old call.
3636     // Req...
3637     for (uint i = 0; i < req(); ++i) {
3638       // The expanded node does not need toc any more.
3639       // Add the inline cache constant here instead. This expresses the
3640       // register of the inline cache must be live at the call.
3641       // Else we would have to adapt JVMState by -1.
3642       if (i == mach_constant_base_node_input()) {
3643         call->add_req(loadConLNodes_IC._last);
3644       } else {
3645         call->add_req(in(i));
3646       }
3647     }
3648     // ...as well as prec
3649     for (uint i = req(); i < len(); ++i) {
3650       call->add_prec(in(i));
3651     }
3652 
3653     // Remember nodes loading the inline cache into r19.
3654     call->_load_ic_hi_node = loadConLNodes_IC._large_hi;
3655     call->_load_ic_node    = loadConLNodes_IC._small;
3656 
3657     // Operands for new nodes.
3658     call->_opnds[0] = _opnds[0];
3659     call->_opnds[1] = _opnds[1];
3660 
3661     // Only the inline cache is associated with a register.
3662     assert(Matcher::inline_cache_reg() == OptoReg::Name(R19_num), "ic reg should be R19");
3663 
3664     // Push new nodes.
3665     if (loadConLNodes_IC._large_hi) nodes->push(loadConLNodes_IC._large_hi);
3666     if (loadConLNodes_IC._last)     nodes->push(loadConLNodes_IC._last);
3667     nodes->push(call);
3668   %}
3669 
3670   // Compound version of call dynamic
3671   // Toc is only passed so that it can be used in ins_encode statement.
3672   // In the code we have to use $constanttablebase.
3673   enc_class enc_java_dynamic_call(method meth, iRegLdst toc) %{
3674     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3675     MacroAssembler _masm(&cbuf);
3676     int start_offset = __ offset();
3677 
3678     Register Rtoc = (ra_) ? $constanttablebase : R2_TOC;
3679 #if 0
3680     int vtable_index = this->_vtable_index;
3681     if (_vtable_index < 0) {
3682       // Must be invalid_vtable_index, not nonvirtual_vtable_index.
3683       assert(_vtable_index == Method::invalid_vtable_index, "correct sentinel value");
3684       Register ic_reg = as_Register(Matcher::inline_cache_reg_encode());
3685 
3686       // Virtual call relocation will point to ic load.
3687       address virtual_call_meta_addr = __ pc();
3688       // Load a clear inline cache.
3689       AddressLiteral empty_ic((address) Universe::non_oop_word());
3690       __ load_const_from_method_toc(ic_reg, empty_ic, Rtoc);
3691       // CALL to fixup routine.  Fixup routine uses ScopeDesc info
3692       // to determine who we intended to call.
3693       __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
3694       emit_call_with_trampoline_stub(_masm, (address)$meth$$method, relocInfo::none);
3695       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
3696              "Fix constant in ret_addr_offset()");
3697     } else {
3698       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
3699       // Go thru the vtable. Get receiver klass. Receiver already
3700       // checked for non-null. If we'll go thru a C2I adapter, the
3701       // interpreter expects method in R19_method.
3702 
3703       __ load_klass(R11_scratch1, R3);
3704 
3705       int entry_offset = InstanceKlass::vtable_start_offset() + _vtable_index * vtableEntry::size();
3706       int v_off = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
3707       __ li(R19_method, v_off);
3708       __ ldx(R19_method/*method oop*/, R19_method/*method offset*/, R11_scratch1/*class*/);
3709       // NOTE: for vtable dispatches, the vtable entry will never be
3710       // null. However it may very well end up in handle_wrong_method
3711       // if the method is abstract for the particular class.
3712       __ ld(R11_scratch1, in_bytes(Method::from_compiled_offset()), R19_method);
3713       // Call target. Either compiled code or C2I adapter.
3714       __ mtctr(R11_scratch1);
3715       __ bctrl();
3716       if (((MachCallDynamicJavaNode*)this)->ret_addr_offset() != __ offset() - start_offset) {
3717         tty->print(" %d, %d\n", ((MachCallDynamicJavaNode*)this)->ret_addr_offset(),__ offset() - start_offset);
3718       }
3719       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
3720              "Fix constant in ret_addr_offset()");
3721     }
3722 #endif
3723     Unimplemented();  // ret_addr_offset not yet fixed. Depends on compressed oops (load klass!).
3724   %}
3725 
3726   // a runtime call
3727   enc_class enc_java_to_runtime_call (method meth) %{
3728     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3729 
3730     MacroAssembler _masm(&cbuf);
3731     const address start_pc = __ pc();
3732 
3733 #if defined(ABI_ELFv2)
3734     address entry= !($meth$$method) ? NULL : (address)$meth$$method;
3735     __ call_c(entry, relocInfo::runtime_call_type);
3736 #else
3737     // The function we're going to call.
3738     FunctionDescriptor fdtemp;
3739     const FunctionDescriptor* fd = !($meth$$method) ? &fdtemp : (FunctionDescriptor*)$meth$$method;
3740 
3741     Register Rtoc = R12_scratch2;
3742     // Calculate the method's TOC.
3743     __ calculate_address_from_global_toc(Rtoc, __ method_toc());
3744     // Put entry, env, toc into the constant pool, this needs up to 3 constant
3745     // pool entries; call_c_using_toc will optimize the call.
3746     __ call_c_using_toc(fd, relocInfo::runtime_call_type, Rtoc);
3747 #endif
3748 
3749     // Check the ret_addr_offset.
3750     assert(((MachCallRuntimeNode*)this)->ret_addr_offset() ==  __ last_calls_return_pc() - start_pc,
3751            "Fix constant in ret_addr_offset()");
3752   %}
3753 
3754   // Move to ctr for leaf call.
3755   // This enc_class is needed so that scheduler gets proper
3756   // input mapping for latency computation.
3757   enc_class enc_leaf_call_mtctr(iRegLsrc src) %{
3758     // TODO: PPC port $archOpcode(ppc64Opcode_mtctr);
3759     MacroAssembler _masm(&cbuf);
3760     __ mtctr($src$$Register);
3761   %}
3762 
3763   // Postalloc expand emitter for runtime leaf calls.
3764   enc_class postalloc_expand_java_to_runtime_call(method meth, iRegLdst toc) %{
3765     loadConLNodesTuple loadConLNodes_Entry;
3766 #if defined(ABI_ELFv2)
3767     jlong entry_address = (jlong) this->entry_point();
3768     assert(entry_address, "need address here");
3769     loadConLNodes_Entry = loadConLNodesTuple_create(ra_, n_toc, new immLOper(entry_address),
3770                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
3771 #else
3772     // Get the struct that describes the function we are about to call.
3773     FunctionDescriptor* fd = (FunctionDescriptor*) this->entry_point();
3774     assert(fd, "need fd here");
3775     jlong entry_address = (jlong) fd->entry();
3776     // new nodes
3777     loadConLNodesTuple loadConLNodes_Env;
3778     loadConLNodesTuple loadConLNodes_Toc;
3779 
3780     // Create nodes and operands for loading the entry point.
3781     loadConLNodes_Entry = loadConLNodesTuple_create(ra_, n_toc, new immLOper(entry_address),
3782                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
3783 
3784 
3785     // Create nodes and operands for loading the env pointer.
3786     if (fd->env() != NULL) {
3787       loadConLNodes_Env = loadConLNodesTuple_create(ra_, n_toc, new immLOper((jlong) fd->env()),
3788                                                     OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
3789     } else {
3790       loadConLNodes_Env._large_hi = NULL;
3791       loadConLNodes_Env._large_lo = NULL;
3792       loadConLNodes_Env._small    = NULL;
3793       loadConLNodes_Env._last = new loadConL16Node();
3794       loadConLNodes_Env._last->_opnds[0] = new iRegLdstOper();
3795       loadConLNodes_Env._last->_opnds[1] = new immL16Oper(0);
3796       ra_->set_pair(loadConLNodes_Env._last->_idx, OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
3797     }
3798 
3799     // Create nodes and operands for loading the Toc point.
3800     loadConLNodes_Toc = loadConLNodesTuple_create(ra_, n_toc, new immLOper((jlong) fd->toc()),
3801                                                   OptoReg::Name(R2_H_num), OptoReg::Name(R2_num));
3802 #endif // ABI_ELFv2
3803     // mtctr node
3804     MachNode *mtctr = new CallLeafDirect_mtctrNode();
3805 
3806     assert(loadConLNodes_Entry._last != NULL, "entry must exist");
3807     mtctr->add_req(0, loadConLNodes_Entry._last);
3808 
3809     mtctr->_opnds[0] = new iRegLdstOper();
3810     mtctr->_opnds[1] = new iRegLdstOper();
3811 
3812     // call node
3813     MachCallLeafNode *call = new CallLeafDirectNode();
3814 
3815     call->_opnds[0] = _opnds[0];
3816     call->_opnds[1] = new methodOper((intptr_t) entry_address); // May get set later.
3817 
3818     // Make the new call node look like the old one.
3819     call->_name        = _name;
3820     call->_tf          = _tf;
3821     call->_entry_point = _entry_point;
3822     call->_cnt         = _cnt;
3823     call->_argsize     = _argsize;
3824     call->_oop_map     = _oop_map;
3825     guarantee(!_jvms, "You must clone the jvms and adapt the offsets by fix_jvms().");
3826     call->_jvms        = NULL;
3827     call->_jvmadj      = _jvmadj;
3828     call->_in_rms      = _in_rms;
3829     call->_nesting     = _nesting;
3830 
3831 
3832     // New call needs all inputs of old call.
3833     // Req...
3834     for (uint i = 0; i < req(); ++i) {
3835       if (i != mach_constant_base_node_input()) {
3836         call->add_req(in(i));
3837       }
3838     }
3839 
3840     // These must be reqired edges, as the registers are live up to
3841     // the call. Else the constants are handled as kills.
3842     call->add_req(mtctr);
3843 #if !defined(ABI_ELFv2)
3844     call->add_req(loadConLNodes_Env._last);
3845     call->add_req(loadConLNodes_Toc._last);
3846 #endif
3847 
3848     // ...as well as prec
3849     for (uint i = req(); i < len(); ++i) {
3850       call->add_prec(in(i));
3851     }
3852 
3853     // registers
3854     ra_->set1(mtctr->_idx, OptoReg::Name(SR_CTR_num));
3855 
3856     // Insert the new nodes.
3857     if (loadConLNodes_Entry._large_hi) nodes->push(loadConLNodes_Entry._large_hi);
3858     if (loadConLNodes_Entry._last)     nodes->push(loadConLNodes_Entry._last);
3859 #if !defined(ABI_ELFv2)
3860     if (loadConLNodes_Env._large_hi)   nodes->push(loadConLNodes_Env._large_hi);
3861     if (loadConLNodes_Env._last)       nodes->push(loadConLNodes_Env._last);
3862     if (loadConLNodes_Toc._large_hi)   nodes->push(loadConLNodes_Toc._large_hi);
3863     if (loadConLNodes_Toc._last)       nodes->push(loadConLNodes_Toc._last);
3864 #endif
3865     nodes->push(mtctr);
3866     nodes->push(call);
3867   %}
3868 %}
3869 
3870 //----------FRAME--------------------------------------------------------------
3871 // Definition of frame structure and management information.
3872 
3873 frame %{
3874   // What direction does stack grow in (assumed to be same for native & Java).
3875   stack_direction(TOWARDS_LOW);
3876 
3877   // These two registers define part of the calling convention between
3878   // compiled code and the interpreter.
3879 
3880   // Inline Cache Register or method for I2C.
3881   inline_cache_reg(R19); // R19_method
3882 
3883   // Method Oop Register when calling interpreter.
3884   interpreter_method_oop_reg(R19); // R19_method
3885 
3886   // Optional: name the operand used by cisc-spilling to access
3887   // [stack_pointer + offset].
3888   cisc_spilling_operand_name(indOffset);
3889 
3890   // Number of stack slots consumed by a Monitor enter.
3891   sync_stack_slots((frame::jit_monitor_size / VMRegImpl::stack_slot_size));
3892 
3893   // Compiled code's Frame Pointer.
3894   frame_pointer(R1); // R1_SP
3895 
3896   // Interpreter stores its frame pointer in a register which is
3897   // stored to the stack by I2CAdaptors. I2CAdaptors convert from
3898   // interpreted java to compiled java.
3899   //
3900   // R14_state holds pointer to caller's cInterpreter.
3901   interpreter_frame_pointer(R14); // R14_state
3902 
3903   stack_alignment(frame::alignment_in_bytes);
3904 
3905   in_preserve_stack_slots((frame::jit_in_preserve_size / VMRegImpl::stack_slot_size));
3906 
3907   // Number of outgoing stack slots killed above the
3908   // out_preserve_stack_slots for calls to C. Supports the var-args
3909   // backing area for register parms.
3910   //
3911   varargs_C_out_slots_killed(((frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size));
3912 
3913   // The after-PROLOG location of the return address. Location of
3914   // return address specifies a type (REG or STACK) and a number
3915   // representing the register number (i.e. - use a register name) or
3916   // stack slot.
3917   //
3918   // A: Link register is stored in stack slot ...
3919   // M:  ... but it's in the caller's frame according to PPC-64 ABI.
3920   // J: Therefore, we make sure that the link register is also in R11_scratch1
3921   //    at the end of the prolog.
3922   // B: We use R20, now.
3923   //return_addr(REG R20);
3924 
3925   // G: After reading the comments made by all the luminaries on their
3926   //    failure to tell the compiler where the return address really is,
3927   //    I hardly dare to try myself.  However, I'm convinced it's in slot
3928   //    4 what apparently works and saves us some spills.
3929   return_addr(STACK 4);
3930 
3931   // This is the body of the function
3932   //
3933   // void Matcher::calling_convention(OptoRegPair* sig, // array of ideal regs
3934   //                                  uint length,      // length of array
3935   //                                  bool is_outgoing)
3936   //
3937   // The `sig' array is to be updated. sig[j] represents the location
3938   // of the j-th argument, either a register or a stack slot.
3939 
3940   // Comment taken from i486.ad:
3941   // Body of function which returns an integer array locating
3942   // arguments either in registers or in stack slots. Passed an array
3943   // of ideal registers called "sig" and a "length" count. Stack-slot
3944   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3945   // arguments for a CALLEE. Incoming stack arguments are
3946   // automatically biased by the preserve_stack_slots field above.
3947   calling_convention %{
3948     // No difference between ingoing/outgoing. Just pass false.
3949     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
3950   %}
3951 
3952   // Comment taken from i486.ad:
3953   // Body of function which returns an integer array locating
3954   // arguments either in registers or in stack slots. Passed an array
3955   // of ideal registers called "sig" and a "length" count. Stack-slot
3956   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3957   // arguments for a CALLEE. Incoming stack arguments are
3958   // automatically biased by the preserve_stack_slots field above.
3959   c_calling_convention %{
3960     // This is obviously always outgoing.
3961     // C argument in register AND stack slot.
3962     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3963   %}
3964 
3965   // Location of native (C/C++) and interpreter return values. This
3966   // is specified to be the same as Java. In the 32-bit VM, long
3967   // values are actually returned from native calls in O0:O1 and
3968   // returned to the interpreter in I0:I1. The copying to and from
3969   // the register pairs is done by the appropriate call and epilog
3970   // opcodes. This simplifies the register allocator.
3971   c_return_value %{
3972     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
3973             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
3974             "only return normal values");
3975     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
3976     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
3977     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
3978     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
3979   %}
3980 
3981   // Location of compiled Java return values.  Same as C
3982   return_value %{
3983     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
3984             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
3985             "only return normal values");
3986     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
3987     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
3988     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
3989     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
3990   %}
3991 %}
3992 
3993 
3994 //----------ATTRIBUTES---------------------------------------------------------
3995 
3996 //----------Operand Attributes-------------------------------------------------
3997 op_attrib op_cost(1);          // Required cost attribute.
3998 
3999 //----------Instruction Attributes---------------------------------------------
4000 
4001 // Cost attribute. required.
4002 ins_attrib ins_cost(DEFAULT_COST);
4003 
4004 // Is this instruction a non-matching short branch variant of some
4005 // long branch? Not required.
4006 ins_attrib ins_short_branch(0);
4007 
4008 ins_attrib ins_is_TrapBasedCheckNode(true);
4009 
4010 // Number of constants.
4011 // This instruction uses the given number of constants
4012 // (optional attribute).
4013 // This is needed to determine in time whether the constant pool will
4014 // exceed 4000 entries. Before postalloc_expand the overall number of constants
4015 // is determined. It's also used to compute the constant pool size
4016 // in Output().
4017 ins_attrib ins_num_consts(0);
4018 
4019 // Required alignment attribute (must be a power of 2) specifies the
4020 // alignment that some part of the instruction (not necessarily the
4021 // start) requires. If > 1, a compute_padding() function must be
4022 // provided for the instruction.
4023 ins_attrib ins_alignment(1);
4024 
4025 // Enforce/prohibit rematerializations.
4026 // - If an instruction is attributed with 'ins_cannot_rematerialize(true)'
4027 //   then rematerialization of that instruction is prohibited and the
4028 //   instruction's value will be spilled if necessary.
4029 //   Causes that MachNode::rematerialize() returns false.
4030 // - If an instruction is attributed with 'ins_should_rematerialize(true)'
4031 //   then rematerialization should be enforced and a copy of the instruction
4032 //   should be inserted if possible; rematerialization is not guaranteed.
4033 //   Note: this may result in rematerializations in front of every use.
4034 //   Causes that MachNode::rematerialize() can return true.
4035 // (optional attribute)
4036 ins_attrib ins_cannot_rematerialize(false);
4037 ins_attrib ins_should_rematerialize(false);
4038 
4039 // Instruction has variable size depending on alignment.
4040 ins_attrib ins_variable_size_depending_on_alignment(false);
4041 
4042 // Instruction is a nop.
4043 ins_attrib ins_is_nop(false);
4044 
4045 // Instruction is mapped to a MachIfFastLock node (instead of MachFastLock).
4046 ins_attrib ins_use_mach_if_fast_lock_node(false);
4047 
4048 // Field for the toc offset of a constant.
4049 //
4050 // This is needed if the toc offset is not encodable as an immediate in
4051 // the PPC load instruction. If so, the upper (hi) bits of the offset are
4052 // added to the toc, and from this a load with immediate is performed.
4053 // With postalloc expand, we get two nodes that require the same offset
4054 // but which don't know about each other. The offset is only known
4055 // when the constant is added to the constant pool during emitting.
4056 // It is generated in the 'hi'-node adding the upper bits, and saved
4057 // in this node.  The 'lo'-node has a link to the 'hi'-node and reads
4058 // the offset from there when it gets encoded.
4059 ins_attrib ins_field_const_toc_offset(0);
4060 ins_attrib ins_field_const_toc_offset_hi_node(0);
4061 
4062 // A field that can hold the instructions offset in the code buffer.
4063 // Set in the nodes emitter.
4064 ins_attrib ins_field_cbuf_insts_offset(-1);
4065 
4066 // Fields for referencing a call's load-IC-node.
4067 // If the toc offset can not be encoded as an immediate in a load, we
4068 // use two nodes.
4069 ins_attrib ins_field_load_ic_hi_node(0);
4070 ins_attrib ins_field_load_ic_node(0);
4071 
4072 //----------OPERANDS-----------------------------------------------------------
4073 // Operand definitions must precede instruction definitions for correct
4074 // parsing in the ADLC because operands constitute user defined types
4075 // which are used in instruction definitions.
4076 //
4077 // Formats are generated automatically for constants and base registers.
4078 
4079 //----------Simple Operands----------------------------------------------------
4080 // Immediate Operands
4081 
4082 // Integer Immediate: 32-bit
4083 operand immI() %{
4084   match(ConI);
4085   op_cost(40);
4086   format %{ %}
4087   interface(CONST_INTER);
4088 %}
4089 
4090 operand immI8() %{
4091   predicate(Assembler::is_simm(n->get_int(), 8));
4092   op_cost(0);
4093   match(ConI);
4094   format %{ %}
4095   interface(CONST_INTER);
4096 %}
4097 
4098 // Integer Immediate: 16-bit
4099 operand immI16() %{
4100   predicate(Assembler::is_simm(n->get_int(), 16));
4101   op_cost(0);
4102   match(ConI);
4103   format %{ %}
4104   interface(CONST_INTER);
4105 %}
4106 
4107 // Integer Immediate: 32-bit, where lowest 16 bits are 0x0000.
4108 operand immIhi16() %{
4109   predicate(((n->get_int() & 0xffff0000) != 0) && ((n->get_int() & 0xffff) == 0));
4110   match(ConI);
4111   op_cost(0);
4112   format %{ %}
4113   interface(CONST_INTER);
4114 %}
4115 
4116 operand immInegpow2() %{
4117   predicate(is_power_of_2_long((jlong) (julong) (juint) (-(n->get_int()))));
4118   match(ConI);
4119   op_cost(0);
4120   format %{ %}
4121   interface(CONST_INTER);
4122 %}
4123 
4124 operand immIpow2minus1() %{
4125   predicate(is_power_of_2_long((((jlong) (n->get_int()))+1)));
4126   match(ConI);
4127   op_cost(0);
4128   format %{ %}
4129   interface(CONST_INTER);
4130 %}
4131 
4132 operand immIpowerOf2() %{
4133   predicate(is_power_of_2_long((((jlong) (julong) (juint) (n->get_int())))));
4134   match(ConI);
4135   op_cost(0);
4136   format %{ %}
4137   interface(CONST_INTER);
4138 %}
4139 
4140 // Unsigned Integer Immediate: the values 0-31
4141 operand uimmI5() %{
4142   predicate(Assembler::is_uimm(n->get_int(), 5));
4143   match(ConI);
4144   op_cost(0);
4145   format %{ %}
4146   interface(CONST_INTER);
4147 %}
4148 
4149 // Unsigned Integer Immediate: 6-bit
4150 operand uimmI6() %{
4151   predicate(Assembler::is_uimm(n->get_int(), 6));
4152   match(ConI);
4153   op_cost(0);
4154   format %{ %}
4155   interface(CONST_INTER);
4156 %}
4157 
4158 // Unsigned Integer Immediate:  6-bit int, greater than 32
4159 operand uimmI6_ge32() %{
4160   predicate(Assembler::is_uimm(n->get_int(), 6) && n->get_int() >= 32);
4161   match(ConI);
4162   op_cost(0);
4163   format %{ %}
4164   interface(CONST_INTER);
4165 %}
4166 
4167 // Unsigned Integer Immediate: 15-bit
4168 operand uimmI15() %{
4169   predicate(Assembler::is_uimm(n->get_int(), 15));
4170   match(ConI);
4171   op_cost(0);
4172   format %{ %}
4173   interface(CONST_INTER);
4174 %}
4175 
4176 // Unsigned Integer Immediate: 16-bit
4177 operand uimmI16() %{
4178   predicate(Assembler::is_uimm(n->get_int(), 16));
4179   match(ConI);
4180   op_cost(0);
4181   format %{ %}
4182   interface(CONST_INTER);
4183 %}
4184 
4185 // constant 'int 0'.
4186 operand immI_0() %{
4187   predicate(n->get_int() == 0);
4188   match(ConI);
4189   op_cost(0);
4190   format %{ %}
4191   interface(CONST_INTER);
4192 %}
4193 
4194 // constant 'int 1'.
4195 operand immI_1() %{
4196   predicate(n->get_int() == 1);
4197   match(ConI);
4198   op_cost(0);
4199   format %{ %}
4200   interface(CONST_INTER);
4201 %}
4202 
4203 // constant 'int -1'.
4204 operand immI_minus1() %{
4205   predicate(n->get_int() == -1);
4206   match(ConI);
4207   op_cost(0);
4208   format %{ %}
4209   interface(CONST_INTER);
4210 %}
4211 
4212 // int value 16.
4213 operand immI_16() %{
4214   predicate(n->get_int() == 16);
4215   match(ConI);
4216   op_cost(0);
4217   format %{ %}
4218   interface(CONST_INTER);
4219 %}
4220 
4221 // int value 24.
4222 operand immI_24() %{
4223   predicate(n->get_int() == 24);
4224   match(ConI);
4225   op_cost(0);
4226   format %{ %}
4227   interface(CONST_INTER);
4228 %}
4229 
4230 // Compressed oops constants
4231 // Pointer Immediate
4232 operand immN() %{
4233   match(ConN);
4234 
4235   op_cost(10);
4236   format %{ %}
4237   interface(CONST_INTER);
4238 %}
4239 
4240 // NULL Pointer Immediate
4241 operand immN_0() %{
4242   predicate(n->get_narrowcon() == 0);
4243   match(ConN);
4244 
4245   op_cost(0);
4246   format %{ %}
4247   interface(CONST_INTER);
4248 %}
4249 
4250 // Compressed klass constants
4251 operand immNKlass() %{
4252   match(ConNKlass);
4253 
4254   op_cost(0);
4255   format %{ %}
4256   interface(CONST_INTER);
4257 %}
4258 
4259 // This operand can be used to avoid matching of an instruct
4260 // with chain rule.
4261 operand immNKlass_NM() %{
4262   match(ConNKlass);
4263   predicate(false);
4264   op_cost(0);
4265   format %{ %}
4266   interface(CONST_INTER);
4267 %}
4268 
4269 // Pointer Immediate: 64-bit
4270 operand immP() %{
4271   match(ConP);
4272   op_cost(0);
4273   format %{ %}
4274   interface(CONST_INTER);
4275 %}
4276 
4277 // Operand to avoid match of loadConP.
4278 // This operand can be used to avoid matching of an instruct
4279 // with chain rule.
4280 operand immP_NM() %{
4281   match(ConP);
4282   predicate(false);
4283   op_cost(0);
4284   format %{ %}
4285   interface(CONST_INTER);
4286 %}
4287 
4288 // costant 'pointer 0'.
4289 operand immP_0() %{
4290   predicate(n->get_ptr() == 0);
4291   match(ConP);
4292   op_cost(0);
4293   format %{ %}
4294   interface(CONST_INTER);
4295 %}
4296 
4297 // pointer 0x0 or 0x1
4298 operand immP_0or1() %{
4299   predicate((n->get_ptr() == 0) || (n->get_ptr() == 1));
4300   match(ConP);
4301   op_cost(0);
4302   format %{ %}
4303   interface(CONST_INTER);
4304 %}
4305 
4306 operand immL() %{
4307   match(ConL);
4308   op_cost(40);
4309   format %{ %}
4310   interface(CONST_INTER);
4311 %}
4312 
4313 // Long Immediate: 16-bit
4314 operand immL16() %{
4315   predicate(Assembler::is_simm(n->get_long(), 16));
4316   match(ConL);
4317   op_cost(0);
4318   format %{ %}
4319   interface(CONST_INTER);
4320 %}
4321 
4322 // Long Immediate: 16-bit, 4-aligned
4323 operand immL16Alg4() %{
4324   predicate(Assembler::is_simm(n->get_long(), 16) && ((n->get_long() & 0x3) == 0));
4325   match(ConL);
4326   op_cost(0);
4327   format %{ %}
4328   interface(CONST_INTER);
4329 %}
4330 
4331 // Long Immediate: 32-bit, where lowest 16 bits are 0x0000.
4332 operand immL32hi16() %{
4333   predicate(Assembler::is_simm(n->get_long(), 32) && ((n->get_long() & 0xffffL) == 0L));
4334   match(ConL);
4335   op_cost(0);
4336   format %{ %}
4337   interface(CONST_INTER);
4338 %}
4339 
4340 // Long Immediate: 32-bit
4341 operand immL32() %{
4342   predicate(Assembler::is_simm(n->get_long(), 32));
4343   match(ConL);
4344   op_cost(0);
4345   format %{ %}
4346   interface(CONST_INTER);
4347 %}
4348 
4349 // Long Immediate: 64-bit, where highest 16 bits are not 0x0000.
4350 operand immLhighest16() %{
4351   predicate((n->get_long() & 0xffff000000000000L) != 0L && (n->get_long() & 0x0000ffffffffffffL) == 0L);
4352   match(ConL);
4353   op_cost(0);
4354   format %{ %}
4355   interface(CONST_INTER);
4356 %}
4357 
4358 operand immLnegpow2() %{
4359   predicate(is_power_of_2_long((jlong)-(n->get_long())));
4360   match(ConL);
4361   op_cost(0);
4362   format %{ %}
4363   interface(CONST_INTER);
4364 %}
4365 
4366 operand immLpow2minus1() %{
4367   predicate(is_power_of_2_long((((jlong) (n->get_long()))+1)) &&
4368             (n->get_long() != (jlong)0xffffffffffffffffL));
4369   match(ConL);
4370   op_cost(0);
4371   format %{ %}
4372   interface(CONST_INTER);
4373 %}
4374 
4375 // constant 'long 0'.
4376 operand immL_0() %{
4377   predicate(n->get_long() == 0L);
4378   match(ConL);
4379   op_cost(0);
4380   format %{ %}
4381   interface(CONST_INTER);
4382 %}
4383 
4384 // constat ' long -1'.
4385 operand immL_minus1() %{
4386   predicate(n->get_long() == -1L);
4387   match(ConL);
4388   op_cost(0);
4389   format %{ %}
4390   interface(CONST_INTER);
4391 %}
4392 
4393 // Long Immediate: low 32-bit mask
4394 operand immL_32bits() %{
4395   predicate(n->get_long() == 0xFFFFFFFFL);
4396   match(ConL);
4397   op_cost(0);
4398   format %{ %}
4399   interface(CONST_INTER);
4400 %}
4401 
4402 // Unsigned Long Immediate: 16-bit
4403 operand uimmL16() %{
4404   predicate(Assembler::is_uimm(n->get_long(), 16));
4405   match(ConL);
4406   op_cost(0);
4407   format %{ %}
4408   interface(CONST_INTER);
4409 %}
4410 
4411 // Float Immediate
4412 operand immF() %{
4413   match(ConF);
4414   op_cost(40);
4415   format %{ %}
4416   interface(CONST_INTER);
4417 %}
4418 
4419 // Float Immediate: +0.0f.
4420 operand immF_0() %{
4421   predicate(jint_cast(n->getf()) == 0);
4422   match(ConF);
4423 
4424   op_cost(0);
4425   format %{ %}
4426   interface(CONST_INTER);
4427 %}
4428 
4429 // Double Immediate
4430 operand immD() %{
4431   match(ConD);
4432   op_cost(40);
4433   format %{ %}
4434   interface(CONST_INTER);
4435 %}
4436 
4437 // Integer Register Operands
4438 // Integer Destination Register
4439 // See definition of reg_class bits32_reg_rw.
4440 operand iRegIdst() %{
4441   constraint(ALLOC_IN_RC(bits32_reg_rw));
4442   match(RegI);
4443   match(rscratch1RegI);
4444   match(rscratch2RegI);
4445   match(rarg1RegI);
4446   match(rarg2RegI);
4447   match(rarg3RegI);
4448   match(rarg4RegI);
4449   format %{ %}
4450   interface(REG_INTER);
4451 %}
4452 
4453 // Integer Source Register
4454 // See definition of reg_class bits32_reg_ro.
4455 operand iRegIsrc() %{
4456   constraint(ALLOC_IN_RC(bits32_reg_ro));
4457   match(RegI);
4458   match(rscratch1RegI);
4459   match(rscratch2RegI);
4460   match(rarg1RegI);
4461   match(rarg2RegI);
4462   match(rarg3RegI);
4463   match(rarg4RegI);
4464   format %{ %}
4465   interface(REG_INTER);
4466 %}
4467 
4468 operand rscratch1RegI() %{
4469   constraint(ALLOC_IN_RC(rscratch1_bits32_reg));
4470   match(iRegIdst);
4471   format %{ %}
4472   interface(REG_INTER);
4473 %}
4474 
4475 operand rscratch2RegI() %{
4476   constraint(ALLOC_IN_RC(rscratch2_bits32_reg));
4477   match(iRegIdst);
4478   format %{ %}
4479   interface(REG_INTER);
4480 %}
4481 
4482 operand rarg1RegI() %{
4483   constraint(ALLOC_IN_RC(rarg1_bits32_reg));
4484   match(iRegIdst);
4485   format %{ %}
4486   interface(REG_INTER);
4487 %}
4488 
4489 operand rarg2RegI() %{
4490   constraint(ALLOC_IN_RC(rarg2_bits32_reg));
4491   match(iRegIdst);
4492   format %{ %}
4493   interface(REG_INTER);
4494 %}
4495 
4496 operand rarg3RegI() %{
4497   constraint(ALLOC_IN_RC(rarg3_bits32_reg));
4498   match(iRegIdst);
4499   format %{ %}
4500   interface(REG_INTER);
4501 %}
4502 
4503 operand rarg4RegI() %{
4504   constraint(ALLOC_IN_RC(rarg4_bits32_reg));
4505   match(iRegIdst);
4506   format %{ %}
4507   interface(REG_INTER);
4508 %}
4509 
4510 operand rarg1RegL() %{
4511   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
4512   match(iRegLdst);
4513   format %{ %}
4514   interface(REG_INTER);
4515 %}
4516 
4517 operand rarg2RegL() %{
4518   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
4519   match(iRegLdst);
4520   format %{ %}
4521   interface(REG_INTER);
4522 %}
4523 
4524 operand rarg3RegL() %{
4525   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
4526   match(iRegLdst);
4527   format %{ %}
4528   interface(REG_INTER);
4529 %}
4530 
4531 operand rarg4RegL() %{
4532   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
4533   match(iRegLdst);
4534   format %{ %}
4535   interface(REG_INTER);
4536 %}
4537 
4538 // Pointer Destination Register
4539 // See definition of reg_class bits64_reg_rw.
4540 operand iRegPdst() %{
4541   constraint(ALLOC_IN_RC(bits64_reg_rw));
4542   match(RegP);
4543   match(rscratch1RegP);
4544   match(rscratch2RegP);
4545   match(rarg1RegP);
4546   match(rarg2RegP);
4547   match(rarg3RegP);
4548   match(rarg4RegP);
4549   format %{ %}
4550   interface(REG_INTER);
4551 %}
4552 
4553 // Pointer Destination Register
4554 // Operand not using r11 and r12 (killed in epilog).
4555 operand iRegPdstNoScratch() %{
4556   constraint(ALLOC_IN_RC(bits64_reg_leaf_call));
4557   match(RegP);
4558   match(rarg1RegP);
4559   match(rarg2RegP);
4560   match(rarg3RegP);
4561   match(rarg4RegP);
4562   format %{ %}
4563   interface(REG_INTER);
4564 %}
4565 
4566 // Pointer Source Register
4567 // See definition of reg_class bits64_reg_ro.
4568 operand iRegPsrc() %{
4569   constraint(ALLOC_IN_RC(bits64_reg_ro));
4570   match(RegP);
4571   match(iRegPdst);
4572   match(rscratch1RegP);
4573   match(rscratch2RegP);
4574   match(rarg1RegP);
4575   match(rarg2RegP);
4576   match(rarg3RegP);
4577   match(rarg4RegP);
4578   match(threadRegP);
4579   format %{ %}
4580   interface(REG_INTER);
4581 %}
4582 
4583 // Thread operand.
4584 operand threadRegP() %{
4585   constraint(ALLOC_IN_RC(thread_bits64_reg));
4586   match(iRegPdst);
4587   format %{ "R16" %}
4588   interface(REG_INTER);
4589 %}
4590 
4591 operand rscratch1RegP() %{
4592   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
4593   match(iRegPdst);
4594   format %{ "R11" %}
4595   interface(REG_INTER);
4596 %}
4597 
4598 operand rscratch2RegP() %{
4599   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
4600   match(iRegPdst);
4601   format %{ %}
4602   interface(REG_INTER);
4603 %}
4604 
4605 operand rarg1RegP() %{
4606   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
4607   match(iRegPdst);
4608   format %{ %}
4609   interface(REG_INTER);
4610 %}
4611 
4612 operand rarg2RegP() %{
4613   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
4614   match(iRegPdst);
4615   format %{ %}
4616   interface(REG_INTER);
4617 %}
4618 
4619 operand rarg3RegP() %{
4620   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
4621   match(iRegPdst);
4622   format %{ %}
4623   interface(REG_INTER);
4624 %}
4625 
4626 operand rarg4RegP() %{
4627   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
4628   match(iRegPdst);
4629   format %{ %}
4630   interface(REG_INTER);
4631 %}
4632 
4633 operand iRegNsrc() %{
4634   constraint(ALLOC_IN_RC(bits32_reg_ro));
4635   match(RegN);
4636   match(iRegNdst);
4637 
4638   format %{ %}
4639   interface(REG_INTER);
4640 %}
4641 
4642 operand iRegNdst() %{
4643   constraint(ALLOC_IN_RC(bits32_reg_rw));
4644   match(RegN);
4645 
4646   format %{ %}
4647   interface(REG_INTER);
4648 %}
4649 
4650 // Long Destination Register
4651 // See definition of reg_class bits64_reg_rw.
4652 operand iRegLdst() %{
4653   constraint(ALLOC_IN_RC(bits64_reg_rw));
4654   match(RegL);
4655   match(rscratch1RegL);
4656   match(rscratch2RegL);
4657   format %{ %}
4658   interface(REG_INTER);
4659 %}
4660 
4661 // Long Source Register
4662 // See definition of reg_class bits64_reg_ro.
4663 operand iRegLsrc() %{
4664   constraint(ALLOC_IN_RC(bits64_reg_ro));
4665   match(RegL);
4666   match(iRegLdst);
4667   match(rscratch1RegL);
4668   match(rscratch2RegL);
4669   format %{ %}
4670   interface(REG_INTER);
4671 %}
4672 
4673 // Special operand for ConvL2I.
4674 operand iRegL2Isrc(iRegLsrc reg) %{
4675   constraint(ALLOC_IN_RC(bits64_reg_ro));
4676   match(ConvL2I reg);
4677   format %{ "ConvL2I($reg)" %}
4678   interface(REG_INTER)
4679 %}
4680 
4681 operand rscratch1RegL() %{
4682   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
4683   match(RegL);
4684   format %{ %}
4685   interface(REG_INTER);
4686 %}
4687 
4688 operand rscratch2RegL() %{
4689   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
4690   match(RegL);
4691   format %{ %}
4692   interface(REG_INTER);
4693 %}
4694 
4695 // Condition Code Flag Registers
4696 operand flagsReg() %{
4697   constraint(ALLOC_IN_RC(int_flags));
4698   match(RegFlags);
4699   format %{ %}
4700   interface(REG_INTER);
4701 %}
4702 
4703 // Condition Code Flag Register CR0
4704 operand flagsRegCR0() %{
4705   constraint(ALLOC_IN_RC(int_flags_CR0));
4706   match(RegFlags);
4707   format %{ "CR0" %}
4708   interface(REG_INTER);
4709 %}
4710 
4711 operand flagsRegCR1() %{
4712   constraint(ALLOC_IN_RC(int_flags_CR1));
4713   match(RegFlags);
4714   format %{ "CR1" %}
4715   interface(REG_INTER);
4716 %}
4717 
4718 operand flagsRegCR6() %{
4719   constraint(ALLOC_IN_RC(int_flags_CR6));
4720   match(RegFlags);
4721   format %{ "CR6" %}
4722   interface(REG_INTER);
4723 %}
4724 
4725 operand regCTR() %{
4726   constraint(ALLOC_IN_RC(ctr_reg));
4727   // RegFlags should work. Introducing a RegSpecial type would cause a
4728   // lot of changes.
4729   match(RegFlags);
4730   format %{"SR_CTR" %}
4731   interface(REG_INTER);
4732 %}
4733 
4734 operand regD() %{
4735   constraint(ALLOC_IN_RC(dbl_reg));
4736   match(RegD);
4737   format %{ %}
4738   interface(REG_INTER);
4739 %}
4740 
4741 operand regF() %{
4742   constraint(ALLOC_IN_RC(flt_reg));
4743   match(RegF);
4744   format %{ %}
4745   interface(REG_INTER);
4746 %}
4747 
4748 // Special Registers
4749 
4750 // Method Register
4751 operand inline_cache_regP(iRegPdst reg) %{
4752   constraint(ALLOC_IN_RC(r19_bits64_reg)); // inline_cache_reg
4753   match(reg);
4754   format %{ %}
4755   interface(REG_INTER);
4756 %}
4757 
4758 operand compiler_method_oop_regP(iRegPdst reg) %{
4759   constraint(ALLOC_IN_RC(rscratch1_bits64_reg)); // compiler_method_oop_reg
4760   match(reg);
4761   format %{ %}
4762   interface(REG_INTER);
4763 %}
4764 
4765 operand interpreter_method_oop_regP(iRegPdst reg) %{
4766   constraint(ALLOC_IN_RC(r19_bits64_reg)); // interpreter_method_oop_reg
4767   match(reg);
4768   format %{ %}
4769   interface(REG_INTER);
4770 %}
4771 
4772 // Operands to remove register moves in unscaled mode.
4773 // Match read/write registers with an EncodeP node if neither shift nor add are required.
4774 operand iRegP2N(iRegPsrc reg) %{
4775   predicate(false /* TODO: PPC port MatchDecodeNodes*/&& Universe::narrow_oop_shift() == 0);
4776   constraint(ALLOC_IN_RC(bits64_reg_ro));
4777   match(EncodeP reg);
4778   format %{ "$reg" %}
4779   interface(REG_INTER)
4780 %}
4781 
4782 operand iRegN2P(iRegNsrc reg) %{
4783   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4784   constraint(ALLOC_IN_RC(bits32_reg_ro));
4785   match(DecodeN reg);
4786   match(DecodeNKlass reg);
4787   format %{ "$reg" %}
4788   interface(REG_INTER)
4789 %}
4790 
4791 //----------Complex Operands---------------------------------------------------
4792 // Indirect Memory Reference
4793 operand indirect(iRegPsrc reg) %{
4794   constraint(ALLOC_IN_RC(bits64_reg_ro));
4795   match(reg);
4796   op_cost(100);
4797   format %{ "[$reg]" %}
4798   interface(MEMORY_INTER) %{
4799     base($reg);
4800     index(0x0);
4801     scale(0x0);
4802     disp(0x0);
4803   %}
4804 %}
4805 
4806 // Indirect with Offset
4807 operand indOffset16(iRegPsrc reg, immL16 offset) %{
4808   constraint(ALLOC_IN_RC(bits64_reg_ro));
4809   match(AddP reg offset);
4810   op_cost(100);
4811   format %{ "[$reg + $offset]" %}
4812   interface(MEMORY_INTER) %{
4813     base($reg);
4814     index(0x0);
4815     scale(0x0);
4816     disp($offset);
4817   %}
4818 %}
4819 
4820 // Indirect with 4-aligned Offset
4821 operand indOffset16Alg4(iRegPsrc reg, immL16Alg4 offset) %{
4822   constraint(ALLOC_IN_RC(bits64_reg_ro));
4823   match(AddP reg offset);
4824   op_cost(100);
4825   format %{ "[$reg + $offset]" %}
4826   interface(MEMORY_INTER) %{
4827     base($reg);
4828     index(0x0);
4829     scale(0x0);
4830     disp($offset);
4831   %}
4832 %}
4833 
4834 //----------Complex Operands for Compressed OOPs-------------------------------
4835 // Compressed OOPs with narrow_oop_shift == 0.
4836 
4837 // Indirect Memory Reference, compressed OOP
4838 operand indirectNarrow(iRegNsrc reg) %{
4839   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4840   constraint(ALLOC_IN_RC(bits64_reg_ro));
4841   match(DecodeN reg);
4842   match(DecodeNKlass reg);
4843   op_cost(100);
4844   format %{ "[$reg]" %}
4845   interface(MEMORY_INTER) %{
4846     base($reg);
4847     index(0x0);
4848     scale(0x0);
4849     disp(0x0);
4850   %}
4851 %}
4852 
4853 // Indirect with Offset, compressed OOP
4854 operand indOffset16Narrow(iRegNsrc reg, immL16 offset) %{
4855   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4856   constraint(ALLOC_IN_RC(bits64_reg_ro));
4857   match(AddP (DecodeN reg) offset);
4858   match(AddP (DecodeNKlass reg) offset);
4859   op_cost(100);
4860   format %{ "[$reg + $offset]" %}
4861   interface(MEMORY_INTER) %{
4862     base($reg);
4863     index(0x0);
4864     scale(0x0);
4865     disp($offset);
4866   %}
4867 %}
4868 
4869 // Indirect with 4-aligned Offset, compressed OOP
4870 operand indOffset16NarrowAlg4(iRegNsrc reg, immL16Alg4 offset) %{
4871   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4872   constraint(ALLOC_IN_RC(bits64_reg_ro));
4873   match(AddP (DecodeN reg) offset);
4874   match(AddP (DecodeNKlass reg) offset);
4875   op_cost(100);
4876   format %{ "[$reg + $offset]" %}
4877   interface(MEMORY_INTER) %{
4878     base($reg);
4879     index(0x0);
4880     scale(0x0);
4881     disp($offset);
4882   %}
4883 %}
4884 
4885 //----------Special Memory Operands--------------------------------------------
4886 // Stack Slot Operand
4887 //
4888 // This operand is used for loading and storing temporary values on
4889 // the stack where a match requires a value to flow through memory.
4890 operand stackSlotI(sRegI reg) %{
4891   constraint(ALLOC_IN_RC(stack_slots));
4892   op_cost(100);
4893   //match(RegI);
4894   format %{ "[sp+$reg]" %}
4895   interface(MEMORY_INTER) %{
4896     base(0x1);   // R1_SP
4897     index(0x0);
4898     scale(0x0);
4899     disp($reg);  // Stack Offset
4900   %}
4901 %}
4902 
4903 operand stackSlotL(sRegL reg) %{
4904   constraint(ALLOC_IN_RC(stack_slots));
4905   op_cost(100);
4906   //match(RegL);
4907   format %{ "[sp+$reg]" %}
4908   interface(MEMORY_INTER) %{
4909     base(0x1);   // R1_SP
4910     index(0x0);
4911     scale(0x0);
4912     disp($reg);  // Stack Offset
4913   %}
4914 %}
4915 
4916 operand stackSlotP(sRegP reg) %{
4917   constraint(ALLOC_IN_RC(stack_slots));
4918   op_cost(100);
4919   //match(RegP);
4920   format %{ "[sp+$reg]" %}
4921   interface(MEMORY_INTER) %{
4922     base(0x1);   // R1_SP
4923     index(0x0);
4924     scale(0x0);
4925     disp($reg);  // Stack Offset
4926   %}
4927 %}
4928 
4929 operand stackSlotF(sRegF reg) %{
4930   constraint(ALLOC_IN_RC(stack_slots));
4931   op_cost(100);
4932   //match(RegF);
4933   format %{ "[sp+$reg]" %}
4934   interface(MEMORY_INTER) %{
4935     base(0x1);   // R1_SP
4936     index(0x0);
4937     scale(0x0);
4938     disp($reg);  // Stack Offset
4939   %}
4940 %}
4941 
4942 operand stackSlotD(sRegD reg) %{
4943   constraint(ALLOC_IN_RC(stack_slots));
4944   op_cost(100);
4945   //match(RegD);
4946   format %{ "[sp+$reg]" %}
4947   interface(MEMORY_INTER) %{
4948     base(0x1);   // R1_SP
4949     index(0x0);
4950     scale(0x0);
4951     disp($reg);  // Stack Offset
4952   %}
4953 %}
4954 
4955 // Operands for expressing Control Flow
4956 // NOTE: Label is a predefined operand which should not be redefined in
4957 //       the AD file. It is generically handled within the ADLC.
4958 
4959 //----------Conditional Branch Operands----------------------------------------
4960 // Comparison Op
4961 //
4962 // This is the operation of the comparison, and is limited to the
4963 // following set of codes: L (<), LE (<=), G (>), GE (>=), E (==), NE
4964 // (!=).
4965 //
4966 // Other attributes of the comparison, such as unsignedness, are specified
4967 // by the comparison instruction that sets a condition code flags register.
4968 // That result is represented by a flags operand whose subtype is appropriate
4969 // to the unsignedness (etc.) of the comparison.
4970 //
4971 // Later, the instruction which matches both the Comparison Op (a Bool) and
4972 // the flags (produced by the Cmp) specifies the coding of the comparison op
4973 // by matching a specific subtype of Bool operand below.
4974 
4975 // When used for floating point comparisons: unordered same as less.
4976 operand cmpOp() %{
4977   match(Bool);
4978   format %{ "" %}
4979   interface(COND_INTER) %{
4980                            // BO only encodes bit 4 of bcondCRbiIsX, as bits 1-3 are always '100'.
4981                            //           BO          &  BI
4982     equal(0xA);            // 10 10:   bcondCRbiIs1 & Condition::equal
4983     not_equal(0x2);        // 00 10:   bcondCRbiIs0 & Condition::equal
4984     less(0x8);             // 10 00:   bcondCRbiIs1 & Condition::less
4985     greater_equal(0x0);    // 00 00:   bcondCRbiIs0 & Condition::less
4986     less_equal(0x1);       // 00 01:   bcondCRbiIs0 & Condition::greater
4987     greater(0x9);          // 10 01:   bcondCRbiIs1 & Condition::greater
4988     overflow(0xB);         // 10 11:   bcondCRbiIs1 & Condition::summary_overflow
4989     no_overflow(0x3);      // 00 11:   bcondCRbiIs0 & Condition::summary_overflow
4990   %}
4991 %}
4992 
4993 //----------OPERAND CLASSES----------------------------------------------------
4994 // Operand Classes are groups of operands that are used to simplify
4995 // instruction definitions by not requiring the AD writer to specify
4996 // seperate instructions for every form of operand when the
4997 // instruction accepts multiple operand types with the same basic
4998 // encoding and format. The classic case of this is memory operands.
4999 // Indirect is not included since its use is limited to Compare & Swap.
5000 
5001 opclass memory(indirect, indOffset16 /*, indIndex, tlsReference*/, indirectNarrow, indOffset16Narrow);
5002 // Memory operand where offsets are 4-aligned. Required for ld, std.
5003 opclass memoryAlg4(indirect, indOffset16Alg4, indirectNarrow, indOffset16NarrowAlg4);
5004 opclass indirectMemory(indirect, indirectNarrow);
5005 
5006 // Special opclass for I and ConvL2I.
5007 opclass iRegIsrc_iRegL2Isrc(iRegIsrc, iRegL2Isrc);
5008 
5009 // Operand classes to match encode and decode. iRegN_P2N is only used
5010 // for storeN. I have never seen an encode node elsewhere.
5011 opclass iRegN_P2N(iRegNsrc, iRegP2N);
5012 opclass iRegP_N2P(iRegPsrc, iRegN2P);
5013 
5014 //----------PIPELINE-----------------------------------------------------------
5015 
5016 pipeline %{
5017 
5018 // See J.M.Tendler et al. "Power4 system microarchitecture", IBM
5019 // J. Res. & Dev., No. 1, Jan. 2002.
5020 
5021 //----------ATTRIBUTES---------------------------------------------------------
5022 attributes %{
5023 
5024   // Power4 instructions are of fixed length.
5025   fixed_size_instructions;
5026 
5027   // TODO: if `bundle' means number of instructions fetched
5028   // per cycle, this is 8. If `bundle' means Power4 `group', that is
5029   // max instructions issued per cycle, this is 5.
5030   max_instructions_per_bundle = 8;
5031 
5032   // A Power4 instruction is 4 bytes long.
5033   instruction_unit_size = 4;
5034 
5035   // The Power4 processor fetches 64 bytes...
5036   instruction_fetch_unit_size = 64;
5037 
5038   // ...in one line
5039   instruction_fetch_units = 1
5040 
5041   // Unused, list one so that array generated by adlc is not empty.
5042   // Aix compiler chokes if _nop_count = 0.
5043   nops(fxNop);
5044 %}
5045 
5046 //----------RESOURCES----------------------------------------------------------
5047 // Resources are the functional units available to the machine
5048 resources(
5049    PPC_BR,         // branch unit
5050    PPC_CR,         // condition unit
5051    PPC_FX1,        // integer arithmetic unit 1
5052    PPC_FX2,        // integer arithmetic unit 2
5053    PPC_LDST1,      // load/store unit 1
5054    PPC_LDST2,      // load/store unit 2
5055    PPC_FP1,        // float arithmetic unit 1
5056    PPC_FP2,        // float arithmetic unit 2
5057    PPC_LDST = PPC_LDST1 | PPC_LDST2,
5058    PPC_FX = PPC_FX1 | PPC_FX2,
5059    PPC_FP = PPC_FP1 | PPC_FP2
5060  );
5061 
5062 //----------PIPELINE DESCRIPTION-----------------------------------------------
5063 // Pipeline Description specifies the stages in the machine's pipeline
5064 pipe_desc(
5065    // Power4 longest pipeline path
5066    PPC_IF,   // instruction fetch
5067    PPC_IC,
5068    //PPC_BP, // branch prediction
5069    PPC_D0,   // decode
5070    PPC_D1,   // decode
5071    PPC_D2,   // decode
5072    PPC_D3,   // decode
5073    PPC_Xfer1,
5074    PPC_GD,   // group definition
5075    PPC_MP,   // map
5076    PPC_ISS,  // issue
5077    PPC_RF,   // resource fetch
5078    PPC_EX1,  // execute (all units)
5079    PPC_EX2,  // execute (FP, LDST)
5080    PPC_EX3,  // execute (FP, LDST)
5081    PPC_EX4,  // execute (FP)
5082    PPC_EX5,  // execute (FP)
5083    PPC_EX6,  // execute (FP)
5084    PPC_WB,   // write back
5085    PPC_Xfer2,
5086    PPC_CP
5087  );
5088 
5089 //----------PIPELINE CLASSES---------------------------------------------------
5090 // Pipeline Classes describe the stages in which input and output are
5091 // referenced by the hardware pipeline.
5092 
5093 // Simple pipeline classes.
5094 
5095 // Default pipeline class.
5096 pipe_class pipe_class_default() %{
5097   single_instruction;
5098   fixed_latency(2);
5099 %}
5100 
5101 // Pipeline class for empty instructions.
5102 pipe_class pipe_class_empty() %{
5103   single_instruction;
5104   fixed_latency(0);
5105 %}
5106 
5107 // Pipeline class for compares.
5108 pipe_class pipe_class_compare() %{
5109   single_instruction;
5110   fixed_latency(16);
5111 %}
5112 
5113 // Pipeline class for traps.
5114 pipe_class pipe_class_trap() %{
5115   single_instruction;
5116   fixed_latency(100);
5117 %}
5118 
5119 // Pipeline class for memory operations.
5120 pipe_class pipe_class_memory() %{
5121   single_instruction;
5122   fixed_latency(16);
5123 %}
5124 
5125 // Pipeline class for call.
5126 pipe_class pipe_class_call() %{
5127   single_instruction;
5128   fixed_latency(100);
5129 %}
5130 
5131 // Define the class for the Nop node.
5132 define %{
5133    MachNop = pipe_class_default;
5134 %}
5135 
5136 %}
5137 
5138 //----------INSTRUCTIONS-------------------------------------------------------
5139 
5140 // Naming of instructions:
5141 //   opA_operB / opA_operB_operC:
5142 //     Operation 'op' with one or two source operands 'oper'. Result
5143 //     type is A, source operand types are B and C.
5144 //     Iff A == B == C, B and C are left out.
5145 //
5146 // The instructions are ordered according to the following scheme:
5147 //  - loads
5148 //  - load constants
5149 //  - prefetch
5150 //  - store
5151 //  - encode/decode
5152 //  - membar
5153 //  - conditional moves
5154 //  - compare & swap
5155 //  - arithmetic and logic operations
5156 //    * int: Add, Sub, Mul, Div, Mod
5157 //    * int: lShift, arShift, urShift, rot
5158 //    * float: Add, Sub, Mul, Div
5159 //    * and, or, xor ...
5160 //  - register moves: float <-> int, reg <-> stack, repl
5161 //  - cast (high level type cast, XtoP, castPP, castII, not_null etc.
5162 //  - conv (low level type cast requiring bit changes (sign extend etc)
5163 //  - compares, range & zero checks.
5164 //  - branches
5165 //  - complex operations, intrinsics, min, max, replicate
5166 //  - lock
5167 //  - Calls
5168 //
5169 // If there are similar instructions with different types they are sorted:
5170 // int before float
5171 // small before big
5172 // signed before unsigned
5173 // e.g., loadS before loadUS before loadI before loadF.
5174 
5175 
5176 //----------Load/Store Instructions--------------------------------------------
5177 
5178 //----------Load Instructions--------------------------------------------------
5179 
5180 // Converts byte to int.
5181 // As convB2I_reg, but without match rule.  The match rule of convB2I_reg
5182 // reuses the 'amount' operand, but adlc expects that operand specification
5183 // and operands in match rule are equivalent.
5184 instruct convB2I_reg_2(iRegIdst dst, iRegIsrc src) %{
5185   effect(DEF dst, USE src);
5186   format %{ "EXTSB   $dst, $src \t// byte->int" %}
5187   size(4);
5188   ins_encode %{
5189     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
5190     __ extsb($dst$$Register, $src$$Register);
5191   %}
5192   ins_pipe(pipe_class_default);
5193 %}
5194 
5195 instruct loadUB_indirect(iRegIdst dst, indirectMemory mem) %{
5196   // match-rule, false predicate
5197   match(Set dst (LoadB mem));
5198   predicate(false);
5199 
5200   format %{ "LBZ     $dst, $mem" %}
5201   size(4);
5202   ins_encode( enc_lbz(dst, mem) );
5203   ins_pipe(pipe_class_memory);
5204 %}
5205 
5206 instruct loadUB_indirect_ac(iRegIdst dst, indirectMemory mem) %{
5207   // match-rule, false predicate
5208   match(Set dst (LoadB mem));
5209   predicate(false);
5210 
5211   format %{ "LBZ     $dst, $mem\n\t"
5212             "TWI     $dst\n\t"
5213             "ISYNC" %}
5214   size(12);
5215   ins_encode( enc_lbz_ac(dst, mem) );
5216   ins_pipe(pipe_class_memory);
5217 %}
5218 
5219 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
5220 instruct loadB_indirect_Ex(iRegIdst dst, indirectMemory mem) %{
5221   match(Set dst (LoadB mem));
5222   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5223   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5224   expand %{
5225     iRegIdst tmp;
5226     loadUB_indirect(tmp, mem);
5227     convB2I_reg_2(dst, tmp);
5228   %}
5229 %}
5230 
5231 instruct loadB_indirect_ac_Ex(iRegIdst dst, indirectMemory mem) %{
5232   match(Set dst (LoadB mem));
5233   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
5234   expand %{
5235     iRegIdst tmp;
5236     loadUB_indirect_ac(tmp, mem);
5237     convB2I_reg_2(dst, tmp);
5238   %}
5239 %}
5240 
5241 instruct loadUB_indOffset16(iRegIdst dst, indOffset16 mem) %{
5242   // match-rule, false predicate
5243   match(Set dst (LoadB mem));
5244   predicate(false);
5245 
5246   format %{ "LBZ     $dst, $mem" %}
5247   size(4);
5248   ins_encode( enc_lbz(dst, mem) );
5249   ins_pipe(pipe_class_memory);
5250 %}
5251 
5252 instruct loadUB_indOffset16_ac(iRegIdst dst, indOffset16 mem) %{
5253   // match-rule, false predicate
5254   match(Set dst (LoadB mem));
5255   predicate(false);
5256 
5257   format %{ "LBZ     $dst, $mem\n\t"
5258             "TWI     $dst\n\t"
5259             "ISYNC" %}
5260   size(12);
5261   ins_encode( enc_lbz_ac(dst, mem) );
5262   ins_pipe(pipe_class_memory);
5263 %}
5264 
5265 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
5266 instruct loadB_indOffset16_Ex(iRegIdst dst, indOffset16 mem) %{
5267   match(Set dst (LoadB mem));
5268   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5269   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5270 
5271   expand %{
5272     iRegIdst tmp;
5273     loadUB_indOffset16(tmp, mem);
5274     convB2I_reg_2(dst, tmp);
5275   %}
5276 %}
5277 
5278 instruct loadB_indOffset16_ac_Ex(iRegIdst dst, indOffset16 mem) %{
5279   match(Set dst (LoadB mem));
5280   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
5281 
5282   expand %{
5283     iRegIdst tmp;
5284     loadUB_indOffset16_ac(tmp, mem);
5285     convB2I_reg_2(dst, tmp);
5286   %}
5287 %}
5288 
5289 // Load Unsigned Byte (8bit UNsigned) into an int reg.
5290 instruct loadUB(iRegIdst dst, memory mem) %{
5291   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5292   match(Set dst (LoadUB mem));
5293   ins_cost(MEMORY_REF_COST);
5294 
5295   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int" %}
5296   size(4);
5297   ins_encode( enc_lbz(dst, mem) );
5298   ins_pipe(pipe_class_memory);
5299 %}
5300 
5301 // Load  Unsigned Byte (8bit UNsigned) acquire.
5302 instruct loadUB_ac(iRegIdst dst, memory mem) %{
5303   match(Set dst (LoadUB mem));
5304   ins_cost(3*MEMORY_REF_COST);
5305 
5306   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int, acquire\n\t"
5307             "TWI     $dst\n\t"
5308             "ISYNC" %}
5309   size(12);
5310   ins_encode( enc_lbz_ac(dst, mem) );
5311   ins_pipe(pipe_class_memory);
5312 %}
5313 
5314 // Load Unsigned Byte (8bit UNsigned) into a Long Register.
5315 instruct loadUB2L(iRegLdst dst, memory mem) %{
5316   match(Set dst (ConvI2L (LoadUB mem)));
5317   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
5318   ins_cost(MEMORY_REF_COST);
5319 
5320   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long" %}
5321   size(4);
5322   ins_encode( enc_lbz(dst, mem) );
5323   ins_pipe(pipe_class_memory);
5324 %}
5325 
5326 instruct loadUB2L_ac(iRegLdst dst, memory mem) %{
5327   match(Set dst (ConvI2L (LoadUB mem)));
5328   ins_cost(3*MEMORY_REF_COST);
5329 
5330   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long, acquire\n\t"
5331             "TWI     $dst\n\t"
5332             "ISYNC" %}
5333   size(12);
5334   ins_encode( enc_lbz_ac(dst, mem) );
5335   ins_pipe(pipe_class_memory);
5336 %}
5337 
5338 // Load Short (16bit signed)
5339 instruct loadS(iRegIdst dst, memory mem) %{
5340   match(Set dst (LoadS mem));
5341   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5342   ins_cost(MEMORY_REF_COST);
5343 
5344   format %{ "LHA     $dst, $mem" %}
5345   size(4);
5346   ins_encode %{
5347     // TODO: PPC port $archOpcode(ppc64Opcode_lha);
5348     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5349     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
5350   %}
5351   ins_pipe(pipe_class_memory);
5352 %}
5353 
5354 // Load Short (16bit signed) acquire.
5355 instruct loadS_ac(iRegIdst dst, memory mem) %{
5356   match(Set dst (LoadS mem));
5357   ins_cost(3*MEMORY_REF_COST);
5358 
5359   format %{ "LHA     $dst, $mem\t acquire\n\t"
5360             "TWI     $dst\n\t"
5361             "ISYNC" %}
5362   size(12);
5363   ins_encode %{
5364     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5365     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5366     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
5367     __ twi_0($dst$$Register);
5368     __ isync();
5369   %}
5370   ins_pipe(pipe_class_memory);
5371 %}
5372 
5373 // Load Char (16bit unsigned)
5374 instruct loadUS(iRegIdst dst, memory mem) %{
5375   match(Set dst (LoadUS mem));
5376   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5377   ins_cost(MEMORY_REF_COST);
5378 
5379   format %{ "LHZ     $dst, $mem" %}
5380   size(4);
5381   ins_encode( enc_lhz(dst, mem) );
5382   ins_pipe(pipe_class_memory);
5383 %}
5384 
5385 // Load Char (16bit unsigned) acquire.
5386 instruct loadUS_ac(iRegIdst dst, memory mem) %{
5387   match(Set dst (LoadUS mem));
5388   ins_cost(3*MEMORY_REF_COST);
5389 
5390   format %{ "LHZ     $dst, $mem \t// acquire\n\t"
5391             "TWI     $dst\n\t"
5392             "ISYNC" %}
5393   size(12);
5394   ins_encode( enc_lhz_ac(dst, mem) );
5395   ins_pipe(pipe_class_memory);
5396 %}
5397 
5398 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register.
5399 instruct loadUS2L(iRegLdst dst, memory mem) %{
5400   match(Set dst (ConvI2L (LoadUS mem)));
5401   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
5402   ins_cost(MEMORY_REF_COST);
5403 
5404   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long" %}
5405   size(4);
5406   ins_encode( enc_lhz(dst, mem) );
5407   ins_pipe(pipe_class_memory);
5408 %}
5409 
5410 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register acquire.
5411 instruct loadUS2L_ac(iRegLdst dst, memory mem) %{
5412   match(Set dst (ConvI2L (LoadUS mem)));
5413   ins_cost(3*MEMORY_REF_COST);
5414 
5415   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long, acquire\n\t"
5416             "TWI     $dst\n\t"
5417             "ISYNC" %}
5418   size(12);
5419   ins_encode( enc_lhz_ac(dst, mem) );
5420   ins_pipe(pipe_class_memory);
5421 %}
5422 
5423 // Load Integer.
5424 instruct loadI(iRegIdst dst, memory mem) %{
5425   match(Set dst (LoadI mem));
5426   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5427   ins_cost(MEMORY_REF_COST);
5428 
5429   format %{ "LWZ     $dst, $mem" %}
5430   size(4);
5431   ins_encode( enc_lwz(dst, mem) );
5432   ins_pipe(pipe_class_memory);
5433 %}
5434 
5435 // Load Integer acquire.
5436 instruct loadI_ac(iRegIdst dst, memory mem) %{
5437   match(Set dst (LoadI mem));
5438   ins_cost(3*MEMORY_REF_COST);
5439 
5440   format %{ "LWZ     $dst, $mem \t// load acquire\n\t"
5441             "TWI     $dst\n\t"
5442             "ISYNC" %}
5443   size(12);
5444   ins_encode( enc_lwz_ac(dst, mem) );
5445   ins_pipe(pipe_class_memory);
5446 %}
5447 
5448 // Match loading integer and casting it to unsigned int in
5449 // long register.
5450 // LoadI + ConvI2L + AndL 0xffffffff.
5451 instruct loadUI2L(iRegLdst dst, memory mem, immL_32bits mask) %{
5452   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5453   predicate(_kids[0]->_kids[0]->_leaf->as_Load()->is_unordered());
5454   ins_cost(MEMORY_REF_COST);
5455 
5456   format %{ "LWZ     $dst, $mem \t// zero-extend to long" %}
5457   size(4);
5458   ins_encode( enc_lwz(dst, mem) );
5459   ins_pipe(pipe_class_memory);
5460 %}
5461 
5462 // Match loading integer and casting it to long.
5463 instruct loadI2L(iRegLdst dst, memory mem) %{
5464   match(Set dst (ConvI2L (LoadI mem)));
5465   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
5466   ins_cost(MEMORY_REF_COST);
5467 
5468   format %{ "LWA     $dst, $mem \t// loadI2L" %}
5469   size(4);
5470   ins_encode %{
5471     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
5472     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5473     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
5474   %}
5475   ins_pipe(pipe_class_memory);
5476 %}
5477 
5478 // Match loading integer and casting it to long - acquire.
5479 instruct loadI2L_ac(iRegLdst dst, memory mem) %{
5480   match(Set dst (ConvI2L (LoadI mem)));
5481   ins_cost(3*MEMORY_REF_COST);
5482 
5483   format %{ "LWA     $dst, $mem \t// loadI2L acquire"
5484             "TWI     $dst\n\t"
5485             "ISYNC" %}
5486   size(12);
5487   ins_encode %{
5488     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
5489     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5490     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
5491     __ twi_0($dst$$Register);
5492     __ isync();
5493   %}
5494   ins_pipe(pipe_class_memory);
5495 %}
5496 
5497 // Load Long - aligned
5498 instruct loadL(iRegLdst dst, memoryAlg4 mem) %{
5499   match(Set dst (LoadL mem));
5500   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5501   ins_cost(MEMORY_REF_COST);
5502 
5503   format %{ "LD      $dst, $mem \t// long" %}
5504   size(4);
5505   ins_encode( enc_ld(dst, mem) );
5506   ins_pipe(pipe_class_memory);
5507 %}
5508 
5509 // Load Long - aligned acquire.
5510 instruct loadL_ac(iRegLdst dst, memoryAlg4 mem) %{
5511   match(Set dst (LoadL mem));
5512   ins_cost(3*MEMORY_REF_COST);
5513 
5514   format %{ "LD      $dst, $mem \t// long acquire\n\t"
5515             "TWI     $dst\n\t"
5516             "ISYNC" %}
5517   size(12);
5518   ins_encode( enc_ld_ac(dst, mem) );
5519   ins_pipe(pipe_class_memory);
5520 %}
5521 
5522 // Load Long - UNaligned
5523 instruct loadL_unaligned(iRegLdst dst, memoryAlg4 mem) %{
5524   match(Set dst (LoadL_unaligned mem));
5525   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
5526   ins_cost(MEMORY_REF_COST);
5527 
5528   format %{ "LD      $dst, $mem \t// unaligned long" %}
5529   size(4);
5530   ins_encode( enc_ld(dst, mem) );
5531   ins_pipe(pipe_class_memory);
5532 %}
5533 
5534 // Load nodes for superwords
5535 
5536 // Load Aligned Packed Byte
5537 instruct loadV8(iRegLdst dst, memoryAlg4 mem) %{
5538   predicate(n->as_LoadVector()->memory_size() == 8);
5539   match(Set dst (LoadVector mem));
5540   ins_cost(MEMORY_REF_COST);
5541 
5542   format %{ "LD      $dst, $mem \t// load 8-byte Vector" %}
5543   size(4);
5544   ins_encode( enc_ld(dst, mem) );
5545   ins_pipe(pipe_class_memory);
5546 %}
5547 
5548 // Load Range, range = array length (=jint)
5549 instruct loadRange(iRegIdst dst, memory mem) %{
5550   match(Set dst (LoadRange mem));
5551   ins_cost(MEMORY_REF_COST);
5552 
5553   format %{ "LWZ     $dst, $mem \t// range" %}
5554   size(4);
5555   ins_encode( enc_lwz(dst, mem) );
5556   ins_pipe(pipe_class_memory);
5557 %}
5558 
5559 // Load Compressed Pointer
5560 instruct loadN(iRegNdst dst, memory mem) %{
5561   match(Set dst (LoadN mem));
5562   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5563   ins_cost(MEMORY_REF_COST);
5564 
5565   format %{ "LWZ     $dst, $mem \t// load compressed ptr" %}
5566   size(4);
5567   ins_encode( enc_lwz(dst, mem) );
5568   ins_pipe(pipe_class_memory);
5569 %}
5570 
5571 // Load Compressed Pointer acquire.
5572 instruct loadN_ac(iRegNdst dst, memory mem) %{
5573   match(Set dst (LoadN mem));
5574   ins_cost(3*MEMORY_REF_COST);
5575 
5576   format %{ "LWZ     $dst, $mem \t// load acquire compressed ptr\n\t"
5577             "TWI     $dst\n\t"
5578             "ISYNC" %}
5579   size(12);
5580   ins_encode( enc_lwz_ac(dst, mem) );
5581   ins_pipe(pipe_class_memory);
5582 %}
5583 
5584 // Load Compressed Pointer and decode it if narrow_oop_shift == 0.
5585 instruct loadN2P_unscaled(iRegPdst dst, memory mem) %{
5586   match(Set dst (DecodeN (LoadN mem)));
5587   predicate(_kids[0]->_leaf->as_Load()->is_unordered() && Universe::narrow_oop_shift() == 0);
5588   ins_cost(MEMORY_REF_COST);
5589 
5590   format %{ "LWZ     $dst, $mem \t// DecodeN (unscaled)" %}
5591   size(4);
5592   ins_encode( enc_lwz(dst, mem) );
5593   ins_pipe(pipe_class_memory);
5594 %}
5595 
5596 // Load Pointer
5597 instruct loadP(iRegPdst dst, memoryAlg4 mem) %{
5598   match(Set dst (LoadP mem));
5599   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5600   ins_cost(MEMORY_REF_COST);
5601 
5602   format %{ "LD      $dst, $mem \t// ptr" %}
5603   size(4);
5604   ins_encode( enc_ld(dst, mem) );
5605   ins_pipe(pipe_class_memory);
5606 %}
5607 
5608 // Load Pointer acquire.
5609 instruct loadP_ac(iRegPdst dst, memoryAlg4 mem) %{
5610   match(Set dst (LoadP mem));
5611   ins_cost(3*MEMORY_REF_COST);
5612 
5613   format %{ "LD      $dst, $mem \t// ptr acquire\n\t"
5614             "TWI     $dst\n\t"
5615             "ISYNC" %}
5616   size(12);
5617   ins_encode( enc_ld_ac(dst, mem) );
5618   ins_pipe(pipe_class_memory);
5619 %}
5620 
5621 // LoadP + CastP2L
5622 instruct loadP2X(iRegLdst dst, memoryAlg4 mem) %{
5623   match(Set dst (CastP2X (LoadP mem)));
5624   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
5625   ins_cost(MEMORY_REF_COST);
5626 
5627   format %{ "LD      $dst, $mem \t// ptr + p2x" %}
5628   size(4);
5629   ins_encode( enc_ld(dst, mem) );
5630   ins_pipe(pipe_class_memory);
5631 %}
5632 
5633 // Load compressed klass pointer.
5634 instruct loadNKlass(iRegNdst dst, memory mem) %{
5635   match(Set dst (LoadNKlass mem));
5636   ins_cost(MEMORY_REF_COST);
5637 
5638   format %{ "LWZ     $dst, $mem \t// compressed klass ptr" %}
5639   size(4);
5640   ins_encode( enc_lwz(dst, mem) );
5641   ins_pipe(pipe_class_memory);
5642 %}
5643 
5644 // Load Klass Pointer
5645 instruct loadKlass(iRegPdst dst, memoryAlg4 mem) %{
5646   match(Set dst (LoadKlass mem));
5647   ins_cost(MEMORY_REF_COST);
5648 
5649   format %{ "LD      $dst, $mem \t// klass ptr" %}
5650   size(4);
5651   ins_encode( enc_ld(dst, mem) );
5652   ins_pipe(pipe_class_memory);
5653 %}
5654 
5655 // Load Float
5656 instruct loadF(regF dst, memory mem) %{
5657   match(Set dst (LoadF mem));
5658   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5659   ins_cost(MEMORY_REF_COST);
5660 
5661   format %{ "LFS     $dst, $mem" %}
5662   size(4);
5663   ins_encode %{
5664     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
5665     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5666     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5667   %}
5668   ins_pipe(pipe_class_memory);
5669 %}
5670 
5671 // Load Float acquire.
5672 instruct loadF_ac(regF dst, memory mem) %{
5673   match(Set dst (LoadF mem));
5674   ins_cost(3*MEMORY_REF_COST);
5675 
5676   format %{ "LFS     $dst, $mem \t// acquire\n\t"
5677             "FCMPU   cr0, $dst, $dst\n\t"
5678             "BNE     cr0, next\n"
5679             "next:\n\t"
5680             "ISYNC" %}
5681   size(16);
5682   ins_encode %{
5683     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5684     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5685     Label next;
5686     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5687     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
5688     __ bne(CCR0, next);
5689     __ bind(next);
5690     __ isync();
5691   %}
5692   ins_pipe(pipe_class_memory);
5693 %}
5694 
5695 // Load Double - aligned
5696 instruct loadD(regD dst, memory mem) %{
5697   match(Set dst (LoadD mem));
5698   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5699   ins_cost(MEMORY_REF_COST);
5700 
5701   format %{ "LFD     $dst, $mem" %}
5702   size(4);
5703   ins_encode( enc_lfd(dst, mem) );
5704   ins_pipe(pipe_class_memory);
5705 %}
5706 
5707 // Load Double - aligned acquire.
5708 instruct loadD_ac(regD dst, memory mem) %{
5709   match(Set dst (LoadD mem));
5710   ins_cost(3*MEMORY_REF_COST);
5711 
5712   format %{ "LFD     $dst, $mem \t// acquire\n\t"
5713             "FCMPU   cr0, $dst, $dst\n\t"
5714             "BNE     cr0, next\n"
5715             "next:\n\t"
5716             "ISYNC" %}
5717   size(16);
5718   ins_encode %{
5719     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5720     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5721     Label next;
5722     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5723     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
5724     __ bne(CCR0, next);
5725     __ bind(next);
5726     __ isync();
5727   %}
5728   ins_pipe(pipe_class_memory);
5729 %}
5730 
5731 // Load Double - UNaligned
5732 instruct loadD_unaligned(regD dst, memory mem) %{
5733   match(Set dst (LoadD_unaligned mem));
5734   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
5735   ins_cost(MEMORY_REF_COST);
5736 
5737   format %{ "LFD     $dst, $mem" %}
5738   size(4);
5739   ins_encode( enc_lfd(dst, mem) );
5740   ins_pipe(pipe_class_memory);
5741 %}
5742 
5743 //----------Constants--------------------------------------------------------
5744 
5745 // Load MachConstantTableBase: add hi offset to global toc.
5746 // TODO: Handle hidden register r29 in bundler!
5747 instruct loadToc_hi(iRegLdst dst) %{
5748   effect(DEF dst);
5749   ins_cost(DEFAULT_COST);
5750 
5751   format %{ "ADDIS   $dst, R29, DISP.hi \t// load TOC hi" %}
5752   size(4);
5753   ins_encode %{
5754     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5755     __ calculate_address_from_global_toc_hi16only($dst$$Register, __ method_toc());
5756   %}
5757   ins_pipe(pipe_class_default);
5758 %}
5759 
5760 // Load MachConstantTableBase: add lo offset to global toc.
5761 instruct loadToc_lo(iRegLdst dst, iRegLdst src) %{
5762   effect(DEF dst, USE src);
5763   ins_cost(DEFAULT_COST);
5764 
5765   format %{ "ADDI    $dst, $src, DISP.lo \t// load TOC lo" %}
5766   size(4);
5767   ins_encode %{
5768     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5769     __ calculate_address_from_global_toc_lo16only($dst$$Register, __ method_toc());
5770   %}
5771   ins_pipe(pipe_class_default);
5772 %}
5773 
5774 // Load 16-bit integer constant 0xssss????
5775 instruct loadConI16(iRegIdst dst, immI16 src) %{
5776   match(Set dst src);
5777 
5778   format %{ "LI      $dst, $src" %}
5779   size(4);
5780   ins_encode %{
5781     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5782     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
5783   %}
5784   ins_pipe(pipe_class_default);
5785 %}
5786 
5787 // Load integer constant 0x????0000
5788 instruct loadConIhi16(iRegIdst dst, immIhi16 src) %{
5789   match(Set dst src);
5790   ins_cost(DEFAULT_COST);
5791 
5792   format %{ "LIS     $dst, $src.hi" %}
5793   size(4);
5794   ins_encode %{
5795     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5796     // Lis sign extends 16-bit src then shifts it 16 bit to the left.
5797     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
5798   %}
5799   ins_pipe(pipe_class_default);
5800 %}
5801 
5802 // Part 2 of loading 32 bit constant: hi16 is is src1 (properly shifted
5803 // and sign extended), this adds the low 16 bits.
5804 instruct loadConI32_lo16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
5805   // no match-rule, false predicate
5806   effect(DEF dst, USE src1, USE src2);
5807   predicate(false);
5808 
5809   format %{ "ORI     $dst, $src1.hi, $src2.lo" %}
5810   size(4);
5811   ins_encode %{
5812     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5813     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
5814   %}
5815   ins_pipe(pipe_class_default);
5816 %}
5817 
5818 instruct loadConI_Ex(iRegIdst dst, immI src) %{
5819   match(Set dst src);
5820   ins_cost(DEFAULT_COST*2);
5821 
5822   expand %{
5823     // Would like to use $src$$constant.
5824     immI16 srcLo %{ _opnds[1]->constant() %}
5825     // srcHi can be 0000 if srcLo sign-extends to a negative number.
5826     immIhi16 srcHi %{ _opnds[1]->constant() %}
5827     iRegIdst tmpI;
5828     loadConIhi16(tmpI, srcHi);
5829     loadConI32_lo16(dst, tmpI, srcLo);
5830   %}
5831 %}
5832 
5833 // No constant pool entries required.
5834 instruct loadConL16(iRegLdst dst, immL16 src) %{
5835   match(Set dst src);
5836 
5837   format %{ "LI      $dst, $src \t// long" %}
5838   size(4);
5839   ins_encode %{
5840     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5841     __ li($dst$$Register, (int)((short) ($src$$constant & 0xFFFF)));
5842   %}
5843   ins_pipe(pipe_class_default);
5844 %}
5845 
5846 // Load long constant 0xssssssss????0000
5847 instruct loadConL32hi16(iRegLdst dst, immL32hi16 src) %{
5848   match(Set dst src);
5849   ins_cost(DEFAULT_COST);
5850 
5851   format %{ "LIS     $dst, $src.hi \t// long" %}
5852   size(4);
5853   ins_encode %{
5854     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5855     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
5856   %}
5857   ins_pipe(pipe_class_default);
5858 %}
5859 
5860 // To load a 32 bit constant: merge lower 16 bits into already loaded
5861 // high 16 bits.
5862 instruct loadConL32_lo16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
5863   // no match-rule, false predicate
5864   effect(DEF dst, USE src1, USE src2);
5865   predicate(false);
5866 
5867   format %{ "ORI     $dst, $src1, $src2.lo" %}
5868   size(4);
5869   ins_encode %{
5870     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5871     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
5872   %}
5873   ins_pipe(pipe_class_default);
5874 %}
5875 
5876 // Load 32-bit long constant
5877 instruct loadConL32_Ex(iRegLdst dst, immL32 src) %{
5878   match(Set dst src);
5879   ins_cost(DEFAULT_COST*2);
5880 
5881   expand %{
5882     // Would like to use $src$$constant.
5883     immL16     srcLo %{ _opnds[1]->constant() /*& 0x0000FFFFL */%}
5884     // srcHi can be 0000 if srcLo sign-extends to a negative number.
5885     immL32hi16 srcHi %{ _opnds[1]->constant() /*& 0xFFFF0000L */%}
5886     iRegLdst tmpL;
5887     loadConL32hi16(tmpL, srcHi);
5888     loadConL32_lo16(dst, tmpL, srcLo);
5889   %}
5890 %}
5891 
5892 // Load long constant 0x????000000000000.
5893 instruct loadConLhighest16_Ex(iRegLdst dst, immLhighest16 src) %{
5894   match(Set dst src);
5895   ins_cost(DEFAULT_COST);
5896 
5897   expand %{
5898     immL32hi16 srcHi %{ _opnds[1]->constant() >> 32 /*& 0xFFFF0000L */%}
5899     immI shift32 %{ 32 %}
5900     iRegLdst tmpL;
5901     loadConL32hi16(tmpL, srcHi);
5902     lshiftL_regL_immI(dst, tmpL, shift32);
5903   %}
5904 %}
5905 
5906 // Expand node for constant pool load: small offset.
5907 instruct loadConL(iRegLdst dst, immL src, iRegLdst toc) %{
5908   effect(DEF dst, USE src, USE toc);
5909   ins_cost(MEMORY_REF_COST);
5910 
5911   ins_num_consts(1);
5912   // Needed so that CallDynamicJavaDirect can compute the address of this
5913   // instruction for relocation.
5914   ins_field_cbuf_insts_offset(int);
5915 
5916   format %{ "LD      $dst, offset, $toc \t// load long $src from TOC" %}
5917   size(4);
5918   ins_encode( enc_load_long_constL(dst, src, toc) );
5919   ins_pipe(pipe_class_memory);
5920 %}
5921 
5922 // Expand node for constant pool load: large offset.
5923 instruct loadConL_hi(iRegLdst dst, immL src, iRegLdst toc) %{
5924   effect(DEF dst, USE src, USE toc);
5925   predicate(false);
5926 
5927   ins_num_consts(1);
5928   ins_field_const_toc_offset(int);
5929   // Needed so that CallDynamicJavaDirect can compute the address of this
5930   // instruction for relocation.
5931   ins_field_cbuf_insts_offset(int);
5932 
5933   format %{ "ADDIS   $dst, $toc, offset \t// load long $src from TOC (hi)" %}
5934   size(4);
5935   ins_encode( enc_load_long_constL_hi(dst, toc, src) );
5936   ins_pipe(pipe_class_default);
5937 %}
5938 
5939 // Expand node for constant pool load: large offset.
5940 // No constant pool entries required.
5941 instruct loadConL_lo(iRegLdst dst, immL src, iRegLdst base) %{
5942   effect(DEF dst, USE src, USE base);
5943   predicate(false);
5944 
5945   ins_field_const_toc_offset_hi_node(loadConL_hiNode*);
5946 
5947   format %{ "LD      $dst, offset, $base \t// load long $src from TOC (lo)" %}
5948   size(4);
5949   ins_encode %{
5950     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
5951     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
5952     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
5953   %}
5954   ins_pipe(pipe_class_memory);
5955 %}
5956 
5957 // Load long constant from constant table. Expand in case of
5958 // offset > 16 bit is needed.
5959 // Adlc adds toc node MachConstantTableBase.
5960 instruct loadConL_Ex(iRegLdst dst, immL src) %{
5961   match(Set dst src);
5962   ins_cost(MEMORY_REF_COST);
5963 
5964   format %{ "LD      $dst, offset, $constanttablebase\t// load long $src from table, postalloc expanded" %}
5965   // We can not inline the enc_class for the expand as that does not support constanttablebase.
5966   postalloc_expand( postalloc_expand_load_long_constant(dst, src, constanttablebase) );
5967 %}
5968 
5969 // Load NULL as compressed oop.
5970 instruct loadConN0(iRegNdst dst, immN_0 src) %{
5971   match(Set dst src);
5972   ins_cost(DEFAULT_COST);
5973 
5974   format %{ "LI      $dst, $src \t// compressed ptr" %}
5975   size(4);
5976   ins_encode %{
5977     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5978     __ li($dst$$Register, 0);
5979   %}
5980   ins_pipe(pipe_class_default);
5981 %}
5982 
5983 // Load hi part of compressed oop constant.
5984 instruct loadConN_hi(iRegNdst dst, immN src) %{
5985   effect(DEF dst, USE src);
5986   ins_cost(DEFAULT_COST);
5987 
5988   format %{ "LIS     $dst, $src \t// narrow oop hi" %}
5989   size(4);
5990   ins_encode %{
5991     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5992     __ lis($dst$$Register, (int)(short)(($src$$constant >> 16) & 0xffff));
5993   %}
5994   ins_pipe(pipe_class_default);
5995 %}
5996 
5997 // Add lo part of compressed oop constant to already loaded hi part.
5998 instruct loadConN_lo(iRegNdst dst, iRegNsrc src1, immN src2) %{
5999   effect(DEF dst, USE src1, USE src2);
6000   ins_cost(DEFAULT_COST);
6001 
6002   format %{ "ORI     $dst, $src1, $src2 \t// narrow oop lo" %}
6003   size(4);
6004   ins_encode %{
6005     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
6006     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
6007     int oop_index = __ oop_recorder()->find_index((jobject)$src2$$constant);
6008     RelocationHolder rspec = oop_Relocation::spec(oop_index);
6009     __ relocate(rspec, 1);
6010     __ ori($dst$$Register, $src1$$Register, $src2$$constant & 0xffff);
6011   %}
6012   ins_pipe(pipe_class_default);
6013 %}
6014 
6015 // Needed to postalloc expand loadConN: ConN is loaded as ConI
6016 // leaving the upper 32 bits with sign-extension bits.
6017 // This clears these bits: dst = src & 0xFFFFFFFF.
6018 // TODO: Eventually call this maskN_regN_FFFFFFFF.
6019 instruct clearMs32b(iRegNdst dst, iRegNsrc src) %{
6020   effect(DEF dst, USE src);
6021   predicate(false);
6022 
6023   format %{ "MASK    $dst, $src, 0xFFFFFFFF" %} // mask
6024   size(4);
6025   ins_encode %{
6026     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6027     __ clrldi($dst$$Register, $src$$Register, 0x20);
6028   %}
6029   ins_pipe(pipe_class_default);
6030 %}
6031 
6032 // Optimize DecodeN for disjoint base.
6033 // Load base of compressed oops into a register
6034 instruct loadBase(iRegLdst dst) %{
6035   effect(DEF dst);
6036 
6037   format %{ "MR      $dst, r30_heapbase" %}
6038   size(4);
6039   ins_encode %{
6040     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6041     __ mr($dst$$Register, R30);
6042   %}
6043   ins_pipe(pipe_class_default);
6044 %}
6045 
6046 // Loading ConN must be postalloc expanded so that edges between
6047 // the nodes are safe. They may not interfere with a safepoint.
6048 // GL TODO: This needs three instructions: better put this into the constant pool.
6049 instruct loadConN_Ex(iRegNdst dst, immN src) %{
6050   match(Set dst src);
6051   ins_cost(DEFAULT_COST*2);
6052 
6053   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
6054   postalloc_expand %{
6055     MachNode *m1 = new loadConN_hiNode();
6056     MachNode *m2 = new loadConN_loNode();
6057     MachNode *m3 = new clearMs32bNode();
6058     m1->add_req(NULL);
6059     m2->add_req(NULL, m1);
6060     m3->add_req(NULL, m2);
6061     m1->_opnds[0] = op_dst;
6062     m1->_opnds[1] = op_src;
6063     m2->_opnds[0] = op_dst;
6064     m2->_opnds[1] = op_dst;
6065     m2->_opnds[2] = op_src;
6066     m3->_opnds[0] = op_dst;
6067     m3->_opnds[1] = op_dst;
6068     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6069     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6070     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6071     nodes->push(m1);
6072     nodes->push(m2);
6073     nodes->push(m3);
6074   %}
6075 %}
6076 
6077 // We have seen a safepoint between the hi and lo parts, and this node was handled
6078 // as an oop. Therefore this needs a match rule so that build_oop_map knows this is
6079 // not a narrow oop.
6080 instruct loadConNKlass_hi(iRegNdst dst, immNKlass_NM src) %{
6081   match(Set dst src);
6082   effect(DEF dst, USE src);
6083   ins_cost(DEFAULT_COST);
6084 
6085   format %{ "LIS     $dst, $src \t// narrow klass hi" %}
6086   size(4);
6087   ins_encode %{
6088     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
6089     intptr_t Csrc = Klass::encode_klass((Klass *)$src$$constant);
6090     __ lis($dst$$Register, (int)(short)((Csrc >> 16) & 0xffff));
6091   %}
6092   ins_pipe(pipe_class_default);
6093 %}
6094 
6095 // As loadConNKlass_hi this must be recognized as narrow klass, not oop!
6096 instruct loadConNKlass_mask(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
6097   match(Set dst src1);
6098   effect(TEMP src2);
6099   ins_cost(DEFAULT_COST);
6100 
6101   format %{ "MASK    $dst, $src2, 0xFFFFFFFF" %} // mask
6102   size(4);
6103   ins_encode %{
6104     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6105     __ clrldi($dst$$Register, $src2$$Register, 0x20);
6106   %}
6107   ins_pipe(pipe_class_default);
6108 %}
6109 
6110 // This needs a match rule so that build_oop_map knows this is
6111 // not a narrow oop.
6112 instruct loadConNKlass_lo(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
6113   match(Set dst src1);
6114   effect(TEMP src2);
6115   ins_cost(DEFAULT_COST);
6116 
6117   format %{ "ORI    $dst, $src1, $src2 \t// narrow klass lo" %}
6118   size(4);
6119   ins_encode %{
6120     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
6121     intptr_t Csrc = Klass::encode_klass((Klass *)$src1$$constant);
6122     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
6123     int klass_index = __ oop_recorder()->find_index((Klass *)$src1$$constant);
6124     RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6125 
6126     __ relocate(rspec, 1);
6127     __ ori($dst$$Register, $src2$$Register, Csrc & 0xffff);
6128   %}
6129   ins_pipe(pipe_class_default);
6130 %}
6131 
6132 // Loading ConNKlass must be postalloc expanded so that edges between
6133 // the nodes are safe. They may not interfere with a safepoint.
6134 instruct loadConNKlass_Ex(iRegNdst dst, immNKlass src) %{
6135   match(Set dst src);
6136   ins_cost(DEFAULT_COST*2);
6137 
6138   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
6139   postalloc_expand %{
6140     // Load high bits into register. Sign extended.
6141     MachNode *m1 = new loadConNKlass_hiNode();
6142     m1->add_req(NULL);
6143     m1->_opnds[0] = op_dst;
6144     m1->_opnds[1] = op_src;
6145     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6146     nodes->push(m1);
6147 
6148     MachNode *m2 = m1;
6149     if (!Assembler::is_uimm((jlong)Klass::encode_klass((Klass *)op_src->constant()), 31)) {
6150       // Value might be 1-extended. Mask out these bits.
6151       m2 = new loadConNKlass_maskNode();
6152       m2->add_req(NULL, m1);
6153       m2->_opnds[0] = op_dst;
6154       m2->_opnds[1] = op_src;
6155       m2->_opnds[2] = op_dst;
6156       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6157       nodes->push(m2);
6158     }
6159 
6160     MachNode *m3 = new loadConNKlass_loNode();
6161     m3->add_req(NULL, m2);
6162     m3->_opnds[0] = op_dst;
6163     m3->_opnds[1] = op_src;
6164     m3->_opnds[2] = op_dst;
6165     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6166     nodes->push(m3);
6167   %}
6168 %}
6169 
6170 // 0x1 is used in object initialization (initial object header).
6171 // No constant pool entries required.
6172 instruct loadConP0or1(iRegPdst dst, immP_0or1 src) %{
6173   match(Set dst src);
6174 
6175   format %{ "LI      $dst, $src \t// ptr" %}
6176   size(4);
6177   ins_encode %{
6178     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
6179     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
6180   %}
6181   ins_pipe(pipe_class_default);
6182 %}
6183 
6184 // Expand node for constant pool load: small offset.
6185 // The match rule is needed to generate the correct bottom_type(),
6186 // however this node should never match. The use of predicate is not
6187 // possible since ADLC forbids predicates for chain rules. The higher
6188 // costs do not prevent matching in this case. For that reason the
6189 // operand immP_NM with predicate(false) is used.
6190 instruct loadConP(iRegPdst dst, immP_NM src, iRegLdst toc) %{
6191   match(Set dst src);
6192   effect(TEMP toc);
6193 
6194   ins_num_consts(1);
6195 
6196   format %{ "LD      $dst, offset, $toc \t// load ptr $src from TOC" %}
6197   size(4);
6198   ins_encode( enc_load_long_constP(dst, src, toc) );
6199   ins_pipe(pipe_class_memory);
6200 %}
6201 
6202 // Expand node for constant pool load: large offset.
6203 instruct loadConP_hi(iRegPdst dst, immP_NM src, iRegLdst toc) %{
6204   effect(DEF dst, USE src, USE toc);
6205   predicate(false);
6206 
6207   ins_num_consts(1);
6208   ins_field_const_toc_offset(int);
6209 
6210   format %{ "ADDIS   $dst, $toc, offset \t// load ptr $src from TOC (hi)" %}
6211   size(4);
6212   ins_encode( enc_load_long_constP_hi(dst, src, toc) );
6213   ins_pipe(pipe_class_default);
6214 %}
6215 
6216 // Expand node for constant pool load: large offset.
6217 instruct loadConP_lo(iRegPdst dst, immP_NM src, iRegLdst base) %{
6218   match(Set dst src);
6219   effect(TEMP base);
6220 
6221   ins_field_const_toc_offset_hi_node(loadConP_hiNode*);
6222 
6223   format %{ "LD      $dst, offset, $base \t// load ptr $src from TOC (lo)" %}
6224   size(4);
6225   ins_encode %{
6226     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
6227     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
6228     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
6229   %}
6230   ins_pipe(pipe_class_memory);
6231 %}
6232 
6233 // Load pointer constant from constant table. Expand in case an
6234 // offset > 16 bit is needed.
6235 // Adlc adds toc node MachConstantTableBase.
6236 instruct loadConP_Ex(iRegPdst dst, immP src) %{
6237   match(Set dst src);
6238   ins_cost(MEMORY_REF_COST);
6239 
6240   // This rule does not use "expand" because then
6241   // the result type is not known to be an Oop.  An ADLC
6242   // enhancement will be needed to make that work - not worth it!
6243 
6244   // If this instruction rematerializes, it prolongs the live range
6245   // of the toc node, causing illegal graphs.
6246   // assert(edge_from_to(_reg_node[reg_lo],def)) fails in verify_good_schedule().
6247   ins_cannot_rematerialize(true);
6248 
6249   format %{ "LD    $dst, offset, $constanttablebase \t//  load ptr $src from table, postalloc expanded" %}
6250   postalloc_expand( postalloc_expand_load_ptr_constant(dst, src, constanttablebase) );
6251 %}
6252 
6253 // Expand node for constant pool load: small offset.
6254 instruct loadConF(regF dst, immF src, iRegLdst toc) %{
6255   effect(DEF dst, USE src, USE toc);
6256   ins_cost(MEMORY_REF_COST);
6257 
6258   ins_num_consts(1);
6259 
6260   format %{ "LFS     $dst, offset, $toc \t// load float $src from TOC" %}
6261   size(4);
6262   ins_encode %{
6263     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
6264     address float_address = __ float_constant($src$$constant);
6265     __ lfs($dst$$FloatRegister, __ offset_to_method_toc(float_address), $toc$$Register);
6266   %}
6267   ins_pipe(pipe_class_memory);
6268 %}
6269 
6270 // Expand node for constant pool load: large offset.
6271 instruct loadConFComp(regF dst, immF src, iRegLdst toc) %{
6272   effect(DEF dst, USE src, USE toc);
6273   ins_cost(MEMORY_REF_COST);
6274 
6275   ins_num_consts(1);
6276 
6277   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
6278             "LFS     $dst, offset_lo, $toc \t// load float $src from TOC (hi/lo)\n\t"
6279             "ADDIS   $toc, $toc, -offset_hi"%}
6280   size(12);
6281   ins_encode %{
6282     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6283     FloatRegister Rdst    = $dst$$FloatRegister;
6284     Register Rtoc         = $toc$$Register;
6285     address float_address = __ float_constant($src$$constant);
6286     int offset            = __ offset_to_method_toc(float_address);
6287     int hi = (offset + (1<<15))>>16;
6288     int lo = offset - hi * (1<<16);
6289 
6290     __ addis(Rtoc, Rtoc, hi);
6291     __ lfs(Rdst, lo, Rtoc);
6292     __ addis(Rtoc, Rtoc, -hi);
6293   %}
6294   ins_pipe(pipe_class_memory);
6295 %}
6296 
6297 // Adlc adds toc node MachConstantTableBase.
6298 instruct loadConF_Ex(regF dst, immF src) %{
6299   match(Set dst src);
6300   ins_cost(MEMORY_REF_COST);
6301 
6302   // See loadConP.
6303   ins_cannot_rematerialize(true);
6304 
6305   format %{ "LFS     $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
6306   postalloc_expand( postalloc_expand_load_float_constant(dst, src, constanttablebase) );
6307 %}
6308 
6309 // Expand node for constant pool load: small offset.
6310 instruct loadConD(regD dst, immD src, iRegLdst toc) %{
6311   effect(DEF dst, USE src, USE toc);
6312   ins_cost(MEMORY_REF_COST);
6313 
6314   ins_num_consts(1);
6315 
6316   format %{ "LFD     $dst, offset, $toc \t// load double $src from TOC" %}
6317   size(4);
6318   ins_encode %{
6319     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
6320     int offset =  __ offset_to_method_toc(__ double_constant($src$$constant));
6321     __ lfd($dst$$FloatRegister, offset, $toc$$Register);
6322   %}
6323   ins_pipe(pipe_class_memory);
6324 %}
6325 
6326 // Expand node for constant pool load: large offset.
6327 instruct loadConDComp(regD dst, immD src, iRegLdst toc) %{
6328   effect(DEF dst, USE src, USE toc);
6329   ins_cost(MEMORY_REF_COST);
6330 
6331   ins_num_consts(1);
6332 
6333   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
6334             "LFD     $dst, offset_lo, $toc \t// load double $src from TOC (hi/lo)\n\t"
6335             "ADDIS   $toc, $toc, -offset_hi" %}
6336   size(12);
6337   ins_encode %{
6338     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6339     FloatRegister Rdst    = $dst$$FloatRegister;
6340     Register      Rtoc    = $toc$$Register;
6341     address float_address = __ double_constant($src$$constant);
6342     int offset            = __ offset_to_method_toc(float_address);
6343     int hi = (offset + (1<<15))>>16;
6344     int lo = offset - hi * (1<<16);
6345 
6346     __ addis(Rtoc, Rtoc, hi);
6347     __ lfd(Rdst, lo, Rtoc);
6348     __ addis(Rtoc, Rtoc, -hi);
6349   %}
6350   ins_pipe(pipe_class_memory);
6351 %}
6352 
6353 // Adlc adds toc node MachConstantTableBase.
6354 instruct loadConD_Ex(regD dst, immD src) %{
6355   match(Set dst src);
6356   ins_cost(MEMORY_REF_COST);
6357 
6358   // See loadConP.
6359   ins_cannot_rematerialize(true);
6360 
6361   format %{ "ConD    $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
6362   postalloc_expand( postalloc_expand_load_double_constant(dst, src, constanttablebase) );
6363 %}
6364 
6365 // Prefetch instructions.
6366 // Must be safe to execute with invalid address (cannot fault).
6367 
6368 // Special prefetch versions which use the dcbz instruction.
6369 instruct prefetch_alloc_zero(indirectMemory mem, iRegLsrc src) %{
6370   match(PrefetchAllocation (AddP mem src));
6371   predicate(AllocatePrefetchStyle == 3);
6372   ins_cost(MEMORY_REF_COST);
6373 
6374   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many with zero" %}
6375   size(4);
6376   ins_encode %{
6377     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6378     __ dcbz($src$$Register, $mem$$base$$Register);
6379   %}
6380   ins_pipe(pipe_class_memory);
6381 %}
6382 
6383 instruct prefetch_alloc_zero_no_offset(indirectMemory mem) %{
6384   match(PrefetchAllocation mem);
6385   predicate(AllocatePrefetchStyle == 3);
6386   ins_cost(MEMORY_REF_COST);
6387 
6388   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many with zero" %}
6389   size(4);
6390   ins_encode %{
6391     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6392     __ dcbz($mem$$base$$Register);
6393   %}
6394   ins_pipe(pipe_class_memory);
6395 %}
6396 
6397 instruct prefetch_alloc(indirectMemory mem, iRegLsrc src) %{
6398   match(PrefetchAllocation (AddP mem src));
6399   predicate(AllocatePrefetchStyle != 3);
6400   ins_cost(MEMORY_REF_COST);
6401 
6402   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many" %}
6403   size(4);
6404   ins_encode %{
6405     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6406     __ dcbtst($src$$Register, $mem$$base$$Register);
6407   %}
6408   ins_pipe(pipe_class_memory);
6409 %}
6410 
6411 instruct prefetch_alloc_no_offset(indirectMemory mem) %{
6412   match(PrefetchAllocation mem);
6413   predicate(AllocatePrefetchStyle != 3);
6414   ins_cost(MEMORY_REF_COST);
6415 
6416   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many" %}
6417   size(4);
6418   ins_encode %{
6419     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6420     __ dcbtst($mem$$base$$Register);
6421   %}
6422   ins_pipe(pipe_class_memory);
6423 %}
6424 
6425 //----------Store Instructions-------------------------------------------------
6426 
6427 // Store Byte
6428 instruct storeB(memory mem, iRegIsrc src) %{
6429   match(Set mem (StoreB mem src));
6430   ins_cost(MEMORY_REF_COST);
6431 
6432   format %{ "STB     $src, $mem \t// byte" %}
6433   size(4);
6434   ins_encode %{
6435     // TODO: PPC port $archOpcode(ppc64Opcode_stb);
6436     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
6437     __ stb($src$$Register, Idisp, $mem$$base$$Register);
6438   %}
6439   ins_pipe(pipe_class_memory);
6440 %}
6441 
6442 // Store Char/Short
6443 instruct storeC(memory mem, iRegIsrc src) %{
6444   match(Set mem (StoreC mem src));
6445   ins_cost(MEMORY_REF_COST);
6446 
6447   format %{ "STH     $src, $mem \t// short" %}
6448   size(4);
6449   ins_encode %{
6450     // TODO: PPC port $archOpcode(ppc64Opcode_sth);
6451     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
6452     __ sth($src$$Register, Idisp, $mem$$base$$Register);
6453   %}
6454   ins_pipe(pipe_class_memory);
6455 %}
6456 
6457 // Store Integer
6458 instruct storeI(memory mem, iRegIsrc src) %{
6459   match(Set mem (StoreI mem src));
6460   ins_cost(MEMORY_REF_COST);
6461 
6462   format %{ "STW     $src, $mem" %}
6463   size(4);
6464   ins_encode( enc_stw(src, mem) );
6465   ins_pipe(pipe_class_memory);
6466 %}
6467 
6468 // ConvL2I + StoreI.
6469 instruct storeI_convL2I(memory mem, iRegLsrc src) %{
6470   match(Set mem (StoreI mem (ConvL2I src)));
6471   ins_cost(MEMORY_REF_COST);
6472 
6473   format %{ "STW     l2i($src), $mem" %}
6474   size(4);
6475   ins_encode( enc_stw(src, mem) );
6476   ins_pipe(pipe_class_memory);
6477 %}
6478 
6479 // Store Long
6480 instruct storeL(memoryAlg4 mem, iRegLsrc src) %{
6481   match(Set mem (StoreL mem src));
6482   ins_cost(MEMORY_REF_COST);
6483 
6484   format %{ "STD     $src, $mem \t// long" %}
6485   size(4);
6486   ins_encode( enc_std(src, mem) );
6487   ins_pipe(pipe_class_memory);
6488 %}
6489 
6490 // Store super word nodes.
6491 
6492 // Store Aligned Packed Byte long register to memory
6493 instruct storeA8B(memoryAlg4 mem, iRegLsrc src) %{
6494   predicate(n->as_StoreVector()->memory_size() == 8);
6495   match(Set mem (StoreVector mem src));
6496   ins_cost(MEMORY_REF_COST);
6497 
6498   format %{ "STD     $mem, $src \t// packed8B" %}
6499   size(4);
6500   ins_encode( enc_std(src, mem) );
6501   ins_pipe(pipe_class_memory);
6502 %}
6503 
6504 // Store Compressed Oop
6505 instruct storeN(memory dst, iRegN_P2N src) %{
6506   match(Set dst (StoreN dst src));
6507   ins_cost(MEMORY_REF_COST);
6508 
6509   format %{ "STW     $src, $dst \t// compressed oop" %}
6510   size(4);
6511   ins_encode( enc_stw(src, dst) );
6512   ins_pipe(pipe_class_memory);
6513 %}
6514 
6515 // Store Compressed KLass
6516 instruct storeNKlass(memory dst, iRegN_P2N src) %{
6517   match(Set dst (StoreNKlass dst src));
6518   ins_cost(MEMORY_REF_COST);
6519 
6520   format %{ "STW     $src, $dst \t// compressed klass" %}
6521   size(4);
6522   ins_encode( enc_stw(src, dst) );
6523   ins_pipe(pipe_class_memory);
6524 %}
6525 
6526 // Store Pointer
6527 instruct storeP(memoryAlg4 dst, iRegPsrc src) %{
6528   match(Set dst (StoreP dst src));
6529   ins_cost(MEMORY_REF_COST);
6530 
6531   format %{ "STD     $src, $dst \t// ptr" %}
6532   size(4);
6533   ins_encode( enc_std(src, dst) );
6534   ins_pipe(pipe_class_memory);
6535 %}
6536 
6537 // Store Float
6538 instruct storeF(memory mem, regF src) %{
6539   match(Set mem (StoreF mem src));
6540   ins_cost(MEMORY_REF_COST);
6541 
6542   format %{ "STFS    $src, $mem" %}
6543   size(4);
6544   ins_encode( enc_stfs(src, mem) );
6545   ins_pipe(pipe_class_memory);
6546 %}
6547 
6548 // Store Double
6549 instruct storeD(memory mem, regD src) %{
6550   match(Set mem (StoreD mem src));
6551   ins_cost(MEMORY_REF_COST);
6552 
6553   format %{ "STFD    $src, $mem" %}
6554   size(4);
6555   ins_encode( enc_stfd(src, mem) );
6556   ins_pipe(pipe_class_memory);
6557 %}
6558 
6559 //----------Store Instructions With Zeros--------------------------------------
6560 
6561 // Card-mark for CMS garbage collection.
6562 // This cardmark does an optimization so that it must not always
6563 // do a releasing store. For this, it gets the address of
6564 // CMSCollectorCardTableModRefBSExt::_requires_release as input.
6565 // (Using releaseFieldAddr in the match rule is a hack.)
6566 instruct storeCM_CMS(memory mem, iRegLdst releaseFieldAddr) %{
6567   match(Set mem (StoreCM mem releaseFieldAddr));
6568   predicate(false);
6569   ins_cost(MEMORY_REF_COST);
6570 
6571   // See loadConP.
6572   ins_cannot_rematerialize(true);
6573 
6574   format %{ "STB     #0, $mem \t// CMS card-mark byte (must be 0!), checking requires_release in [$releaseFieldAddr]" %}
6575   ins_encode( enc_cms_card_mark(mem, releaseFieldAddr) );
6576   ins_pipe(pipe_class_memory);
6577 %}
6578 
6579 // Card-mark for CMS garbage collection.
6580 // This cardmark does an optimization so that it must not always
6581 // do a releasing store. For this, it needs the constant address of
6582 // CMSCollectorCardTableModRefBSExt::_requires_release.
6583 // This constant address is split off here by expand so we can use
6584 // adlc / matcher functionality to load it from the constant section.
6585 instruct storeCM_CMS_ExEx(memory mem, immI_0 zero) %{
6586   match(Set mem (StoreCM mem zero));
6587   predicate(UseConcMarkSweepGC);
6588 
6589   expand %{
6590     immL baseImm %{ 0 /* TODO: PPC port (jlong)CMSCollectorCardTableModRefBSExt::requires_release_address() */ %}
6591     iRegLdst releaseFieldAddress;
6592     loadConL_Ex(releaseFieldAddress, baseImm);
6593     storeCM_CMS(mem, releaseFieldAddress);
6594   %}
6595 %}
6596 
6597 instruct storeCM_G1(memory mem, immI_0 zero) %{
6598   match(Set mem (StoreCM mem zero));
6599   predicate(UseG1GC);
6600   ins_cost(MEMORY_REF_COST);
6601 
6602   ins_cannot_rematerialize(true);
6603 
6604   format %{ "STB     #0, $mem \t// CMS card-mark byte store (G1)" %}
6605   size(8);
6606   ins_encode %{
6607     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6608     __ li(R0, 0);
6609     //__ release(); // G1: oops are allowed to get visible after dirty marking
6610     guarantee($mem$$base$$Register != R1_SP, "use frame_slots_bias");
6611     __ stb(R0, $mem$$disp, $mem$$base$$Register);
6612   %}
6613   ins_pipe(pipe_class_memory);
6614 %}
6615 
6616 // Convert oop pointer into compressed form.
6617 
6618 // Nodes for postalloc expand.
6619 
6620 // Shift node for expand.
6621 instruct encodeP_shift(iRegNdst dst, iRegNsrc src) %{
6622   // The match rule is needed to make it a 'MachTypeNode'!
6623   match(Set dst (EncodeP src));
6624   predicate(false);
6625 
6626   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
6627   size(4);
6628   ins_encode %{
6629     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6630     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
6631   %}
6632   ins_pipe(pipe_class_default);
6633 %}
6634 
6635 // Add node for expand.
6636 instruct encodeP_sub(iRegPdst dst, iRegPdst src) %{
6637   // The match rule is needed to make it a 'MachTypeNode'!
6638   match(Set dst (EncodeP src));
6639   predicate(false);
6640 
6641   format %{ "SUB     $dst, $src, oop_base \t// encode" %}
6642   size(4);
6643   ins_encode %{
6644     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
6645     __ subf($dst$$Register, R30, $src$$Register);
6646   %}
6647   ins_pipe(pipe_class_default);
6648 %}
6649 
6650 // Conditional sub base.
6651 instruct cond_sub_base(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
6652   // The match rule is needed to make it a 'MachTypeNode'!
6653   match(Set dst (EncodeP (Binary crx src1)));
6654   predicate(false);
6655 
6656   ins_variable_size_depending_on_alignment(true);
6657 
6658   format %{ "BEQ     $crx, done\n\t"
6659             "SUB     $dst, $src1, R30 \t// encode: subtract base if != NULL\n"
6660             "done:" %}
6661   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
6662   ins_encode %{
6663     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
6664     Label done;
6665     __ beq($crx$$CondRegister, done);
6666     __ subf($dst$$Register, R30, $src1$$Register);
6667     // TODO PPC port __ endgroup_if_needed(_size == 12);
6668     __ bind(done);
6669   %}
6670   ins_pipe(pipe_class_default);
6671 %}
6672 
6673 // Power 7 can use isel instruction
6674 instruct cond_set_0_oop(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
6675   // The match rule is needed to make it a 'MachTypeNode'!
6676   match(Set dst (EncodeP (Binary crx src1)));
6677   predicate(false);
6678 
6679   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// encode: preserve 0" %}
6680   size(4);
6681   ins_encode %{
6682     // This is a Power7 instruction for which no machine description exists.
6683     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6684     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
6685   %}
6686   ins_pipe(pipe_class_default);
6687 %}
6688 
6689 // Disjoint narrow oop base.
6690 instruct encodeP_Disjoint(iRegNdst dst, iRegPsrc src) %{
6691   match(Set dst (EncodeP src));
6692   predicate(Universe::narrow_oop_base_disjoint());
6693 
6694   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with disjoint base" %}
6695   size(4);
6696   ins_encode %{
6697     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6698     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
6699   %}
6700   ins_pipe(pipe_class_default);
6701 %}
6702 
6703 // shift != 0, base != 0
6704 instruct encodeP_Ex(iRegNdst dst, flagsReg crx, iRegPsrc src) %{
6705   match(Set dst (EncodeP src));
6706   effect(TEMP crx);
6707   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull &&
6708             Universe::narrow_oop_shift() != 0 &&
6709             Universe::narrow_oop_base_overlaps());
6710 
6711   format %{ "EncodeP $dst, $crx, $src \t// postalloc expanded" %}
6712   postalloc_expand( postalloc_expand_encode_oop(dst, src, crx));
6713 %}
6714 
6715 // shift != 0, base != 0
6716 instruct encodeP_not_null_Ex(iRegNdst dst, iRegPsrc src) %{
6717   match(Set dst (EncodeP src));
6718   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull &&
6719             Universe::narrow_oop_shift() != 0 &&
6720             Universe::narrow_oop_base_overlaps());
6721 
6722   format %{ "EncodeP $dst, $src\t// $src != Null, postalloc expanded" %}
6723   postalloc_expand( postalloc_expand_encode_oop_not_null(dst, src) );
6724 %}
6725 
6726 // shift != 0, base == 0
6727 // TODO: This is the same as encodeP_shift. Merge!
6728 instruct encodeP_not_null_base_null(iRegNdst dst, iRegPsrc src) %{
6729   match(Set dst (EncodeP src));
6730   predicate(Universe::narrow_oop_shift() != 0 &&
6731             Universe::narrow_oop_base() ==0);
6732 
6733   format %{ "SRDI    $dst, $src, #3 \t// encodeP, $src != NULL" %}
6734   size(4);
6735   ins_encode %{
6736     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6737     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
6738   %}
6739   ins_pipe(pipe_class_default);
6740 %}
6741 
6742 // Compressed OOPs with narrow_oop_shift == 0.
6743 // shift == 0, base == 0
6744 instruct encodeP_narrow_oop_shift_0(iRegNdst dst, iRegPsrc src) %{
6745   match(Set dst (EncodeP src));
6746   predicate(Universe::narrow_oop_shift() == 0);
6747 
6748   format %{ "MR      $dst, $src \t// Ptr->Narrow" %}
6749   // variable size, 0 or 4.
6750   ins_encode %{
6751     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6752     __ mr_if_needed($dst$$Register, $src$$Register);
6753   %}
6754   ins_pipe(pipe_class_default);
6755 %}
6756 
6757 // Decode nodes.
6758 
6759 // Shift node for expand.
6760 instruct decodeN_shift(iRegPdst dst, iRegPsrc src) %{
6761   // The match rule is needed to make it a 'MachTypeNode'!
6762   match(Set dst (DecodeN src));
6763   predicate(false);
6764 
6765   format %{ "SLDI    $dst, $src, #3 \t// DecodeN" %}
6766   size(4);
6767   ins_encode %{
6768     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
6769     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
6770   %}
6771   ins_pipe(pipe_class_default);
6772 %}
6773 
6774 // Add node for expand.
6775 instruct decodeN_add(iRegPdst dst, iRegPdst src) %{
6776   // The match rule is needed to make it a 'MachTypeNode'!
6777   match(Set dst (DecodeN src));
6778   predicate(false);
6779 
6780   format %{ "ADD     $dst, $src, R30 \t// DecodeN, add oop base" %}
6781   size(4);
6782   ins_encode %{
6783     // TODO: PPC port $archOpcode(ppc64Opcode_add);
6784     __ add($dst$$Register, $src$$Register, R30);
6785   %}
6786   ins_pipe(pipe_class_default);
6787 %}
6788 
6789 // conditianal add base for expand
6790 instruct cond_add_base(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
6791   // The match rule is needed to make it a 'MachTypeNode'!
6792   // NOTICE that the rule is nonsense - we just have to make sure that:
6793   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
6794   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
6795   match(Set dst (DecodeN (Binary crx src1)));
6796   predicate(false);
6797 
6798   ins_variable_size_depending_on_alignment(true);
6799 
6800   format %{ "BEQ     $crx, done\n\t"
6801             "ADD     $dst, $src1, R30 \t// DecodeN: add oop base if $src1 != NULL\n"
6802             "done:" %}
6803   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling()) */? 12 : 8);
6804   ins_encode %{
6805     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
6806     Label done;
6807     __ beq($crx$$CondRegister, done);
6808     __ add($dst$$Register, $src1$$Register, R30);
6809     // TODO PPC port  __ endgroup_if_needed(_size == 12);
6810     __ bind(done);
6811   %}
6812   ins_pipe(pipe_class_default);
6813 %}
6814 
6815 instruct cond_set_0_ptr(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
6816   // The match rule is needed to make it a 'MachTypeNode'!
6817   // NOTICE that the rule is nonsense - we just have to make sure that:
6818   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
6819   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
6820   match(Set dst (DecodeN (Binary crx src1)));
6821   predicate(false);
6822 
6823   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// decode: preserve 0" %}
6824   size(4);
6825   ins_encode %{
6826     // This is a Power7 instruction for which no machine description exists.
6827     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6828     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
6829   %}
6830   ins_pipe(pipe_class_default);
6831 %}
6832 
6833 //  shift != 0, base != 0
6834 instruct decodeN_Ex(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
6835   match(Set dst (DecodeN src));
6836   predicate((n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6837              n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant) &&
6838             Universe::narrow_oop_shift() != 0 &&
6839             Universe::narrow_oop_base() != 0);
6840   ins_cost(4 * DEFAULT_COST); // Should be more expensive than decodeN_Disjoint_isel_Ex.
6841   effect(TEMP crx);
6842 
6843   format %{ "DecodeN $dst, $src \t// Kills $crx, postalloc expanded" %}
6844   postalloc_expand( postalloc_expand_decode_oop(dst, src, crx) );
6845 %}
6846 
6847 // shift != 0, base == 0
6848 instruct decodeN_nullBase(iRegPdst dst, iRegNsrc src) %{
6849   match(Set dst (DecodeN src));
6850   predicate(Universe::narrow_oop_shift() != 0 &&
6851             Universe::narrow_oop_base() == 0);
6852 
6853   format %{ "SLDI    $dst, $src, #3 \t// DecodeN (zerobased)" %}
6854   size(4);
6855   ins_encode %{
6856     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
6857     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
6858   %}
6859   ins_pipe(pipe_class_default);
6860 %}
6861 
6862 // Optimize DecodeN for disjoint base.
6863 // Shift narrow oop and or it into register that already contains the heap base.
6864 // Base == dst must hold, and is assured by construction in postaloc_expand.
6865 instruct decodeN_mergeDisjoint(iRegPdst dst, iRegNsrc src, iRegLsrc base) %{
6866   match(Set dst (DecodeN src));
6867   effect(TEMP base);
6868   predicate(false);
6869 
6870   format %{ "RLDIMI  $dst, $src, shift, 32-shift \t// DecodeN (disjoint base)" %}
6871   size(4);
6872   ins_encode %{
6873     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
6874     __ rldimi($dst$$Register, $src$$Register, Universe::narrow_oop_shift(), 32-Universe::narrow_oop_shift());
6875   %}
6876   ins_pipe(pipe_class_default);
6877 %}
6878 
6879 // Optimize DecodeN for disjoint base.
6880 // This node requires only one cycle on the critical path.
6881 // We must postalloc_expand as we can not express use_def effects where
6882 // the used register is L and the def'ed register P.
6883 instruct decodeN_Disjoint_notNull_Ex(iRegPdst dst, iRegNsrc src) %{
6884   match(Set dst (DecodeN src));
6885   effect(TEMP_DEF dst);
6886   predicate((n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6887              n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
6888             Universe::narrow_oop_base_disjoint());
6889   ins_cost(DEFAULT_COST);
6890 
6891   format %{ "MOV     $dst, R30 \t\n"
6892             "RLDIMI  $dst, $src, shift, 32-shift \t// decode with disjoint base" %}
6893   postalloc_expand %{
6894     loadBaseNode *n1 = new loadBaseNode();
6895     n1->add_req(NULL);
6896     n1->_opnds[0] = op_dst;
6897 
6898     decodeN_mergeDisjointNode *n2 = new decodeN_mergeDisjointNode();
6899     n2->add_req(n_region, n_src, n1);
6900     n2->_opnds[0] = op_dst;
6901     n2->_opnds[1] = op_src;
6902     n2->_opnds[2] = op_dst;
6903     n2->_bottom_type = _bottom_type;
6904 
6905     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6906     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6907 
6908     nodes->push(n1);
6909     nodes->push(n2);
6910   %}
6911 %}
6912 
6913 instruct decodeN_Disjoint_isel_Ex(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
6914   match(Set dst (DecodeN src));
6915   effect(TEMP_DEF dst, TEMP crx);
6916   predicate((n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6917              n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant) &&
6918             Universe::narrow_oop_base_disjoint() && VM_Version::has_isel());
6919   ins_cost(3 * DEFAULT_COST);
6920 
6921   format %{ "DecodeN  $dst, $src \t// decode with disjoint base using isel" %}
6922   postalloc_expand %{
6923     loadBaseNode *n1 = new loadBaseNode();
6924     n1->add_req(NULL);
6925     n1->_opnds[0] = op_dst;
6926 
6927     cmpN_reg_imm0Node *n_compare  = new cmpN_reg_imm0Node();
6928     n_compare->add_req(n_region, n_src);
6929     n_compare->_opnds[0] = op_crx;
6930     n_compare->_opnds[1] = op_src;
6931     n_compare->_opnds[2] = new immN_0Oper(TypeNarrowOop::NULL_PTR);
6932     
6933     decodeN_mergeDisjointNode *n2 = new decodeN_mergeDisjointNode();
6934     n2->add_req(n_region, n_src, n1);
6935     n2->_opnds[0] = op_dst;
6936     n2->_opnds[1] = op_src;
6937     n2->_opnds[2] = op_dst;
6938     n2->_bottom_type = _bottom_type;
6939 
6940     cond_set_0_ptrNode *n_cond_set = new cond_set_0_ptrNode();
6941     n_cond_set->add_req(n_region, n_compare, n2);
6942     n_cond_set->_opnds[0] = op_dst;
6943     n_cond_set->_opnds[1] = op_crx;
6944     n_cond_set->_opnds[2] = op_dst;
6945     n_cond_set->_bottom_type = _bottom_type;
6946 
6947     assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
6948     ra_->set_oop(n_cond_set, true);
6949     
6950     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6951     ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
6952     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6953     ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6954 
6955     nodes->push(n1);
6956     nodes->push(n_compare);
6957     nodes->push(n2);
6958     nodes->push(n_cond_set);
6959   %}
6960 %}
6961 
6962 // src != 0, shift != 0, base != 0
6963 instruct decodeN_notNull_addBase_Ex(iRegPdst dst, iRegNsrc src) %{
6964   match(Set dst (DecodeN src));
6965   predicate((n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6966              n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
6967             Universe::narrow_oop_shift() != 0 &&
6968             Universe::narrow_oop_base() != 0);
6969   ins_cost(2 * DEFAULT_COST);
6970 
6971   format %{ "DecodeN $dst, $src \t// $src != NULL, postalloc expanded" %}
6972   postalloc_expand( postalloc_expand_decode_oop_not_null(dst, src));
6973 %}
6974 
6975 // Compressed OOPs with narrow_oop_shift == 0.
6976 instruct decodeN_unscaled(iRegPdst dst, iRegNsrc src) %{
6977   match(Set dst (DecodeN src));
6978   predicate(Universe::narrow_oop_shift() == 0);
6979   ins_cost(DEFAULT_COST);
6980 
6981   format %{ "MR      $dst, $src \t// DecodeN (unscaled)" %}
6982   // variable size, 0 or 4.
6983   ins_encode %{
6984     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6985     __ mr_if_needed($dst$$Register, $src$$Register);
6986   %}
6987   ins_pipe(pipe_class_default);
6988 %}
6989 
6990 // Convert compressed oop into int for vectors alignment masking.
6991 instruct decodeN2I_unscaled(iRegIdst dst, iRegNsrc src) %{
6992   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
6993   predicate(Universe::narrow_oop_shift() == 0);
6994   ins_cost(DEFAULT_COST);
6995 
6996   format %{ "MR      $dst, $src \t// (int)DecodeN (unscaled)" %}
6997   // variable size, 0 or 4.
6998   ins_encode %{
6999     // TODO: PPC port $archOpcode(ppc64Opcode_or);
7000     __ mr_if_needed($dst$$Register, $src$$Register);
7001   %}
7002   ins_pipe(pipe_class_default);
7003 %}
7004 
7005 // Convert klass pointer into compressed form.
7006 
7007 // Nodes for postalloc expand.
7008 
7009 // Shift node for expand.
7010 instruct encodePKlass_shift(iRegNdst dst, iRegNsrc src) %{
7011   // The match rule is needed to make it a 'MachTypeNode'!
7012   match(Set dst (EncodePKlass src));
7013   predicate(false);
7014 
7015   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
7016   size(4);
7017   ins_encode %{
7018     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
7019     __ srdi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
7020   %}
7021   ins_pipe(pipe_class_default);
7022 %}
7023 
7024 // Add node for expand.
7025 instruct encodePKlass_sub_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
7026   // The match rule is needed to make it a 'MachTypeNode'!
7027   match(Set dst (EncodePKlass (Binary base src)));
7028   predicate(false);
7029 
7030   format %{ "SUB     $dst, $base, $src \t// encode" %}
7031   size(4);
7032   ins_encode %{
7033     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7034     __ subf($dst$$Register, $base$$Register, $src$$Register);
7035   %}
7036   ins_pipe(pipe_class_default);
7037 %}
7038 
7039 // Disjoint narrow oop base.
7040 instruct encodePKlass_Disjoint(iRegNdst dst, iRegPsrc src) %{
7041   match(Set dst (EncodePKlass src));
7042   predicate(false /* TODO: PPC port Universe::narrow_klass_base_disjoint()*/);
7043 
7044   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with disjoint base" %}
7045   size(4);
7046   ins_encode %{
7047     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
7048     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_klass_shift(), 32);
7049   %}
7050   ins_pipe(pipe_class_default);
7051 %}
7052 
7053 // shift != 0, base != 0
7054 instruct encodePKlass_not_null_Ex(iRegNdst dst, iRegLsrc base, iRegPsrc src) %{
7055   match(Set dst (EncodePKlass (Binary base src)));
7056   predicate(false);
7057 
7058   format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
7059   postalloc_expand %{
7060     encodePKlass_sub_baseNode *n1 = new encodePKlass_sub_baseNode();
7061     n1->add_req(n_region, n_base, n_src);
7062     n1->_opnds[0] = op_dst;
7063     n1->_opnds[1] = op_base;
7064     n1->_opnds[2] = op_src;
7065     n1->_bottom_type = _bottom_type;
7066 
7067     encodePKlass_shiftNode *n2 = new encodePKlass_shiftNode();
7068     n2->add_req(n_region, n1);
7069     n2->_opnds[0] = op_dst;
7070     n2->_opnds[1] = op_dst;
7071     n2->_bottom_type = _bottom_type;
7072     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7073     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7074 
7075     nodes->push(n1);
7076     nodes->push(n2);
7077   %}
7078 %}
7079 
7080 // shift != 0, base != 0
7081 instruct encodePKlass_not_null_ExEx(iRegNdst dst, iRegPsrc src) %{
7082   match(Set dst (EncodePKlass src));
7083   //predicate(Universe::narrow_klass_shift() != 0 &&
7084   //          true /* TODO: PPC port Universe::narrow_klass_base_overlaps()*/);
7085 
7086   //format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
7087   ins_cost(DEFAULT_COST*2);  // Don't count constant.
7088   expand %{
7089     immL baseImm %{ (jlong)(intptr_t)Universe::narrow_klass_base() %}
7090     iRegLdst base;
7091     loadConL_Ex(base, baseImm);
7092     encodePKlass_not_null_Ex(dst, base, src);
7093   %}
7094 %}
7095 
7096 // Decode nodes.
7097 
7098 // Shift node for expand.
7099 instruct decodeNKlass_shift(iRegPdst dst, iRegPsrc src) %{
7100   // The match rule is needed to make it a 'MachTypeNode'!
7101   match(Set dst (DecodeNKlass src));
7102   predicate(false);
7103 
7104   format %{ "SLDI    $dst, $src, #3 \t// DecodeNKlass" %}
7105   size(4);
7106   ins_encode %{
7107     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
7108     __ sldi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
7109   %}
7110   ins_pipe(pipe_class_default);
7111 %}
7112 
7113 // Add node for expand.
7114 
7115 instruct decodeNKlass_add_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
7116   // The match rule is needed to make it a 'MachTypeNode'!
7117   match(Set dst (DecodeNKlass (Binary base src)));
7118   predicate(false);
7119 
7120   format %{ "ADD     $dst, $base, $src \t// DecodeNKlass, add klass base" %}
7121   size(4);
7122   ins_encode %{
7123     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7124     __ add($dst$$Register, $base$$Register, $src$$Register);
7125   %}
7126   ins_pipe(pipe_class_default);
7127 %}
7128 
7129 // src != 0, shift != 0, base != 0
7130 instruct decodeNKlass_notNull_addBase_Ex(iRegPdst dst, iRegLsrc base, iRegNsrc src) %{
7131   match(Set dst (DecodeNKlass (Binary base src)));
7132   //effect(kill src); // We need a register for the immediate result after shifting.
7133   predicate(false);
7134 
7135   format %{ "DecodeNKlass $dst =  $base + ($src << 3) \t// $src != NULL, postalloc expanded" %}
7136   postalloc_expand %{
7137     decodeNKlass_add_baseNode *n1 = new decodeNKlass_add_baseNode();
7138     n1->add_req(n_region, n_base, n_src);
7139     n1->_opnds[0] = op_dst;
7140     n1->_opnds[1] = op_base;
7141     n1->_opnds[2] = op_src;
7142     n1->_bottom_type = _bottom_type;
7143 
7144     decodeNKlass_shiftNode *n2 = new decodeNKlass_shiftNode();
7145     n2->add_req(n_region, n1);
7146     n2->_opnds[0] = op_dst;
7147     n2->_opnds[1] = op_dst;
7148     n2->_bottom_type = _bottom_type;
7149 
7150     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7151     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7152 
7153     nodes->push(n1);
7154     nodes->push(n2);
7155   %}
7156 %}
7157 
7158 // src != 0, shift != 0, base != 0
7159 instruct decodeNKlass_notNull_addBase_ExEx(iRegPdst dst, iRegNsrc src) %{
7160   match(Set dst (DecodeNKlass src));
7161   // predicate(Universe::narrow_klass_shift() != 0 &&
7162   //           Universe::narrow_klass_base() != 0);
7163 
7164   //format %{ "DecodeNKlass $dst, $src \t// $src != NULL, expanded" %}
7165 
7166   ins_cost(DEFAULT_COST*2);  // Don't count constant.
7167   expand %{
7168     // We add first, then we shift. Like this, we can get along with one register less.
7169     // But we have to load the base pre-shifted.
7170     immL baseImm %{ (jlong)((intptr_t)Universe::narrow_klass_base() >> Universe::narrow_klass_shift()) %}
7171     iRegLdst base;
7172     loadConL_Ex(base, baseImm);
7173     decodeNKlass_notNull_addBase_Ex(dst, base, src);
7174   %}
7175 %}
7176 
7177 //----------MemBar Instructions-----------------------------------------------
7178 // Memory barrier flavors
7179 
7180 instruct membar_acquire() %{
7181   match(LoadFence);
7182   ins_cost(4*MEMORY_REF_COST);
7183 
7184   format %{ "MEMBAR-acquire" %}
7185   size(4);
7186   ins_encode %{
7187     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7188     __ acquire();
7189   %}
7190   ins_pipe(pipe_class_default);
7191 %}
7192 
7193 instruct unnecessary_membar_acquire() %{
7194   match(MemBarAcquire);
7195   ins_cost(0);
7196 
7197   format %{ " -- \t// redundant MEMBAR-acquire - empty" %}
7198   size(0);
7199   ins_encode( /*empty*/ );
7200   ins_pipe(pipe_class_default);
7201 %}
7202 
7203 instruct membar_acquire_lock() %{
7204   match(MemBarAcquireLock);
7205   ins_cost(0);
7206 
7207   format %{ " -- \t// redundant MEMBAR-acquire - empty (acquire as part of CAS in prior FastLock)" %}
7208   size(0);
7209   ins_encode( /*empty*/ );
7210   ins_pipe(pipe_class_default);
7211 %}
7212 
7213 instruct membar_release() %{
7214   match(MemBarRelease);
7215   match(StoreFence);
7216   ins_cost(4*MEMORY_REF_COST);
7217 
7218   format %{ "MEMBAR-release" %}
7219   size(4);
7220   ins_encode %{
7221     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7222     __ release();
7223   %}
7224   ins_pipe(pipe_class_default);
7225 %}
7226 
7227 instruct membar_storestore() %{
7228   match(MemBarStoreStore);
7229   ins_cost(4*MEMORY_REF_COST);
7230 
7231   format %{ "MEMBAR-store-store" %}
7232   size(4);
7233   ins_encode %{
7234     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7235     __ membar(Assembler::StoreStore);
7236   %}
7237   ins_pipe(pipe_class_default);
7238 %}
7239 
7240 instruct membar_release_lock() %{
7241   match(MemBarReleaseLock);
7242   ins_cost(0);
7243 
7244   format %{ " -- \t// redundant MEMBAR-release - empty (release in FastUnlock)" %}
7245   size(0);
7246   ins_encode( /*empty*/ );
7247   ins_pipe(pipe_class_default);
7248 %}
7249 
7250 instruct membar_volatile() %{
7251   match(MemBarVolatile);
7252   ins_cost(4*MEMORY_REF_COST);
7253 
7254   format %{ "MEMBAR-volatile" %}
7255   size(4);
7256   ins_encode %{
7257     // TODO: PPC port $archOpcode(ppc64Opcode_sync);
7258     __ fence();
7259   %}
7260   ins_pipe(pipe_class_default);
7261 %}
7262 
7263 // This optimization is wrong on PPC. The following pattern is not supported:
7264 //  MemBarVolatile
7265 //   ^        ^
7266 //   |        |
7267 //  CtrlProj MemProj
7268 //   ^        ^
7269 //   |        |
7270 //   |       Load
7271 //   |
7272 //  MemBarVolatile
7273 //
7274 //  The first MemBarVolatile could get optimized out! According to
7275 //  Vladimir, this pattern can not occur on Oracle platforms.
7276 //  However, it does occur on PPC64 (because of membars in
7277 //  inline_unsafe_load_store).
7278 //
7279 // Add this node again if we found a good solution for inline_unsafe_load_store().
7280 // Don't forget to look at the implementation of post_store_load_barrier again,
7281 // we did other fixes in that method.
7282 //instruct unnecessary_membar_volatile() %{
7283 //  match(MemBarVolatile);
7284 //  predicate(Matcher::post_store_load_barrier(n));
7285 //  ins_cost(0);
7286 //
7287 //  format %{ " -- \t// redundant MEMBAR-volatile - empty" %}
7288 //  size(0);
7289 //  ins_encode( /*empty*/ );
7290 //  ins_pipe(pipe_class_default);
7291 //%}
7292 
7293 instruct membar_CPUOrder() %{
7294   match(MemBarCPUOrder);
7295   ins_cost(0);
7296 
7297   format %{ " -- \t// MEMBAR-CPUOrder - empty: PPC64 processors are self-consistent." %}
7298   size(0);
7299   ins_encode( /*empty*/ );
7300   ins_pipe(pipe_class_default);
7301 %}
7302 
7303 //----------Conditional Move---------------------------------------------------
7304 
7305 // Cmove using isel.
7306 instruct cmovI_reg_isel(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
7307   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7308   predicate(VM_Version::has_isel());
7309   ins_cost(DEFAULT_COST);
7310 
7311   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7312   size(4);
7313   ins_encode %{
7314     // This is a Power7 instruction for which no machine description
7315     // exists. Anyways, the scheduler should be off on Power7.
7316     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7317     int cc        = $cmp$$cmpcode;
7318     __ isel($dst$$Register, $crx$$CondRegister,
7319             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7320   %}
7321   ins_pipe(pipe_class_default);
7322 %}
7323 
7324 instruct cmovI_reg(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
7325   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7326   predicate(!VM_Version::has_isel());
7327   ins_cost(DEFAULT_COST+BRANCH_COST);
7328 
7329   ins_variable_size_depending_on_alignment(true);
7330 
7331   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7332   // Worst case is branch + move + stop, no stop without scheduler
7333   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7334   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7335   ins_pipe(pipe_class_default);
7336 %}
7337 
7338 instruct cmovI_imm(cmpOp cmp, flagsReg crx, iRegIdst dst, immI16 src) %{
7339   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7340   ins_cost(DEFAULT_COST+BRANCH_COST);
7341 
7342   ins_variable_size_depending_on_alignment(true);
7343 
7344   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7345   // Worst case is branch + move + stop, no stop without scheduler
7346   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7347   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7348   ins_pipe(pipe_class_default);
7349 %}
7350 
7351 // Cmove using isel.
7352 instruct cmovL_reg_isel(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
7353   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7354   predicate(VM_Version::has_isel());
7355   ins_cost(DEFAULT_COST);
7356 
7357   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7358   size(4);
7359   ins_encode %{
7360     // This is a Power7 instruction for which no machine description
7361     // exists. Anyways, the scheduler should be off on Power7.
7362     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7363     int cc        = $cmp$$cmpcode;
7364     __ isel($dst$$Register, $crx$$CondRegister,
7365             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7366   %}
7367   ins_pipe(pipe_class_default);
7368 %}
7369 
7370 instruct cmovL_reg(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
7371   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7372   predicate(!VM_Version::has_isel());
7373   ins_cost(DEFAULT_COST+BRANCH_COST);
7374 
7375   ins_variable_size_depending_on_alignment(true);
7376 
7377   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7378   // Worst case is branch + move + stop, no stop without scheduler.
7379   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7380   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7381   ins_pipe(pipe_class_default);
7382 %}
7383 
7384 instruct cmovL_imm(cmpOp cmp, flagsReg crx, iRegLdst dst, immL16 src) %{
7385   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7386   ins_cost(DEFAULT_COST+BRANCH_COST);
7387 
7388   ins_variable_size_depending_on_alignment(true);
7389 
7390   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7391   // Worst case is branch + move + stop, no stop without scheduler.
7392   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7393   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7394   ins_pipe(pipe_class_default);
7395 %}
7396 
7397 // Cmove using isel.
7398 instruct cmovN_reg_isel(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
7399   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7400   predicate(VM_Version::has_isel());
7401   ins_cost(DEFAULT_COST);
7402 
7403   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7404   size(4);
7405   ins_encode %{
7406     // This is a Power7 instruction for which no machine description
7407     // exists. Anyways, the scheduler should be off on Power7.
7408     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7409     int cc        = $cmp$$cmpcode;
7410     __ isel($dst$$Register, $crx$$CondRegister,
7411             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7412   %}
7413   ins_pipe(pipe_class_default);
7414 %}
7415 
7416 // Conditional move for RegN. Only cmov(reg, reg).
7417 instruct cmovN_reg(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
7418   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7419   predicate(!VM_Version::has_isel());
7420   ins_cost(DEFAULT_COST+BRANCH_COST);
7421 
7422   ins_variable_size_depending_on_alignment(true);
7423 
7424   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7425   // Worst case is branch + move + stop, no stop without scheduler.
7426   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7427   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7428   ins_pipe(pipe_class_default);
7429 %}
7430 
7431 instruct cmovN_imm(cmpOp cmp, flagsReg crx, iRegNdst dst, immN_0 src) %{
7432   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7433   ins_cost(DEFAULT_COST+BRANCH_COST);
7434 
7435   ins_variable_size_depending_on_alignment(true);
7436 
7437   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7438   // Worst case is branch + move + stop, no stop without scheduler.
7439   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7440   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7441   ins_pipe(pipe_class_default);
7442 %}
7443 
7444 // Cmove using isel.
7445 instruct cmovP_reg_isel(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegPsrc src) %{
7446   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7447   predicate(VM_Version::has_isel());
7448   ins_cost(DEFAULT_COST);
7449 
7450   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7451   size(4);
7452   ins_encode %{
7453     // This is a Power7 instruction for which no machine description
7454     // exists. Anyways, the scheduler should be off on Power7.
7455     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7456     int cc        = $cmp$$cmpcode;
7457     __ isel($dst$$Register, $crx$$CondRegister,
7458             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7459   %}
7460   ins_pipe(pipe_class_default);
7461 %}
7462 
7463 instruct cmovP_reg(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegP_N2P src) %{
7464   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7465   predicate(!VM_Version::has_isel());
7466   ins_cost(DEFAULT_COST+BRANCH_COST);
7467 
7468   ins_variable_size_depending_on_alignment(true);
7469 
7470   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7471   // Worst case is branch + move + stop, no stop without scheduler.
7472   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7473   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7474   ins_pipe(pipe_class_default);
7475 %}
7476 
7477 instruct cmovP_imm(cmpOp cmp, flagsReg crx, iRegPdst dst, immP_0 src) %{
7478   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7479   ins_cost(DEFAULT_COST+BRANCH_COST);
7480 
7481   ins_variable_size_depending_on_alignment(true);
7482 
7483   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7484   // Worst case is branch + move + stop, no stop without scheduler.
7485   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7486   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7487   ins_pipe(pipe_class_default);
7488 %}
7489 
7490 instruct cmovF_reg(cmpOp cmp, flagsReg crx, regF dst, regF src) %{
7491   match(Set dst (CMoveF (Binary cmp crx) (Binary dst src)));
7492   ins_cost(DEFAULT_COST+BRANCH_COST);
7493 
7494   ins_variable_size_depending_on_alignment(true);
7495 
7496   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
7497   // Worst case is branch + move + stop, no stop without scheduler.
7498   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
7499   ins_encode %{
7500     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
7501     Label done;
7502     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
7503     // Branch if not (cmp crx).
7504     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
7505     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
7506     // TODO PPC port __ endgroup_if_needed(_size == 12);
7507     __ bind(done);
7508   %}
7509   ins_pipe(pipe_class_default);
7510 %}
7511 
7512 instruct cmovD_reg(cmpOp cmp, flagsReg crx, regD dst, regD src) %{
7513   match(Set dst (CMoveD (Binary cmp crx) (Binary dst src)));
7514   ins_cost(DEFAULT_COST+BRANCH_COST);
7515 
7516   ins_variable_size_depending_on_alignment(true);
7517 
7518   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
7519   // Worst case is branch + move + stop, no stop without scheduler.
7520   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
7521   ins_encode %{
7522     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
7523     Label done;
7524     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
7525     // Branch if not (cmp crx).
7526     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
7527     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
7528     // TODO PPC port __ endgroup_if_needed(_size == 12);
7529     __ bind(done);
7530   %}
7531   ins_pipe(pipe_class_default);
7532 %}
7533 
7534 //----------Conditional_store--------------------------------------------------
7535 // Conditional-store of the updated heap-top.
7536 // Used during allocation of the shared heap.
7537 // Sets flags (EQ) on success. Implemented with a CASA on Sparc.
7538 
7539 // As compareAndSwapL, but return flag register instead of boolean value in
7540 // int register.
7541 // Used by sun/misc/AtomicLongCSImpl.java.
7542 // Mem_ptr must be a memory operand, else this node does not get
7543 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
7544 // can be rematerialized which leads to errors.
7545 instruct storeLConditional_regP_regL_regL(flagsReg crx, indirect mem_ptr, iRegLsrc oldVal, iRegLsrc newVal) %{
7546   match(Set crx (StoreLConditional mem_ptr (Binary oldVal newVal)));
7547   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
7548   ins_encode %{
7549     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7550     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
7551                 MacroAssembler::MemBarAcq, MacroAssembler::cmpxchgx_hint_atomic_update(),
7552                 noreg, NULL, true);
7553   %}
7554   ins_pipe(pipe_class_default);
7555 %}
7556 
7557 // As compareAndSwapP, but return flag register instead of boolean value in
7558 // int register.
7559 // This instruction is matched if UseTLAB is off.
7560 // Mem_ptr must be a memory operand, else this node does not get
7561 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
7562 // can be rematerialized which leads to errors.
7563 instruct storePConditional_regP_regP_regP(flagsReg crx, indirect mem_ptr, iRegPsrc oldVal, iRegPsrc newVal) %{
7564   match(Set crx (StorePConditional mem_ptr (Binary oldVal newVal)));
7565   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
7566   ins_encode %{
7567     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7568     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
7569                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
7570                 noreg, NULL, true);
7571   %}
7572   ins_pipe(pipe_class_default);
7573 %}
7574 
7575 // Implement LoadPLocked. Must be ordered against changes of the memory location
7576 // by storePConditional.
7577 // Don't know whether this is ever used.
7578 instruct loadPLocked(iRegPdst dst, memory mem) %{
7579   match(Set dst (LoadPLocked mem));
7580   ins_cost(MEMORY_REF_COST);
7581 
7582   format %{ "LD      $dst, $mem \t// loadPLocked\n\t"
7583             "TWI     $dst\n\t"
7584             "ISYNC" %}
7585   size(12);
7586   ins_encode( enc_ld_ac(dst, mem) );
7587   ins_pipe(pipe_class_memory);
7588 %}
7589 
7590 //----------Compare-And-Swap---------------------------------------------------
7591 
7592 // CompareAndSwap{P,I,L} have more than one output, therefore "CmpI
7593 // (CompareAndSwap ...)" or "If (CmpI (CompareAndSwap ..))"  cannot be
7594 // matched.
7595 
7596 instruct compareAndSwapI_regP_regI_regI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src1, iRegIsrc src2) %{
7597   match(Set res (CompareAndSwapI mem_ptr (Binary src1 src2)));
7598   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
7599   // Variable size: instruction count smaller if regs are disjoint.
7600   ins_encode %{
7601     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7602     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7603     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7604                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7605                 $res$$Register, true);
7606   %}
7607   ins_pipe(pipe_class_default);
7608 %}
7609 
7610 instruct compareAndSwapN_regP_regN_regN(iRegIdst res, iRegPdst mem_ptr, iRegNsrc src1, iRegNsrc src2) %{
7611   match(Set res (CompareAndSwapN mem_ptr (Binary src1 src2)));
7612   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
7613   // Variable size: instruction count smaller if regs are disjoint.
7614   ins_encode %{
7615     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7616     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7617     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7618                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7619                 $res$$Register, true);
7620   %}
7621   ins_pipe(pipe_class_default);
7622 %}
7623 
7624 instruct compareAndSwapL_regP_regL_regL(iRegIdst res, iRegPdst mem_ptr, iRegLsrc src1, iRegLsrc src2) %{
7625   match(Set res (CompareAndSwapL mem_ptr (Binary src1 src2)));
7626   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool" %}
7627   // Variable size: instruction count smaller if regs are disjoint.
7628   ins_encode %{
7629     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7630     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7631     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7632                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7633                 $res$$Register, NULL, true);
7634   %}
7635   ins_pipe(pipe_class_default);
7636 %}
7637 
7638 instruct compareAndSwapP_regP_regP_regP(iRegIdst res, iRegPdst mem_ptr, iRegPsrc src1, iRegPsrc src2) %{
7639   match(Set res (CompareAndSwapP mem_ptr (Binary src1 src2)));
7640   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool; ptr" %}
7641   // Variable size: instruction count smaller if regs are disjoint.
7642   ins_encode %{
7643     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7644     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7645     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7646                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7647                 $res$$Register, NULL, true);
7648   %}
7649   ins_pipe(pipe_class_default);
7650 %}
7651 
7652 instruct getAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
7653   match(Set res (GetAndAddI mem_ptr src));
7654   format %{ "GetAndAddI $res, $mem_ptr, $src" %}
7655   // Variable size: instruction count smaller if regs are disjoint.
7656   ins_encode( enc_GetAndAddI(res, mem_ptr, src) );
7657   ins_pipe(pipe_class_default);
7658 %}
7659 
7660 instruct getAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
7661   match(Set res (GetAndAddL mem_ptr src));
7662   format %{ "GetAndAddL $res, $mem_ptr, $src" %}
7663   // Variable size: instruction count smaller if regs are disjoint.
7664   ins_encode( enc_GetAndAddL(res, mem_ptr, src) );
7665   ins_pipe(pipe_class_default);
7666 %}
7667 
7668 instruct getAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
7669   match(Set res (GetAndSetI mem_ptr src));
7670   format %{ "GetAndSetI $res, $mem_ptr, $src" %}
7671   // Variable size: instruction count smaller if regs are disjoint.
7672   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
7673   ins_pipe(pipe_class_default);
7674 %}
7675 
7676 instruct getAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
7677   match(Set res (GetAndSetL mem_ptr src));
7678   format %{ "GetAndSetL $res, $mem_ptr, $src" %}
7679   // Variable size: instruction count smaller if regs are disjoint.
7680   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
7681   ins_pipe(pipe_class_default);
7682 %}
7683 
7684 instruct getAndSetP(iRegPdst res, iRegPdst mem_ptr, iRegPsrc src) %{
7685   match(Set res (GetAndSetP mem_ptr src));
7686   format %{ "GetAndSetP $res, $mem_ptr, $src" %}
7687   // Variable size: instruction count smaller if regs are disjoint.
7688   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
7689   ins_pipe(pipe_class_default);
7690 %}
7691 
7692 instruct getAndSetN(iRegNdst res, iRegPdst mem_ptr, iRegNsrc src) %{
7693   match(Set res (GetAndSetN mem_ptr src));
7694   format %{ "GetAndSetN $res, $mem_ptr, $src" %}
7695   // Variable size: instruction count smaller if regs are disjoint.
7696   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
7697   ins_pipe(pipe_class_default);
7698 %}
7699 
7700 //----------Arithmetic Instructions--------------------------------------------
7701 // Addition Instructions
7702 
7703 // Register Addition
7704 instruct addI_reg_reg(iRegIdst dst, iRegIsrc_iRegL2Isrc src1, iRegIsrc_iRegL2Isrc src2) %{
7705   match(Set dst (AddI src1 src2));
7706   format %{ "ADD     $dst, $src1, $src2" %}
7707   size(4);
7708   ins_encode %{
7709     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7710     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7711   %}
7712   ins_pipe(pipe_class_default);
7713 %}
7714 
7715 // Expand does not work with above instruct. (??)
7716 instruct addI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
7717   // no match-rule
7718   effect(DEF dst, USE src1, USE src2);
7719   format %{ "ADD     $dst, $src1, $src2" %}
7720   size(4);
7721   ins_encode %{
7722     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7723     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7724   %}
7725   ins_pipe(pipe_class_default);
7726 %}
7727 
7728 instruct tree_addI_addI_addI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
7729   match(Set dst (AddI (AddI (AddI src1 src2) src3) src4));
7730   ins_cost(DEFAULT_COST*3);
7731 
7732   expand %{
7733     // FIXME: we should do this in the ideal world.
7734     iRegIdst tmp1;
7735     iRegIdst tmp2;
7736     addI_reg_reg(tmp1, src1, src2);
7737     addI_reg_reg_2(tmp2, src3, src4); // Adlc complains about addI_reg_reg.
7738     addI_reg_reg(dst, tmp1, tmp2);
7739   %}
7740 %}
7741 
7742 // Immediate Addition
7743 instruct addI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
7744   match(Set dst (AddI src1 src2));
7745   format %{ "ADDI    $dst, $src1, $src2" %}
7746   size(4);
7747   ins_encode %{
7748     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7749     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7750   %}
7751   ins_pipe(pipe_class_default);
7752 %}
7753 
7754 // Immediate Addition with 16-bit shifted operand
7755 instruct addI_reg_immhi16(iRegIdst dst, iRegIsrc src1, immIhi16 src2) %{
7756   match(Set dst (AddI src1 src2));
7757   format %{ "ADDIS   $dst, $src1, $src2" %}
7758   size(4);
7759   ins_encode %{
7760     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7761     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7762   %}
7763   ins_pipe(pipe_class_default);
7764 %}
7765 
7766 // Long Addition
7767 instruct addL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7768   match(Set dst (AddL src1 src2));
7769   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
7770   size(4);
7771   ins_encode %{
7772     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7773     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7774   %}
7775   ins_pipe(pipe_class_default);
7776 %}
7777 
7778 // Expand does not work with above instruct. (??)
7779 instruct addL_reg_reg_2(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7780   // no match-rule
7781   effect(DEF dst, USE src1, USE src2);
7782   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
7783   size(4);
7784   ins_encode %{
7785     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7786     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7787   %}
7788   ins_pipe(pipe_class_default);
7789 %}
7790 
7791 instruct tree_addL_addL_addL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, iRegLsrc src3, iRegLsrc src4) %{
7792   match(Set dst (AddL (AddL (AddL src1 src2) src3) src4));
7793   ins_cost(DEFAULT_COST*3);
7794 
7795   expand %{
7796     // FIXME: we should do this in the ideal world.
7797     iRegLdst tmp1;
7798     iRegLdst tmp2;
7799     addL_reg_reg(tmp1, src1, src2);
7800     addL_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
7801     addL_reg_reg(dst, tmp1, tmp2);
7802   %}
7803 %}
7804 
7805 // AddL + ConvL2I.
7806 instruct addI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
7807   match(Set dst (ConvL2I (AddL src1 src2)));
7808 
7809   format %{ "ADD     $dst, $src1, $src2 \t// long + l2i" %}
7810   size(4);
7811   ins_encode %{
7812     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7813     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7814   %}
7815   ins_pipe(pipe_class_default);
7816 %}
7817 
7818 // No constant pool entries required.
7819 instruct addL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
7820   match(Set dst (AddL src1 src2));
7821 
7822   format %{ "ADDI    $dst, $src1, $src2" %}
7823   size(4);
7824   ins_encode %{
7825     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7826     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7827   %}
7828   ins_pipe(pipe_class_default);
7829 %}
7830 
7831 // Long Immediate Addition with 16-bit shifted operand.
7832 // No constant pool entries required.
7833 instruct addL_reg_immhi16(iRegLdst dst, iRegLsrc src1, immL32hi16 src2) %{
7834   match(Set dst (AddL src1 src2));
7835 
7836   format %{ "ADDIS   $dst, $src1, $src2" %}
7837   size(4);
7838   ins_encode %{
7839     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7840     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7841   %}
7842   ins_pipe(pipe_class_default);
7843 %}
7844 
7845 // Pointer Register Addition
7846 instruct addP_reg_reg(iRegPdst dst, iRegP_N2P src1, iRegLsrc src2) %{
7847   match(Set dst (AddP src1 src2));
7848   format %{ "ADD     $dst, $src1, $src2" %}
7849   size(4);
7850   ins_encode %{
7851     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7852     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7853   %}
7854   ins_pipe(pipe_class_default);
7855 %}
7856 
7857 // Pointer Immediate Addition
7858 // No constant pool entries required.
7859 instruct addP_reg_imm16(iRegPdst dst, iRegP_N2P src1, immL16 src2) %{
7860   match(Set dst (AddP src1 src2));
7861 
7862   format %{ "ADDI    $dst, $src1, $src2" %}
7863   size(4);
7864   ins_encode %{
7865     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7866     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7867   %}
7868   ins_pipe(pipe_class_default);
7869 %}
7870 
7871 // Pointer Immediate Addition with 16-bit shifted operand.
7872 // No constant pool entries required.
7873 instruct addP_reg_immhi16(iRegPdst dst, iRegP_N2P src1, immL32hi16 src2) %{
7874   match(Set dst (AddP src1 src2));
7875 
7876   format %{ "ADDIS   $dst, $src1, $src2" %}
7877   size(4);
7878   ins_encode %{
7879     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7880     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7881   %}
7882   ins_pipe(pipe_class_default);
7883 %}
7884 
7885 //---------------------
7886 // Subtraction Instructions
7887 
7888 // Register Subtraction
7889 instruct subI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
7890   match(Set dst (SubI src1 src2));
7891   format %{ "SUBF    $dst, $src2, $src1" %}
7892   size(4);
7893   ins_encode %{
7894     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7895     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7896   %}
7897   ins_pipe(pipe_class_default);
7898 %}
7899 
7900 // Immediate Subtraction
7901 // The compiler converts "x-c0" into "x+ -c0" (see SubINode::Ideal),
7902 // so this rule seems to be unused.
7903 instruct subI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
7904   match(Set dst (SubI src1 src2));
7905   format %{ "SUBI    $dst, $src1, $src2" %}
7906   size(4);
7907   ins_encode %{
7908     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7909     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
7910   %}
7911   ins_pipe(pipe_class_default);
7912 %}
7913 
7914 // SubI from constant (using subfic).
7915 instruct subI_imm16_reg(iRegIdst dst, immI16 src1, iRegIsrc src2) %{
7916   match(Set dst (SubI src1 src2));
7917   format %{ "SUBI    $dst, $src1, $src2" %}
7918 
7919   size(4);
7920   ins_encode %{
7921     // TODO: PPC port $archOpcode(ppc64Opcode_subfic);
7922     __ subfic($dst$$Register, $src2$$Register, $src1$$constant);
7923   %}
7924   ins_pipe(pipe_class_default);
7925 %}
7926 
7927 // Turn the sign-bit of an integer into a 32-bit mask, 0x0...0 for
7928 // positive integers and 0xF...F for negative ones.
7929 instruct signmask32I_regI(iRegIdst dst, iRegIsrc src) %{
7930   // no match-rule, false predicate
7931   effect(DEF dst, USE src);
7932   predicate(false);
7933 
7934   format %{ "SRAWI   $dst, $src, #31" %}
7935   size(4);
7936   ins_encode %{
7937     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
7938     __ srawi($dst$$Register, $src$$Register, 0x1f);
7939   %}
7940   ins_pipe(pipe_class_default);
7941 %}
7942 
7943 instruct absI_reg_Ex(iRegIdst dst, iRegIsrc src) %{
7944   match(Set dst (AbsI src));
7945   ins_cost(DEFAULT_COST*3);
7946 
7947   expand %{
7948     iRegIdst tmp1;
7949     iRegIdst tmp2;
7950     signmask32I_regI(tmp1, src);
7951     xorI_reg_reg(tmp2, tmp1, src);
7952     subI_reg_reg(dst, tmp2, tmp1);
7953   %}
7954 %}
7955 
7956 instruct negI_regI(iRegIdst dst, immI_0 zero, iRegIsrc src2) %{
7957   match(Set dst (SubI zero src2));
7958   format %{ "NEG     $dst, $src2" %}
7959   size(4);
7960   ins_encode %{
7961     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
7962     __ neg($dst$$Register, $src2$$Register);
7963   %}
7964   ins_pipe(pipe_class_default);
7965 %}
7966 
7967 // Long subtraction
7968 instruct subL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7969   match(Set dst (SubL src1 src2));
7970   format %{ "SUBF    $dst, $src2, $src1 \t// long" %}
7971   size(4);
7972   ins_encode %{
7973     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7974     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7975   %}
7976   ins_pipe(pipe_class_default);
7977 %}
7978 
7979 // SubL + convL2I.
7980 instruct subI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
7981   match(Set dst (ConvL2I (SubL src1 src2)));
7982 
7983   format %{ "SUBF    $dst, $src2, $src1 \t// long + l2i" %}
7984   size(4);
7985   ins_encode %{
7986     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7987     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7988   %}
7989   ins_pipe(pipe_class_default);
7990 %}
7991 
7992 // Immediate Subtraction
7993 // The compiler converts "x-c0" into "x+ -c0" (see SubLNode::Ideal),
7994 // so this rule seems to be unused.
7995 // No constant pool entries required.
7996 instruct subL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
7997   match(Set dst (SubL src1 src2));
7998 
7999   format %{ "SUBI    $dst, $src1, $src2 \t// long" %}
8000   size(4);
8001   ins_encode %{
8002     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
8003     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
8004   %}
8005   ins_pipe(pipe_class_default);
8006 %}
8007 
8008 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
8009 // positive longs and 0xF...F for negative ones.
8010 instruct signmask64I_regL(iRegIdst dst, iRegLsrc src) %{
8011   // no match-rule, false predicate
8012   effect(DEF dst, USE src);
8013   predicate(false);
8014 
8015   format %{ "SRADI   $dst, $src, #63" %}
8016   size(4);
8017   ins_encode %{
8018     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
8019     __ sradi($dst$$Register, $src$$Register, 0x3f);
8020   %}
8021   ins_pipe(pipe_class_default);
8022 %}
8023 
8024 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
8025 // positive longs and 0xF...F for negative ones.
8026 instruct signmask64L_regL(iRegLdst dst, iRegLsrc src) %{
8027   // no match-rule, false predicate
8028   effect(DEF dst, USE src);
8029   predicate(false);
8030 
8031   format %{ "SRADI   $dst, $src, #63" %}
8032   size(4);
8033   ins_encode %{
8034     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
8035     __ sradi($dst$$Register, $src$$Register, 0x3f);
8036   %}
8037   ins_pipe(pipe_class_default);
8038 %}
8039 
8040 // Long negation
8041 instruct negL_reg_reg(iRegLdst dst, immL_0 zero, iRegLsrc src2) %{
8042   match(Set dst (SubL zero src2));
8043   format %{ "NEG     $dst, $src2 \t// long" %}
8044   size(4);
8045   ins_encode %{
8046     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
8047     __ neg($dst$$Register, $src2$$Register);
8048   %}
8049   ins_pipe(pipe_class_default);
8050 %}
8051 
8052 // NegL + ConvL2I.
8053 instruct negI_con0_regL(iRegIdst dst, immL_0 zero, iRegLsrc src2) %{
8054   match(Set dst (ConvL2I (SubL zero src2)));
8055 
8056   format %{ "NEG     $dst, $src2 \t// long + l2i" %}
8057   size(4);
8058   ins_encode %{
8059     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
8060     __ neg($dst$$Register, $src2$$Register);
8061   %}
8062   ins_pipe(pipe_class_default);
8063 %}
8064 
8065 // Multiplication Instructions
8066 // Integer Multiplication
8067 
8068 // Register Multiplication
8069 instruct mulI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8070   match(Set dst (MulI src1 src2));
8071   ins_cost(DEFAULT_COST);
8072 
8073   format %{ "MULLW   $dst, $src1, $src2" %}
8074   size(4);
8075   ins_encode %{
8076     // TODO: PPC port $archOpcode(ppc64Opcode_mullw);
8077     __ mullw($dst$$Register, $src1$$Register, $src2$$Register);
8078   %}
8079   ins_pipe(pipe_class_default);
8080 %}
8081 
8082 // Immediate Multiplication
8083 instruct mulI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
8084   match(Set dst (MulI src1 src2));
8085   ins_cost(DEFAULT_COST);
8086 
8087   format %{ "MULLI   $dst, $src1, $src2" %}
8088   size(4);
8089   ins_encode %{
8090     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
8091     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
8092   %}
8093   ins_pipe(pipe_class_default);
8094 %}
8095 
8096 instruct mulL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8097   match(Set dst (MulL src1 src2));
8098   ins_cost(DEFAULT_COST);
8099 
8100   format %{ "MULLD   $dst $src1, $src2 \t// long" %}
8101   size(4);
8102   ins_encode %{
8103     // TODO: PPC port $archOpcode(ppc64Opcode_mulld);
8104     __ mulld($dst$$Register, $src1$$Register, $src2$$Register);
8105   %}
8106   ins_pipe(pipe_class_default);
8107 %}
8108 
8109 // Multiply high for optimized long division by constant.
8110 instruct mulHighL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8111   match(Set dst (MulHiL src1 src2));
8112   ins_cost(DEFAULT_COST);
8113 
8114   format %{ "MULHD   $dst $src1, $src2 \t// long" %}
8115   size(4);
8116   ins_encode %{
8117     // TODO: PPC port $archOpcode(ppc64Opcode_mulhd);
8118     __ mulhd($dst$$Register, $src1$$Register, $src2$$Register);
8119   %}
8120   ins_pipe(pipe_class_default);
8121 %}
8122 
8123 // Immediate Multiplication
8124 instruct mulL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
8125   match(Set dst (MulL src1 src2));
8126   ins_cost(DEFAULT_COST);
8127 
8128   format %{ "MULLI   $dst, $src1, $src2" %}
8129   size(4);
8130   ins_encode %{
8131     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
8132     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
8133   %}
8134   ins_pipe(pipe_class_default);
8135 %}
8136 
8137 // Integer Division with Immediate -1: Negate.
8138 instruct divI_reg_immIvalueMinus1(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
8139   match(Set dst (DivI src1 src2));
8140   ins_cost(DEFAULT_COST);
8141 
8142   format %{ "NEG     $dst, $src1 \t// /-1" %}
8143   size(4);
8144   ins_encode %{
8145     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
8146     __ neg($dst$$Register, $src1$$Register);
8147   %}
8148   ins_pipe(pipe_class_default);
8149 %}
8150 
8151 // Integer Division with constant, but not -1.
8152 // We should be able to improve this by checking the type of src2.
8153 // It might well be that src2 is known to be positive.
8154 instruct divI_reg_regnotMinus1(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8155   match(Set dst (DivI src1 src2));
8156   predicate(n->in(2)->find_int_con(-1) != -1); // src2 is a constant, but not -1
8157   ins_cost(2*DEFAULT_COST);
8158 
8159   format %{ "DIVW    $dst, $src1, $src2 \t// /not-1" %}
8160   size(4);
8161   ins_encode %{
8162     // TODO: PPC port $archOpcode(ppc64Opcode_divw);
8163     __ divw($dst$$Register, $src1$$Register, $src2$$Register);
8164   %}
8165   ins_pipe(pipe_class_default);
8166 %}
8167 
8168 instruct cmovI_bne_negI_reg(iRegIdst dst, flagsReg crx, iRegIsrc src1) %{
8169   effect(USE_DEF dst, USE src1, USE crx);
8170   predicate(false);
8171 
8172   ins_variable_size_depending_on_alignment(true);
8173 
8174   format %{ "CMOVE   $dst, neg($src1), $crx" %}
8175   // Worst case is branch + move + stop, no stop without scheduler.
8176   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
8177   ins_encode %{
8178     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
8179     Label done;
8180     __ bne($crx$$CondRegister, done);
8181     __ neg($dst$$Register, $src1$$Register);
8182     // TODO PPC port __ endgroup_if_needed(_size == 12);
8183     __ bind(done);
8184   %}
8185   ins_pipe(pipe_class_default);
8186 %}
8187 
8188 // Integer Division with Registers not containing constants.
8189 instruct divI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8190   match(Set dst (DivI src1 src2));
8191   ins_cost(10*DEFAULT_COST);
8192 
8193   expand %{
8194     immI16 imm %{ (int)-1 %}
8195     flagsReg tmp1;
8196     cmpI_reg_imm16(tmp1, src2, imm);          // check src2 == -1
8197     divI_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
8198     cmovI_bne_negI_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
8199   %}
8200 %}
8201 
8202 // Long Division with Immediate -1: Negate.
8203 instruct divL_reg_immLvalueMinus1(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
8204   match(Set dst (DivL src1 src2));
8205   ins_cost(DEFAULT_COST);
8206 
8207   format %{ "NEG     $dst, $src1 \t// /-1, long" %}
8208   size(4);
8209   ins_encode %{
8210     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
8211     __ neg($dst$$Register, $src1$$Register);
8212   %}
8213   ins_pipe(pipe_class_default);
8214 %}
8215 
8216 // Long Division with constant, but not -1.
8217 instruct divL_reg_regnotMinus1(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8218   match(Set dst (DivL src1 src2));
8219   predicate(n->in(2)->find_long_con(-1L) != -1L); // Src2 is a constant, but not -1.
8220   ins_cost(2*DEFAULT_COST);
8221 
8222   format %{ "DIVD    $dst, $src1, $src2 \t// /not-1, long" %}
8223   size(4);
8224   ins_encode %{
8225     // TODO: PPC port $archOpcode(ppc64Opcode_divd);
8226     __ divd($dst$$Register, $src1$$Register, $src2$$Register);
8227   %}
8228   ins_pipe(pipe_class_default);
8229 %}
8230 
8231 instruct cmovL_bne_negL_reg(iRegLdst dst, flagsReg crx, iRegLsrc src1) %{
8232   effect(USE_DEF dst, USE src1, USE crx);
8233   predicate(false);
8234 
8235   ins_variable_size_depending_on_alignment(true);
8236 
8237   format %{ "CMOVE   $dst, neg($src1), $crx" %}
8238   // Worst case is branch + move + stop, no stop without scheduler.
8239   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
8240   ins_encode %{
8241     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
8242     Label done;
8243     __ bne($crx$$CondRegister, done);
8244     __ neg($dst$$Register, $src1$$Register);
8245     // TODO PPC port __ endgroup_if_needed(_size == 12);
8246     __ bind(done);
8247   %}
8248   ins_pipe(pipe_class_default);
8249 %}
8250 
8251 // Long Division with Registers not containing constants.
8252 instruct divL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8253   match(Set dst (DivL src1 src2));
8254   ins_cost(10*DEFAULT_COST);
8255 
8256   expand %{
8257     immL16 imm %{ (int)-1 %}
8258     flagsReg tmp1;
8259     cmpL_reg_imm16(tmp1, src2, imm);          // check src2 == -1
8260     divL_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
8261     cmovL_bne_negL_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
8262   %}
8263 %}
8264 
8265 // Integer Remainder with registers.
8266 instruct modI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8267   match(Set dst (ModI src1 src2));
8268   ins_cost(10*DEFAULT_COST);
8269 
8270   expand %{
8271     immI16 imm %{ (int)-1 %}
8272     flagsReg tmp1;
8273     iRegIdst tmp2;
8274     iRegIdst tmp3;
8275     cmpI_reg_imm16(tmp1, src2, imm);           // check src2 == -1
8276     divI_reg_regnotMinus1(tmp2, src1, src2);   // tmp2 = src1 / src2
8277     cmovI_bne_negI_reg(tmp2, tmp1, src1);      // cmove tmp2 = neg(src1) if src2 == -1
8278     mulI_reg_reg(tmp3, src2, tmp2);            // tmp3 = src2 * tmp2
8279     subI_reg_reg(dst, src1, tmp3);             // dst = src1 - tmp3
8280   %}
8281 %}
8282 
8283 // Long Remainder with registers
8284 instruct modL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, flagsRegCR0 cr0) %{
8285   match(Set dst (ModL src1 src2));
8286   ins_cost(10*DEFAULT_COST);
8287 
8288   expand %{
8289     immL16 imm %{ (int)-1 %}
8290     flagsReg tmp1;
8291     iRegLdst tmp2;
8292     iRegLdst tmp3;
8293     cmpL_reg_imm16(tmp1, src2, imm);             // check src2 == -1
8294     divL_reg_regnotMinus1(tmp2, src1, src2);     // tmp2 = src1 / src2
8295     cmovL_bne_negL_reg(tmp2, tmp1, src1);        // cmove tmp2 = neg(src1) if src2 == -1
8296     mulL_reg_reg(tmp3, src2, tmp2);              // tmp3 = src2 * tmp2
8297     subL_reg_reg(dst, src1, tmp3);               // dst = src1 - tmp3
8298   %}
8299 %}
8300 
8301 // Integer Shift Instructions
8302 
8303 // Register Shift Left
8304 
8305 // Clear all but the lowest #mask bits.
8306 // Used to normalize shift amounts in registers.
8307 instruct maskI_reg_imm(iRegIdst dst, iRegIsrc src, uimmI6 mask) %{
8308   // no match-rule, false predicate
8309   effect(DEF dst, USE src, USE mask);
8310   predicate(false);
8311 
8312   format %{ "MASK    $dst, $src, $mask \t// clear $mask upper bits" %}
8313   size(4);
8314   ins_encode %{
8315     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8316     __ clrldi($dst$$Register, $src$$Register, $mask$$constant);
8317   %}
8318   ins_pipe(pipe_class_default);
8319 %}
8320 
8321 instruct lShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8322   // no match-rule, false predicate
8323   effect(DEF dst, USE src1, USE src2);
8324   predicate(false);
8325 
8326   format %{ "SLW     $dst, $src1, $src2" %}
8327   size(4);
8328   ins_encode %{
8329     // TODO: PPC port $archOpcode(ppc64Opcode_slw);
8330     __ slw($dst$$Register, $src1$$Register, $src2$$Register);
8331   %}
8332   ins_pipe(pipe_class_default);
8333 %}
8334 
8335 instruct lShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8336   match(Set dst (LShiftI src1 src2));
8337   ins_cost(DEFAULT_COST*2);
8338   expand %{
8339     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8340     iRegIdst tmpI;
8341     maskI_reg_imm(tmpI, src2, mask);
8342     lShiftI_reg_reg(dst, src1, tmpI);
8343   %}
8344 %}
8345 
8346 // Register Shift Left Immediate
8347 instruct lShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8348   match(Set dst (LShiftI src1 src2));
8349 
8350   format %{ "SLWI    $dst, $src1, ($src2 & 0x1f)" %}
8351   size(4);
8352   ins_encode %{
8353     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8354     __ slwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8355   %}
8356   ins_pipe(pipe_class_default);
8357 %}
8358 
8359 // AndI with negpow2-constant + LShiftI
8360 instruct lShiftI_andI_immInegpow2_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
8361   match(Set dst (LShiftI (AndI src1 src2) src3));
8362   predicate(UseRotateAndMaskInstructionsPPC64);
8363 
8364   format %{ "RLWINM  $dst, lShiftI(AndI($src1, $src2), $src3)" %}
8365   size(4);
8366   ins_encode %{
8367     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
8368     long src2      = $src2$$constant;
8369     long src3      = $src3$$constant;
8370     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
8371     if (maskbits >= 32) {
8372       __ li($dst$$Register, 0); // addi
8373     } else {
8374       __ rlwinm($dst$$Register, $src1$$Register, src3 & 0x1f, 0, (31-maskbits) & 0x1f);
8375     }
8376   %}
8377   ins_pipe(pipe_class_default);
8378 %}
8379 
8380 // RShiftI + AndI with negpow2-constant + LShiftI
8381 instruct lShiftI_andI_immInegpow2_rShiftI_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
8382   match(Set dst (LShiftI (AndI (RShiftI src1 src3) src2) src3));
8383   predicate(UseRotateAndMaskInstructionsPPC64);
8384 
8385   format %{ "RLWINM  $dst, lShiftI(AndI(RShiftI($src1, $src3), $src2), $src3)" %}
8386   size(4);
8387   ins_encode %{
8388     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
8389     long src2      = $src2$$constant;
8390     long src3      = $src3$$constant;
8391     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
8392     if (maskbits >= 32) {
8393       __ li($dst$$Register, 0); // addi
8394     } else {
8395       __ rlwinm($dst$$Register, $src1$$Register, 0, 0, (31-maskbits) & 0x1f);
8396     }
8397   %}
8398   ins_pipe(pipe_class_default);
8399 %}
8400 
8401 instruct lShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8402   // no match-rule, false predicate
8403   effect(DEF dst, USE src1, USE src2);
8404   predicate(false);
8405 
8406   format %{ "SLD     $dst, $src1, $src2" %}
8407   size(4);
8408   ins_encode %{
8409     // TODO: PPC port $archOpcode(ppc64Opcode_sld);
8410     __ sld($dst$$Register, $src1$$Register, $src2$$Register);
8411   %}
8412   ins_pipe(pipe_class_default);
8413 %}
8414 
8415 // Register Shift Left
8416 instruct lShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8417   match(Set dst (LShiftL src1 src2));
8418   ins_cost(DEFAULT_COST*2);
8419   expand %{
8420     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8421     iRegIdst tmpI;
8422     maskI_reg_imm(tmpI, src2, mask);
8423     lShiftL_regL_regI(dst, src1, tmpI);
8424   %}
8425 %}
8426 
8427 // Register Shift Left Immediate
8428 instruct lshiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8429   match(Set dst (LShiftL src1 src2));
8430   format %{ "SLDI    $dst, $src1, ($src2 & 0x3f)" %}
8431   size(4);
8432   ins_encode %{
8433     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8434     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8435   %}
8436   ins_pipe(pipe_class_default);
8437 %}
8438 
8439 // If we shift more than 32 bits, we need not convert I2L.
8440 instruct lShiftL_regI_immGE32(iRegLdst dst, iRegIsrc src1, uimmI6_ge32 src2) %{
8441   match(Set dst (LShiftL (ConvI2L src1) src2));
8442   ins_cost(DEFAULT_COST);
8443 
8444   size(4);
8445   format %{ "SLDI    $dst, i2l($src1), $src2" %}
8446   ins_encode %{
8447     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8448     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8449   %}
8450   ins_pipe(pipe_class_default);
8451 %}
8452 
8453 // Shift a postivie int to the left.
8454 // Clrlsldi clears the upper 32 bits and shifts.
8455 instruct scaledPositiveI2L_lShiftL_convI2L_reg_imm6(iRegLdst dst, iRegIsrc src1, uimmI6 src2) %{
8456   match(Set dst (LShiftL (ConvI2L src1) src2));
8457   predicate(((ConvI2LNode*)(_kids[0]->_leaf))->type()->is_long()->is_positive_int());
8458 
8459   format %{ "SLDI    $dst, i2l(positive_int($src1)), $src2" %}
8460   size(4);
8461   ins_encode %{
8462     // TODO: PPC port $archOpcode(ppc64Opcode_rldic);
8463     __ clrlsldi($dst$$Register, $src1$$Register, 0x20, $src2$$constant);
8464   %}
8465   ins_pipe(pipe_class_default);
8466 %}
8467 
8468 instruct arShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8469   // no match-rule, false predicate
8470   effect(DEF dst, USE src1, USE src2);
8471   predicate(false);
8472 
8473   format %{ "SRAW    $dst, $src1, $src2" %}
8474   size(4);
8475   ins_encode %{
8476     // TODO: PPC port $archOpcode(ppc64Opcode_sraw);
8477     __ sraw($dst$$Register, $src1$$Register, $src2$$Register);
8478   %}
8479   ins_pipe(pipe_class_default);
8480 %}
8481 
8482 // Register Arithmetic Shift Right
8483 instruct arShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8484   match(Set dst (RShiftI src1 src2));
8485   ins_cost(DEFAULT_COST*2);
8486   expand %{
8487     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8488     iRegIdst tmpI;
8489     maskI_reg_imm(tmpI, src2, mask);
8490     arShiftI_reg_reg(dst, src1, tmpI);
8491   %}
8492 %}
8493 
8494 // Register Arithmetic Shift Right Immediate
8495 instruct arShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8496   match(Set dst (RShiftI src1 src2));
8497 
8498   format %{ "SRAWI   $dst, $src1, ($src2 & 0x1f)" %}
8499   size(4);
8500   ins_encode %{
8501     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
8502     __ srawi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8503   %}
8504   ins_pipe(pipe_class_default);
8505 %}
8506 
8507 instruct arShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8508   // no match-rule, false predicate
8509   effect(DEF dst, USE src1, USE src2);
8510   predicate(false);
8511 
8512   format %{ "SRAD    $dst, $src1, $src2" %}
8513   size(4);
8514   ins_encode %{
8515     // TODO: PPC port $archOpcode(ppc64Opcode_srad);
8516     __ srad($dst$$Register, $src1$$Register, $src2$$Register);
8517   %}
8518   ins_pipe(pipe_class_default);
8519 %}
8520 
8521 // Register Shift Right Arithmetic Long
8522 instruct arShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8523   match(Set dst (RShiftL src1 src2));
8524   ins_cost(DEFAULT_COST*2);
8525 
8526   expand %{
8527     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8528     iRegIdst tmpI;
8529     maskI_reg_imm(tmpI, src2, mask);
8530     arShiftL_regL_regI(dst, src1, tmpI);
8531   %}
8532 %}
8533 
8534 // Register Shift Right Immediate
8535 instruct arShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8536   match(Set dst (RShiftL src1 src2));
8537 
8538   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f)" %}
8539   size(4);
8540   ins_encode %{
8541     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
8542     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8543   %}
8544   ins_pipe(pipe_class_default);
8545 %}
8546 
8547 // RShiftL + ConvL2I
8548 instruct convL2I_arShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
8549   match(Set dst (ConvL2I (RShiftL src1 src2)));
8550 
8551   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
8552   size(4);
8553   ins_encode %{
8554     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
8555     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8556   %}
8557   ins_pipe(pipe_class_default);
8558 %}
8559 
8560 instruct urShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8561   // no match-rule, false predicate
8562   effect(DEF dst, USE src1, USE src2);
8563   predicate(false);
8564 
8565   format %{ "SRW     $dst, $src1, $src2" %}
8566   size(4);
8567   ins_encode %{
8568     // TODO: PPC port $archOpcode(ppc64Opcode_srw);
8569     __ srw($dst$$Register, $src1$$Register, $src2$$Register);
8570   %}
8571   ins_pipe(pipe_class_default);
8572 %}
8573 
8574 // Register Shift Right
8575 instruct urShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8576   match(Set dst (URShiftI src1 src2));
8577   ins_cost(DEFAULT_COST*2);
8578 
8579   expand %{
8580     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8581     iRegIdst tmpI;
8582     maskI_reg_imm(tmpI, src2, mask);
8583     urShiftI_reg_reg(dst, src1, tmpI);
8584   %}
8585 %}
8586 
8587 // Register Shift Right Immediate
8588 instruct urShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8589   match(Set dst (URShiftI src1 src2));
8590 
8591   format %{ "SRWI    $dst, $src1, ($src2 & 0x1f)" %}
8592   size(4);
8593   ins_encode %{
8594     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8595     __ srwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8596   %}
8597   ins_pipe(pipe_class_default);
8598 %}
8599 
8600 instruct urShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8601   // no match-rule, false predicate
8602   effect(DEF dst, USE src1, USE src2);
8603   predicate(false);
8604 
8605   format %{ "SRD     $dst, $src1, $src2" %}
8606   size(4);
8607   ins_encode %{
8608     // TODO: PPC port $archOpcode(ppc64Opcode_srd);
8609     __ srd($dst$$Register, $src1$$Register, $src2$$Register);
8610   %}
8611   ins_pipe(pipe_class_default);
8612 %}
8613 
8614 // Register Shift Right
8615 instruct urShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8616   match(Set dst (URShiftL src1 src2));
8617   ins_cost(DEFAULT_COST*2);
8618 
8619   expand %{
8620     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8621     iRegIdst tmpI;
8622     maskI_reg_imm(tmpI, src2, mask);
8623     urShiftL_regL_regI(dst, src1, tmpI);
8624   %}
8625 %}
8626 
8627 // Register Shift Right Immediate
8628 instruct urShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8629   match(Set dst (URShiftL src1 src2));
8630 
8631   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f)" %}
8632   size(4);
8633   ins_encode %{
8634     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8635     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8636   %}
8637   ins_pipe(pipe_class_default);
8638 %}
8639 
8640 // URShiftL + ConvL2I.
8641 instruct convL2I_urShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
8642   match(Set dst (ConvL2I (URShiftL src1 src2)));
8643 
8644   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
8645   size(4);
8646   ins_encode %{
8647     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8648     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8649   %}
8650   ins_pipe(pipe_class_default);
8651 %}
8652 
8653 // Register Shift Right Immediate with a CastP2X
8654 instruct shrP_convP2X_reg_imm6(iRegLdst dst, iRegP_N2P src1, uimmI6 src2) %{
8655   match(Set dst (URShiftL (CastP2X src1) src2));
8656 
8657   format %{ "SRDI    $dst, $src1, $src2 \t// Cast ptr $src1 to long and shift" %}
8658   size(4);
8659   ins_encode %{
8660     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8661     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8662   %}
8663   ins_pipe(pipe_class_default);
8664 %}
8665 
8666 instruct sxtI_reg(iRegIdst dst, iRegIsrc src) %{
8667   match(Set dst (ConvL2I (ConvI2L src)));
8668 
8669   format %{ "EXTSW   $dst, $src \t// int->int" %}
8670   size(4);
8671   ins_encode %{
8672     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
8673     __ extsw($dst$$Register, $src$$Register);
8674   %}
8675   ins_pipe(pipe_class_default);
8676 %}
8677 
8678 //----------Rotate Instructions------------------------------------------------
8679 
8680 // Rotate Left by 8-bit immediate
8681 instruct rotlI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 lshift, immI8 rshift) %{
8682   match(Set dst (OrI (LShiftI src lshift) (URShiftI src rshift)));
8683   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8684 
8685   format %{ "ROTLWI  $dst, $src, $lshift" %}
8686   size(4);
8687   ins_encode %{
8688     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8689     __ rotlwi($dst$$Register, $src$$Register, $lshift$$constant);
8690   %}
8691   ins_pipe(pipe_class_default);
8692 %}
8693 
8694 // Rotate Right by 8-bit immediate
8695 instruct rotrI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 rshift, immI8 lshift) %{
8696   match(Set dst (OrI (URShiftI src rshift) (LShiftI src lshift)));
8697   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8698 
8699   format %{ "ROTRWI  $dst, $rshift" %}
8700   size(4);
8701   ins_encode %{
8702     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8703     __ rotrwi($dst$$Register, $src$$Register, $rshift$$constant);
8704   %}
8705   ins_pipe(pipe_class_default);
8706 %}
8707 
8708 //----------Floating Point Arithmetic Instructions-----------------------------
8709 
8710 // Add float single precision
8711 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
8712   match(Set dst (AddF src1 src2));
8713 
8714   format %{ "FADDS   $dst, $src1, $src2" %}
8715   size(4);
8716   ins_encode %{
8717     // TODO: PPC port $archOpcode(ppc64Opcode_fadds);
8718     __ fadds($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8719   %}
8720   ins_pipe(pipe_class_default);
8721 %}
8722 
8723 // Add float double precision
8724 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
8725   match(Set dst (AddD src1 src2));
8726 
8727   format %{ "FADD    $dst, $src1, $src2" %}
8728   size(4);
8729   ins_encode %{
8730     // TODO: PPC port $archOpcode(ppc64Opcode_fadd);
8731     __ fadd($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8732   %}
8733   ins_pipe(pipe_class_default);
8734 %}
8735 
8736 // Sub float single precision
8737 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
8738   match(Set dst (SubF src1 src2));
8739 
8740   format %{ "FSUBS   $dst, $src1, $src2" %}
8741   size(4);
8742   ins_encode %{
8743     // TODO: PPC port $archOpcode(ppc64Opcode_fsubs);
8744     __ fsubs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8745   %}
8746   ins_pipe(pipe_class_default);
8747 %}
8748 
8749 // Sub float double precision
8750 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
8751   match(Set dst (SubD src1 src2));
8752   format %{ "FSUB    $dst, $src1, $src2" %}
8753   size(4);
8754   ins_encode %{
8755     // TODO: PPC port $archOpcode(ppc64Opcode_fsub);
8756     __ fsub($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8757   %}
8758   ins_pipe(pipe_class_default);
8759 %}
8760 
8761 // Mul float single precision
8762 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
8763   match(Set dst (MulF src1 src2));
8764   format %{ "FMULS   $dst, $src1, $src2" %}
8765   size(4);
8766   ins_encode %{
8767     // TODO: PPC port $archOpcode(ppc64Opcode_fmuls);
8768     __ fmuls($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8769   %}
8770   ins_pipe(pipe_class_default);
8771 %}
8772 
8773 // Mul float double precision
8774 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
8775   match(Set dst (MulD src1 src2));
8776   format %{ "FMUL    $dst, $src1, $src2" %}
8777   size(4);
8778   ins_encode %{
8779     // TODO: PPC port $archOpcode(ppc64Opcode_fmul);
8780     __ fmul($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8781   %}
8782   ins_pipe(pipe_class_default);
8783 %}
8784 
8785 // Div float single precision
8786 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
8787   match(Set dst (DivF src1 src2));
8788   format %{ "FDIVS   $dst, $src1, $src2" %}
8789   size(4);
8790   ins_encode %{
8791     // TODO: PPC port $archOpcode(ppc64Opcode_fdivs);
8792     __ fdivs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8793   %}
8794   ins_pipe(pipe_class_default);
8795 %}
8796 
8797 // Div float double precision
8798 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
8799   match(Set dst (DivD src1 src2));
8800   format %{ "FDIV    $dst, $src1, $src2" %}
8801   size(4);
8802   ins_encode %{
8803     // TODO: PPC port $archOpcode(ppc64Opcode_fdiv);
8804     __ fdiv($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8805   %}
8806   ins_pipe(pipe_class_default);
8807 %}
8808 
8809 // Absolute float single precision
8810 instruct absF_reg(regF dst, regF src) %{
8811   match(Set dst (AbsF src));
8812   format %{ "FABS    $dst, $src \t// float" %}
8813   size(4);
8814   ins_encode %{
8815     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
8816     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
8817   %}
8818   ins_pipe(pipe_class_default);
8819 %}
8820 
8821 // Absolute float double precision
8822 instruct absD_reg(regD dst, regD src) %{
8823   match(Set dst (AbsD src));
8824   format %{ "FABS    $dst, $src \t// double" %}
8825   size(4);
8826   ins_encode %{
8827     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
8828     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
8829   %}
8830   ins_pipe(pipe_class_default);
8831 %}
8832 
8833 instruct negF_reg(regF dst, regF src) %{
8834   match(Set dst (NegF src));
8835   format %{ "FNEG    $dst, $src \t// float" %}
8836   size(4);
8837   ins_encode %{
8838     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
8839     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
8840   %}
8841   ins_pipe(pipe_class_default);
8842 %}
8843 
8844 instruct negD_reg(regD dst, regD src) %{
8845   match(Set dst (NegD src));
8846   format %{ "FNEG    $dst, $src \t// double" %}
8847   size(4);
8848   ins_encode %{
8849     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
8850     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
8851   %}
8852   ins_pipe(pipe_class_default);
8853 %}
8854 
8855 // AbsF + NegF.
8856 instruct negF_absF_reg(regF dst, regF src) %{
8857   match(Set dst (NegF (AbsF src)));
8858   format %{ "FNABS   $dst, $src \t// float" %}
8859   size(4);
8860   ins_encode %{
8861     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
8862     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
8863   %}
8864   ins_pipe(pipe_class_default);
8865 %}
8866 
8867 // AbsD + NegD.
8868 instruct negD_absD_reg(regD dst, regD src) %{
8869   match(Set dst (NegD (AbsD src)));
8870   format %{ "FNABS   $dst, $src \t// double" %}
8871   size(4);
8872   ins_encode %{
8873     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
8874     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
8875   %}
8876   ins_pipe(pipe_class_default);
8877 %}
8878 
8879 // VM_Version::has_fsqrt() decides if this node will be used.
8880 // Sqrt float double precision
8881 instruct sqrtD_reg(regD dst, regD src) %{
8882   match(Set dst (SqrtD src));
8883   format %{ "FSQRT   $dst, $src" %}
8884   size(4);
8885   ins_encode %{
8886     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrt);
8887     __ fsqrt($dst$$FloatRegister, $src$$FloatRegister);
8888   %}
8889   ins_pipe(pipe_class_default);
8890 %}
8891 
8892 // Single-precision sqrt.
8893 instruct sqrtF_reg(regF dst, regF src) %{
8894   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
8895   predicate(VM_Version::has_fsqrts());
8896   ins_cost(DEFAULT_COST);
8897 
8898   format %{ "FSQRTS  $dst, $src" %}
8899   size(4);
8900   ins_encode %{
8901     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrts);
8902     __ fsqrts($dst$$FloatRegister, $src$$FloatRegister);
8903   %}
8904   ins_pipe(pipe_class_default);
8905 %}
8906 
8907 instruct roundDouble_nop(regD dst) %{
8908   match(Set dst (RoundDouble dst));
8909   ins_cost(0);
8910 
8911   format %{ " -- \t// RoundDouble not needed - empty" %}
8912   size(0);
8913   // PPC results are already "rounded" (i.e., normal-format IEEE).
8914   ins_encode( /*empty*/ );
8915   ins_pipe(pipe_class_default);
8916 %}
8917 
8918 instruct roundFloat_nop(regF dst) %{
8919   match(Set dst (RoundFloat dst));
8920   ins_cost(0);
8921 
8922   format %{ " -- \t// RoundFloat not needed - empty" %}
8923   size(0);
8924   // PPC results are already "rounded" (i.e., normal-format IEEE).
8925   ins_encode( /*empty*/ );
8926   ins_pipe(pipe_class_default);
8927 %}
8928 
8929 //----------Logical Instructions-----------------------------------------------
8930 
8931 // And Instructions
8932 
8933 // Register And
8934 instruct andI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8935   match(Set dst (AndI src1 src2));
8936   format %{ "AND     $dst, $src1, $src2" %}
8937   size(4);
8938   ins_encode %{
8939     // TODO: PPC port $archOpcode(ppc64Opcode_and);
8940     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
8941   %}
8942   ins_pipe(pipe_class_default);
8943 %}
8944 
8945 // Immediate And
8946 instruct andI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2, flagsRegCR0 cr0) %{
8947   match(Set dst (AndI src1 src2));
8948   effect(KILL cr0);
8949 
8950   format %{ "ANDI    $dst, $src1, $src2" %}
8951   size(4);
8952   ins_encode %{
8953     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
8954     // FIXME: avoid andi_ ?
8955     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
8956   %}
8957   ins_pipe(pipe_class_default);
8958 %}
8959 
8960 // Immediate And where the immediate is a negative power of 2.
8961 instruct andI_reg_immInegpow2(iRegIdst dst, iRegIsrc src1, immInegpow2 src2) %{
8962   match(Set dst (AndI src1 src2));
8963   format %{ "ANDWI   $dst, $src1, $src2" %}
8964   size(4);
8965   ins_encode %{
8966     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8967     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)(julong)(juint)-($src2$$constant)));
8968   %}
8969   ins_pipe(pipe_class_default);
8970 %}
8971 
8972 instruct andI_reg_immIpow2minus1(iRegIdst dst, iRegIsrc src1, immIpow2minus1 src2) %{
8973   match(Set dst (AndI src1 src2));
8974   format %{ "ANDWI   $dst, $src1, $src2" %}
8975   size(4);
8976   ins_encode %{
8977     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8978     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
8979   %}
8980   ins_pipe(pipe_class_default);
8981 %}
8982 
8983 instruct andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src1, immIpowerOf2 src2) %{
8984   match(Set dst (AndI src1 src2));
8985   predicate(UseRotateAndMaskInstructionsPPC64);
8986   format %{ "ANDWI   $dst, $src1, $src2" %}
8987   size(4);
8988   ins_encode %{
8989     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8990     __ rlwinm($dst$$Register, $src1$$Register, 0,
8991               (31-log2_long((jlong) $src2$$constant)) & 0x1f, (31-log2_long((jlong) $src2$$constant)) & 0x1f);
8992   %}
8993   ins_pipe(pipe_class_default);
8994 %}
8995 
8996 // Register And Long
8997 instruct andL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8998   match(Set dst (AndL src1 src2));
8999   ins_cost(DEFAULT_COST);
9000 
9001   format %{ "AND     $dst, $src1, $src2 \t// long" %}
9002   size(4);
9003   ins_encode %{
9004     // TODO: PPC port $archOpcode(ppc64Opcode_and);
9005     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
9006   %}
9007   ins_pipe(pipe_class_default);
9008 %}
9009 
9010 // Immediate And long
9011 instruct andL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2, flagsRegCR0 cr0) %{
9012   match(Set dst (AndL src1 src2));
9013   effect(KILL cr0);
9014   ins_cost(DEFAULT_COST);
9015 
9016   format %{ "ANDI    $dst, $src1, $src2 \t// long" %}
9017   size(4);
9018   ins_encode %{
9019     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
9020     // FIXME: avoid andi_ ?
9021     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
9022   %}
9023   ins_pipe(pipe_class_default);
9024 %}
9025 
9026 // Immediate And Long where the immediate is a negative power of 2.
9027 instruct andL_reg_immLnegpow2(iRegLdst dst, iRegLsrc src1, immLnegpow2 src2) %{
9028   match(Set dst (AndL src1 src2));
9029   format %{ "ANDDI   $dst, $src1, $src2" %}
9030   size(4);
9031   ins_encode %{
9032     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
9033     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)-$src2$$constant));
9034   %}
9035   ins_pipe(pipe_class_default);
9036 %}
9037 
9038 instruct andL_reg_immLpow2minus1(iRegLdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
9039   match(Set dst (AndL src1 src2));
9040   format %{ "ANDDI   $dst, $src1, $src2" %}
9041   size(4);
9042   ins_encode %{
9043     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
9044     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
9045   %}
9046   ins_pipe(pipe_class_default);
9047 %}
9048 
9049 // AndL + ConvL2I.
9050 instruct convL2I_andL_reg_immLpow2minus1(iRegIdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
9051   match(Set dst (ConvL2I (AndL src1 src2)));
9052   ins_cost(DEFAULT_COST);
9053 
9054   format %{ "ANDDI   $dst, $src1, $src2 \t// long + l2i" %}
9055   size(4);
9056   ins_encode %{
9057     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
9058     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
9059   %}
9060   ins_pipe(pipe_class_default);
9061 %}
9062 
9063 // Or Instructions
9064 
9065 // Register Or
9066 instruct orI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9067   match(Set dst (OrI src1 src2));
9068   format %{ "OR      $dst, $src1, $src2" %}
9069   size(4);
9070   ins_encode %{
9071     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9072     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
9073   %}
9074   ins_pipe(pipe_class_default);
9075 %}
9076 
9077 // Expand does not work with above instruct. (??)
9078 instruct orI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9079   // no match-rule
9080   effect(DEF dst, USE src1, USE src2);
9081   format %{ "OR      $dst, $src1, $src2" %}
9082   size(4);
9083   ins_encode %{
9084     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9085     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
9086   %}
9087   ins_pipe(pipe_class_default);
9088 %}
9089 
9090 instruct tree_orI_orI_orI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
9091   match(Set dst (OrI (OrI (OrI src1 src2) src3) src4));
9092   ins_cost(DEFAULT_COST*3);
9093 
9094   expand %{
9095     // FIXME: we should do this in the ideal world.
9096     iRegIdst tmp1;
9097     iRegIdst tmp2;
9098     orI_reg_reg(tmp1, src1, src2);
9099     orI_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
9100     orI_reg_reg(dst, tmp1, tmp2);
9101   %}
9102 %}
9103 
9104 // Immediate Or
9105 instruct orI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
9106   match(Set dst (OrI src1 src2));
9107   format %{ "ORI     $dst, $src1, $src2" %}
9108   size(4);
9109   ins_encode %{
9110     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
9111     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
9112   %}
9113   ins_pipe(pipe_class_default);
9114 %}
9115 
9116 // Register Or Long
9117 instruct orL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
9118   match(Set dst (OrL src1 src2));
9119   ins_cost(DEFAULT_COST);
9120 
9121   size(4);
9122   format %{ "OR      $dst, $src1, $src2 \t// long" %}
9123   ins_encode %{
9124     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9125     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
9126   %}
9127   ins_pipe(pipe_class_default);
9128 %}
9129 
9130 // OrL + ConvL2I.
9131 instruct orI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
9132   match(Set dst (ConvL2I (OrL src1 src2)));
9133   ins_cost(DEFAULT_COST);
9134 
9135   format %{ "OR      $dst, $src1, $src2 \t// long + l2i" %}
9136   size(4);
9137   ins_encode %{
9138     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9139     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
9140   %}
9141   ins_pipe(pipe_class_default);
9142 %}
9143 
9144 // Immediate Or long
9145 instruct orL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 con) %{
9146   match(Set dst (OrL src1 con));
9147   ins_cost(DEFAULT_COST);
9148 
9149   format %{ "ORI     $dst, $src1, $con \t// long" %}
9150   size(4);
9151   ins_encode %{
9152     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
9153     __ ori($dst$$Register, $src1$$Register, ($con$$constant) & 0xFFFF);
9154   %}
9155   ins_pipe(pipe_class_default);
9156 %}
9157 
9158 // Xor Instructions
9159 
9160 // Register Xor
9161 instruct xorI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9162   match(Set dst (XorI src1 src2));
9163   format %{ "XOR     $dst, $src1, $src2" %}
9164   size(4);
9165   ins_encode %{
9166     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9167     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9168   %}
9169   ins_pipe(pipe_class_default);
9170 %}
9171 
9172 // Expand does not work with above instruct. (??)
9173 instruct xorI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9174   // no match-rule
9175   effect(DEF dst, USE src1, USE src2);
9176   format %{ "XOR     $dst, $src1, $src2" %}
9177   size(4);
9178   ins_encode %{
9179     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9180     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9181   %}
9182   ins_pipe(pipe_class_default);
9183 %}
9184 
9185 instruct tree_xorI_xorI_xorI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
9186   match(Set dst (XorI (XorI (XorI src1 src2) src3) src4));
9187   ins_cost(DEFAULT_COST*3);
9188 
9189   expand %{
9190     // FIXME: we should do this in the ideal world.
9191     iRegIdst tmp1;
9192     iRegIdst tmp2;
9193     xorI_reg_reg(tmp1, src1, src2);
9194     xorI_reg_reg_2(tmp2, src3, src4); // Adlc complains about xorI_reg_reg.
9195     xorI_reg_reg(dst, tmp1, tmp2);
9196   %}
9197 %}
9198 
9199 // Immediate Xor
9200 instruct xorI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
9201   match(Set dst (XorI src1 src2));
9202   format %{ "XORI    $dst, $src1, $src2" %}
9203   size(4);
9204   ins_encode %{
9205     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
9206     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
9207   %}
9208   ins_pipe(pipe_class_default);
9209 %}
9210 
9211 // Register Xor Long
9212 instruct xorL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
9213   match(Set dst (XorL src1 src2));
9214   ins_cost(DEFAULT_COST);
9215 
9216   format %{ "XOR     $dst, $src1, $src2 \t// long" %}
9217   size(4);
9218   ins_encode %{
9219     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9220     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9221   %}
9222   ins_pipe(pipe_class_default);
9223 %}
9224 
9225 // XorL + ConvL2I.
9226 instruct xorI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
9227   match(Set dst (ConvL2I (XorL src1 src2)));
9228   ins_cost(DEFAULT_COST);
9229 
9230   format %{ "XOR     $dst, $src1, $src2 \t// long + l2i" %}
9231   size(4);
9232   ins_encode %{
9233     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9234     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9235   %}
9236   ins_pipe(pipe_class_default);
9237 %}
9238 
9239 // Immediate Xor Long
9240 instruct xorL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2) %{
9241   match(Set dst (XorL src1 src2));
9242   ins_cost(DEFAULT_COST);
9243 
9244   format %{ "XORI    $dst, $src1, $src2 \t// long" %}
9245   size(4);
9246   ins_encode %{
9247     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
9248     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
9249   %}
9250   ins_pipe(pipe_class_default);
9251 %}
9252 
9253 instruct notI_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
9254   match(Set dst (XorI src1 src2));
9255   ins_cost(DEFAULT_COST);
9256 
9257   format %{ "NOT     $dst, $src1 ($src2)" %}
9258   size(4);
9259   ins_encode %{
9260     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
9261     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
9262   %}
9263   ins_pipe(pipe_class_default);
9264 %}
9265 
9266 instruct notL_reg(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
9267   match(Set dst (XorL src1 src2));
9268   ins_cost(DEFAULT_COST);
9269 
9270   format %{ "NOT     $dst, $src1 ($src2) \t// long" %}
9271   size(4);
9272   ins_encode %{
9273     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
9274     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
9275   %}
9276   ins_pipe(pipe_class_default);
9277 %}
9278 
9279 // And-complement
9280 instruct andcI_reg_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2, iRegIsrc src3) %{
9281   match(Set dst (AndI (XorI src1 src2) src3));
9282   ins_cost(DEFAULT_COST);
9283 
9284   format %{ "ANDW    $dst, xori($src1, $src2), $src3" %}
9285   size(4);
9286   ins_encode( enc_andc(dst, src3, src1) );
9287   ins_pipe(pipe_class_default);
9288 %}
9289 
9290 // And-complement
9291 instruct andcL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
9292   // no match-rule, false predicate
9293   effect(DEF dst, USE src1, USE src2);
9294   predicate(false);
9295 
9296   format %{ "ANDC    $dst, $src1, $src2" %}
9297   size(4);
9298   ins_encode %{
9299     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
9300     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
9301   %}
9302   ins_pipe(pipe_class_default);
9303 %}
9304 
9305 //----------Moves between int/long and float/double----------------------------
9306 //
9307 // The following rules move values from int/long registers/stack-locations
9308 // to float/double registers/stack-locations and vice versa, without doing any
9309 // conversions. These rules are used to implement the bit-conversion methods
9310 // of java.lang.Float etc., e.g.
9311 //   int   floatToIntBits(float value)
9312 //   float intBitsToFloat(int bits)
9313 //
9314 // Notes on the implementation on ppc64:
9315 // We only provide rules which move between a register and a stack-location,
9316 // because we always have to go through memory when moving between a float
9317 // register and an integer register.
9318 
9319 //---------- Chain stack slots between similar types --------
9320 
9321 // These are needed so that the rules below can match.
9322 
9323 // Load integer from stack slot
9324 instruct stkI_to_regI(iRegIdst dst, stackSlotI src) %{
9325   match(Set dst src);
9326   ins_cost(MEMORY_REF_COST);
9327 
9328   format %{ "LWZ     $dst, $src" %}
9329   size(4);
9330   ins_encode( enc_lwz(dst, src) );
9331   ins_pipe(pipe_class_memory);
9332 %}
9333 
9334 // Store integer to stack slot
9335 instruct regI_to_stkI(stackSlotI dst, iRegIsrc src) %{
9336   match(Set dst src);
9337   ins_cost(MEMORY_REF_COST);
9338 
9339   format %{ "STW     $src, $dst \t// stk" %}
9340   size(4);
9341   ins_encode( enc_stw(src, dst) ); // rs=rt
9342   ins_pipe(pipe_class_memory);
9343 %}
9344 
9345 // Load long from stack slot
9346 instruct stkL_to_regL(iRegLdst dst, stackSlotL src) %{
9347   match(Set dst src);
9348   ins_cost(MEMORY_REF_COST);
9349 
9350   format %{ "LD      $dst, $src \t// long" %}
9351   size(4);
9352   ins_encode( enc_ld(dst, src) );
9353   ins_pipe(pipe_class_memory);
9354 %}
9355 
9356 // Store long to stack slot
9357 instruct regL_to_stkL(stackSlotL dst, iRegLsrc src) %{
9358   match(Set dst src);
9359   ins_cost(MEMORY_REF_COST);
9360 
9361   format %{ "STD     $src, $dst \t// long" %}
9362   size(4);
9363   ins_encode( enc_std(src, dst) ); // rs=rt
9364   ins_pipe(pipe_class_memory);
9365 %}
9366 
9367 //----------Moves between int and float
9368 
9369 // Move float value from float stack-location to integer register.
9370 instruct moveF2I_stack_reg(iRegIdst dst, stackSlotF src) %{
9371   match(Set dst (MoveF2I src));
9372   ins_cost(MEMORY_REF_COST);
9373 
9374   format %{ "LWZ     $dst, $src \t// MoveF2I" %}
9375   size(4);
9376   ins_encode( enc_lwz(dst, src) );
9377   ins_pipe(pipe_class_memory);
9378 %}
9379 
9380 // Move float value from float register to integer stack-location.
9381 instruct moveF2I_reg_stack(stackSlotI dst, regF src) %{
9382   match(Set dst (MoveF2I src));
9383   ins_cost(MEMORY_REF_COST);
9384 
9385   format %{ "STFS    $src, $dst \t// MoveF2I" %}
9386   size(4);
9387   ins_encode( enc_stfs(src, dst) );
9388   ins_pipe(pipe_class_memory);
9389 %}
9390 
9391 // Move integer value from integer stack-location to float register.
9392 instruct moveI2F_stack_reg(regF dst, stackSlotI src) %{
9393   match(Set dst (MoveI2F src));
9394   ins_cost(MEMORY_REF_COST);
9395 
9396   format %{ "LFS     $dst, $src \t// MoveI2F" %}
9397   size(4);
9398   ins_encode %{
9399     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
9400     int Idisp = $src$$disp + frame_slots_bias($src$$base, ra_);
9401     __ lfs($dst$$FloatRegister, Idisp, $src$$base$$Register);
9402   %}
9403   ins_pipe(pipe_class_memory);
9404 %}
9405 
9406 // Move integer value from integer register to float stack-location.
9407 instruct moveI2F_reg_stack(stackSlotF dst, iRegIsrc src) %{
9408   match(Set dst (MoveI2F src));
9409   ins_cost(MEMORY_REF_COST);
9410 
9411   format %{ "STW     $src, $dst \t// MoveI2F" %}
9412   size(4);
9413   ins_encode( enc_stw(src, dst) );
9414   ins_pipe(pipe_class_memory);
9415 %}
9416 
9417 //----------Moves between long and float
9418 
9419 instruct moveF2L_reg_stack(stackSlotL dst, regF src) %{
9420   // no match-rule, false predicate
9421   effect(DEF dst, USE src);
9422   predicate(false);
9423 
9424   format %{ "storeD  $src, $dst \t// STACK" %}
9425   size(4);
9426   ins_encode( enc_stfd(src, dst) );
9427   ins_pipe(pipe_class_default);
9428 %}
9429 
9430 //----------Moves between long and double
9431 
9432 // Move double value from double stack-location to long register.
9433 instruct moveD2L_stack_reg(iRegLdst dst, stackSlotD src) %{
9434   match(Set dst (MoveD2L src));
9435   ins_cost(MEMORY_REF_COST);
9436   size(4);
9437   format %{ "LD      $dst, $src \t// MoveD2L" %}
9438   ins_encode( enc_ld(dst, src) );
9439   ins_pipe(pipe_class_memory);
9440 %}
9441 
9442 // Move double value from double register to long stack-location.
9443 instruct moveD2L_reg_stack(stackSlotL dst, regD src) %{
9444   match(Set dst (MoveD2L src));
9445   effect(DEF dst, USE src);
9446   ins_cost(MEMORY_REF_COST);
9447 
9448   format %{ "STFD    $src, $dst \t// MoveD2L" %}
9449   size(4);
9450   ins_encode( enc_stfd(src, dst) );
9451   ins_pipe(pipe_class_memory);
9452 %}
9453 
9454 // Move long value from long stack-location to double register.
9455 instruct moveL2D_stack_reg(regD dst, stackSlotL src) %{
9456   match(Set dst (MoveL2D src));
9457   ins_cost(MEMORY_REF_COST);
9458 
9459   format %{ "LFD     $dst, $src \t// MoveL2D" %}
9460   size(4);
9461   ins_encode( enc_lfd(dst, src) );
9462   ins_pipe(pipe_class_memory);
9463 %}
9464 
9465 // Move long value from long register to double stack-location.
9466 instruct moveL2D_reg_stack(stackSlotD dst, iRegLsrc src) %{
9467   match(Set dst (MoveL2D src));
9468   ins_cost(MEMORY_REF_COST);
9469 
9470   format %{ "STD     $src, $dst \t// MoveL2D" %}
9471   size(4);
9472   ins_encode( enc_std(src, dst) );
9473   ins_pipe(pipe_class_memory);
9474 %}
9475 
9476 //----------Register Move Instructions-----------------------------------------
9477 
9478 // Replicate for Superword
9479 
9480 instruct moveReg(iRegLdst dst, iRegIsrc src) %{
9481   predicate(false);
9482   effect(DEF dst, USE src);
9483 
9484   format %{ "MR      $dst, $src \t// replicate " %}
9485   // variable size, 0 or 4.
9486   ins_encode %{
9487     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9488     __ mr_if_needed($dst$$Register, $src$$Register);
9489   %}
9490   ins_pipe(pipe_class_default);
9491 %}
9492 
9493 //----------Cast instructions (Java-level type cast)---------------------------
9494 
9495 // Cast Long to Pointer for unsafe natives.
9496 instruct castX2P(iRegPdst dst, iRegLsrc src) %{
9497   match(Set dst (CastX2P src));
9498 
9499   format %{ "MR      $dst, $src \t// Long->Ptr" %}
9500   // variable size, 0 or 4.
9501   ins_encode %{
9502     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9503     __ mr_if_needed($dst$$Register, $src$$Register);
9504   %}
9505  ins_pipe(pipe_class_default);
9506 %}
9507 
9508 // Cast Pointer to Long for unsafe natives.
9509 instruct castP2X(iRegLdst dst, iRegP_N2P src) %{
9510   match(Set dst (CastP2X src));
9511 
9512   format %{ "MR      $dst, $src \t// Ptr->Long" %}
9513   // variable size, 0 or 4.
9514   ins_encode %{
9515     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9516     __ mr_if_needed($dst$$Register, $src$$Register);
9517   %}
9518   ins_pipe(pipe_class_default);
9519 %}
9520 
9521 instruct castPP(iRegPdst dst) %{
9522   match(Set dst (CastPP dst));
9523   format %{ " -- \t// castPP of $dst" %}
9524   size(0);
9525   ins_encode( /*empty*/ );
9526   ins_pipe(pipe_class_default);
9527 %}
9528 
9529 instruct castII(iRegIdst dst) %{
9530   match(Set dst (CastII dst));
9531   format %{ " -- \t// castII of $dst" %}
9532   size(0);
9533   ins_encode( /*empty*/ );
9534   ins_pipe(pipe_class_default);
9535 %}
9536 
9537 instruct checkCastPP(iRegPdst dst) %{
9538   match(Set dst (CheckCastPP dst));
9539   format %{ " -- \t// checkcastPP of $dst" %}
9540   size(0);
9541   ins_encode( /*empty*/ );
9542   ins_pipe(pipe_class_default);
9543 %}
9544 
9545 //----------Convert instructions-----------------------------------------------
9546 
9547 // Convert to boolean.
9548 
9549 // int_to_bool(src) : { 1   if src != 0
9550 //                    { 0   else
9551 //
9552 // strategy:
9553 // 1) Count leading zeros of 32 bit-value src,
9554 //    this returns 32 (0b10.0000) iff src == 0 and <32 otherwise.
9555 // 2) Shift 5 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
9556 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
9557 
9558 // convI2Bool
9559 instruct convI2Bool_reg__cntlz_Ex(iRegIdst dst, iRegIsrc src) %{
9560   match(Set dst (Conv2B src));
9561   predicate(UseCountLeadingZerosInstructionsPPC64);
9562   ins_cost(DEFAULT_COST);
9563 
9564   expand %{
9565     immI shiftAmount %{ 0x5 %}
9566     uimmI16 mask %{ 0x1 %}
9567     iRegIdst tmp1;
9568     iRegIdst tmp2;
9569     countLeadingZerosI(tmp1, src);
9570     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
9571     xorI_reg_uimm16(dst, tmp2, mask);
9572   %}
9573 %}
9574 
9575 instruct convI2Bool_reg__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx) %{
9576   match(Set dst (Conv2B src));
9577   effect(TEMP crx);
9578   predicate(!UseCountLeadingZerosInstructionsPPC64);
9579   ins_cost(DEFAULT_COST);
9580 
9581   format %{ "CMPWI   $crx, $src, #0 \t// convI2B"
9582             "LI      $dst, #0\n\t"
9583             "BEQ     $crx, done\n\t"
9584             "LI      $dst, #1\n"
9585             "done:" %}
9586   size(16);
9587   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x0, 0x1) );
9588   ins_pipe(pipe_class_compare);
9589 %}
9590 
9591 // ConvI2B + XorI
9592 instruct xorI_convI2Bool_reg_immIvalue1__cntlz_Ex(iRegIdst dst, iRegIsrc src, immI_1 mask) %{
9593   match(Set dst (XorI (Conv2B src) mask));
9594   predicate(UseCountLeadingZerosInstructionsPPC64);
9595   ins_cost(DEFAULT_COST);
9596 
9597   expand %{
9598     immI shiftAmount %{ 0x5 %}
9599     iRegIdst tmp1;
9600     countLeadingZerosI(tmp1, src);
9601     urShiftI_reg_imm(dst, tmp1, shiftAmount);
9602   %}
9603 %}
9604 
9605 instruct xorI_convI2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI_1 mask) %{
9606   match(Set dst (XorI (Conv2B src) mask));
9607   effect(TEMP crx);
9608   predicate(!UseCountLeadingZerosInstructionsPPC64);
9609   ins_cost(DEFAULT_COST);
9610 
9611   format %{ "CMPWI   $crx, $src, #0 \t// Xor(convI2B($src), $mask)"
9612             "LI      $dst, #1\n\t"
9613             "BEQ     $crx, done\n\t"
9614             "LI      $dst, #0\n"
9615             "done:" %}
9616   size(16);
9617   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x1, 0x0) );
9618   ins_pipe(pipe_class_compare);
9619 %}
9620 
9621 // AndI 0b0..010..0 + ConvI2B
9622 instruct convI2Bool_andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src, immIpowerOf2 mask) %{
9623   match(Set dst (Conv2B (AndI src mask)));
9624   predicate(UseRotateAndMaskInstructionsPPC64);
9625   ins_cost(DEFAULT_COST);
9626 
9627   format %{ "RLWINM  $dst, $src, $mask \t// convI2B(AndI($src, $mask))" %}
9628   size(4);
9629   ins_encode %{
9630     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
9631     __ rlwinm($dst$$Register, $src$$Register, (32-log2_long((jlong)$mask$$constant)) & 0x1f, 31, 31);
9632   %}
9633   ins_pipe(pipe_class_default);
9634 %}
9635 
9636 // Convert pointer to boolean.
9637 //
9638 // ptr_to_bool(src) : { 1   if src != 0
9639 //                    { 0   else
9640 //
9641 // strategy:
9642 // 1) Count leading zeros of 64 bit-value src,
9643 //    this returns 64 (0b100.0000) iff src == 0 and <64 otherwise.
9644 // 2) Shift 6 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
9645 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
9646 
9647 // ConvP2B
9648 instruct convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src) %{
9649   match(Set dst (Conv2B src));
9650   predicate(UseCountLeadingZerosInstructionsPPC64);
9651   ins_cost(DEFAULT_COST);
9652 
9653   expand %{
9654     immI shiftAmount %{ 0x6 %}
9655     uimmI16 mask %{ 0x1 %}
9656     iRegIdst tmp1;
9657     iRegIdst tmp2;
9658     countLeadingZerosP(tmp1, src);
9659     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
9660     xorI_reg_uimm16(dst, tmp2, mask);
9661   %}
9662 %}
9663 
9664 instruct convP2Bool_reg__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx) %{
9665   match(Set dst (Conv2B src));
9666   effect(TEMP crx);
9667   predicate(!UseCountLeadingZerosInstructionsPPC64);
9668   ins_cost(DEFAULT_COST);
9669 
9670   format %{ "CMPDI   $crx, $src, #0 \t// convP2B"
9671             "LI      $dst, #0\n\t"
9672             "BEQ     $crx, done\n\t"
9673             "LI      $dst, #1\n"
9674             "done:" %}
9675   size(16);
9676   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x0, 0x1) );
9677   ins_pipe(pipe_class_compare);
9678 %}
9679 
9680 // ConvP2B + XorI
9681 instruct xorI_convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src, immI_1 mask) %{
9682   match(Set dst (XorI (Conv2B src) mask));
9683   predicate(UseCountLeadingZerosInstructionsPPC64);
9684   ins_cost(DEFAULT_COST);
9685 
9686   expand %{
9687     immI shiftAmount %{ 0x6 %}
9688     iRegIdst tmp1;
9689     countLeadingZerosP(tmp1, src);
9690     urShiftI_reg_imm(dst, tmp1, shiftAmount);
9691   %}
9692 %}
9693 
9694 instruct xorI_convP2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx, immI_1 mask) %{
9695   match(Set dst (XorI (Conv2B src) mask));
9696   effect(TEMP crx);
9697   predicate(!UseCountLeadingZerosInstructionsPPC64);
9698   ins_cost(DEFAULT_COST);
9699 
9700   format %{ "CMPDI   $crx, $src, #0 \t// XorI(convP2B($src), $mask)"
9701             "LI      $dst, #1\n\t"
9702             "BEQ     $crx, done\n\t"
9703             "LI      $dst, #0\n"
9704             "done:" %}
9705   size(16);
9706   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x1, 0x0) );
9707   ins_pipe(pipe_class_compare);
9708 %}
9709 
9710 // if src1 < src2, return -1 else return 0
9711 instruct cmpLTMask_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9712   match(Set dst (CmpLTMask src1 src2));
9713   ins_cost(DEFAULT_COST*4);
9714 
9715   expand %{
9716     iRegLdst src1s;
9717     iRegLdst src2s;
9718     iRegLdst diff;
9719     convI2L_reg(src1s, src1); // Ensure proper sign extension.
9720     convI2L_reg(src2s, src2); // Ensure proper sign extension.
9721     subL_reg_reg(diff, src1s, src2s);
9722     // Need to consider >=33 bit result, therefore we need signmaskL.
9723     signmask64I_regL(dst, diff);
9724   %}
9725 %}
9726 
9727 instruct cmpLTMask_reg_immI0(iRegIdst dst, iRegIsrc src1, immI_0 src2) %{
9728   match(Set dst (CmpLTMask src1 src2)); // if src1 < src2, return -1 else return 0
9729   format %{ "SRAWI   $dst, $src1, $src2 \t// CmpLTMask" %}
9730   size(4);
9731   ins_encode %{
9732     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
9733     __ srawi($dst$$Register, $src1$$Register, 0x1f);
9734   %}
9735   ins_pipe(pipe_class_default);
9736 %}
9737 
9738 //----------Arithmetic Conversion Instructions---------------------------------
9739 
9740 // Convert to Byte  -- nop
9741 // Convert to Short -- nop
9742 
9743 // Convert to Int
9744 
9745 instruct convB2I_reg(iRegIdst dst, iRegIsrc src, immI_24 amount) %{
9746   match(Set dst (RShiftI (LShiftI src amount) amount));
9747   format %{ "EXTSB   $dst, $src \t// byte->int" %}
9748   size(4);
9749   ins_encode %{
9750     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
9751     __ extsb($dst$$Register, $src$$Register);
9752   %}
9753   ins_pipe(pipe_class_default);
9754 %}
9755 
9756 // LShiftI 16 + RShiftI 16 converts short to int.
9757 instruct convS2I_reg(iRegIdst dst, iRegIsrc src, immI_16 amount) %{
9758   match(Set dst (RShiftI (LShiftI src amount) amount));
9759   format %{ "EXTSH   $dst, $src \t// short->int" %}
9760   size(4);
9761   ins_encode %{
9762     // TODO: PPC port $archOpcode(ppc64Opcode_extsh);
9763     __ extsh($dst$$Register, $src$$Register);
9764   %}
9765   ins_pipe(pipe_class_default);
9766 %}
9767 
9768 // ConvL2I + ConvI2L: Sign extend int in long register.
9769 instruct sxtI_L2L_reg(iRegLdst dst, iRegLsrc src) %{
9770   match(Set dst (ConvI2L (ConvL2I src)));
9771 
9772   format %{ "EXTSW   $dst, $src \t// long->long" %}
9773   size(4);
9774   ins_encode %{
9775     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
9776     __ extsw($dst$$Register, $src$$Register);
9777   %}
9778   ins_pipe(pipe_class_default);
9779 %}
9780 
9781 instruct convL2I_reg(iRegIdst dst, iRegLsrc src) %{
9782   match(Set dst (ConvL2I src));
9783   format %{ "MR      $dst, $src \t// long->int" %}
9784   // variable size, 0 or 4
9785   ins_encode %{
9786     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9787     __ mr_if_needed($dst$$Register, $src$$Register);
9788   %}
9789   ins_pipe(pipe_class_default);
9790 %}
9791 
9792 instruct convD2IRaw_regD(regD dst, regD src) %{
9793   // no match-rule, false predicate
9794   effect(DEF dst, USE src);
9795   predicate(false);
9796 
9797   format %{ "FCTIWZ $dst, $src \t// convD2I, $src != NaN" %}
9798   size(4);
9799   ins_encode %{
9800     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);;
9801     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
9802   %}
9803   ins_pipe(pipe_class_default);
9804 %}
9805 
9806 instruct cmovI_bso_stackSlotL(iRegIdst dst, flagsReg crx, stackSlotL src) %{
9807   // no match-rule, false predicate
9808   effect(DEF dst, USE crx, USE src);
9809   predicate(false);
9810 
9811   ins_variable_size_depending_on_alignment(true);
9812 
9813   format %{ "cmovI   $crx, $dst, $src" %}
9814   // Worst case is branch + move + stop, no stop without scheduler.
9815   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
9816   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
9817   ins_pipe(pipe_class_default);
9818 %}
9819 
9820 instruct cmovI_bso_stackSlotL_conLvalue0_Ex(iRegIdst dst, flagsReg crx, stackSlotL mem) %{
9821   // no match-rule, false predicate
9822   effect(DEF dst, USE crx, USE mem);
9823   predicate(false);
9824 
9825   format %{ "CmovI   $dst, $crx, $mem \t// postalloc expanded" %}
9826   postalloc_expand %{
9827     //
9828     // replaces
9829     //
9830     //   region  dst  crx  mem
9831     //    \       |    |   /
9832     //     dst=cmovI_bso_stackSlotL_conLvalue0
9833     //
9834     // with
9835     //
9836     //   region  dst
9837     //    \       /
9838     //     dst=loadConI16(0)
9839     //      |
9840     //      ^  region  dst  crx  mem
9841     //      |   \       |    |    /
9842     //      dst=cmovI_bso_stackSlotL
9843     //
9844 
9845     // Create new nodes.
9846     MachNode *m1 = new loadConI16Node();
9847     MachNode *m2 = new cmovI_bso_stackSlotLNode();
9848 
9849     // inputs for new nodes
9850     m1->add_req(n_region);
9851     m2->add_req(n_region, n_crx, n_mem);
9852 
9853     // precedences for new nodes
9854     m2->add_prec(m1);
9855 
9856     // operands for new nodes
9857     m1->_opnds[0] = op_dst;
9858     m1->_opnds[1] = new immI16Oper(0);
9859 
9860     m2->_opnds[0] = op_dst;
9861     m2->_opnds[1] = op_crx;
9862     m2->_opnds[2] = op_mem;
9863 
9864     // registers for new nodes
9865     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9866     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9867 
9868     // Insert new nodes.
9869     nodes->push(m1);
9870     nodes->push(m2);
9871   %}
9872 %}
9873 
9874 // Double to Int conversion, NaN is mapped to 0.
9875 instruct convD2I_reg_ExEx(iRegIdst dst, regD src) %{
9876   match(Set dst (ConvD2I src));
9877   ins_cost(DEFAULT_COST);
9878 
9879   expand %{
9880     regD tmpD;
9881     stackSlotL tmpS;
9882     flagsReg crx;
9883     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9884     convD2IRaw_regD(tmpD, src);                         // Convert float to int (speculated).
9885     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
9886     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9887   %}
9888 %}
9889 
9890 instruct convF2IRaw_regF(regF dst, regF src) %{
9891   // no match-rule, false predicate
9892   effect(DEF dst, USE src);
9893   predicate(false);
9894 
9895   format %{ "FCTIWZ $dst, $src \t// convF2I, $src != NaN" %}
9896   size(4);
9897   ins_encode %{
9898     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
9899     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
9900   %}
9901   ins_pipe(pipe_class_default);
9902 %}
9903 
9904 // Float to Int conversion, NaN is mapped to 0.
9905 instruct convF2I_regF_ExEx(iRegIdst dst, regF src) %{
9906   match(Set dst (ConvF2I src));
9907   ins_cost(DEFAULT_COST);
9908 
9909   expand %{
9910     regF tmpF;
9911     stackSlotL tmpS;
9912     flagsReg crx;
9913     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9914     convF2IRaw_regF(tmpF, src);                         // Convert float to int (speculated).
9915     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
9916     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9917   %}
9918 %}
9919 
9920 // Convert to Long
9921 
9922 instruct convI2L_reg(iRegLdst dst, iRegIsrc src) %{
9923   match(Set dst (ConvI2L src));
9924   format %{ "EXTSW   $dst, $src \t// int->long" %}
9925   size(4);
9926   ins_encode %{
9927     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
9928     __ extsw($dst$$Register, $src$$Register);
9929   %}
9930   ins_pipe(pipe_class_default);
9931 %}
9932 
9933 // Zero-extend: convert unsigned int to long (convUI2L).
9934 instruct zeroExtendL_regI(iRegLdst dst, iRegIsrc src, immL_32bits mask) %{
9935   match(Set dst (AndL (ConvI2L src) mask));
9936   ins_cost(DEFAULT_COST);
9937 
9938   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
9939   size(4);
9940   ins_encode %{
9941     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
9942     __ clrldi($dst$$Register, $src$$Register, 32);
9943   %}
9944   ins_pipe(pipe_class_default);
9945 %}
9946 
9947 // Zero-extend: convert unsigned int to long in long register.
9948 instruct zeroExtendL_regL(iRegLdst dst, iRegLsrc src, immL_32bits mask) %{
9949   match(Set dst (AndL src mask));
9950   ins_cost(DEFAULT_COST);
9951 
9952   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
9953   size(4);
9954   ins_encode %{
9955     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
9956     __ clrldi($dst$$Register, $src$$Register, 32);
9957   %}
9958   ins_pipe(pipe_class_default);
9959 %}
9960 
9961 instruct convF2LRaw_regF(regF dst, regF src) %{
9962   // no match-rule, false predicate
9963   effect(DEF dst, USE src);
9964   predicate(false);
9965 
9966   format %{ "FCTIDZ $dst, $src \t// convF2L, $src != NaN" %}
9967   size(4);
9968   ins_encode %{
9969     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
9970     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
9971   %}
9972   ins_pipe(pipe_class_default);
9973 %}
9974 
9975 instruct cmovL_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL src) %{
9976   // no match-rule, false predicate
9977   effect(DEF dst, USE crx, USE src);
9978   predicate(false);
9979 
9980   ins_variable_size_depending_on_alignment(true);
9981 
9982   format %{ "cmovL   $crx, $dst, $src" %}
9983   // Worst case is branch + move + stop, no stop without scheduler.
9984   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
9985   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
9986   ins_pipe(pipe_class_default);
9987 %}
9988 
9989 instruct cmovL_bso_stackSlotL_conLvalue0_Ex(iRegLdst dst, flagsReg crx, stackSlotL mem) %{
9990   // no match-rule, false predicate
9991   effect(DEF dst, USE crx, USE mem);
9992   predicate(false);
9993 
9994   format %{ "CmovL   $dst, $crx, $mem \t// postalloc expanded" %}
9995   postalloc_expand %{
9996     //
9997     // replaces
9998     //
9999     //   region  dst  crx  mem
10000     //    \       |    |   /
10001     //     dst=cmovL_bso_stackSlotL_conLvalue0
10002     //
10003     // with
10004     //
10005     //   region  dst
10006     //    \       /
10007     //     dst=loadConL16(0)
10008     //      |
10009     //      ^  region  dst  crx  mem
10010     //      |   \       |    |    /
10011     //      dst=cmovL_bso_stackSlotL
10012     //
10013 
10014     // Create new nodes.
10015     MachNode *m1 = new loadConL16Node();
10016     MachNode *m2 = new cmovL_bso_stackSlotLNode();
10017 
10018     // inputs for new nodes
10019     m1->add_req(n_region);
10020     m2->add_req(n_region, n_crx, n_mem);
10021     m2->add_prec(m1);
10022 
10023     // operands for new nodes
10024     m1->_opnds[0] = op_dst;
10025     m1->_opnds[1] = new immL16Oper(0);
10026     m2->_opnds[0] = op_dst;
10027     m2->_opnds[1] = op_crx;
10028     m2->_opnds[2] = op_mem;
10029 
10030     // registers for new nodes
10031     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
10032     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
10033 
10034     // Insert new nodes.
10035     nodes->push(m1);
10036     nodes->push(m2);
10037   %}
10038 %}
10039 
10040 // Float to Long conversion, NaN is mapped to 0.
10041 instruct convF2L_reg_ExEx(iRegLdst dst, regF src) %{
10042   match(Set dst (ConvF2L src));
10043   ins_cost(DEFAULT_COST);
10044 
10045   expand %{
10046     regF tmpF;
10047     stackSlotL tmpS;
10048     flagsReg crx;
10049     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
10050     convF2LRaw_regF(tmpF, src);                         // Convert float to long (speculated).
10051     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
10052     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
10053   %}
10054 %}
10055 
10056 instruct convD2LRaw_regD(regD dst, regD src) %{
10057   // no match-rule, false predicate
10058   effect(DEF dst, USE src);
10059   predicate(false);
10060 
10061   format %{ "FCTIDZ $dst, $src \t// convD2L $src != NaN" %}
10062   size(4);
10063   ins_encode %{
10064     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
10065     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
10066   %}
10067   ins_pipe(pipe_class_default);
10068 %}
10069 
10070 // Double to Long conversion, NaN is mapped to 0.
10071 instruct convD2L_reg_ExEx(iRegLdst dst, regD src) %{
10072   match(Set dst (ConvD2L src));
10073   ins_cost(DEFAULT_COST);
10074 
10075   expand %{
10076     regD tmpD;
10077     stackSlotL tmpS;
10078     flagsReg crx;
10079     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
10080     convD2LRaw_regD(tmpD, src);                         // Convert float to long (speculated).
10081     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
10082     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
10083   %}
10084 %}
10085 
10086 // Convert to Float
10087 
10088 // Placed here as needed in expand.
10089 instruct convL2DRaw_regD(regD dst, regD src) %{
10090   // no match-rule, false predicate
10091   effect(DEF dst, USE src);
10092   predicate(false);
10093 
10094   format %{ "FCFID $dst, $src \t// convL2D" %}
10095   size(4);
10096   ins_encode %{
10097     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
10098     __ fcfid($dst$$FloatRegister, $src$$FloatRegister);
10099   %}
10100   ins_pipe(pipe_class_default);
10101 %}
10102 
10103 // Placed here as needed in expand.
10104 instruct convD2F_reg(regF dst, regD src) %{
10105   match(Set dst (ConvD2F src));
10106   format %{ "FRSP    $dst, $src \t// convD2F" %}
10107   size(4);
10108   ins_encode %{
10109     // TODO: PPC port $archOpcode(ppc64Opcode_frsp);
10110     __ frsp($dst$$FloatRegister, $src$$FloatRegister);
10111   %}
10112   ins_pipe(pipe_class_default);
10113 %}
10114 
10115 // Integer to Float conversion.
10116 instruct convI2F_ireg_Ex(regF dst, iRegIsrc src) %{
10117   match(Set dst (ConvI2F src));
10118   predicate(!VM_Version::has_fcfids());
10119   ins_cost(DEFAULT_COST);
10120 
10121   expand %{
10122     iRegLdst tmpL;
10123     stackSlotL tmpS;
10124     regD tmpD;
10125     regD tmpD2;
10126     convI2L_reg(tmpL, src);              // Sign-extension int to long.
10127     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
10128     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10129     convL2DRaw_regD(tmpD2, tmpD);        // Convert to double.
10130     convD2F_reg(dst, tmpD2);             // Convert double to float.
10131   %}
10132 %}
10133 
10134 instruct convL2FRaw_regF(regF dst, regD src) %{
10135   // no match-rule, false predicate
10136   effect(DEF dst, USE src);
10137   predicate(false);
10138 
10139   format %{ "FCFIDS $dst, $src \t// convL2F" %}
10140   size(4);
10141   ins_encode %{
10142     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
10143     __ fcfids($dst$$FloatRegister, $src$$FloatRegister);
10144   %}
10145   ins_pipe(pipe_class_default);
10146 %}
10147 
10148 // Integer to Float conversion. Special version for Power7.
10149 instruct convI2F_ireg_fcfids_Ex(regF dst, iRegIsrc src) %{
10150   match(Set dst (ConvI2F src));
10151   predicate(VM_Version::has_fcfids());
10152   ins_cost(DEFAULT_COST);
10153 
10154   expand %{
10155     iRegLdst tmpL;
10156     stackSlotL tmpS;
10157     regD tmpD;
10158     convI2L_reg(tmpL, src);              // Sign-extension int to long.
10159     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
10160     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10161     convL2FRaw_regF(dst, tmpD);          // Convert to float.
10162   %}
10163 %}
10164 
10165 // L2F to avoid runtime call.
10166 instruct convL2F_ireg_fcfids_Ex(regF dst, iRegLsrc src) %{
10167   match(Set dst (ConvL2F src));
10168   predicate(VM_Version::has_fcfids());
10169   ins_cost(DEFAULT_COST);
10170 
10171   expand %{
10172     stackSlotL tmpS;
10173     regD tmpD;
10174     regL_to_stkL(tmpS, src);             // Store long to stack.
10175     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10176     convL2FRaw_regF(dst, tmpD);          // Convert to float.
10177   %}
10178 %}
10179 
10180 // Moved up as used in expand.
10181 //instruct convD2F_reg(regF dst, regD src) %{%}
10182 
10183 // Convert to Double
10184 
10185 // Integer to Double conversion.
10186 instruct convI2D_reg_Ex(regD dst, iRegIsrc src) %{
10187   match(Set dst (ConvI2D src));
10188   ins_cost(DEFAULT_COST);
10189 
10190   expand %{
10191     iRegLdst tmpL;
10192     stackSlotL tmpS;
10193     regD tmpD;
10194     convI2L_reg(tmpL, src);              // Sign-extension int to long.
10195     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
10196     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10197     convL2DRaw_regD(dst, tmpD);          // Convert to double.
10198   %}
10199 %}
10200 
10201 // Long to Double conversion
10202 instruct convL2D_reg_Ex(regD dst, stackSlotL src) %{
10203   match(Set dst (ConvL2D src));
10204   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10205 
10206   expand %{
10207     regD tmpD;
10208     moveL2D_stack_reg(tmpD, src);
10209     convL2DRaw_regD(dst, tmpD);
10210   %}
10211 %}
10212 
10213 instruct convF2D_reg(regD dst, regF src) %{
10214   match(Set dst (ConvF2D src));
10215   format %{ "FMR     $dst, $src \t// float->double" %}
10216   // variable size, 0 or 4
10217   ins_encode %{
10218     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
10219     __ fmr_if_needed($dst$$FloatRegister, $src$$FloatRegister);
10220   %}
10221   ins_pipe(pipe_class_default);
10222 %}
10223 
10224 //----------Control Flow Instructions------------------------------------------
10225 // Compare Instructions
10226 
10227 // Compare Integers
10228 instruct cmpI_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
10229   match(Set crx (CmpI src1 src2));
10230   size(4);
10231   format %{ "CMPW    $crx, $src1, $src2" %}
10232   ins_encode %{
10233     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
10234     __ cmpw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10235   %}
10236   ins_pipe(pipe_class_compare);
10237 %}
10238 
10239 instruct cmpI_reg_imm16(flagsReg crx, iRegIsrc src1, immI16 src2) %{
10240   match(Set crx (CmpI src1 src2));
10241   format %{ "CMPWI   $crx, $src1, $src2" %}
10242   size(4);
10243   ins_encode %{
10244     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10245     __ cmpwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10246   %}
10247   ins_pipe(pipe_class_compare);
10248 %}
10249 
10250 // (src1 & src2) == 0?
10251 instruct testI_reg_imm(flagsRegCR0 cr0, iRegIsrc src1, uimmI16 src2, immI_0 zero) %{
10252   match(Set cr0 (CmpI (AndI src1 src2) zero));
10253   // r0 is killed
10254   format %{ "ANDI    R0, $src1, $src2 \t// BTST int" %}
10255   size(4);
10256   ins_encode %{
10257     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
10258     // FIXME: avoid andi_ ?
10259     __ andi_(R0, $src1$$Register, $src2$$constant);
10260   %}
10261   ins_pipe(pipe_class_compare);
10262 %}
10263 
10264 instruct cmpL_reg_reg(flagsReg crx, iRegLsrc src1, iRegLsrc src2) %{
10265   match(Set crx (CmpL src1 src2));
10266   format %{ "CMPD    $crx, $src1, $src2" %}
10267   size(4);
10268   ins_encode %{
10269     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
10270     __ cmpd($crx$$CondRegister, $src1$$Register, $src2$$Register);
10271   %}
10272   ins_pipe(pipe_class_compare);
10273 %}
10274 
10275 instruct cmpL_reg_imm16(flagsReg crx, iRegLsrc src1, immL16 src2) %{
10276   match(Set crx (CmpL src1 src2));
10277   format %{ "CMPDI   $crx, $src1, $src2" %}
10278   size(4);
10279   ins_encode %{
10280     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10281     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10282   %}
10283   ins_pipe(pipe_class_compare);
10284 %}
10285 
10286 instruct testL_reg_reg(flagsRegCR0 cr0, iRegLsrc src1, iRegLsrc src2, immL_0 zero) %{
10287   match(Set cr0 (CmpL (AndL src1 src2) zero));
10288   // r0 is killed
10289   format %{ "AND     R0, $src1, $src2 \t// BTST long" %}
10290   size(4);
10291   ins_encode %{
10292     // TODO: PPC port $archOpcode(ppc64Opcode_and_);
10293     __ and_(R0, $src1$$Register, $src2$$Register);
10294   %}
10295   ins_pipe(pipe_class_compare);
10296 %}
10297 
10298 instruct testL_reg_imm(flagsRegCR0 cr0, iRegLsrc src1, uimmL16 src2, immL_0 zero) %{
10299   match(Set cr0 (CmpL (AndL src1 src2) zero));
10300   // r0 is killed
10301   format %{ "ANDI    R0, $src1, $src2 \t// BTST long" %}
10302   size(4);
10303   ins_encode %{
10304     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
10305     // FIXME: avoid andi_ ?
10306     __ andi_(R0, $src1$$Register, $src2$$constant);
10307   %}
10308   ins_pipe(pipe_class_compare);
10309 %}
10310 
10311 instruct cmovI_conIvalueMinus1_conIvalue1(iRegIdst dst, flagsReg crx) %{
10312   // no match-rule, false predicate
10313   effect(DEF dst, USE crx);
10314   predicate(false);
10315 
10316   ins_variable_size_depending_on_alignment(true);
10317 
10318   format %{ "cmovI   $crx, $dst, -1, 0, +1" %}
10319   // Worst case is branch + move + branch + move + stop, no stop without scheduler.
10320   size(false /* TODO: PPC PORTInsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 20 : 16);
10321   ins_encode %{
10322     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
10323     Label done;
10324     // li(Rdst, 0);              // equal -> 0
10325     __ beq($crx$$CondRegister, done);
10326     __ li($dst$$Register, 1);    // greater -> +1
10327     __ bgt($crx$$CondRegister, done);
10328     __ li($dst$$Register, -1);   // unordered or less -> -1
10329     // TODO: PPC port__ endgroup_if_needed(_size == 20);
10330     __ bind(done);
10331   %}
10332   ins_pipe(pipe_class_compare);
10333 %}
10334 
10335 instruct cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(iRegIdst dst, flagsReg crx) %{
10336   // no match-rule, false predicate
10337   effect(DEF dst, USE crx);
10338   predicate(false);
10339 
10340   format %{ "CmovI    $crx, $dst, -1, 0, +1 \t// postalloc expanded" %}
10341   postalloc_expand %{
10342     //
10343     // replaces
10344     //
10345     //   region  crx
10346     //    \       |
10347     //     dst=cmovI_conIvalueMinus1_conIvalue0_conIvalue1
10348     //
10349     // with
10350     //
10351     //   region
10352     //    \
10353     //     dst=loadConI16(0)
10354     //      |
10355     //      ^  region  crx
10356     //      |   \       |
10357     //      dst=cmovI_conIvalueMinus1_conIvalue1
10358     //
10359 
10360     // Create new nodes.
10361     MachNode *m1 = new loadConI16Node();
10362     MachNode *m2 = new cmovI_conIvalueMinus1_conIvalue1Node();
10363 
10364     // inputs for new nodes
10365     m1->add_req(n_region);
10366     m2->add_req(n_region, n_crx);
10367     m2->add_prec(m1);
10368 
10369     // operands for new nodes
10370     m1->_opnds[0] = op_dst;
10371     m1->_opnds[1] = new immI16Oper(0);
10372     m2->_opnds[0] = op_dst;
10373     m2->_opnds[1] = op_crx;
10374 
10375     // registers for new nodes
10376     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
10377     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
10378 
10379     // Insert new nodes.
10380     nodes->push(m1);
10381     nodes->push(m2);
10382   %}
10383 %}
10384 
10385 // Manifest a CmpL3 result in an integer register. Very painful.
10386 // This is the test to avoid.
10387 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
10388 instruct cmpL3_reg_reg_ExEx(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
10389   match(Set dst (CmpL3 src1 src2));
10390   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10391 
10392   expand %{
10393     flagsReg tmp1;
10394     cmpL_reg_reg(tmp1, src1, src2);
10395     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10396   %}
10397 %}
10398 
10399 // Implicit range checks.
10400 // A range check in the ideal world has one of the following shapes:
10401 //  - (If le (CmpU length index)), (IfTrue  throw exception)
10402 //  - (If lt (CmpU index length)), (IfFalse throw exception)
10403 //
10404 // Match range check 'If le (CmpU length index)'.
10405 instruct rangeCheck_iReg_uimm15(cmpOp cmp, iRegIsrc src_length, uimmI15 index, label labl) %{
10406   match(If cmp (CmpU src_length index));
10407   effect(USE labl);
10408   predicate(TrapBasedRangeChecks &&
10409             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le &&
10410             PROB_UNLIKELY(_leaf->as_If()->_prob) >= PROB_ALWAYS &&
10411             (Matcher::branches_to_uncommon_trap(_leaf)));
10412 
10413   ins_is_TrapBasedCheckNode(true);
10414 
10415   format %{ "TWI     $index $cmp $src_length \t// RangeCheck => trap $labl" %}
10416   size(4);
10417   ins_encode %{
10418     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
10419     if ($cmp$$cmpcode == 0x1 /* less_equal */) {
10420       __ trap_range_check_le($src_length$$Register, $index$$constant);
10421     } else {
10422       // Both successors are uncommon traps, probability is 0.
10423       // Node got flipped during fixup flow.
10424       assert($cmp$$cmpcode == 0x9, "must be greater");
10425       __ trap_range_check_g($src_length$$Register, $index$$constant);
10426     }
10427   %}
10428   ins_pipe(pipe_class_trap);
10429 %}
10430 
10431 // Match range check 'If lt (CmpU index length)'.
10432 instruct rangeCheck_iReg_iReg(cmpOp cmp, iRegIsrc src_index, iRegIsrc src_length, label labl) %{
10433   match(If cmp (CmpU src_index src_length));
10434   effect(USE labl);
10435   predicate(TrapBasedRangeChecks &&
10436             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
10437             _leaf->as_If()->_prob >= PROB_ALWAYS &&
10438             (Matcher::branches_to_uncommon_trap(_leaf)));
10439 
10440   ins_is_TrapBasedCheckNode(true);
10441 
10442   format %{ "TW      $src_index $cmp $src_length \t// RangeCheck => trap $labl" %}
10443   size(4);
10444   ins_encode %{
10445     // TODO: PPC port $archOpcode(ppc64Opcode_tw);
10446     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
10447       __ trap_range_check_ge($src_index$$Register, $src_length$$Register);
10448     } else {
10449       // Both successors are uncommon traps, probability is 0.
10450       // Node got flipped during fixup flow.
10451       assert($cmp$$cmpcode == 0x8, "must be less");
10452       __ trap_range_check_l($src_index$$Register, $src_length$$Register);
10453     }
10454   %}
10455   ins_pipe(pipe_class_trap);
10456 %}
10457 
10458 // Match range check 'If lt (CmpU index length)'.
10459 instruct rangeCheck_uimm15_iReg(cmpOp cmp, iRegIsrc src_index, uimmI15 length, label labl) %{
10460   match(If cmp (CmpU src_index length));
10461   effect(USE labl);
10462   predicate(TrapBasedRangeChecks &&
10463             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
10464             _leaf->as_If()->_prob >= PROB_ALWAYS &&
10465             (Matcher::branches_to_uncommon_trap(_leaf)));
10466 
10467   ins_is_TrapBasedCheckNode(true);
10468 
10469   format %{ "TWI     $src_index $cmp $length \t// RangeCheck => trap $labl" %}
10470   size(4);
10471   ins_encode %{
10472     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
10473     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
10474       __ trap_range_check_ge($src_index$$Register, $length$$constant);
10475     } else {
10476       // Both successors are uncommon traps, probability is 0.
10477       // Node got flipped during fixup flow.
10478       assert($cmp$$cmpcode == 0x8, "must be less");
10479       __ trap_range_check_l($src_index$$Register, $length$$constant);
10480     }
10481   %}
10482   ins_pipe(pipe_class_trap);
10483 %}
10484 
10485 instruct compU_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
10486   match(Set crx (CmpU src1 src2));
10487   format %{ "CMPLW   $crx, $src1, $src2 \t// unsigned" %}
10488   size(4);
10489   ins_encode %{
10490     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10491     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10492   %}
10493   ins_pipe(pipe_class_compare);
10494 %}
10495 
10496 instruct compU_reg_uimm16(flagsReg crx, iRegIsrc src1, uimmI16 src2) %{
10497   match(Set crx (CmpU src1 src2));
10498   size(4);
10499   format %{ "CMPLWI  $crx, $src1, $src2" %}
10500   ins_encode %{
10501     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
10502     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10503   %}
10504   ins_pipe(pipe_class_compare);
10505 %}
10506 
10507 // Implicit zero checks (more implicit null checks).
10508 // No constant pool entries required.
10509 instruct zeroCheckN_iReg_imm0(cmpOp cmp, iRegNsrc value, immN_0 zero, label labl) %{
10510   match(If cmp (CmpN value zero));
10511   effect(USE labl);
10512   predicate(TrapBasedNullChecks &&
10513             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
10514             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
10515             Matcher::branches_to_uncommon_trap(_leaf));
10516   ins_cost(1);
10517 
10518   ins_is_TrapBasedCheckNode(true);
10519 
10520   format %{ "TDI     $value $cmp $zero \t// ZeroCheckN => trap $labl" %}
10521   size(4);
10522   ins_encode %{
10523     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
10524     if ($cmp$$cmpcode == 0xA) {
10525       __ trap_null_check($value$$Register);
10526     } else {
10527       // Both successors are uncommon traps, probability is 0.
10528       // Node got flipped during fixup flow.
10529       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
10530       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
10531     }
10532   %}
10533   ins_pipe(pipe_class_trap);
10534 %}
10535 
10536 // Compare narrow oops.
10537 instruct cmpN_reg_reg(flagsReg crx, iRegNsrc src1, iRegNsrc src2) %{
10538   match(Set crx (CmpN src1 src2));
10539 
10540   size(4);
10541   ins_cost(2);
10542   format %{ "CMPLW   $crx, $src1, $src2 \t// compressed ptr" %}
10543   ins_encode %{
10544     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10545     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10546   %}
10547   ins_pipe(pipe_class_compare);
10548 %}
10549 
10550 instruct cmpN_reg_imm0(flagsReg crx, iRegNsrc src1, immN_0 src2) %{
10551   match(Set crx (CmpN src1 src2));
10552   // Make this more expensive than zeroCheckN_iReg_imm0.
10553   ins_cost(2);
10554 
10555   format %{ "CMPLWI  $crx, $src1, $src2 \t// compressed ptr" %}
10556   size(4);
10557   ins_encode %{
10558     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
10559     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10560   %}
10561   ins_pipe(pipe_class_compare);
10562 %}
10563 
10564 // Implicit zero checks (more implicit null checks).
10565 // No constant pool entries required.
10566 instruct zeroCheckP_reg_imm0(cmpOp cmp, iRegP_N2P value, immP_0 zero, label labl) %{
10567   match(If cmp (CmpP value zero));
10568   effect(USE labl);
10569   predicate(TrapBasedNullChecks &&
10570             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
10571             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
10572             Matcher::branches_to_uncommon_trap(_leaf));
10573   ins_cost(1); // Should not be cheaper than zeroCheckN.
10574 
10575   ins_is_TrapBasedCheckNode(true);
10576 
10577   format %{ "TDI     $value $cmp $zero \t// ZeroCheckP => trap $labl" %}
10578   size(4);
10579   ins_encode %{
10580     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
10581     if ($cmp$$cmpcode == 0xA) {
10582       __ trap_null_check($value$$Register);
10583     } else {
10584       // Both successors are uncommon traps, probability is 0.
10585       // Node got flipped during fixup flow.
10586       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
10587       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
10588     }
10589   %}
10590   ins_pipe(pipe_class_trap);
10591 %}
10592 
10593 // Compare Pointers
10594 instruct cmpP_reg_reg(flagsReg crx, iRegP_N2P src1, iRegP_N2P src2) %{
10595   match(Set crx (CmpP src1 src2));
10596   format %{ "CMPLD   $crx, $src1, $src2 \t// ptr" %}
10597   size(4);
10598   ins_encode %{
10599     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10600     __ cmpld($crx$$CondRegister, $src1$$Register, $src2$$Register);
10601   %}
10602   ins_pipe(pipe_class_compare);
10603 %}
10604 
10605 // Used in postalloc expand.
10606 instruct cmpP_reg_imm16(flagsReg crx, iRegPsrc src1, immL16 src2) %{
10607   // This match rule prevents reordering of node before a safepoint.
10608   // This only makes sense if this instructions is used exclusively
10609   // for the expansion of EncodeP!
10610   match(Set crx (CmpP src1 src2));
10611   predicate(false);
10612 
10613   format %{ "CMPDI   $crx, $src1, $src2" %}
10614   size(4);
10615   ins_encode %{
10616     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10617     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10618   %}
10619   ins_pipe(pipe_class_compare);
10620 %}
10621 
10622 //----------Float Compares----------------------------------------------------
10623 
10624 instruct cmpFUnordered_reg_reg(flagsReg crx, regF src1, regF src2) %{
10625   // no match-rule, false predicate
10626   effect(DEF crx, USE src1, USE src2);
10627   predicate(false);
10628 
10629   format %{ "cmpFUrd $crx, $src1, $src2" %}
10630   size(4);
10631   ins_encode %{
10632     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
10633     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
10634   %}
10635   ins_pipe(pipe_class_default);
10636 %}
10637 
10638 instruct cmov_bns_less(flagsReg crx) %{
10639   // no match-rule, false predicate
10640   effect(DEF crx);
10641   predicate(false);
10642 
10643   ins_variable_size_depending_on_alignment(true);
10644 
10645   format %{ "cmov    $crx" %}
10646   // Worst case is branch + move + stop, no stop without scheduler.
10647   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 16 : 12);
10648   ins_encode %{
10649     // TODO: PPC port $archOpcode(ppc64Opcode_cmovecr);
10650     Label done;
10651     __ bns($crx$$CondRegister, done);        // not unordered -> keep crx
10652     __ li(R0, 0);
10653     __ cmpwi($crx$$CondRegister, R0, 1);     // unordered -> set crx to 'less'
10654     // TODO PPC port __ endgroup_if_needed(_size == 16);
10655     __ bind(done);
10656   %}
10657   ins_pipe(pipe_class_default);
10658 %}
10659 
10660 // Compare floating, generate condition code.
10661 instruct cmpF_reg_reg_Ex(flagsReg crx, regF src1, regF src2) %{
10662   // FIXME: should we match 'If cmp (CmpF src1 src2))' ??
10663   //
10664   // The following code sequence occurs a lot in mpegaudio:
10665   //
10666   // block BXX:
10667   // 0: instruct cmpFUnordered_reg_reg (cmpF_reg_reg-0):
10668   //    cmpFUrd CCR6, F11, F9
10669   // 4: instruct cmov_bns_less (cmpF_reg_reg-1):
10670   //    cmov CCR6
10671   // 8: instruct branchConSched:
10672   //    B_FARle CCR6, B56  P=0.500000 C=-1.000000
10673   match(Set crx (CmpF src1 src2));
10674   ins_cost(DEFAULT_COST+BRANCH_COST);
10675 
10676   format %{ "CmpF    $crx, $src1, $src2 \t// postalloc expanded" %}
10677   postalloc_expand %{
10678     //
10679     // replaces
10680     //
10681     //   region  src1  src2
10682     //    \       |     |
10683     //     crx=cmpF_reg_reg
10684     //
10685     // with
10686     //
10687     //   region  src1  src2
10688     //    \       |     |
10689     //     crx=cmpFUnordered_reg_reg
10690     //      |
10691     //      ^  region
10692     //      |   \
10693     //      crx=cmov_bns_less
10694     //
10695 
10696     // Create new nodes.
10697     MachNode *m1 = new cmpFUnordered_reg_regNode();
10698     MachNode *m2 = new cmov_bns_lessNode();
10699 
10700     // inputs for new nodes
10701     m1->add_req(n_region, n_src1, n_src2);
10702     m2->add_req(n_region);
10703     m2->add_prec(m1);
10704 
10705     // operands for new nodes
10706     m1->_opnds[0] = op_crx;
10707     m1->_opnds[1] = op_src1;
10708     m1->_opnds[2] = op_src2;
10709     m2->_opnds[0] = op_crx;
10710 
10711     // registers for new nodes
10712     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10713     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10714 
10715     // Insert new nodes.
10716     nodes->push(m1);
10717     nodes->push(m2);
10718   %}
10719 %}
10720 
10721 // Compare float, generate -1,0,1
10722 instruct cmpF3_reg_reg_ExEx(iRegIdst dst, regF src1, regF src2) %{
10723   match(Set dst (CmpF3 src1 src2));
10724   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10725 
10726   expand %{
10727     flagsReg tmp1;
10728     cmpFUnordered_reg_reg(tmp1, src1, src2);
10729     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10730   %}
10731 %}
10732 
10733 instruct cmpDUnordered_reg_reg(flagsReg crx, regD src1, regD src2) %{
10734   // no match-rule, false predicate
10735   effect(DEF crx, USE src1, USE src2);
10736   predicate(false);
10737 
10738   format %{ "cmpFUrd $crx, $src1, $src2" %}
10739   size(4);
10740   ins_encode %{
10741     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
10742     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
10743   %}
10744   ins_pipe(pipe_class_default);
10745 %}
10746 
10747 instruct cmpD_reg_reg_Ex(flagsReg crx, regD src1, regD src2) %{
10748   match(Set crx (CmpD src1 src2));
10749   ins_cost(DEFAULT_COST+BRANCH_COST);
10750 
10751   format %{ "CmpD    $crx, $src1, $src2 \t// postalloc expanded" %}
10752   postalloc_expand %{
10753     //
10754     // replaces
10755     //
10756     //   region  src1  src2
10757     //    \       |     |
10758     //     crx=cmpD_reg_reg
10759     //
10760     // with
10761     //
10762     //   region  src1  src2
10763     //    \       |     |
10764     //     crx=cmpDUnordered_reg_reg
10765     //      |
10766     //      ^  region
10767     //      |   \
10768     //      crx=cmov_bns_less
10769     //
10770 
10771     // create new nodes
10772     MachNode *m1 = new cmpDUnordered_reg_regNode();
10773     MachNode *m2 = new cmov_bns_lessNode();
10774 
10775     // inputs for new nodes
10776     m1->add_req(n_region, n_src1, n_src2);
10777     m2->add_req(n_region);
10778     m2->add_prec(m1);
10779 
10780     // operands for new nodes
10781     m1->_opnds[0] = op_crx;
10782     m1->_opnds[1] = op_src1;
10783     m1->_opnds[2] = op_src2;
10784     m2->_opnds[0] = op_crx;
10785 
10786     // registers for new nodes
10787     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10788     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10789 
10790     // Insert new nodes.
10791     nodes->push(m1);
10792     nodes->push(m2);
10793   %}
10794 %}
10795 
10796 // Compare double, generate -1,0,1
10797 instruct cmpD3_reg_reg_ExEx(iRegIdst dst, regD src1, regD src2) %{
10798   match(Set dst (CmpD3 src1 src2));
10799   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10800 
10801   expand %{
10802     flagsReg tmp1;
10803     cmpDUnordered_reg_reg(tmp1, src1, src2);
10804     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10805   %}
10806 %}
10807 
10808 //----------Branches---------------------------------------------------------
10809 // Jump
10810 
10811 // Direct Branch.
10812 instruct branch(label labl) %{
10813   match(Goto);
10814   effect(USE labl);
10815   ins_cost(BRANCH_COST);
10816 
10817   format %{ "B       $labl" %}
10818   size(4);
10819   ins_encode %{
10820     // TODO: PPC port $archOpcode(ppc64Opcode_b);
10821      Label d;    // dummy
10822      __ bind(d);
10823      Label* p = $labl$$label;
10824      // `p' is `NULL' when this encoding class is used only to
10825      // determine the size of the encoded instruction.
10826      Label& l = (NULL == p)? d : *(p);
10827      __ b(l);
10828   %}
10829   ins_pipe(pipe_class_default);
10830 %}
10831 
10832 // Conditional Near Branch
10833 instruct branchCon(cmpOp cmp, flagsReg crx, label lbl) %{
10834   // Same match rule as `branchConFar'.
10835   match(If cmp crx);
10836   effect(USE lbl);
10837   ins_cost(BRANCH_COST);
10838 
10839   // If set to 1 this indicates that the current instruction is a
10840   // short variant of a long branch. This avoids using this
10841   // instruction in first-pass matching. It will then only be used in
10842   // the `Shorten_branches' pass.
10843   ins_short_branch(1);
10844 
10845   format %{ "B$cmp     $crx, $lbl" %}
10846   size(4);
10847   ins_encode( enc_bc(crx, cmp, lbl) );
10848   ins_pipe(pipe_class_default);
10849 %}
10850 
10851 // This is for cases when the ppc64 `bc' instruction does not
10852 // reach far enough. So we emit a far branch here, which is more
10853 // expensive.
10854 //
10855 // Conditional Far Branch
10856 instruct branchConFar(cmpOp cmp, flagsReg crx, label lbl) %{
10857   // Same match rule as `branchCon'.
10858   match(If cmp crx);
10859   effect(USE crx, USE lbl);
10860   predicate(!false /* TODO: PPC port HB_Schedule*/);
10861   // Higher cost than `branchCon'.
10862   ins_cost(5*BRANCH_COST);
10863 
10864   // This is not a short variant of a branch, but the long variant.
10865   ins_short_branch(0);
10866 
10867   format %{ "B_FAR$cmp $crx, $lbl" %}
10868   size(8);
10869   ins_encode( enc_bc_far(crx, cmp, lbl) );
10870   ins_pipe(pipe_class_default);
10871 %}
10872 
10873 // Conditional Branch used with Power6 scheduler (can be far or short).
10874 instruct branchConSched(cmpOp cmp, flagsReg crx, label lbl) %{
10875   // Same match rule as `branchCon'.
10876   match(If cmp crx);
10877   effect(USE crx, USE lbl);
10878   predicate(false /* TODO: PPC port HB_Schedule*/);
10879   // Higher cost than `branchCon'.
10880   ins_cost(5*BRANCH_COST);
10881 
10882   // Actually size doesn't depend on alignment but on shortening.
10883   ins_variable_size_depending_on_alignment(true);
10884   // long variant.
10885   ins_short_branch(0);
10886 
10887   format %{ "B_FAR$cmp $crx, $lbl" %}
10888   size(8); // worst case
10889   ins_encode( enc_bc_short_far(crx, cmp, lbl) );
10890   ins_pipe(pipe_class_default);
10891 %}
10892 
10893 instruct branchLoopEnd(cmpOp cmp, flagsReg crx, label labl) %{
10894   match(CountedLoopEnd cmp crx);
10895   effect(USE labl);
10896   ins_cost(BRANCH_COST);
10897 
10898   // short variant.
10899   ins_short_branch(1);
10900 
10901   format %{ "B$cmp     $crx, $labl \t// counted loop end" %}
10902   size(4);
10903   ins_encode( enc_bc(crx, cmp, labl) );
10904   ins_pipe(pipe_class_default);
10905 %}
10906 
10907 instruct branchLoopEndFar(cmpOp cmp, flagsReg crx, label labl) %{
10908   match(CountedLoopEnd cmp crx);
10909   effect(USE labl);
10910   predicate(!false /* TODO: PPC port HB_Schedule */);
10911   ins_cost(BRANCH_COST);
10912 
10913   // Long variant.
10914   ins_short_branch(0);
10915 
10916   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
10917   size(8);
10918   ins_encode( enc_bc_far(crx, cmp, labl) );
10919   ins_pipe(pipe_class_default);
10920 %}
10921 
10922 // Conditional Branch used with Power6 scheduler (can be far or short).
10923 instruct branchLoopEndSched(cmpOp cmp, flagsReg crx, label labl) %{
10924   match(CountedLoopEnd cmp crx);
10925   effect(USE labl);
10926   predicate(false /* TODO: PPC port HB_Schedule */);
10927   // Higher cost than `branchCon'.
10928   ins_cost(5*BRANCH_COST);
10929 
10930   // Actually size doesn't depend on alignment but on shortening.
10931   ins_variable_size_depending_on_alignment(true);
10932   // Long variant.
10933   ins_short_branch(0);
10934 
10935   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
10936   size(8); // worst case
10937   ins_encode( enc_bc_short_far(crx, cmp, labl) );
10938   ins_pipe(pipe_class_default);
10939 %}
10940 
10941 // ============================================================================
10942 // Java runtime operations, intrinsics and other complex operations.
10943 
10944 // The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
10945 // array for an instance of the superklass. Set a hidden internal cache on a
10946 // hit (cache is checked with exposed code in gen_subtype_check()). Return
10947 // not zero for a miss or zero for a hit. The encoding ALSO sets flags.
10948 //
10949 // GL TODO: Improve this.
10950 // - result should not be a TEMP
10951 // - Add match rule as on sparc avoiding additional Cmp.
10952 instruct partialSubtypeCheck(iRegPdst result, iRegP_N2P subklass, iRegP_N2P superklass,
10953                              iRegPdst tmp_klass, iRegPdst tmp_arrayptr) %{
10954   match(Set result (PartialSubtypeCheck subklass superklass));
10955   effect(TEMP_DEF result, TEMP tmp_klass, TEMP tmp_arrayptr);
10956   ins_cost(DEFAULT_COST*10);
10957 
10958   format %{ "PartialSubtypeCheck $result = ($subklass instanceOf $superklass) tmp: $tmp_klass, $tmp_arrayptr" %}
10959   ins_encode %{
10960     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10961     __ check_klass_subtype_slow_path($subklass$$Register, $superklass$$Register, $tmp_arrayptr$$Register,
10962                                      $tmp_klass$$Register, NULL, $result$$Register);
10963   %}
10964   ins_pipe(pipe_class_default);
10965 %}
10966 
10967 // inlined locking and unlocking
10968 
10969 instruct cmpFastLock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
10970   match(Set crx (FastLock oop box));
10971   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
10972   // TODO PPC port predicate(!UseNewFastLockPPC64 || UseBiasedLocking);
10973 
10974   format %{ "FASTLOCK  $oop, $box, $tmp1, $tmp2, $tmp3" %}
10975   ins_encode %{
10976     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10977     __ compiler_fast_lock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
10978                                  $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
10979     // If locking was successfull, crx should indicate 'EQ'.
10980     // The compiler generates a branch to the runtime call to
10981     // _complete_monitor_locking_Java for the case where crx is 'NE'.
10982   %}
10983   ins_pipe(pipe_class_compare);
10984 %}
10985 
10986 instruct cmpFastUnlock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
10987   match(Set crx (FastUnlock oop box));
10988   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
10989 
10990   format %{ "FASTUNLOCK  $oop, $box, $tmp1, $tmp2" %}
10991   ins_encode %{
10992     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10993     __ compiler_fast_unlock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
10994                                    $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
10995     // If unlocking was successfull, crx should indicate 'EQ'.
10996     // The compiler generates a branch to the runtime call to
10997     // _complete_monitor_unlocking_Java for the case where crx is 'NE'.
10998   %}
10999   ins_pipe(pipe_class_compare);
11000 %}
11001 
11002 // Align address.
11003 instruct align_addr(iRegPdst dst, iRegPsrc src, immLnegpow2 mask) %{
11004   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
11005 
11006   format %{ "ANDDI   $dst, $src, $mask \t// next aligned address" %}
11007   size(4);
11008   ins_encode %{
11009     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
11010     __ clrrdi($dst$$Register, $src$$Register, log2_long((jlong)-$mask$$constant));
11011   %}
11012   ins_pipe(pipe_class_default);
11013 %}
11014 
11015 // Array size computation.
11016 instruct array_size(iRegLdst dst, iRegPsrc end, iRegPsrc start) %{
11017   match(Set dst (SubL (CastP2X end) (CastP2X start)));
11018 
11019   format %{ "SUB     $dst, $end, $start \t// array size in bytes" %}
11020   size(4);
11021   ins_encode %{
11022     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
11023     __ subf($dst$$Register, $start$$Register, $end$$Register);
11024   %}
11025   ins_pipe(pipe_class_default);
11026 %}
11027 
11028 // Clear-array with dynamic array-size.
11029 instruct inlineCallClearArray(rarg1RegL cnt, rarg2RegP base, Universe dummy, regCTR ctr) %{
11030   match(Set dummy (ClearArray cnt base));
11031   effect(USE_KILL cnt, USE_KILL base, KILL ctr);
11032   ins_cost(MEMORY_REF_COST);
11033 
11034   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11035 
11036   format %{ "ClearArray $cnt, $base" %}
11037   ins_encode %{
11038     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11039     __ clear_memory_doubleword($base$$Register, $cnt$$Register); // kills cnt, base, R0
11040   %}
11041   ins_pipe(pipe_class_default);
11042 %}
11043 
11044 // String_IndexOf for needle of length 1.
11045 //
11046 // Match needle into immediate operands: no loadConP node needed. Saves one
11047 // register and two instructions over string_indexOf_imm1Node.
11048 //
11049 // Assumes register result differs from all input registers.
11050 //
11051 // Preserves registers haystack, haycnt
11052 // Kills     registers tmp1, tmp2
11053 // Defines   registers result
11054 //
11055 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11056 //
11057 // Unfortunately this does not match too often. In many situations the AddP is used
11058 // by several nodes, even several StrIndexOf nodes, breaking the match tree.
11059 instruct string_indexOf_imm1_char(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
11060                                   immP needleImm, immL offsetImm, immI_1 needlecntImm,
11061                                   iRegIdst tmp1, iRegIdst tmp2,
11062                                   flagsRegCR0 cr0, flagsRegCR1 cr1) %{
11063   predicate(SpecialStringIndexOf);  // type check implicit by parameter type, See Matcher::match_rule_supported
11064   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary (AddP needleImm offsetImm) needlecntImm)));
11065 
11066   effect(TEMP_DEF result, TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1);
11067 
11068   ins_cost(150);
11069   format %{ "String IndexOf CSCL1 $haystack[0..$haycnt], $needleImm+$offsetImm[0..$needlecntImm]"
11070             "-> $result \t// KILL $haycnt, $tmp1, $tmp2, $cr0, $cr1" %}
11071 
11072   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted
11073   ins_encode %{
11074     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11075     immPOper *needleOper = (immPOper *)$needleImm;
11076     const TypeOopPtr *t = needleOper->type()->isa_oopptr();
11077     ciTypeArray* needle_values = t->const_oop()->as_type_array();  // Pointer to live char *
11078 
11079     __ string_indexof_1($result$$Register,
11080                         $haystack$$Register, $haycnt$$Register,
11081                         R0, needle_values->char_at(0),
11082                         $tmp1$$Register, $tmp2$$Register);
11083   %}
11084   ins_pipe(pipe_class_compare);
11085 %}
11086 
11087 // String_IndexOf for needle of length 1.
11088 //
11089 // Special case requires less registers and emits less instructions.
11090 //
11091 // Assumes register result differs from all input registers.
11092 //
11093 // Preserves registers haystack, haycnt
11094 // Kills     registers tmp1, tmp2, needle
11095 // Defines   registers result
11096 //
11097 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11098 instruct string_indexOf_imm1(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
11099                              rscratch2RegP needle, immI_1 needlecntImm,
11100                              iRegIdst tmp1, iRegIdst tmp2,
11101                              flagsRegCR0 cr0, flagsRegCR1 cr1) %{
11102   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
11103   effect(USE_KILL needle, /* TDEF needle, */ TEMP_DEF result,
11104          TEMP tmp1, TEMP tmp2);
11105   // Required for EA: check if it is still a type_array.
11106   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
11107             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
11108   ins_cost(180);
11109 
11110   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11111 
11112   format %{ "String IndexOf SCL1 $haystack[0..$haycnt], $needle[0..$needlecntImm]"
11113             " -> $result \t// KILL $haycnt, $needle, $tmp1, $tmp2, $cr0, $cr1" %}
11114   ins_encode %{
11115     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11116     Node *ndl = in(operand_index($needle));  // The node that defines needle.
11117     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
11118     guarantee(needle_values, "sanity");
11119     if (needle_values != NULL) {
11120       __ string_indexof_1($result$$Register,
11121                           $haystack$$Register, $haycnt$$Register,
11122                           R0, needle_values->char_at(0),
11123                           $tmp1$$Register, $tmp2$$Register);
11124     } else {
11125       __ string_indexof_1($result$$Register,
11126                           $haystack$$Register, $haycnt$$Register,
11127                           $needle$$Register, 0,
11128                           $tmp1$$Register, $tmp2$$Register);
11129     }
11130   %}
11131   ins_pipe(pipe_class_compare);
11132 %}
11133 
11134 // String_IndexOf.
11135 //
11136 // Length of needle as immediate. This saves instruction loading constant needle
11137 // length.
11138 // @@@ TODO Specify rules for length < 8 or so, and roll out comparison of needle
11139 // completely or do it in vector instruction. This should save registers for
11140 // needlecnt and needle.
11141 //
11142 // Assumes register result differs from all input registers.
11143 // Overwrites haycnt, needlecnt.
11144 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11145 instruct string_indexOf_imm(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt,
11146                             iRegPsrc needle, uimmI15 needlecntImm,
11147                             iRegIdst tmp1, iRegIdst tmp2, iRegIdst tmp3, iRegIdst tmp4, iRegIdst tmp5,
11148                             flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
11149   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
11150   effect(USE_KILL haycnt, /* better: TDEF haycnt, */ TEMP_DEF result,
11151          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, KILL cr0, KILL cr1, KILL cr6);
11152   // Required for EA: check if it is still a type_array.
11153   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
11154             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
11155   ins_cost(250);
11156 
11157   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11158 
11159   format %{ "String IndexOf SCL $haystack[0..$haycnt], $needle[0..$needlecntImm]"
11160             " -> $result \t// KILL $haycnt, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5, $cr0, $cr1" %}
11161   ins_encode %{
11162     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11163     Node *ndl = in(operand_index($needle));  // The node that defines needle.
11164     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
11165 
11166     __ string_indexof($result$$Register,
11167                       $haystack$$Register, $haycnt$$Register,
11168                       $needle$$Register, needle_values, $tmp5$$Register, $needlecntImm$$constant,
11169                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
11170   %}
11171   ins_pipe(pipe_class_compare);
11172 %}
11173 
11174 // StrIndexOf node.
11175 //
11176 // Assumes register result differs from all input registers.
11177 // Overwrites haycnt, needlecnt.
11178 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11179 instruct string_indexOf(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt, iRegPsrc needle, rscratch2RegI needlecnt,
11180                         iRegLdst tmp1, iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4,
11181                         flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
11182   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
11183   effect(USE_KILL haycnt, USE_KILL needlecnt, /*better: TDEF haycnt, TDEF needlecnt,*/
11184          TEMP_DEF result,
11185          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr0, KILL cr1, KILL cr6);
11186   predicate(SpecialStringIndexOf);  // See Matcher::match_rule_supported.
11187   ins_cost(300);
11188 
11189   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11190 
11191   format %{ "String IndexOf $haystack[0..$haycnt], $needle[0..$needlecnt]"
11192              " -> $result \t// KILL $haycnt, $needlecnt, $tmp1, $tmp2, $tmp3, $tmp4, $cr0, $cr1" %}
11193   ins_encode %{
11194     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11195     __ string_indexof($result$$Register,
11196                       $haystack$$Register, $haycnt$$Register,
11197                       $needle$$Register, NULL, $needlecnt$$Register, 0,  // needlecnt not constant.
11198                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
11199   %}
11200   ins_pipe(pipe_class_compare);
11201 %}
11202 
11203 // String equals with immediate.
11204 instruct string_equals_imm(iRegPsrc str1, iRegPsrc str2, uimmI15 cntImm, iRegIdst result,
11205                            iRegPdst tmp1, iRegPdst tmp2,
11206                            flagsRegCR0 cr0, flagsRegCR6 cr6, regCTR ctr) %{
11207   match(Set result (StrEquals (Binary str1 str2) cntImm));
11208   effect(TEMP_DEF result, TEMP tmp1, TEMP tmp2,
11209          KILL cr0, KILL cr6, KILL ctr);
11210   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
11211   ins_cost(250);
11212 
11213   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11214 
11215   format %{ "String Equals SCL [0..$cntImm]($str1),[0..$cntImm]($str2)"
11216             " -> $result \t// KILL $cr0, $cr6, $ctr, TEMP $result, $tmp1, $tmp2" %}
11217   ins_encode %{
11218     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11219     __ char_arrays_equalsImm($str1$$Register, $str2$$Register, $cntImm$$constant,
11220                              $result$$Register, $tmp1$$Register, $tmp2$$Register);
11221   %}
11222   ins_pipe(pipe_class_compare);
11223 %}
11224 
11225 // String equals.
11226 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
11227 instruct string_equals(iRegPsrc str1, iRegPsrc str2, iRegIsrc cnt, iRegIdst result,
11228                        iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3, iRegPdst tmp4, iRegPdst tmp5,
11229                        flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
11230   match(Set result (StrEquals (Binary str1 str2) cnt));
11231   effect(TEMP_DEF result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5,
11232          KILL cr0, KILL cr1, KILL cr6, KILL ctr);
11233   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
11234   ins_cost(300);
11235 
11236   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11237 
11238   format %{ "String Equals [0..$cnt]($str1),[0..$cnt]($str2) -> $result"
11239             " \t// KILL $cr0, $cr1, $cr6, $ctr, TEMP $result, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5" %}
11240   ins_encode %{
11241     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11242     __ char_arrays_equals($str1$$Register, $str2$$Register, $cnt$$Register, $result$$Register,
11243                           $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, $tmp5$$Register);
11244   %}
11245   ins_pipe(pipe_class_compare);
11246 %}
11247 
11248 // String compare.
11249 // Char[] pointers are passed in.
11250 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
11251 instruct string_compare(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt1, rarg4RegI cnt2, iRegIdst result,
11252                         iRegPdst tmp, flagsRegCR0 cr0, regCTR ctr) %{
11253   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11254   effect(USE_KILL cnt1, USE_KILL cnt2, USE_KILL str1, USE_KILL str2, TEMP_DEF result, TEMP tmp, KILL cr0, KILL ctr);
11255   ins_cost(300);
11256 
11257   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11258 
11259   format %{ "String Compare $str1[0..$cnt1], $str2[0..$cnt2] -> $result"
11260             " \t// TEMP $tmp, $result KILLs $str1, $cnt1, $str2, $cnt2, $cr0, $ctr" %}
11261   ins_encode %{
11262     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11263     __ string_compare($str1$$Register, $str2$$Register, $cnt1$$Register, $cnt2$$Register,
11264                       $result$$Register, $tmp$$Register);
11265   %}
11266   ins_pipe(pipe_class_compare);
11267 %}
11268 
11269 //---------- Min/Max Instructions ---------------------------------------------
11270 
11271 instruct minI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
11272   match(Set dst (MinI src1 src2));
11273   ins_cost(DEFAULT_COST*6);
11274 
11275   expand %{
11276     iRegLdst src1s;
11277     iRegLdst src2s;
11278     iRegLdst diff;
11279     iRegLdst sm;
11280     iRegLdst doz; // difference or zero
11281     convI2L_reg(src1s, src1); // Ensure proper sign extension.
11282     convI2L_reg(src2s, src2); // Ensure proper sign extension.
11283     subL_reg_reg(diff, src2s, src1s);
11284     // Need to consider >=33 bit result, therefore we need signmaskL.
11285     signmask64L_regL(sm, diff);
11286     andL_reg_reg(doz, diff, sm); // <=0
11287     addI_regL_regL(dst, doz, src1s);
11288   %}
11289 %}
11290 
11291 instruct maxI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
11292   match(Set dst (MaxI src1 src2));
11293   ins_cost(DEFAULT_COST*6);
11294 
11295   expand %{
11296     iRegLdst src1s;
11297     iRegLdst src2s;
11298     iRegLdst diff;
11299     iRegLdst sm;
11300     iRegLdst doz; // difference or zero
11301     convI2L_reg(src1s, src1); // Ensure proper sign extension.
11302     convI2L_reg(src2s, src2); // Ensure proper sign extension.
11303     subL_reg_reg(diff, src2s, src1s);
11304     // Need to consider >=33 bit result, therefore we need signmaskL.
11305     signmask64L_regL(sm, diff);
11306     andcL_reg_reg(doz, diff, sm); // >=0
11307     addI_regL_regL(dst, doz, src1s);
11308   %}
11309 %}
11310 
11311 //---------- Population Count Instructions ------------------------------------
11312 
11313 // Popcnt for Power7.
11314 instruct popCountI(iRegIdst dst, iRegIsrc src) %{
11315   match(Set dst (PopCountI src));
11316   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
11317   ins_cost(DEFAULT_COST);
11318 
11319   format %{ "POPCNTW $dst, $src" %}
11320   size(4);
11321   ins_encode %{
11322     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
11323     __ popcntw($dst$$Register, $src$$Register);
11324   %}
11325   ins_pipe(pipe_class_default);
11326 %}
11327 
11328 // Popcnt for Power7.
11329 instruct popCountL(iRegIdst dst, iRegLsrc src) %{
11330   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
11331   match(Set dst (PopCountL src));
11332   ins_cost(DEFAULT_COST);
11333 
11334   format %{ "POPCNTD $dst, $src" %}
11335   size(4);
11336   ins_encode %{
11337     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
11338     __ popcntd($dst$$Register, $src$$Register);
11339   %}
11340   ins_pipe(pipe_class_default);
11341 %}
11342 
11343 instruct countLeadingZerosI(iRegIdst dst, iRegIsrc src) %{
11344   match(Set dst (CountLeadingZerosI src));
11345   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
11346   ins_cost(DEFAULT_COST);
11347 
11348   format %{ "CNTLZW  $dst, $src" %}
11349   size(4);
11350   ins_encode %{
11351     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzw);
11352     __ cntlzw($dst$$Register, $src$$Register);
11353   %}
11354   ins_pipe(pipe_class_default);
11355 %}
11356 
11357 instruct countLeadingZerosL(iRegIdst dst, iRegLsrc src) %{
11358   match(Set dst (CountLeadingZerosL src));
11359   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
11360   ins_cost(DEFAULT_COST);
11361 
11362   format %{ "CNTLZD  $dst, $src" %}
11363   size(4);
11364   ins_encode %{
11365     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
11366     __ cntlzd($dst$$Register, $src$$Register);
11367   %}
11368   ins_pipe(pipe_class_default);
11369 %}
11370 
11371 instruct countLeadingZerosP(iRegIdst dst, iRegPsrc src) %{
11372   // no match-rule, false predicate
11373   effect(DEF dst, USE src);
11374   predicate(false);
11375 
11376   format %{ "CNTLZD  $dst, $src" %}
11377   size(4);
11378   ins_encode %{
11379     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
11380     __ cntlzd($dst$$Register, $src$$Register);
11381   %}
11382   ins_pipe(pipe_class_default);
11383 %}
11384 
11385 instruct countTrailingZerosI_Ex(iRegIdst dst, iRegIsrc src) %{
11386   match(Set dst (CountTrailingZerosI src));
11387   predicate(UseCountLeadingZerosInstructionsPPC64);
11388   ins_cost(DEFAULT_COST);
11389 
11390   expand %{
11391     immI16 imm1 %{ (int)-1 %}
11392     immI16 imm2 %{ (int)32 %}
11393     immI_minus1 m1 %{ -1 %}
11394     iRegIdst tmpI1;
11395     iRegIdst tmpI2;
11396     iRegIdst tmpI3;
11397     addI_reg_imm16(tmpI1, src, imm1);
11398     andcI_reg_reg(tmpI2, src, m1, tmpI1);
11399     countLeadingZerosI(tmpI3, tmpI2);
11400     subI_imm16_reg(dst, imm2, tmpI3);
11401   %}
11402 %}
11403 
11404 instruct countTrailingZerosL_Ex(iRegIdst dst, iRegLsrc src) %{
11405   match(Set dst (CountTrailingZerosL src));
11406   predicate(UseCountLeadingZerosInstructionsPPC64);
11407   ins_cost(DEFAULT_COST);
11408 
11409   expand %{
11410     immL16 imm1 %{ (long)-1 %}
11411     immI16 imm2 %{ (int)64 %}
11412     iRegLdst tmpL1;
11413     iRegLdst tmpL2;
11414     iRegIdst tmpL3;
11415     addL_reg_imm16(tmpL1, src, imm1);
11416     andcL_reg_reg(tmpL2, tmpL1, src);
11417     countLeadingZerosL(tmpL3, tmpL2);
11418     subI_imm16_reg(dst, imm2, tmpL3);
11419  %}
11420 %}
11421 
11422 // Expand nodes for byte_reverse_int.
11423 instruct insrwi_a(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
11424   effect(DEF dst, USE src, USE pos, USE shift);
11425   predicate(false);
11426 
11427   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
11428   size(4);
11429   ins_encode %{
11430     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
11431     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
11432   %}
11433   ins_pipe(pipe_class_default);
11434 %}
11435 
11436 // As insrwi_a, but with USE_DEF.
11437 instruct insrwi(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
11438   effect(USE_DEF dst, USE src, USE pos, USE shift);
11439   predicate(false);
11440 
11441   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
11442   size(4);
11443   ins_encode %{
11444     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
11445     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
11446   %}
11447   ins_pipe(pipe_class_default);
11448 %}
11449 
11450 // Just slightly faster than java implementation.
11451 instruct bytes_reverse_int_Ex(iRegIdst dst, iRegIsrc src) %{
11452   match(Set dst (ReverseBytesI src));
11453   predicate(UseCountLeadingZerosInstructionsPPC64);
11454   ins_cost(DEFAULT_COST);
11455 
11456   expand %{
11457     immI16 imm24 %{ (int) 24 %}
11458     immI16 imm16 %{ (int) 16 %}
11459     immI16  imm8 %{ (int)  8 %}
11460     immI16  imm4 %{ (int)  4 %}
11461     immI16  imm0 %{ (int)  0 %}
11462     iRegLdst tmpI1;
11463     iRegLdst tmpI2;
11464     iRegLdst tmpI3;
11465 
11466     urShiftI_reg_imm(tmpI1, src, imm24);
11467     insrwi_a(dst, tmpI1, imm24, imm8);
11468     urShiftI_reg_imm(tmpI2, src, imm16);
11469     insrwi(dst, tmpI2, imm8, imm16);
11470     urShiftI_reg_imm(tmpI3, src, imm8);
11471     insrwi(dst, tmpI3, imm8, imm8);
11472     insrwi(dst, src, imm0, imm8);
11473   %}
11474 %}
11475 
11476 //---------- Replicate Vector Instructions ------------------------------------
11477 
11478 // Insrdi does replicate if src == dst.
11479 instruct repl32(iRegLdst dst) %{
11480   predicate(false);
11481   effect(USE_DEF dst);
11482 
11483   format %{ "INSRDI  $dst, #0, $dst, #32 \t// replicate" %}
11484   size(4);
11485   ins_encode %{
11486     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11487     __ insrdi($dst$$Register, $dst$$Register, 32, 0);
11488   %}
11489   ins_pipe(pipe_class_default);
11490 %}
11491 
11492 // Insrdi does replicate if src == dst.
11493 instruct repl48(iRegLdst dst) %{
11494   predicate(false);
11495   effect(USE_DEF dst);
11496 
11497   format %{ "INSRDI  $dst, #0, $dst, #48 \t// replicate" %}
11498   size(4);
11499   ins_encode %{
11500     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11501     __ insrdi($dst$$Register, $dst$$Register, 48, 0);
11502   %}
11503   ins_pipe(pipe_class_default);
11504 %}
11505 
11506 // Insrdi does replicate if src == dst.
11507 instruct repl56(iRegLdst dst) %{
11508   predicate(false);
11509   effect(USE_DEF dst);
11510 
11511   format %{ "INSRDI  $dst, #0, $dst, #56 \t// replicate" %}
11512   size(4);
11513   ins_encode %{
11514     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11515     __ insrdi($dst$$Register, $dst$$Register, 56, 0);
11516   %}
11517   ins_pipe(pipe_class_default);
11518 %}
11519 
11520 instruct repl8B_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11521   match(Set dst (ReplicateB src));
11522   predicate(n->as_Vector()->length() == 8);
11523   expand %{
11524     moveReg(dst, src);
11525     repl56(dst);
11526     repl48(dst);
11527     repl32(dst);
11528   %}
11529 %}
11530 
11531 instruct repl8B_immI0(iRegLdst dst, immI_0 zero) %{
11532   match(Set dst (ReplicateB zero));
11533   predicate(n->as_Vector()->length() == 8);
11534   format %{ "LI      $dst, #0 \t// replicate8B" %}
11535   size(4);
11536   ins_encode %{
11537     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11538     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11539   %}
11540   ins_pipe(pipe_class_default);
11541 %}
11542 
11543 instruct repl8B_immIminus1(iRegLdst dst, immI_minus1 src) %{
11544   match(Set dst (ReplicateB src));
11545   predicate(n->as_Vector()->length() == 8);
11546   format %{ "LI      $dst, #-1 \t// replicate8B" %}
11547   size(4);
11548   ins_encode %{
11549     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11550     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11551   %}
11552   ins_pipe(pipe_class_default);
11553 %}
11554 
11555 instruct repl4S_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11556   match(Set dst (ReplicateS src));
11557   predicate(n->as_Vector()->length() == 4);
11558   expand %{
11559     moveReg(dst, src);
11560     repl48(dst);
11561     repl32(dst);
11562   %}
11563 %}
11564 
11565 instruct repl4S_immI0(iRegLdst dst, immI_0 zero) %{
11566   match(Set dst (ReplicateS zero));
11567   predicate(n->as_Vector()->length() == 4);
11568   format %{ "LI      $dst, #0 \t// replicate4C" %}
11569   size(4);
11570   ins_encode %{
11571     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11572     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11573   %}
11574   ins_pipe(pipe_class_default);
11575 %}
11576 
11577 instruct repl4S_immIminus1(iRegLdst dst, immI_minus1 src) %{
11578   match(Set dst (ReplicateS src));
11579   predicate(n->as_Vector()->length() == 4);
11580   format %{ "LI      $dst, -1 \t// replicate4C" %}
11581   size(4);
11582   ins_encode %{
11583     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11584     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11585   %}
11586   ins_pipe(pipe_class_default);
11587 %}
11588 
11589 instruct repl2I_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11590   match(Set dst (ReplicateI src));
11591   predicate(n->as_Vector()->length() == 2);
11592   ins_cost(2 * DEFAULT_COST);
11593   expand %{
11594     moveReg(dst, src);
11595     repl32(dst);
11596   %}
11597 %}
11598 
11599 instruct repl2I_immI0(iRegLdst dst, immI_0 zero) %{
11600   match(Set dst (ReplicateI zero));
11601   predicate(n->as_Vector()->length() == 2);
11602   format %{ "LI      $dst, #0 \t// replicate4C" %}
11603   size(4);
11604   ins_encode %{
11605     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11606     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11607   %}
11608   ins_pipe(pipe_class_default);
11609 %}
11610 
11611 instruct repl2I_immIminus1(iRegLdst dst, immI_minus1 src) %{
11612   match(Set dst (ReplicateI src));
11613   predicate(n->as_Vector()->length() == 2);
11614   format %{ "LI      $dst, -1 \t// replicate4C" %}
11615   size(4);
11616   ins_encode %{
11617     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11618     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11619   %}
11620   ins_pipe(pipe_class_default);
11621 %}
11622 
11623 // Move float to int register via stack, replicate.
11624 instruct repl2F_reg_Ex(iRegLdst dst, regF src) %{
11625   match(Set dst (ReplicateF src));
11626   predicate(n->as_Vector()->length() == 2);
11627   ins_cost(2 * MEMORY_REF_COST + DEFAULT_COST);
11628   expand %{
11629     stackSlotL tmpS;
11630     iRegIdst tmpI;
11631     moveF2I_reg_stack(tmpS, src);   // Move float to stack.
11632     moveF2I_stack_reg(tmpI, tmpS);  // Move stack to int reg.
11633     moveReg(dst, tmpI);             // Move int to long reg.
11634     repl32(dst);                    // Replicate bitpattern.
11635   %}
11636 %}
11637 
11638 // Replicate scalar constant to packed float values in Double register
11639 instruct repl2F_immF_Ex(iRegLdst dst, immF src) %{
11640   match(Set dst (ReplicateF src));
11641   predicate(n->as_Vector()->length() == 2);
11642   ins_cost(5 * DEFAULT_COST);
11643 
11644   format %{ "LD      $dst, offset, $constanttablebase\t// load replicated float $src $src from table, postalloc expanded" %}
11645   postalloc_expand( postalloc_expand_load_replF_constant(dst, src, constanttablebase) );
11646 %}
11647 
11648 // Replicate scalar zero constant to packed float values in Double register
11649 instruct repl2F_immF0(iRegLdst dst, immF_0 zero) %{
11650   match(Set dst (ReplicateF zero));
11651   predicate(n->as_Vector()->length() == 2);
11652 
11653   format %{ "LI      $dst, #0 \t// replicate2F" %}
11654   ins_encode %{
11655     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11656     __ li($dst$$Register, 0x0);
11657   %}
11658   ins_pipe(pipe_class_default);
11659 %}
11660 
11661 // ============================================================================
11662 // Safepoint Instruction
11663 
11664 instruct safePoint_poll(iRegPdst poll) %{
11665   match(SafePoint poll);
11666   predicate(LoadPollAddressFromThread);
11667 
11668   // It caused problems to add the effect that r0 is killed, but this
11669   // effect no longer needs to be mentioned, since r0 is not contained
11670   // in a reg_class.
11671 
11672   format %{ "LD      R0, #0, $poll \t// Safepoint poll for GC" %}
11673   size(4);
11674   ins_encode( enc_poll(0x0, poll) );
11675   ins_pipe(pipe_class_default);
11676 %}
11677 
11678 // Safepoint without per-thread support. Load address of page to poll
11679 // as constant.
11680 // Rscratch2RegP is R12.
11681 // LoadConPollAddr node is added in pd_post_matching_hook(). It must be
11682 // a seperate node so that the oop map is at the right location.
11683 instruct safePoint_poll_conPollAddr(rscratch2RegP poll) %{
11684   match(SafePoint poll);
11685   predicate(!LoadPollAddressFromThread);
11686 
11687   // It caused problems to add the effect that r0 is killed, but this
11688   // effect no longer needs to be mentioned, since r0 is not contained
11689   // in a reg_class.
11690 
11691   format %{ "LD      R0, #0, R12 \t// Safepoint poll for GC" %}
11692   ins_encode( enc_poll(0x0, poll) );
11693   ins_pipe(pipe_class_default);
11694 %}
11695 
11696 // ============================================================================
11697 // Call Instructions
11698 
11699 // Call Java Static Instruction
11700 
11701 // Schedulable version of call static node.
11702 instruct CallStaticJavaDirect(method meth) %{
11703   match(CallStaticJava);
11704   effect(USE meth);
11705   predicate(!((CallStaticJavaNode*)n)->is_method_handle_invoke());
11706   ins_cost(CALL_COST);
11707 
11708   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
11709 
11710   format %{ "CALL,static $meth \t// ==> " %}
11711   size(4);
11712   ins_encode( enc_java_static_call(meth) );
11713   ins_pipe(pipe_class_call);
11714 %}
11715 
11716 // Schedulable version of call static node.
11717 instruct CallStaticJavaDirectHandle(method meth) %{
11718   match(CallStaticJava);
11719   effect(USE meth);
11720   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
11721   ins_cost(CALL_COST);
11722 
11723   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
11724 
11725   format %{ "CALL,static $meth \t// ==> " %}
11726   ins_encode( enc_java_handle_call(meth) );
11727   ins_pipe(pipe_class_call);
11728 %}
11729 
11730 // Call Java Dynamic Instruction
11731 
11732 // Used by postalloc expand of CallDynamicJavaDirectSchedEx (actual call).
11733 // Loading of IC was postalloc expanded. The nodes loading the IC are reachable
11734 // via fields ins_field_load_ic_hi_node and ins_field_load_ic_node.
11735 // The call destination must still be placed in the constant pool.
11736 instruct CallDynamicJavaDirectSched(method meth) %{
11737   match(CallDynamicJava); // To get all the data fields we need ...
11738   effect(USE meth);
11739   predicate(false);       // ... but never match.
11740 
11741   ins_field_load_ic_hi_node(loadConL_hiNode*);
11742   ins_field_load_ic_node(loadConLNode*);
11743   ins_num_consts(1 /* 1 patchable constant: call destination */);
11744 
11745   format %{ "BL        \t// dynamic $meth ==> " %}
11746   size(4);
11747   ins_encode( enc_java_dynamic_call_sched(meth) );
11748   ins_pipe(pipe_class_call);
11749 %}
11750 
11751 // Schedulable (i.e. postalloc expanded) version of call dynamic java.
11752 // We use postalloc expanded calls if we use inline caches
11753 // and do not update method data.
11754 //
11755 // This instruction has two constants: inline cache (IC) and call destination.
11756 // Loading the inline cache will be postalloc expanded, thus leaving a call with
11757 // one constant.
11758 instruct CallDynamicJavaDirectSched_Ex(method meth) %{
11759   match(CallDynamicJava);
11760   effect(USE meth);
11761   predicate(UseInlineCaches);
11762   ins_cost(CALL_COST);
11763 
11764   ins_num_consts(2 /* 2 patchable constants: inline cache, call destination. */);
11765 
11766   format %{ "CALL,dynamic $meth \t// postalloc expanded" %}
11767   postalloc_expand( postalloc_expand_java_dynamic_call_sched(meth, constanttablebase) );
11768 %}
11769 
11770 // Compound version of call dynamic java
11771 // We use postalloc expanded calls if we use inline caches
11772 // and do not update method data.
11773 instruct CallDynamicJavaDirect(method meth) %{
11774   match(CallDynamicJava);
11775   effect(USE meth);
11776   predicate(!UseInlineCaches);
11777   ins_cost(CALL_COST);
11778 
11779   // Enc_java_to_runtime_call needs up to 4 constants (method data oop).
11780   ins_num_consts(4);
11781 
11782   format %{ "CALL,dynamic $meth \t// ==> " %}
11783   ins_encode( enc_java_dynamic_call(meth, constanttablebase) );
11784   ins_pipe(pipe_class_call);
11785 %}
11786 
11787 // Call Runtime Instruction
11788 
11789 instruct CallRuntimeDirect(method meth) %{
11790   match(CallRuntime);
11791   effect(USE meth);
11792   ins_cost(CALL_COST);
11793 
11794   // Enc_java_to_runtime_call needs up to 3 constants: call target,
11795   // env for callee, C-toc.
11796   ins_num_consts(3);
11797 
11798   format %{ "CALL,runtime" %}
11799   ins_encode( enc_java_to_runtime_call(meth) );
11800   ins_pipe(pipe_class_call);
11801 %}
11802 
11803 // Call Leaf
11804 
11805 // Used by postalloc expand of CallLeafDirect_Ex (mtctr).
11806 instruct CallLeafDirect_mtctr(iRegLdst dst, iRegLsrc src) %{
11807   effect(DEF dst, USE src);
11808 
11809   ins_num_consts(1);
11810 
11811   format %{ "MTCTR   $src" %}
11812   size(4);
11813   ins_encode( enc_leaf_call_mtctr(src) );
11814   ins_pipe(pipe_class_default);
11815 %}
11816 
11817 // Used by postalloc expand of CallLeafDirect_Ex (actual call).
11818 instruct CallLeafDirect(method meth) %{
11819   match(CallLeaf);   // To get the data all the data fields we need ...
11820   effect(USE meth);
11821   predicate(false);  // but never match.
11822 
11823   format %{ "BCTRL     \t// leaf call $meth ==> " %}
11824   size(4);
11825   ins_encode %{
11826     // TODO: PPC port $archOpcode(ppc64Opcode_bctrl);
11827     __ bctrl();
11828   %}
11829   ins_pipe(pipe_class_call);
11830 %}
11831 
11832 // postalloc expand of CallLeafDirect.
11833 // Load adress to call from TOC, then bl to it.
11834 instruct CallLeafDirect_Ex(method meth) %{
11835   match(CallLeaf);
11836   effect(USE meth);
11837   ins_cost(CALL_COST);
11838 
11839   // Postalloc_expand_java_to_runtime_call needs up to 3 constants: call target,
11840   // env for callee, C-toc.
11841   ins_num_consts(3);
11842 
11843   format %{ "CALL,runtime leaf $meth \t// postalloc expanded" %}
11844   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
11845 %}
11846 
11847 // Call runtime without safepoint - same as CallLeaf.
11848 // postalloc expand of CallLeafNoFPDirect.
11849 // Load adress to call from TOC, then bl to it.
11850 instruct CallLeafNoFPDirect_Ex(method meth) %{
11851   match(CallLeafNoFP);
11852   effect(USE meth);
11853   ins_cost(CALL_COST);
11854 
11855   // Enc_java_to_runtime_call needs up to 3 constants: call target,
11856   // env for callee, C-toc.
11857   ins_num_consts(3);
11858 
11859   format %{ "CALL,runtime leaf nofp $meth \t// postalloc expanded" %}
11860   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
11861 %}
11862 
11863 // Tail Call; Jump from runtime stub to Java code.
11864 // Also known as an 'interprocedural jump'.
11865 // Target of jump will eventually return to caller.
11866 // TailJump below removes the return address.
11867 instruct TailCalljmpInd(iRegPdstNoScratch jump_target, inline_cache_regP method_oop) %{
11868   match(TailCall jump_target method_oop);
11869   ins_cost(CALL_COST);
11870 
11871   format %{ "MTCTR   $jump_target \t// $method_oop holds method oop\n\t"
11872             "BCTR         \t// tail call" %}
11873   size(8);
11874   ins_encode %{
11875     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11876     __ mtctr($jump_target$$Register);
11877     __ bctr();
11878   %}
11879   ins_pipe(pipe_class_call);
11880 %}
11881 
11882 // Return Instruction
11883 instruct Ret() %{
11884   match(Return);
11885   format %{ "BLR      \t// branch to link register" %}
11886   size(4);
11887   ins_encode %{
11888     // TODO: PPC port $archOpcode(ppc64Opcode_blr);
11889     // LR is restored in MachEpilogNode. Just do the RET here.
11890     __ blr();
11891   %}
11892   ins_pipe(pipe_class_default);
11893 %}
11894 
11895 // Tail Jump; remove the return address; jump to target.
11896 // TailCall above leaves the return address around.
11897 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
11898 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
11899 // "restore" before this instruction (in Epilogue), we need to materialize it
11900 // in %i0.
11901 instruct tailjmpInd(iRegPdstNoScratch jump_target, rarg1RegP ex_oop) %{
11902   match(TailJump jump_target ex_oop);
11903   ins_cost(CALL_COST);
11904 
11905   format %{ "LD      R4_ARG2 = LR\n\t"
11906             "MTCTR   $jump_target\n\t"
11907             "BCTR     \t// TailJump, exception oop: $ex_oop" %}
11908   size(12);
11909   ins_encode %{
11910     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11911     __ ld(R4_ARG2/* issuing pc */, _abi(lr), R1_SP);
11912     __ mtctr($jump_target$$Register);
11913     __ bctr();
11914   %}
11915   ins_pipe(pipe_class_call);
11916 %}
11917 
11918 // Create exception oop: created by stack-crawling runtime code.
11919 // Created exception is now available to this handler, and is setup
11920 // just prior to jumping to this handler. No code emitted.
11921 instruct CreateException(rarg1RegP ex_oop) %{
11922   match(Set ex_oop (CreateEx));
11923   ins_cost(0);
11924 
11925   format %{ " -- \t// exception oop; no code emitted" %}
11926   size(0);
11927   ins_encode( /*empty*/ );
11928   ins_pipe(pipe_class_default);
11929 %}
11930 
11931 // Rethrow exception: The exception oop will come in the first
11932 // argument position. Then JUMP (not call) to the rethrow stub code.
11933 instruct RethrowException() %{
11934   match(Rethrow);
11935   ins_cost(CALL_COST);
11936 
11937   format %{ "Jmp     rethrow_stub" %}
11938   ins_encode %{
11939     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11940     cbuf.set_insts_mark();
11941     __ b64_patchable((address)OptoRuntime::rethrow_stub(), relocInfo::runtime_call_type);
11942   %}
11943   ins_pipe(pipe_class_call);
11944 %}
11945 
11946 // Die now.
11947 instruct ShouldNotReachHere() %{
11948   match(Halt);
11949   ins_cost(CALL_COST);
11950 
11951   format %{ "ShouldNotReachHere" %}
11952   size(4);
11953   ins_encode %{
11954     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
11955     __ trap_should_not_reach_here();
11956   %}
11957   ins_pipe(pipe_class_default);
11958 %}
11959 
11960 // This name is KNOWN by the ADLC and cannot be changed.  The ADLC
11961 // forces a 'TypeRawPtr::BOTTOM' output type for this guy.
11962 // Get a DEF on threadRegP, no costs, no encoding, use
11963 // 'ins_should_rematerialize(true)' to avoid spilling.
11964 instruct tlsLoadP(threadRegP dst) %{
11965   match(Set dst (ThreadLocal));
11966   ins_cost(0);
11967 
11968   ins_should_rematerialize(true);
11969 
11970   format %{ " -- \t// $dst=Thread::current(), empty" %}
11971   size(0);
11972   ins_encode( /*empty*/ );
11973   ins_pipe(pipe_class_empty);
11974 %}
11975 
11976 //---Some PPC specific nodes---------------------------------------------------
11977 
11978 // Stop a group.
11979 instruct endGroup() %{
11980   ins_cost(0);
11981 
11982   ins_is_nop(true);
11983 
11984   format %{ "End Bundle (ori r1, r1, 0)" %}
11985   size(4);
11986   ins_encode %{
11987     // TODO: PPC port $archOpcode(ppc64Opcode_endgroup);
11988     __ endgroup();
11989   %}
11990   ins_pipe(pipe_class_default);
11991 %}
11992 
11993 // Nop instructions
11994 
11995 instruct fxNop() %{
11996   ins_cost(0);
11997 
11998   ins_is_nop(true);
11999 
12000   format %{ "fxNop" %}
12001   size(4);
12002   ins_encode %{
12003     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
12004     __ nop();
12005   %}
12006   ins_pipe(pipe_class_default);
12007 %}
12008 
12009 instruct fpNop0() %{
12010   ins_cost(0);
12011 
12012   ins_is_nop(true);
12013 
12014   format %{ "fpNop0" %}
12015   size(4);
12016   ins_encode %{
12017     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
12018     __ fpnop0();
12019   %}
12020   ins_pipe(pipe_class_default);
12021 %}
12022 
12023 instruct fpNop1() %{
12024   ins_cost(0);
12025 
12026   ins_is_nop(true);
12027 
12028   format %{ "fpNop1" %}
12029   size(4);
12030   ins_encode %{
12031     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
12032     __ fpnop1();
12033   %}
12034   ins_pipe(pipe_class_default);
12035 %}
12036 
12037 instruct brNop0() %{
12038   ins_cost(0);
12039   size(4);
12040   format %{ "brNop0" %}
12041   ins_encode %{
12042     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
12043     __ brnop0();
12044   %}
12045   ins_is_nop(true);
12046   ins_pipe(pipe_class_default);
12047 %}
12048 
12049 instruct brNop1() %{
12050   ins_cost(0);
12051 
12052   ins_is_nop(true);
12053 
12054   format %{ "brNop1" %}
12055   size(4);
12056   ins_encode %{
12057     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
12058     __ brnop1();
12059   %}
12060   ins_pipe(pipe_class_default);
12061 %}
12062 
12063 instruct brNop2() %{
12064   ins_cost(0);
12065 
12066   ins_is_nop(true);
12067 
12068   format %{ "brNop2" %}
12069   size(4);
12070   ins_encode %{
12071     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
12072     __ brnop2();
12073   %}
12074   ins_pipe(pipe_class_default);
12075 %}
12076 
12077 //----------PEEPHOLE RULES-----------------------------------------------------
12078 // These must follow all instruction definitions as they use the names
12079 // defined in the instructions definitions.
12080 //
12081 // peepmatch ( root_instr_name [preceeding_instruction]* );
12082 //
12083 // peepconstraint %{
12084 // (instruction_number.operand_name relational_op instruction_number.operand_name
12085 //  [, ...] );
12086 // // instruction numbers are zero-based using left to right order in peepmatch
12087 //
12088 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
12089 // // provide an instruction_number.operand_name for each operand that appears
12090 // // in the replacement instruction's match rule
12091 //
12092 // ---------VM FLAGS---------------------------------------------------------
12093 //
12094 // All peephole optimizations can be turned off using -XX:-OptoPeephole
12095 //
12096 // Each peephole rule is given an identifying number starting with zero and
12097 // increasing by one in the order seen by the parser. An individual peephole
12098 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
12099 // on the command-line.
12100 //
12101 // ---------CURRENT LIMITATIONS----------------------------------------------
12102 //
12103 // Only match adjacent instructions in same basic block
12104 // Only equality constraints
12105 // Only constraints between operands, not (0.dest_reg == EAX_enc)
12106 // Only one replacement instruction
12107 //
12108 // ---------EXAMPLE----------------------------------------------------------
12109 //
12110 // // pertinent parts of existing instructions in architecture description
12111 // instruct movI(eRegI dst, eRegI src) %{
12112 //   match(Set dst (CopyI src));
12113 // %}
12114 //
12115 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
12116 //   match(Set dst (AddI dst src));
12117 //   effect(KILL cr);
12118 // %}
12119 //
12120 // // Change (inc mov) to lea
12121 // peephole %{
12122 //   // increment preceeded by register-register move
12123 //   peepmatch ( incI_eReg movI );
12124 //   // require that the destination register of the increment
12125 //   // match the destination register of the move
12126 //   peepconstraint ( 0.dst == 1.dst );
12127 //   // construct a replacement instruction that sets
12128 //   // the destination to ( move's source register + one )
12129 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12130 // %}
12131 //
12132 // Implementation no longer uses movX instructions since
12133 // machine-independent system no longer uses CopyX nodes.
12134 //
12135 // peephole %{
12136 //   peepmatch ( incI_eReg movI );
12137 //   peepconstraint ( 0.dst == 1.dst );
12138 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12139 // %}
12140 //
12141 // peephole %{
12142 //   peepmatch ( decI_eReg movI );
12143 //   peepconstraint ( 0.dst == 1.dst );
12144 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12145 // %}
12146 //
12147 // peephole %{
12148 //   peepmatch ( addI_eReg_imm movI );
12149 //   peepconstraint ( 0.dst == 1.dst );
12150 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12151 // %}
12152 //
12153 // peephole %{
12154 //   peepmatch ( addP_eReg_imm movP );
12155 //   peepconstraint ( 0.dst == 1.dst );
12156 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
12157 // %}
12158 
12159 // // Change load of spilled value to only a spill
12160 // instruct storeI(memory mem, eRegI src) %{
12161 //   match(Set mem (StoreI mem src));
12162 // %}
12163 //
12164 // instruct loadI(eRegI dst, memory mem) %{
12165 //   match(Set dst (LoadI mem));
12166 // %}
12167 //
12168 peephole %{
12169   peepmatch ( loadI storeI );
12170   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
12171   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
12172 %}
12173 
12174 peephole %{
12175   peepmatch ( loadL storeL );
12176   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
12177   peepreplace ( storeL( 1.mem 1.mem 1.src ) );
12178 %}
12179 
12180 peephole %{
12181   peepmatch ( loadP storeP );
12182   peepconstraint ( 1.src == 0.dst, 1.dst == 0.mem );
12183   peepreplace ( storeP( 1.dst 1.dst 1.src ) );
12184 %}
12185 
12186 //----------SMARTSPILL RULES---------------------------------------------------
12187 // These must follow all instruction definitions as they use the names
12188 // defined in the instructions definitions.